
ptgMicrosoft®

SQL Server
2008 R2

UNLEASHED

800 East 96th Street, Indianapolis, Indiana 46240 USA

Ray Rankins
Paul Bertucci
Chris Gallelli
Alex T. Silverstein

 Download from www.wowebook.com

www.free-ebooks-library.com

ptg

Microsoft SQL Server 2008 R2 Unleashed
Copyright © 2011 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33056-8
ISBN-10: 0-672-33056-3

Library of Congress Cataloging-in-Publication Data is on file.

Printed in the United States of America

First Printing September 2010

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author(s) and the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the CD or programs accompanying it.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
+1-317-581-3793
international@pearsontechgroup.com

Publisher
Paul Boger

Editor In Chief
Karen Gettman

Acquisitions Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Sandra Schroeder

Project Editor
Seth Kerney

Copy Editor
Chuck Hutchinson

Indexer
Erika MIllen

Proofreader
Leslie Joseph
Debbie Williams

Technical Editor
Rebecca M. Riordan
J. Boyd Nolan

Publishing
Coordinator
Romney French

Multimedia Developer
Dan Scherf

Designer
Gary Adair

Compositor
Mark Shirar

 Download from www.wowebook.com

www.free-ebooks-library.com

ptg

Contents at a Glance
Introduction..1

Part I Welcome to Microsoft SQL Server

1 SQL Server 2008 Overview..9

2 What’s New in SQL Server 2008...35

3 Examples of SQL Server Implementations ...51

Part II SQL Server Tools and Utilities

4 SQL Server Management Studio ...63

5 SQL Server Command-Line Utilities ..103

6 SQL Server Profiler ..121

Part III SQL Server Administration

7 SQL Server System and Database Administration......................................165

8 Installing SQL Server 2008..185

9 Upgrading to SQL Server 2008 ...227

10 Client Installation and Configuration ...263

11 Security and User Administration ..291

12 Data Encryption..335

13 Security and Compliance..359

14 Database Backup and Restore ...377

15 Database Mail..427

16 SQL Server Scheduling and Notification ..449

17 Administering SQL Server 2008 with PowerShell481

18 SQL Server High Availability ..523

19 Replication ..545

20 Database Mirroring ...617

21 SQL Server Clustering ...655

22 Administering Policy-Based Management..687

Part IV Database Administration

23 Creating and Managing Databases ...709

24 Creating and Managing Tables ...741

25 Creating and Managing Indexes ..791

26 Implementing Data Integrity..811

27 Creating and Managing Views in SQL Server ..837

28 Creating and Managing Stored Procedures ..869

 Download from www.wowebook.com

www.free-ebooks-library.com

ptg

29 Creating and Managing User-Defined Functions.917

30 Creating and Managing Triggers . ..949

31 Transaction Management and the Transaction Log995

32 Database Snapshots. ...1043

33 Database Maintenance. ..1069

Part V SQL Server Performance and Optimization

34 Data Structures, Indexes, and Performance1091

35 Understanding Query Optimization . ..1209

36 Query Analysis . ..1301

37 Locking and Performance...1341

38 Database Design and Performance1403

39 Monitoring SQL Server Performance. ..1427

40 Managing Workloads with the Resource Governor1493

41 A Performance and Tuning Methodology. ..1519

Chapters on the CD

Part VI SQL Server Application Develop-

ment

42 What’s New for Transact-SQL in SQL Server 2008.1551

43 Transact-SQL Programming Guidelines, Tips, and Tricks1637

44 Advanced Stored Procedure Programming and Optimization.................1733

45 SQL Server and the .NET Framework1787

46 SQLCLR: Developing SQL Server Objects in .NET1825

47 Using XML in SQL Server 2008 . ..1865

48 SQL Server Web Services1927

49 SQL Server Service Broker1959

50 SQL Server Full-Text Search . ..1997

Part VII SQL Server Business Intelligence Features

51 SQL Server 2008 Analysis Services. ..2029

52 SQL Server Integration Services . ..2099

53 SQL Server 2008 Reporting Services2169

Part VIII Bonus Chapters

54 Managing Linked and Remote Servers2243

55 Configuring, Tuning, and Optimizing SQL Server Options2273

56 SQL Server Disaster Recovery Planning. ..2329

Index

2353

iv

 Download from www.wowebook.com

ptg

Table of Contents

Introduction 1

Part I Welcome to Microsoft SQL Server

1 SQL Server 2008 Overview 9

SQL Server Components and Features9
The SQL Server Database Engine...10
SQL Server 2008 Administration and Management Tools12
Replication15
Database Mirroring . ..17
Full-Text Search. ..17
SQL Server Integration Services (SSIS)...18
SQL Server Analysis Services (SSAS) ..19
SQL Server Reporting Services (SSRS) ..20
SQL Server Service Broker. ..22

SQL Server 2008 R2 Editions . ..23
SQL Server 2008 Standard Edition ..23
SQL Server 2008 Enterprise Edition ..24
Differences Between the Enterprise and

Standard Editions of SQL Server ...25
Other SQL Server 2008 Editions..26

SQL Server Licensing Models. ..30
Web Edition ..32
Developer Edition Licensing ...32
Express Edition Licensing..32
Compact Edition 3.5 Licensing...32
Choosing a Licensing Model...32
Mixing Licensing Models ..33
Passive Server/Failover Licensing ..33
Virtual Server Licensing...33
Multiple Instances of SQL Server ..34

Summary ...34

2 What’s New in SQL Server 2008 35

New SQL Server 2008 Features35
New Storage Features...36
New Data Types ...37
New Transact-SQL Constructs ...37
New Performance Features ..38
New Security Features..39

Contents v

 Download from www.wowebook.com

ptg

New Database Administration Features . ..40
New SQL Server Management Studio Features41
PowerShell Integration . ..42
New Premium SQL Server Editions ...42
SQL Server Utility for Multiserver Management43
PowerPivot for Excel and SharePoint..43
New Reporting Services Features44

SQL Server 2008 Enhancements. ...45
SQL Server Management Studio..45
Dynamic Management Views. ..45
Database Mirroring . ..46
SQLCLR Enhancements...46
Replication Enhancements. ..46
SQL Server Integration Services Enhancements47
Service Broker Enhancements47
Analysis Services Enhancements ...48
Installation Enhancements. ..49
Deprecated Features. ...49

Summary ...50

3 Examples of SQL Server Implementations 51

Application Terms ...52
OLTP Application Examples ...53

OLTP ERP Example ..53
OLTP Shopping Cart Example...56

DSS Application Examples. ..57
DSS Example One ..57
DSS Example Two . ..58
DSS Example Three. ..59

Summary ...61

Part II SQL Server Tools and Utilities

4 SQL Server Management Studio 63

What’s New in SSMS...63
The Integrated Environment . ..64

Window Management ...65
Integrated Help . ..68

Administration Tools . ..71
Registered Servers...71
Object Explorer . ..73
Activity Monitor . ..75

vi

 Download from www.wowebook.com

ptg

Log File Viewer ..77
SQL Server Utility ..79

Development Tools85
The Query Editor ...85
Managing Projects in SSMS ...93
Integrating SSMS with Source Control..95
Using SSMS Templates ...97
T-SQL Debugging ...100
Multiserver Queries..101

Summary ...102

5 SQL Server Command-Line Utilities 103

What’s New in SQL Server Command-Line Utilities104
The sqlcmd Command-Line Utility105

Executing the sqlcmd Utility...106
Using Scripting Variables with sqlcmd ...108

The dta Command-Line Utility . ..109
The tablediff Command-Line Utility..112
The bcp Command-Line Utility ...115
The sqldiag Command-Line Utility..116
The sqlservr Command-Line Utility...118
Summary119

6 SQL Server Profiler 121

What’s New with SQL Server Profiler ...121
SQL Server Profiler Architecture122
Creating Traces. ..123

Events...125
Data Columns..127
Filters. ..130

Executing Traces and Working with Trace Output132
Saving and Exporting Traces. ...132

Saving Trace Output to a File ..133
Saving Trace Output to a Table ...134
Saving the Profiler GUI Output...134
Importing Trace Files135
Importing a Trace File into a Trace Table..135
Analyzing Trace Output with the Database Engine Tuning Advisor138

Replaying Trace Data ..138
Defining Server-Side Traces...140

Monitoring Running Traces ..153
Stopping Server-Side Traces155

Contents vii

 Download from www.wowebook.com

ptg

Profiler Usage Scenarios ..157
Analyzing Slow Stored Procedures or Queries157
Deadlocks. ...158
Identifying Ad Hoc Queries. ...159
Identifying Performance Bottlenecks . ..160
Monitoring Auto-Update Statistics. ..162
Monitoring Application Progress . ..162

Summary ...164

Part III SQL Server Administration

7 SQL Server System and Database Administration 165

What’s New in SQL Server System and Database Administration.165
System Administrator Responsibilities166
System Databases . ..166

The master Database..167
The resource Database ...168
The model Database ..168
The msdb Database..168
The distribution Database ...168
The tempdb Database ..169
Maintaining System Databases..169

System Tables ..170
System Views...171

Compatibility Views ..172
Catalog Views . ..175
Information Schema Views ...177
Dynamic Management Views..179

System Stored Procedures181
Useful System Stored Procedures...182

Summary183

8 Installing SQL Server 2008 185

What’s New in Installing SQL Server 2008 ..185
Installation Requirements. ...186

Hardware Requirements ..186
Software Requirements ..188

Installation Walkthrough192
Install Screens, Step by Step ..192
Other Options Available in the SQL Server Installation Center211

Installing SQL Server Using a Configuration File212
Running an Automated or Manual Install..217

viii

 Download from www.wowebook.com

ptg

Installing Service Packs and Cumulative Updates218
Installing SP1 from the Command Line ...220

Slipstream Installations. ...222
Summary225

9 Upgrading to SQL Server 2008 227

What’s New in Upgrading SQL Server. ..227
Using the SQL Server Upgrade Advisor (UA) ...228

Getting Started with the UA..229
The Analysis Wizard . ..230
The Report Viewer235

Destination: SQL Server 2008 or SQL Server 2008 R2236
Side-by-Side Migration...236
Upgrading In-Place . ..242

Upgrading Using a Configuration File250
Slipstreaming Upgrades . ..251

Upgrading from SQL Server 7 or SQL Server 6.5252
Upgrading Other SQL Server Components . ..253

Upgrading Analysis Services ..253
Upgrading Reporting Services ...255

Summary ...261

10 Client Installation and Configuration 263

What’s New in Client Installation and Configuration263
Client/Server Networking Considerations. ..264

Server Network Protocols ..264
The Server Endpoint Layer ..267
The Role of SQL Browser ...270

Client Installation...271
Installation Requirements ...271
Installing the Client Tools...271
Installing SNAC272

Client Configuration ..274
Client Configuration Using SSCM ..275
Connection Encryption. ...278

Client Data Access Technologies . ..279
Provider Choices..280
Driver Choices ...281
Connecting Using the Various Providers and Drivers281
General Networking Considerations and Troubleshooting..............287

Summary ...289

Contents ix

 Download from www.wowebook.com

ptg

11 Security and User Administration 291

What’s New in Security and User Administration291
An Overview of SQL Server Security . ..292
Authentication Methods. ...294

Windows Authentication Mode..294
Mixed Authentication Mode294
Setting the Authentication Mode. ..295

Managing Principals295
Logins...296
SQL Server Security: Users ...298
User/Schema Separation ..301
Roles302

Managing Securables...309
Managing Permissions ..311
Managing SQL Server Logins..313

Using SSMS to Manage Logins ..313
Using T-SQL to Manage Logins317

Managing SQL Server Users . ..318
Using SSMS to Manage Users ..318
Using T-SQL to Manage Users320

Managing Database Roles321
Using SSMS to Manage Database Roles...321
Using T-SQL to Manage Database Roles. ..322

Managing SQL Server Permissions322
Using SSMS to Manage Permissions..323
Using T-SQL to Manage Permissions. ...330

The Execution Context. ...331
Explicit Context Switching ...332
Implicit Context Switching333

Summary ...334

12 Data Encryption 335

What’s New in Data Encryption...336
An Overview of Data Security . ..336
An Overview of Data Encryption ...338
SQL Server Key Management..339

Extensible Key Management ...341
Column-Level Encryption . ..343

Encrypting Columns Using a Passphrase..344
Encrypting Columns Using a Certificate . ..346

x

 Download from www.wowebook.com

ptg

Transparent Data Encryption350
Implementing Transparent Data Encryption....................................351
Managing TDE in SSMS. ...352
Backing Up TDE Certificates and Keys. ..353
Limitations of TDE . ..355

Column-Level Encryption Versus Transparent Data Encryption.356
Summary357

13 Security and Compliance 359

Exposure and Risk...360
Across the Life Cycle...361
The Security Big Picture ..362
Identity Access Management Components..364
Compliance and SQL Server ...366
SQL Server Auditing..368
Setting Up Auditing via T-SQL ...372
SQL Injection Is Easy to Do..374
Summary376

14 Database Backup and Restore 377

What’s New in Database Backup and Restore ..377
Developing a Backup and Restore Plan. ..378
Types of Backups. ...379

Full Database Backups ...380
Differential Database Backups...380
Partial Backups. ...381
Differential Partial Backups ...381
File and Filegroup Backups..381
Copy-Only Backups ...382
Transaction Log Backups ...382

Recovery Models ...382
Full Recovery..383
Bulk-Logged Recovery. ..384
Simple Recovery. ...385

Backup Devices ...385
Disk Devices...386
Tape Devices ..386
Network Shares ..386
Media Sets and Families ..387
Creating Backup Devices ...387

Contents xi

 Download from www.wowebook.com

ptg

Backing Up a Database388
Creating Database Backups with SSMS ...388
Creating Database Backups with T-SQL . ..390

Backing Up the Transaction Log . ..393
Creating Transaction Log Backups with SSMS..................................394
Creating Transaction Log Backups with T-SQL.394

Backup Scenarios. ...396
Full Database Backups Only ..396
Full Database Backups with Transaction Log Backups396
Differential Backups. ...397
Partial Backups. ...398
File/Filegroup Backups. ...400
Mirrored Backups. ...401
Copy-Only Backups402
Compressed Backups402
System Database Backups ..403

Restoring Databases and Transaction Logs. ...403
Restores with T-SQL...404
Restoring by Using SSMS...409
Restore Information. ...411

Restore Scenarios. ...414
Restoring to a Different Database ...414
Restoring a Snapshot416
Restoring a Transaction Log . ..416
Restoring to the Point of Failure417
Restoring to a Point in Time419
Online Restores. ..421
Restoring the System Databases ..421

Additional Backup Considerations423
Frequency of Backups ..423
Using a Standby Server..424
Snapshot Backups ..425
Considerations for Very Large Databases..425
Maintenance Plans ..426

Summary ...426

15 Database Mail 427

What’s New in Database Mail...427
Setting Up Database Mail428

Creating Mail Profiles and Accounts...429
Using T-SQL to Update and Delete Mail Objects..............................432

xii

 Download from www.wowebook.com

ptg

Setting System-wide Mail Settings...433
Testing Your Setup ...433

Sending and Receiving with Database Mail434
The Service Broker Architecture ..434
Sending Email . ..435
Receiving Email441

Using SQL Server Agent Mail. ..441
Job Mail Notifications ...442
Alert Mail Notifications443

Related Views and Procedures . ..445
Viewing the Mail Configuration Objects ..445
Viewing Mail Message Data. ...446

Summary ...448

16 SQL Server Scheduling and Notification 449

What’s New in Scheduling and Notification ...450
Configuring the SQL Server Agent450

Configuring SQL Server Agent Properties ...450
Configuring the SQL Server Agent Startup Account452
Configuring Email Notification . ..454
SQL Server Agent Proxy Account . ..455

Viewing the SQL Server Agent Error Log ...456
SQL Server Agent Security . ..458
Managing Operators458
Managing Jobs. ...461

Defining Job Properties ...461
Defining Job Steps ...462
Defining Multiple Jobs Steps...464
Defining Job Schedules..465
Defining Job Notifications ..467
Viewing Job History. ...468

Managing Alerts ..469
Defining Alert Properties ...469
Defining Alert Responses...472

Scripting Jobs and Alerts...474
Multiserver Job Management ...476

Creating a Master Server..476
Enlisting Target Servers. ..477
Creating Multiserver Jobs ..477

Event Forwarding..477
Summary479

Contents xiii

 Download from www.wowebook.com

ptg

17 Administering SQL Server 2008 with PowerShell 481

What’s New with PowerShell..481
Overview of PowerShell . ..482

Start Using PowerShell Now..483
Common Terminology . ..483
Object-Based Functionality484
SQL Server Management Objects ..484
WMI484
Installing PowerShell485
PowerShell Console485
Scriptable and Interactive. ..486
Default Security486
Execution Policy . ..487
Profiles487
Built-in Help Features . ..487

PowerShell Scripting Basics. ...490
A Few Basic Cmdlets..490
Creating a PowerShell Script ...491
Adding Comments . ..491
Variables. ...491
Escaping Characters. ...492
Special Variable $_493
Joining Variables and Strings ..493
Passing Arguments. ...494
Using Param. ...494
Arrays495
Operators496
Conditional Statements...496
Functions497
Looping Statements498
Filtering Cmdlets499
Formatting Cmdlets. ...500
Dealing with CSV Files ..501
Dealing with Dates and Times ..502
-WhatIf/-Confirm Parameters..503

PowerShell in SQL Server 2008. ...503
Adding PowerShell Support...503
Accessing PowerShell505
SQL Server PowerShell506
SQL Provider . ..507
SQL Cmdlets . ..508
SQL Server Agent Support ...509

xiv

 Download from www.wowebook.com

ptg

Step-By-Step Examples . ..509
General Tasks ...509
Scheduling Scripts..510
Common OS-Related Tasks..512
SQL Server–Specific Tasks ..514
Using the Provider ...515
Creating a Database Table ...515
Performing a Database Backup..516
Checking Server Settings ...518
Checking the Database Usage ...519
Getting Table Properties ..520
Cmdlet Example: Invoke-SqlCmd...520
Cmdlet Example: Invoke-PolicyEvaluation521
Joining Columns..521
Retrieving an Entry..522

Summary ...522

18 SQL Server High Availability 523

What’s New in High Availability ..524
What Is High Availability?. ..525
The Fundamentals of HA. ..526

Hardware Factors ...527
Backup Considerations ..527
Operating System Upgrades ..527
Vendor Agreements Followed..528
Training Kept Up to Date ..528
Quality Assurance Done Well..528
Standards/Procedures Followed...528
Server Instance Isolation ...528

Building Solutions with One or More HA Options.530
Microsoft Cluster Services (MSCS) ..530
SQL Clustering. ...531
Data Replication . ..534
Log Shipping. ..535
Database Mirroring . ..537
Combining Failover with Scale-Out Options....................................538

Other HA Techniques That Yield Great Results ...538
High Availability from the Windows Server Family Side540

Microsoft Virtual Server 2005..541
Virtual Server 2005 and Disaster Recovery542

Summary ...542

Contents xv

 Download from www.wowebook.com

ptg

19 Replication 545

What’s New in Data Replication ..546
What Is Replication?. ...547
The Publisher, Distributor, and Subscriber Magazine Metaphor549

Publications and Articles ...550
Filtering Articles. ...550

Replication Scenarios . ..555
The Central Publisher Replication Model ...555
The Central Publisher with Remote Distributor Replication Model.557
The Publishing Subscriber Replication Model558
The Central Subscriber Replication Model559
The Multiple Publishers with Multiple

Subscribers Replication Model ..559
The Updating Subscribers Replication Model560
The Peer-to-Peer Replication Model ..561

Subscriptions562
Anonymous Subscriptions (Pull Subscriptions)563
The Distribution Database. ...564

Replication Agents . ..565
The Snapshot Agent ..566
The Log Reader Agent. ..569
The Distribution Agent. ..569
The Merge Agent570
Other Specialized Agents571

Planning for SQL Server Data Replication572
Autonomy, Timing, and Latency of Data ...572
Methods of Data Distribution573

SQL Server Replication Types574
Snapshot Replication...574
Transactional Replication ..574
Merge Replication. ..575

Basing the Replication Design on User Requirements.577
Data Characteristics ...578

Setting Up Replication . ..579
Creating a Distributor and Enabling Publishing580
Creating a Publication. ...584
Horizontal and Vertical Filtering. ...592
Creating Subscriptions. ...594

Scripting Replication...600
Monitoring Replication ..603

Replication Monitoring SQL Statements...603
Monitoring Replication within SQL Server Management Studio.....606

xvi

 Download from www.wowebook.com

ptg

Troubleshooting Replication Failures..608
New and Improved Peer-to-Peer Replication609
The Performance Monitor610
Replication in Heterogeneous Environments611
Backup and Recovery in a Replication Configuration......................612
Some Thoughts on Performance ...613
Log Shipping. ..614
Data Replication and Database Mirroring for

Fault Tolerance and High Availability . ..614
Summary615

20 Database Mirroring 617

What’s New in Database Mirroring . ..617
What Is Database Mirroring?. ..618

Copy-on-Write Technology ...620
When to Use Database Mirroring ...621

Roles of the Database Mirroring Configuration.621
Playing Roles and Switching Roles..622
Database Mirroring Operating Modes. ...622

Setting Up and Configuring Database Mirroring.623
Getting Ready to Mirror a Database..624
Creating the Endpoints627
Granting Permissions . ..629
Creating the Database on the Mirror Server630
Identifying the Other Endpoints for Database Mirroring632
Configuring Database Mirroring by Using the Wizard633
Monitoring a Mirrored Database Environment639
Removing Mirroring . ..643

Testing Failover from the Principal to the Mirror.645
Client Setup and Configuration for Database Mirroring...........................647
Migrate to Database Mirroring 2008 as Fast as You Can649
Using Replication and Database Mirroring Together.................................651
Using Database Snapshots from a Mirror for Reporting............................652
Summary654

21 SQL Server Clustering 655

What’s New in SQL Server Clustering . ..656
How Microsoft SQL Server Clustering Works...656

Understanding MSCS...658
Extending MSCS with NLB..662
How MSCS Sets the Stage for SQL Server Clustering........................663

Contents xvii

 Download from www.wowebook.com

ptg

Installing SQL Server Clustering. ...665
Configuring SQL Server Database Disks..666
Installing Network Interfaces . ..668
Installing MSCS668
Installing SQL Server668
Failure of a Node679
The Connection Test Program for a SQL Server Cluster...................681
Potential Problems to Watch Out for with SQL Server Clustering684

Summary ...685

22 Administering Policy-Based Management 687

Introduction to Policy-Based Management..687
Policy-Based Management Concepts..689

Facets..689
Conditions ...693
Policies ...693
Categories...693
Targets ..693
Execution Modes ...694
Central Management Servers ..695

Implementing Policy-Based Management. ..697
Creating a Condition Based on a Facet...697
Creating a Policy. ..699
Creating a Category. ...701
Evaluating Policies702
Importing and Exporting Policies703

Sample Templates and Real-World Examples. ...704
Sample Policy Templates ...704
Evaluating Recovery Models..705
Implementing Surface Area Configuration Checks705
SQL Server Health Checks ...705
Ensuring Object Naming Conventions...706
Checking Best Practices Compliance ..706

Policy-Based Management Best Practices ...706
Summary707

Part IV Database Administration

23 Creating and Managing Databases 709

What’s New in Creating and Managing Databases....................................710
Data Storage in SQL Server710

xviii

 Download from www.wowebook.com

ptg

Database Files . ..711
Primary Files ..712
Secondary Files ..712
Using Filegroups ..713
Using Partitions ...716
Transaction Log Files ...716

Creating Databases. ..717
Using SSMS to Create a Database..718
Using T-SQL to Create Databases . ..721

Setting Database Options. ..722
The Database Options ...723
Using T-SQL to Set Database Options ...725
Retrieving Option Information ...726

Managing Databases729
Managing File Growth...729
Expanding Databases...730
Shrinking Databases ..731
Moving Databases. ..736
Restoring a Database Backup to a New Location..............................736
Using ALTER DATABASE..736
Detaching and Attaching Databases ...737

Summary ...740

24 Creating and Managing Tables 741

What’s New in SQL Server 2008...741
Creating Tables. ..742

Using Object Explorer to Create Tables ..742
Using Database Diagrams to Create Tables743
Using T-SQL to Create Tables . ..744

Defining Columns ..747
Data Types..747
Column Properties. ...755

Defining Table Location ...761
Defining Table Constraints...763
Modifying Tables. ...765

Using T-SQL to Modify Tables ...766
Using Object Explorer and the Table Designer to Modify Tables.....769
Using Database Diagrams to Modify Tables......................................772

Dropping Tables ..773
Using Partitioned Tables ...774

Creating a Partition Function ...776
Creating a Partition Scheme..778
Creating a Partitioned Table. ..779

Contents xix

 Download from www.wowebook.com

ptg

Adding and Dropping Table Partitions ...782
Switching Table Partitions785

Creating Temporary Tables ...789
Summary790

25 Creating and Managing Indexes 791

What’s New in Creating and Managing Indexes791
Types of Indexes. ..792

Clustered Indexes ..792
Nonclustered Indexes ..793

Creating Indexes795
Creating Indexes with T-SQL...795
Creating Indexes with SSMS..800

Managing Indexes. ...803
Managing Indexes with T-SQL ..803
Managing Indexes with SSMS ...806

Dropping Indexes ...807
Online Indexing Operations...807
Indexes on Views ..809
Summary810

26 Implementing Data Integrity 811

What’s New in Data Integrity...811
Types of Data Integrity812

Domain Integrity ...812
Entity Integrity ..812
Referential Integrity...812

Enforcing Data Integrity812
Implementing Declarative Data Integrity ...812
Implementing Procedural Data Integrity . ..813

Using Constraints813
The PRIMARY KEY Constraint ..813
The UNIQUE Constraint815
The FOREIGN KEY Referential Integrity Constraint.........................816
The CHECK Constraint820
Creating Constraints821
Managing Constraints827

Rules ..830
Defaults ...831

Declarative Defaults...831
Bound Defaults ..833
When a Default Is Applied ..833
Restrictions on Defaults...835

Summary ...836

xx

 Download from www.wowebook.com

ptg

27 Creating and Managing Views in SQL Server 837

What’s New in Creating and Managing Views . ..837
Definition of Views. ...837
Using Views. ...839

Simplifying Data Manipulation ..839
Focusing on Specific Data840
Abstracting Data . ..841
Controlling Access to Data. ..842

Creating Views . ..844
Creating Views Using T-SQL..845
Creating Views Using the View Designer..849

Managing Views. ..852
Altering Views ...852
Dropping Views with T-SQL..853
Managing Views with SSMS ..853

Data Modifications and Views. ..853
Partitioned Views . ..854

Modifying Data Through a Partitioned View858
Distributed Partitioned Views859

Indexed Views860
Creating Indexed Views...861
Indexed Views and Performance...863
To Expand or Not to Expand ..866

Summary ...867

28 Creating and Managing Stored Procedures 869

What’s New in Creating and Managing Stored Procedures.......................869
Advantages of Stored Procedures. ..870
Creating Stored Procedures. ...871

Creating Procedures in SSMS...872
Temporary Stored Procedures. ..879

Executing Stored Procedures...880
Executing Procedures in SSMS ..881
Execution Context and the EXECUTE AS Clause.............................882

Deferred Name Resolution..885
Identifying Objects Referenced in Stored Procedures.......................887

Viewing Stored Procedures888
Modifying Stored Procedures. ..891

Viewing and Modifying Stored Procedures with SSMS.....................892
Using Input Parameters . ..893

Setting Default Values for Parameters ...895
Passing Object Names as Parameters...898

Contents xxi

 Download from www.wowebook.com

ptg

Using Wildcards in Parameters ...899
Using Table-Valued Parameters901

Using Output Parameters..902
Returning Procedure Status ..904
Debugging Stored Procedures Using SQL Server Management Studio......905
Using System Stored Procedures...908
Startup Procedures . ..911
Summary915

29 Creating and Managing User-Defined Functions 917

What’s New in SQL Server 2008...917
Why Use User-Defined Functions?. ...918
Types of User-Defined Functions. ..921

Scalar Functions...921
Table-Valued Functions ...923

Creating and Managing User-Defined Functions.925
Creating User-Defined Functions ..925
Viewing and Modifying User-Defined Functions936
Managing User-Defined Function Permissions.................................941

Rewriting Stored Procedures as Functions. ..942
Creating and Using CLR Functions ..944

Adding CLR Functions to a Database..944
Deciding Between Using T-SQL or CLR Functions946

Summary ...947

30 Creating and Managing Triggers 949

What’s New in Creating and Managing Triggers950
Using DML Triggers . ..950

Creating DML Triggers...951
Using AFTER Triggers. ...953
Using inserted and deleted Tables...957
Enforcing Referential Integrity by Using DML Triggers961
Cascading Deletes . ..963
Cascading Updates. ...965
INSTEAD OF Triggers ...967

Using DDL Triggers976
Creating DDL Triggers ...983
Managing DDL Triggers...986

Using CLR Triggers..988
Using Nested Triggers ...991
Using Recursive Triggers ...992
Summary993

xxii

 Download from www.wowebook.com

ptg

31 Transaction Management and the Transaction Log 995

What’s New in Transaction Management . ..995
What Is a Transaction?995
How SQL Server Manages Transactions. ..996
Defining Transactions997

AutoCommit Transactions ..997
Explicit User-Defined Transactions ...998
Implicit Transactions1003
Implicit Transactions Versus Explicit Transactions.........................1006

Transactions and Batches..1007
Transactions and Stored Procedures ...1009
Transactions and Triggers1014

Triggers and Transaction Nesting ..1015
Triggers and Multistatement Transactions1017
Using Savepoints in Triggers1019

Transactions and Locking1021
READ_COMMITTED_SNAPSHOT Isolation1022

Coding Effective Transactions . ..1022
Transaction Logging and the Recovery Process1023

The Checkpoint Process ..1024
The Recovery Process. ...1028
Managing the Transaction Log..1032

Long-Running Transactions..1037
Bound Connections . ..1039
Distributed Transactions1040
Summary1041

32 Database Snapshots 1043

What’s New with Database Snapshots ...1044
What Are Database Snapshots? . ..1044
Limitations and Restrictions of Database Snapshots1048
Copy-on-Write Technology . ..1050
When to Use Database Snapshots . ..1051

Reverting to a Snapshot for Recovery Purposes..............................1052
Safeguarding a Database Prior to Making Mass Changes1053
Providing a Testing (or Quality Assurance)

Starting Point (Baseline)..1054
Providing a Point-in-Time Reporting Database1054
Providing a Highly Available and Offloaded

Reporting Database from a Database Mirror1055
Setup and Breakdown of a Database Snapshot1056

Creating a Database Snapshot...1057
Breaking Down a Database Snapshot..1062

Contents xxiii

 Download from www.wowebook.com

ptg

Reverting to a Database Snapshot for Recovery.1062
Reverting a Source Database from a Database Snapshot1063
Using Database Snapshots with Testing and QA1064

Setting Up Snapshots Against a Database Mirror.1064
Reciprocal Principal/Mirror Reporting Configuration....................1065

Database Snapshots Maintenance and Security Considerations1067
Security for Database Snapshots..1067
Snapshot Sparse File Size Management...1067
Number of Database Snapshots per Source Database.....................1067

Summary ...1068

33 Database Maintenance 1069

What’s New in Database Maintenance. ...1070
The Maintenance Plan Wizard1070

Backing Up Databases..1072
Checking Database Integrity ...1075
Shrinking Databases ..1076
Maintaining Indexes and Statistics ...1077
Scheduling a Maintenance Plan..1080

Managing Maintenance Plans Without the Wizard1084
Executing a Maintenance Plan1088
Maintenance Without a Maintenance Plan1089
Database Maintenance Policies . ..1090
Summary1090

Part V SQL Server Performance and Optimization

34 Data Structures, Indexes, and Performance 1091

What’s New for Data Structures, Indexes, and Performance1092
Understanding Data Structures . ..1093
Database Files and Filegroups. ...1093

Primary Data File ...1095
Secondary Data Files..1095
The Log File ...1096
File Management ...1096
Using Filegroups ..1097
FILESTREAM Filegroups...1100

Database Pages . ..1101
Page Types..1102
Data Pages . ..1103
Row-Overflow Pages ..1109
LOB Data Pages..1110
Index Pages ..1112

xxiv

 Download from www.wowebook.com

ptg

Space Allocation Structures...1113
Extents ...1113
Global and Shared Global Allocation Map Pages1114
Page Free Space Pages ..1115
Index Allocation Map Pages ..1115
Differential Changed Map Pages...1116
Bulk Changed Map Pages ..1116

Data Compression...1117
Row-Level Compression ..1117
Page-Level Compression. ..1119
The CI Record . ..1122
Implementing Page Compression ...1122
Evaluating Page Compression ...1123
Managing Data Compression with SSMS..1126

Understanding Table Structures. ..1127
Heap Tables ..1129
Clustered Tables ...1130

Understanding Index Structures. ...1132
Clustered Indexes ..1133
Nonclustered Indexes ..1136

Data Modification and Performance . ..1141
Inserting Data ..1141
Deleting Rows ..1144
Updating Rows...1145

Index Utilization...1146
Index Selection..1149
Evaluating Index Usefulness...1150
Index Statistics ..1153

The Statistics Histogram ..1155
How the Statistics Histogram Is Used ...1157
Index Densities . ..1158
Estimating Rows Using Index Statistics ..1159
Generating and Maintaining Index and Column Statistics1161

SQL Server Index Maintenance . ..1169
Setting the Fill Factor ..1179
Reapplying the Fill Factor..1181
Disabling Indexes ..1182
Managing Indexes with SSMS ...1183

Index Design Guidelines...1184
Clustered Index Indications ..1185
Nonclustered Index Indications..1186
Index Covering . ..1188

Contents xxv

 Download from www.wowebook.com

ptg

Included Columns ...1190
Wide Indexes Versus Multiple Indexes ...1191

Indexed Views ...1192
Indexes on Computed Columns ..1193
Filtered Indexes and Statistics ..1195

Creating and Using Filtered Indexes...1196
Creating and Using Filtered Statistics1198

Choosing Indexes: Query Versus Update Performance1199
Identifying Missing Indexes1201

The Database Engine Tuning Advisor ...1201
Missing Index Dynamic Management Objects...............................1202
Missing Index Feature Versus Database Engine Tuning Advisor1203

Identifying Unused Indexes ...1205
Summary1208

35 Understanding Query Optimization 1209

What’s New in Query Optimization...1210
What Is the Query Optimizer?1211
Query Compilation and Optimization. ...1212

Compiling DML Statements..1212
Optimization Steps . ..1213

Query Analysis . ..1213
Identifying Search Arguments...1214
Identifying OR Clauses . ..1214
Identifying Join Clauses . ..1215

Row Estimation and Index Selection1216
Evaluating SARG and Join Selectivity ...1216
Estimating Access Path Cost. ..1221
Using Multiple Indexes1228
Optimizing with Indexed Views ...1236
Optimizing with Filtered Indexes1239

Join Selection . ..1241
Join Processing Strategies ..1241
Determining the Optimal Join Order ...1246
Subquery Processing . ..1248

Execution Plan Selection ..1251
Query Plan Caching. ..1254

Query Plan Reuse...1254
Query Plan Aging...1256
Recompiling Query Plans ..1257
Monitoring the Plan Cache...1258

Other Query Processing Strategies. ..1266
Predicate Transitivity ...1266

xxvi

 Download from www.wowebook.com

ptg

Group by Optimization...1267
Queries with DISTINCT...1268
Queries with UNION ...1268

Parallel Query Processing. ..1268
Parallel Query Configuration Options ..1271
Identifying Parallel Queries1272
Parallel Queries on Partitioned Objects ..1273

Common Query Optimization Problems. ...1274
Out-of-Date or Insufficient Statistics...1274
Poor Index Design1275
Search Argument Problems1276
Large Complex Queries1277
Triggers. ...1278

Managing the Optimizer . ..1278
Optimizer Hints ...1280
Forced Parameterization . ..1285
Using the USE PLAN Query Hint ..1287
Using Plan Guides ...1290
Limiting Query Plan Execution with the Query Governor1298

Summary ...1300

36 Query Analysis 1301

What’s New in Query Analysis ...1302
Query Analysis in SSMS . ..1302

Execution Plan ToolTips ..1304
Logical and Physical Operator Icons...1308
Analyzing Stored Procedures ...1315
Saving and Viewing Graphical Execution Plans1316
Displaying Execution Plan XML ...1317
Missing Index Hints ..1317

SSMS Client Statistics..1322
Using the SET SHOWPLAN Options ..1324

SHOWPLAN_TEXT...1324
SHOWPLAN_ALL1326
SHOWPLAN_XML1327

Using sys.dm_exec_query_plan ..1328
Query Statistics1330

STATISTICS IO..1330
STATISTICS TIME...1333
Using datediff() to Measure Runtime..1336
STATISTICS PROFILE..1337
STATISTICS XML..1337

Contents xxvii

 Download from www.wowebook.com

ptg

Query Analysis with SQL Server Profiler . ..1338
Summary1340

37 Locking and Performance 1341

What’s New in Locking and Performance..1341
The Need for Locking1342
Transaction Isolation Levels in SQL Server ..1342

Read Uncommitted Isolation ..1344
Read Committed Isolation . ..1344
Read Committed Snapshot Isolation ..1345
Repeatable Read Isolation. ..1346
Serializable Read Isolation1346
Snapshot Isolation1347

The Lock Manager...1349
Monitoring Lock Activity in SQL Server . ..1350

Querying the sys.dm_tran_locks View..1350
Viewing Locking Activity with SQL Server Profiler1355
Monitoring Locks with Performance Monitor................................1357

SQL Server Lock Types . ..1359
Shared Locks ..1360
Update Locks ...1360
Exclusive Locks ..1361
Intent Locks ...1362
Schema Locks...1363
Bulk Update Locks ...1363

SQL Server Lock Granularity . ..1364
Serialization and Key-Range Locking ..1365
Using Application Locks. ..1369
Index Locking . ..1372
Row-Level Versus Page-Level Locking ...1373
Lock Escalation . ..1374

Lock Compatibility ...1376
Locking Contention and Deadlocks...1377

Identifying Locking Contention ...1378
Setting the Lock Timeout Interval . ..1380
Minimizing Locking Contention ..1381
Deadlocks. ...1382

Table Hints for Locking . ..1393
Transaction Isolation–Level Hints ...1393
Lock Granularity Hints. ..1395
Lock Type Hints. ...1395

xxviii

 Download from www.wowebook.com

ptg

Optimistic Locking1396
Optimistic Locking Using the rowversion Data Type.....................1396
Optimistic Locking with Snapshot Isolation1399

Summary ...1401

38 Database Design and Performance 1403

What’s New in Database Design and Performance.1403
Basic Tenets of Designing for Performance . ..1404
Logical Database Design Issues. ...1405

Normalization Conditions ..1405
Normalization Forms. ...1406
Benefits of Normalization ...1407
Drawbacks of Normalization...1407

Denormalizing a Database. ..1408
Denormalization Guidelines ...1408
Essential Denormalization Techniques ...1409

Database Filegroups and Performance. ..1415
RAID Technology . ..1417

RAID Level 0 ..1418
RAID Level 1 ..1419
RAID Level 10 ..1420
RAID Level 5 ..1421

SQL Server and SAN Technology. ..1422
What Is a SAN? ..1423
SAN Considerations for SQL Server ..1423

Summary ...1425

39 Monitoring SQL Server Performance 1427

What’s New in Monitoring SQL Server Performance...............................1428
Performance Monitoring Tools. ...1429

The Data Collector and the MDW ..1429
SQL Server Utility . ..1451
SQL Server Extended Events. ..1455
Windows Performance Monitor . ..1465

A Performance Monitoring Approach . ..1477
Monitoring the Network Interface..1478
Monitoring the Processors. ...1480
Monitoring Memory. ..1485
Monitoring the Disk System ...1488
Monitoring SQL Server’s Disk Activity..1490
Monitoring Other SQL Server Performance Items..........................1492

Summary ...1492

Contents xxix

 Download from www.wowebook.com

ptg

40 Managing Workloads with the Resource Governor 1493

Overview of Resource Governor ...1494
Resource Governor Components..1495

Classification..1495
Workload Groups...1496
Resource Pools ...1496

Configuring Resource Governor. ...1498
Enabling Resource Governor ...1499
Defining Resource Pools . ..1500
Defining Workload Groups1502
Creating a Classification Function..1506

Monitoring Resource Usage ..1509
Modifying Your Resource Governor Configuration1513

Deleting Workload Groups..1514
Deleting Resource Pools...1515
Modifying a Classification Function...1516

Summary ...1517

41 A Performance and Tuning Methodology 1519

The Full Architectural Landscape ...1520
Primary Performance and Tuning Handles ..1521
A Performance and Tuning Methodology..1522

Designing In Performance and Tuning from the Start1523
Performance and Tuning for an Existing Implementation1528

Performance and Tuning Design Guidelines. ..1534
Hardware and Operating System Guidelines1534
SQL Server Instance Guidelines...1536
Database-Level Guidelines. ...1537
Table Design Guidelines . ..1537
Indexing Guidelines . ..1539
View Design Guidelines. ...1541
Transact-SQL Guidelines. ..1541
Application Design Guidelines. ..1545
Distributed Data Guidelines . ..1546
High-Availability Guidelines1546

Tools of the Performance and Tuning Trade. ..1547
Microsoft Out-of-the-Box ..1547
Third-Party Performance and Tuning Tools....................................1548

Summary ...1550

xxx

 Download from www.wowebook.com

ptg

Chapters on the CD

Part VI SQL Server Application Development

42 What’s New for Transact-SQL in SQL Server 2008 1551

MERGE Statement...1552
MERGE Statement Best Practices and Guidelines1558

Insert over DML . ..1559
GROUP BY Clause Enhancements. ..1561

ROLLUP and CUBE Operator Syntax Changes1561
GROUPING SETS1562
The grouping_id() Function . ..1565

Variable Assignment in DECLARE Statement ..1568
Compound Assignment Operators. ...1568
Row Constructors. ..1569
New date and time Data Types and Functions1572

Date and Time Conversions ..1575
Table-Valued Parameters1576

Table-Valued Parameters Versus Temporary Tables.........................1580
Hierarchyid Data Type . ..1580

Creating a Hierarchy..1580
Populating the Hierarchy ..1581
Querying the Hierarchy...1583
Modifying the Hierarchy ...1587

Using FILESTREAM Storage ..1592
Enabling FILESTREAM Storage ..1593
Setting Up a Database for FILESTREAM Storage1596
Using FILESTREAM Storage for Data Columns...............................1597

Sparse Columns...1600
Column Sets...1600
Working with Sparse Columns..1601
Sparse Columns: Good or Bad? ...1604

Spatial Data Types...1605
Representing Spatial Data..1606
Working with Geometry Data...1607
Working with Geography Data ...1609
Spatial Data Support in SSMS..1611
Spatial Data Types: Where to Go from Here?1614

Change Data Capture ...1614
The Change Data Capture Tables..1615
Enabling CDC for a Database. ..1617
Enabling CDC for a Table. ..1617

Contents xxxi

 Download from www.wowebook.com

ptg

Querying the CDC Tables..1619
CDC and DDL Changes to Source Tables1626

Change Tracking1627
Implementing Change Tracking ...1628
Identifying Tracked Changes. ...1630
Identifying Changed Columns..1633
Change Tracking Overhead1634

Summary ...1635

43 Transact-SQL Programming Guidelines, Tips, and Tricks 1637

General T-SQL Coding Recommendations. ...1638
Provide Explicit Column Lists...1638
Qualify Object Names with a Schema Name..................................1640
Avoid SQL Injection Attacks When Using Dynamic SQL1643
Comment Your T-SQL Code ..1652

General T-SQL Performance Recommendations1653
UNION Versus UNION ALL Performance1654
Use IF EXISTS Instead of SELECT COUNT(*)1654
Avoid Unnecessary ORDER BY or DISTINCT Clauses1654
Temp Tables Versus Table Variables Versus

Common Table Expressions..1654
Avoid Unnecessary Function Executions..1656
Cursors and Performance . ..1656
Variable Assignment in UPDATE Statements..................................1659

T-SQL Tips and Tricks. ..1663
Date Calculations ..1663
Sorting Results with the GROUPING Function1669
Using CONTEXT_INFO ...1671
Working with Outer Joins ...1673
Generating T-SQL Statements with T-SQL1682
Working with @@ERROR and @@ROWCOUNT..............................1683
De-Duping Data with Ranking Functions.......................................1684

In Case You Missed It: New Transact-SQL Features in SQL Server 20051687
The xml Data Type1687
The max Specifier. ..1688
TOP Enhancements . ..1689
The OUTPUT Clause1693
Common Table Expressions1698

Recursive Queries with CTEs ...1700
Ranking Functions . ..1708

The ROW_NUMBER Function...1708
The RANK and DENSE_RANK Functions ..1711

xxxii

 Download from www.wowebook.com

ptg

The NTILE Function ..1712
Using Row Numbers for Paging Results ..1714

PIVOT and UNPIVOT ...1718
The APPLY Operator1722

CROSS APPLY...1722
OUTER APPLY . ..1723

TRY...CATCH Logic for Error Handling . ..1724
The TABLESAMPLE Clause. ..1727
Summary1731

44 Advanced Stored Procedure Programming and Optimization 1733

T-SQL Stored Procedure Coding Guidelines. ...1733
Calling Stored Procedures from Transactions1735
Handling Errors in Stored Procedures1738
Using Source Code Control with Stored Procedures1741

Using Cursors in Stored Procedures1743
Using CURSOR Variables in Stored Procedures1748

Nested Stored Procedures. ..1753
Recursive Stored Procedures ..1755

Using Temporary Tables in Stored Procedures ...1759
Temporary Table Performance Tips ...1760
Using the table Data Type ...1762

Using Remote Stored Procedures..1764
Stored Procedure Performance. ..1764

Query Plan Caching ..1765
The SQL Server Plan Cache ...1766
Shared Query Plans. ..1766
Automatic Query Plan Recompilation ..1767
Forcing Recompilation of Query Plans ...1770

Using Dynamic SQL in Stored Procedures1774
Using sp_executesql...1776

Installing and Using .NET CLR Stored Procedures...................................1779
Adding CLR Stored Procedures to a Database.................................1780
T-SQL or CLR Stored Procedures?. ..1781

Using Extended Stored Procedures1782
Adding Extended Stored Procedures to SQL Server1782
Obtaining Information on Extended Stored Procedures1783
Extended Stored Procedures Provided with SQL Server1783
Using xp_cmdshell . ..1784

Summary ...1786

Contents xxxiii

 Download from www.wowebook.com

ptg

45 SQL Server and the .NET Framework 1787

What’s New in SQL Server 2008 and the .NET Framework1787
Getting Comfortable with ADO.NET 3.5 and SQL Server 20081788

ADO.NET: Advanced Basics ...1788
Developing with LINQ to SQL ...1793

Getting Started...1793
Going Deeper...1796
Uncovering LINQ to SQL with Linqpad ...1798

Using ADO.NET Data Services. ..1803
Getting Set Up ...1803
Essentials . ..1803
Building Your Data Service ..1806
CRUD Operations ..1811

Leveraging the Microsoft Sync Framework . ..1816
Getting Started with MSF and Sync Services for ADO.NET............1817
Building Our Example OCA . ..1818

Summary ...1823

46 SQLCLR: Developing SQL Server Objects in .NET 1825

What’s New for SQLCLR in SQL Server 2008. ...1825
Developing Custom Managed Database Objects1825

An Introduction to Custom Managed Database Objects................1826
Managed Object Permissions . ..1827
Developing Managed Objects with Visual Studio 20081829
Developing Managed Stored Procedures.1830
Developing Managed User-Defined Functions (UDFs)1835
Developing Managed User-Defined Types (UDTs).1844
Developing Managed User-Defined Aggregates (UDAs)1853
Developing Managed Triggers1856
Using Transactions. ...1861
Using the Related System Catalogs1863

Summary ...1864

47 Using XML in SQL Server 2008 1865

What’s New in Using XML in SQL Server 2008.......................................1865
Understanding XML1866
Relational Data As XML: The FOR XML Modes.1866

RAW Mode ...1867
AUTO Mode ...1873
EXPLICIT Mode ...1877
PATH Mode ..1881

xxxiv

 Download from www.wowebook.com

ptg

FOR XML and the xml Data Type...1884
XML As Relational Data: Using OPENXML1887
Using the xml Data Type. ..1890

Defining and Using xml Columns..1892
Using XML Schema Collections. ..1894
The Built-in xml Data Type Methods ...1899

Indexing and Full-Text Indexing of xml Columns1918
Indexing xml Columns ...1918
Full-Text Indexing. ..1924

Summary ...1925

48 SQL Server Web Services 1927

What’s New in SQL Server Web Services. ..1927
Web Services Migration Path . ..1928
Web Services History and Overview. ...1928

The Web Services Pattern ..1929
Building Web Services. ...1930

The AS HTTP Keyword Group ...1934
The FOR SOAP Keyword Group ..1938

Examples: A C# Client Application. ..1942
Example 1: Running a Web Method Bound to a

Stored Procedure from C#...1942
Example 2: Running Ad Hoc T-SQL Batches

from a SQL Server Web Service ...1947
Example 3: Calling a Web Method–Bound Stored

Procedure That Returns XML. ..1951
Using Catalog Views and System Stored Procedures1954
Controlling Access Permissions . ..1955
Summary1957

49 SQL Server Service Broker 1959

What’s New in Service Broker...1959
Understanding Distributed Messaging ...1960

The Basics of Service Broker ..1960
Designing a Sample System . ..1964
Understanding Service Broker Constructs. ..1965

Defining Messages and Choosing a Message Type1965
Setting Up Contracts for Communication.1970
Creating Queues for Message Storage1970
Defining Services to Send and Receive Messages.1973
Planning Conversations Between Services.1974

Service Broker Routing and Security . ..1985

Contents xxxv

 Download from www.wowebook.com

ptg

Using Certificates for Conversation Encryption.............................1985
A Final Note on the Sample System. ..1992

Troubleshooting SSB Applications with ssbdiagnose.exe1993
Related System Catalogs1994
Summary1996

50 SQL Server Full-Text Search 1997

What’s New in SQL Server 2008 Full-Text Search1998
Upgrade Options in SQL Server 2008. ...1998
How SQL Server FTS Works . ..1999

Indexing...1999
Searching. ..2001

Implementing SQL Server 2008 Full-Text Catalogs2002
Setting Up a Full-Text Index. ...2003

Using T-SQL Commands to Build Full-Text Indexes and Catalogs2003
Using the Full-Text Indexing Wizard to Build

Full-Text Indexes and Catalogs2017
Full-Text Searches. ..2020

CONTAINS and CONTAINSTABLE ..2020
FREETEXT and FREETEXTTABLE. ...2023

Full-Text Search Maintenance...2024
Full-Text Search Performance2025
Full-Text Search Troubleshooting2026
Summary2028

Part VII SQL Server Business Intelligence Features

51 SQL Server 2008 Analysis Services 2029

What’s New in SSAS..2029
Understanding SSAS and OLAP ..2030
Understanding the SSAS Environment Wizards2032

OLAP Versus OLTP...2036
An Analytics Design Methodology. ...2038

An Analytics Mini-Methodology...2038
An OLAP Requirements Example: CompSales International...................2040

CompSales International Requirements..2040
OLAP Cube Creation2042
Using SQL Server BIDS . ..2042
Creating an OLAP Database . ..2044
Generating a Relational Database2081
Cube Perspectives . ..2082
KPIs . ..2082

xxxvi

 Download from www.wowebook.com

ptg

Data Mining...2083
Security and Roles..2095

Summary ...2097

52 SQL Server Integration Services 2099

What’s New with SSIS ...2100
SSIS Basics. ..2100
SSIS Architecture and Concepts..2105
SSIS Tools and Utilities2110
A Data Transformation Requirement ...2113
Running the SSIS Wizard ..2115
The SSIS Designer. ..2126
The Package Execution Utility. ..2135

The dtexec Utility ..2135
Running Packages ..2137
Running Package Examples...2140
The dtutil Utility. ..2141
dtutil Examples . ..2144

Connection Projects in Visual Studio. ...2145
Change Data Capture Addition with R2 ..2147
Using bcp . ..2147

Fundamentals of Exporting and Importing Data2151
File Data Types. ...2153
Format Files. ..2153
Using Views2163

Logged and Nonlogged Operations. ..2163
Batches ...2164
Parallel Loading ...2164
Supplying Hints to bcp..2165

Summary ...2167

53 SQL Server 2008 Reporting Services 2169

What’s New in SSRS 2008 ...2169
Discontinued Functionality and Breaking Changes2170
Enhancements2172
Tool and Service Enhancements2176
SharePoint Integration Improvements. ..2177
Service Changes and Improvements2178
Programming Enhancements . ..2178

Reporting Services Architecture..2179
Installing and Configuring SSRS...2182

The Installation Sequence ...2182

Contents xxxvii

 Download from www.wowebook.com

ptg

SSRS Configuration Using RSCM ..2186
Developing Reports. ...2190

Tools of the Trade ..2190
Report Basics . ..2191
Overview of the Report Development Process2192
Data Planning and Preparation...2193
Using Shared Data Sources ..2193
Using Datasets ...2193
Using Shared Datasets ...2194
Developing Reports Using BIDS ..2196
Working with the Tablix ...2199
Understanding Expressions ...2200
Report Design Fundamentals ..2202
Using the Data Visualization Controls: Sparkline,

Indicator, and Data Bar ...2204
Designing Reports Using Report Builder...2213
Report Builder and Report Model Security2233
Enabling Report Builder ..2233

Management and Security . ..2234
Securing Reports ..2234
Subscriptions. ..2235
Report Execution Options ...2237

Performance and Monitoring2239
SSRS Trace Log ...2239
Execution Log . ..2240
Windows Event Log...2240
Performance Counters ...2240

Summary ...2241

Part VIII Bonus Chapters

54 Managing Linked and Remote Servers 2243

What’s New in Managing Linked and Remote Servers2244
Managing Remote Servers. ...2244

Remote Server Setup ..2246
Linked Servers2251

Distributed Queries..2252
Distributed Transactions..2252

Adding, Dropping, and Configuring Linked Servers2253
sp_addlinkedserver . ..2253
sp_linkedservers2260
sp_dropserver2261
sp_serveroption. ..2261

xxxviii

 Download from www.wowebook.com

ptg

Mapping Local Logins to Logins on Linked Servers2263
sp_addlinkedsrvlogin. ...2263
sp_droplinkedsrvlogin2265
sp_helplinkedsrvlogin. ..2266

Obtaining General Information About Linked Servers.2267
Executing a Stored Procedure via a Linked Server2268
Setting Up Linked Servers Using SQL Server Management Studio..........2269
Summary2272

55 Configuring, Tuning, and Optimizing SQL Server Options 2273

What’s New in Configuring, Tuning, and
Optimizing SQL Server Options ...2274

SQL Server Instance Architecture2274
Configuration Options2275
Fixing an Incorrect Option Setting . ..2283
Setting Configuration Options with SSMS...2283
Obsolete Configuration Options . ..2283
Configuration Options and Performance. ...2284

access check cache bucket count ..2284
access check cache quota . ..2285
ad hoc distributed queries2285
affinity I/O mask2286
affinity mask . ..2287
Agent XP . ..2289
awe enabled2289
backup compression default. ..2291
blocked process threshold2291
c2 audit mode. ..2291
clr enabled2292
common criteria compliance enabled . ..2292
cost threshold for parallelism. ..2293
cross db ownership chaining...2293
cursor threshold. ...2294
default full-text language . ..2294
default language . ..2296
EKM provider enabled2298
filestream_access_level. ...2299
fill factor . ..2299
index create memory. ...2300
in-doubt xact resolution. ..2300
lightweight pooling2301
locks2301

Contents xxxix

 Download from www.wowebook.com

ptg

max degree of parallelism ...2302
max server memory and min server memory2302
max text repl size. ...2304
max worker threads2305
min memory per query ...2306
nested triggers. ..2306
network packet size2306
optimize for ad hoc workloads..2307
PH_timeout . ..2308
priority boost2308
query governor cost limit..2309
query wait . ..2310
recovery interval . ..2310
remote admin connections ...2311
remote login timeout . ..2311
remote proc trans . ..2312
remote query timeout. ..2312
scan for startup procs ..2313
show advanced options...2313
user connections. ..2313
user options2315
XP-Related Configuration Options ...2316

Database Engine Tuning Advisor. ..2317
The Database Engine Tuning Advisor GUI2317
The Database Engine Tuning Advisor Command Line2321

Data Collection Sets..2326
Summary2328

56 SQL Server Disaster Recovery Planning 2329

What’s New in SQL Server Disaster Recovery Planning...........................2330
How to Approach Disaster Recovery . ..2330

Disaster Recovery Patterns...2332
Recovery Objectives. ...2336
A Data-Centric Approach to Disaster Recovery2337

Microsoft SQL Server Options for Disaster Recovery2338
Data Replication ..2338
Log Shipping..2339
Database Mirroring and Snapshots ...2341

The Overall Disaster Recovery Process2342
The Focus of Disaster Recovery ...2342
sqldiag.exe2347
Planning and Executing a Disaster Recovery..................................2349

xl

 Download from www.wowebook.com

ptg

Have You Detached a Database Recently?..2350
Third-Party Disaster Recovery Alternatives . ..2350
Summary2351

Index 2353

Contents xli

 Download from www.wowebook.com

ptg

About the Authors
Ray Rankins is owner and president of Gotham Consulting Services, Inc. (www.gotham-
consulting.com), near Saratoga Springs, New York. Ray has been working with Sybase and
Microsoft SQL Server for more than 23 years and has experience in database administra-
tion, database design, project management, application development, consulting, course-
ware development, and training. He has worked in a variety of industries, including
financial, manufacturing, health care, retail, insurance, communications, public utilities,
and state and federal government. His expertise is in database performance and tuning,
query analysis, advanced SQL programming and stored procedure development, database
design, data architecture, and database application design and development. Ray’s presen-
tations on these topics at user group conferences have been very well received. Ray is
coauthor of Microsoft SQL Server 2005 Unleashed, Microsoft SQL Server 2000 Unleashed (first
and second editions), Microsoft SQL Server 6.5 Unleashed (all editions), Sybase SQL Server 11
Unleashed, and Sybase SQL Server 11 DBA Survival Guide, Second Edition, all published by
Sams Publishing. As an instructor, Ray brings his real-world experience into the class-
room, teaching classes on SQL, advanced SQL programming and optimization, database
design, database administration, and database performance and tuning. Ray can be
reached at rrankins@gothamconsulting.com.

Paul Bertucci is the founder of Database Architechs (www.dbarchitechs.com), a global
database consulting firm with offices in the United States and Paris, France. He has more
than 30 years of experience with database design, data architecture, data replication,
performance and tuning, master data management (MDM), data provenance/digital DNA,
distributed data systems, data integration, high availability, and systems integration for
numerous Fortune 500 companies, including Intel, 3COM, Coca-Cola, Apple, Toshiba,
Lockheed, Wells Fargo, Safeway, Sony, Charles Schwab, Cisco, Sybase, Symantec, Veritas,
and Honda, to name a few. He has authored numerous database articles, data standards,
and high-profile database courses, such as Sybase’s “Performance and Tuning” and
“Physical Database Design” courses. Other Sams Publishing books that he has authored or
coauthored include the highly popular Microsoft SQL Server 2000 Unleashed, ADO.NET in
24 Hours, Microsoft SQL Server High Availability, and Microsoft SQL Server 2005 Unleashed.
Paul is a frequent speaker at industry conferences such as Informatica World, Oracle
World, MDM Summits, and Microsoft-oriented conferences such as SQL Saturday’s, PASS
conferences, Tech Ed’s, and SQL Server User Groups. He has deployed numerous systems
with Microsoft SQL Server, Sybase, DB2, Postgres, MySQL, and Oracle database engines,
and he has designed/architected several commercially available tools in the database, data
modeling, performance and tuning, data integration, digital DNA, and multidimensional
planning spaces. Formerly the Chief Data Architect at Symantec, Paul’s current working
arrangement is as Autodesk’s Chief Enterprise Architect. Paul received his formal educa-
tion in computer science and electrical engineering from the University of California,
Berkeley (Go Bears!). He lives in the great Pacific northwest (Oregon) with his five
children, Donny, Juliana, Nina, Marissa, and Paul Jr. Paul can be reached at
pbertucci@dbarchitechs.com or bertucci@alum.calberkeley.org.

xlii

 Download from www.wowebook.com

www.gothamconsulting.com
www.gothamconsulting.com
www.dbarchitechs.com

ptg

Chris Gallelli is the president of CGAL Consulting Services, Inc. His company focuses on
consulting services in the areas of database administration, database tuning, and database
programming using Microsoft Visual Studio. Chris has more than 15 years of experience
with SQL Server and more than 25 years in the field of information technology. He has a
bachelor’s degree in electrical engineering and a master’s degree in business administra-
tion from Union College. Chris currently lives near Albany, New York, with his lovely
wife, Laura, and two daughters, Rachael and Kayla. Other Sams Publishing books that he
has coauthored include Microsoft SQL Server 2000 Unleashed and Microsoft SQL Server 2005
Unleashed. Chris can be reached at cgallelli@gmail.com.

Alex T. Silverstein is owner and chief information officer of Unified Digital Group, LLC,
a consulting and custom software development firm headquartered near Saratoga Springs,
New York. He specializes in designing SQL Server and Microsoft .NET–powered solutions
using the principles of agile development and the Rational Unified Process. Alex has more
than a decade of experience providing application development, database administration,
and training services worldwide to a variety of industries. He was also a coauthor for
Microsoft SQL Server 2005 Unleashed and a contributing author for Microsoft SQL Server 2000
Unleashed, both published by Sams Publishing. You can reach Alex anytime via email at
alex@unifieddigital.com.

About the Contributing Author
Hilary Cotter is a SQL Server MVP with more than 20 years of IT experience working for
Fortune 500 clients. He is the author of a book on SQL Server Replication and coauthor of
Microsoft SQL Server 2008 Management and Administration from Sams Publishing. Hilary has
also written numerous white papers and articles on SQL Server and databases.

Contents xliii

 Download from www.wowebook.com

ptg

Dedication
I would like to dedicate this book in loving memory of my grand-

mother, Gertrude Holdridge, who recently passed away at the
“young” age of 87. You will be dearly missed, “Gramma Gert.”

—Ray Rankins

Dedicated to my children, for the countless times they heard me say
“No, not now, I’m writing chapters!” Thanks, Paul Jr., Marissa,

Nina, Juliana, and Donny; I love you all very much!

—Paul Bertucci

This book is dedicated to my Mom and Dad. My mother, Arlene
Gallelli, is the perfect mom. Her love, kindness, and relentless
support have helped me in all aspects of my life, including the

creation of this book. My Dad, Joe Gallelli, is a great father and a
great friend. He is an encyclopedia of knowledge, and I can always

count on his wisdom and guidance. Thank you both.

—Chris Gallelli

My work on this book is dedicated to my father, Harry Silverstein, a
fellow man of letters. For, while his stay with us on this planet was
not nearly long enough, he left us with a feeling of kindness and a
call to humanity and fellowship with all that has remained for a

lifetime. Thank you, Harry, for having been you.

—Alex T. Silverstein

xliv

 Download from www.wowebook.com

ptg

Acknowledgments
I would first like to thank my coauthors for their tireless efforts in helping to turn out a
quality publication and their willingness to take on more work when needed to help keep
things on track. I would also like to thank Neil Rowe at Sams Publishing for providing us
the opportunity to write this book and for his seemingly infinite patience as we repeat-
edly missed our deadlines.

I would also like to acknowledge my colleague and friend David Solomon for developing the
Word macro used to extract the code listings and examples presented in the chapters so we
could make them available on the included CD. His efforts made that task significantly easier.
I would also like to thank David for his help reviewing some of my chapters.

I would also like to acknowledge and thank Ross Mistry for providing content for the
“Administering Policy Based Management” and “Automating SQL Server Tasks Using
PowerShell” chapters.

Most of all, I wish to thank my loving wife, Elizabeth, for her patience and understanding
during the long days, late nights, and lost weekends spent working on yet another book.
I’ll be getting to that “honey-do” list now, my dear.

—Ray Rankins

With any writing effort, there is always a huge sacrifice of time that must be made to
properly research, demonstrate, and describe leading-edge subject matter. The brunt of the
burden usually falls on those many people who are near and very dear to me. With this
in mind, I desperately need to thank my family for allowing me to encroach on many
months of what should have been my family’s “quality time.”

However, with sacrifice also comes reward in the form of technical excellence and high-
quality business relationships. Many individuals were involved in this effort, both directly
and indirectly, starting with the other authors (thanks RR, CG, and AS!), Steve Luk, Raymond
Hardman, Jason Riedberger, John Martin, Gene Vilain, Yves Moison, Thierry Gerardin, Mark
Ginnebaugh (of DesignMind), and Nathan Gustafson. Their expertise in and knowledge of
database engines, SQL, performance and tuning, data replication, database mirroring, data-
base snapshots, business intelligence, data integration, and high availability are unmatched.

—Paul Bertucci

Writing a book of this size and scope requires a tremendous amount of time and dedica-
tion. The time and dedication apply not only to the authors who are writing the book but
also to their family members. My wife and daughters were very understanding while I was
holed up working on this book, and that understanding helped make the book happen.
My love and thanks to them.

I would also like to thank many of my clients who embraced SQL Server 2008 and gave
me the opportunity to use it in the real world. In particular, I would like to thank Ray
McQuade and his company, Spruce Computer Systems. Spruce has had tremendous
success with SQL Server 2005 and SQL Server 2008.

—Chris Gallelli

I would like to acknowledge the following people for helping make my contribution to
this book possible: Ray Rankins, Paul Bertucci, Chris Gallelli, Neil Rowe, Gregory
Abbruzzese, Frank Esposito, Jonathan Rubenstein, Linda Motzkin, Lane McCarthy, Bob

Contents xlv

 Download from www.wowebook.com

ptg

Barter, Amatzia Segal, all the wonderful customers who keep Unified Digital in business,
and, most importantly, El Shaddai. You all are the sine qua non of my world, and I thank
you most heartily.

—Alex T. Silverstein

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

E-mail: neil.rowe@samspublishing.com

Mail: Neil Rowe
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

xlvi

 Download from www.wowebook.com

ptg

Introduction

Over the past decade, SQL Server has established itself as a robust and reliable database
platform whose performance, scalability, and reliability meet the implementation needs
of businesses and corporations from small desktop applications on up to multiterabyte
enterprise-wide systems. The updates and enhancements in SQL Server 2008 and SQL
Server 2008 R2 further solidify its position in the marketplace as a robust enterprise-wide
database system that can compete on the same level as the other major enterprise-wide
database products, providing a database engine foundation that can be highly available
7 days a week, 365 days a year.

NOTE

The position of SQL Server 2008 as a leader in the market of enterprise-wide data-
base management systems (DBMS) was confirmed in a report released by Forrester
Research on June 30, 2009 (The Forrester Wave: Enterprise Database Management
Systems, Q2 2009). In this report, Forrester analyst Noel Yuhanna indicated that
Microsoft along with Oracle and IBM DB2 were the leaders in the DBMS market. The
report from Forrester Research indicated that Microsoft’s strong commitment to its
data platform starting with SQL Server 2005 and continuing with the latest iteration of
the product, SQL Server 2008, had boosted Microsoft to the top of the DBMS market.
Key findings in the report concluded that Microsoft received high scores in database
programmability, security, availability, and application/data integration, and for deliver-
ing the best price performance for most business applications. The report also
acknowledged that Microsoft “has shown increasing focus and commitment to going
after the enterprise market,” and that SQL Server 2008 has “enabled Microsoft to
take market share in moderately sized to large enterprises, delivering good perfor-
mance, scalability, security, and availability functionality.” The report also indicated that
“five years ago, hardly any enterprises ran multi-terabyte databases with SQL Server to
support critical applications. Today, hundreds of enterprises are running 10-terabyte
and larger transactional SQL Server databases.”

One of the biggest challenges we face writing the SQL Server Unleashed series of books is
how to provide comprehensive, in-depth, all-inclusive coverage of all the features of SQL
Server within a single book. Over the past few releases, the number of SQL Server features
and components has increased, and many of these features and components (for
example, SQL Server Integration Services, Reporting Services, and .NET Framework inte-
gration) provide material enough to warrant their own separate titles. To cover each topic
sufficiently would require more information than could reasonably fit in print in a single
volume. Thus, we had to make some hard decisions as to what to include in print.

We decided that the printed portion of the book would provide detailed coverage of the
core database server features and the day-to-day administrative and management aspects

 Download from www.wowebook.com

ptg

2 Microsoft SQL Server 2008 R2 Unleashed

and tools of SQL Server 2008 and 2008 R2. We want to ensure that we provide enough of
the necessary information, tips, and guidelines to get you started making effective use of
these features. At the same time, there is a wealth of useful information we want to
provide on additional SQL Server 2008 features and major components of SQL Server,
such as SQL Server Integration Services, Reporting Services, Analysis Services, T-SQL
programming, and SQL Server integration with the .NET Framework. Rather than leave
this valuable information out entirely, we decided to include the chapters with this mater-
ial on the CD provided with this book. Also, as in the past, the CD contains all our
sample scripts, databases, and other code samples and material that support the book
content.

Our other main goal when writing this book was for it to be more than just a syntax
reference. SQL Server Books Online is a fine resource as a syntax reference. This book
attempts to pick up where Books Online leaves off, by providing, in addition to syntax
where necessary, valuable insight, tips, guidelines, and useful examples derived from our
many years of experience working with SQL Server. Although we do provide the core, and
sometimes advanced, syntax elements for the SQL commands discussed, SQL Server Books
Online provides a much more extensive syntax reference than would make sense to try to
duplicate here. As a matter of fact, at times, we may even direct you to Books Online for
more detail on some of the more esoteric syntax options available for certain commands.

We hope that we have succeeded in meeting the goals we set out for this book and that it
becomes an essential reference and source of expert information for you as you work with
the either version of SQL Server 2008.

NOTE

Although this book includes coverage of SQL Server 2008 R2, most of the material
presented applies to SQL Server 2008 as well. Actually, there are few significant differ-
ences in the core product between SQL Server 2008 and SQL Server 2008 R2. Most
of the new features are related to enhancements to Reporting Services. You can be
comfortable using this book as a reference for either version of SQL Server 2008.
When the book discusses features available only in the R2 release, this fact is specifi-
cally spelled out in the chapter.

Who This Book Is For
This Unleashed book is intended for intermediate- to advanced-level users: for SQL Server
administrators who want to understand SQL Server more completely to be able to effec-
tively manage and administer their SQL Server environments, and for developers who
want a more thorough understanding of SQL Server to help them write better Transact-
SQL (T-SQL) code and develop more robust SQL Server applications. If you are responsible
for analysis, design, implementation, support, administration, or troubleshooting of SQL
Server 2008, this book provides an excellent source of experiential information for you.
You can think of this as a book of applied technology. The emphasis is on the more

 Download from www.wowebook.com

ptg

Introduction 3

complex aspects of the product, including using the new tools and features, administering
SQL Server, analyzing and optimizing queries, implementing data warehouses, ensuring
high availability, and tuning SQL Server performance.

This book is for both developers and SQL Server administrators who are new to SQL
Server 2008 or SQL Server 2008 R2 as well as those who are already familiar with prior
versions of SQL Server. At the beginning of each chapter is a brief summary of the major
changes or new features or capabilities of SQL Server related to that topic. If you are
already familiar with SQL Server, you can use this information to focus on the informa-
tion in the chapters that covers the new features and capabilities in more detail.

This book is intended to provide a behind-the-scenes look into SQL Server, showing you
what goes on behind the various wizards and GUI-based tools so you can learn what the
underlying SQL commands are. Although the GUI tools can make your average day-to-
day operations much simpler, every database administrator should learn the underlying
commands to the tools and wizards to fully unlock the power and capabilities of SQL
Server.

What This Book Covers
The book is divided into the following sections:

. Part I, “Welcome to Microsoft SQL Server”—This part introduces you to the
Microsoft SQL Server 2008 environment, the various editions of SQL Server that are
available, and the capabilities of each edition in the various Windows environ-
ments. In addition, it provides an overview of and introduction to the new features
found in SQL Server 2008 and SQL Server 2008 R2, which are covered in more detail
throughout the rest of the book.

. Part II, “SQL Server Tools and Utilities”—This part covers the tools and utility
programs that SQL Server 2008 provides for you to administer and manage your
SQL Server environments. You’ll find information on the various management tools
you use on a daily basis, such as SQL Server Management Studio and the new
SQLCMD command-line query tool, along with information on SQL Server Profiler.
If you are not familiar with these tools, you should read this part of the book early
on because these tools are often used and referenced throughout many of the other
chapters in the book.

. Part III, “SQL Server Administration”—This part discusses topics related to the
administration of SQL Server at the database server level. It begins with an overview
of what is involved in administering a SQL Server environment and then goes on to
cover the tasks related to setting up and managing the overall SQL Server environ-
ment, including installing and upgrading to SQL Server 2008 and SQL Server 2008
R2 as well as installing SQL Server clients. This part also includes coverage of secu-
rity and user administration, database backup and restore, replication, and using the
Database Mail facility. Chapters on SQL Server clustering, database mirroring, and

 Download from www.wowebook.com

ptg

Microsoft SQL Server 2008 R2 Unleashed4

SQL Server high availability provide some expert advice in these areas. Task schedul-
ing and notification using SQL Server Agent and using the new Policy Based
Management feature are also discussed in this part.

. Part IV, “SQL Server Database Administration”—This part delves into the admin-
istrative tasks associated with creating and managing a SQL Server 2008 database,
including the creation and management of database objects, such as tables, indexes,
views, stored procedures, functions, and triggers. It also provides coverage of the
Database Snapshots and an overview of database maintenance tasks and responsibil-
ities.

. Part V, “SQL Server Performance and Optimization”—This part provides informa-
tion to help you get the best performance out of SQL Server. It begins with a discus-
sion of data structures, indexes, and performance, key items to understand to help
ensure good database performance. It then builds on that information with chapters
on query optimization and analysis, locking, database design and performance, and
ways to manage workloads using the new Resource Governor; then it finishes with a
methodology for monitoring and optimizing SQL Server performance.

. Part VI, “SQL Server Application Development”—This part includes a comprehen-
sive overview of what’s new in T-SQL in SQL Server 2008 and SQL Server 2008 R, T-
SQL programming guidelines, tips, and tricks, and advanced stored procedure
programming and optimization. In addition, chapters in this Part provide an
overview of .NET integration with SQL Server and creating .NET CLR objects infor-
mation, working with XML in SQL Server, and working with additional SQL Server
components that are not part of the core database engine such as Web Services,
Service Broker, and Full-Text Search.

. Part VII, “SQL Server Business Intelligence Features”—This Part includes a
comprehensive overview of SQL Server 2008 R2’s built-in business intelligence
features: Analysis Services, Integration Services, and Reporting Services, with a
specific focus on the enhancements to Reporting Services introduced with the R2
release.

. Bonus Chapters on the CD—This Part provides a few chapters for which there just
wasn’t room enough to include elsewhere in the book. These chapters provide
expert advice and information on managing remote and linked servers, configuring,
tuning and optimizing SQL Server, and planning for SQL Server Disaster Recoverys.

. Book Materials on the CD—Also included on the CD are many of the code sam-
ples, scripts, databases, and other materials that supplement various chapters. This
has always been one of the most valuable reasons to buy books in the Unleashed
series. It is our goal not just to discuss a SQL technique or solution, but to also pro-
vide working samples and examples that actually do it. Learning by seeing is essen-
tial for understanding.

 Download from www.wowebook.com

ptg

Introduction 5

Syntax Element Definition

command These are command names, options, and other keywords.

placeholder Monospaced italic indicates values you provide.

{} You must choose at least one of the enclosed options.

[] The enclosed value/keyword is optional.

() Parentheses are part of the command.

| You can select only one of the options listed.

, You can select any of the options listed.

[...] The previous option can be repeated.

In addition to the included CD content, please visit the web page for this book at
www.samspublishing.com periodically for any updated or additional bonus material
as it becomes available.

Conventions Used in This Book
Names of commands and stored procedures are presented in a special monospaced
computer typeface. We have tried to be consistent in our use of uppercase and lowercase
for keywords and object names. However, because the default installation of SQL Server
doesn’t make a distinction between upper- and lowercase for SQL keywords or object
names and data, you might find some of the examples presented in either upper- or
lowercase.

Code and output examples are presented separately from regular paragraphs and are also
in a monospaced computer typeface. The following is an example:

select object_id, name, type_desc

from sys.objects

where type = ‘SQ’

object_id name type_desc

----------- ------------------------------- -------------

1977058079 QueryNotificationErrorsQueue SERVICE_QUEUE

2009058193 EventNotificationErrorsQueue SERVICE_QUEUE

2041058307 ServiceBrokerQueue SERVICE_QUEUE

When syntax is provided for a command, we have followed these conventions:

 Download from www.wowebook.com

www.samspublishing.com

ptg

Microsoft SQL Server 2008 R2 Unleashed6

Consider the following syntax example:

grant {all | permission_list} on object [(column_list)]

to {public | user_or_group_name [, [...]]}

In this case, object is required, but column_list is optional. Note also that items shown
in plain computer type, such as grant, public, and all, should be entered literally, as
shown. Placeholders are presented in italic, such as permission_list and
user_or_group_name. A placeholder is a generic term for which you must supply a specific
value or values. The ellipsis ([...]) in the square brackets following user_or_group_name
indicates that multiple user or group names can be specified, separated by commas. You
can specify either the keyword public or one or more user or group names, but not both.

Some of the examples presented in this book make use of the AdventureWorks2008 and
AdventureWorks2008R2 databases, which are not automatically installed with SQL Server
2008 or SQL Server 2008 R2. To install the AdventureWorks sample databases, you must
first download the installer from the Microsoft SQL Server Samples and Community
Projects website at http://www.codeplex.com/sqlserversamples.

NOTE

Most of the examples presented in this book that use the AdventureWorks database
can be run in either AdventureWorks2008 or AdventureWorks2008R2. Structurally,
these databases are identical. However, the following tables in
AdventureWorks2008R2 have different data values for some of the columns:

. Person

. SalesPerson

. SalesOrderHeader

. SalesTerritory

. Shift

. TransactionHistory

If any of the examples use any of these tables, you may see different results depend-
ing on whether you run them in AdventureWorks2008 or AdventureWorks2008R2.
When necessary, it will be stated in the chapter which version of the AdventureWorks
database was used to generate the results displayed.

Although it is not necessary to install both versions of the AdventureWorks database,
it is possible to install both versions in the same SQL Server instance if you wish.

For many of the examples presented in Part V, larger tables than what are available in the
AdventureWorks database were needed to demonstrate many of the concepts with more
meaningful examples. For many of the chapters in this part, as well as some other chap-
ters throughout the book, the examples come from the bigpubs2008 database. A copy of
the database, along with an Entity-Relationship (ER) diagram and table descriptions, is
also on the CD.

 Download from www.wowebook.com

http://www.codeplex.com/sqlserversamples

ptg

Introduction 7

To install the bigpubs2008 database on your system so you can try the various examples,
do the following:

1. Copy the bigpubs2008.mdf file into the SQL Server data folder where you want it to
reside.

2. After copying the file to the destination folder, ensure that the Read-Only property
of the bigpubs2008.mdf file is not enabled (this can happen when the file is copied
from the CD). Right-click the file in Windows Explorer and select Properties to bring
up the Properties dialog. Click the Read-Only check box to remove the check mark.
Click OK to save the changes to the file attributes.

3. Attach the bigpubs2008 database by using a command similar to the following:

sp_attach_single_file_db ‘bigpubs2008’,

N’D:\MSSQL\DATA\MSSQL.1\MSSQL\Data\bigpubs2008.mdf

Note that you might need to edit the path to match the location where you copied
the bigpubs2008.mdf file.

Alternatively, you can attach the database by using SQL Server Management Studio. To do
this, right-click the Databases node in the Object Explorer and select Attach. When the
Attach Databases dialog appears, click the Add button, locate the bigpubs2008.mdf file,
and click OK. In the bottom window pane, click the transaction log file entry (it should
say Not Found in the message column) and click the Remove button. Next, click the OK
button to attach the database. A new transaction log file is automatically created in the
same folder as the bigpubs2008.mdf file. For more information on attaching database
files, see Chapters14, “Database Backup and Restore,” and 23, “Creating and Managing
Databases.”

NOTE

In addition to the bigpubs2008 database, the .mdf file for the database used for
examples in Chapter 51, “SQL Server Analysis Services,” is also provided. To install
the CompSales database, do the following:

1. Copy the CompSales.mdf file into the SQL Server data folder where you want it
to reside.

2. Ensure that the Read-Only property of the CompSales.mdf file is not enabled.

3. Attach the CompSales database by using a command similar to the following
(edit the path to match the location of the CompSales.mdf file on your system):

sp_attach_single_file_db ‘CompSales’,

N’D:\MSSQL\DATA\MSSQL.1\MSSQL\Data\CompSales.mdf

 Download from www.wowebook.com

ptg

Microsoft SQL Server 2008 R2 Unleashed8

Good Luck!
If you have purchased this book, you are on your way to getting the most from SQL
Server 2008 or SQL Server 2008 R2. You have already chosen a fine platform for building
database applications, one that can provide outstanding performance and rock-solid relia-
bility and availability at a reasonable cost. With this book, you now have the information
you need to make the best of it.

Many of us who worked on this book have been using SQL Server since it was first
released. Writing about each new version challenges us to reassess our understanding of
SQL Server and the way it works. It’s an interesting and enjoyable process, and we learn a
lot writing each of these books. We hope you get as much enjoyment and knowledge
from reading this book as we have from writing it.

 Download from www.wowebook.com

ptg

CHAPTER 1

SQL Server 2008
Overview

IN THIS CHAPTER

. SQL Server Components and
Features

. SQL Server 2008 R2 Editions

. SQL Server Licensing Models

Exactly what is SQL Server 2008? When you first install
the product, what are all the pieces you get, what do they
do, and which of them do you need?

At its core, SQL Server 2008 is an enterprise-class database
management system (DBMS) that is capable of running
anything from a personal database only a few megabytes in
size on a handheld Windows Mobile device up to a multi-
server database system managing terabytes of information.
However, SQL Server 2008 is much more than just a data-
base engine.

The SQL Server product is made up of a number of differ-
ent components. This chapter describes each of the pieces
that make up the SQL Server product and what role each
plays. Each of these topics is dealt with in more detail later
in the book. In addition, this chapter looks at the environ-
ments that support SQL Server 2008 and SQL Server 2008
R2 and the features available in each of the various SQL
Server editions.

SQL Server Components and
Features
The main component of SQL Server 2008 is the Database
Engine. Before you can use the other components and
features of SQL Server 2008, which are discussed in the
following sections, you need to have an instance of the
Database Engine installed.

 Download from www.wowebook.com

ptg

10 CHAPTER 1 SQL Server 2008 Overview

The SQL Server Database Engine

The Database Engine is the core application service in the SQL Server package for storing,
processing, and securing data with SQL Server 2008. The SQL Server 2008 Database Engine
is a Windows service that can be used to store and process data in a relational format, as
XML documents, and new for 2008, as spatial data. The following are the main responsi-
bilities of the Database Engine:

. Provide reliable storage for data

. Provide a means to rapidly retrieve this data

. Provide consistent access to the data

. Control access to the data through security

. Enforce data integrity rules to ensure that the data is reliable and consistent.

Each of these responsibilities is examined in greater detail in later chapters in this book.
For now, this chapter provides just a brief overview on each of these points to show how
Microsoft SQL Server fulfills these core responsibilities.

Reliable Storage
Reliable storage starts at the hardware level. This isn’t the responsibility of the Database
Engine, but it’s a necessary part of a well-built database. Although you can put an entire
SQL database on a single IDE or SATA drive (or even burn a read-only copy on a CD), it is
preferable to maintain the data on RAID arrays. The most common RAID arrays can
survive hardware failures at the disk level without loss of data.

NOTE

For more information on the reliability characteristics and performance implications of
the various RAID configurations and guidelines for implementing RAID configurations
with SQL Server, see Chapter 38, “Database Design and Performance.”

Using whatever hardware you have decided to make available, the Database Engine
manages all the data structures necessary to ensure reliable storage of your data. Rows of
data are stored in pages, and each page is 8KB in size. Eight pages make up an extent, and
the Database Engine keeps track of which extents are allocated to which tables and
indexes.

NOTE

A page is an 8KB chunk of a data file, the smallest unit of storage available in the
database. An extent is a collection of eight 8KB pages.

Another key feature the Database Engine provides to ensure reliable storage is the transac-
tion log. The transaction log makes a record of every change that is made to the database.

 Download from www.wowebook.com

ptg

11SQL Server Components and Features

For more information on the transaction log and how it’s managed, see Chapter 31,
“Transaction Management and the Transaction Log.”

NOTE

It is not strictly true that the transaction log records all changes to the database; some
exceptions exist. Operations on binary large objects—data of type image and text—
can be excepted from logging, and bulk copy loads into tables can be minimally logged
to get the fastest possible performance.

Rapid Data Access
SQL Server allows the creation of indexes, enabling fast access to data. See Chapter 34,
“Data Structures, Indexes, and Performance,” for an in-depth discussion of indexes.

Another way to provide rapid access to data is to keep frequently accessed data in
memory. Excess memory for a SQL Server instance is used as a data cache. When pages are
requested from the database, the SQL Server Database Engine checks to see if the
requested pages are already in the cache. If they are not, it reads them off the disk and
stores them in the data cache. If there is no space available in the data cache, the least
recently accessed pages (that is, those that haven’t been accessed in a while since they
were read into memory) are flushed out of the data cache to make room for the newly
requested pages. If the pages being flushed contain changes that haven’t been written out
yet, they are written to disk before being flushed from memory. Otherwise, they are
simply discarded.

NOTE

With sufficient memory, an entire database can fit completely into memory, providing
the best possible I/O performance for the database.

Consistent Data Access
Getting to your data quickly doesn’t mean much if the information you receive is inaccu-
rate. SQL Server follows a set of rules to ensure that the data you receive from queries is
consistent.

The general idea with consistent data access is to allow only one client at a time to change
the data and to prevent others from reading data from the database while it is undergoing
changes. Data and transactional consistency are maintained in SQL Server by using trans-
actional locking.

Transactional consistency has several levels of conformance, each of which provides a
trade-off between accuracy of the data and concurrency. These levels of concurrency are
examined in more detail in Chapter 37, “Locking and Performance.”

Access Control
SQL Server controls access by providing security at multiple levels. Security is enforced at
the server, database, schema, and object levels. Server-level access is enforced either by

1

 Download from www.wowebook.com

ptg

12 CHAPTER 1 SQL Server 2008 Overview

using a SQL Server username and password or through integrated network security, which
uses the client’s network login credentials to establish identity.

SQL Server security is examined in greater detail in Chapter 11, “Security and User
Administration.”

Data Integrity
Some databases have to serve the needs of more than a single application. A corporate
database that contains valuable information might have a dozen different departments
wanting to access portions of the database for different needs.

In this kind of environment, it is impractical to expect the developers of each application
to agree on an identical set of standards for maintaining data integrity. For example, one
department might allow phone numbers to have extensions, whereas another department
may not need that capability. One department might find it critical to maintain a relation-
ship between a customer record and a salesperson record, whereas another might care
only about the customer information.

The best way to keep everybody sane in this environment—and to ensure that the data
stays consistent and usable by everyone—is to enforce a set of data integrity rules within
the database itself. This is accomplished through data integrity constraints and other data
integrity mechanisms, such as triggers. See Chapter 26, “Implementing Data Integrity,” for
details.

SQL Server 2008 Administration and Management Tools

SQL Server 2008 and SQL Server 2008 R2 provide a suite of tools for managing and admin-
istering the SQL Server Database Engine and other components. The following sections
provide an overview of the primary tools for day-to-day administration, management, and
monitoring of your SQL Server environments.

SQL Server Management Studio (SSMS)
SSMS is the central console from which most database management tasks can be coordi-
nated. SSMS provides a single interface from which all servers in a company can be
managed. SSMS is examined in more detail in Chapter 4, “SQL Server Management
Studio.”

Figure 1.1 shows SSMS being used for some everyday administration tasks.

Figure 1.1 shows a list of registered servers in the upper-left pane. Below that is the Object
Explorer, which lets you browse the contents of the databases within a SQL Server
instance. The bigpubs2008 database has been expanded, and the right pane shows the
columns for the authors table.

 Download from www.wowebook.com

ptg

13SQL Server Components and Features

FIGURE 1.1 SSMS, showing a list of columns for the authors table in the bigpubs2008
database.

Following are some of the tasks you can perform with SSMS. Most of these tasks are
discussed in detail later in the book:

. Completely manage many servers in a convenient interface

. Set server options and configuration values, such as the amount of memory and
number of processors to use, default language, and default location of the data
and log files

. Manage logins, database users, and database roles

. Create, edit, and schedule automated jobs through the SQL Server Agent

. Back up and restore databases and define maintenance plans

. Create new databases

. Browse table contents

. Create and manage database objects, such as tables, indexes, and stored procedures

. Generate DDL scripts for databases and database objects

. Configure and manage replication

. Create, edit, execute, and debug Transact-SQL (T-SQL) scripts

. Define, implement, manage, and invoke SQL Server Policies

1

 Download from www.wowebook.com

ptg

14 CHAPTER 1 SQL Server 2008 Overview

. Enable and disable features of SQL Server

. Manage and organize scripts into projects and save versions in source control sys-
tems such as Visual SourceSafe

NOTE

Much of SQL Server Managements Studio’s interaction with SQL Server is done
through standard T-SQL statements. For example, when you create a new database
through the SSMS interface, behind the scenes, SSMS generates a CREATE DATABASE
SQL statement to be executed in the target server. Essentially, whatever you can do
through the SSMS GUI, you can do with T-SQL statements. As a matter of fact, nearly
every dialog in SSMS provides the capability to generate the corresponding T-SQL script
for the action(s) it performs. This capability can be very useful as a timesaver for tasks
that you need to perform repeatedly, avoiding the need to step through the options
presented in the GUI.

If you’re curious about how SSMS is accomplishing something that doesn’t provide the
capability to generate a script, you can run SQL Profiler to capture the commands that
SSMS is sending to the server. You can use this technique to discover some interest-
ing internal information and insight into the SQL Server system catalogs.

SQL Server Configuration Manager
SQL Server Configuration Manager is a tool provided with SQL Server 2008 for managing
the services associated with SQL Server and for configuring the network protocols used by
SQL Server. Primarily, SQL Server Configuration Manager is used to start, pause, resume,
and stop SQL Server services and to view or change service properties.

SQL Server Agent
SQL Server Agent is a scheduling tool integrated into SSMS that allows convenient defini-
tion and execution of scheduled scripts and maintenance jobs. SQL Server Agent also
handles automated alerts—for example, if the database runs out of space.

SQL Server Agent is a Windows service that runs on the same machine as the SQL Server
Database Engine. The SQL Server Agent service can be started and stopped through either
SSMS, the SQL Server Configuration Manager, or the ordinary Windows Services Manager.

In enterprise situations in which many SQL Server machines need to be managed together,
the SQL Server Agent can be configured to distribute common jobs to multiple servers
through the use of Multiserver Administration. This capability is most helpful in a wide
architecture scenario, in which many SQL Server instances are performing the same tasks
with the databases. Jobs are managed from a single SQL Server machine, which is responsible
for maintaining the jobs and distributing the job scripts to each target server. The results of
each job are maintained on the target servers but can be observed through a single interface.

If you had 20 servers that all needed to run the same job, you could check the completion
status of that job in moments instead of logging in to each machine and checking the
status 20 times.

 Download from www.wowebook.com

ptg

15SQL Server Components and Features

The SQL Server Agent also handles event forwarding. Any system events recorded in the
Windows system event log can be forwarded to a single machine. This gives a busy admin-
istrator a single place to look for errors.

More information about how to accomplish these tasks, as well as other information on
the SQL Server Agent, is available in Chapter 16, “SQL Server Scheduling and
Notification.”

SQL Server Profiler
The SQL Server Profiler is a GUI interface to the SQL Trace feature of SQL Server that
captures the queries and results flowing to and from the database engine. It is analogous
to a network sniffer, although it does not operate on quite that low a level. The Profiler
can capture and save a complete record of all the T-SQL statements passed to the server
and the occurrence of SQL Server events such as deadlocks, logins, and errors. You can use
a series of filters to pare down the results when you want to drill down to a single connec-
tion or even a single query.

You can use the SQL Profiler to perform these helpful tasks:

. You can capture the exact SQL statements sent to the server from an application for
which source code is not available (for example, third-party applications).

. You can capture all the queries sent to SQL Server for later playback on a test server.
This capability is extremely useful for performance testing with live query traffic.

. If your server is encountering recurring access violations (AVs), you can use the
Profiler to reconstruct what happened leading up to an AV.

. The Profiler shows basic performance data about each query. When your users start
hammering your server with queries that cause hundreds of table scans, the Profiler
can easily identify the culprits.

. For complex stored procedures, the Profiler can identify which portion of the proce-
dure is causing the performance problem.

. You can audit server activity in real-time.

More information on SQL Server Profiler is available in Chapter 6, “SQL Server Profiler.”

Replication

Replication is a server-based tool that you can use to synchronize data between two or more
databases. Replication can send data from one SQL Server instance to another, or it can repli-
cate data to Oracle, Access, or any other database that is accessible via ODBC or OLE DB.

SQL Server supports three kinds of replication:

. Snapshot replication

. Transactional replication

. Merge replication

1

 Download from www.wowebook.com

ptg

16 CHAPTER 1 SQL Server 2008 Overview

The availability and functionality of replication might be restricted, depending on the
edition of SQL Server 2008 you are running.

NOTE

Replication copies the changes to data from your tables and indexed views, but it does
not normally re-create indexes or triggers at the target. It is common to have different
indexes on replication targets than on the source to support different requirements.

Snapshot Replication
With snapshot replication, the server takes a picture, or snapshot, of the data in a table at
a single point in time. Usually, if this operation is scheduled, the target data is simply
replaced at each update. This form of replication is appropriate for small data sets, infre-
quent update periods (or for a one-time replication operation), or management simplicity.

Transactional Replication
Initially set up with a snapshot, the server maintains downstream replication targets by
reading the transaction log at the source and applying each change at the targets. For
every insert, update, and delete operation, the server sends a copy of the operation to
every downstream database. This is appropriate if low-latency replicas are needed.
Transactional replication can typically keep databases in sync within about five seconds of
latency, depending on the underlying network infrastructure. Keep in mind that transac-
tional replication does not guarantee identical databases at any given point in time.
Rather, it guarantees that each change at the source will eventually be propagated to the
targets. If you need to guarantee that two databases are transactionally identical, you
should look into Distributed Transactions or database mirroring.

Transactional replication might be used for a website that supports a huge number of
concurrent browsers but only a few updates, such as a large and popular messaging board.
All updates would be done against the replication source database and would be replicated
in near-real-time to all the downstream targets. Each downstream target could support
several web servers, and each incoming web request would be balanced among the web
farm. If the system needed to be scaled to support more read requests, you could simply
add more web servers and databases and add the database to the replication scheme.

Merge Replication
With snapshot and transactional replication, a single source of data exists from which all
the replication targets are replenished. In some situations, it might be necessary or desir-
able to allow the replication targets to accept changes to the replicated tables and merge
these changes together at some later date.

Merge replication allows data to be modified by the subscribers and synchronized at a later
time. This synchronization could be as soon as a few seconds, or it could be a day later.

Merge replication would be helpful for a sales database that is replicated from a central
SQL Server database out to several dozen sales laptops. As the sales personnel make sales
calls, they can add new data to the customer database or change errors in the existing

 Download from www.wowebook.com

ptg

17SQL Server Components and Features

data. When the salespeople return to the office, they can synchronize their laptops with
the central database. Their changes are submitted, and the laptops get refreshed with
whatever new data was entered since the last synchronization.

Immediate Updating
Immediate updating allows a replication target to immediately modify data at the source.
This task is accomplished by using a trigger to run a distributed transaction. Immediate
updating is performance intensive, but it allows for updates to be initiated from anywhere
in the replication architecture.

More details on replication are available in Chapter 19, “Replication.”

Database Mirroring

The database mirroring feature available in SQL Server 2008 provides a solution for
increasing database availability. Essentially, database mirroring maintains two copies of a
single database that reside on different instances of SQL Server, typically on server
instances that reside on computers in different locations. In a typical database mirroring
scenario, one server instance serves as the primary database to which the client applica-
tions connect, and the other server instance acts as a hot or warm standby server.

Database mirroring involves re-applying every modification operation that occurs on the
primary database onto the mirror database as quickly as possible. This is accomplished by
sending every active transaction log record generated on the primary server to the mirror
server. The log records are applied to the mirror database, in sequence, as quickly as possi-
ble. Unlike replication, which works at the logical level, database mirroring works at the
level of the physical log record. The mirror database is an exact copy of the primary data-
base.

For more information on setting up and using database mirroring, see Chapter 20,
“Database Mirroring.”

Full-Text Search

SQL Server 2008 provides the capability to issue full-text queries against plain character-
based data in your SQL Server tables. This capability is useful for searching large text
fields, such as movie reviews, book descriptions, or case notes. Full-text queries can
include words and phrases, or multiple forms of a word or phrase.

Full-Text Search capabilities in Microsoft SQL Server 2008 are provided by the Microsoft
Full-Text Engine for SQL Server (MSFTESQL). The MSFTESQL service works together with
the SQL Server Database Engine. You specify tables or entire databases that you want to
index. The full-text indexes are built and maintained outside the SQL Server database files
in special full-text indexes stored in the Windows file system. You can specify how often
the full-text indexes are updated to balance performance issues with timeliness of the
data.

1

 Download from www.wowebook.com

ptg

18 CHAPTER 1 SQL Server 2008 Overview

The SQL Server Database Engine supports basic text searches against specific columns. For
example, to find all the rows where a text column contained the word guru, you might
write the following SQL statement:

select *

from resume

where description like ‘%guru%’

This statement finds all the rows in the resume table where the description contains the
word guru. This method has a couple problems, however. First, the search is slow. Because
the Database Engine can’t index text columns, a full table scan has to be done to satisfy
the query. Even if the data were stored in a varchar column instead of a text column, an
index may not help because you’re looking for guru anywhere in the column, not just at
the beginning, so the index cannot be used to locate the matching rows. (Chapter 34
contains more information on avoiding such situations.)

What if you wanted to search for the word guru anywhere in the table, not just in the
description column? What if you were looking for a particular set of skills, such as “SQL”
and “ability to work independently”? Full-text indexing addresses these problems. To
perform the same search as before with full-text indexing, you might use a query like this:

select *

from resume

where contains(description, ‘guru’)

To perform a search that looks for a set of skills, you might use a query like this:

select *

from resume

where contains(*, ‘SQL and “ability to work independently”’)

For more information on setting up and searching Full-Text Search indexes, see Chapter
50, “SQL Server Full-Text Search” (on the CD).

SQL Server Integration Services (SSIS)

SSIS is a platform for building high-performance data integration solutions and workflow
solutions. You can build extract, transform, and load (ETL) packages to update data ware-
houses, interact with external processes, clean and mine data, process analytical objects,
and perform administrative tasks. Following are some of the features of SSIS:

. Graphical tools and wizards for building, debugging, and deploying SSIS packages

. Workflow functions, such as File Transfer Protocol (FTP), SQL statement execution,
and more

. SSIS Application Programming Interfaces (APIs)

. Complex data transformation for data cleansing, aggregation, merging, and copying

 Download from www.wowebook.com

ptg

19SQL Server Components and Features

. An email messaging interface

. A service-based implementation

. Support for both native and managed code (C++ or any common language runtime
[CLR]–compliant language, such as C# or J#)

. An SSIS object model

SSIS is a tool that helps address the needs of getting data—which is often stored in many
different formats, contexts, file systems, and locations—from one place to another. In
addition, the data often requires significant transformation and conversion processing as
it is being moved around. Common uses of SSIS might include the following:

. Exporting data out of SQL Server tables to other applications and environments (for
example, ODBC or OLE DB data sources, flat files)

. Importing data into SQL Server tables from other applications and environments (for
example, ODBC or OLE DB data sources, flat files)

. Initializing data in some data replication situations, such as initial snapshots

. Aggregating data (that is, data transformation) for distribution to/from data marts or
data warehouses

. Changing the data’s context or format before importing or exporting it (that is, data
conversion)

For more information on creating and using SSIS packages, see Chapter 52, “SQL Server
Integration Services.”

SQL Server Analysis Services (SSAS)

SSAS provides online analytical processing (OLAP) and data mining functionality for busi-
ness intelligence (BI) solutions. SSAS provides a rich set of data mining algorithms to
enable business users to mine data, looking for specific patterns and trends. These data
mining algorithms can be used to analyze data through a Unified Dimensional Model
(UDM) or directly from a physical data store.

SSAS uses both server and client components to supply OLAP and data mining functional-
ity for BI applications. SSAS consists of the analysis server, processing services, integration
services, and a number of data providers. It has both server-based and client-/local-based
analysis services capabilities. This essentially provides a complete platform for SSAS. The
basic components within SSAS are all focused on building and managing data cubes.

SSAS allows you to build dimensions and cubes from heterogeneous data sources. It can
access relational OLTP databases, multidimensional data databases, text data, and any
other source that has an OLE DB provider available. You don’t have to move all your data
into a SQL Server database first; you just connect to its source. In addition, SSAS allows a

1

 Download from www.wowebook.com

ptg

20 CHAPTER 1 SQL Server 2008 Overview

designer to implement OLAP cubes, using a variety of physical storage techniques directly
tied to data aggregation requirements and other performance considerations.

You can easily access any OLAP cube built with SSAS via the Pivot Table Service, you can
write custom client applications by using Multidimensional Expressions (MDX) with OLE
DB for OLAP or ActiveX Data Objects Multidimensional (ADO MD), and you can use a
number of third-party OLAP-compliant tools. MDX enables you to formulate complex
multidimensional queries.

SSAS is commonly used to perform the following tasks:

. Perform trend analysis to predict the future. For example, based on how many
widgets you sold last year, how many will you sell next year?

. Combine otherwise disconnected variables to gain insight into past performance.
For example, was there any connection between widget sales and rainfall patterns?
Searching for unusual connections between your data points is a typical data
mining exercise.

. Perform offline summaries of commonly used data points for instant access via a
web interface or custom interface. For example, a relational table might contain one
row for every click on a website. OLAP can be used to summarize these clicks by
hour, day, week, and month and then to further categorize them by business line.

Included for Analysis Services in SQL Server 2008 R2 is PowerPivot for Excel and
PowerPivot for SharePoint. PowerPivot for Excel and SharePoint are client and server
components that integrate Analysis Services with Excel and SharePoint. PowerPivot for
Excel is an add-in that allows you to create PowerPivot workbooks that can assemble and
relate large amounts of data from different sources. PowerPivot workbooks typically
contain large, multidimensional datasets that you create in a separate client application
and use with PivotTables and PivotCharts in a worksheet. The PowerPivot add-in removes
the one million row limit for worksheets and provides rapid calculations for the large data
that you assemble.

PowerPivot for SharePoint extends SharePoint 2010 and Excel Services to add server-side
processing, collaboration, and document management support for the PowerPivot work-
books that you publish to SharePoint.

Together, the PowerPivot client add-in and server components provide an end-to-end solu-
tion that furthers business intelligence data analysis for Excel users on the workstation
and on SharePoint sites.

SSAS is a complex topic. For more information on MDX, data cubes, and ways to use data
warehousing analysis services, see Chapter 52, “SQL Server 2008 Analysis Services.”

SQL Server Reporting Services (SSRS)

SQL Server Reporting Services is a server-based reporting platform that delivers enterprise,
web-enabled reporting functionality so you can create reports that draw content from a
variety of data sources, publish reports in various formats, and centrally manage security
and subscriptions.

 Download from www.wowebook.com

ptg

21SQL Server Components and Features

Reporting Services includes the following core components:

. A complete set of tools you can use to create, manage, and view reports

. A report server component that hosts and processes reports in a variety of formats,
including HTML, PDF, TIFF, Excel, CSV, and more

. An API that allows developers to integrate or extend data and report processing into
custom applications or to create custom tools to build and manage reports

There are two design tools for building reports: Report Designer, a powerful development
tool integrated with Visual Studio, and Report Builder 3.0, which is a simpler point-and-
click tool that you use to design ad hoc reports. Both report design tools provide a
WYSIWYG experience.

Reports are described using the Report Definition Language (RDL). RDL contains the
description of the report layout, formatting information, and instructions on how to fetch
the data. After a report is defined, it can be deployed on the report server, where it can be
managed, secured, and delivered to a variety of formats, including HTML, Excel, PDF, TIFF,
and XML. Various delivery, caching, and execution options are also available, as are sched-
uling and historical archiving.

One major set of enhancements in SQL Server 2008 R2 includes the new and enhanced
features in Reporting Services, which includes

. New features for SharePoint integration with Reporting Services—These
features include support for multiple SharePoint Zones, support for the SharePoint
Universal Logging service, and a query designer for SharePoint Lists as a data source.

. Report parts—These are reusable report items that are stored on a report server or
on a SharePoint site integrated with a report server.

. Shared datasets—These datasets can be shared, stored, processed and cached exter-
nally from the report, thus providing a consistent set of data that can be shared by
multiple reports.

. Cache refresh plans—These plans allow you to cache reports or shared dataset
query results on first use or from a schedule.

. Sparklines and data bars—These simple charts convey a lot of information in a
little space, often inline with text. Sparklines and data bars are often used in tables
and matrices.

. Indicators—These minimal gauges convey the state of a single data value at a
glance. Indicators can be used by themselves in dashboards or free-form reports, but
they are most commonly used in tables or matrices to visualize data in rows or
columns.

. Calculating aggregates of aggregates—You can now create expressions that calcu-
late an aggregate of an aggregate.

1

 Download from www.wowebook.com

ptg

22 CHAPTER 1 SQL Server 2008 Overview

. Better report pagination—Page breaks on tablix data regions (table, matrix, and
list), groups, and rectangles give you better control of report pagination.

. Map reports—Report Designer now provides a Map Wizard and Map Layer Wizard
to add maps and map layers to your report to help visualize data against a geographic
background. A map layer displays map elements based on spatial data from a map in
the Map Gallery, from a SQL Server query that returns SQL Server spatial data, or
from an Environmental Systems Research Institute, Inc. (ESRI) shapefile.

. Business Intelligence Development Studio Support for SQL Server 2008
Reports and Report Server projects—Business Intelligence Development Studio
now supports working with both SQL Server 2008 and SQL Server 2008 R2 reports,
and with Report Server projects in the SQL Server 2008 R2 version of Business
Intelligence Development Studio.

. Improved Previewing of Report—Report Builder 3.0 provides a better preview
experience with the introduction of edit sessions that enable the reuse of cached
datasets when previewing reports. Reports render more quickly when using the
cached datasets.

Report Manager has also been updated in the SQL Server 2008 R2 release to provide an
improved user experience and look and feel. This includes an updated color scheme and
layout in an effort to provide easier navigation to manage report properties and Report
Server items. You can now use a new drop-down menu on each report or Report Server item
in a folder to access the various configuration options for the report or item you choose.
Following are some of the key enhancements to Report Manager in SQL Server 2008 R2:

. Workflow has been improved for viewing and managing reports and report server
items. You can use a new drop-down menu to access various configuration options
for each report or report server item in a folder.

. The need to render a report before accessing and configuring report properties when
in default view has been eliminated.

. The visible display area is now larger in the Report Viewer when rendering reports.

. An updated Report Viewer toolbar includes some updates to the toolbar controls,
as well as the capability to export report data to an Atom service document and
data feeds.

For more information on designing and deploying reports using Reporting Services and
more information on the extensive R2 enhancements, see Chapter 53, “SQL Server 2008
Reporting Services.”

SQL Server Service Broker

SQL Server Service Broker provides a native SQL Server infrastructure that supports asyn-
chronous, distributed messaging between database-driven services. Service Broker handles
all the hard work of managing coordination among the constructs required for distributed
messaging, including transactional delivery and storage, message typing and validation,
multithreaded activation and control, event notification, routing, and security.

 Download from www.wowebook.com

ptg

23SQL Server 2008 R2 Editions

Service Broker is designed around the basic functions of sending and receiving messages.
An application sends messages to a service, which is a name for a set of related tasks. An
application receives messages from a queue, which is a view of an internal table. Service
Broker guarantees that an application receives each message exactly once, in the order in
which the messages were sent.

Service Broker can be useful for any application that needs to perform processing asynchro-
nously or that needs to distribute processing across a number of computers. An example
would be a bicycle manufacturer and seller who must provide new and updated parts data
to a company that implements a catalog management system. The manufacturer must keep
the catalog information up-to-date with its product model data, or it could lose market
share or end up receiving orders from distributors based on out-of-date catalog information.
When the parts data is updated in the manufacturer’s database, a trigger could be invoked to
send a message to Service Broker with information about the updated data. Service Broker
would then asynchronously deliver the message to the catalog service. The catalog service
program would then perform the work in a separate transaction. When this work is
performed in a separate transaction, the original transaction in the manufacturer’s database
can commit immediately. The application avoids system slowdowns that result from
keeping the original transaction open while performing the update to the catalog database.

For more information on using Service Broker, see Chapter 49, “SQL Server Service Broker”
(on the CD).

SQL Server 2008 R2 Editions
You can choose from several editions of SQL Server 2008 R2. The edition you choose
depends on your database and data processing needs, as well as the Windows platform on
which you want to install it.

For actual deployment of SQL Server in a production environment, you can choose from
any edition of SQL Server 2008 except Developer Edition and Evaluation Edition. Which
edition you choose to deploy depends on your system requirements and need for SQL
Server components.

This following sections examine the different editions of SQL Server and discusses their
features and capabilities. Using this information, you can better choose which edition
provides the appropriate solution for you.

SQL Server 2008 Standard Edition

The Standard Edition of SQL Server 2008 is the version intended for the masses—those
running small- to medium-sized systems who don’t require the performance, scalability,
and availability provided by Enterprise Edition. Standard Edition scalability is limited to
up to four processors. There is no built-in memory limitation in SQL Server 2008 Standard
Edition; it can utilize as much memory as provided by the operating system.

1

 Download from www.wowebook.com

ptg

24 CHAPTER 1 SQL Server 2008 Overview

SQL Server 2008 Standard Edition includes the following features:

. CLR procedures, functions, and data types

. SQL Server Analysis Services

. Service Broker

. Reporting Services

. SQL Server Integration Services

. Full-Text Search

. Built-in XML support

. Spatial Indexes

. SQL Server Profiler and performance analysis tools

. SQL Server Management Studio

. Policy Based Management

. Replication

. Two-node failover clustering

. Database mirroring (safety full mode only)

. Log shipping

. Backup Compression (available in R2 only)

The Standard Edition can be installed on any of the Windows 2003 SP2 and Windows 2008
Server platforms, as well as Windows XP Professional, Windows Vista Ultimate, Enterprise,
or Business Editions, and Windows 7 Ultimate, Enterprise, or Professional Editions.

The Standard Edition should meet the needs of most departmental and small- to mid-sized
applications. However, if you need more scalability, availability, advanced security or
performance features, or comprehensive analysis features, you should implement the
Enterprise Edition of SQL Server 2008.

SQL Server 2008 Enterprise Edition

The Enterprise Edition of SQL Server 2008 is the most comprehensive and complete edition
available. It provides the most scalability and availability of all editions and is intended for
systems that require high performance and availability, such as large-volume websites, data
warehouses, and high-throughput online transaction processing (OLTP) systems.

SQL Server 2008 Enterprise Edition supports as much memory and as many CPUs as
supported by the operating system on which it is installed. It can be installed on any of
the Windows 2003 SP2 and Windows 2008 Server platforms.

In addition, SQL Server 2008 Enterprise Edition provides performance enhancements, such
as parallel queries, indexed views, and enhanced read-ahead scanning.

 Download from www.wowebook.com

ptg

25SQL Server 2008 R2 Editions

Which version is right for you? The next section explores the feature sets of Enterprise
and Standard Editions so you can decide which one provides the features you need.

Differences Between the Enterprise and Standard Editions of SQL Server

For deploying SQL Server 2008 in a server environment, either the Standard Edition or
Enterprise Edition of SQL Server is a logical choice. To help you decide between the two
editions, Table 1.1 compares the major features that each edition supports.

1

TABLE 1.1 SQL Server 2008 Feature Comparison: Enterprise and Standard Editions

Feature Enterprise
Edition

Standard Edition

Max number of CPUs 8 4

64-bit support Yes Yes

CLR runtime integration Yes Yes

Full-Text Search Yes Yes

Native XML Support Yes Yes

FILESTREAM Support Yes Yes

Spatial Data Support Yes Yes

SQL Server Integration Services Yes Yes

Database Mail Yes Yes

Policy Based Management Yes Yes

SQL Profile Yes Yes

Integration Services with Basic
Transforms

Yes Yes

Integration Services with Advanced
Data Mining and Cleansing
Transforms

Yes No

Star Join Query Optimization Yes No

Change Data Capture Yes No

Service Broker Yes Yes

Reporting Services Yes Yes

Replication Yes Yes

Log Shipping Yes Yes

Database mirroring Yes Yes (Single REDO thread with Safety FULL
only)

 Download from www.wowebook.com

ptg

26 CHAPTER 1 SQL Server 2008 Overview

TABLE 1.1 SQL Server 2008 Feature Comparison: Enterprise and Standard Editions

Feature Enterprise
Edition

Standard Edition

Database snapshots Yes No

Indexed views Yes Yes (Can be created, but automatic matching
by Query Optimizer not supported)

Updatable distributed partitioned
views

Yes No

Table and index partitioning Yes No

Online index operations Yes No

Parallel index operations Yes No

Parallel DBCC Yes No

Online page and file restoration Yes No

Fast Recovery Yes No

Data Compression Yes No

Compressed Backups Yes Yes

Resource Governor Yes No

Fine Grained Encryption Yes No

Transparent Data Encryption Yes No

Failover clustering Yes Yes (2-node only)

Multiple-instance support Yes (50
instances
maximum)

Yes (16 instances maximum)

PowerPivot for SharePoint Yes (R2 only) No

Application and Multi-Server
Management (R2 Only)

Yes Yes (as a managed instance only)

Other SQL Server 2008 Editions

The Standard and Enterprise Editions of SQL Server 2008 are intended for server-based
deployment of applications. In addition, the following editions are available for other
specialized uses:

. Workgroup Edition

. Developer Edition

. Web Edition

 Download from www.wowebook.com

ptg

27SQL Server 2008 R2 Editions
1

. Express Edition

. Compact Edition

Workgroup Edition
SQL Server 2008 Workgroup Edition is intended for small organizations that need a data-
base with no limits on database size or number of users but may not need the full capabil-
ities of the Standard Edition. SQL Server 2008 Workgroup Edition can be used as a
front-end web server or for departmental or branch office applications.

Workgroup Edition includes most of the core database features and capabilities of the SQL
Server Standard Edition except for the following:

. It is limited to two CPUs and a maximum of 4GB of memory.

. It does not support failover clustering.

. Database mirroring support is limited to being a witness only.

. It does not include Analysis Services.

. It provides limited support for Integration Services and Reporting Services features.

Workgroup Edition can be installed in any of the following environments:

. Any Windows 2003 Server editions

. Any Windows 2008 Server editions

. Windows 7

. Windows Vista

. Windows XP

Developer Edition
The Developer Edition of SQL Server 2008 is a full-featured version intended for develop-
ment and end-user testing only. It includes all the features and functionality of Enterprise
Edition, at a much lower cost, but the licensing agreement prohibits production deploy-
ment of databases using Developer Edition.

To provide greater flexibility during development, Developer Edition can be installed in
any of the following environments.

. Any Windows 2003 Server editions

. Any Windows 2008 Server editions

. Windows 7

. Windows Vista

. Windows XP

Web Edition
SQL Server 2008 Web Edition is a lower total-cost-of-ownership option, similar to the
Workgroup Edition, but intended for small- to large-scale web hosts and websites.

 Download from www.wowebook.com

ptg

28

Web Edition includes most of the core database features and capabilities of the SQL Server
Standard Edition with the following key differences:

. It is limited to a maximum of 4 CPUs.

. Unlike the Workgroup Edition, memory in this edition is constrained only by the OS
maximum memory limits.

. It does not support failover clustering.

. Database mirroring support is limited to being a witness only.

. It does not include Analysis Services.

. It includes only the basic version of SQL Server Management Studio (which lacks
advanced features such as IntelliSense and version control support).

. It provides limited support for Integration Services and Reporting Services features.

Web Edition can be installed in any of the following environments.

. Any Windows 2003 Server editions

. Any Windows 2008 Server editions

. Windows 7

. Windows Vista

. Windows XP

Express Edition
SQL Server Express Edition is a free, lightweight, embeddable, and redistributable version
of SQL Server 2008. It includes a stripped-down version of SQL Server Management
Studio, called SQL Server Management Studio Express, for easily managing a SQL Server
Express instance and its databases. The Express Edition of SQL Server 2008 is intended for
users who are running applications that require a locally installed database, often on
mobile systems, and who spend at least some time disconnected from the network. The
core database engine of Express Edition is the same as the other SQL Server editions, so as
your needs grow, your applications seamlessly work with the rest of the SQL Server
product family.

The Express Edition can be installed in any of the following environments:

. Any Windows 2003 Server editions

. Any Windows 2008 Server editions

. Windows 7

. Windows Vista

. Windows XP

Express Edition supports most of the same features as the Workgroup Edition, with the
following exceptions:

CHAPTER 1 SQL Server 2008 Overview

 Download from www.wowebook.com

ptg

29SQL Server 2008 R2 Editions
1

. It is limited to using a maximum of one CPU and 1GB of memory.

. It limits the maximum database size to 4GB.

. It does not include Full-Text Search, Reporting Services, or Analysis Services.

. It does not include SQL Server Integration Services.

. It supports Service Broker as a client only.

. It does not include SSMS.

. It can participate in replication only as a subscriber.

If you need a bit more than the Express Edition offers, but not as much as the Workgroup
Edition, Microsoft also provides the Express Edition with Advanced Services. The Express
Edition with Advanced Services includes support for Full-Text Search and limited support
of Reporting Services for web reporting.

SQL Server Compact 3.5 Edition
SQL Server Compact 3.5 is a free, embedded version of SQL Server intended for building stand-
alone and occasionally connected applications for mobile devices, desktops, and web clients on
Windows platforms. The Compact 3.5 Edition provides general T-SQL compatibility and a cost-
based Query Optimizer similar to that in SQL Server 2008. Developers who are familiar with
SQL Server 2008 should feel comfortable developing for SQL Server Compact 3.5.

SQL Server Compact 3.5 Edition has a small footprint, requiring only about 2–3MB. It can
connect directly with a SQL Server 2008 database through remote execution of T-SQL
statements, and it also supports replication with SQL Server 2008 databases as a merge
replication subscriber so that data can be accessed and manipulated offline and synchro-
nized later with a server-based version of SQL Server 2008.

SQL Server 2008 R2 Premium Editions
SQL Server 2008 R2 introduces two new premium editions to meet the needs of large-scale
datacenters and data warehouses:

. SQL Server 2008 R2 Datacenter

. SQL Server 2008 R2 Parallel Data Warehouse

SQL Server 2008 R2 Datacenter Edition is built on SQL Server 2008 R2 Enterprise and is
designed to deliver a high-performing data platform that provides the highest levels of
scalability for large application workloads, virtualization and consolidation, and manage-
ment for an organization’s database infrastructure. The Datacenter Edition provides the
following key features:

. Application and Multi-Server Management for enrolling, gaining insights into, and
managing over 25 instances

. Highest virtualization support for maximum ROI on consolidation and virtualization

. High-scale complex event processing with SQL Server StreamInsight

 Download from www.wowebook.com

ptg

30

. Support for more than 8 processors and up to 256 logical processors for highest
levels of scale

. Support for memory limits up to the OS maximum

SQL Server 2008 R2 Parallel Data Warehouse Edition is a highly scalable data warehouse
appliance-based solution that delivers performance at low cost through a massively paral-
lel processing (MPP) architecture and compatibility with hardware partners providing the
ability to scale your data warehouse to tens and hundreds of terabytes. Following are some
key features of the Parallel Data Warehouse Edition:

. Tens to hundreds of terabytes enabled by MPP architecture

. Advanced data warehousing capabilities such as Star Join Queries and Change Data
Capture

. Integration with SSIS, SSRS, and SSAS

. Support for the industry standard data warehousing hub and spoke architecture and
parallel database copy

SQL Server Licensing Models
In addition to feature sets, one of the determining factors in choosing a SQL Server
edition is cost. With SQL Server 2008, Microsoft provides two types of licensing models:
processor-based licensing and server-based licensing.

Processor-based licensing requires a single license for each physical CPU in the machine
that is running a Microsoft Server product. This type of license includes unlimited client
device access. Additional server licenses, seat licenses, and Internet connector licenses are
not required. You must purchase a processor license for each installed processor on the
server on which SQL Server 2008 will be installed, even if some processors will not be used
for running SQL Server. The only exception is for systems with 16 or more processors that
allow partitioning of the processors into groups so the SQL Server software can be dele-
gated to a subset of the processors.

NOTE

For licensing purposes, Microsoft bases the number of CPUs in a machine on the num-
ber of CPU sockets on the motherboard, not the number of cores on the CPU chip
itself. Thus, although a dual-core or quad-core processor chip may appear to the operat-
ing system as two or four CPUs, at the time of this writing, each of these types of
chips is still considered a single CPU for licensing purposes if it occupies only a single
CPU socket on the motherboard.

For those who prefer the more familiar server/client access license (CAL), or for environ-
ments in which the number of client devices connecting to SQL Server is small and known,
two server/CAL-based licensing models are also available:

CHAPTER 1 SQL Server 2008 Overview

 Download from www.wowebook.com

ptg

31SQL Server Licensing Models
1

. Device CALs—A device CAL is required for a device (for example, PC, workstation,
terminal, PDA, mobile phone) to access or use the services or functionality of
Microsoft SQL Server. The server plus device CAL model is likely to be the more cost-
effective choice if there are multiple users per device (for example, in a call center).

. User CALs—A SQL server user CAL is required for a user (for example, an employee,
a customer, a partner) to access or use the services or functionality of Microsoft SQL
Server. The server plus user CAL model is likely to be more cost effective if there are
multiple devices per user (for example, a user who has a desktop PC, laptop, PDA,
and so forth).

The server/CAL licensing model requires purchasing a license for the computer running
SQL Server 2008 as well as a license for each client device or user that accesses any SQL
Server 2008 installation. A fixed number of CALs are included with a server license and
the server software. Additional CALs can be purchased as needed.

Server/per-seat CAL licensing is intended for environments in which the number of clients
per server is relatively low, and access from outside the company firewall is not required.
Be aware that using a middle-tier or transaction server that pools or multiplexes database
connections does not reduce the number of CALs required. A CAL is still required for each
distinct client workstation that connects through the middle tier. (Processor licensing
might be preferable in these environments due to its simplicity and affordability when the
number of clients is unknown and potentially large.)

The pricing listed in Table 1.2 is provided for illustrative purposes only and is based on
pricing available at the time of publication. These estimated retail prices are subject to
change and might vary from reseller pricing.

TABLE 1.2 SQL Server 2008 R2 Estimated Retail Pricing

Licensing Option Enterprise
Edition

Standard
Edition

Workgroup
Edition

Parallel Data Warehouse
and Datacenter Editions

Processor Licensing $28,749
per proces-
sor

$7,499 per
processor

$3,899 per
processor

$57,498 per processor

Server/per-seat CAL
license with 5 workgroup
CALs

N/A N/A $739 N/A

Server/per-seat CAL
license with 5 CALs

N/A $1,849 N/A N/A

Server/per-seat CAL
license with 25 CALs

$13,969 N/A N/A N/A

 Download from www.wowebook.com

ptg

32

Web Edition Licensing

The Express Edition of SQL Server 2008 is available via free download from www.
microsoft.com/sql. Developers can redistribute it with their applications at no cost by
simply registering for redistribution rights with Microsoft. The Express Edition does not
require a CAL when it is used on a standalone basis. If it connects to a SQL Server instance
running Enterprise Edition, Standard Edition, or Workgroup Edition, a separate user or
device CAL is required for the device running Express Edition unless the SQL Server
instance it connects to is licensed using the per-processor model.

Developer Edition Licensing

The Developer Edition of SQL Server 2008 is available for a fixed price of $50. The
Developer Edition is licensed per developer and must be used for designing, developing,
and testing purposes only.

Express Edition Licensing

The Express Edition of SQL Server 2008 is available via free download from www.
microsoft.com/sql. Developers can redistribute it with their applications at no cost by
simply registering for redistribution rights with Microsoft. The Express Edition does not
require a CAL when it is used on a standalone basis. If it connects to a SQL Server instance
running Enterprise Edition, Standard Edition, or Workgroup Edition, a separate user or
device CAL is required for the device running Express Edition unless the SQL Server
instance it connects to is licensed using the per-processor model.

Compact Edition 3.5 Licensing

SQL Server 2008 Mobile Edition is available as a downloadable development product for
mobile applications. You can deploy SQL Server Mobile to an unlimited number of mobile
devices if they operate in standalone mode (that is, the device does not connect to or use
the resources of any SQL Server system not present on the device). If the device connects
to a SQL Server instance that is not on the device, a separate user or device CAL is
required unless the SQL Server instance it connects to is licensed using the per-processor
model.

Choosing a Licensing Model

Which licensing model should you choose? Per-processor licensing is generally required in
instances in which the server will be accessed via the Web. This type of licensing includes
servers used in Internet situations or servers that will be accessed from both inside and
outside an organization’s firewall. Per-processor licensing might also be appropriate and
cost effective for internal environments in which there are a very large number of users in
relation to the number of SQL Server machines. An additional advantage to the per-
processor model is that it eliminates the need to count the number of devices connecting
to SQL Server, which can be difficult to manage on an ongoing basis for a large organiza-
tion.

CHAPTER 1 SQL Server 2008 Overview

 Download from www.wowebook.com

www.microsoft.com/sql
www.microsoft.com/sql
www.microsoft.com/sql
www.microsoft.com/sql

ptg

33SQL Server Licensing Models
1

Using the server/per-seat CAL model is usually the most cost-effective choice in internal
environments in which client-to-server ratios are low.

Mixing Licensing Models

You can mix both per-processor and server/CAL licensing models in your organization. If
the Internet servers for your organization are segregated from the servers used to support
internal applications, you can choose to use processor licensing for the Internet servers
and server/CAL licensing for internal SQL Server instances and user devices.

Keep in mind that you do not need to purchase CALs to allow internal users to access a
server already licensed via a processor license: The processor licenses allow access to that
server for all users.

Passive Server/Failover Licensing

In SQL Server 2008, two or more servers can be configured in a failover mode, with one
server running as a passive server so that the passive server picks up the processing of the
active server only in the event of a server failure. SQL Server 2008 offers three types of
failover support:

. Database mirroring

. Failover clustering

. Log shipping

If your environment uses an active/passive configuration in which at least one server in
the failover configuration does not regularly process information but simply waits to pick
up the workload when an active server fails, no additional licenses are required for the
passive server. The exception is if the failover cluster is licensed using the per-processor
licensing model and the number of processors on the passive server exceeds the number
of processors on the active server. In this case, additional processor licenses must be
acquired for the number of additional processors on the passive computer.

In an active/active failover configuration, all servers in the failover configuration regularly
process information independently unless a server fails, at which point one server or more
takes on the additional workload of the failed server. In this environment, all servers must
be fully licensed using either per-processor licensing or server/CAL licensing. Keep in mind
that in some log shipping and database mirroring configurations, the standby (passive)
server can be used as a read-only reporting server installation. Under this usage, the
standby server is no longer “passive” and must be licensed accordingly.

Virtual Server Licensing

Virtualization is defined broadly as the running of software on a “virtual environment.” A
virtual environment exists when an operating system is somehow emulated (that is, does
not run directly on the physical hardware). When you’re running virtualization software
on a system, one or several applications and their associated operating systems can run on
one physical server inside their respective virtual environments.

 Download from www.wowebook.com

ptg

34

Running SQL Server 2008 inside a virtual operating environment requires at least one
license per virtual operating environment. Within each virtual operating environment, the
license allows you to run one or more instances of SQL Server 2008. The license for a
virtual operating environment can be a server/CAL license or a processor-based license. If
using a processor-based license, you must purchase a processor license for each processor
that the virtual machine accesses. The total number of physical and virtual processors
used by the virtual operating system environments cannot exceed the number of software
licenses assigned to that server. However, if you are running Enterprise Edition and all
physical processors in the machine have been licensed, you may run an unlimited number
of virtual operating environments on that same machine.

Multiple Instances of SQL Server

An option to virtualization is multi-instancing. With multi-instancing, multiple copies of
SQL Server can be run concurrently in a single instance of an OS. Multi-instancing for SQL
Server 2008 can take place both in a virtual environment or in a physical environment.
Although multi-instancing offers a relatively high degree of isolation between copies of
SQL Server 2008, this isolation takes place at the application level (instead of at the OS
level).

In SQL Server 2008, the Workgroup and Standard Editions now allow you to run any
number of instances of the server software in one physical or virtual operating system envi-
ronment on the licensed server. Previously, only the Enterprise Edition of the server license
allowed multi-instancing.

Summary
This chapter examined the various platforms that support SQL Server 2008 R2 and
reviewed and compared the various editions of SQL Server 2008 that are available. Which
platform and edition are appropriate to your needs depends on scalability, availability,
performance, licensing costs, and limitations. The information provided in this chapter
should help you make the appropriate choice.

Chapter 2, “What’s New in SQL Server 2008,” takes at closer look at the new features and
capabilities provided with the various SQL Server 2008 editions.

CHAPTER 1 SQL Server 2008 Overview

 Download from www.wowebook.com

ptg

CHAPTER 2

What’s New in SQL
Server 2008

IN THIS CHAPTER

. New SQL Server 2008 Features

. SQL Server 2008
Enhancements

SQL Server 2005 provided a number of significant new
features and enhancements over what was available in SQL
Server 2000. This is not too surprising considering there was
a five-year gap between these major releases. Microsoft SQL
Server 2008 is not as much of a quantum leap forward from
SQL Server 2005, but it provides a number of new features
and enhancements to further extend the performance, relia-
bility, availability, programmability, and ease of use of SQL
Server. This chapter explores the new features provided in
SQL Server 2008 and SQL Server 2008 R2, as well as many
of the enhancements to previously available features.

New SQL Server 2008 Features
So what does SQL Server 2008 have to offer over SQL Server
2005? Following is an overview of the new features
provided in SQL Server 2008:

. New storage features—FILESTREAM storage, sparse
columns and column sets, row-level and page-level
data compression

. New data types—Date, Time, and DATETIME2 data
types; Hierarchyid data type; spatial data types; user-
defined table type

. New Transact-SQL (T-SQL) constructs—Compound
operators, GROUPING SETS, MERGE statement, row
constructors, table-valued parameters, INSERT over
DML, new date and time functions

. New performance features—Filtered indexes and
statistics, FORCESEEK query hint, hash values for

 Download from www.wowebook.com

ptg

36 CHAPTER 2 What’s New in SQL Server 2008

finding similar queries in the plan cache, Plan Guide Successful and Plan Guide
Unsuccessful event classes, Guided/Misguided Plan Executions/sec Performance
Monitor counters, LOCK ESCALATION option for ALTER TABLE, hot-add CPUs

. New security features—Transparent data encryption, Extensible Key Management,
SQL Server Audit

. New database administration features—Backup compression, Change Data
Capture, Change Tracking, the Data Collector, Policy-Based Management, SQL Server
Extended Events, Resource Governor

. New SQL Server management features—Transact-SQL Debugger, IntelliSense,
error list window, multiserver queries, PowerShell integration

SQL Server 2008 R2 further enhances SQL Server 2008 with the following new features:

. Two new premium editions to meet the needs of large-scale datacenters and data
warehouses:

. SQL Server 2008 R2 Datacenter

. SQL Server 2008 R2 Parallel Data Warehouse

. SQL Server Utility for Multi-Server Management

. PowerPivot for Excel and SharePoint

. A number of new Reporting Services features including Report Builder 3.0, report
parts, shared datasets, Sparklines and data bars, indicators, calculating aggregates of
aggregates, maps, lookup functions

The following sections take a closer look at each of these new features and, where appro-
priate, provide references to subsequent chapters where you can find more information
and detail about the new features.

New Storage Features

SQL Server 2008 provides a set of new features to reduce storage requirements and
improve performance.

One of the new features is FILESTREAM storage. FILESTREAM storage is a property that can
be applied to varchar(max) columns; it enables SQL Server applications to store unstruc-
tured data, such as documents and images, directly in the NTFS file system while still
maintaining the behavior of a database column. The advantages of FILESTREAM storage
are improved performance and increased size of BLOB data, expanding from the 2GB limit
of image columns to the available space in the file system. For more information on using
FILESTREAM storage, see Chapter 42, “What’s New for Transact-SQL in SQL Server 2008.”

Other storage features introduced in SQL Server 2008 are sparse columns and column sets.
Sparse columns are ordinary columns that have an optimized storage format for null values.
If you use sparse columns, you can also define a column set on the table that will return
all sparse columns in the table. A column set is an untyped XML representation that
combines all the sparse columns of a table into a structured output. For more information

 Download from www.wowebook.com

ptg

37New SQL Server 2008 Features

on defining sparse columns and column sets, see Chapter 24, “Creating and Managing
Tables.”

Row-level and page-level data compression also are introduced in SQL Server 2008. Data
compression helps to reduce both storage and memory requirements as the data is
compressed both on disk and when brought into the SQL Server data cache. Row-level
compression isn’t true data compression but implements a more efficient storage format
for fixed-length data. Page-level compression is true data compression, using both column
prefix and dictionary-based compression. For more information on implementing data
compression, see Chapter 24.

New Data Types

SQL Server 2008 introduces a handful of new data types. Two of the most welcome of
these are the new DATE and TIME data types. These new data types allow you to store date-
only and time-only values. In addition, SQL Server now supports the DATETIME2 and
DATETIMEOFFSET data types. DATETIME2 is a variation of the DATETIME data type that
supports datetime values from 0001-01-01 to 9999-12-31 23:59:59.999999.
DATETIMEOFFSET supports UTC-based datetime values that are time zone aware.

The new Hierarchyid data type is a common language runtime (CLR) user-defined type
(UDT) that provides a mechanism for representing and storing a tree structure in a table in
an efficient manner. This data type is useful for storing data that represents a parent child,
tree-like structure such as an organizational structure or a graph of links between web
pages.

Spatial data types are introduced in SQL Server 2008 as well. There are two new spatial
data types: geometry and geography. The geometry data type supports planar, or Euclidean
(flat-earth), data. The geography data type stores ellipsoidal (round-earth) data, such as
GPS latitude and longitude coordinates. These new data types support the storage and
manipulation of spatial data objects such as linestrings, points, and polygons.

SQL Server 2008 also introduces a new user-defined table type that can be used as parame-
ters in stored procedures and functions, as well as for defining table variables in a batch or
the body of a stored procedure or function.

For more information and examples on using the new SQL Server 2008 data types, see
Chapter 42.

New Transact-SQL Constructs

What would a new SQL Server release be without new T-SQL commands and constructs to
further expand the power and capabilities of the T-SQL language? SQL Server 2008 is no
exception (although SQL Server 2008 R2 is an exception because no new T-SQL constructs
are introduced in R2). The new constructs provided in SQL Server 2008 include

. Compound operators—New operators that provide a shorthand method of
performing an operation and assigning a value to a local variable (for example,
+=, *=).

2

 Download from www.wowebook.com

ptg

38 CHAPTER 2 What’s New in SQL Server 2008

. GROUPING SETS—New operator added to the GROUP BY clause to perform multiple
grouping operations in a single query.

. MERGE statement—New DML statement that can perform INSERT, UPDATE, or DELETE
operations on a target table based on the results of a join with a source table.

. Row constructors—An enhancement to the VALUES clause that allows multiple row
inserts within a single INSERT statement. Also provides the ability to use the VALUES
clause to create a pseudo table of values in a subquery or common table expression.

. Table-valued parameters—New parameter type that can be assigned the new user-
defined table types. Table-valued parameters enable you to pass a table variable con-
taining multiple rows of data to a stored procedure or function without the need to
create a temporary table.

To coincide with the new DATE and TIME data types, SQL Server 2008 also introduces a
few new date and time functions:

. SYSDATETIME()—Returns the current system datetime as a DATETIME2(7) value

. SYSDATETIMEOFFSET()—Returns the current system datetime as a
DATETIMEOFFSET(7) value

. SYSUTCDATETIME—Returns the current system datetime as a DATETIME2(7) value
representing the current UTC time

. SWITCHOFFSET (DATETIMEOFFSET, time_zone)—Changes the DATETIMEOFFSET
value from the stored time zone offset to the specified time zone

. TODATETIMEOFFSET (datetime, time_zone)—Converts a local datetime value
for the specified time zone to a DATETIMEOFFSET UTC value

For more information and examples on using the new SQL Server 2008 T-SQL constructs,
see Chapter 42.

New Performance Features

SQL Server 2008 also introduces some new features and enhancements for monitoring,
managing, and improving query performance. Among these new features are filtered
indexes and statistics. A filtered index is a nonclustered index defined on a subset of data
using a filter predicate to index only a portion of rows in the table. Filtered statistics are
statistics defined on a subset of data in the table using a filter predicate. A well-designed
filtered index can improve query performance, reduce index maintenance costs, and
reduce index storage costs compared with full-table indexes, especially when columns
contain a large number of rows with null or a single value that isn’t searched on but can
skew the index and statistics. For more information on creating and using filtered indexes
and statistics, see Chapter 34, “Data Structures, Indexes, and Performance.”

SQL Server 2008 provides FORCESEEK as a new table and query hint for controlling how
SQL Server optimizes a query; it forces the optimizer to use only an index seek operation
to access the data in the referenced table or view. For more information on using the
FORCESEEK hint, see Chapter 35, “Understanding Query Optimization.”

 Download from www.wowebook.com

ptg

39New SQL Server 2008 Features

Plan guides were a feature introduced in SQL Server 2005. Plan guides can be used to opti-
mize the performance of queries when you cannot or do not want to change the text of
the query directly (for example, when queries in a third-party database application are not
performing as expected). SQL Server 2008 provides additional features related to plan
guides to make implementing and managing them easier. Among these features are new
event classes (Plan Guide Successful and Plan Guide Unsuccessful) that can be monitored
via SQL Server Profiler to determine when plan guides are being applied. There are also
two new Performance Monitor counters (Guided/Misguided Plan Executions/sec) that you
can use to monitor via Performance Monitor how often plan guides are being used or not
being used.

SQL Server 2008 also now generates hash values for query plans in the plan cache. The
sys.dm_exec_query_stats and sys.dm_exec_requests dynamic management views
(DMVs) now provide query hash and query plan hash values that you can use to help find
similar queries in the plan cache. Locating similar queries can help you determine the
aggregate resource usage for similar queries and similar query execution plans so that you
can better focus your query tuning efforts and help identify which queries may get the
most benefit from using plan guides. For more information on query plans and using plan
guides, see Chapter 35.

To provide greater control of locking, SQL Server 2008 offers the new LOCK ESCALATION
table option. This option specifies the allowed methods of lock escalation for a table. The
default is AUTO, which allows the Database Engine to select the appropriate lock escalation
level for the query if a table is partitioned. You can also specify TABLE to force full table-
level locking whether or not a table is partitioned. A third option, DISABLE, prevents esca-
lation to a table-level lock in most cases. For more details on locking and the LOCK
ESCALATION option, see Chapter 37, “Locking and Performance.”

One additional new feature in SQL Server 2008 Enterprise Edition is hot-add CPU. Hot-add
CPU is the capability to dynamically add CPUs to a running system. Additional CPUs can
be made available logically by online hardware partitioning, virtually through a virtualiza-
tion layer, or even physically by adding new hardware on systems that support adding
physical CPUs while the system is online. Hot-add CPU, which requires hardware support,
is available only when you’re running Windows Server 2008 Datacenter or Enterprise
Edition.

New Security Features

SQL Server 2005 provided the capability to encrypt data at the column level. However,
this encryption was not transparent to the end users or applications. Encrypting and
decrypting the data required coding changes to use the built-in encryption and decryption
functions. SQL Server 2008 introduces transparent data encryption (TDE), which allows
for encrypting the entire database without affecting client applications. The purpose of
TDE is to protect sensitive data in the event a database file or backup is stolen. Encryption
is done in real-time at the page level as the data is written to disk and decrypted as the
data is read from disk. The encryption is based on a database encryption key (DEK), which
is a symmetric key secured by using a certificate stored in the master database of the
server or an asymmetric key protected by an Extensible Key Management (EKM) module.

2

 Download from www.wowebook.com

ptg

40 CHAPTER 2 What’s New in SQL Server 2008

Extensible Key Management, which is also new with SQL Server 2008, enables you to store
the keys used to encrypt data separately from the data it protects. SQL Server 2008 EKM
enables the encryption keys that protect the database files to be stored in a removable
device such as a smartcard, USB device, or a software-based Extensible Key Management
(EKM)/Hardware Security Module (HSM) module. EKM facilitates separation of duties by
taking key management out of the hands of the database administrators.

For more information on implementing and using transparent data encryption and exten-
sible key management, see Chapter 12, “Data Encryption.”

SQL Server already provides a number of existing audit methods (SQL Trace, C2 audit
mode, DDL triggers). In addition to these, SQL Server 2008 adds an additional audit
method: SQL Server Audit. SQL Server Audit, based on the new Extended Events feature,
allows you to monitor server- or database-level events or groups of events. You can set up
and monitor audit events at the server or database level and audit the audit actions them-
selves. For more information on SQL Server Audit, see Chapter 13, “Security and
Compliance.”

New Database Administration Features

SQL Server 2008 introduced backup compression for Enterprise Edition. With SQL Server
2008 R2, backup compression is supported in Standard and all higher editions (every
edition of SQL Server 2008 and later can restore a compressed backup, however). In addi-
tion to the space savings provided by compressed backups, compressing a backup also
typically increases backup speed because it requires less device I/O. However, the I/O cost
savings comes at the expense of increased CPU usage caused by the compression process.
For more information on compressing backups, see Chapter 14, “Database Backup and
Restore.”

Policy-Based Management is a new mechanism in SQL Server 2008 for managing one or
more instances of SQL Server 2008. SQL Server Policy-Based Management can help to
simplify management operations such as setting database options across multiple servers,
checking SQL Server configurations, or enforcing naming conventions, helping to reduce
the total cost of ownership (TCO) of administering multiple SQL Server instances. SQL
Server Management Studio (SSMS) can be used to define and implement policies for
managing SQL Server instances, databases, or other SQL Server objects as well as on-
demand checking and enforcement of policies. Checking and enforcement of these poli-
cies can also be scheduled using SQL Server Agent. For more information on Policy-Based
Management in SQL Server, see Chapter 22, “Administering Policy Based Management.”

Currently, several options are available for troubleshooting or getting information about
SQL Server–generated events: SQL Server Profiler, SQL Server Log, dynamic management
views and functions, SQL Trace, trace flags, Windows Application and System logs, perfor-
mance counters, and so on. SQL Server 2008 introduces a new event infrastructure,
Extended Events. Extended Events is a general-purpose event-handling system for server
systems. Currently, the Extended Events infrastructure supports the correlation of data
from SQL Server and, under certain conditions, the correlation of data from the operating
system and database applications. Extended Events has the potential to make other trou-

 Download from www.wowebook.com

ptg

41New SQL Server 2008 Features

bleshooting options obsolete in future releases and become the common denominator for
troubleshooting purposes. As mentioned previously, the new SQL Server Audit feature is
based on Extended Events. For more information on configuring and using Extended
Events for monitoring SQL Server 2008, see Chapter 39, “Monitoring SQL Server
Performance.”

Resource Governor, another new technology in SQL Server 2008, enables you to manage
and control the allocation of resources for SQL Server according to workload. Similarly
sized queries or requests that can, and should be, treated the same are assigned to a work-
load group as the requests are received. Each workload group is associated to a pool of
resources that represents the physical resources for SQL Server (currently, for SQL Server
2008, these resources are CPU and memory). Limits are specified on resource consumption
for these incoming requests. In an environment where multiple distinct workloads are
present on the same server, Resource Governor enables you to differentiate these work-
loads and allocate shared resources as they are requested, based on the limits you specify.
For more information on implementing and configuring Resource Governor, see Chapter
40, “Managing Workloads with the Resource Governor.”

Change Data Capture (CDC) and Change Tracking are new features in SQL Server 2008
with similar names but different purposes. CDC is an asynchronous mechanism that
captures all changes of a data row from the transaction log and stores them in change
tables. The information captured is available in relational format and can be accessed by
client applications such as extract, transform, and load (ETL) processes. All intermediate
values of a row are stored. Using Change Data Capture, you can avoid using expensive
techniques such as triggers, time stamp columns, and join queries to identify and capture
the changes made to data.

Change Tracking, on the other hand, is a lightweight synchronous mechanism that tracks
data modifications but records only the fact that a row has changed. Applications can use
Change Tracking to identify which rows have changed for a user table and refresh their
data stores with the latest values from these rows by requerying the table.

For more information on using CDC and Change Tracking, see Chapter 42.

New SQL Server Management Studio Features

SQL Server Management Studio (SSMS) was first introduced in SQL Server 2005. SSMS is a
full-featured, robust SQL Server administration and development tool. However, there was
clearly room for improvement, and SQL Server 2008 provides some long-awaited enhance-
ments.

One of the most anticipated (and missed) features in SSMS was a built-in T-SQL debugger.
Prior to SQL Server 2005, SQL Server Enterprise Manager had a built-in T-SQL Debugger. A
lot of users were disappointed a T-SQL debugger was not included with this version of
SSMS. To debug T-SQL, you needed to install Visual Studio (VS). Fortunately, a built-in
debugger returns to SSMS in SQL Server 2008.

Another long-awaited feature for SSMS is IntelliSense. IntelliSense is a useful feature in the
Query Editor for looking up language elements and object names without having to leave

2

 Download from www.wowebook.com

ptg

42 CHAPTER 2 What’s New in SQL Server 2008

the editor. IntelliSense can even automatically complete and insert language elements
directly into your code.

In conjunction with IntelliSense, SSMS also provides the error list window The error list
window displays all errors and warnings produced by IntelliSense as you develop your code
in the Database Engine Query Editor. You can double-click the error message entry to
jump to the error location. As you fix errors, they are automatically removed from the
error list window.

One other new capability built in to SSMS in SQL Server 2008 is multiserver queries. This
feature allows you to execute T-SQL statements against multiple servers defined in a server
group at the same time. If you open a Query Editor from the server group in the
Registered Servers window, the T-SQL statements in the current Query Editor are executed
against all the servers in the group. The results from the query can be merged into a single
results pane or can be returned in separate results panes for each server.

For more details on these new features in SSMS, see Chapter 4, “SQL Server Management
Studio.”

PowerShell Integration

SQL Server 2008 provides integrated support for Windows PowerShell, a powerful scripting
shell that enables administrators and developers to automate server administration and
application deployment. The Windows PowerShell language supports more complex logic
than Transact-SQL scripts, enabling SQL Server administrators to build more robust and
complex administration scripts.

SQL Server provides two snap-ins to Windows PowerShell for creating scripts to manage
SQL Server:

. A SQL Server provider, which enables a simple navigation mechanism similar to file
system paths where the drive is associated with a SQL Server management object
model and the nodes are based on the object model classes. This allows you to use
familiar commands such as cd and dir to navigate the paths similar to the way you
navigate folders in a command prompt window.

. A set of cmdlets, which are commands used in Windows PowerShell scripts to speci-
fy a SQL Server action, such as running a SQLCMD script containing Transact-SQL or
XQuery statements

For more information on managing SQL Server using PowerShell, see Chapter 17,
“Administering SQL Server 2008 with PowerShell.”

New Premium SQL Server Editions

SQL Server 2008 R2 introduces two new premium-level editions of SQL Server: Datacenter
Edition and Parallel Data Warehouse.

Built on SQL Server 2008 R2 Enterprise, SQL Server 2008 R2 Datacenter is designed to
deliver a high-performing data platform that provides the highest levels of scalability for
large application workloads, virtualization and consolidation, and management for an

 Download from www.wowebook.com

ptg

43New SQL Server 2008 Features

organization’s database infrastructure. Datacenter helps enable organizations to cost-effec-
tively scale their mission-critical environment. Key features of Datacenter include

. Application and multiserver management for enrolling, gaining insights, and
managing more than 25 instances

. Highest virtualization support for maximum return on investment (ROI) on consoli-
dation and virtualization

. High-scale complex event processing with SQL Server StreamInsight

. Support for more than 8 processors and up to 256 logical processors

SQL Server 2008 R2 Parallel Data Warehouse is a highly scalable data warehouse appliance-
based solution. Parallel Data Warehouse delivers performance at low cost through a
massively parallel processing (MPP) architecture and compatibility with hardware partners,
allowing you to scale your data warehouse to tens and even hundreds of terabytes. Key
features provided by Parallel Data Warehouse include

. Advanced data warehousing capabilities such as Star Join Queries and Change Data
Capture

. Integration with SSIS, SSRS, and SSAS

. Support for industry-standard data warehousing hub-and-spoke architecture and par-
allel database copy

SQL Server Utility for Multiserver Management

SQL Server 2008 R2 features new SSMS dashboards for observing information on more
than one server from the same screen by utilizing the new SQL Server Utility. The SQL
Server Utility models an organization’s SQL Server–related entities in a unified view. Utility
Explorer and SQL Server Utility viewpoints in SQL Server Management Studio provide
administrators a holistic view of SQL Server resource health. Entities that can be viewed in
the SQL Server Utility include

. Instances of SQL Server

. Data-tier applications

. Database files

. Volumes

SQL Server Utility is covered in more detail in Chapters 4 and 39.

PowerPivot for Excel and SharePoint

PowerPivot is a new tool that integrates SQL Server with Microsoft Excel and SharePoint to
create a self-service business intelligence (BI) solution for the enterprise. PowerPivot for
Excel and SharePoint are client and server components that integrate Analysis Services
with Excel and SharePoint. PowerPivot for Excel is an add-in that allows you to create
PowerPivot workbooks that can assemble and relate large amounts of data from different

2

 Download from www.wowebook.com

ptg

44 CHAPTER 2 What’s New in SQL Server 2008

sources. PowerPivot for SharePoint extends SharePoint 2010 and Excel Services to add
server-side processing, collaboration, and document management support for the
PowerPivot workbooks that you publish to SharePoint. Together, the PowerPivot client
add-in and server components provide an end-to-end solution that furthers business intel-
ligence data analysis for Excel users on the workstation and on SharePoint sites.

For more information on PowerPivot, see Chapter 51, “Analysis Services.”

New Reporting Services Features

SQL Server 2008 R2 introduces a number of new features for Reporting Services. The
Reporting Services enhancements are probably the most significant aspect of the R2
release. One of the key changes in SQL Server 2008 R2 is an updated version of the Report
Manager. The SQL Server 2008 R2 Report Manager provides an improved user experience
via interface changes, including an updated color scheme and layout, in an effort to
provide easier navigation for managing report properties and Report Server items.
Following are some of the key enhancements to Report Manager in R2:

. An improved workflow for viewing and managing reports and Report Server items
through the use of a new drop-down menu to access various configuration options
for each report or Report Server item in a folder

. Elimination of the need to render a report before accessing and configuring report
properties when in default view

. Increased screen space for the Report Viewer when rendering reports

. An updated Report Viewer toolbar, which includes some updates to the toolbar con-
trols, as well as the capability to export report data to an Atom service document
and data feeds

The set of new and enhanced features in SQL Server 2008 R2 for Reporting Services includes

. Report parts—You can store these reusable report items on a Report Server or on a
SharePoint site that is integrated with a Report Server.

. Sparklines and data bars—These simple charts convey a lot of information in a
little space, often inline with text.

. Indicators—These minimal gauges convey the state of a single data value at a
glance. Indicators can be used by themselves in dashboards or free-form reports.

. Calculation of aggregates of aggregates—You can now create expressions that
calculate an aggregate of an aggregate.

. Improved report pagination—Reporting Services provides more control over
report pagination including dynamic updating of page names and numbers when a
report is run, as well as disabling page breaks entirely.

. Map reports—Report Designer now provides a Map Wizard and Map Layer Wizard
so that you can add maps and map layers to your report to help visualize data
against a geographic background.

 Download from www.wowebook.com

ptg

45SQL Server 2008 Enhancements

. Shared datasets—This Report Server feature can retrieve data from shared data
sources that connect to external data sources, providing a way to share a query to
help provide a consistent set of data for multiple reports.

. Cache refresh plans—These plans allow you to cache reports or shared dataset
query results on first use or from a schedule.

. Improved previewing of reports—Report Builder 3.0 provides a better preview
experience with the introduction of edit sessions that enable the reuse of cached
datasets when you are previewing reports, which allows reports to render more
quickly.

For more information on designing and deploying reports using Reporting Services and
more information on the extensive set of new Reporting Services features in R2, see
Chapter 53, “SQL Server 2008 Reporting Services.”

SQL Server 2008 Enhancements
In addition to the brand new features in SQL Server 2008, there are a number of enhance-
ments to existing features provided by SQL Server 2008 and SQL Server 2008 R2. The
following sections provide an overview of the major enhancements.

SQL Server Management Studio

In addition to the new SSMS features discussed previously, SSMS has also received a
number of enhancements in SQL Server 2008; you are now able to do the following:

. Customize the columns displayed by the Object Explorer Details window.

. Display the properties of a selected item from Object Explorer Details at the bottom
of the window.

. View a color-coded status bar at the bottom of the window for Transact-SQL and
MDX code editors which provide information about the editor connection. The
status bar changes color when a code editor opens multiple connections.

. Customize the tab name for items in the title bar of the code editor windows.

. Configure the number of rows returned when you open tables via the Object Browser.

. Create and manage plan guides via the Programmability folder in Object Browser.

Dynamic Management Views

SQL Server 2008 adds five new dynamic management views to return memory-related
information about SQL Server:

. sys.dm_os_memory_brokers—Returns information about memory brokers, the
components that track memory allocations

. sys.dm_os_memory_nodes—Returns memory allocation information for memory
allocated through SQL Server Memory Manager

2

 Download from www.wowebook.com

ptg

46 CHAPTER 2 What’s New in SQL Server 2008

. sys.dm_os_nodes—Returns information about SQL OS memory nodes, internal
structures of SQL OS that abstract hardware processor locality

. sys.dm_os_process_memory—Returns complete information about memory allo-
cated to SQL Server process space

. sys.dm_os_sys_memory—Describes the memory state for the operation system

In addition, the cpu_ticks_in_ms column in the sys.dm_os_sys_info dynamic manage-
ment view has been discontinued, and two new columns,
sqlserver_start_time_ms_ticks and sqlserver_start_time, have been added.

Database Mirroring

SQL Server 2008 provides a number of enhancements to database mirroring, mostly
related to performance of database mirroring, including compression of the transaction
log records being streamed to the mirror database, asynchronous write-ahead on the
incoming log stream and read-ahead during the undo phase, and improved use of the log
send buffers. For more information on database mirroring and the improvements, see
Chapter 20, “Database Mirroring.”

SQLCLR Enhancements

SQL Server 2008 extends the SQLCLR by extending the 8KB size limit for CLR user-defined
types and CLR user-defined aggregates, supporting the definition of ordered table-valued
functions, providing support for multiple input parameters for user-defined aggregates,
and including the option to define static methods as user-defined functions.

For more information on the enhancements to SQL CLR, see Chapter 46, “Creating .NET
CLR Objects in SQL Server 2008.”

Replication Enhancements

SQL Server 2008 introduces a number of usability and manageability enhancements for
peer-to-peer replication and the Replication Monitor.

Peer-to-peer replication includes the following significant usability and manageability
improvements:

. A new option, enabled by default, that allows the Distribution Agent to detect
conflicts during synchronization and to stop applying changes at the affected row.

. The capability to add nodes to a replication topology without quiescing the topology.

. The capability to configure a topology visually in the Configure Peer-to-Peer
Topology Wizard. The Topology Viewer enables you to perform common configura-
tion tasks, such as adding new nodes, deleting nodes, and adding new connections
between existing nodes.

The Replication Monitor includes the following usability improvements:

. Most of the Replication Monitor grids allow you to specify which columns to view,
sort by multiple columns, and filter rows in the grid based on column values.

 Download from www.wowebook.com

ptg

47SQL Server 2008 Enhancements

. The Common Jobs tab for the Publisher node has been renamed to Agents.

. The single Warnings and Agents tab for the publication node has been split into sep-
arate Warnings and Agents tabs to emphasize the difference between administering
performance warnings and monitoring replication agents.

For more information on configuring and using replication in SQL Server 2008, see
Chapter 19, “Replication.”

SQL Server Integration Services Enhancements

Integration Services in SQL Server 2008 received enhancements and improvements as well.
Following are some of these enhancements:

. Improvements in the parallel execution of data flow pipeline paths on multiproces-
sor systems, going beyond the SQL Server 2005 limit of two engines.

. A new script environment. Visual Studio for Applications (VSA) has been replaced
with Visual Studio Tools for Applications (VSTA). VSTA allows the development of
scripts written on Visual C# and Visual Basic, providing support for the Script Task
and Script Component. VSTA also supports debugging and adding managed assem-
blies to a script at design time.

. Increased performance and improved caching options for Lookup Transformations.

. Data profiling to improve data quality by identifying potential data quality problems.

. Support for the new Change Data Capture feature in SQL Server 2008, providing an
effective method for performing incremental data loads from source tables to data
marts and data warehouses.

For more information on using SQL Server Integration Services in SQL Server 2008, see
Chapter 52, “SQL Server Integration Services.”

Service Broker Enhancements

SQL Server 2008 provides the following enhancements to Service Broker:

. Support for conversation priorities. This support allows administrators and develop-
ers to specify that messages for important Service Broker conversations are sent and
received before messages from less important conversations to ensure that low-prior-
ity work does not block higher-priority work.

. The new ssbdiagnose command-prompt utility to analyze and diagnose Service
Broker configurations and conversations.

. A new performance object and counters that report how often Service Broker dialogs
request transmission objects and how often inactive transmission objects are written
to work tables in tempdb.

. Support for Service Broker in SQL Server Management Studio via new Service Broker
Elements in Object Explorer.

2

 Download from www.wowebook.com

ptg

48 CHAPTER 2 What’s New in SQL Server 2008

For more information on the new features and capabilities of Service Broker, see Chapter
49.

Analysis Services Enhancements

SQL Server 2008 also introduces some new features and enhancements to Analysis
Services. Following are some of the primary improvements:

. A new Aggregation Designer makes it easier to browse and modify aggregation designs.

. Aggregation design and usage-based optimization wizards have been simplified
and enhanced.

. New AMO warning messages alert users when they depart from design best practices
or make logical errors in database design.

. Simplified and enhanced cube and dimension wizards help you create better cubes
and dimensions in fewer steps.

. A new Attribute Relationship designer makes it easier to browse and modify attribute
relationships.

. A new Key Columns dialog box makes editing key columns easier.

. Key columns can now be edited in the Properties panel.

. An updated Dimension Structure tab helps make modifying attributes and hierar-
chies easier.

. A new storage structure is available and performance has been enhanced in all
backup and restore scenarios.

. When creating a mining structure, you can now divide the data in the mining struc-
ture into training and testing sets.

. You can now attach filters to a mining model and apply the filter during both train-
ing and testing. Applying a filter to the model lets you control the data used to train
the model and lets you more easily assess the performance of the model on subsets
of the data.

. Cross-validation is now available in the Mining Accuracy Chart view of the Data
Mining Designer.

. SQL Server 2008 supports the creation, management, and use of data mining models
from Microsoft Excel when you use the SQL Server 2008 Data Mining add-ins for
Office 2007.

. You are able to add aliases to columns in a mining model to make it easier to under-
stand column content and reference the column in DMX statements.

For more information on the new features and capabilities of SQL Server Analysis Services
(SSAS), see Chapter 51.

 Download from www.wowebook.com

ptg

49SQL Server 2008 Enhancements

Installation Enhancements

Starting with SQL Server 2008 Service Pack 1, you can now perform slipstream installa-
tions of SQL Server 2008. Slipstream is the integration of the original installation media
files with a service pack and/or a cumulative update so that they can be installed in a
single step.

SQL Server 2008 also provides the capability to selectively uninstall cumulative updates
and/or service packs via the Programs and Features control panel.

For more information on installing and upgrading SQL Server 2008, see Chapters 8,
“Installing SQL Server 2008,” and 9, “Upgrading to SQL Server 2008.”

Deprecated Features

In addition to the new and enhanced features in SQL Server 2008, it’s important to note
the features for which support has been discontinued. Table 2.1 lists the
unsupported/deprecated features along with their replacements, if any.

2

To help keep track of deprecated features so that you can identify potential future upgrade
and compatibility problems, SQL Server 2008 provides the SQL Server: Deprecated Features
performance counter and the Deprecation Announcement and Deprecation Final Support
event classes, which you can monitor via SQL Server Profiler or SQL Trace.

TABLE 2.1 Deprecated Features in SQL Server 2008

Deprecated Feature Replacement

sp_addalias None

DUMP and LOAD statements BACKUP and RESTORE

BACKUP LOG WITH NO_LOG and BACKUP LOG
WITH TRUNCATE_ONLY

None; however, changing the database to simple
recovery clears the transaction log

BACKUP TRANSACTION BACKUP LOG

sp_helpdevice sys.backupdevices catalog view

60, 65, and 70 compatibility levels Support is provided only for compatibility levels
80 and higher

User groups (sp_addgroup,
sp_changegroup, sp_dropgroup,
sp_helpgroup)

Roles

Northwind and pubs databases AdventureWorks database

 Download from www.wowebook.com

ptg

50

Summary
SQL Server 2008 provides a number of new and long-awaited features and enhancements.
This chapter provides an overview of the new features and enhancements that ship with
SQL Server 2008 and SQL Server 2008 R2. To learn more, refer to the other chapters refer-
enced here.

However, before we get into covering the features and capabilities of SQL Server 2008 and
SQL Server 2008 R2, we’ll first take a look at some real-world production implementations
of SQL Server to give you an idea of what is possible with SQL Server in both the online
transaction processing (OLTP) world and in the decision support systems (DSS)/business
intelligence (BI) realms.

CHAPTER 2 What’s New in SQL Server 2008

 Download from www.wowebook.com

ptg

CHAPTER 3

Examples of SQL Server
Implementations

IN THIS CHAPTER

. Application Terms

. OLTP Application Examples

. DSS Application Examples

As you will see in this chapter, companies use SQL Server
for many types of applications and on most tiers now. Gone
are the days when you would second guess yourself choos-
ing to use SQL Server over a competing database engine
(such as Oracle or DB2 on a UNIX platform) to ensure you
got optimal transactional throughput, high availability, and
the highest performance. In fact, SQL Server outnumbers
both of these database vendors in installed sites globally.
Microsoft SQL Server has arrived!

The SQL Server Unleashed team has gathered a few showcase
SQL Server–based applications to give you an example of
what is possible with SQL Server in both the online transac-
tion processing (OLTP) world and in the decision support
systems (DSS)/business intelligence (BI) realms. Each
example in this chapter comes from real-life database appli-
cations running in production environments at major orga-
nizations around the world. In general, all the examples in
this book come from our direct customer experiences. We
often translate those real-life customer implementations
into AdventureWorks2008 or bigpubs2008 database terms so
that you can easily re-create them for your own use.

This chapter describes two OLTP applications: one is a tradi-
tional ERP system using SQL Server as the database layer,
and the other is an online shopping system with shopping
carts and both high-availability and high-performance
requirements.

 Download from www.wowebook.com

ptg

52 CHAPTER 3 Examples of SQL Server Implementations

On the DSS/BI side, this chapter presents a traditional conformed-dimension star schema
data warehouse implementation for a high-tech company and then shows you what this
looks like implemented as an online analytical processing (OLAP) cube created by Analysis
Services.

Under the DSS/BI examples, this chapter describes a hybrid distributed reporting example
that uses multiple SQL Server technologies to get the most out of a complex application
environment in the healthcare industry.

Application Terms
Online transaction processing, or OLTP, is a class of applications that facilitate and
manage transaction-oriented processing, typically for data entry, complex business
processes (such as order entry), and retrieval transactions. The term transaction in the
context of computer or database transactions is a finite set of changes that are grouped
together and can be undone together if any one piece does not complete (or fails). Often,
however, we speak of transactions as a business “unit of work” that can span multiple
database transactions as one logical business transaction. The term OLTP has also been
used to refer to processing in which the system responds immediately to user requests. An
automated teller machine (ATM) application for a bank is a classic example of this type of
OLTP transaction.

In many applications, efficient OLTP applications may depend on sophisticated transac-
tion management software and/or database optimization tactics to facilitate the processing
of large numbers of concurrent users and updates to an OLTP-oriented database. In a
geographic-distributed database system, OLTP brokering programs are used to distribute
transaction processing among multiple computers on a network. These days, central OLTP
is often underneath the covers and integrated into most service-oriented architectures
(SOAs) and exposed as web services that can be easily orchestrated for different application
functionality.

Decision support systems (DSS) have been around since the late 1960s, beginning with
model-driven DSS and running the gamut of financial planning systems, spreadsheets,
and massive multidimensional databases more recently. We speak of data warehouses, data
marts, executive information systems, OLAP cubes, and business intelligence when refer-
ring to DSS. All enable complex decision support capabilities, multidimensional data
analysis, online analytical processing, business intelligence, spatial DSS, and complex
querying and reporting capabilities.

DSS system categories are

. Data analysis systems that support the manipulation, aggregation, and transforma-
tion of data for a specific task or purpose

 Download from www.wowebook.com

ptg

53OLTP Application Examples

. Pure analysis information systems that enable a series of decision-oriented databases
and small models

. Complex accounting and financial models that calculate and forecast behavior based
on business events and financial results

. Predictive models that estimate the consequences of actions on the basis of simula-
tion models

. Optimization models that provide insight and possible actions a business can take
by generating an optimal solution consistent with a series of constraints

Microsoft has the capability to fully address the first three types and is only now ventur-
ing into predictive and optimization modeling. The examples in this chapter illustrate a
classic data warehouse (star schema/snowflake, multidimensional, measures/facts), a small
distributed data mart, and an OLAP cube.

For each example in this chapter, we try to describe the overall purpose of the application,
the major use cases, and the technology and architecture on which they were deployed.
Where appropriate, we might showcase a data model diagram, a relational schema, or a
distributed topology that gives you some insight into why the implementation was done a
specific way. You are likely to recognize some use cases that may be the same in your envi-
ronment and therefore possibly apply the same techniques or solutions to serve you as
well.

OLTP Application Examples
The following sections describe what the major Enterprise Resource Planning (ERP) vendor
SAP AG has implemented using SQL Server for its database layer.

OLTP ERP Example

SAP business solutions are composed of a comprehensive range of products that empower
an enterprise with a flexible, end-to-end solution. A critical challenge in implementing an
SAP solution is the selection of a data platform to deliver the advanced features and capa-
bilities needed to support the most demanding workloads. The Microsoft SQL Server data-
base software (either SQL Server 2008 or SQL Server 2005) is the relational database
management system (RDBMS) of choice for deploying secure, reliable, highly available,
high-performing, and scalable SAP installations. Plus, SQL Server high-availability features
can minimize downtime for any SAP implementation.

The company’s flagship applications are the NetWeaver-based SAP ERP/Business Suites and
SAP R/3 industry solutions. Since 1993, SAP and Microsoft have been working together to
provide a deeply integrated Microsoft platform with SAP solutions. Microsoft is currently

3

 Download from www.wowebook.com

ptg

54 CHAPTER 3 Examples of SQL Server Implementations

. . . .

Client Tier

GUI WEB GUI RFC
HTML/SOAP

client
Web Services

client

. . . .

Application Tier

Application Server 1 Application Server 2 Application Server n

Database Tier
SAP DB SQL Server 2008

FIGURE 3.1 SAP multitier architecture with SQL Server as the database layer.

the most selected platform for R/3 and SAP application deployments: more than 56,000
SAP application installations run on Windows, which is more than all other platforms
combined. Of these, more than 23,000 SAP application installations worldwide are
running with SQL Server as the RDBMS. In fact, this $11.5 billion company uses its own
software for its internal ERP purposes completely deployed on the Microsoft SQL Server
platform.

As you can see in Figure 3.1, SAP’s ERP footprint is a three-tier architecture consisting of a
variety of client types, a horizontally scalable application server tier, and a highly avail-
able, high-performance database tier.

The SAP multitiered client/server architecture is composed of three levels:

. Client/Presentation Tier—This tier supports SAP graphic user interfaces (GUIs)
such as SAP GUI, SAP WebGUI, and other products that connect to the SAP
NetWeaver Application Server using one of the supported interfaces. The client tier
also includes applications to access SAP using Web Services. For example, applica-
tions including smart clients and Microsoft Office applications can integrate SAP
data, such as when the Microsoft Excel spreadsheet software is used with Web
Services. Applications that use the SAP RFC interface are also part of the presentation
tier. Especially in the Microsoft world, connecting to the application tier via RFC
became common with the SAP .NET connector, which offers a bandwidth of .NET
classes and methods that are mapped to SAP Business Application Programming
Interfaces (BAPIs) that are accessible via RFC.

 Download from www.wowebook.com

ptg

55OLTP Application Examples

. Application Tier—This tier can contain multiple SAP NetWeaver Application Server
instances. However, it needs to contain at least one application instance. If multiple
instances are used in one system, each application instance is typically run on sepa-
rate server hardware or virtual machines. The application tier and database tier can
run on the same server hardware on small-scale systems and in some very large
hardware configurations. The complete processing of the business transactions and
workflow is handled on the application side. No business logic is pushed down for
execution into the database layer. The database tier is used for data storage only.
Technically, an SAP application instance is a collection of processes called work
processes in SAP terminology. Based on a configuration profile for each individual
instance, these work processes fulfill different tasks and requests. To share user
contexts and user data, the work processes of one instance share larger areas of
memory. The business logic itself was originally programmed in a 4GL language
called ABAP; it has now been supplemented by the possibility to code business logic
in Java as well.

. Database Tier—This tier supports the SAP database, including the SAP Business
Suite or R/3 and other SAP applications hosted on SQL Server. The database tier typi-
cally runs one database schema for each SAP product using separate server hardware.
The database servers can be connected to a storage area network (SAN), Network
Attached Storage (NAS), or locally attached storage.

Each SAP application process establishes two connections to SQL Server (as shown in
Figure 3.2). There is no sharing of connections between the different SAP processes of an
instance. SAP does not use connection pooling. Every one of the processes establishes

3

Application Server

mySAP Work Process

Database Interfaces
(DBSL)

SQL SNAC
ODBC
/ OLE DB

Data Read
Connections

Read uncommitted,
Create Stored Procedures

Updates, Inserts, Deletes,
Server-side cursors
(committed reads)

Data Modification
Connections

SAP DB
SQL Server 2008

Database Tier

FIGURE 3.2 SAP multiple connections to SQL Server.

 Download from www.wowebook.com

ptg

56

 eCommerce – with SQL Clustering

Windows 2003
Advanced Server

Windows 2003
Advanced Server

SQL Server 2008
(Virtual SQL Server) SCSI

Local
Binaries

Local
Binaries

ASPProd1

E:

C:

C:

Master DB

TempDB

HOE DB

ASPProd2

SQL Server 2008 (physical)

SQL Server 2008 (physical) Quorum
 Disk

Q:

ASQL\ASPSERV1

Cluster Group
Resources

MS DTC

SQL Agent

JR
U

N
/II

S

F:

G:

MSCS

MSCS

Active/Passive

Active

Passive

N
et

w
or

k

FIGURE 3.3 An e-commerce Internet application with a SQL Server database tier.

connections at startup and keeps them until the process is shut down or restarted. SAP
uses Multiple Active Result Sets (MARS) and multiple open client-side cursors that can use
the same connection. Each connection is used for different purposes. One performs
uncommitted reads of the data or creates stored procedures as needed. The other connec-
tion is for data modifications such as updates, inserts, deletes, and server-side cursors. The
application tier has been optimized around using these connections.

We featured this ERP application because SAP has proven to the world how rock solid SQL
Server is and that the smallest company to companies as large as SAP itself can safely and
confidently deploy on SQL Server without hesitation.

OLTP Shopping Cart Example

This shopping cart example features an Internet-based e-commerce implementation for a
leading health and vitamin retailer. At the center of this high-availability application is
the shopping cart and a global ordering and fulfillment capability. Approximately 5,000 to
10,000 users are online concurrently at any one time, and this application supports up to
50 million hits per day. A key to this application is that it is “stateless,” and all database
calls are extremely simple and shallow. This web-facing application is built on JRUN but
features SQL Server at the database layer, as shown in Figure 3.3.

CHAPTER 3 Examples of SQL Server Implementations

 Download from www.wowebook.com

ptg

57DSS Application Examples
3

This e-commerce application is just a part of a much larger Application Service Provider
(ASP) platform. This ASP company houses hundreds of other companies’ applications in
multiple data centers around the globe. To ensure high availability, this ecommerce appli-
cation was built on a two-node Active/Passive SQL Clustering configuration. In the four
years that this application has been running, the database tier has achieved a 99.99%
uptime with rolling updates at both the operating system and SQL Server levels. The OLTP
database on SQL Server is approximately 10TB and utilizes log shipping to create a reason-
ably current disaster recovery (DR) copy (that has never been utilized!). Ninety percent of
the reporting is done off the DR copy (approximately one-hour old data on average). This
is fully within the service-level requirements needed by the health and vitamin company.

It’s important to note here is that if availability falls below 99.99 (four 9s), the ASP
company must pay fairly large financial penalties as a part of its agreement with its
customers. Each physical server in the cluster is a Dell 8 CPU server with 256GB RAM on
SQL Server 2008 Enterprise editions on Windows 2003 Advanced Servers. This has been a
rock-solid implementation from the very start.

DSS Application Examples
The DSS/BI examples start with a traditional star schema data warehouse deployment for a
Silicon Valley high-tech company. The same data has also been deployed as an OLAP cube
created by Analysis Services.

The last example, describes a hybrid distributed reporting system that, uses multiple SQL
Server technologies such as data replication, database mirroring, and database snapshots
to get the most out of a complex healthcare industry application environment.

DSS Example One

A Silicon Valley computer company implemented a traditional data warehouse using a star
schema approach. A star schema provides multiple paths (dimensions) to the central data
facts. As you can see in Figure 3.4, a decision support user can get to the Sales Units, Sales
Price, and Sales Returns through Geographic, Time, and Product dimensions. This allows
the user to ask questions such as “What were net sales for North America for a particular
month for a specific computer product?” SQL Server Integration Services (SSIS) packages
populate this data warehouse and conformed dimensions on a daily basis with deltas (new
data changes only). The data warehouse is unavailable for about one hour each night as
daily updates are rolled into this deployment.

 Download from www.wowebook.com

ptg

58 CHAPTER 3 Examples of SQL Server Implementations

FIGURE 3.4 Star schema data warehouse for global computer sales.

This SQL Server instance is isolated from the OLTP application where the data is sourced.
There are about 500–600 data warehouse users of this data globally. This data warehouse is
approaching 5TB in size.

DSS Example Two

The same Silicon Valley computer company also implemented some of the same data in a
more complex Analysis Services OLAP cube for data mining purposes. The company had
many things it did not know about its sales data and wanted to do complex trending and
forecasting to better understand the demand for products worldwide. Figure 3.5 shows the
OLAP cube built in Analysis Services for this complex business intelligence purpose.
Several demand forecasting and product sales trending models were developed to allow
this company to predict sales by each of its products for each geographic region.

 Download from www.wowebook.com

ptg

59DSS Application Examples
3

TIME GEOGRAPHY

All Product

Product Type

Product Line

All Geo

Country

Channel

All Time

Quarter

Month

Sales Units 450 333 1203

Returns 20 35 14 22
Net Sales 430 961 319 1181

Year

Product Family

SKU

Major Geo

Customer

TIM
E

TIM
E

PRODUCT OLAP Cube

PRODUCT

G
E

O
G

R
A

P
H

Y

Jan09 Feb09 Mar09 Apr09

996

FIGURE 3.5 Multidimensional OLAP cube in Analysis Services.

DSS Example Three

This last example features a multitechnology hybrid data reporting solution that provides
real-time reporting along with point-in-time reporting for a major healthcare organization
in the Pacific Northwest. This solution starts with real-time data replication from its
online transactional systems where all hospital transactions are taking place. This includes
patient events, medications administered, surgeries done, hospital charges, and so on. By
distributing this data to a highly available two-node SQL Cluster, the hospital is able to
realize all its real-time reporting requirements that center around providing all known
information for a particular patient in the hospital at any time. Figure 3.6 shows this
OLTP-to-SQL cluster real-time, continuous data replication and the real-time reporting
enabled by this data distribution.

 Download from www.wowebook.com

ptg

60 CHAPTER 3 Examples of SQL Server Implementations

Network

Database Mirroring Topology with
Snapshots

SQL Server 2008

SQL Server 2008
Mirror Server

Principal
Server

Role: PARTNER

Role: PARTNER

SQL Server 2008

Principal
Server

Active

Passive

C
lu

st
er

ed

O
L

T
P

 A
p

p
lic

at
io

n

R
ep

lic
at

io
n

Point-in-Time
Reporting Users

Real-Time
Reporting Users

Mirroring

N
et

w
or

k

Database
Snapshot

Health
Provider DB

translog

Health
Provider DB

translog

FIGURE 3.6 Hybrid SQL Server reporting configuration.

 Download from www.wowebook.com

ptg

61

Another major reporting requirement for this health organization is not a real-time require-
ment, but rather a leisurely hourly snapshot, point-in-time reporting requirement. A much
larger group of users must be served by this noncritical reporting need and cannot impact
the real-time reporting environment in any way. To satisfy this point-in-time, noncritical
reporting need, the health organization leveraged SQL Server database mirroring from the
replicated SQL Server Health Provider DB. From the mirror, hourly database snapshots are
created to satisfy all the point-in-time reporting needs of the organization. This configura-
tion has been extremely stable since the SQL Server 2005 deployment.

Summary
This chapter described some truly interesting SQL Server–based implementations. These
examples reflect how major software vendors such as SAP have utilized SQL Server as the
core of their ERP data tier, how Internet-based companies rely on SQL Server to host their
e-commerce applications, and how SQL Server can be used to fulfill various decision
support and business intelligence needs of major corporations. We selected these examples
because they are rock solid and reflect potentially similar scenarios that you may be faced
with. It is this flexibility and reliability that will allow you to be successful as well.

The next chapter delves into the functionality of the SQL Server Management Studio
environment.

Summary
3

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 4

SQL Server
Management Studio

IN THIS CHAPTER

. What’s New in SSMS

. The Integrated Environment

. Administration Tools

. Development Tools

SQL Server Management Studio (SSMS) is an integrated
application that provides access to most of the graphical
tools you can use to perform administrative and develop-
ment tasks on SQL Server 2008. SSMS was introduced with
SQL Server 2005 and replaced the Enterprise Manager,
Query Analyzer, and Analysis Manager that were available in
SQL Server 2000. Microsoft consolidated all those tools into
one, with a focus on providing a tool that suits the needs of
both developers and database administrators (DBAs).

SSMS is a complicated tool that provides an entry point to
almost all of SQL Server’s functionality. The functionality
that is accessible from SSMS is entirely too much to cover
in one chapter. The aim of this chapter is to give a basic
overview of SSMS while touching on the features that are
new to SQL Server 2008. Others chapters in this book
discuss the components of SSMS and provide more
detailed coverage.

What’s New in SSMS
SSMS is loaded with new features in SQL Server 2008. This
tool was introduced in SQL Server 2005, and it brought
quite a bit of change with it. There is also quite a bit of
change with SQL Server 2008, but the basic look-and-feel of
the application remains much the same as it was in SQL
Server 2005.

The standout features in the SQL Server 2008 SSMS include
four new features geared toward the administrator and

 Download from www.wowebook.com

ptg

64 CHAPTER 4 SQL Server Management Studio

three new features geared toward the developer. Of course, all these features could be used
by both administrators and developers.

The new administrator features in SSMS include a beefed-up Activity Monitor, a new
Object Search option, a customizable Object Explorer Details window, and a new manage-
ment tool named SQL Server Utility that was added with SQL Server 2008 R2. The Activity
Monitor now contains four separate graphs that look like graphs displayed in Task
Manager, and they pull information similar to what you might see in System Monitor. The
Object Search option allows you to search for database objects by name while changes to
the Object Explorer Details window significantly expand the amount of available informa-
tion and allow the user to change the information that is displayed. Finally, the new SQL
Server Utility allows for the capture of resource information across multiple servers and
provides one unified view for the display of this information.

Enhancements that are focused on the developer include IntelliSense in the Query Editor,
an integrated Transact-SQL (T-SQL) Debugger, and a Multiserver Query execution option.
IntelliSense helps with the completion of T-SQL code as you write it. This feature was
much anticipated for SQL Server 2005, but it never made it to the released code. That
anticipation continued with SQL Server 2008, and fortunately, Microsoft has delivered.
This feature should not disappoint, and it will ultimately improve your productivity.

A debugging tool that is integrated into SSMS is another great new feature. Those who
have developed stored procedures with thousands of lines of code will particularly appreci-
ate this new feature. You can set breakpoints, evaluate variables, and step through the code
line by line. This debugging capability applies to all T-SQL in the query editor window.

Multiserver queries is the last standout feature offered with SQL Server 2008. This feature
allows you to run a single query against more than one server. The results returned from
each server are displayed in a single result window. If you’re managing many servers, this
feature can be a real timesaver.

This chapter further explores the new features in SSMS. It first examines the features at the
environmental level, focusing on how SSMS behaves and how to best utilize the environ-
ment. Next, it looks at the administrative tools and what changes have been made to help
you better manage your SQL Server environment. Finally, this chapter looks at the devel-
opment tools available with SSMS and changes made to improve your SQL Server develop-
ment experience.

The Integrated Environment
If you have been working with SQL Server for a long time, you may remember the SQL
Enterprise Manager that came with SQL Server 6.5. In some respects, with SSMS, Microsoft
has moved back to the paradigm that existed then. Like the SQL Server 6.5 Enterprise
Manager, SSMS provides an integrated environment where developers and DBAs alike can
perform the database tasks they need. Say goodbye to Query Analyzer, Analysis Manager,
and a number of other desparate tools used in SQL Server 2000 and say hello to SSMS,
which provides “one-stop shopping” for most of your database needs.

 Download from www.wowebook.com

ptg

65The Integrated Environment

FIGURE 4.1 The SSMS main display.

Window Management

Figure 4.1 shows a sample configuration for the SSMS main display. The environment and
windows displayed are completely customizable, with the exception of the document
window area. Figure 4.1 shows the document window area displaying the Object Explorer
Details page. The Object Explorer Details page is the default, but other pages, such as a
query editor window, can take the focus in this tab-oriented section of the SSMS display.

4

The dialogs that form the rest of the SSMS display are referred to as components and
include the Registered Servers and Object Explorer windows shown in Figure 4.1, as well
as a number of other components that can be displayed via the View menu found at the
top of the SSMS display. You can configure each of the component windows in a number
of ways; for example, you can have them float, or you can hide, dock, autohide, or display
them as tabbed documents in the document window area.

The configuration that you choose for your SSMS display depends on the type of work
you do with SQL Server as well as the type of person you are. The Auto Hide feature causes
the component window to shrink to a tab along the left or right side of the display. When
you mouse over the tab, the window automatically expands and stays expanded as long as
the mouse cursor remains in the component window area. Auto Hide helps maximize the
working real estate available in the document window for query development and the

 Download from www.wowebook.com

ptg

66

like. Docking many windows can clutter the screen, but this feature allows you to view
many different types of information all at once. This is a matter of personal preference,
and SSMS has made it very easy to change.

TIP

You can reposition the component windows by dragging and dropping them to the
desired locations. When you are in the middle of a drag and drop, rectangular icons
with arrows are displayed at different locations on the SSMS window surface. If you
mouse over one of these arrowed icons to select the window location, you see the
window destination highlighted. If you release your mouse button while the destination
is highlighted, the window docks in that position.

Some users at first ignore the arrow icons and keep hovering the window over the loca-
tion where they want the window to go. Hovering the window over the desired location
does not allow you to effectively dock it. You should save yourself some time and
aggravation and use the arrow icons for drag-and-drop positioning.

The SSMS window environment include nonmodal windows that are sizable. The
nonmodal windows allows you to perform multiple tasks at one time without needing to
open another instance of the SSMS application. In SQL Server 2000, the Enterprise
Manager users were forced to open another instance of the application during many
administrative tasks to be able to continue with other work. With SSMS, you can launch a
backup with the Back Up Database dialog and then continue working with the Object
Explorer or other components in SSMS while the backup is running. This capability is a
great timesaver and helps improve overall productivity.

Your ability to size the dialog boxes is another user-friendly feature that may seem minor
but is quite handy on certain windows. For example, the SQL Server 2000 Enterprise
Manager Restore dialog had a fixed size. Viewing the backup set information in this rela-
tively small (nonsizable) dialog box was a challenge. The Restore dialog in SQL Server
2008’s SSMS can contain a slew of information related to the backup sets available for
restore. The capability to size the windows allows for much more information to be
displayed.

The tabbed document window area provides some usability improvements as well. This
area, as described earlier, is fixed and is always displayed in SSMS. Component windows
can be displayed in this area, along with windows for the Query Editor, diagrams, and
other design windows. If desired, you can change the environment from a tabbed display
to multiple-document interface (MDI) mode. In this mode, each document is opened in
its own window within the document window. The MDI mode manages windows like the
SQL Server 2000 Query Analyzer and may be more user-friendly for some people. You can

CHAPTER 4 SQL Server Management Studio

 Download from www.wowebook.com

ptg

67The Integrated Environment
4

change to MDI mode by selecting Tools, Options and then selecting MDI Environment
from the General page.

One particularly useful window that can be displayed in the document window is the
Object Explorer Details page. This new window displays information relative to the node
selected in the Object Explorer and includes options to produce detailed reports and
graphs. The Object Explorer Details page is displayed in the document window by default
when SSMS is launched, but you can also display it by pressing F7 or choosing Object
Explorer Details from the View menu.

The Object Explorer Details page has been vastly improved in SQL Server 2008. If you’re
familiar with the previous version, you can see in Figure 4.1 that there is much more
information displayed in SQL Server 2008 than there was in 2005. The nice part is that
you can customize the information that is displayed and save those changes so that they
are used the next time you open SSMS. For example, when you right-click on a column
heading (such as Name), you see all the columns available for display. Only a handful are
displayed by default, but more than 30 available columns relate to databases. The columns
that are available depend on the type of object selected in the Object Explorer window.

TIP

You can copy some or all of the information shown in the Object Explorer Details win-
dow and paste it into another application such as Excel for a quick and easy report.
For example, you can select the Databases node in Object Explorer, highlight the data
shown in the Object Explorer Details page, press Ctrl+C to copy the data, and then
paste it into Excel. All the columns related to database (including Headings) are cap-
tured and give you an easy way to review information about all your databases.

Another significant change in the Object Explorer Details page is the Object Search box.
The Object Search box, located at the top of the Object Explorer Details page (next to the
Search label), allows you to search for objects by name. You can use wildcards (for
example, Product%), or you can type a specific name you are looking for. The results are
displayed in the Object Explorer Details page. Keep in mind that the objects that are
searched depend on what is selected in the Object Explorer window. For example, if you
highlight the Databases node, you search all the databases on your SQL Server instance. If
you select a specific database, only that database is searched.

 Download from www.wowebook.com

ptg

68

TIP

In SQL Server 2000, you could select multiple objects for scripting by selecting the
items from the Object Explorer tree in Enterprise Manager. You cannot use the Object
Explorer tree to perform this operation with SQL Server 2008, and this has generated
some confusion. The solution is the Object Explorer Details page, which provides a
means for performing multiple selections of the objects it displays. You can hold down
the Ctrl key and click only those items you want to script. After you select the items
you want, you simply right-click one of the selected items and choose the preferred
scripting method. This method also works with scheduled jobs displayed in the Object
Explorer Details page. SQL Server 2000 did not offer this capability.

Integrated Help

SSMS offers an expanded set of help facilities as well as improved integration into the
application environment. The Help sources have been expanded to include both local and
online resources. Local help is similar to the Help resources available in past versions and
references files installed on your machine during the installation process. Local help
includes the local SQL Server Books Online resources. Local help files are static and are
updated only if another documentation installation is run on the local machine.

Online help provides access to content that is not static and can be updated with the
latest changes. Three default online resources are provided by default:

. MSDN Online—MSDN Online contains the latest version of the MSDN documenta-
tion, including the latest quarterly releases.

. Codezone Community—Codezone Community includes a set of third-party
websites that have partnered with Microsoft and provide a wealth of information
from sources outside Microsoft.

. Questions—The Questions option allows you to search the forum archives for
answers to questions that others have already asked. It also allows you to post your
own questions.

The help resources you use on your machine are configurable. You can choose to search
online resources first, followed by local help, or you can choose an option that searches
local help resources first, followed by online resources. You can also choose specific
Codezone online resources to search, or you can eliminate the search of all online
resources. Figure 4.2 shows the online help Options window, which allows you to config-
ure your Help options. You access this dialog by selecting Tools, Options.

The Help resources you select are used when you search for content within the Help facil-
ity. When you use both local and online resources options, you see results from multiple
locations in your search results. Figure 4.3 shows a sample Books Online Document
Explorer window with results from a search on “Management Studio.” Notice that the
panel on the right side of the window lists entries under Local Help, MSDN Online,
Codezone Community, and Questions. Each of these sections contains search results that

CHAPTER 4 SQL Server Management Studio

 Download from www.wowebook.com

ptg

69

FIGURE 4.2 Setting Help options.

FIGURE 4.3 A Books Online search.

The Integrated Environment
4

you can access by simply clicking on that area. The number of search results for each
section is displayed in parentheses after the section name.

One other significant change to the help facilities in SSMS is the addition of Dynamic
Help. Dynamic Help is a carryover from the Visual Studio environment. It is a help facility

 Download from www.wowebook.com

ptg

70

FIGURE 4.4 Dynamic Help.

that automatically displays topics in a Help window that are related to what you are doing
in SSMS. For example, if you are working in a query window and type the word SELECT to
start your query, the Dynamic Help window displays several topics related to the SELECT
statement. If you are working in the Object Explorer, it displays Help topics related to the
Object Explorer.

NOTE

There is some processing overhead associated with Dynamic Help. You may find that
your SSMS environment runs a bit slower when you use this feature.

Dynamic Help is one of the component windows that you can dock or position on the
SSMS surface. To use Dynamic Help, you select Help, Dynamic Help. Figure 4.4 shows an
example of the SSMS environment with the Dynamic Help window docked on the right
side of the window. The Dynamic Help topics in this example are relative to the SELECT
keyword that is typed in the query editor window in the middle of the screen.

CHAPTER 4 SQL Server Management Studio

 Download from www.wowebook.com

ptg

71

FIGURE 4.5 The Registered Servers window.

Administration Tools
4

Administration Tools
The tools available with SSMS can be broadly categorized into tools that are used for
administering SQL Server and tools that are used for developing or authoring new SQL
Server objects. As a matter of practice, developers use some of the administrative tools,
and administrators use some of the development tools.

SSMS comes with an expanded set of tools to help with SQL Server administrative tasks. It
builds on the functionality that was available in SQL Server 2005 and adds some new tools
and functionality to help ease the administrative burden.

Registered Servers

Registered servers is a concept in SQL Server 2008 that represents a division between
managing servers and registering servers. With the SQL Server 2000 Enterprise Manager,
the Microsoft Management Console (MMC) tree was displayed on the left side of the
Enterprise Manager screen, and it contained servers that had been registered via that tree.
Any registered servers or groups were listed in the tree, along with any of the associated
objects.

Registered servers are managed and displayed in the Registered Servers component
window. Figure 4.5 shows an example of the Registered Servers window, with several
server groups and their associated registered servers. You can add new groups or servers
any time so that you have a handy way of organizing the servers you work with.

 Download from www.wowebook.com

ptg

72

The servers listed in Figure 4.5 are all Database Engine servers. These server types are the
conventional SQL Server instances, like those you could register in the SQL Server 2000
Enterprise Manager. You can also register several other types of servers. The icons across
the top of the Registered Servers window indicate the types of servers that can be regis-
tered. In addition to Database Engine servers, you can also register servers for Analysis
Services, Reporting Services, SQL Server Mobile, and Integration Services. The Registered
Servers window gives you one consolidated location to register all the different types of
servers available in SQL Server 2008. You simply click the icon associated with the appro-
priate server type, and the registered servers of that type are displayed in the Registered
Servers tree.

NOTE

The SQL Server 2008 Registered Servers window enables you to register servers that
are running SQL Server 2005, SQL Server 2000, and SQL Server 7.0. You can
manage all the features of SQL Server 2005 and SQL Server 2000 with SQL Server
2008 tools. You can also have both sets of tools on one machine. The SQL Server
2000, SQL Server 2005, and SQL Server 2008 tools are compatible and function
normally together.

Management tools from prior SQL Server versions cannot be used to manage SQL
Server 2008 instances. For example, the SQL Server 2000 Enterprise Manager cannot
be used to manage SQL Server 2008. You can connect the Query Analyzer to a SQL
Server 2008 instance and run queries, but the Object Explorer and other tools are not
compatible with SQL Server 2008.

When a server is registered, you have several options available for managing the server.
You can right-click the server in the Registered Servers window to start or stop the related
server, open a new Object Explorer window for the server, connect to a new query
window, or export the registered servers to an XML file so that they can be imported on
another machine.

TIP

The import/export feature can be a real timesaver, especially in environments where
many SQL servers are managed. You can export all the servers and groups registered
on one machine and save the time of registering them all on another machine. For
example, you can right-click the Database Engine node, select Export, and then
choose a location to store the XML output file. Then all you need to do to register all
the servers and groups on another machine is move the file to that machine and
import the file.

CHAPTER 4 SQL Server Management Studio

 Download from www.wowebook.com

ptg

73

FIGURE 4.6 Multiple server types in Object Explorer.

Administration Tools
4

Object Explorer

The Object Explorer window that existed in the SQL Server 2000 Query Analyzer was inte-
grated into SSMS in SQL Server 2005. SQL Server 2008 continues to use an integrated
Object Explorer that behaves like SQL Server 2005.. The most significant feature for those
folks managing a large number of database objects is the capability to populate the Object
Explorer tree asynchronously. This may not hit home for folks who deal with smaller data-
bases, but it can be a real time saver for those that are dealing with many databases on a
single SQL Server instance or for those that work with databases that have a significant
number of database objects. The Object Explorer tree in SSMS displays immediately and
allows navigation in the tree and elsewhere in SSMS while the population of the tree is
taking place.

The Object Explorer is adaptive to the type of server it is connected to. For a Database
Engine server, the databases and objects such as tables, stored procedures, and so on are
displayed in the tree. If you connect to an Integration Services server, the tree displays
information about the packages defined on that type of server. Figure 4.6 shows an
example of the Object Explorer with several different types of SQL Server servers displayed
in the tree. Each server node has a unique icon that precedes the server name, and the
type of server is also displayed in parentheses following the server name.

The objects displayed in the Object Explorer tree can be filtered in SQL Server 2008. The
number of filters is limited, but those that are available can be helpful. For example, you
can filter the tables displayed in Object Explorer based on the name of the table, the

 Download from www.wowebook.com

ptg

74 CHAPTER 4 SQL Server Management Studio

FIGURE 4.7 Scripting from administrative dialogs.

schema that it belongs to, or the date on which it was created. Again, for those who deal
with large databases and thousands of database objects, this feature is very helpful.

Administrators also find the enhanced scripting capabilities in the Object Explorer very
useful. The scripting enhancements are centered mostly on the administrative dialog
boxes. These dialogs now include a script button that allows you to see what SSMS is
doing behind the scenes to effect your changes. In the past, the Profiler could be used to
gather this information, but it was more time-consuming and less integrated than what is
available now.

Figure 4.7 shows an example of an administrative dialog, with the scripting options
selected at the top. You can script the commands to a new query window, a file, the
Windows Clipboard, or a job that can be scheduled to run at a later time.

Aside from these features, many of the features and much of the functionality associated
with the Object Explorer is similar to what was found in SQL Server 2000 and is almost
identical to what was found in SQL Server 2005. Keep in mind that there are some addi-
tional nodes in the Object Explorer tree and that some of the objects are located in differ-
ent places. For example, the Management node now contains nodes for Policy Management,
Data Collection, and the Resource Governor, which are all new in SQL Server 2008.

 Download from www.wowebook.com

ptg

75Administration Tools
4

FIGURE 4.8 A Disk Usage Object Explorer Details report.

One often-overlooked Object Explorer feature is the reports option that was added in SQL
Server 2005 and still exists in SQL Server 2008. This option is available by right-clicking
on a node in the Object Explorer. Reports are not available for every node in the Object
Explorer tree, but many of them do have this option. Most reports are found in the top-
level nodes in the tree. For example, if you right-click on a database in the Object Explorer
tree and then select Reports and Standard Reports, you see more than a dozen available
reports. These reports include Disk Usage, Backup and Restore Events, Top Transactions by
Age, and a host of others. Graphs are included with some reports, and you can export or
print all these reports. Figure 4.8 shows an example of the Disk Usage report for the
AdventureWorks2008 database.

The graphs are easy to read, and some sections of the report can be expanded to provide
more detail. Bullets at the bottom of a report are nodes that can be expanded. For
example, the bullet Disk Space Used by Data Files at the bottom of Figure 4.8 can be
expanded to display details about each of the data files.

Activity Monitor

The Activity Monitor has seen some dramatic changes in SQL Server 2008. These changes
build on the foundation established in SQL Server 2005 and help provide much more
information related to the performance of your SQL Server instance.

Before we get into the details of the Activity Monitor, let’s make sure you know where to
find it. It is no longer found in the Management node of the Object Explorer. Instead, you
right-click on the name of the server instance in the Object Explorer, and you see a selec-
tion for Activity Monitor.

 Download from www.wowebook.com

ptg

76 CHAPTER 4 SQL Server Management Studio

FIGURE 4.9 SQL Server 2008 Activity Monitor.

When the Activity Monitor launches, you see a new display with four different graphs, as
shown in Figure 4.9. The graphs include % Processor Time (from SQL Server), Waiting
Tasks, Database I/O and Batch Requests. These graphs give you a quick performance snap-
shot for your SQL Server in one spot without having to launch System Monitor or some
other monitoring tool to view this kind of information.

You also find more detailed performance information below the graphs. This information
is grouped into four categories: Processes, Resource Waits, Data File I/O and Recent
Expensive Queries. Clicking on the expand button for one of these categories presents the
details you are looking for. These details contain drop-down headings that allow you to
filter the results and view only the information you need.

The Processes Details window contains information similar to what was displayed in the
SQL Server 2005 Activity Monitor. These details include information similar to what is
returned with the sp_who system stored procedure. The server process ID (SPID) is listed
in a column named Session ID, and the related information for each SPID is displayed in
the remaining columns. If you right-click on a particular process, you can see the details
of that process. You can then kill that process or launch the SQL Server Profiler to trace
the activity for the process. Figure 4.10 shows an example of the expanded Processes
details window.

The Resource Waits window (that is displayed below the Process window) can help you
identify bottlenecks on your server. It details the processes waiting for other resources on
the server. The amount of time a process is waiting and the wait category (what the
process is waiting for) are found in this display. If you click on the Cumulative Wait Time
column, the rows are sorted by this column and you can find the wait category that has
been waiting the longest. This sorting capability applies to all the columns in the display.

 Download from www.wowebook.com

ptg

77Administration Tools
4

FIGURE 4.10 Processes Details window in the Activity Monitor.

The Data File I/O window lists each database and its related database files. The amount of
disk I/O experienced by each of the files is detailed in the columns of this display. You can
isolate the database and files that are most heavily hit with read or write activity as well as
the databases that may be suffering from poor I/O response with this screen.

Finally, the Recent Expensive Queries window displays information similar to what you
can obtain using catalog views. It provides statistics for all the databases on the instance
and is a quick and easy way to find and tune expensive SQL statements. If you right-click
on a row in the display and click Edit Query Text, you can see the entire SQL text associ-
ated with the query. You are able to click on one of the column headings such as CPU to
sort the display according to the metric you feel defines cost. Best of all, you can right-
click on a row and choose Show Execution Plan, and you have the Query Plan ready for
analysis.

NOTE

When you mouse over the column headers in the detailed windows, ToolTips give you
more information about the columns. This information includes the system view that
the information is gathered from and where you can look in Books Online to obtain fur-
ther information.

Log File Viewer

The Log File Viewer is another nonmodal window that is essential for administering your
SQL Server. Like the Activity Monitor, it houses information that was previously displayed
in the document window in the SQL Server 2000 Enterprise Manager. It can display log
files that are generated from several different sources, including Database Mail, SQL Server
Agent, SQL Server, and Windows NT.

 Download from www.wowebook.com

ptg

78 CHAPTER 4 SQL Server Management Studio

FIGURE 4.11 SQL Server logs displayed in the Log File Viewer.

The Log File Viewer can be launched from the related node in the SSMS Object Explorer.
For example, you can select the Management node and expand SQL Server Error Logs. If
you double-click one of the error logs listed, a new Log File Viewer window is launched,
displaying the SQL Server log file entries for the log type selected (see Figure 4.11).

NOTE

By default, entries are shown in the SQL Server Log File Viewer from newest to oldest.
This is different from the default order in the SQL Server 2000 Enterprise Manager,
which displayed the log file entries from oldest to newest.

 Download from www.wowebook.com

ptg

79Administration Tools
4

One of the first things you notice when you launch the Log File Viewer is that a tree struc-
ture at the top-left corner of the screen shows the log files you are viewing. You can see
that there are four different log types available: Database Mail, SQL Agent, SQL Server, and
Windows NT. You can choose to display multiple log files within a given log type (for
example, the current SQL Server log and Archive #1), or you can select logs from different
sources. For example, you can display all the current log entries for SQL Server and the
current log entry for the SQL Server Agent.

When multiple logs are selected, you can differentiate between the rows shown on the
right side of the Log File Viewer by looking at the Log Source column and the Log Type
column. The Log Source values match up with the names shown in the tree structure
where the log was selected. The Log Type column shows the type of log, such as SQL
Agent or SQL Server. Rows from the different log types are displayed together and sorted
according to the date on which the row was created. The sort order cannot be changed.

TIP

You can rearrange the order of the columns shown in the Log File Viewer. You simply
click the column header and drag the column to the desired location. When you are
viewing rows for more than one log type or multiple logs, it is best to drag the Log Type
and Log Source columns to a location that is easily viewed so that you can distinguish
between the entries.

Other noteworthy features in the Log File Viewer include the capability to filter and load a
log from an external source. You can filter on dates, users, computers, the message text,
and the source of the message. You can import log files from other machines into the view
by using the Load Log facility. This facility works hand-in-hand with the Export option,
which allows you to export the log to a file. These files can be easily shared so that others
can review the files in their own Log File Viewer.

SQL Server Utility

The SQL Server Utility was added in SQL Server 2008 R2 and is geared toward multiserver
management. It provides several new hooks in the SSMS environment that improve visi-
bility and control across multiple SQL Server environments. Access to these new hooks is
provided through a new Utility Explorer that can be displayed within your SSMS environ-
ment. This Utility Explorer has a tree-like structure similar to the Object Explorer, and it
provides rich content related to the health and integrity of the SQL Server environments
you have selected to manage using the SQL Server Utility. Figure 4.12 shows an example
of the type of information the Utility Explorer can display.

 Download from www.wowebook.com

ptg

80 CHAPTER 4 SQL Server Management Studio

FIGURE 4.12 Utility Explorer content.

The SQL Server Utility must first be configured to facilitate the display of information in
the Utility Explorer. The configuration is relatively straightforward, but you must meet
several requirements before starting it. The following requirements apply to the utility
control point (UCP), which is the SQL Server instance capturing the information and the
SQL Server instances being managed by the UCP:

. SQL Server must be version 10.50 or higher.

. The SQL Server instance type must be Database Engine.

. The SQL Server Utility must operate within a single Windows domain or domains
with two-way trust relationships.

. On Windows Server 2003, the SQL Server Agent service account must be a member
of Performance Monitor User group.

. The SQL Server service accounts on the UCP and all managed instances of SQL
Server must have read permission to Users in Active Directory.

 Download from www.wowebook.com

ptg

81Administration Tools
4

FIGURE 4.13 Utility Configuration Steps.

In addition, the UCP must be running the Data Center, Developer, or Enterprise Edition of
SQL Server.

When you have met these requirements, you are ready to start using the SQL Server
Utility. The first steps are to establish a UCP and to enroll SQL Server instances for the
UCP to manage. This is accomplished by selecting View on the SSMS menu bar and then
selecting Utility Explorer. A content pane is displayed in SSMS that contains options for
configuring the SQL Server Utility (see Figure 4.13). It also contains links to video that can
guide you through each step.

The first thing to do when configuring the SQL Server Utility is to click on the Create a
Utility Control Point (UCP) link on the Getting Started tab. This initiates a wizard that
will guide you through a five-step process that creates the UCP. The first wizard screen
that outlines these steps is shown in Figure 4.14.

 Download from www.wowebook.com

ptg

82 CHAPTER 4 SQL Server Management Studio

FIGURE 4.14 Create Utility Control Point Wizard screen.

The first step of the wizard is the most critical because you choose the SQL Server Instance
that will be the UCP. The SQL Server instance you select in this step will store the infor-
mation related to the UCP and any other instances enrolled within that UCP. The infor-
mation collected by the UCP is stored in a database named sysutility_mdw created on the
UCP instance. This database drives the health and status information displayed in the
Utility Explorer.

After you complete the wizard steps to create a UCP, the UCP appears in the Utility
Explorer Tree, and summary information about the UCP is displayed in the Utility
Explorer Content tab. The UCP is the top-most node in the tree and contains other child
nodes that contain the different types of information managed by the UCP. An example of
the Utility Explorer tree is shown in Figure 4.15.

The first child node displayed in the Utility Explorer tree is named Deployed Data-tier
Applications. A data-tier application, or DAC, is a single entity that contains all the data-
base objects and related instance objects used by an application. This includes tables, stored
procedures, SQL Server Logins, and so on. DACs can be created from a Visual Studio 2010
data-tier application project or by using the Extract Data-Tier Application Wizard in SSMS.
The full scope of DAC capabilities is beyond the scope of this chapter, but it is important to
see how they fit into the Utility Explorer Display.

 Download from www.wowebook.com

ptg

83Administration Tools
4

FIGURE 4.15 Utility Explorer tree.

NOTE

Two different SQL Server features use the same DAC acronym. The aforementioned
data-tier application is one of them, but a dedicated administrator connection is also
referred to as a DAC.

After creating a DAC deployment package, you can deploy it to another SQL Server
instance. This deployment creates the related database, the database objects along with
the related server objects. If the server to which the DAC is deployed is managed by the
UCP, you can show the deployed DAC information by clicking on the Deployed Data-
tier Applications node of the Utility Explorer.

The next node in the Utility Explorer tree, named Managed Instances, contains informa-
tion about SQL Server instances enrolled in the UCP. Enrolling an instance essentially
means you want to manage the instance through the UCP and gather information about
it. You can easily enroll this instance by right-clicking on the Managed Instances node
and selecting Enroll Instance.

Each instance enrolled in the UCP is listed at the top of the Utility Explorer Content tab.
When a managed instance is selected from this list, a set of resource and policy informa-
tion is made available in the lower half of the window. The available tabs in this window
which define the type of information that is captured include CPU Utilization, Storage
Utilization, Policy Details and Property Details. Figure 4.16 shows two managed instances
and the related CPU Utilization graphs for the top-most SQL Server instance.

The last node, Utility Administration, can be used to manage policy, security, and data
warehouse settings for a SQL Server Utility. These settings drive the SQL Server Utility
summary screen and set thresholds across the entities defined in the utility. Figure 4.17
shows an example of the Policy information that can be managed with Utility
Administration.

 Download from www.wowebook.com

ptg

84 CHAPTER 4 SQL Server Management Studio

FIGURE 4.16 Managed Instances.

FIGURE 4.17 Utility Administration.

 Download from www.wowebook.com

ptg

85Development Tools
4

The Policy tab is one of three tabs available on the Utility Administration window. You
can see in Figure 4.17 that there are also Security and Data Warehouse tabs. The Security
tab allows you to manage permissions for logins that can administer or read from the
UCP. Logins can be assigned to the Utility Reader role on this screen, which allows them
to connect to the SQL Server Utility and read information from the Utility Explorer in
SSMS. The Data Warehouse tab allows you to adjust the amount of time data will be
retained in the UCP data warehouse. The default time period is one year.

Over time, the amount of data collected in the UCP data warehouse can be substantial. By
default, each managed instance enrolled in the UCP sends configuration and performance
data to the UCP every 15 minutes. Consequently, the space used by the utility manage-
ment data warehouse (UMDW) needs to be monitored. The UMDW database, named
sysutility_mdw, is listed as a user database in the Object Explorer.

Development Tools
SSMS delivers an equally impressive number of features for database developers. Many of
the features were available with SQL Server 2005, but SQL Server 2008 has added some new
ones as well. T-SQL Debugging, IntelliSense in the Query Editor, and multiserver queries
are a few of those new tools for developers found in SQL Server 2008. These new tools and
the other essential developer tools from SSMS are discussed in the following sections.

The Query Editor

The Query Editor sits at the top of the list for development tools in SSMS. The Query
Editor, as its name indicates, is the editing tool for writing queries in SSMS. It contains
much of the functionality that was contained in SQL Server 2000’s Query Analyzer. The
capability to write T-SQL queries, execute them, return results, generate execution plans,
and use many of the other features you may be familiar with in Query Analyzer are also
available with the Query Editor.

One main difference with the Query Editor is that is has been integrated into the SSMS
environment. In SQL Server 2000, the Query Analyzer was a separate application with its
own independent interface. In SQL Server 2008, SSMS houses the query-editing capabili-
ties along with all the administrative capabilities.

 Download from www.wowebook.com

ptg

86 CHAPTER 4 SQL Server Management Studio

FIGURE 4.18 The query editor window in SSMS.

NOTE

The biggest upside to the integration of the query-editing tool into the SSMS environ-
ment is that you can find almost anything you need to administer or develop on your
SQL Server database in one spot. There is no need to jump back and forth between
applications. One possible downside, however, is that SSMS may be much more than
some database developers need.

Clicking the New Query button, opening a file, and selecting the Script to File option
from a list of database objects in the Object Explorer are just a few of the ways to launch
the Query Editor. Figure 4.18 shows the query editor window with a sample SELECT state-
ment from the AdventureWorks2008 database. The query editor window is displayed on
the right side of the screen and the Object Explorer on the left side.

The basic editing environment within the Query Editor is similar to Query Analyzer. The
top portion of the query editor window contains the query. The bottom portion contains
the results of an executed query. The results can be displayed as text, displayed in a grid
format, or output as XML. However, in the Query Editor, windows are by default managed
differently than with Query Analyzer. Multiple query editor windows are displayed in a
tabbed format; in comparison, Query Analyzer displayed a separate window for each
query.

 Download from www.wowebook.com

ptg

87Development Tools
4

TIP

The tabbed document display has some advantages, but you can set an option in
SSMS that causes the Query Editor to behave much like the Query Analyzer. To do this,
you select Tools, Options to launch the Options dialog. The default page has a section
named Environmental Layout. If you choose the MDI Environment option, you set SSMS
in MDI mode instead of the tabbed layout.

IntelliSense
IntelliSense has finally made it to the SQL Server Query Editor. This much-anticipated tool
was slated for SQL Server 2005, but it was pulled before making it to the marketplace.
Fortunately, it made it to SQL Server 2008, and it was worth the wait. This is especially
true for those developers who have been working with Visual Studio or other Microsoft
development tools that have this feature.

IntelliSense is a handy tool that helps you complete queries as you are typing them in the
query editor window. Start typing and you will see. For example, type SELECT * FROM A in
the query editor window, and a drop-down appears in the query editor window after you
start typing the first letter after the FROM clause. The drop-down, in this case, contains the
databases and tables from which you can select data. If you type in a stored procedure
name to execute, a drop-down shows you the parameters that the stored procedure
accepts. Type SYS. in the query editor window, and you see a drop-down of all the objects
available in the SYS schema. This includes catalog views and the related columns that
these views contain. If you type in a query that is incorrect, IntelliSense places a red squig-
gly line under the part of the query that is syntactically incorrect.

The value of this tool will become more apparent as you use it. It can be confusing at
times, but it will ultimately speed up your development time. It can also reduce the
number of times you need to go to Books Online or some other help source and will make
your development life easier.

NOTE

IntelliSense works only with SQL Server 2008 databases. If you start typing a query
against a database from a prior version, the handy IntelliSense drop-downs do not
appear.

Query Editor Types
The Query Editor in SQL Server 2008 enables you to develop different types of queries.
You are not limited to database queries based on SQL. You can use the Query Editor to
develop all types of SQL Server Scripts, including those for SQL Server Analysis Services
(SSAS) and SQL Server Mobile Edition. The SSAS queries come in three different flavors:
multidimensional expressions (MDX), data mining expressions (DMX), and XML for
analysis (XMLA). Only one selection exists for creating SQL Server Mobile Edition scripts.

 Download from www.wowebook.com

ptg

88 CHAPTER 4 SQL Server Management Studio

You see these new query options when you create a new query. When you select New
from the SSMS menu, you can choose what type of query to create. You use the Database
Engine Query choice to create a T-SQL query against the Database Engine. The other new
query options correspond to SSAS and SQL Server Mobile Edition. The SSMS toolbar has
icons that correspond to each type of query that can be created.

Each query type has a code pane that works much the same way across all the different
types of queries. The code pane, which is the topmost window, color-codes the syntax that
is entered, and it has sophisticated search capabilities and other advanced editing features
that make it easy to use.

Disconnected Editing
SQL Server 2008 is able to use the code editor without a database connection. When
creating a new query, you can choose to connect to a database or select Cancel to leave
the code pane disconnected. To connect to the database later, you can right-click in the
code pane window and select the Connect option. You can also disconnect the Query
Editor at any time or choose the Change Connection option to disconnect and connect to
another database all at once.

Along with disconnected editing are some changes to the Windows behavior that are
worth noting. The biggest changes relate to the behavior of query windows currently open
at the time a file is opened for editing. With SQL Server 2000 Query Analyzer, the
currently selected window would be populated with the contents of the file you were
opening. Prior to this replacement, a prompt would be displayed asking whether you
wanted to save your results. If the query window was empty, the contents would be
replaced without the prompt for saving.

With SQL Server 2008, a new query window is opened every time a new file is opened.
The new window approach is faster but can lead to many more open windows in the
document window. You need to be careful about the number of windows/connections you
have open. Also, you need to be aware that the tabbed display shows only a limited
number of windows. Additional connections can exist even if their tabs are not in the
active portion of the document window.

Editing sqlcmd Scripts in SSMS
sqlcmd is a command-line utility introduced in SQL Server 2008. You can use it for ad hoc
interactive execution of T-SQL statements and scripts. It is basically a replacement for the
ISQL and OSQL commands used in versions prior to SQL Server 2005. (OSQL still works with
SQL Server 2008, but ISQL has been discontinued.)

You can write, edit, and execute sqlcmd scripts within the Query Editor environment. The
Query Editor in SSMS treats sqlcmd scripts in much the same way as other scripts. The
script is color-coded and can be parsed or executed. This is possible only if you place the
Query Editor in SQLCMD mode, which you do by selecting Query, SQLCMD Mode or
selecting the SQLCMD mode icon from the SSMS toolbar.

Figure 4.19 shows a sample sqlcmd script in SSMS that can be used to back up a database.
This example illustrates the power and diversity of a sqlcmd script that utilizes both T-SQL

 Download from www.wowebook.com

ptg

89Development Tools
4

FIGURE 4.19 Editing a sqlcmd script in SSMS.

and sqlcmd statements. It uses environment variables set within the script. The script vari-
ables DBNAME and BACKUPPATH are defined at the top of the script with the SETVAR
command. The BACKUP statement at the bottom of the script references these variables,
using the convention $(variablename), which substitutes the value in the command.

sqlcmd scripts that are edited in SSMS can also be executed within SSMS. The results are
displayed in the results window of the query editor window, just like any other script.
After you test a script, you can execute it by using the sqlcmd command-line utility. The
sqlcmd command-line utility is a powerful tool that can help automate script execution.
For more information on using sqlcmd in SSMS, refer to the Books Online topic “Editing
SQLCMD Scripts with Query Editor.” The sqlcmd command-line utility is discussed in
more detail in Chapter 5, “SQL Server Command-Line Utilities.”

Regular Expressions and Wildcards in SSMS
SSMS has a robust search facility that includes the use of regular expressions. Regular
expressions provide a flexible notation for finding and replacing text, based on patterns
within the text. Regular expressions are found in other programming languages and appli-
cations, including the Microsoft .NET Framework. The regular expressions in SSMS work in

 Download from www.wowebook.com

ptg

90 CHAPTER 4 SQL Server Management Studio

FIGURE 4.20 A find and replace with regular expressions.

much the same way as these other languages, but there are some differences in the nota-
tion.

The option to use regular expressions is available whenever you are doing a find or replace
within an SSMS script. You can use the find and replace option in the code pane or results
window. You can use the Find and Replace option from the Edit menu or press either the
Ctrl+F or Ctrl+H shortcut keys to launch the Find and Replace dialog box. Figure 4.20
shows an example of the Find and Replace dialog that utilizes a regular expression. This
example is searching for the text Customer, preceded by the @ character and not followed
by the Id characters. This kind of search could be useful for searching a large stored proce-
dure where you want to find the customer references but don’t want to see the variables
that contain customer in the first part of the variable name.

You use regular expressions only when the Use check box in the Find and Replace dialog
is selected. When this option is selected, you can choose either Regular Expressions or
Wildcards. Wildcard searches work much the same way in SSMS as they do in file
searches. For example, if you want to find any references to the word zip, you could enter
zip in the Find What text box. The wildcard options are limited but very effective for
simple searches.

Regular expressions have a much more extensive number of available search options.
When you choose the option to use regular expressions, the arrow button is enabled to
the right of the text box where you enter your search text. If you click this button, you
are given an abbreviated list of regular expression characters that you can use in your
searches. A brief description of what each character represents in the search is listed next
to the character. For a complete list of characters, you can choose the Complete
Character List option at the bottom of the list. This option brings you to the Books

 Download from www.wowebook.com

ptg

91Development Tools
4

Online topic “How to: Search with Regular Expressions,” which gives a comprehensive
review of all the characters.

Enhanced Performance Output
The Query Editor in SSMS has an extensive set of options available for capturing and
distributing performance-related data. It contains many of the familiar performance
features that you may have grown accustomed to in SQL Server 2000 Query Analyzer—
plus more. If you’re familiar with the SQL Server 2005 performance output, you will find
that that the SQL Server 2008 performance output has changed very little. The Execution
Plan tab that is displayed in the results window and the Results and Messages tab are still
there in SQL Server 2008. The Execution Plan tab can be populated with two different
types of plans: estimated plans and actual plans. The actual execution plan shows the plan
that was used in generating the actual query results. The actual plan is generated along
with the results when the Include Actual Execution Plan option is selected. This option
can be selected from the SSMS toolbar or from the Query menu. Figure 4.21 shows an
example of an actual execution plan generated for a query against the
AdventureWorks2008 database.

The familiar treelike structure that was also present in SQL Server 2000 is still used in SQL
Server 2005 and SQL Server 2008. The ToolTips displayed when you mouse over a node in
the execution plan include additional information; you can see that information in a

FIGURE 4.21 Displaying an actual execution plan in Query Editor.

 Download from www.wowebook.com

ptg

92 CHAPTER 4 SQL Server Management Studio

more static form in the Properties window if you right-click the node and select
Properties. The display is generally easy to read and should be read from right to left.

NOTE

The Manage Indexes and Manage Statistics options available in the SQL Server 2000
Query Analyzer are not present in the Query Editor in SQL Server 2008. Those options
in Query Analyzer were accessible by right-clicking a node in the query plan. You can
use the Database Engine Tuning Advisor (DTA) in SQL Server 2008 to analyze the
Query Editor statements or open the Table Designer to manage the indexes on a spe-
cific table.

Query plans generated in the Query Editor are easy to distribute in SQL Server 2008. You
have several options for capturing query plan output so that you can save it or send it to
someone else for analysis. If you right-click an empty section of the Execution Plan
window, you can select the Save Execution Plan As option, which allows you to save the
execution plan to a file. By default, the file has the extension .sqlplan. This file can be
opened using SSMS on another machine to display the graphical output.

The query plan can also be output in XML format and distributed in this form. You make
this happen by using the SET SHOWPLAN_XML ON option. This option generates the esti-
mated execution plan in a well-defined XML document. The best way to do this is to turn
off the display of the actual execution plan and execute the SET SHOWPLAN_XML ON state-
ment in the code pane window. Next, you set the Query Editor to return results in grid
format and then execute the statements for which you want to generate a query plan. If
you double-click the grid results, they are displayed in the SSMS XML editor. You can also
save the results to a file. If you save the file with the .sqlplan extension, the file displays
the graphical plan when opened in SSMS.

Using the Query Designer in the Query Editor
A graphical query design tool is accessible from the query editor window where you write
your queries. This is a great option that was missing in SQL Server 2000. With SQL Server
2000, you could access a graphical query designer by opening a table in Enterprise
Manager and selecting Query, but this option was disconnected from the Query Analyzer
environment, where the queries were authored. This tool was introduced in SQL Server
2005 and remains generally unchanged in SQL Server 2008.

With SQL Server 2008, you can right-click in the query editor window and choose Design
Query in Editor. A dialog box appears, allowing you to add tables to the graphical query
designer surface. The selected tables are shown in a window that allows you to select the
columns you want to retrieve. Selected columns appear in a SELECT statement displayed at
the bottom of the Query Designer window. Figure 4.22 shows an example of the Query
Designer window that contains two tables from the AdventureWorks2008 database. The
two tables selected in this figure are related, as indicated by the line between them.

 Download from www.wowebook.com

ptg

93Development Tools
4

FIGURE 4.22 Designing queries in the Query Editor.

The T-SQL statements are generated automatically as you select various options on the Query
Designer screen. If you select Sort Type, an ORDER BY clause is added. If you choose an alias for
a column, it is reflected in the T-SQL. If tables are related, the appropriate joins are generated.

When you click OK on the Query Designer window, the related T-SQL is automatically
placed in the query editor window. You can edit the T-SQL as needed or use it as is. You
can imagine the time savings you can achieve by using this tool.

TIP

The Query Designer has a very impressive feature that allows you to view a T-SQL
query visually. If you copy a valid T-SQL statement, open the Query Designer, and paste
the T-SQL into the SQL pane at the bottom of the Query Designer, it tries to resolve
the T-SQL into a graphical display. The tables in the FROM clause are shown in the
designer panel, and information related to the selected columns is listed as well. The
Query Designer cannot resolve all T-SQL statements and may fail to generate a visual
display for some complex T-SQL.

Managing Projects in SSMS

Project management capabilities like those available in Visual Studio are available in SSMS.
Queries, connections, and other files that are related can be grouped into projects. A
project or set of projects is further organized or grouped as a solution. This type of organi-
zation is the same as in the Visual Studio environment.

 Download from www.wowebook.com

ptg

94 CHAPTER 4 SQL Server Management Studio

FIGURE 4.23 Solutions and projects listed in the Solution Explorer.

Projects and solutions are maintained and displayed with the Solution Explorer. The
Solution Explorer contains a tree-like structure that organizes the projects and files in the
solution. It is a component window within SSMS that you launch by selecting View,
Solution Explorer. Figure 4.23 shows an example of the Solution Explorer. The solution in
this example is named EmployeeUpgrade, and it contains two projects, named Phase1 and
Phase2. Each project contains a set of connections, a set of T-SQL scripts, and a set of
miscellaneous files.

The first thing to do when using the project management capabilities in SSMS is to add a
project. To do this, you select File, New, and when the New dialog appears, you select
Project to add a new project. When adding the new project, you are given a choice of the
type of project, and you must select either SQL Server Scripts, Analysis Services Scripts, or
SQL Mobile Scripts. Each one of these project types is geared toward the respective SQL
Server technology.

The solution that is related to the project is created at the same time that the project is
created. The Solution Name is entered at the bottom of the New Project window and an
option to create a separate directory for the solution is provided. There is no option to
create the solution separately.

After the project is added, you can add the related connections and files. To add a new
connection, you simply right-click the Connections node. The Connections entries allow
you to store SQL Server connection information that relates to the project you are working
on. For example, you could have a connection to your test environment and another

 Download from www.wowebook.com

ptg

95Development Tools
4

connection to the production environment that relates to the project. When a connection
is included in the project, you can double-click it, and a new query window for that
connection is established.

SQL script files are added to a project in a similar fashion to connections: You right-click the
Queries node and select the New Query option. A new query editor window appears, allow-
ing you to enter the T-SQL commands. Any T-SQL script is viable for this category, includ-
ing those that relate to database objects such as stored procedures, triggers, and tables.

You can also add existing files to a project. To do this, you right-click the project node,
select Add, and then select Existing Item. The file types listed in the drop-down at the
bottom of the Add Existing Item dialog include SQL Server files (*.sql), SQL deadlock files
(*.xdl), XML files (*.xml), and execution plan files (*.sqlplan). SQL Server files are
added, by default, to the Queries node. All the other file types are added to the
Miscellaneous node. The connection entries are not stored in a separate file but are
contained in the project file itself.

Integrating SSMS with Source Control

SSMS has the capability to integrate database project files into a source control solution.
Source control provides a means for protecting and managing files. Source control applica-
tions typically contain features that allow you to track changes to files, control and track
who uses the files, and provide a means for tagging the files with a version stamp so that
the files can be retrieved at a later time, by version.

SSMS can integrate with a number of different source control applications. Visual
SourceSafe is Microsoft’s basic source control solution, but other source control applica-
tions can be used instead. The source control client application must be installed on the
machine on which SSMS is running. When the installation is complete, you can set the
source control application that SSMS will use within SSMS. To do this, you select Tools,
Options and navigate to the Source Control node. The available source control clients are
listed in the Current Source Control Plug-in drop-down.

The link between SSMS and the source control application is the database solution. After a
solution is created, it can be added to the source control. To add a solution to a source
control application, you open the Solution Explorer and right-click the solution or any of
the projects in the solution. You then see the Add Solution to Source Control option. You
must then log in to the source control application and select a source control project to
add the solution to.

When the solution is added to a source control application, all the related projects and
project files are added as well. The projects and files in the source control application have
additional options available in the Solution Explorer. Figure 4.24 shows a sample solution
added to a source control application. A subset of the source control options available
when you right-click project files are shown in this figure as well.

 Download from www.wowebook.com

ptg

96 CHAPTER 4 SQL Server Management Studio

FIGURE 4.24 Source control options in the Solution Explorer.

The options related to source control are listed toward the bottom of the options list. The
options that are available depend on the status of the selected file. For example, if a file
has been checked out, additional options are displayed that relate to checking the file
back in. Following are some of the common source control options:

. Check Out for Edit—This option allows you to get a copy of the file from the
source control application so that you can modify the file. When you check out the
file, the source control provider can keep track of the user who has checked out the
file, and it can also prevent other users from checking out the file.

. Check In—This option copies the locally modified file into the source control solu-
tion. The file must first be checked out for editing before you can use the Check In
option. A new version for the file is established, and any prior versions of the file are
retained as well.

. Get Latest Version—This option gets a read-only copy of the latest version of the
project file from the source control application. The file is not checked out with this
option.

. Compare—This option enables you to compare versions of source control files. The
default comparison that is shown is between the file in the source control applica-
tion and the local file on your machine.

. Get—This option is similar to the Get Latest Version option, but it retrieves a read-
only copy of the file. With this option, a dialog box appears, allowing you to select
the file(s) that you want to retrieve.

. View History—This option lists all versions of the files checked into the source
control application. The History dialog box has many options that you can use with
the different versions of the file. You can view differences between versions of the

 Download from www.wowebook.com

ptg

97Development Tools
4

files, view the contents of a specific version, generate reports, or get an older version
of the file.

. Undo Checkout—This option changes the checkout status in the source control
application and releases the file to other source control users. Any changes made to
the local copy of the file are not added to the source control version.

Other source control options are available via the Source Control menu in SSMS. You
select an item in the Solution Explorer and then select File, Source Control. You can use
this menu to check the status of a file by using the SourceSafe Properties option, set source
control properties, launch the source control application, and perform other source
control operations.

Using SSMS Templates

Templates provide a framework for the creation of database objects in SSMS. They are
essentially boilerplate files that help generate scripts for common database objects. They
can speed up the development of these scripts and help enforce consistency in the genera-
tion of the underlying database objects.

The Template Explorer is a component window available in SSMS and replaces the
Template tab available in the SQL Server 2000 Query Analyzer. Figure 4.25 shows the
Template Explorer and the available SQL Server template folders. Separate templates also
exist for Analysis Services and SQL Server Mobile Edition. You can view them by selecting
the related icon at the top of the Template Explorer.

You access the available templates by expanding the template folder in the Template
Explorer tree. For example, if you expand the Index folder, you see six different types of
index templates. If you double-click one of the templates, a new query editor window
appears, populated with the template script. Figure 4.26 shows the template script
displayed when you open the Create Index Basic template.

The template script contains template parameters that have the following format within
the script:

<parameter_name, data_type, value>

You can manually replace these parameters in the script, or you can use the Specify Values
for Template Parameters option from the Query menu to globally replace the parameters
in the script with the desired values. Selecting Query, Specify Values for Template
Parameters launches the Specify Values for Template Parameters dialog box, which enables
you to enter the parameter values (see Figure 4.27).

 Download from www.wowebook.com

ptg

98 CHAPTER 4 SQL Server Management Studio

FIGURE 4.25 The SSMS Template Explorer.

FIGURE 4.26 The template script for creating a basic index.

FIGURE 4.27 The Specify Values for Template Parameters dialog box.

 Download from www.wowebook.com

ptg

99Development Tools
4

TIP

When you use the Specify Values for Template Parameters option, some parameters
may be missed if the parameter text has been altered. For example, if you add a car-
riage return after parameter_name, the Parameters dialog box does not list that para-
meter. It is best to leave the template script unchanged before you specify values for
the parameters. You should make changes to the script after the values have been
specified.

After you enter the parameter values and click OK, the values are reflected in the script.
For example, the values shown in Figure 4.27 for the basic index template result in the
following script:

-- ===

-- Create index basic template

-- ===

USE AdventureWorks2008

GO

CREATE INDEX NC_Address_Person

ON Person.Address

(

PostalCode

)

GO

You also have the option of creating your own custom templates. These templates can
contain parameters just like those available with the default templates. You can also create
your own template folder that will be displayed in the Template Explorer tree. To create a
new template folder, you right-click the SQL Server Templates node in the Template
Explorer tree and select New, Folder. A new folder appears in the tree, and you can specify
a new folder name. Figure 4.28 shows the Template Explorer with a set of custom
templates found under the _mytemplates folder. The code pane in this figure shows the
contents of a new custom template named sys.objectSelectWithParameters. This
custom template contains two parameter declarations: object_type and modify_date.
When you select the Specify Values for Template Parameters options for this custom
template, you have the opportunity to change the values, just as you can with the default
templates.

NOTE

When you double-click a template in the Template Explorer tree, you create a script
based on the template. Changes made to the script do not affect the template; they
affect only the script generated from the template. To change the actual template,
you need to right-click the template and select Edit. After you complete your changes,
you need to make sure to save the template.

 Download from www.wowebook.com

ptg

100 CHAPTER 4 SQL Server Management Studio

FIGURE 4.28 A custom template example.

T-SQL Debugging

Finally, you are able to debug T-SQL from within the SQL Server development environ-
ment. Yes, you could do this kind of thing using Visual Studio, but database developers
should be able to debug in the environment where they generally develop their SQL state-
ments—within SSMS. SQL Server 2008 provides this capability, and it works well.

The trickiest part of debugging may be starting the debugger. It is not all that difficult but
may be less than obvious for some. For example, let’s say you want to debug a stored
procedure. To do this, you right-click on the stored procedure in the Object Explorer and
select Script Stored Procedure As, Execute To, New Query Editor Window, and a script for
executing the procedure is generated. If the stored procedure has parameters, you add the
SQL to assign a value to those parameters to the script. Now you are ready to debug this
script and the related stored procedure.

To initiate debugging, you click on the green arrow on the SQL Server menu bar. When you
start debugging, several new debugging windows are added to the SSMS display, and the
query editor window shows a yellow arrow in the left margin next to the line in the script

Also, you should keep in mind that there is no requirement to have parameters in your
templates. Templates are handy tools for accessing any code snippet you might use.
After the code snippet is added as a template, you can open a new query editor win-
dow based on the template or simply drag and drop the template from the Template
Explorer to an existing query editor window, and the code for the template is pasted
into the window.

 Download from www.wowebook.com

ptg

101Development Tools
4

that is about to be run. You can now use the debug toolbar at the top of the SSMS screen to
step through your code. If you click the Step Into button, the current statement executes,
and the script progresses to the next available statement. Figure 4.29 shows an example of
the T-SQL Debugging Environment while debugging is in progress. The debugging environ-
ment enables you to view values assigned to variables, review the call stack, set break-
points, and perform debugging much like you would do in development environments
such as Visual Studio.

Multiserver Queries

Another slick new option available with SQL Server 2008 is the capability to execute a
script on multiple servers at once. Multiserver queries allow the contents of a single query
editor window to be run against all the servers defined in a given registered server group.
After the group is created and servers are registered in the group, you can right-click on
the group and select the New Query option to create a query window that can be run
against all the servers in the group. Click on the Execute button, and the query is run
against all the servers. Figure 4.30 shows a server group named MyTestGroup containing
three servers registered in that group, a sample query to run against these servers, and a
single result window that shows the results of the query for all servers in the group.

FIGURE 4.29 The T-SQL Debugging Environment.

 Download from www.wowebook.com

ptg

102 CHAPTER 4 SQL Server Management Studio

FIGURE 4.30 Multiserver query execution.

Multiserver queries are relatively easy to use. The results window includes a Server Name
column that allows you to determine which server the result came from. These queries are
backward compatible and allow you to run against prior versions of SQL Server, including
SQL Server 2005. The only caveat is that you must first create a registered server group and
the related registered servers before you run the query, but you already know that this task
is also relatively easy.

Summary
The number of tools and features available in SSMS is extensive and can be daunting
when you first enter the environment. Remember that you can customize this environ-
ment and hide many of the windows that are displayed. You can start with a fairly simple
SSMS configuration that includes the Object Explorer and a query editor window. This
configuration may allow you to accomplish a majority of your SQL Server tasks. As you
become more familiar with the environment, you can introduce new tools and features to
help improve your overall productivity.

The discussion of SSMS does not end with this chapter. Further details related to SSMS are
covered throughout this book. You can use the new features described in this chapter as a
starting point and look to other chapters for more detailed discussion of database features
accessible through SSMS.

Chapter 5 looks at the SQL Server utilities that can be run from the command prompt.
These tools allow you to perform some of the same tasks available in SSMS. The capability
to launch these utilities from the command line can be useful when you’re automating
tasks or accessing SQL Server when a GUI tool such as SSMS is not available.

 Download from www.wowebook.com

ptg

CHAPTER 5

SQL Server Command-
Line Utilities

IN THIS CHAPTER

. What’s New in SQL Server
Command-Line Utilities

. The sqlcmd Command-Line
Utility

. The dta Command-Line Utility

. The tablediff Command-
Line Utility

. The bcp Command-Line Utility

. The sqldiag Command-Line
Utility

. The sqlservr Command-Line
Utility

This chapter explores various command-line utilities that
ship with SQL Server. These utilities give administrators a
different way to access the database engine and its related
components. In some cases, they provide functionality that
is also available with SQL Server’s graphical user interface
(GUI). Other command-line utilities provide functionality
that is available only from the command prompt. For each
utility, this chapter provides the command syntax along
with the most commonly used options. For the full syntax
and options available for the utility, see SQL Server Books
Online.

NOTE

This chapter focuses on command-line utilities that are
core to SQL Server and the SQL Server database
engine. Several other command-line utilities that are
used less frequently or geared toward other SQL
Server services are not covered in this chapter. These
utilities include dtexec and dtutil, which can be
used with SQL Server Integration Services (SSIS).
Reporting Services has the rs, rsconfig, and
rskeymgmt command-line utilities. Lastly, there are
several executable files documented as utilities in
Books Online (such as ssms, which opens the SQL
Server Management Studio) that have limited parame-
ters and are basically used to launch their related
applications.

Table 5.1 lists the command-line utilities discussed in this
chapter. This table lists the physical location of each utility’s

 Download from www.wowebook.com

ptg

104 CHAPTER 5 SQL Server Command-Line Utilities

TABLE 5.1 Command-Line Utility Installation Locations

Utility Install Location

sqlcmd x:\Program Files\Microsoft SQL Server\100\Tools\Binn

dta x:\Program Files\Microsoft SQL Server\100\Tools\Binn

tablediff x:\Program Files\Microsoft SQL Server\100\COM

bcp x:\Program Files\Microsoft SQL Server\100\Tools\Binn

sqldiag x:\Program Files\Microsoft SQL Server\100\Tools\Binn

sqlservr x:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\Binn

executable. The location is needed to execute the utility in most cases, unless the associ-
ated path has been added to the Path environmental variable.

NOTE

The tablediff utility is installed when SQL Server replication is installed. If you can’t
find the tablediff.exe in the location specified in Table 5.1, check to see whether the
replication was installed.

When you are testing many of these utilities, it is often easiest to set up a batch file (.BAT)
that contains a command to change the directory to the location shown in Table 5.1.
After you make this directory change, you can enter the command-line utility with the
relevant parameters. Finally, you should enter a PAUSE command so that you can view the
output of the utility in the command prompt window. Following is an example you can
use to test the sqlcmd utility (which is discussed in more detail later in this chapter):

CD “C:\Program Files\Microsoft SQL Server\100\Tools\Binn”

SQLCMD -S(local) -E -Q “select @@servername”

pause

After you save the commands in a file with a .BAT extension, you can simply double-click
the file to execute it. This approach is much easier than retyping the commands many
times during the testing process.

What’s New in SQL Server Command-Line Utilities
The SQL Server command-line utilities available in SQL Server 2008 are basically the same
as those offered with SQL Server 2005. This has some key benefits for those who are famil-
iar with the 2005 utilities. Very little has changed in the syntax, and batch files or scripts
you have used with these utilities in the past should continue to work unchanged.

 Download from www.wowebook.com

ptg

105The sqlcmd Command-Line Utility
5

A few command-line utilities have been added in SQL Server 2008, however, and some
have been removed. The sqlps utility is new to SQL Server 2008. This utility can be used
to run PowerShell commands and scripts. The sqlps utility and the PowerShell
Windows–based command-line management tool are discussed in detail in Chapter 17,
“Administering SQL Server 2008 with PowerShell.”

Utilities removed from SQL Server 2008 include sac. The sac utility can be used in SQL
Server 2005 to import or export settings available in the graphical Surface Area
Configuration (SAC) tool. Both the sac command-line utility and SAC graphical tool have
been removed. Similar functionality is now available via policy-based management and
the Configuration Manager tool.

The sqlcmd Command-Line Utility
The sqlcmd command-line utility is the next generation of the isql and osql utilities that
you may have used in prior versions of SQL Server. It provides the same type of function-
ality as isql and osql, including the capability to connect to SQL Server from the
command prompt and execute T-SQL commands. The T-SQL commands can be stored in a
script file, entered interactively, or specified as command-line arguments to sqlcmd.

NOTE

The isql and osql command-line utilities are not covered in this chapter. The isql
utility was discontinued in SQL Server 2005 and is not supported in SQL Server 2008.
The osql utility is still supported but will be removed in a future version of SQL Server.
Make sure to use sqlcmd in place of osql to avoid unnecessary reworking in the
future.

The syntax for sqlcmd follows:

sqlcmd

[{ { -U login_id [-P password] } | –E trusted connection }]

[-z new password] [-Z new password and exit]

[-S server_name [\ instance_name]] [-H wksta_name] [-d db_name]

[-l login time_out] [-A dedicated admin connection]

[-i input_file] [-o output_file]

[-f < codepage > | i: < codepage > [< , o: < codepage >]]

[-u unicode output] [-r [0 | 1] msgs to stderr]

[-R use client regional settings]

[-q “cmdline query”] [-Q “cmdline query” and exit]

[-e echo input] [-t query time_out]

[-I enable Quoted Identifiers]

[-v var = “value”...] [-x disable variable substitution]

[-h headers][-s col_separator] [-w column_width]

[-W remove trailing spaces]

 Download from www.wowebook.com

ptg

106

FIGURE 5.1 Executing sqlcmd interactively.

[-k [1 | 2] remove[replace] control characters]

[-y display_width] [-Y display_width]

[-b on error batch abort] [-V severitylevel] [-m error_level]

[-a packet_size][-c cmd_end]

[-L [c] list servers[clean output]]

[-p [1] print statistics[colon format]]

[-X [1]] disable commands, startup script, environment variables [and exit]

[-? show syntax summary]

The number of options available for sqlcmd is extensive, but many of the options are not
necessary for basic operations. To demonstrate the usefulness of this tool, we look at
several different examples of the sqlcmd utility, from fairly simple (using few options) to
more extensive.

Executing the sqlcmd Utility

Before we get into the examples, it is important to remember that sqlcmd can be run in
several different ways. It can be run interactively from the command prompt, from a
batch file, or from a Query Editor window in SSMS. When run interactively, the sqlcmd
program name is entered at the command prompt with the required options to connect to
the database server. When the connection is established, a numbered row is made avail-
able to enter the T-SQL commands. Multiple rows of T-SQL can be entered in a batch; they
are executed only after the GO command has been entered. Figure 5.1 shows an example
with two simple SELECT statements that were executed interactively with sqlcmd. The
connection in this example was established by typing sqlcmd at the command prompt to
establish a trusted connection to the default instance of SQL Server running on the
machine on which the command prompt window is opened.

CHAPTER 5 SQL Server Command-Line Utilities

The capability to edit and execute sqlcmd scripts was added to SSMS with SQL Server 2005.
A sqlcmd script can be opened or created in a Query Editor window within SSMS. To edit
these scripts, you must place the editor in SQLCMD Mode. You do so by selecting Query,
SQLCMD Mode or by clicking the related toolbar button. When the editor is put in
SQLCMD Mode, it provides color coding and the capability to parse and execute the

 Download from www.wowebook.com

ptg

107

FIGURE 5.2 Executing and editing sqlcmd scripts in SSMS.

The sqlcmd Command-Line Utility
5

commands within the script. Figure 5.2 shows a sample sqlcmd script opened in SSMS in a
Query Editor window set to SQLCMD Mode. The shaded lines are sqlcmd commands.

The most common means for executing sqlcmd utility is via a batch file. This method can
provide a great deal of automation because it allows you to execute a script or many
scripts by launching a single file. The examples shown in this section are geared toward
the execution of sqlcmd in this manner. The following simple example illustrates the
execution of sqlcmd, using a trusted connection to connect to the local database, and the
execution of a simple query that is set using the –Q option:

sqlcmd -S (local) -E -Q”select getdate()”

You can expand this example by adding an output file to store the results of the query and
add the –e option, which echoes the query that was run in the output results:

sqlcmd -S (local) -E -Q”select getdate()” -o c:\TestOutput.txt –e

The contents of the c:\TestOutput.txt file should look similar to this:

select getdate()

———————————-

2008-09-10 20:29:05.645

(1 rows affected)

Using a trusted connection is not the only way to use sqlcmd to connect to a SQL Server
instance. You can use the –U and –P command-line options to specify the SQL Server user
and password. sqlcmd also provides an option to specify the password in an environmen-
tal variable named sqlcmdPASSWORD, which can be assigned prior to the sqlcmd execution
and eliminates the need to hard-code the password in a batch file.

 Download from www.wowebook.com

ptg

108 CHAPTER 5 SQL Server Command-Line Utilities

sqlcmd also provides a means for establishing a dedicated administrator connection (DAC)
to the server. The DAC is typically used for troubleshooting on a server that is having
problems. It allows an administrator to get onto the server when others may not be able
to. If the DAC is enabled on the server, a connection can be established with the –A option
and a query can be run, as shown in the following example:

sqlcmd -S (local) -A -Q”select getdate()”

If you need to manage more complex T-SQL execution, it is typically easier to store the T-
SQL in a separate input file. The input file can then be referenced as a sqlcmd parameter.
For example, say that you have the following T-SQL stored in a file named
C:\TestsqlcmdInput.sql:

BACKUP DATABASE Master

TO DISK = ‘c:\master.bak’

BACKUP DATABASE Model

TO DISK = ‘c:\model.bak’

BACKUP DATABASE MSDB

TO DISK = ‘c:\msdb.bak’

The sqlcmd execution, which accepts the C:\TestsqlcmdInput.sql file as input and
executes the commands within the file, looks like this:

sqlcmd -S (local) -E -i”C:\TestsqlcmdInput.sql” -o c:\TestOutput.txt –e

The execution of the preceding example backs up three of the system databases and writes
the results to the output file specified.

Using Scripting Variables with sqlcmd

sqlcmd provides a means for utilizing variables within sqlcmd input files or scripts. These
scripting variables can be assigned as sqlcmd parameters or set within the sqlcmd script.
To illustrate the use of scripting variables, let’s change our previous backup example so
that the database that will be backed up is a variable. A new input file named
c:\BackupDatabase.sql should be created, and it should contain the following
command:

BACKUP DATABASE $(DatabaseToBackup)

TO DISK = ‘c:\$(DatabaseToBackup).bak’

The variable in the preceding example is named DatabaseToBackup. Scripting variables are
referenced using the $() designators. These variables are resolved at the time of execu-
tion, and a simple replacement is performed. This allows variables to be specified within
quotation marks, if necessary. The –v option is used to assign a value to a variable at the
command prompt, as shown in the following example, which backs up the model data-
base:

 Download from www.wowebook.com

ptg

109The dta Command-Line Utility
5

sqlcmd -S (local) -E -i”C:\BackupDatabase.sql” -v DatabaseToBackup = model

If multiple variables exist in the script, they can all be assigned after the –v parameter.
These variables should not be separated by a delimiter, such as a comma or semicolon.
Scripting variables can also be assigned within the script, using the :SETVAR command.
The input file from the previous backup would be modified as follows to assign the
DatabaseToBackup variable within the script:

:SETVAR DatabaseToBackup Model

BACKUP DATABASE $(DatabaseToBackup)

TO DISK = ‘c:\$(DatabaseToBackup).bak’

Scripts that utilize variables, sqlcmd commands, and the many available options can be
very sophisticated and can make your administrative life easier. The examples in this
section illustrate some of the basic features of sqlcmd, including some of the features that
go beyond what is available with osql.

The dta Command-Line Utility
dta is the command-line version of the graphical Database Engine Tuning Advisor. Both
the command-line utility and graphical tool provide performance recommendations based
on the workload provided to them. The syntax for dta is as follows:

Dta [-?] |

[

[-S server_name[\instance]]

{

{ -U login_id [-P password] }

| –E }

{ -D database_name [,...n] }

[-d database_name]

[-Tl table_list | -Tf table_list_file]

{ -if workload_file | -it workload_trace_table_name }

{ -s session_name | -ID session_ID }

[-F]

[-of output_script_file_name]

[-or output_xml_report_file_name]

[-ox output_XML_file_name]

[-rl analysis_report_list [,...n]]

[-ix input_XML_file_name]

[-A time_for_tuning_in_minutes]

[-n number_of_events]

[-m minimum_improvement]

[-fa physical_design_structures_to_add]

[-fp partitioning_strategy]

[-fk keep_existing_option]

 Download from www.wowebook.com

ptg

110 CHAPTER 5 SQL Server Command-Line Utilities

[-fx drop_only_mode]

[-B storage_size]

[-c max_key_columns_in_index]

[-C max_columns_in_index]

[-e | -e tuning_log_name]

[-N online_option]

[-q]

[-u]

[-x]

[-a]

]

An extensive number of options is available with this utility, but many of them are not
required to do basic analysis. At a minimum, you need to use options that provide
connection information to the database, a workload to tune, a tuning session identifier,
and the location to store the tuning recommendations. The connection options include
–S for the server name, –D for the database, and either –E for a trusted connection or –U
and –P, which can be used to specify the user and password.

The workload to tune is either a workload file or workload table. The –if option is used to
specify the workload file location, and the –it option is used to specify a workload table.
The workload file must be a Profiler trace file (.trc), SQL script (.sql) that contains T-SQL
commands, or SQL Server trace file (.log). The workload table is a table that contains
output from a workload trace. The table is specified in the form
database_name.owner_name.table_name.

The tuning session must be identified with either a session name or session ID. The
session name is character based and is specified with the –s option. If the session name is
not provided, a session ID must be provided instead. The session ID is numeric and is set
using the –ID option. If the session name is specified instead of the session ID, the dta
generates an ID anyway.

The last options required for a basic dta execution identify the destination to store the dta
performance recommendations, which can be stored in a script file or in XML. The –of
option is used to specify the output script filename. XML output is generated when the
–or or –ox option is used. The –or option generates a filename if one is not specified, and
the –ox option requires a filename. The –F option can be used with any of the output
options to force an overwrite of a file with the same name, if one exists.

To illustrate the use of dta with basic options, let’s look at an example of tuning a simple
SELECT statement against the AdventureWorks2008R2 database. To begin, you use the
following T-SQL, which is stored in a workload file named c:\myScript.sql:

USE AdventureWorks2008R2 ;

GO

select *

from Production.transactionHistory

where TransactionDate = ‘9/1/04’

 Download from www.wowebook.com

ptg

111The dta Command-Line Utility
5

The following example shows the basic dta execution options that can be used to acquire
performance recommendations:

dta -S xpvirtual1 -E -D AdventureWorks2008R2 -if c:\MyScript.sql

-s MySessionX -of C:\MySessionOutputScript.sql -F

NOTE

dta and other utilities executed at the command prompt are executed with all the
options on a single line. The preceding example and any others in this chapter that are
displayed on more than one line should actually be executed at the command prompt
or in a batch file on a single line. They are broken here because the printed page can
accommodate only a fixed number of characters.

The preceding example utilizes a trusted connection against the AdventureWorks2008R2
database, a workload file named c:\MyScript.sql, and a session named MySessionX, and
it outputs the performance recommendations to a text file named
c:\MySessionOutputScript.sql. The –F option is used to force a replacement of the
output file if it already exists. The output file contains the following performance recom-
mendations:

se [AdventureWorks2008R2]

go

CREATE NONCLUSTERED INDEX [_dta_index_TransactionHistory_5]

ON [Production].[TransactionHistory]

(

[TransactionDate] ASC

)

INCLUDE ([TransactionID],

[ProductID],

[ReferenceOrderID],

[ReferenceOrderLineID],

[TransactionType],

[Quantity],

[ActualCost],

[ModifiedDate])

WITH (SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF,

DROP_EXISTING = OFF, ONLINE = OFF) ON [PRIMARY]

go

In short, the dta output recommends that a new index be created on the TransactionDate
column in the TransactionHistory table. This is a viable recommendation, considering
that there was no index on the TransactionHistory.TransactionDate column, and it was
used as a search argument in the workload file.

 Download from www.wowebook.com

ptg

112 CHAPTER 5 SQL Server Command-Line Utilities

Many other options (that go beyond basic execution) can be used to manipulate the way
dta makes recommendations. For example, a list can be provided to limit which tables
the dta looks at during the tuning process. Options can be set to limit the amount of
time that the dta tunes or the number of events. These options go beyond the scope of
this chapter, but you can gain further insight into them by looking at the graphical DTA,
which contains many of the same types of options. You can refine your tuning options in
the DTA, export the options to an XML file, and use the –ix option with the dta utility to
import the XML options and run the analysis.

The tablediff Command-Line Utility
The tablediff utility enables you to compare the contents of two tables. It was originally
developed for replication scenarios to help troubleshoot nonconvergence, but it is also
very useful in other scenarios. When data in two tables should be the same or similar, this
tool can help determine whether they are the same, and if they are different, it can iden-
tify what data in the tables is different.

The syntax for tablediff is as follows:

tablediff

[-?] |

{

-sourceserver source_server_name[\instance_name]

-sourcedatabase source_database

-sourcetable source_table_name

[-sourceschema source_schema_name]

[-sourcepassword source_password]

[-sourceuser source_login]

[-sourcelocked]

-destinationserver destination_server_name[\instance_name]

-destinationdatabase subscription_database

-destinationtable destination_table

[-destinationschema destination_schema_name]

[-destinationpassword destination_password]

[-destinationuser destination_login]

[-destinationlocked]

[-b large_object_bytes]

[-bf number_of_statements]

[-c]

[-dt]

[-et table_name]

[-f [file_name]]

[-o output_file_name]

[-q]

[-rc number_of_retries]

[-ri retry_interval]

 Download from www.wowebook.com

ptg

113The tablediff Command-Line Utility
5

[-strict]

[-t connection_timeouts]

}

The tablediff syntax requires source and destination connection information to perform
a comparison. This information includes the servers, databases, and tables that will be
compared. Connection information must be provided for SQL Server authentication but
can be left out if Windows authentication can be used. The source and destination para-
meters can be for two different servers or the same server, and the tablediff utility can
be run on a machine that is neither the source nor the destination.

To illustrate the usefulness of this tool, let’s look at a sample comparison in the
AdventureWorks2008R2 database. The simplest way to create some data for comparison is
to select the contents of one table into another and then update some of the rows in one
of the tables. The following SELECT statement makes a copy of the AddressType table in
the AdventureWorks2008R2 database to the AddressTypeCopy table:

select *

into Person.AddressTypeCopy

from Person.AddressType

In addition, the following statement updates two rows in the AddressTypeCopy table so
that you can use the tablediff utility to identify the changes:

UPDATE Person.AddressTypeCopy

SET Name = ‘Billing New’

WHERE AddressTypeId = 1

UPDATE Person.AddressTypeCopy

SET Name = ‘Shipping New’,

ModifiedDate = ‘20090918’

WHERE AddressTypeId = 5

The tablediff utility can be executed with the following parameters to identify the differ-
ences in the AddressType and AddressTypeCopy tables:

tablediff -sourceserver “(local)” -sourcedatabase “AdventureWorks2008R2”

-sourceschema “Person”-sourcetable “AddressType”

-destinationserver “(local)” -destinationdatabase “AdventureWorks2008R2”

-destinationschema “Person” -destinationtable “AddressTypeCopy”

-f c:\TableDiff_Output.txt

The destination and source parameters are the same as in the previous example, except for
the table parameters, which have the source AddressType and the destination
AddressTypeCopy. The execution of the utility with these parameters results in the follow-
ing output to the command prompt window:

 Download from www.wowebook.com

ptg

114 CHAPTER 5 SQL Server Command-Line Utilities

User-specified agent parameter values:

-sourceserver (local)

-sourcedatabase AdventureWorks2008R2

-sourceschema Person

-sourcetable AddressType

-destinationserver (local)

-destinationdatabase AdventureWorks2008R2

-destinationschema Person

-destinationtable AddressTypeCopy

-f c:\TableDiff_Output

Table [AdventureWorks2008R2].[Person].[AddressType] on (local)

and Table [AdventureWorks2008R2].[Person].[AddressTypeCopy] on (local)

have 2 differences.

Fix SQL written to c:\TableDiff_Output.sql.

Err AddressTypeID Col

Mismatch 1 Name

Mismatch 5 ModifiedDate Name

The requested operation took 0.296875 seconds.

The output first displays a summary of the parameters used and then shows the compari-
son results. In this example, it found the two differences that are due to updates
performed on AddressTypeCopy. In addition, the –f parameter used in the example caused
the tablediff utility to output a SQL file that can be used to fix the differences in the
destination table. The output file from this example looks as follows:

— Host: (local)

— Database: [AdventureWorks2008R2]

— Table: [Person].[AddressTypeCopy]

SET IDENTITY_INSERT [Person].[AddressTypeCopy] ON

UPDATE [Person].[AddressTypeCopy]

SET [Name]=’Billing’

WHERE [AddressTypeID] = 1

UPDATE [Person].[AddressTypeCopy]

SET [ModifiedDate]=’2002-06-01 00:00:00.000’,

[Name]=’Shipping’ WHERE [AddressTypeID] = 5

SET IDENTITY_INSERT [Person].[AddressTypeCopy] OFF

NOTE

The tablediff utility requires the source table to have at least one primary key, identi-
ty, or ROWGUID column. This gives the utility a key that it can use to try to match a cor-
responding row in the destination table. If the –strict option is used, the destination
table must also have a primary key, identity, or ROWGUID column.

 Download from www.wowebook.com

ptg

115The bcp Command-Line Utility
5

Keep in mind that several different types of comparisons can be done with the tablediff
utility. The –q option causes a quick comparison that compares only record counts and
looks for differences in the schema. The –strict option forces the schemas of each table
to be the same when the comparison is run. If this option is not used, the utility allows
some columns to be of different data types, as long as they meet the mapping require-
ments for the data type (for example, INT can be compared to BIGINT).

The tablediff utility can be used for many different types of comparisons. How you use
this tool depends on several factors, including the amount and type of data you are
comparing.

The bcp Command-Line Utility
You use the bcp (bulk copy program) tool to address the bulk movement of data. This utility
is bidirectional, allowing for the movement of data into and out of a SQL Server database.

bcp uses the following syntax:

bcp {[[database_name.][owner].]{table_name | view_name} | “query”}

{in | out | queryout | format} data_file

[-mmax_errors] [-fformat_file] [-x] [-eerr_file]

[-Ffirst_row] [-Llast_row] [-bbatch_size]

[-n] [-c] [-N] [-w] [-V (60 | 65 | 70 | 80)] [-6]

[-q] [-C { ACP | OEM | RAW | code_page }] [-tfield_term]

[-rrow_term] [-iinput_file] [-ooutput_file] [-apacket_size]

[-Sserver_name[\instance_name]] [-Ulogin_id] [-Ppassword]

[-T] [-v] [-R] [-k] [-E] [-h”hint [,...n]”]

Some of the commonly used options—other than the ones used to specify the database,
such as user ID, password, and so on—are the –F and –L options. These options allow you
to specify the first and last row of data to be loaded from a file, which is especially helpful
in large batches. The –t option allows you to specify the field terminator that separates
data elements in an ASCII file. The –E option allows you to import data into SQL Server
fields that are defined with identity properties.

TIP

The BULK INSERT T-SQL statement and SSIS are good alternatives to bcp. The BULK
INSERT statement is limited to loading data into SQL Server, but it is an extremely fast
tool for loading data. SSIS is a sophisticated GUI that allows for both data import and
data export, and it has capabilities that go well beyond those that were available in
SQL Server 2000’s Data Transformation Services (DTS).

 Download from www.wowebook.com

ptg

116 CHAPTER 5 SQL Server Command-Line Utilities

This section barely scratches the surface when it comes to the capabilities of bcp. For a
more detailed look at bcp, refer to the section, “Using bcp” in Chapter 52, “SQL Server
Integration Services.”

The sqldiag Command-Line Utility
sqldiag is a diagnostic tool that you can use to gather diagnostic information about
various SQL Server services. It is intended for use by Microsoft support engineers, but you
might also find the information it gathers useful in troubleshooting a problem. sqldiag
collects the information into files that are written, by default, to a folder named SQLDIAG,
which is created where the file sqldiag.exe is located (for example, C:\Program
Files\Microsoft SQL Server\100\Tools\binn\SQLDIAG\). The folder holds files that
contain information about the machine on which SQL Server is running in addition to
the following types of diagnostic information:

. SQL Server configuration information

. SQL Server blocking output

. SQL Server Profiler traces

. Windows performance logs

. Windows event logs

The syntax for sqldiag changed quite a bit in SQL Server 2005, but very little has changed
in SQL Server 2008. Some of the options that were used in versions prior to SQL Server
2005 are not compatible with the current version. The full syntax for sqldiag is as
follows:

sqldiag

{ [/?] }

|

{ [/I configuration_file]

[/O output_folder_path]

[/P support_folder_path]

[/N output_folder_management_option]

[/C file_compression_type]

[/B [+]start_time]

[/E [+]stop_time]

[/A SQLdiag_application_name]

[/T { tcp [,port] | np | lpc | via }]

[/Q] [/G] [/R] [/U] [/L] [/X] }

|

{ [START | STOP | STOP_ABORT] }

|

{ [START | STOP | STOP_ABORT] /A SQLdiag_application_name }

 Download from www.wowebook.com

ptg

117The sqldiag Command-Line Utility
5

NOTE

Keep in mind that many of the options for sqldiag identify how and when the sqldiag
utility will be run. The utility can be run as a service, scheduled to start and stop at a
specific time of day, and it can be configured to change the way the output is generat-
ed. The details about these options are beyond the scope of this chapter but are cov-
ered in detail in SQL Server Books Online. This section is intended to give you a taste
of the useful information that this utility can capture.

By default, the sqldiag utility must be run by a member of the Windows Administrators
group, and this user must also be a member of the sysadmin fixed SQL Server role. To get
a flavor for the type of information that sqldiag outputs, open a command prompt
window, change the directory to the location of the sqldiag.exe file, and type the follow-
ing command:

sqldiag

No parameters are needed to generate the output. The command prompt window scrolls
status information across the screen as it collects the diagnostic information. You see the
message “SQLDIAG Initialization starting...” followed by messages that indicate what
information is being collected. The data collection includes a myriad of system informa-
tion from MSINFO32, default traces, and SQLDumper log files. When you are ready to stop
the collection, you can press Ctrl+C.

If you navigate to the sqldiag output folder, you find the files created during the collec-
tion process. In this output folder, you should find a file with MSINFO32 in its name. This
file contains the same type of information that you see when you launch the System
Information application from Accessories or when you run MSINFO32.EXE. This is key
information about the machine on which SQL Server is running. This information
includes the number of processors, the amount of memory, the amount of disk space, and
a slew of other hardware and software data.

You also find a file named xxx_sp_sqldiag_Shutdown.out, where xxx is the name of the
SQL Server machine. This file contains SQL Server–specific information, including the SQL
Server error logs, output from several key system stored procedures, including sp_helpdb
and sp_configure, and much more information related to the current state of SQL Server.

You find other files in the sqldiag output directory as well. Default trace files, log files
related to the latest sqldiag execution, and a copy of the XML file containing configura-
tion information are among them. Microsoft documentation on these files is limited, and
you may find that the best way to determine what they contain is simply to open the files
and review the wealth of information therein.

 Download from www.wowebook.com

ptg

118 CHAPTER 5 SQL Server Command-Line Utilities

The sqlservr Command-Line Utility
The sqlservr executable is the program that runs when SQL Server is started. You can use
the sqlservr executable to start SQL Server from a command prompt. When you do that,
all the startup messages are displayed at the command prompt, and the command prompt
session becomes dedicated to the execution of SQL Server.

CAUTION

If you start SQL Server from a command prompt, you cannot stop or pause it by using
SSMS, Configuration Manager, or the Services applet in the Control Panel. You should
stop the application only from the command prompt window in which SQL Server is run-
ning. If you press Ctrl+C, you are asked whether you want to shut down SQL Server. If
you close the command prompt window in which SQL Server is running, SQL Server is
automatically shut down.

The syntax for the sqlserver utility is as follows:

sqlservr [-sinstance_name] [-c] [-dmaster_path] [-f]

[-eerror_log_path] [-lmaster_log_path] [-m]

[-n] [-Ttrace#] [-v] [-x] [-gnumber] [-h]

Most commonly, you start SQL Server from the command prompt if you need to trou-
bleshoot a configuration problem. The –f option starts SQL Server in minimal configura-
tion mode. This allows you to recover from a change to a configuration setting that
prevents SQL Server from starting. You can also use the –m option when you need to start
SQL Server in single-user mode, such as when you need to rebuild one of the system data-
bases.

SQL Server functions when started from the command prompt in much the same way as
it does when it is started as a service. Users can connect to the server, and you can
connect to the server by using SSMS. What is different is that the SQL Server instance
running in the command prompt appears as if it is not running in some of the tools.
SSMS and SQL Server Service Manager show SQL Server as being stopped because they are
polling the SQL Server service, which is stopped when running in the command prompt
mode.

TIP

If you simply want to start the SQL Server service from the command prompt, you can
use the NET START and NET STOP commands. These commands are not SQL Server
specific but are handy when you want to start or stop SQL Server, especially in a batch
file. The SQL Server service name must be referenced after these commands. For
example, NET START MSSQLSERVER starts the default SQL Server instance.

 Download from www.wowebook.com

ptg

119Summary
5

Summary
SQL Server provides a set of command-line utilities that allow you to execute some of
the available SQL Server programs from the command prompt. Much of the functional-
ity housed in these utilities is also available in graphical tools, such as SSMS. However,
the capability to initiate these programs from the command prompt is invaluable in
certain scenarios.

Chapter 6, “SQL Server Profiler,” covers a tool that is critical for performance tuning in
SQL Server 2008. SQL Server Profiler provides insight by monitoring and capturing the
activity occurring on a SQL Server instance. It is a “go-to” tool for many DBAs and devel-
opers because of the wide variety of information that it can capture.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 6

SQL Server Profiler

IN THIS CHAPTER

. What’s New with SQL Server
Profiler

. SQL Server Profiler Architecture

. Creating Traces

. Executing Traces and Working
with Trace Output

. Saving and Exporting Traces

. Replaying Trace Data

. Defining Server-Side Traces

. Profiler Usage Scenarios

This chapter explores the SQL Server Profiler, one of SQL
Server’s most powerful auditing and analysis tools. The SQL
Server Profiler gives you a basic understanding of database
access and helps you answer questions such as these:

. Which queries are causing table scans on my invoice
history table?

. Am I experiencing deadlocks, and, if so, why?

. What SQL queries is each application submitting?

. Which were the 10 worst-performing queries last week?

. If I implement this alternative indexing scheme, how
will it affect my batch operations?

SQL Server Profiler records activity that occurs on a SQL
Server instance. The tool has a great deal of flexibility and
can be customized for your needs. You can direct SQL
Server Profiler to record output to a window, file, or table.
You can specify which events to trace, the information to
include in the trace, how you want that information
grouped, and what filters you want to apply.

What’s New with SQL Server Profiler
The SQL Server 2008 Profiler is essentially the same as the
SQL Server 2005 profiler. This is not surprising because
many new features that were added with SQL Server 2005
addressed gaps identified in previous versions. The changes
made in SQL Server 2008 are generally minor and include
several new trace events, one new trace column, and several
other minor changes to the profiler GUI screens.

 Download from www.wowebook.com

ptg

122 CHAPTER 6 SQL Server Profiler

Lock Manager

ODS

Query Processor

Log Manager

Error Log

OLE–DB

•••

User Defined

SQL Server Profiler
UI

Flat File

Table

Event Log

•••

Event
Producers

Filters Queue Event
Consumers

FIGURE 6.1 SQL Server Profiler’s architecture.

SQL Server Profiler Architecture
SQL Server 2008 has both a server and a client-side component for tracing activity on a
server. The SQL trace facility is the server-side component that manages queues of events
initiated by event producers on the server. Extended stored procedures can be used to
define the server-side events that are to be captured. These procedures, which define a SQL
trace, are discussed later in this chapter, in the section, “Defining Server-Side Traces.”

The SQL Profiler is the client-side tracing facility. It comes with a fully functional GUI that
allows for real-time auditing of SQL Server events. When it is used to trace server activity,
events that are part of a trace definition are gathered at the server. Any filters defined as
part of the trace definition are applied, and the event data is queued for its final destina-
tion. The SQL Profiler application is the final destination when client-side tracing is used.
The basic elements involved in this process are shown in Figure 6.1.

This figure illustrates the following four steps in the process when tracing from the SQL
Server Profiler:

1. Event producers, such as the Query Processor, Lock Manager, ODS, and so on, raise
events for the SQL Server Profiler.

2. The filters define the information to submit to SQL Server Profiler. A producer will
not send events if the event is not included in the filter.

 Download from www.wowebook.com

ptg

123Creating Traces
6

3. SQL Server Profiler queues all the events.

4. SQL Server Profiler writes the events to each defined consumer, such as a flat file, a
table, the Profiler client window, and so on.

In addition to obtaining its trace data from the event producers listed in step 1, you can
also configure SQL Profiler so that it obtains its data from a previously saved location. This
includes trace data saved in a file or table. The “Saving and Exporting Traces” section, later
in this chapter, covers using trace files and trace tables in more detail.

Creating Traces
Because SQL Server Profiler can trace numerous events, it is easy to get lost when reading
the trace output. You need to roughly determine the information you require and how
you want the information grouped. For example, if you want to see the SQL statements
that each user is submitting through an application, you could trace incoming SQL state-
ments and group them by user and by application.

When you have an idea about what you want to trace, you should launch the SQL Server
Profiler by selecting Start, then SQL Server 2008, then Performance Tools, and finally SQL
Server Profiler. You also can launch it from within SSMS from the Tools menu. When you
launch the Profiler, you are presented with an application window that is basically empty.
To start a new trace, you select the File menu and choose New Trace. In the connection
dialog that is displayed, you can enter the connectivity information for the server you
want to trace. After the connection is established, the General tab of the Trace Properties
window (see Figure 6.2) is displayed.

FIGURE 6.2 General trace properties.

 Download from www.wowebook.com

ptg

124

The first place you should look when creating a new trace is at the trace templates. These
templates contain predefined trace settings that address some common auditing needs.
They have preset events, data columns, and filters targeted at specific profiling scenarios.
The available trace templates, found in the template drop-down on the General tab of the
Trace Properties window, are listed in Table 6.1.

CHAPTER 6 SQL Server Profiler

TABLE 6.1 SQL Profiler Templates

Template Description

SP_Counts Tracks all the stored procedures as they start. No event except for the stored
procedure starting is traced.

Standard Traces the completion of SQL statements and Remote Procedure Calls (RPCs)
as well as key connection information.

TSQL Traces the start of SQL statements and RPCs. This template is useful for
debugging client applications where some of the statements are not complet-
ing successfully.

TSQL_Duration Traces the total execution time for each completed SQL statement or RPC.

TSQL_Grouped Traces the start of SQL statements and RPCs, grouped by Application,
NTUser, LoginName, and ClientProcessId.

TSQL_Locks Traces the completion of SQL statements along with the key lock information
that can be used to troubleshoot lock timeouts, deadlocks, and lock escalation
issues.

TSQL_Replay Captures profiling information that is useful for replay. This template contains
the same type of information as the standard template, but it adds more
detail, including cursor and RPC output details.

TSQL_SPs Traces stored procedures in detail, including the start and completion of each
stored procedure. The SQL statements within each procedure are traced as
well.

Tuning Performs a streamlined trace that tracks only the completion of SQL state-
ments and RPCs. The completion events provide duration details that can be
useful for performance tuning.

 Download from www.wowebook.com

ptg

125Creating Traces
6

Keep in mind that the templates that come with SQL Server 2008 are not actual traces.
They simply provide a foundation for you in creating your own traces. After you select a
template, you can modify the trace setting and customize it for your own needs. You can
then save the modified template as its own template file that will appear in the template
drop-down list for future trace creation.

Trace Name is another property you can modify on the General tab. Trace Name is a rela-
tively unimportant trace property for future traces. When you create a new trace, you can
specify a name for the trace; however, this trace name will not be used again. For instance,
if you have a trace definition you like, you can save the trace definition as a template file.
If you want to run the trace again in the future, you can create a new trace and select the
template file that you saved. You will not be selecting the trace to run based on the trace
name you entered originally. Trace Name is useful only if you are running multiple traces
simultaneously and need to distinguish between them more easily.

TIP

Do yourself a favor and save your favorite trace definitions in your own template. The
default set of templates that come with SQL Server are good, but you will most likely
want to change the position of a column or add an event that you find yourself using all
the time. It is not hard to adjust one of the default templates to your needs each time,
but if you save your own template with exactly what you need, it makes the task all the
more easy. After you save your own template, you can set it as the default template,
and it will be used by default every time you start the Profiler.

The Save to File and Save to Table options on the General tab of the Trace Properties page
allow you to define where the trace output is stored. You can save the output to a flat file
or SQL Server table. These options are discussed in more detail later in the chapter, in the
section “Saving and Exporting Traces.”

The last option on the General tab of the Trace Properties window is the Enable Trace Stop
Time option. This scheduling-oriented feature allows you to specify a date and time at
which you want to stop tracing. This capability is handy if you want to start a trace in the
evening before you go home. You can set the stop time so that the trace will run for a few
hours but won’t affect any nightly processing that might occur later in the evening.

Events

The events and data columns that will be captured by your Profiler trace are defined on
the Events Selection tab. An example of the Events Selection tab is shown in Figure 6.3.

The Events Selection tab consolidates the selection of events, data columns, and filters on
one screen. One of the biggest advantages of the SQL Server 2008 Events Selection tab is
that you can easily determine which data columns will be populated for each event by
looking at the columns that have check boxes available for the event. For example, the
Audit Login event has check boxes for Text Data, ApplicationName, and others but does
not have a check box available for CPU, Reads, Writes, and other data columns that are
not relevant to the event. For those data columns that have check boxes, you have the

 Download from www.wowebook.com

ptg

126 CHAPTER 6 SQL Server Profiler

FIGURE 6.3 The Events Selection tab.

option of unchecking the box so that the data column will not be populated for the event
when the trace is run.

You may find that adding events in SQL Server 2008 is a bit confusing. When you select a
template, the event categories, selected events in those categories, and selected columns
are displayed in the Events Selection tab. Now, if you want to add additional events, how
do you do it? The answer to this question lies in the Show All Events check box in the
lower-right corner of the Events Selection tab. When you click this check box, all the
available event categories are listed on the screen. The events and columns that you had
previously selected may or may not be visible on the screen. They are not lost, but you
may need to scroll down the Events Selection tab to find the event categories that contain
the events you had selected prior to selecting the Show All Events check box.

You will also notice that all the events in the categories in which you had events selected
are displayed. In other words, if you had only 2 events selected in the Security Audit cate-
gory and then selected the Show All Events check box, you see all 42 events listed. The
only 2 events selected are the ones you had selected previously, but you need to wade
through many events to see them. One upside to this kind of display is that you can easily
view all the events for a category and the columns that relate to the events. One possible
downside is that the Events Selection tab can be very busy, and it may take a little extra
time to find what you are looking for.

 Download from www.wowebook.com

ptg

127Creating Traces
6

TIP

If you capture too many events in one trace, the trace becomes difficult to review.
Instead, you can create several traces, one for each type of information that you want
to examine, and run them simultaneously. You can also choose to add or remove
events after the trace has started. Keep in mind that you can pause a running trace,
change the selected events, and restart the trace without losing the output that was
there prior to pausing the trace.

Your ability to select and view events is made easier by using the tree control available on
each event. The tree control allows you to expand or compress an event category. When
you click the + icon next to a category, all the events are displayed. When you click the –
icon, the event category is collapsed to a single row on the display. When an event has
been selected for use within a category, the category name is shown in bold. If you want
to add all the events in a category to your trace, you can simply right-click the category
name and choose the Select Event Category option. You can also remove all events in a
category by right-clicking the category name and choosing the Deselect Event Category
option.

Understanding what each of the events captures can be a challenging task. You can refer to
“SQL Server Event Class Reference” in Books Online for a detailed description, or you can
use the simple Help facility available on the Events Selection tab. The Events Selection tab
has a Help facility that describes each of the events and categories. The Help text is
displayed on the Events Selection tab below the list of available events. When you mouse
over a particular event or event category, a description of that item is shown. This puts the
information you need at your fingertips.

NOTE

If you are going to use SQL Server Profiler, you should spend some time getting to
know the events first and the type of output that Profiler generates. You should do this
first in a development environment or standalone environment where the Profiler’s
effect on performance does not matter. It’s a good idea to start a trace with a few
events at a time and execute some relevant statements to see what is displayed for
each event. You will soon realize the strength of the SQL Server Profiler and the type of
valuable information it can return.

Data Columns

The columns of information captured in a Profiler trace are determined by the Data
Columns selected. The Events Selection tab has the functionality you need to add
columns, organize the columns, and apply filters on the data returned in these columns.
As mentioned earlier, you can select and deselect the available columns for a particular
event by using the check boxes displayed for the listed events. To understand what kind of

 Download from www.wowebook.com

ptg

128 CHAPTER 6 SQL Server Profiler

FIGURE 6.4 Help for data columns on the Events Selection tab.

information a column is going to return, you can simply mouse over the column, and
Help for that item is displayed in the second Help box below the event list. Figure 6.4
shows an example of the Help output. In this particular case, the mouse pointer is over
the ApplicationName column returned for the SQL:BatchCompleted event. The first Help
box displays information about the SQL:BatchCompleted event, and the second Help box
shows information about the data column.

Keep in mind that there is a default set of columns displayed for each event. You can view
additional columns by selecting the Show All Columns check box. When you choose this
option, an additional set of columns is displayed in the Events Selection tab. The addi-
tional columns are shown with a dark gray background, and you may need to scroll to the
right on the Events Selection tab to be able to see them. Figure 6.5 shows an example of
the additional columns displayed for the Performance event when the Show All Columns
option is used. Some of the additional columns available for selection in this example are
BigintData1 and BigintData2.

To organize the columns you have selected, you can choose the Organize Columns selec-
tion on the Events Selection tab. This Organize Columns window allows you to change
the order of the columns in the trace output as well as group the data by selected
columns. Figure 6.6 shows an example of the Organize Columns window with the groups
and columns selected by default when you use the TSQL_Grouped template.

To change the order of a column, you simply select the column in the list and use the Up
or Down buttons to move it. The same movement can be done with columns selected for
grouping. You add columns to groups by selecting the column in the data list and clicking
the Up button until the column is moved out of the Columns list and into the Groups

 Download from www.wowebook.com

ptg

129Creating Traces
6

FIGURE 6.5 Additional columns displayed with the Show All Columns option.

FIGURE 6.6 Organizing columns in the Events Selection tab.

list. For example, in Figure 6.6, you can group the SPID column by selecting it and click-
ing the Up button until it moves into the Groups tree structure instead of the Columns
tree structure.

TIP

You can select a particular column for all events by right-clicking the column header in
the Events Selection tab and choosing the Select Column option. This causes all the
check boxes on the grid to be selected. To remove a column from all events, you right-
click the column header and choose Deselect Column.

 Download from www.wowebook.com

ptg

130 CHAPTER 6 SQL Server Profiler

FIGURE 6.7 Grouping on a single column.

The number of columns selected for grouping and the order of the columns are both
important factors in the way the trace data will be displayed. If you choose only one
column for grouping, the trace window displays events grouped by the values in the
grouped data column and collapses all events under it. For example, if you group by
DatabaseId, the output in the trace window grid displays DatabaseId as the first column,
with a + sign next to each DatabaseId that has received events. The number displayed to
the right of the event in parentheses shows the number of collapsed events that can be
viewed by clicking on the + sign. Figure 6.7 shows an example of the trace output window
that has been grouped by DatabaseId only. The database with a DatabaseId equal to 6 is
shown at the bottom of the grid in this example. The grid has been expanded, and some
of the 20 events that were captured for this DatabaseId are shown.

If you select multiple columns for grouping, the output in the trace window is ordered
based on the columns in the grouping. The events are not rolled up like a single column,
but the trace output grid automatically places the incoming events in the proper order in
the output display.

TIP

The organization of columns in a trace can happen after a trace has been defined and
executed. If you save the trace to a file or table, you can open it later and specify what-
ever ordering or grouping you want to reorganize the output. This flexibility gives you
almost endless possibilities for analyzing the trace data.

Filters

Filters restrict the event data returned in your trace output. You can filter the events
captured by the SQL Profiler via the Column Filters button on the Events Selection tab. An
example of the Edit Filter window is shown in Figure 6.8. All the available columns for the

 Download from www.wowebook.com

ptg

131Creating Traces
6

trace are shown on the left side of the Edit Filter window. Those columns that have filters
on them have a filter icon displayed next to the column in the column list.

The filtering options in SQL Server 2008 are similar to those available in SQL Server 2005.
Which options are available depends on the type of column you are filtering on. The
different filtering options are as follows:

. Like/Not Like—This option enables you to include or exclude events based on a
wildcard. You should use the % character as your wildcard character. When you have
completed a filter definition you can press Enter to create an entry space for another
filter definition. For example, with the ApplicationName filter, you can specify Like
Microsoft%, and you get only those events related to applications that match the
wildcard, such as Microsoft SQL Server Management Studio. This filtering option is
available for text data columns and data columns that contain name information,
such as NTUserName and ApplicationName.

. Equals/Not Equal To/Greater Than or Equal/Less Than or Equal—Filters with
this option have all four of these conditions available. For the Equals and Not Equal
To conditions, you can specify a single value or a series of values. For a series of
values, you hit enter after each value is entered and a new entry space is created for
you to enter the next value. For the other conditional types, a single value is
supplied. For example, you can filter on DataBaseID and input numeric values under
the Equals To node of the filtering tree. This filtering option is available for numeric
data columns such as Duration, IndexId, and ObjectId.

. Greater Than/Less Than—This type of filtering option is available only on time-
based data columns. This includes StartTime and EndTime filters. These filters expect
date formats of the form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS.

Each data column can use one of these three filtering options. When you click the data
column available for filtering, you see the filtering options for that column displayed in
the right pane of the Edit Filter window. You enter the values on which you want to filter

FIGURE 6.8 Editing filter properties.

 Download from www.wowebook.com

ptg

132 CHAPTER 6 SQL Server Profiler

in the data entry area on the filter tree. This input area is shown when you select a
specific filtering option. For multiple filter values, you press the Enter key after you enter
each value. This causes a new data entry area to appear below the value you were on.

CAUTION

Filters applied to columns that are not available or selected for an event do not prevent
the event data from being returned. For example, if you place a filter on the
ObjectName column and choose the SQL:StmtStarting event as part of your trace,
the event data is not filtered because ObjectName is not a valid column for that event.
This behavior may seem relatively intuitive, but it is something to consider when you
are receiving output from a trace that you believe should have been filtered out.

Also, be careful when specifying multiple filter values and consider the Boolean logic
applied to them. When you specify multiple values for the Like filter, the values are
evaluated with an OR condition. For example, if you create a filter on ObjectName and
have a Like filter with values of A%, B%, and C%, the filter returns object names that
start with A or B or C. When you use the Not Like filter, the AND condition is used on
multiple values. For example, Not Like filter values for ObjectName of A% and C%
result in objects with names that do not start with A and object names that do not
start with C.

Executing Traces and Working with Trace Output
After you define the events and columns you want to capture in a trace, you can execute
the Profiler trace. To do so, you click the Run button on the Trace Properties window, and
the Profiler GUI starts capturing the events you have selected. The GUI contains a grid
that is centrally located on the Profiler window, and newly captured events are scrolled on
the screen as they are received. Figure 6.9 shows a simple example of the Profiler screen
with output from an actively running trace.

The Profiler GUI provides many different options for dealing with an actively running
trace. You can turn off scrolling on the trace, pause the trace, stop the trace, and view the
properties of an actively running trace. You can find strings within the trace output, and
you can even move the columns around in the display so that they are displayed in a
different order. These options provide a great deal of flexibility and allow you to focus on
the output that is most important to you.

Saving and Exporting Traces
In many cases, you want to save or export the trace output generated by a Profiler trace.
The output can be analyzed, replayed, imported, or manipulated at a later time after it has
been saved. Trace output can be saved as the trace is running or saved after it has been
generated to the Profiler GUI. The Trace Properties window provides options for saving
trace output while the trace is running. The options are defined using the Save to File and
Save to Table options on the General tab of the Trace Properties window. You can save to a

 Download from www.wowebook.com

ptg

133Saving and Exporting Traces
6

FIGURE 6.9 The Profiler GUI with an active trace.

file, a table, or both a table and a file. Figure 6.10 shows an example of a trace that will
save to both a file and table while it is executing.

Saving Trace Output to a File

When you save a running trace to a file, you have several options for controlling the
output. One option you should always consider is the Set Maximum File Size (MB) option.
This option prevents a trace output file from exceeding the specified size. Controlling the

FIGURE 6.10 Saving trace output while a trace is running.

 Download from www.wowebook.com

ptg

134 CHAPTER 6 SQL Server Profiler

size helps make the file more manageable and, more importantly, it can save you from
having a trace file gobble up all the disk space on the drive you are writing to. Remember
that the amount of trace data written to a file on a busy production system can be exten-
sive. You can also use this file size option in conjunction with the Enable File Rollover
option. When the Enable File Rollover option is used, the trace does not stop when the
file size maximum is met. Instead, a new trace file is created, and the output is generated
to that file until it reaches the file size maximum.

Saving Trace Output to a Table

The Save to Table option writes the trace output directly to a SQL Server table as the trace
is running. Having the data in a SQL table provides a great deal of flexibility for analyzing
the data. You can use the full power of Transact-SQL against the table, including sorting,
grouping, and more complex search conditions that are not available through the SQL
Profiler filters.

You need to consider both the disk space requirements and impact on performance when
the Save to Table option is used. The Profiler provides an option, Set Maximum Rows (in
Thousands), to limit the amount of output generated from the trace. The performance
impact depends on the volume of data being written to the table. Generally, you should
avoid writing the trace output to a table when using high-volume SQL servers. The best
option for high-volume servers is to first write the trace output to a file and then import
the file to a trace table at a later time.

Saving the Profiler GUI Output

Another option for saving trace output occurs after trace output has been generated to the
Profiler GUI and the trace has been stopped. Similar to the save options for an executing
trace, the GUI output can be saved to a file or table. You access the options to save the
GUI output by selecting File, Save As. The Trace File and Trace Table options are used to
save to a file or table consecutively. With SQL Server 2008, you can also save the output to
an XML file. The Trace XML File and Trace XML File for Replay options generate XML
output that can be edited or used as input for replay with the SQL Server Profiler.

NOTE

Two distinct save operations are available in the SQL Profiler. You can save trace
events to a file or table as just described, or you can save a trace definition in a tem-
plate file. The Save As Trace Table and Save As Trace File options are for saving trace
events to a file. The Save As Trace Template option saves the trace definition. Saving a
trace template saves you the trouble of having to go through all the properties each
time to set up the events, data columns, and filters for your favorite traces.

An alternative to saving all the event data associated with a particular trace is to select
specific event rows from the SQL Profiler windows. You can capture all the trace informa-
tion associated with a trace row by selecting a row in the trace output window of Profiler

 Download from www.wowebook.com

ptg

135Saving and Exporting Traces
6

and choosing Edit, Copy. Or, you can just copy the event text (typically a SQL statement)
by selecting the row, highlighting the text in the lower pane, and using the Copy option.
You can then paste this data into SSMS or the tool of your choice for further execution
and more detailed analysis. This capability can be particularly useful during performance
tuning. After you identify the long-running statement or procedure, you can copy the
SQL, paste it into SSMS, and display the query plan to determine why the query was
running so long.

Importing Trace Files

A trace saved to a file or table can be read back into SQL Profiler at a later time for more
detailed analysis or to replay the trace on the same SQL Server or another SQL Server
instance. You can import data from a trace file or trace table by choosing File, Open and
then selecting either a trace file or trace table. If you choose to open a trace file, you are
presented with a dialog to locate the trace file on the local machine. If you choose to
import a trace table, you are first presented with a connection dialog to specify the SQL
Server name, the login ID, and the password to connect to it. When you are successfully
connected, you are presented with a dialog to specify the database and name of the trace
table you want to import from. After you specify the trace file or trace table to import
into Profiler, the entire contents of the file or table are read in and displayed in a Profiler
window.

You may find that large trace files or trace tables are difficult to analyze, and you may just
want to analyze events associated with a specific application or table, or specific types of
queries. To limit the amount of information displayed in the Profiler window, you can
filter out the data displayed via the Properties dialog. You can choose which events and
data columns you want to display and also specify conditions in the Filters tab to limit the
rows displayed from the trace file or trace table. These options do not affect the informa-
tion stored in the trace file or trace table—only what information is displayed in the
Profiler window.

Importing a Trace File into a Trace Table

Although you can load a trace file directly into Profiler for analysis, very large files can be
difficult to analyze. Profiler loads an entire file. For large files, this process can take quite
awhile, and the responsiveness of Profiler might not be the best. Multiple trace output
files for a given trace can also be cumbersome and difficult to manage when those files
are large.

You can use the trace filters to limit which rows are displayed but not which rows are
imported into Profiler. You often end up with a bunch of rows displayed with no data in
the columns you want to analyze. In addition, while the filters allow you to limit which
rows are displayed, they don’t really provide a means of running more complex reports on
the data, such as generating counts of events or displaying the average query duration.

Fortunately, SQL Server 2008 provides a way for you to selectively import a trace file into a
trace table. When importing a trace file into a trace table, you can filter the data before it
goes into the table as well as combine multiple files into a single trace table. When the

 Download from www.wowebook.com

ptg

136 CHAPTER 6 SQL Server Profiler

data is in a trace table, you can load the trace table into Profiler or write your own queries
and reports against the trace table for more detailed analysis than is possible in Profiler.

Microsoft SQL Server also includes some built-in user-defined functions for working with
Profiler traces. The fn_trace_gettable function is used to import trace file data into a
trace table. Following is the syntax for this function:

fn_trace_gettable([@filename =] filename , [@numfiles =] number_files)

This function returns the contents of the specified file as a table result set. You can use the
result set from this function just as you would any table. By default, the function returns
all possible Profiler columns, even if no data was captured for the column in the trace. To
limit the columns returned, you specify the list of columns in the query. If you want to
limit the rows retrieved from the trace file, you specify your search conditions in the
WHERE clause. If your Profiler trace used rollover files to split the trace across multiple files,
you can specify the number of files you want it to read in. If the default value of default
is used, all rollover files for the trace are loaded. Listing 6.1 provides an example of creat-
ing and populating a trace table from a trace file, using SELECT INTO, and then adding
rows by using an INSERT statement. Note that this example limits the columns and rows
returned by specifying a column list and search conditions in the WHERE clause.

LISTING 6.1 Creating and Inserting Trace Data into a Trace Table from a Trace File

/**

** NOTE - you will need to edit the path/filename on your system if

** you use this code to load your own trace files

***/

select EventClass,

EventSubClass,

TextData = convert(varchar(8000), TextData),

BinaryData,

ApplicationName,

Duration,

StartTime,

EndTime,

Reads,

Writes,

CPU,

ObjectID,

IndexID,

NestLevel

into TraceTable

FROM ::fn_trace_gettable(‘c:\temp\sampletrace_ 20090510_0622.trc’, default)

where TextData is not null

or EventClass in (16, — Attention

25, — Lock:Deadlock

 Download from www.wowebook.com

ptg

137Saving and Exporting Traces
6

27, — Lock:Timeout

33, — Exception

58, — Auto Update Stats

59, — Lock:Deadlock Chain

79, — Missing Column Statistics

80, — Missing Join Predicate

92, — Data File Auto Grow

93, — Log File Auto Grow

94, — Data File Auto Shrink

95) — Log File Auto Shrink

Insert into TraceTable (EventClass, EventSubClass,

TextData, BinaryData,

ApplicationName, Duration, StartTime, EndTime, Reads, Writes,

CPU, ObjectID, IndexID, nestlevel)

select EventClass, EventSubClass,

TextData = convert(varchar(7900), TextData), BinaryData,

ApplicationName, Duration, StartTime, EndTime, Reads, Writes,

CPU, ObjectID, IndexID, nestlevel

FROM ::fn_trace_gettable(‘c:\temp\sampletrace_ 20090510_0205.trc’, -1)

where TextData is not null

or EventClass in (16, — Attention

25, — Lock:Deadlock

27, — Lock:Timeout

33, — Exception

58, — Auto Update Stats

59, — Lock:Deadlock Chain

79, — Missing Column Statistics

80, — Missing Join Predicate

92, — Data File Auto Grow

93, — Log File Auto Grow

94, — Data File Auto Shrink

95) — Log File Auto Shrink

go

After the trace file is imported into a trace table, you can open the trace table in Profiler or
run your own queries against the trace table from a query editor window in SSMS. For
example, the following query returns the number of lock timeouts encountered for each
table during the period the trace was running:

select object_name(ObjectId), count(*)

from TraceTable

where EventClass = 27 — Lock:Timout Event

group by object_name(ObjectId)

go

 Download from www.wowebook.com

ptg

138 CHAPTER 6 SQL Server Profiler

Analyzing Trace Output with the Database Engine Tuning Advisor

In addition to being able to manually analyze traces in Profiler, you can also use the
Database Engine Tuning Advisor to analyze the queries captured in a trace and recom-
mend changes to your indexing scheme. The Database Engine Tuning Advisor is a replace-
ment for the Index Tuning Wizard that was available in SQL Server 2000. You can invoke
it from the Tools menu in SQL Profiler. The Database Engine Tuning Advisor can read in a
trace that was previously saved to a table or a file. This feature allows you to capture a
workload, tune the indexing scheme, and re-run the trace to determine whether the index
changes improved performance as expected.

Because the Database Engine Tuning Advisor analyzes SQL statements, you need to make
sure that the trace includes one or more of the following events:

SP:StmtCompleted

SP:StmtStarting

SQL:BatchCompleted

SQL:BatchStarting

SQL:StmtCompleted

SQL:StmtStarting

One of each class (one SP: and one SQL:) is sufficient to capture dynamic SQL statements
and statements embedded in stored procedures. You should also make sure that the trace
includes the text data column, which contains the actual queries.

The Database Engine Tuning Advisor analyzes the trace and gives you recommendations,
along with an estimated improvement-in-execution time. You can choose to create
indexes now or at a later time, or you can save the CREATE INDEX commands to a script
file.

Replaying Trace Data
To replay a trace, you must have a trace saved to a file or a table. The trace must be
captured with certain trace events to enable playback. The required events are captured by
default if you use the Profiler template TSQL_Replay. You can define a trace to be saved
when you create or modify the trace definition. You can also save the current contents of
the trace window to a file or table by using the Save As Trace File or Save As Trace Table
options in the File menu.

To replay a saved trace, you choose File and then Open to open a trace file or trace table.
After you select the type of trace to replay, a grid with the trace columns selected in the
original trace is displayed. At this point, you can either start the replay of the trace step-
by-step or complete execution of the entire trace. The options for replaying the trace are
found under the Replay menu. When you start the replay of the trace, the Connect to

 Download from www.wowebook.com

ptg

139Replaying Trace Data
6

Server dialog is displayed, enabling you to choose the server that you want to replay the
traces against. When you are connected to a server, a Replay Configuration dialog like the
one shown in Figure 6.11 is displayed.

The first replay option, which is enabled by default, replays the trace in the same order in
which it was captured and allows for debugging. The second option takes advantage of
multiple threads; it optimizes performance but disables debugging. A third option involves
specifying whether to display the replay results. You would normally want to see the
results, but for large trace executions, you might want to forgo displaying the results and
send them to an output file instead.

If you choose the option that allows for debugging, you can execute the trace in a manner
similar to many programming tools. You can set breakpoints, step through statements one
at a time, or position the cursor on a statement within the trace and execute the state-
ments from the beginning of the trace to the cursor position.

NOTE

Automating testing scripts is another important use of the SQL Profiler Save and
Replay options. For instance, a trace of a heavy production load can be saved and
rerun against a new release of the database to ensure that the new release has simi-
lar or improved performance characteristics and returns the same data results. The
saved traces can help make regression testing much easier.

You also have the option of specifying advanced replay options in SQL Server 2008. These
options are found on the Advanced Replay Options tab of the Replay Configuration dialog
(see Figure 6.12).

FIGURE 6.11 Basic replay options.

 Download from www.wowebook.com

ptg

140 CHAPTER 6 SQL Server Profiler

FIGURE 6.12 Advanced replay options.

The first two options on the Advanced Replay Options tab relate to the system process IDs
(SPIDs) targeted for replay. If the Replay System SPIDs option is selected, the trace events
for every SPID in the trace file will be replayed. If you want to target activity for a specific
SPID, you should choose the Replay One SPID Only option and select the SPID from the
drop-down menu. You can also limit the events that will be replayed based on the timing
of the events. If you want to replay a specific time-based section of the trace, you can use
the Limit Replay by Date and Time option. Only those trace events that fall between the
data range you specify will be replayed.

The last set of advanced options is geared toward maintaining the health of the server on
which you are replaying the trace. The Health Monitor Wait Interval (sec) option deter-
mines the amount of time a thread can run during replay before being terminated. This
helps avoid an excessive drain on the server’s resources. The Health Monitor Poll Interval
(sec) option determines how often the health monitor will poll for threads that should be
terminated. The last advanced option on the screen relates to blocked processes. When it
is enabled, the monitor polls for blocked processes according to the interval specified.

Defining Server-Side Traces
Much of the SQL Server Profiler functionality can also be initiated through a set of system
stored procedures. Through these procedures, you can define a server-side trace that can
be run automatically or on a scheduled basis, such as via a scheduled job, instead of
through the Profiler GUI. Server-side traces are also useful if you are tracing information
over an extended period of time or are planning on capturing a large amount of trace
information. The overhead of running a server-side trace is less than that of running a
client-side trace with Profiler.

 Download from www.wowebook.com

ptg

141Defining Server-Side Traces
6

To start a server-side trace, you need to define the trace by using the trace-related system
procedures. These procedures can be called from within a SQL Server stored procedure or
batch. You define a server-side trace by using the following four procedures:

. sp_trace_create—This procedure is used to create the trace definition. It sets up
the trace and defines the file to store the captured events. sp trace create returns a
trace ID number that you need to reference from the other three procedures to
further define and manage the trace.

. sp_trace_setevent—You need to call this procedure once for each data column
of every event that you want to capture.

. sp_trace_setfilter—You call this procedure once for each filter you want to
define on an event data column.

. sp_trace_setstatus—After the trace is defined, you call this procedure to start,
stop, or remove the trace. You must stop and remove a trace definition before you
can open and view the trace file.

You will find that manually creating procedure scripts for tracing can be rather tedious.
Much of the tedium is due to the fact that many numeric parameters drive the trace
execution. For example, the sp_trace_setevent procedure accepts an eventid and a
columnid that determine what event data will be captured. Fortunately, SQL Server 2008
provides a set of catalog views that contain these numeric values and what they represent.
The sys.trace_categories catalog view contains the event categories. The
sys.trace_events catalog view contains the trace events, and sys.trace_columns
contains the trace columns. The following SELECT statement utilizes two of these system
views to return the available events and their related categories:

select e.trace_event_id, e.name ‘Event Name’, c.name ‘Category Name’

from sys.trace_events e

join sys.trace_categories c on e.category_id = c.category_id

order by e.trace_event_id

The results of this SELECT statement are shown in Table 6.2.

TABLE 6.2 Trace Events and Their Related Categories

trace_event_id Event Name Category Name

10 RPC:Completed Stored Procedures

11 RPC:Starting Stored Procedures

12 SQL:BatchCompleted T-SQL

13 SQL:BatchStarting T-SQL

 Download from www.wowebook.com

ptg

142 CHAPTER 6 SQL Server Profiler

TABLE 6.2 Trace Events and Their Related Categories

trace_event_id Event Name Category Name

14 Audit Login Security Audit

15 Audit Logout Security Audit

16 Attention Errors and Warnings

17 ExistingConnection Sessions

18 Audit Server Starts And Stops Security Audit

19 DTCTransaction Transactions

20 Audit Login Failed Security Audit

21 EventLog Errors and Warnings

22 ErrorLog Errors and Warnings

23 Lock:Released Locks

24 Lock:Acquired Locks

25 Lock:Deadlock Locks

26 Lock:Cancel Locks

27 Lock:Timeout Locks

28 Degree of Parallelism Performance

33 Exception Errors and Warnings

34 SP:CacheMiss Stored Procedures

35 SP:CacheInsert Stored Procedures

36 SP:CacheRemove Stored Procedures

37 SP:Recompile Stored Procedures

38 SP:CacheHit Stored Procedures

40 SQL:StmtStarting T-SQL

41 SQL:StmtCompleted T-SQL

42 SP:Starting Stored Procedures

43 SP:Completed Stored Procedures

44 SP:StmtStarting Stored Procedures

45 SP:StmtCompleted Stored Procedures

 Download from www.wowebook.com

ptg

143Defining Server-Side Traces
6

TABLE 6.2 Trace Events and Their Related Categories

trace_event_id Event Name Category Name

46 Object:Created Objects

47 Object:Deleted Objects

50 SQLTransaction Transactions

51 Scan:Started Scans

52 Scan:Stopped Scans

53 CursorOpen Cursors

54 TransactionLog Transactions

55 Hash Warning Errors and Warnings

58 Auto Stats Performance

59 Lock:Deadlock Chain Locks

60 Lock:Escalation Locks

61 OLEDB Errors OLEDB

67 Execution Warnings Errors and Warnings

68 Showplan Text (Unencoded) Performance

69 Sort Warnings Errors and Warnings

70 CursorPrepare Cursors

71 Prepare SQL T-SQL

72 Exec Prepared SQL T-SQL

73 Unprepare SQL T-SQL

74 CursorExecute Cursors

75 CursorRecompile Cursors

76 CursorImplicitConversion Cursors

77 CursorUnprepare Cursors

78 CursorClose Cursors

79 Missing Column Statistics Errors and Warnings

80 Missing Join Predicate Errors and Warnings

81 Server Memory Change Server

 Download from www.wowebook.com

ptg

144 CHAPTER 6 SQL Server Profiler

TABLE 6.2 Trace Events and Their Related Categories

trace_event_id Event Name Category Name

82 UserConfigurable:0 User configurable

83 UserConfigurable:1 User configurable

84 UserConfigurable:2 User configurable

85 UserConfigurable:3 User configurable

86 UserConfigurable:4 User configurable

87 UserConfigurable:5 User configurable

88 UserConfigurable:6 User configurable

89 UserConfigurable:7 User configurable

90 UserConfigurable:8 User configurable

91 UserConfigurable:9 User configurable

92 Data File Auto Grow Database

93 Log File Auto Grow Database

94 Data File Auto Shrink Database

95 Log File Auto Shrink Database

96 Showplan Text Performance

97 Showplan All Performance

98 Showplan Statistics Profile Performance

100 RPC Output Parameter Stored Procedures

102 Audit Database Scope GDR Event Security Audit

103 Audit Schema Object GDR Event Security Audit

104 Audit Addlogin Event Security Audit

105 Audit Login GDR Event Security Audit

106 Audit Login Change Property Event Security Audit

107 Audit Login Change Password Event Security Audit

108 Audit Add Login to Server Role Event Security Audit

 Download from www.wowebook.com

ptg

145Defining Server-Side Traces
6

TABLE 6.2 Trace Events and Their Related Categories

trace_event_id Event Name Category Name

109 Audit Add DB User Event Security Audit

110 Audit Add Member to DB Role Event Security Audit

111 Audit Add Role Event Security Audit

112 Audit App Role Change Password Event Security Audit

113 Audit Statement Permission Event Security Audit

114 Audit Schema Object Access Event Security Audit

115 Audit Backup/Restore Event Security Audit

116 Audit DBCC Event Security Audit

117 Audit Change Audit Event Security Audit

118 Audit Object Derived Permission Event Security Audit

119 OLEDB Call Event OLEDB

120 OLEDB QueryInterface Event OLEDB

121 OLEDB DataRead Event OLEDB

122 Showplan XML Performance

123 SQL:FullTextQuery Performance

124 Broker:Conversation Broker

125 Deprecation Announcement Deprecation

126 Deprecation Final Support Deprecation

127 Exchange Spill Event Errors and Warnings

128 Audit Database Management Event Security Audit

129 Audit Database Object Management Event Security Audit

130 Audit Database Principal Management

Event

Security Audit

131 Audit Schema Object Management Event Security Audit

132 Audit Server Principal Impersonation

Event

Security Audit

 Download from www.wowebook.com

ptg

146 CHAPTER 6 SQL Server Profiler

TABLE 6.2 Trace Events and Their Related Categories

trace_event_id Event Name Category Name

133 Audit Database Principal Impersonation

Event

Security Audit

134 Audit Server Object Take Ownership

Event

Security Audit

135 Audit Database Object Take Ownership

Event

Security Audit

136 Broker:Conversation Group Broker

137 Blocked process report Errors and Warnings

138 Broker:Connection Broker

139 Broker:Forwarded Message Sent Broker

140 Broker:Forwarded Message Dropped Broker

141 Broker:Message Classify Broker

142 Broker:Transmission Broker

143 Broker:Queue Disabled Broker

144 Broker:Mirrored Route State Changed Broker

146 Showplan XML Statistics Profile Performance

148 Deadlock graph Locks

149 Broker:Remote Message Acknowledgement Broker

150 Trace File Close Server

151 Database Mirroring Connection Database

152 Audit Change Database Owner Security Audit

153 Audit Schema Object Take Ownership

Event

Security Audit

154 Audit Database Mirroring Login Security Audit

155 FT:Crawl Started Full text

156 FT:Crawl Stopped Full text

157 FT:Crawl Aborted Full text

158 Audit Broker Conversation Security Audit

 Download from www.wowebook.com

ptg

147Defining Server-Side Traces
6

TABLE 6.2 Trace Events and Their Related Categories

trace_event_id Event Name Category Name

186 TM: Commit Tran completed Transactions

187 TM: Rollback Tran starting Transactions

188 TM: Rollback Tran completed Transactions

189 Lock:Timeout (timeout > 0) Locks

190 Progress Report: Online Index

Operation

Progress Report

191 TM: Save Tran starting Transactions

192 TM: Save Tran completed Transactions

193 Background Job Error Errors and Warnings

194 OLEDB Provider Information OLEDB

195 Mount Tape Server

196 Assembly Load CLR

198 XQuery Static Type T-SQL

199 QN: Subscription Query Notifications

200 QN: Parameter table Query Notifications

201 QN: Template Query Notifications

202 QN: Dynamics Query Notifications

212 Bitmap Warning Errors and Warnings

213 Database Suspect Data Page Errors and Warnings

214 CPU threshold exceeded Errors and Warnings

215 PreConnect:Starting Sessions

216 PreConnect:Completed Sessions

217 Plan Guide Successful Performance

218 Plan Guide Unsuccessful Performance

235 Audit Fulltext Security Audit

 Download from www.wowebook.com

ptg

148 CHAPTER 6 SQL Server Profiler

The numeric IDs for the trace columns can be obtained from the sys.trace_columns
catalog view, as shown in the following example:

select trace_column_id, name ‘Column Name’, type_name ‘Data Type’

from sys.trace_columns

order by trace_column_id

Table 6.3 shows the results of this SELECT statement and lists all the available trace columns.

TABLE 6.3 Trace Columns Available for a Server-Side Trace

trace_column_id Column Name Data Type

1 TextData text

2 BinaryData image

3 DatabaseID int

4 TransactionID bigint

5 LineNumber int

6 NTUserName nvarchar

7 NTDomainName nvarchar

8 HostName nvarchar

9 ClientProcessID int

10 ApplicationName nvarchar

11 LoginName nvarchar

12 SPID int

13 Duration bigint

14 StartTime datetime

15 EndTime datetime

16 Reads bigint

17 Writes bigint

18 CPU int

19 Permissions bigint

20 Severity int

21 EventSubClass int

22 ObjectID int

23 Success int

 Download from www.wowebook.com

ptg

149Defining Server-Side Traces
6

TABLE 6.3 Trace Columns Available for a Server-Side Trace

trace_column_id Column Name Data Type

24 IndexID int

25 IntegerData int

26 ServerName nvarchar

27 EventClass int

28 ObjectType int

29 NestLevel int

30 State int

31 Error int

32 Mode int

33 Handle int

34 ObjectName nvarchar

35 DatabaseName nvarchar

36 FileName nvarchar

37 OwnerName nvarchar

38 RoleName nvarchar

39 TargetUserName nvarchar

40 DBUserName nvarchar

41 LoginSid image

42 TargetLoginName nvarchar

43 TargetLoginSid image

44 ColumnPermissions int

45 LinkedServerName nvarchar

46 ProviderName nvarchar

47 MethodName nvarchar

48 RowCounts bigint

49 RequestID int

50 XactSequence bigint

51 EventSequence bigint

 Download from www.wowebook.com

ptg

150 CHAPTER 6 SQL Server Profiler

TABLE 6.3 Trace Columns Available for a Server-Side Trace

trace_column_id Column Name Data Type

52 BigintData1 bigint

53 BigintData2 bigint

54 GUID uniqueidentifier

55 IntegerData2 int

56 ObjectID2 bigint

57 Type int

58 OwnerID int

59 ParentName nvarchar

60 IsSystem int

61 Offset int

62 SourceDatabaseID int

63 SqlHandle image

64 SessionLoginName nvarchar

65 PlanHandle image

66 GroupID int

You have to call the sp_trace_setevent procedure once for each data column you want
captured for each event in the trace. Based on the number of events and number of
columns, you can see that this can result in a lot of executions of the sp_trace_setevent
procedure for a larger trace definition.

To set up filters, you must pass the column ID, the filter value, and numeric values for
the logical operator and column operator to the sp_trace_setfilter procedure. The
logical operator can be either 0 or 1. A value of 0 indicates that the specified filter on the
column should be ANDed with any other filters on the column, whereas a value of 1 indi-
cates that the OR operator should be applied. Table 6.4 describes the values allowed for
the column operators.

 Download from www.wowebook.com

ptg

151Defining Server-Side Traces
6

Fortunately, there is an easier way of generating a trace definition script. You can set up
your traces by using the SQL Profiler GUI and script the trace definition to a file. After you
define the trace and specify the events, data columns, and filters you want to use, you
select File, Export, Script Trace Definition. The SQL commands (including calls to the
aforementioned system stored procedures) to define the trace, start the trace, and write
the trace to a file are generated into one script file. You have the option to generate a
script that works with SQL Server 2000, 2005 or 2008. Listing 6.2 shows an example of a
trace definition exported from the Profiler. It contains the trace definitions for the TSQL
trace template. You must replace the text InsertFileNameHere with an appropriate file-
name, prefixed with its pathname, before running this script.

LISTING 6.2 A SQL Script for Creating and Starting a Server-Side Trace

/**/

/* Created by: SQL Server 2008 Profiler */

/* Date: 05/10/2009 07:20:54 PM */

/**/

-- Create a Queue

declare @rc int

declare @TraceID int

declare @maxfilesize bigint

TABLE 6.4 Column Operator Values for sp_trace_setfilter

Value Comparison Operator

0 = (equal)

1 <> (not equal)

2 > (greater than)

3 < (less than)

4 >= (greater than or equal)

5 <= (less than or equal)

6 LIKE

7 NOT LIKE

 Download from www.wowebook.com

ptg

152 CHAPTER 6 SQL Server Profiler

set @maxfilesize = 5

— Please replace the text InsertFileNameHere, with an appropriate

— filename prefixed by a path, e.g., c:\MyFolder\MyTrace. The .trc extension

— will be appended to the filename automatically. If you are writing from

— remote server to local drive, please use UNC path and make sure server has

— write access to your network share

exec @rc = sp_trace_create @TraceID output, 0, N’InsertFileNameHere’, @maxfilesize,

NULL

if (@rc != 0) goto error

— Client side File and Table cannot be scripted

— Set the events

declare @on bit

set @on = 1

exec sp_trace_setevent @TraceID, 10, 2, @on

exec sp_trace_setevent @TraceID, 10, 12, @on

exec sp_trace_setevent @TraceID, 10, 13, @on

exec sp_trace_setevent @TraceID, 12, 1, @on

exec sp_trace_setevent @TraceID, 12, 12, @on

exec sp_trace_setevent @TraceID, 12, 13, @on

— Set the Filters

declare @intfilter int

declare @bigintfilter bigint

— Set the trace status to start

exec sp_trace_setstatus @TraceID, 1

— display trace id for future references

select TraceID=@TraceID

goto finish

error:

select ErrorCode=@rc

finish:

go

 Download from www.wowebook.com

ptg

153Defining Server-Side Traces
6

TIP

If you want to always capture certain trace events when SQL Server is running, such as
auditing events, you can create a stored procedure that uses the sp_trace stored
procedures to create a trace and specify the events to be captured. You can use the
code in Listing 6.2 as a basis to create the stored procedure. Then you can mark the
procedure as a startup procedure by using the sp_procoption procedure to set the
autostart option. The trace automatically starts when SQL Server is started, and it
continues running in the background.

Just be aware that although using server-side traces is less intrusive than using the
SQL Profiler client, some overhead is necessary to run a trace. You should try to limit
the number of events and number of columns captured to minimize the overhead as
much as possible.

Monitoring Running Traces

SQL Server 2008 provides some additional built-in user-defined functions to get informa-
tion about currently running traces. Like the fn_trace_gettable function discussed previ-
ously, these functions return the information as a tabular result. The available functions
are as follows:

. fn_trace_getinfo(trace_id)—This function is passed a traceid, and it returns
information about the specified trace. If passed the value of default, it returns infor-
mation about all existing traces. An example of the output from this function is
shown in Listing 6.3.

. fn_trace_geteventinfo(trace_id)—This function returns a list of the events
and data columns being captured for the specified trace. Only the event and column
ID values are returned. You can use the information provided in Tables 6.2 and 6.3
to map the IDs to the more meaningful event names and column names.

. fn_trace_getfilterinfo(trace_id)—This function returns information about
the filters being applied to the specified trace. Again, the column ID and logical and
comparison operator values are returned as integer IDs that you need to decipher.
See Table 6.4 for a listing of the column operator values.

LISTING 6.3 An Example of Using the Built-in User-Defined Functions for Monitoring Traces

SELECT * FROM ::fn_trace_getinfo(default)

traceid property value

—————- —————- ———————————————————————

1 1 2

1 2 C:\Program Files\Microsoft SQL Server\MSSQL.1\

MSSQL\LOG\log_376.trc

 Download from www.wowebook.com

ptg

154 CHAPTER 6 SQL Server Profiler

1 3 20

1 4 NULL

1 5 1

2 1 0

2 2 c:\trace\mytrace.trc.trc

2 3 5

2 4 NULL

2 5 1

select * from ::fn_Trace_getfilterinfo(2)

columnid logical_operator comparison_operator value

—————- ———————— —————————- —————-

3 0 0 6

10 0 7 Profiler

10 0 7 SQLAgent

NOTE

You may be wondering why there is always a traceid with a value of 1 running when
you run the fn_trace_getinfo procedure. This is the default trace that SQL Server
automatically initiates when it starts. The default trace is enabled by default. You can
identify which trace is the default by selecting from the sys.traces catalog view and
examining the is_default column. The default trace captures a number of different
types of events, including object creates and drops, errors, memory and disk changes,
security changes, and more. You can disable this default trace, but it is generally light-
weight and should be left enabled.

The output from the functions that return trace information is relatively cryptic because
many of the values returned are numeric. For example, the property values returned by
fn_trace_getinfo are specified as integer IDs. Table 6.5 describes of each of these property
IDs.

TABLE 6.5 Description of Trace Property ID Values

Property ID Description

1 Trace options specified in sp_trace_create

2 Trace filename

3 Maximum size of trace file, in MB

4 Date and time the trace will be stopped

5 Current trace status

 Download from www.wowebook.com

ptg

155Defining Server-Side Traces
6

Stopping Server-Side Traces

It is important to keep track of the traces you have running and to ensure that “heavy”
traces are stopped. Heavy traces are typically traces that capture a lot of events and are run
on a busy SQL Server. These traces can affect the overall performance of your SQL Server
machine and write a large amount of information to the trace output file. If you specified
a stop time when you started the trace, it automatically stops and closes when the stop
time is reached. For example, in the SQL script in Listing 6.2, if you wanted the trace to
run for 15 minutes instead of indefinitely, you would set the value for the stoptime vari-
able at the beginning of the script, using a command similar to the following:

set @stoptime = dateadd(minute, 15, getdate())

To otherwise stop a running server-side trace, you use the sp_trace_setstatus stored
procedure and pass it the trace ID and a status of 0. Stopping a trace only stops gathering
trace information and does not delete the trace definition from SQL Server. Essentially, it
pauses the trace. You can restart the trace by passing sp_trace_setstatus a status value of
1.

After you stop a trace, you can close the trace and delete its definition from SQL Server by
passing sp_trace_setstatus the ID of the trace you want to stop and a status value of 2.
After you close the trace, you must redefine it before you can restart it.

If you don’t know the ID of the trace you want to stop, you can use the
fn_trace_getinfo function or the sys.traces catalog view to return a list of all running
traces and select the appropriate trace ID. The following example shows how to stop and
close a trace with a trace ID of 2:

-- Set the trace status to stop

exec sp_trace_setstatus 2, 0

go

-- Close and Delete the trace

exec sp_trace_setstatus 2, 2

go

If you want to stop and close multiple traces, you must call sp_trace_setstatus twice for
each trace. Listing 6.4 provides an example of a system stored procedure that you can

 Download from www.wowebook.com

ptg

156 CHAPTER 6 SQL Server Profiler

create in SQL Server to stop a specific trace or automatically stop all currently running
traces.

LISTING 6.4 A Sample System Stored Procedure to Stop Profiler Traces

use master

go

if object_id (‘sp_stop_profiler_trace’) is not null

drop proc sp_stop_profiler_trace

go

create proc sp_stop_profiler_trace @TraceID int = null

as

if @TraceID is not null

begin

-- Set the trace status to stop

exec sp_trace_setstatus @TraceID, 0

-- Delete the trace

exec sp_trace_setstatus @TraceID, 2

end

else

begin

-- the following cursor does not include the default trace

declare c1 cursor for

SELECT distinct traceid FROM :: fn_trace_getinfo (DEFAULT)

WHERE traceId not in (select ID from sys.traces where is_default = 1)

open c1

fetch c1 into @TraceID

while @@fetch_status = 0

begin

-- Set the trace status to stop

exec sp_trace_setstatus @TraceID, 0

-- Delete the trace

exec sp_trace_setstatus @TraceID, 2

fetch c1 into @TraceID

end

close c1

deallocate c1

end

 Download from www.wowebook.com

ptg

157Profiler Usage Scenarios
6

Profiler Usage Scenarios
This chapter has already covered many of the technical aspects of SQL Profiler, but what
about some practical applications? Beyond the obvious uses of identifying what SQL state-
ments an application is submitting, the following sections look at a few scenarios in
which the SQL Profiler can be useful. These scenarios are presented to give you some ideas
about how SQL Profiler can be used. You’ll see that the monitoring and analysis capabili-
ties of SQL Profiler are limited only by your creativity and ingenuity.

Analyzing Slow Stored Procedures or Queries

After you identify that a particular stored procedure is running slowly, what should you
do? You might want to look at the estimated execution plan for the stored procedure,
looking for table scans and sections of the plan that have a high cost percentage. But what
if the execution plan has no obvious problems? This is the time you should consider using
the SQL Profiler.

You can set up a trace on the stored procedure that captures the execution of each state-
ment within it, along with its duration, in milliseconds. Here’s how:

1. Create a new trace, using the TSQL_Duration template.

2. Add the SP:StmtCompleted event from the stored procedure event class to the trace.

3. Add a filter on the Duration column with the duration not equal to 0. You can also
set the filter to a larger number to exclude more of the short-running statements.

If you plan to run the procedure from SSMS, you might want to add a filter on the SPID
column as well. Set it equal to the process ID for your session; the SPID is displayed at the
bottom of the SSMS window next to your username, in parentheses. This traces only those
commands that are executed from your SSMS query editor window.

When you run the trace and execute the stored procedure, you see only those statements
in the procedure that have nonzero duration. The statements are listed in ascending dura-
tion order. You need to look to the bottom of the Profiler output window to find your
longer-running statements. You can isolate these statements, copy them to SSMS, and
perform a separate analysis on them to determine your problem.

You can also add showplan events to your Profiler trace to capture the execution plan as
the trace is running. SQL Server now has showplan events that capture the showplan
results in XML format. Traces with this type of XML output can have a significant impact
on server performance while they are running but make the identification of poorly
performing statements much easier. When you are tracing stored procedure executions, it
is a good idea to add a filter on the specific stored procedure you are targeting to help
minimize the impact on performance.

After you run a trace with an XML showplan event, you can choose to extract the show-
plan events to a separate file. To do so, in the SQL Server Profiler you select File, Export,

 Download from www.wowebook.com

ptg

158 CHAPTER 6 SQL Server Profiler

Extract SQL Server Events, Extract Showplan Events. At this point, you can save the show-
plan events in a single file or to a separate file for each event. The file(s) is saved with a
SQLPlan file extension. This file can then be opened in SSMS, and the graphical query
execution plan is displayed.

Deadlocks

Deadlocks are a common occurrence in database management systems (DMBSs). In simple
terms, deadlocks occur when a process (for example, SPID 10) has a lock on a resource
that another process (for example, SPID 20) wants. In addition, the second process (SPID
20) wants the resource that the first process has locked. This cyclic dependency causes the
DBMS to kill one of the processes to resolve the deadlock situation.

Resolving deadlocks and identifying the deadlock participants can be difficult. In SQL
Server 2008 and past versions, trace flag 1204 can be set to capture the processes involved
in the deadlock. The output is text based but provides valuable information about the types
of locks and the statements that were executing at the time of the deadlock. In addition to
this approach, SQL Server 2008 offers the capability to capture detailed deadlock informa-
tion via the SQL Server Profiler. This type of tracing can be accomplished as follows:

1. Create a new trace, using a Blank template; this leaves the selection of all the events,
data columns, and filters to you.

2. Add the Locks:Deadlock graph event to the trace from the Locks category. An addi-
tional tab named Event Extraction Settings appears on the Trace Properties window.

3. Click the Save Deadlock XML Events Separately check box. This causes the deadlock
information to be written to a separate file. You could also export the results after
the trace has been run by using the File, Export option.

When you run this trace, it captures any deadlock event that occurs and writes it to the
XML file specified. To test this, you can open two query editor windows and execute the
following statements, in the order listed, and in the query window specified:

-- In Query Window # 1

--Step1

USE ADVENTUREWORKS2008

GO

BEGIN TRAN

UPDATE HumanResources.Employee SET ModifiedDate = GETDATE()

-- In Query Window # 2

--Step2

USE ADVENTUREWORKS2008

GO

BEGIN TRAN

UPDATE HumanResources.Department SET ModifiedDate = GETDATE()

SELECT * FROM HumanResources.Employee

-- In Query Window # 1

 Download from www.wowebook.com

ptg

159Profiler Usage Scenarios
6

--Step3

SELECT * FROM HumanResources.Department

When the deadlock occurs, the results pane for one of the query windows contains a
message similar to the following:

Msg 1205, Level 13, State 51, Line 3

Transaction (Process ID 55) was deadlocked on lock resources with another

process and has been chosen as the deadlock victim. Rerun the transaction.

When the row with the Deadlock graph event is selected in the Profiler output grid, a
graph like the one shown in Figure 6.13 is displayed.

The Deadlock graph event contains a wealth of information about the deadlock occur-
rence. The oval nodes represent the processes involved in the deadlock. The oval with an
X mark across it is the deadlock victim that had its process killed. The other oval repre-
sents the process that was allowed to complete when the deadlock was resolved. The
boxes in the middle of the graph display lock information about the specific objects
involved in the deadlock.

The graph is interactive and displays relevant information about the processes that were
running when the deadlock occurred. For example, when you mouse over the oval nodes,
pop-up text appears, displaying the SQL statement that was executing at the time of the
deadlock. This is the same type of information that is displayed when the aforementioned
trace flag is used, but the graph tends to be easier to decipher.

Identifying Ad Hoc Queries

One problem that can plague a production system is the execution of ad hoc queries
against the production database. If you want to identify ad hoc queries, the application,
and the users who are running them, SQL Profiler is your tool. You can create a trace as
follows:

FIGURE 6.13 Output from the Deadlock graph event.

 Download from www.wowebook.com

ptg

160 CHAPTER 6 SQL Server Profiler

1. Create a new trace, using the SQLProfilerStandard template.

2. Add a new ApplicationName filter with Like Microsoft%.

When this trace is run, you can identify database access that is happening via SSMS or
Microsoft Access. The user, the duration, and the actual SQL statement are captured. An
alternative would be to change the ApplicationName filter to trace application access for
all application names that are not like the name of your production applications, such as
Not Like MyOrderEntryApp%.

Identifying Performance Bottlenecks

Another common problem with database applications is identifying performance bottle-
necks. For example, say that an application is running slow, but you’re not sure why. You
tested all the SQL statements and stored procedures used by the application, and they
were relatively fast. Yet you find that some of the application screens are slow. Is it the
database server? Is it the client machine? Is it the network? These are all good questions,
but what is the answer? SQL Profiler can help you find out.

You can start with the same trace definition used in the preceding section. For this
scenario, you need to specify an ApplicationName filter with the name of the application
you want to trace. You might also want to apply a filter to a specific NTUserName to further
refine your trace and avoid gathering trace information for users other than the one that
you have isolated.

After you start your trace, you use the slow-running application’s screens. You need to
look at the trace output and take note of the duration of the statements as they execute
on the database server. Are they relatively fast? How much time was spent on the execu-
tion of the SQL statements and stored procedures relative to the response time of the
application screen? If the total database duration is 1,000 milliseconds (1 second), and the
screen takes 10 seconds to refresh, you need to examine other factors, such as the network
or the application code.

With SQL Server 2008, you also combine Windows System Monitor (Perfmon) output with
trace output to identify performance bottlenecks. This feature helps unite system-level
metrics (for example, CPU utilization, memory usage) with SQL Server performance
metrics. The result is a very impressive display that is synchronized based on time so that a
correlation can be made between system-level spikes and the related SQL Server statements.

To try out this powerful new feature, you open the Perfmon application and add a new
performance counter log. For simplicity, you can just add one counter, such as %
Processor Time. Then you choose the option to manually start the log and click OK.
Now, you want to apply some kind of load to the SQL Server system. The following script
does index maintenance on two tables in the AdventureWorks2008 database and can be
used to apply a sample load:

USE [AdventureWorks2008]

GO

ALTER INDEX [PK_SalesOrderDetail_SalesOrderID_SalesOrderDetailID]

ON [Sales].[SalesOrderDetail]

 Download from www.wowebook.com

ptg

161Profiler Usage Scenarios
6

REORGANIZE WITH (LOB_COMPACTION = ON)

GO

PRINT ‘FIRST INDEX IS REBUILT’

WAITFOR DELAY ‘00:00:05’

USE [AdventureWorks2008]

GO

ALTER INDEX [PK_Person_BusinessEntityID]

ON [Person].[Person] REBUILD WITH

(PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON,

SORT_IN_TEMPDB = OFF)

GO

PRINT ‘SECOND INDEX IS REORGANIZED’

Next, you open the script in SSMS, but you don’t run it yet. You open SQL Profiler and
create a trace by using the Standard Profiler template. This template captures basic SQL
Server activity and also includes the StartTime and EndTime columns that are necessary to
correlate with the Perfmon counters. Now you are ready to start the performance log and
the SQL Server Profiler trace. When they are running, you can run the sample load script.
When the script has completed, you stop the performance log and Profiler trace. You save
the Profiler trace to a file and then open the file in the Profiler application.

The correlation of the Perfmon log to the trace output file is accomplished from within
the Profiler application. To do this, you select File, Import Performance Data. Then you
select the performance log file that was just created; these files are located by default in
the c:\perflogs folder. After you import the performance data, a new performance graph
and associated grid with the performance counters is displayed in the Profiler, as shown in
Figure 6.14

FIGURE 6.14 System Monitor counters correlated within a Profiler trace.

 Download from www.wowebook.com

ptg

162 CHAPTER 6 SQL Server Profiler

Now the fun begins! If you click one of the statements captured in the Profiler grid, a
vertical red line appears in the Perfmon graph that reflects the time at which the state-
ment was run. Conversely, if you click a location in the graph, the corresponding SQL
statement that was run at that time is highlighted in the grid. If you see a spike in CPU in
the Perfmon graph, you can click the spike in the graph and find the statement that may
have caused the spike. This can help you quickly and efficiently identify bottlenecks and
the processes contributing to it.

Monitoring Auto-Update Statistics

As discussed in Chapter 35, “Understanding Query Optimization,” SQL Server updates
index statistics automatically as data is changed in a table. In some environments, exces-
sive auto-updating of statistics can affect system performance while the statistics are being
updated. SQL Profiler can be used to monitor auto-updating of statistics as well as auto-
matic statistics creation.

To monitor auto-updating of statistics, you create a trace and include the AutoStats event
from the Performance event category. Then you select the TextData, Integer Data,
Success, and Object ID columns. When the AutoStats event is captured, the Integer
Data column contains the number of statistics updated for a given table, the Object ID is
the ID of the table, and the TextData column contains names of the columns together
with either an Updated: or Created: prefix. The Success column contains potential failure
indication.

If you see an excessive number of AutoStats events on a table or index, and the duration
is high, it could be affecting system performance. You might want to consider disabling
auto-update for statistics on that table and schedule statistics to be updated periodically
during nonpeak periods. You may also want to utilize the AUTO_UPDATE_STATISTICS_ASYNC
database setting, which allows queries that utilize affected statistics to compile without
having to wait for the update of statistics to complete.

Monitoring Application Progress

The 10 user-configurable events can be used in a variety of ways, including for tracking
the progress of an application or procedure. For instance, perhaps you have a complex
procedure that is subject to lengthy execution. You can add debugging logic in this proce-
dure to allow for real-time benchmarking via SQL Profiler.

The key to this type of profiling is the use of the sp_trace_generateevent stored proce-
dure, which enables you to launch the User configurable event. The procedure needs to
reference one of the User configurable event IDs (82 to 91) that correspond to the User
configurable event 0 to 9. If you execute the procedure with eventid = 82, then User
configurable event 0 catches these events.

Listing 6.5 contains a sample stored procedure that (in debug mode) triggers the trace
events that SQL Profiler can capture.

 Download from www.wowebook.com

ptg

163Profiler Usage Scenarios
6

LISTING 6.5 A Stored Procedure That Raises User configurable Events for SQL Profiler

CREATE PROCEDURE SampleApplicationProc (@debug bit = 0)

as

declare @userinfoParm nvarchar(128)

select @userinfoParm = getdate()

--if in debug mode, then launch event for Profiler

-- indicating Start of Application Proc

if @debug =1

begin

SET @userinfoParm = ‘Proc Start: ‘ + convert(varchar(30),getdate(),120)

EXEC sp_trace_generateevent @eventid = 83, @userinfo = @userinfoparm

end

--Real world would have complex proc code executing here

--The WAITFOR statement was added to simulate processing time

WAITFOR DELAY ‘00:00:05’

---if debug mode, then launch event indicating next significant stage

if @debug =1

begin

SET @userinfoParm = ‘Proc Stage One Complete: ‘

+ convert(varchar(20),getdate(),120)

EXEC sp_trace_generateevent @eventid = 83, @userinfo = @userinfoparm

end

--Real world would have more complex proc code executing here

--The WAITFOR statement was added to simulate processing time

WAITFOR DELAY ‘00:00:05’ —5 second delay

---if debug mode, then launch event indicating next significant stage

if @debug =1

begin

SET @userinfoParm = ‘Proc Stage Two Complete: ‘

+ convert(varchar(30),getdate(),120)

EXEC sp_trace_generateevent @eventid = 83, @userinfo = @userinfoparm

end

--You get the idea

GO

Now you need to set up a new trace that includes the UserConfigurable:1 event. To do
so, you choose the TextData data column to capture the User configurable output and

 Download from www.wowebook.com

ptg

164 CHAPTER 6 SQL Server Profiler

any other data columns that make sense for your specific trace. After this task is complete,
you can launch the sample stored procedure from Listing 6.5 and get progress information
via SQL Profiler as the procedure executes. You can accumulate execution statistics over
time with this kind of trace and summarize the results. The execution command for the
procedure follows:

EXEC SampleApplicationProc @debug = 1

The resulting SQL Profiler results are shown in Figure 6.15.

There are many other applications for User configurable events. How you use them
depends on your specific need. As is the case with many Profiler scenarios, there are seem-
ingly endless possibilities.

Summary
Whether you are a developer or database administrator, you should not ignore the power
of the SQL Profiler. It is often one of the most underused applications in the SQL Server
toolkit, yet it is one of the most versatile. Its auditing capabilities and ability to unravel
complex server processes define its value.

This chapter wraps up the introduction to the tools and utilities available with SQL Server.
Now you should be equipped to start administering and working with SQL Server.

The chapters in the next section focus on the overall administration of SQL, using some of
the tools that you have been exposed to thus far. Chapter 7, “SQL Server System and
Database Administration,” gives you some insight into the inner workings of SQL Server
and what it takes to effectively administer a SQL Server instance.

FIGURE 6.15 User configurable trace results.

 Download from www.wowebook.com

ptg

CHAPTER 7

SQL Server System and
Database Administration

IN THIS CHAPTER

. What’s New in SQL Server
System and Database
Administration

. System Administrator
Responsibilities

. System Databases

. System Tables

. System Views

. System Stored Procedures

This chapter outlines the role of a SQL Server system
administrator and explores some of the methods that an
administrator can use to query important system data. As
with any other job, understanding the roles and responsibil-
ities of the job is critical to doing the job well. The responsi-
bilities of an administrator vary depending on the job, but
there are some core responsibilities covered in this chapter.

You also need the right tools and right information to do
the job well and do it efficiently. The system data covered
in this chapter provides some of the key information. The
methods discussed to access this information are among
the tools you will need. System data discloses information
that can be invaluable when assessing your SQL Server
environment and is an essential part of administering a
SQL Server database.

What’s New in SQL Server System
and Database Administration
The means for accessing system information has changed
very little from SQL Server 2005 to SQL Server 2008. The
new systems views that were introduced in SQL Server 2005
are still the preferred means for getting at that all-important
system information. These views, which include catalog,
compatibility, and dynamic views, are discussed in detail
later in this chapter.

What is new in SQL Server 2008 is an expanded set of
system views. These new views are geared toward some of
the new functionality offered with SQL Server 2008. For
example, new catalog and dynamic management views that

 Download from www.wowebook.com

ptg

166 CHAPTER 7 SQL Server System and Database Administration

return information about Change Tracking and the Resource Governor have been added
to cover these new features.

System Administrator Responsibilities
A system administrator is responsible for the integrity and availability of the data in a
database. This is a simple concept, but it is a huge responsibility. Some large corporations
place a valuation on their data as high as $1 million per 100MB. The investment in dollars
is not the only issue; many companies that lose mission-critical data simply never recover.

Job descriptions for system administrators vary widely. In small shops, the administrator
might lay out the physical design, install SQL Server, implement the logical design, tune
the installation, and then manage ongoing tasks, such as backups. At larger sites, tasks
might be broken out into separate job functions. Managing users and backing up data are
common examples. However, a lead administrator should still be in place to define policy
and coordinate efforts.

Whether performed by an individual or as a team, the core administration tasks are as
follows:

. Install and configure SQL Server.

. Plan and create databases.

. Manage data storage.

. Control security.

. Tune the database.

. Perform backup and recovery.

Another task sometimes handled by administrators is managing stored procedures.
Because stored procedures for user applications often contain complex Transact-SQL (T-
SQL) code, they tend to fall into the realm of the application developer. However, because
stored procedures are stored as objects in the database, they are also the responsibility of
the administrator. If an application calls custom stored procedures, the system administra-
tor must be aware of this and coordinate with the application developers.

The system administration job can be stressful, frustrating, and demanding, but it is a
highly rewarding, interesting, and respected position. As a system administrator, you are
expected to know all, see all, and predict all, but you should be well compensated for
your efforts.

System Databases
SQL Server uses system databases to support different parts of the database management
system (DBMS). Each database plays a specific role and stores information that SQL Server
needs to do its job. The system databases are much like the user databases created in SQL
Server. They store data in tables and contain the views, stored procedures, and other

 Download from www.wowebook.com

ptg

167System Databases

TABLE 7.1 System Databases and Their Associated Database Files

Database .mdf Filename .ldf Filename

master master.mdf mastlog.ldf

resource mssqlsystemresource.mdf mssqlsystemresource.ldf

model model.mdf modellog.ldf

msdb msdbdata.mdf msdblog.ldf

distribution distmdl.ldf distmdl.mdf

tempdb tempdb.mdf templog.ldf

database objects that you also see in user databases. They also have associated database
files (that is, .mdf and .ldf files) that are physically located on the SQL Server machine.
Table 7.1 lists system databases and their related database filenames.

7

TIP

You can use the sys.master_files catalog view to list the physical locations of the
system database files as well as the user database files. This catalog view contains
a myriad of information, including the logical name, current state, and size of each
database file.

The folder where each of these database files is located depends on the SQL Server installa-
tion. By default, the installation process places these files in a folder named
<drive>:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\. You can move
these files after the installation by using special procedures that are documented in the
SQL Server Books Online topic “Moving System Databases.”

The following sections describe the function of each system database.

The master Database

The master database contains server-wide information about the SQL Server system. This
server-wide information includes logins, linked server information, configuration
information for the server, and information about user databases created in the SQL Server
instance. The actual locations of the database files and key properties that relate to each
user database are stored in the master database.

SQL Server cannot start without a master database. This is not surprising, given the type
of information that it contains. Without the master database, SQL Server does not know

 Download from www.wowebook.com

ptg

168

the location of the databases that it services and does not know how the server is config-
ured to run.

The resource Database

The resource database contains all the system objects deployed with SQL Server 2008.
These system objects include the system stored procedures and system views that logically
appear in each database but are physically stored in the resource database. Microsoft
moved all the system objects to the resource database to simplify the upgrade process.
When a new release of the software is made available, upgrading the system objects is
accomplished by simply copying the single resource database file to the local server.
Similarly, rolling back an upgrade only requires overwriting the current version of the
resource database with the older version.

You do not see the resource database in the list of system databases shown in SQL Server
Management Studio (SSMS). You also cannot add user objects to the resource database.
For the most part, you should not be aware of the existence of the resource database. It
has database files named mssqlsystemresources.mdf and mssqlsystemresources.ldf that
are located in the Binn folder, but you cannot access the database directly. In addition,
you do not see the database listed when selecting databases using system views or with
system procedures, such as sp_helpdb.

The model Database

The model database is a template on which all user-created databases are based. All data-
bases must contain a base set of objects known as the database catalog. When a new data-
base is created, the model is copied to create the requisite objects. Conveniently, objects
can be added to the model database. For example, if you want a certain table created in all
your databases, you can create the table in the model database, and it is then propagated
to all subsequently created databases.

The msdb Database

The msdb database is used to store information for the SQL Server Agent, the Service
Broker, Database Mail, log shipping, and more. When you create and schedule a SQL
Server Agent job, the job’s parameters and execution history are stored in msdb. Backups
and maintenance plan information are stored in msdb as well. If log shipping is imple-
mented, critical information about the servers and tables involved in this process is stored
in msdb.

The distribution Database

The distribution database, utilized during replication, stores metadata and history infor-
mation for all types of replication. It is also used to store transactions when transactional
replication is utilized. By default, replication is not set up, and you do not see the
distribution database listed in SSMS. However, the actual data files for the distribution
database are installed by default.

CHAPTER 7 SQL Server System and Database Administration

 Download from www.wowebook.com

ptg

169System Databases
7

Refer to Chapter 19, “Replication,” for a more detailed discussion of the intricacies of
replication.

The tempdb Database

The tempdb database stores temporary data and data objects. The temporary data objects
include temporary tables, temporary stored procedures, and any other objects you want to
create temporarily. The longevity of data objects in the temporary database depends on
the type of object created. Ultimately, all temporary database objects are removed when
the SQL Server service is restarted. The tempdb database is re-created, and all objects and
data added since the last restart of SQL Server are lost.

tempdb can also be used for some of SQL Server’s internal operations. Large sort operations
are performed in tempdb before the result set is returned to the client. Certain index opera-
tions can be performed in tempdb to offload some of the space requirements or to spread
I/O. SQL Server also uses tempdb to store row versions that are generated from database
modifications in databases that use row versioning or snapshot isolation transactions.
Refer to Chapter 37 “Locking and Performance,” for a more detailed discussion of transac-
tion isolation levels and row versioning.

Maintaining System Databases

You should give system databases the same attention that you give your user databases.
These databases should be backed up on a regular basis and secured in the event that one
of them needs to be restored. All the system databases, with the exception of tempdb and
resource, can be backed up. These same databases can also be restored to bring them back
to a previous state.

NOTE

Although you cannot back up the resource database using SQL Server’s BACKUP and
RESTORE commands, you can make a backup copy of it by performing a file-based or
disk-based backup of the mssqlsystemresource.mdf file (SQL Server must not be run-
ning at the time). Likewise, you can manually restore a backup copy of the
mssqlsystemresource.mdf file only when SQL Server is not running. You must be
careful not to overwrite the current resource database with a version for a different
release level of SQL Server.

It’s important that you monitor the size of your system databases. The amount of data
that accumulates in these databases can be significant. This is particularly true for the
tempdb, msdb, and distribution databases. Large sort or index operations can increase the
size of your tempdb database in a short period of time. The msdb and distribution data-
bases contain a great deal of historical information. Consider, for example, a server with
hundreds of databases that have log backups occurring every 15 minutes. The information
captured for each individual backup is not significant, but the total number of databases

 Download from www.wowebook.com

ptg

170

FIGURE 7.1 System tables listed in Object Explorer.

and frequency of the backups cause many rows to be stored in the msdb database. Cleanup
tasks and similar activities that remove older historical data can help keep the database
size manageable.

System Tables
System tables contain data about objects in the SQL Server databases (that is, metadata) as
well as information that SQL Server components use to do their job. Many of the system
tables are now hidden (in the resource database) and are no longer available for direct
access by end users. In SQL Server 2008, compatibility views, which are discussed later in
this chapter, have the same names as the system tables available in SQL Server 2000. For
example, if you had a query in SQL Server 2000 that selected from syscolumns, this query
continues to work in SQL Server 2008, but the results come from a view instead of a
system table.

The system tables that you can view are now found in some of the system databases, such
as msdb or master. You can use the Object Explorer in SSMS to view the system tables in
these databases. Figure 7.1 shows the system tables listed for the master database in the
Object Explorer.

CHAPTER 7 SQL Server System and Database Administration

The most significant number of viewable system tables is found in the msdb system data-
base. The system tables there support backup and restore, log shipping, maintenance
plans, Notification Services, the SQL Server Agent, and more. You can retrieve a tremen-
dous amount of information from these system tables if you know what you are looking

 Download from www.wowebook.com

ptg

171System Tables
7

for. The following query selects from the system tables in msdb to report on recent restores
for the AdventureWorks2008R2 database:

select destination_database_name ‘database’, h.restore_date, restore_type,

cast((backup_size/1024)/1024 as numeric(8,0)) ‘backup_size MB’,

f.physical_device_name

from msdb..restorehistory h (NOLOCK)

LEFT JOIN msdb..backupset b (NOLOCK)

ON h.backup_set_id = b.backup_set_id

LEFT JOIN msdb..backupmediafamily f (NOLOCK)

ON b.media_set_id = f.media_set_id

where h.restore_date > getdate() - 5

and UPPER(h.destination_database_name) = ‘AdventureWorks2008R2’

order by UPPER(h.destination_database_name), h.restore_date desc

One of the challenges with using system tables is determining the relationships between
them. Some vendors offer diagrams of these tables, and you can also determine the rela-
tionships by reviewing the foreign keys on these tables and by referring to SQL Server
2008 Books Online, which describes the use for each column in the system table.

CAUTION

Microsoft does not recommend querying system tables directly. It does not guarantee
the consistency of system tables across versions and warns that queries that may
have worked against system tables in past versions may no longer work. Catalog views
or information schema views should be used instead, especially in production code.

Queries against system tables are best used for ad hoc queries. The values in system
tables should never be updated, and an object’s structure should not be altered, either.
Making changes to the data or structure could cause problems and cause SQL Server
or one of its components to fail.

System Views
System views are virtual tables that expose metadata that relates to many different aspects
of SQL Server. Several different types of views target different data needs. SQL Server 2008
offers an extended number of system views and view types that should meet most, if not
all, your metadata needs.

The available system views can be shown in the Object Explorer in SSMS. Figure 7.2 shows
the Object Explorer with the System Views node highlighted. There are far too many
views to cover in detail in this chapter, but we cover each type of view and provide an
example of each to give you some insight into their value. Each system view is covered in

 Download from www.wowebook.com

ptg

172 CHAPTER 7 SQL Server System and Database Administration

FIGURE 7.2 System views listed in Object Explorer.

detail in SQL Server Books Online, which includes descriptions of each column in the
view.

Compatibility Views

Compatibility views were retained in SQL Server 2008 for backward compatibility. Many
of the system tables available in SQL Server 2000 and prior versions of SQL Server are now
implemented as compatibility views. These views have the same name as the system tables
from prior versions and return the same metadata available in SQL Server 2000. They do
not contain information that was added after SQL Server 2000.

You can find most of the compatibility views in the Object Explorer by looking for system
views that have names starting with sys.sys. For example, sys.syscolumns,
sys.syscomments, and sys.sysobjects are all compatibility views. The first part of the
name indicates the schema that the object belongs to (in this case, sys). All system objects
are part of this sys schema or the INFORMATION_SCHEMA schema. The second part of the
name is the view name, which corresponds to the name of a system table in SQL Server
2000.

 Download from www.wowebook.com

ptg

173System Views
7

TIP

To see a list of compatibility views, use the index lookup in SQL Server 2008 Books
Online and look for sys.sys. The index is placed at the beginning of a list of
compatibility views, starting with sys.sysaltfiles. Objects in the list that are
compatibility views have the text compatibility view following the object name, so
you can easily identify them and get help.

You also can use the new IntelliSense feature available with SQL Server 2008 to
obtain information about the compatibility views and other system views. Simply open a
query window in SSMS and start typing a SELECT statement. When you start typing the
name of the view that you want to select from (for example, sys.) the IntelliSense
drop-down appears listing the views that start with the letters sys. You can also deter-
mine the columns available from the view by referencing the view or alias for the view
in the column selection list. When you enter the period following the view or alias, the
IntelliSense drop-down shows you the available columns.

You should transition from the use of compatibility views to the use of other system
views, such as catalog views. The scripts that were created in SQL Server 2000 and refer-
ence SQL Server 2000 system tables should continue to function in SQL Server 2008, but
this capability is strictly for backward compatibility. Table 7.2 provides a list of SQL Server
2000 system tables and alternative SQL Server 2008 system views you can use instead.

TABLE 7.2 SQL Server 2008 Alternatives for SQL Server 2000 System Tables

SQL Server 2000
System Table

SQL Server 2008 System View View Type

sysaltfiles sys.master_files Catalog view

syscacheobjects sys.dm_exec_cached_plans DMV

sys.dm_exec_plan_attributes DMV

sys.dm_exec_sql_text DMV

syscharsets sys.syscharsets Compatibility view

syscolumns sys.columns Catalog view

syscomments sys.sql_modules Catalog view

sysconfigures sys.configurations Catalog view

sysconstraints sys.check_constraints Catalog view

sys.default_constraints Catalog view

sys.key_constraints Catalog view

 Download from www.wowebook.com

ptg

174 CHAPTER 7 SQL Server System and Database Administration

TABLE 7.2 SQL Server 2008 Alternatives for SQL Server 2000 System Tables

SQL Server 2000
System Table

SQL Server 2008 System View View Type

sys.foreign_keys Catalog view

syscurconfigs sys.configurations Catalog view

sysdatabases sys.databases Catalog view

sysdepends sys.sql_dependencies Catalog view

sysdevices sys.backup_devices Catalog view

sysfilegroups sys.filegroups Catalog view

sysfiles sys.database_files Catalog view

sysforeignkeys sys.foreign_keys Catalog view

sysfulltextcatalogs sys.fulltext_catalogs Catalog view

sysindexes sys.indexes Catalog view

sys.partitions Catalog view

sys.allocation_units Catalog view

sys.dm_db_partition_stats DMV

sysindexkeys sys.index_columns Catalog view

syslanguages sys.syslanguages Compatibility view

syslockinfo sys.dm_tran_locks DMV

syslocks sys.dm_tran_locks DMV

syslogins sys.sql_logins (transact-sql) Catalog view

sysmembers sys.database_role_members Catalog view

sysmessages sys.messages Catalog view

sysobjects sys.objects Catalog view

sysoledbusers sys.linked_logins Catalog view

sysopentapes sys.dm_io_backup_tapes DMV

sysperfinfo sys.dm_os_performance_counters DMV

syspermissions sys.database_permissions Catalog view

sys.server_permissions Catalog view

sysprocesses sys.dm_exec_connections DMV

 Download from www.wowebook.com

ptg

175System Views
7

TABLE 7.2 SQL Server 2008 Alternatives for SQL Server 2000 System Tables

SQL Server 2000
System Table

SQL Server 2008 System View View Type

sys.dm_exec_sessions DMV

sys.dm_exec_requests DMV

sysprotects sys.database_permissions Catalog view

sys.server_permissions Catalog view

sysreferences sys.foreign_keys Catalog view

sysremotelogins sys.remote_logins Catalog view

sysservers sys.servers Catalog view

systypes sys.types Catalog view

sysusers sys.database_principals Catalog view

Catalog Views

Using catalog views is the preferred method for returning information used by the
Microsoft SQL Server database engine. There is a catalog view to return information about
almost every aspect of SQL Server. The number of catalog views is far too large to list here,
but you can gain some insight into the range of information available by looking at the
following list, which shows the categories of information covered by catalog views:

. Change Tracking

. Common language runtime (CLR) assembly

. Data spaces and full text

. Database mirroring

. Data spaces

. Endpoint

. Extended properties

. Linked servers

. Messages (for errors)

. Objects

. Partition function

. Resource Governor

. Scalar types

. Schemas

 Download from www.wowebook.com

ptg

176 CHAPTER 7 SQL Server System and Database Administration

. Security

. Server-wide configuration

. Service Broker

. SQL Server Extended Events

. XML schemas (XML type system)

Some of the catalog views return information that is new to SQL Server 2008. Examples
include the Change Tracking and Resource Governor catalog views. Other catalog views
provide information that may have been available in prior versions through system tables,
system procedures, and so on, but the new catalog views expand on the information
returned and include elements that are new to SQL Server 2008.

To demonstrate the use of a catalog view, let’s compare a simple SQL Server 2000 SELECT
statement that returns object information to a SELECT statement in SQL Server 2008 that
returns similar information. The following example shows a SELECT statement written in
SQL Server 2000 to return any stored procedure created after a given date:

select o.crdate, o.name

from sysobjects o

where type = ‘p’

and crdate > ‘1/1/08’

order by crdate, name

Now, compare this SELECT statement to one that uses a SQL Server 2008 catalog view. The
sys.objects catalog view is a new alternative to the SQL Server 2000 sysobjects system
table. The following SELECT uses the sys.objects catalog view to return the same type of
information as the preceding example:

select o.create_date, o.modify_date, name

from sys.objects o

where type = ‘p’

and (create_date > ‘1/1/08’

or o.modify_date >= ‘1/1/08’)

order by 1, 2, 3

As you can see, the modify_date column has been added to the SELECT statement. This
column did not exist with the sysobjects system table. The addition of this column
allows you to identify objects that were created as well as objects that were modified or
altered.

Let’s look at an example of using a catalog view to return the same kind of information
returned in SQL Server 2000 with a system procedure. The handy sp_helpfile system
procedure returns information about database files associated with a given database. This
SQL Server 2000 procedure is still available in SQL Server 2008. An alternative to this
procedure is the new sys.master_files catalog view. This view returns all the information
that sp_helpfile returns and more. The following example shows a SELECT statement

 Download from www.wowebook.com

ptg

177System Views
7

using the sys.master_files catalog view to return the database files for the
AdventureWorks2008R2 database:

select *

from sys.master_files

where db_name(database_id) = ‘AdventureWorks2008R2’

You have the distinct advantage of being able to select the database files for all the data-
bases on your server by using this catalog view. You can also tailor your SELECT statement
to isolate database files based on the size of the database or the location of the physical
database files. For example, to return all database files that are found somewhere on your
C drive, you could use the following SELECT:

select db_name(database_id), physical_name

from sys.master_files

where physical_name like ‘c:\%’

There are plenty of catalog views that provide information about SQL Server. When you are
looking to return information about SQL Server components, you should look to the
catalog views first. These views provide a great deal of flexibility and allow you to isolate
the specific information you need.

Information Schema Views

Information schema views provide another system table–independent option for accessing
SQL Server metadata. This type of view was available in prior versions of SQL Server. Using
information schema views is a viable alternative for accessing SQL Server metadata from a
production application. The information schema views enable an application that uses
them to function properly even though the underlying system tables may have changed.
Changes to the underlying system tables are most prevalent when a new version of SQL
Server is released (such as SQL Server 2008), but changes can also occur as part of service
packs to an existing version.

The information schema views also have the advantage of being SQL-92 compatible.
Compliance with the SQL-92 standard means that SQL statements written against these
views work with other DBMSs that also adhere to the SQL-92 standard. The SQL-92 stan-
dard supports a three-part naming convention, which SQL Server has implemented as
database.schema.object.

In SQL Server 2008, all the information schema views are in the same schema, named
INFORMATION_SCHEMA. The following information schema views or objects are available:

. CHECK_CONSTRAINTS

. COLUMN_DOMAIN_USAGE

. COLUMN_PRIVILEGES

. COLUMNS

. CONSTRAINT_COLUMN_USAGE

 Download from www.wowebook.com

ptg

178 CHAPTER 7 SQL Server System and Database Administration

. CONSTRAINT_TABLE_USAGE

. DOMAIN_CONSTRAINTS

. DOMAINS

. KEY_COLUMN_USAGE

. PARAMETERS

. REFERENTIAL_CONSTRAINTS

. ROUTINES

. ROUTINE_COLUMNS

. SCHEMATA

. TABLE_CONSTRAINTS

. TABLE_PRIVILEGES

. TABLES

. VIEW_COLUMN_USAGE

. VIEW_TABLE_USAGE

. VIEWS

When you refer to information schema views in a SQL statement, you must use a qualified
name that includes the schema name. For example, the following statement returns all
the tables and columns in a given database, using the tables and columns information
schema views:

select t.TABLE_NAME, c.COLUMN_NAME

from INFORMATION_SCHEMA.TABLES t

join INFORMATION_SCHEMA.COLUMNS c on t.TABLE_NAME = c.TABLE_NAME

order by t.TABLE_NAME, ORDINAL_POSITION

TIP

You can expand the Views node in a given database in the Object Explorer and open
the System Views node to see a list of the available information schema views. The
information schema views are listed at the top of the System Views node. If you
expand the Column node under each information schema view, you see the available
columns to select from the view. You can then drag the column into a query window for
use in a SELECT statement. You can also use IntelliSense in a query window determine
the columns.

Fortunately, the names of the information schema views are fairly intuitive and reflect the
kind of information they contain. The relationships between the information schema
views can be derived from the column names shared between the tables.

 Download from www.wowebook.com

ptg

179System Views
7

Dynamic Management Views

Dynamic management views (DMVs), which were introduced in SQL Server 2005, provide
a simple means for assessing the state of a server. These views provide a lightweight means
for gathering diagnostic information without the heavy burden associated with the tools
available in SQL Server 2000. The SQL Server 2000 diagnostic tools, such as heavy Profiler
traces, PerfMon, dbcc executions, and pssdiag, are still available, but oftentimes, the
information returned from the DMVs is enough to determine what may be ailing a SQL
Server machine.

An extensive number of DMVs are available in SQL Server 2008. Some DMVs are scoped at
the server level, and others are scoped at the database level. They are all found in the sys
schema and have names that start with dm_. Table 7.3 lists the different types of DMVs.
The DMVs in this table are categorized based on function as well as the starting characters
in the DMV names. The naming convention gives you an easy means for identifying the
type of each DMV.

TABLE 7.3 Types of DMVs

Category Name Prefix Information Captured

Auditing dm_audit New Auditing information

Service
Broker

dm_broker Server Broker statistics, including activated tasks and connections

Change Data dm_cdc New Change Data Capture information

CLR dm_clr CLR information, including the CLR loaded assemblies

Cryptographic dm_cryp Security related data

TDE dm_database Transparent Data Encryption

Database dm_db Databases and database objects

Execution dm_exec Execution of user code

Full-Text dm_fts Full-Text Search information

I/O dm_io Input and output on network disks

Operating
system

dm_os Low-level operating system information, including memory and
locking information

Provider dm_provider Extensible Key Management (EKM)

Query
Notification

dm_qn Active Query Notification subscriptions

Replication dm_repl Replication information, including the articles, publications, and
transaction involved in replication

 Download from www.wowebook.com

ptg

180 CHAPTER 7 SQL Server System and Database Administration

TABLE 7.3 Types of DMVs

Category Name Prefix Information Captured

Server dm_server Server Audit status

Transaction dm_tran Transactions and isolation-level information

Object dm_sql Object References

Extended
Events

dm_xe New event handling infrastructure

TIP

You can expand the Views node in a given database in the Object Explorer and open
the System Views node to see a list of the available DMVs. The DMVs are all listed
together and start with dm_. If you expand the Column node under each DMV, you see
the available columns to select from the view. You can then drag the column into a
query window to be included in a SELECT statement.

To illustrate the value of the DMVs, let’s look at a performance scenario and compare the SQL
Server 2000 approach to a SQL Server 2008 approach using DMVs. A common performance-
related question is “What stored procedures are executing most frequently on my server?”
With SQL Server 2000, the most likely way to find out is to run a Profiler trace. You must have
a Profiler trace that has already been running to capture the stored procedure executions, or
you must create a new trace and run it for a period of time to answer the performance ques-
tion. The trace takes time to create and can affect server performance while it is running.

With SQL Server 2008, you can use one of the DMVs in the execution category to
answer the same performance question. The following example uses the
sys.dm_exec_query_stats DMV along with a dynamic management function named
dm_exec_sql_text. It returns the object IDs of the five most frequently executed stored
procedures, along with the actual text associated with the procedure:

select top 5 q.execution_count, q.total_worker_time,

s.dbid, s.objectid, s.text

from sys.dm_exec_query_stats q

CROSS APPLY sys.dm_exec_sql_text (q.sql_handle) s

ORDER BY q.execution_count desc

The advantage of using a DMV is that it can return past information without having to explic-
itly create a trace or implement some other performance tool. SQL Server automatically caches
the information so that you can query it at any time. The collection of the data starts when
the SQL Server instance is started, so you can get a good cross-section of information. Keep in
mind that your results can change as the server continues to collect information over time.

Many of the performance scenarios such as those that relate to memory, CPU utilization,
blocking, and recompilation can be investigated using DMVs. You should consider using

 Download from www.wowebook.com

ptg

181System Views
7

DMVs to address performance problems before using other methods in SQL Server 2008.
In many cases, you may be able to avoid costly traces and glean enough information from
the DMV to solve your problem.

NOTE

Dynamic management functions return the same type of information as DMVs. The
dynamic management functions also have names that start with dm_ and reside in the
sys schema. You can find the dynamic management functions listed in the Object
Explorer within the master database. If you select Function, System Functions, Table-
Valued Functions, you see the dynamic management functions listed at the top.

DMVs are also a great source of information that does not relate directly to performance.
For example, you can use the dm_os_sys_info DMV to gather important server informa-
tion, such as the number of CPUs, the amount of memory, and so on. The following
example demonstrates the use of the dm_os_sys_info DMV to return CPU and memory
information:

select cpu_count, hyperthread_ratio, physical_memory_in_bytes

from sys.dm_os_sys_info

/* Results from prior select

cpu_count hyperthread_ratio physical_memory_in_bytes

----------- ----------------- ------------------------

2 2 2146357248

*/

The cpu_count column returns the number of logical CPUs, hyperthread_ratio returns
the ratio between physical CPUs and logical CPUs, and the last column selected returns
the physical memory on the SQL Server machine.

System Stored Procedures
System stored procedures have been a favorite of SQL Server DBAs since the inception of
SQL Server. They provide a rich set of information that covers many different aspects of
SQL Server. They can return some of the same types of information as system views, but
they generally return a fixed set of information that cannot be modified as you can when
using a SELECT statement against the system views. That is not to say that they are not
valuable; they are valuable, and they are particularly useful for people who have been using
SQL Server for a long time. System stored procedures such as sp_who, sp_lock, and sp_help
are tools for a database professional that are as basic as a hammer is to a carpenter.

System stored procedures have names that start with sp_, and they are found in the sys
schema. They are global in scope, which allows you to execute them from any database,

 Download from www.wowebook.com

ptg

182 CHAPTER 7 SQL Server System and Database Administration

TABLE 7.4 Useful System Stored Procedures

System Stored
Procedure

Description

sp_configure Displays or changes server-wide configuration settings.

sp_createstats Creates statistics that are used by the Query Optimizer for all tables in a
database.

sp_help Provides details about the object that is passed to it. If a table name is
passed to this procedure, it returns information on the columns,
constraints, indexes, and more.

sp_helpdb If no parameters are supplied, returns relevant database information
(including the space used) for all the databases on an instance of SQL
Server.

without qualifying the stored procedure name. They also run in the context of the data-
base where you are working. In other words, if you execute sp_helpfile in the
AdventureWorks2008R2 database, the database files for the AdventureWorks2008R2 database
are returned. This same type of behavior exists for any stored procedure that is created in
the master database with a name that starts with sp_. For example, if you create a proce-
dure named sp_helpme in the master database and execute that procedure in the
AdventureWorks2008R2 database, SQL Server ultimately looks for and finds the procedure
in the master database.

NOTE

It is often useful to create your own system stored procedures to make it easier to exe-
cute complex queries against the system views (or to provide information not provided
by the built-in system procedures). For more information and tips on creating your own
system stored procedures, refer to Chapter 28, “Creating and Managing Stored
Procedures.”

System stored procedures are listed in the Object Explorer, in the Programmability node
within Stored Procedures and then System Stored Procedures. There are far too many
system stored procedures to list or discuss them all here. A quick check of the master
database lists more than 1,000 procedures. SQL Server Books Online provides detailed
help on these procedures, which it groups into 18 different categories.

Useful System Stored Procedures

You are likely to use only a handful of system stored procedures on a regular basis. What
procedures you use depends on the type of work you do with SQL Server and your capac-
ity to remember their names. Table 7.4 contains a sample set of system stored procedures
that you may find useful.

 Download from www.wowebook.com

ptg

183System Stored Procedures
7

Many of the administrative functions performed by SSMS can also be accomplished with
system stored procedures. Examples include procedures that start with sp_add and sp_delete,
which can be used to add and delete database objects. In addition, more than 90 system
stored procedures start with sp_help, which return help information on database objects.

TIP

You can use the sys.all_objects catalog view to search for available system stored
procedures. This catalog view lists objects that are schema scoped as well as system
objects. For example, the query SELECT * FROM sys.all_objects WHERE name LIKE
‘sp_help%’ returns all the system stored procedures that start with sp_help. You can
turn to Books Online for detailed help on any of the system stored procedures. Just
enter sp_ in the index search, and you see a list of them all.

Becoming familiar with some of the system stored procedures is well worth your while.
Using them is a very fast and effective means for gathering information from SQL Server.
They do not require the formation of a SELECT statement, and using them is often the
easiest way to get information via a query window.

Summary
Administering SQL Server can be a complex and time-consuming job. Understanding the
SQL Server internals and some of the easy ways to obtain information about a SQL Server
instance can make this job a lot easier. Taking the time to learn what makes SQL Server
tick expands your knowledge of this comprehensive DBMS and helps you make better
decisions when working with it.

Now that you know a bit about managing SQL Server, you may need to install an instance
of SQL Server to administer. Take a look at Chapter 8, “Installing SQL Server 2008,” which
guides you through the installation process.

TABLE 7.4 Useful System Stored Procedures

System Stored
Procedure

Description

sp_helpfile Lists the database files associated with the database you are connected
to.

sp_lock Displays current locking information for the entire SQL Server instance.

sp_spaceused Provides the number of rows and disk space used by the table, indexed
view, or queue passed to it.

sp_who Lists current processes that are connected to an instance of SQL Server.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 8

Installing SQL Server
2008

IN THIS CHAPTER

. What’s New in Installing SQL
Server 2008

. Installation Requirements

. Installation Walkthrough

. Installing SQL Server Using a
Configuration File

. Installing Service Packs and
Cumulative Updates

. Slipstream Installations

Installing SQL Server is the first and one of the easiest tasks
you’ll accomplish as an administrator. And even though it
may take as little as 15 minutes to get SQL Server 2008 up
and running by clicking through the install screens and
accepting the defaults (Next, Next, Next...), it is crucial to
first understand the meaning of each install option and its
ramifications for your environment.

What’s New in Installing SQL
Server 2008
The installation process has been completely revamped for
SQL Server 2008, introducing enhancements to simplify the
installation compared to SQL Server 2005. The new installa-
tion features for SQL Server 2008 include the following:

. A new SQL Server 2008 Installation Center landing
page, which includes a number of options for plan-
ning, installing, and maintaining a SQL Server imple-
mentation, as well as links to SQL Server
documentation for planning and reviewing before
starting the install.

. New maintenance tasks available in the installation
process, allowing DBAs to either repair a corrupt SQL
Server 2008 installation or conduct a feature upgrade.
The Feature Upgrade Wizard allows DBAs to upgrade
or change their installed edition of SQL Server 2008
(for example, upgrading from Standard Edition to
Enterprise Edition without having to perform a
complete reinstall).

 Download from www.wowebook.com

ptg

186 CHAPTER 8 Installing SQL Server 2008

. A discovery report that provides details on all SQL Server components, features, and
settings associated with an installation.

. The potential to automate SQL Server installations by using an existing configura-
tion file.

. An Advanced Cluster Preparation tool, which streamlines and prepares a SQL Server
2008 failover cluster installation.

With the release of Service Pack 1, SQL Server 2008 also now supports Slipstream installa-
tion. Slipstreaming is a method of integrating a SQL Server 2008 update (such as a service
pack or cumulative update) with the original installation media so that the original media
and update are installed at the same time. This capability can be a huge timesaver over
having to manually apply service packs or cumulative updates after performing a full
installation.

Installation Requirements
Before you install SQL Server 2008 on your server, it’s a good idea (even if you own the
latest-and-greatest system) to review the hardware and software requirements. The next
two sections gather all the fine print into a few conveniently organized tables.

NOTE

The SQL Server 2008 installer helps determine whether your system meets the mini-
mum requirements by running the new System Configuration Checker (SCC) early in the
install. SCC conveniently provides a savable (via a button click) textual report on its
results (and displays them onscreen). SCC is covered in detail later in this chapter.

Hardware Requirements

To install SQL Server 2008, you must ensure your system possesses a few basic components:

. A pointing device

. A display device with resolution of at least 1024×768 (required by SQL Server
Management Studio [SMSS])

. A DVD-ROM or CD-ROM drive (for installation from disc)

Table 8.1 lists server environment hardware requirements, by SQL Server edition, with
reference to processor type and/or word length. This table lists the base minimum hard-
ware requirements. In most installations, you want to have at least 2GB of memory and a
2GHz or faster processor. In addition, installation using a redundant array of disks (RAID)
on production systems is highly recommended.

Of course, faster editions of processors, increased RAM, and more disk space don’t nega-
tively impact any installation either. One final (and perhaps obvious) note: The more SQL
Server components you install, the more disk space you need. Analysis Services, for
example, requires an additional 90MB of disk space for the install.

 Download from www.wowebook.com

ptg

187Installation Requirements

The hard disk space requirements for SQL Server are dependent on which SQL Server
components are installed. Table 8.2 breaks down the disk space requirements by feature.

NOTE

Licensing for multicore processors is the same as for single-core processors: only a sin-
gle license is required for each multicore processor. Another way of saying this is licens-
ing is per CPU socket, not per processor core.

TABLE 8.1 SQL Server 2008 Minimum Hardware Requirements, by Edition

SQL Server Editions Memory
(RAM)

Processors (CPU)

Enterprise, Datacenter, Standard,
Workgroup, Web, and Developer
(32-bit)

1GB 1GHz Pentium III

Enterprise, Datacenter, Standard,
Workgroup, Web, and Developer
(64-bit)

1GB 1.4GHz AMD Opteron, AMD Athlon 64, Intel
Xeon with Intel EM64T support, or Intel
Pentium IV with EM64T support

Enterprise, Standard, and Developer
(Itanium)

1GB 1GHz Itanium

Express (64-bit) 256MB 1.4GHz AMD Opteron, AMD Athlon 64, Intel
Xeon with Intel EM64T support, or Intel
Pentium IV with EM64T support

Express (32-bit) 256MB 1GHz Pentium III

Express with Tools and Express with
Advanced Services (32-bit)

512MB 1GHz Pentium III

TABLE 8.2 SQL Server 2008 Disk Space Requirements, by Feature

SQL Server Feature Disk Space Requirement

Database Engine and data files, Replication, and Full-Text
Search

280MB

Analysis Services and data files 90MB

Reporting Services and Report Manager 120MB

Integration Services 120MB

Client Components 850MB

SQL Server Books Online 240MB

8

 Download from www.wowebook.com

ptg

188

TABLE 8.3 SQL Server 2008 R2 Software Requirements, by Edition

SQL Server Editionμs Supported Operating Systems

Enterprise and
Datacenter (32-bit)

Windows Server 2003 Standard, Enterprise, and Datacenter Editions
with SP2 or later
Windows Server 2008 Web, Standard, Enterprise, and Datacenter
Editions with SP2 or later
Windows Server 2008 R2 Web, Standard, Enterprise, and Datacenter
Editions

Enterprise and
Datacenter (64-bit)

Windows Server 2003 Standard, Enterprise, and Datacenter x64
Editions with SP2 or later
Windows Server 2008 Standard, Web, Enterprise, and Datacenter x64
Editions with SP2 or later
Windows Server 2008 R2 Standard, Web, Enterprise, and Datacenter
x64 Editions

Enterprise (Itanium) Windows Server 2003 Enterprise and Datacenter 64-bit Itanium
Editions SP2 or later
Windows Server 2008 64-bit Itanium with SP2 or later
Windows Server 2008 R2 64-bit Itanium

Software Requirements

The following software prerequisites must be installed on any server running any SQL
Server edition:

. Microsoft Internet Explorer 6.0 Service Pack 1 (SP1) or later (required because it is a
dependency of SMSS, Books Online, Business Intelligence Development Studio [for
Analysis Services], and the Report Designer)

. Windows Installer 4.5 or later (sometimes distributed by Microsoft Windows Update
services; also will be installed by the SQL Server Installation Center)

. .NET Framework 3.5 SP1, SQL Server Native Client and SQL Server Setup support files
(if not installed already, these are also installed by SQL Server Installation Center)

Table 8.3 lists the software and operating system requirements for SQL Server 2008, by
edition.

CHAPTER 8 Installing SQL Server 2008

 Download from www.wowebook.com

ptg

189Installation Requirements
8

TABLE 8.3 SQL Server 2008 R2 Software Requirements, by Edition

SQL Server Editionμs Supported Operating Systems

Standard and Developer
(32-bit)

Windows XP SP3 or later
Windows Vista SP2 Ultimate, Enterprise, Business, and Home
Basic/Premium Editions
Windows 7 Ultimate, Enterprise, Professional, and Home
Basic/Premium x64 Editions
Windows Server 2003 Enterprise, Standard, and Datacenter Editions
with SP2 or later
Windows Server 2008 R2 Web Standard, Enterprise, and Datacenter
Editions
Windows Server 2008 Web, Standard, Enterprise, and Datacenter
Editions

Standard and Developer
(64-bit)

Windows Server 2003 Standard, Enterprise, and Datacenter x64
Editions with SP2 or later
Windows XP Professional x64 Edition
Windows Vista Ultimate, Enterprise, Business, and Home
Basic/Premium x64 Editions
Windows 7 Ultimate, Enterprise, Professional, and Home
Basic/Premium x64 Editions
Windows Server 2008 Web, Standard, Datacenter, and Enterprise x64
Editions
Windows Server 2008 R2 Web, Standard, Datacenter, and Enterprise
x64 Editions

Developer (Itanium) Windows Server 2003 Enterprise and Datacenter Editions for Itanium-
based systems with SP2 or later
Windows Server 2008 64-bit Itanium Enterprise and Datacenter
Edition SP2 or later
Windows Server 2008 R2 64-bit Itanium Enterprise Edition

Workgroup (32-bit) Windows XP SP3 and later
Windows Server 2003 Standard, Enterprise, and Datacenter Editions
with SP2 or later
Windows Vista SP2 Ultimate, Enterprise, Business, and Home
Basic/Premium Editions
Windows 7 Ultimate, Enterprise, Professional, and Home
Basic/Premium Editions
Windows Server 2008 SP2 Web, Standard, Enterprise, and
Datacenter Editions
Windows Server 2008 R2 Web, Standard, Enterprise, and Datacenter
Editions

 Download from www.wowebook.com

ptg

190 CHAPTER 8 Installing SQL Server 2008

TABLE 8.3 SQL Server 2008 R2 Software Requirements, by Edition

SQL Server Editionμs Supported Operating Systems

Workgroup (64-bit) Windows XP x64 Professional
Windows Server 2003 Standard, Enterprise, and Datacenter x64
Editions with SP2 or later
Windows Vista Ultimate, Home Premium, Home Basic, Enterprise, and
Business x64 Editions
Windows 7 Ultimate, Enterprise, Professional, and Home
Basic/Premium x64 Editions
Windows Server 2008 SP2 Web, Standard, Enterprise, and
Datacenter x64 Editions
Windows Server 2008 R2 Web, Standard, Enterprise, and Datacenter
x64 Editions

Web (32-bit) Windows Server 2003 Standard, Enterprise, and Datacenter Editions
with SP2 or later
Windows Server 2008 SP2 Web, Standard, Enterprise, and
Datacenter Editions
Windows Server 2008 R2 Web, Standard, Enterprise, and Datacenter
Editions

Web (64-bit) Windows Server 2003 Standard, Enterprise, and Datacenter x64
Editions with SP2 or later
Windows Server 2008 SP2 Web, Standard, Enterprise, and
Datacenter x64 Editions
Windows Server 2008 R2 Web, Standard, Enterprise, and Datacenter
x64 Editions

Express (32-bit) Windows XP (Home, Tablet, Professional, and Media Editions) SP2 or
later
Windows Server 2003 (Web, Standard, Enterprise, and Datacenter
Editions with SP2 or later)
Windows Vista SP2 Ultimate, Home Premium, Home Basic,
Enterprise, and Business Editions
Windows 7 Ultimate, Enterprise, Professional, and Home
Basic/Premium Editions
Windows Server 2008 SP2 Web, Standard, Enterprise, and
Datacenter Editions
Windows Server 2008 R2 Web, Standard, Enterprise, and Datacenter
Editions

 Download from www.wowebook.com

ptg

191Installation Requirements
8

TABLE 8.3 SQL Server 2008 R2 Software Requirements, by Edition

SQL Server Editionμs Supported Operating Systems

Express (64-bit) Windows Server 2003 Standard, Enterprise, and Datacenter x64
Editions with SP2 or later
Windows Vista Ultimate, Home Premium, Home Basic, Enterprise, and
Business x64 Editions
Windows 7 Ultimate, Enterprise, Professional, and Home
Basic/Premium x64 Editions
Windows Server 2008 SP2 Web, Standard, Enterprise, and
Datacenter x64 Editions
Windows Server 2008 R2 Web, Standard, Enterprise, and Datacenter
x64 Editions

Network Protocol Support
The following network protocols are supported for all editions (where applicable):

. Shared memory (but not for failover clusters)

. Named pipes

. TCP/IP (required for SQL Server endpoint communications)

. Virtual Interface Adapter (VIA)

Running Multiple Simultaneous Editions
You can install multiple editions of SQL Server 2008 on the same machine and run them
simultaneously. This capability comes in handy when you need to test code or other
feature functionality on one edition versus another, such as when your development and
deployment environments differ. In fact, you can even install and run SQL Server 2008
Enterprise Evaluation Edition on XP SP2 (not supported for the non–Evaluation Enterprise
Edition) if you need to test an Enterprise Edition feature on a non–Windows Server system.

NOTE

You can quickly ascertain the SQL Server edition you’re running by executing this T-SQL
query:

select serverproperty(‘edition’)

 Download from www.wowebook.com

ptg

192 CHAPTER 8 Installing SQL Server 2008

Installation Walkthrough
The following sections walk you through a typical installation scenario step by step. We
bring up important points of information along the way, providing a real-world perspective
on the process. No past experience with SQL Server is required to understand these sections.

NOTE

SQL Server 2008 is actually version 10 of the product, just as SQL Server 2005 is
version 9, and SQL Server 2000 was version 8, which succeeded SQL Server 7. SQL
Server 2008 R2 is considered version 10.5. Although versioning by year seems
straightforward, it may obfuscate the reasoning behind the naming convention used for
many installed items, such as shared folder names (for example, Microsoft SQL
Server\100), SQL Server instance folder names (for example,
\MSSQL10_50.MSSQLSERVER), and so on. In addition, SQL Server 2000 servers
appear as version 8 when registered in SSMS (and elsewhere). You can still adminis-
ter many aspects of SQL Server 2000 instances via the 2008 and 2008 R2 manage-
ment tools.

Install Screens, Step by Step

The first step in installing SQL Server 2008 or 2008 R2 is, of course, to launch the SQL
Server Installation Center. You do this by inserting the install DVD in the drive and
double-clicking setup.exe in the root folder (if AutoPlay is enabled, setup runs automati-
cally). If you’re installing from a decompressed .iso file or network share, locate the root
folder and double-click the setup.exe file in the root folder.

If Windows Installer 4.5 or Microsoft .NET Framework 3.5 Service Pack 1 are not installed,
the SQL Server Setup program first needs to install them before you can continue. If this is
the case, you see a dialog like the one shown in Figure 8.1

FIGURE 8.1 SQL Server 2008 prerequisites warning dialog.

 Download from www.wowebook.com

ptg

193Installation Walkthrough
8

NOTE

If the prerequisites for the Installer need to be installed, you likely need to restart the
computer for the updates to take effect. After restarting, rerun setup.exe to continue
the installation.

When the prerequisites are installed, the Installation Wizard runs the SQL Server
Installation Center, as shown in Figure 8.2.

FIGURE 8.2 SQL Server 2008 Installation Center window.

NOTE

The same installation program is used whether you want to perform a full SQL Server
installation or to install just the client tools. You have the option to choose which com-
ponents to install on the Feature Selection screen, which is displayed after you install
the Setup Support Files.

The first thing you’ll notice is that there is a great deal of content immediately available
from the SQL Server Installation Center Planning window, including documentation on
hardware and software requirements, release notes, security and upgrade documentation,

 Download from www.wowebook.com

ptg

194 CHAPTER 8 Installing SQL Server 2008

FIGURE 8.3 System Configuration Checker window

and the System Configuration Checker. You typically first want to run the System
Configuration Checker to confirm that your system meets the minimum hardware and
software requirements for installing SQL Server 2008. Click on the link for the System
Configuration Checker to bring up the screen shown in Figure 8.3. This is essentially the
Setup Support Rules screen that also runs during the actual installation. It’s better to find
out now if there will be any issues with the installation before you get into the actual
installation.

When the SCC scan is complete, overall status of the check is detailed at the top of the
main window. You can click the Show Details button to view a detailed report of the
checks performed. This report notes any issues found. If any checks fail, or a warning is
raised, click the hyperlink in the Status column for more detailed report with specifics
and suggestions for resolution. Click the View Detailed Report link to see the SCC results
in an HTML report format, which is also saved to a file (see Figure 8.4).

After you verify that the system configuration is sufficient to support the SQL Server 2008
installation, click OK to go back to the SQL Server Installation Center. Then click on the
Installation option in the menu on the left of the SQL Server Installation Center. This
brings up the installation options. To install a new instance of SQL Server, select the New
Installation or Add Features to an Existing Installation option, as shown in Figure 8.5.

 Download from www.wowebook.com

ptg

195Installation Walkthrough
8

FIGURE 8.4 System Configuration Checker HTML report.

FIGURE 8.5 SQL Server Installation menu.

 Download from www.wowebook.com

ptg

196 CHAPTER 8 Installing SQL Server 2008

NOTE

The following installation steps and screenshots are based on the installation of SQL
Server 2008 R2. For SQL Server 2008 installations, the order of the install screens
and options may be slightly different, but the screen contents and options are similar.

The first step of the installation is to run the Setup Support Rules to identify any potential
issues that might occur when the installer installs the SQL Server Setup support files and
lists any items that may need to be corrected before Setup can continue. These checks
include the following:

. Operating system version

. Whether there are any reboots pending from other installers

. Whether the logged-in user is a system administrator (a must)

. Whether there is support for long pathnames where the installation media resides

. The consistency of any SQL Server Registry keys

After the Setup Support Rules run for the Setup Support Files, you can click on the Show
Details button to display a window like that shown in Figure 8.6.

If any tests fail, you can click on the View Detailed Report link to see a more detailed
report file. You can also click on the hyperlink in the Status column of the failed rule to

FIGURE 8.6 Setup Support Rules for Setup Support Files Detail.

 Download from www.wowebook.com

ptg

197Installation Walkthrough
8

view specifics on the failed rule. If there are no failed Setup Support Rules to hinder instal-
lation, click OK to continue to the installation of the Setup Support Files (see Figure 8.7).
The Setup Support Files are components that need to be installed so that the actual SQL
Server product installation can proceed. Click Install to initiate the installation of the
Setup Support Files.

After the installation of the Setup Support Files has completed successfully, the Installer
reruns the Setup Support Rules, this time running additional checks to verify that the
system will support the installation of SQL Server and its features. Again, if any of the tests
fail or a warning is generated, you typically need to address this situation before continu-
ing to ensure a successful SQL Server installation. For example, Figure 8.8 shows a warning
regarding Windows Firewall. Clicking on the Warning hyperlink in the Status column
brings up a dialog with more information about the warning. In this case, the warning
indicates that if Windows Firewall is enabled, the network ports for SQL Server need to be
opened to allow remote clients to access SQL Server on this machine.

If no tests have failed and all warnings have been reviewed or resolved, click Next to bring
up the Product Key page to enter any necessary product keys if you are installing a version
of SQL Server 2008 that is not free (see Figure 8.9).

After entering the product key (if needed), click Next to review the License Terms for SQL
Server 2008 R2 (see Figure 8.10). Note that you need to accept the license agreement that
follows; otherwise, you can’t proceed. Click the check box indicating your acceptance of
the license terms and click Next to bring up the Setup Role page, as shown in Figure 8.11.

FIGURE 8.7 Setup Support Files installation screen.

 Download from www.wowebook.com

ptg

198 CHAPTER 8 Installing SQL Server 2008

FIGURE 8.8 Setup Support Rules for SQL Server installation detail.

FIGURE 8.9 Product Key entry page.

 Download from www.wowebook.com

ptg

199Installation Walkthrough
8

FIGURE 8.10 License Terms page.

FIGURE 8.11 Setup Role page.

 Download from www.wowebook.com

ptg

200 CHAPTER 8 Installing SQL Server 2008

The Setup Role page is new with SQL Server 2008 R2. This page was not available in SQL
Server 2008. The Setup Role page lets you specify whether to use the Feature Selection
page to select individual features to be installed or to install using a setup role. A setup role
is a fixed selection of all the features and shared components required to implement a
predefined SQL Server configuration. For example, in Figure 8.11, you are presented with
three options. The SQL Server Feature Installation option lets you select individual features
and shared components to be installed, such as Database Engine Services, Analysis Services
(native mode), Reporting Services, and Service Broker. The Analysis Services with
SharePoint Integration option allows you to install Analysis Services server components in
a Microsoft Office SharePoint Server farm. This option enables large-scale query and data
processing for published Excel workbooks that contain embedded PowerPivot data. The All
Features with Defaults option skips the Feature Selection screen and installs all SQL Server
2008 R2 features available for the current release. All services are installed with the default
system accounts, and the current user running the install is provisioned as a member of
the SQL Server sysadmin role.

In most cases, you choose the SQL Server Feature Installation option. After selecting this
option, click Next to display the Feature Selection window (see Figure 8.12). Here, you can
select which SQL Server features you want to install. For example, if you want to install
only the SQL Server Client Tools, this is the place you specify that choice.

Following are the most commonly available features (detailed in subsequent chapters of
this book):

FIGURE 8.12 The Feature Selection page.

 Download from www.wowebook.com

ptg

201Installation Walkthrough
8

. Database Engine Services—Includes the core Database Engine services, optional
replication (see Chapter 19, “Replication”), and Full-Text Search (see Chapter 50,
“SQL Server Full-Text Search”) services.

. Analysis Services—Includes the engine used to create business intelligence solu-
tions that rely on OLAP and data mining (see Chapter 51, “SQL Server 2008 Analysis
Services”).

. Reporting Services—Includes the engine and tools used to generate and deploy
data-centric reports (see Chapter 53, “SQL Server 2008 Reporting Services”).

. Shared Features—Includes optional features shared among multiple SQL Server
instances on the same system, such as Business Intelligence Development Studio,
Client Tools Connectivity components, Integration Services, SQL Server Books
Online, SQL Server Management Tools, and the Microsoft Sync Framework.

If you are uncertain about the need for a specific feature, when you click on it in this
window, a description of the feature and what will be installed is displayed in the
Description pane on the right.

The Feature Selection page is also the place where you can change the installation location
for the shared features (if this is the first time any of the shared features are being installed
on the system). The default location is C:\Program Files\Microsoft SQL Server. In most
production installations, you’ll most likely want the shared features to remain in the
Program Files folder.

After you finish making your selections, click Next to move on to the Installation Rules
page (see Figure 8.13).

NOTE

In versions of SQL Server 2008 prior to R2, the installation rules were not run until
later in the installation process.

The Installation Rules page runs a check to determine whether there are any issues that
will block the installation of the selected features. From this page, you can address any
issues and rerun the rules until they all pass or only warning messages are displayed. Like
the Setup Support Rules page, this page enables you to get detailed information on the
rule checks performed by clicking on the Show Details button. You can get more informa-
tion on a specific rule by clicking the hyperlink in the Status column. A detailed HTML
report can be generated as well by clicking on the View Detailed Report hyperlink.

When no errors are displayed on the Installation Rules page, click Next to proceed to the
Instance Configuration page.

You can choose to install SQL Server as the default instance (if a default instance has not
already been installed) or as a named instance. SQL Server supports multiple instances of
SQL Server on a single server or workstation, but only one instance can be the default
instance. The default instance can be an installation of SQL Server 2000, SQL Server 2005,
or SQL Server 2008. All other instances must be named instances. The named instances

 Download from www.wowebook.com

ptg

202 CHAPTER 8 Installing SQL Server 2008

FIGURE 8.13 The Installation Rules page.

can be different versions and/or editions of SQL Server. You can run multiple instances of
SQL Server concurrently on the same machine with each instance running independently
of other instances. You can also install SQL Server as a named instance without installing
a default instance first. If any instances are already installed, they are listed in the
Installed Instances list. (For example, Figure 8.14 shows that an instance of the Shared
Components from SQL Server 2005 is already installed.)

Another option you can specify on this screen is the Instance Root Directory. This deter-
mines where the data files for the system databases for the SQL Server instance will be
installed. The installation path for SQL Server 2008 defaults to the system drive of the
machine to which you are installing, followed by the root default folder: [system drive
letter]:Program Files\Microsoft SQL Server. From here, two main subfolders branch
out:

. 100—This is the version-specific parent folder (SQL Server 2008 is version 10.0,
hence 100) for shared features such as Integration Services (under DTS), client tools
(under Tools), shared tools (under Shared), and COM components (under COM).

. MSSQL10_50.InstanceName—This is the parent folder for Database Engine compo-
nents (under MSSQL/Binn) and data files (under MSSQL/Data). InstanceName is deter-
mined by the value specified during the installation process.

. MSAS10_50.InstanceName—This is the parent folder for Analysis Services compo-
nents.

 Download from www.wowebook.com

ptg

203Installation Walkthrough
8

FIGURE 8.14 Instance Configuration page.

. MSRS10_50.InstanceName—This is the parent folder for Reporting Services
components.

After you finish configuring the instance, click Next to bring up the Disk Space
Requirements page. This information screen shows only the disk space requirements for
the features you’ve chosen to install and the available space in the drives you selected to
install to. If you want to change the install locations, click on the Back button to return to
the screen where the installation directory you want to change is specified. When you are
satisfied with your selections, click Next to move onto the Server Configuration page (see
Figure 8.15).

On the Server Configuration page, you can specify the specific user accounts and pass-
words to use for the selected SQL Server services you chose to install. To simplify matters,
you can click the Use the Same Account for All SQL Server Services button to specify a
single local or domain account dedicated for SQL Server 2008 R2 use and assign it to all
services. However, for improved security, it is recommended that you create multiple
accounts, one for each service. This helps reinforce the least-privileged user account
approach, which states that a user should have only the privileges required to get the job
done—and no more. Having multiple accounts also makes it clearer for network adminis-
trators to determine which SQL Server services (as opposed to the multitude of other
running services) are requesting access to a resource. If you don’t specify a user account,
the services are set up to run under the Local System account, which is an account with
local admin privileges that does not have access to any network resources. The Installer
provides warnings if you specify an account with insufficient privileges or credentials.

 Download from www.wowebook.com

ptg

204 CHAPTER 8 Installing SQL Server 2008

FIGURE 8.15 Server Configuration page.

Also on the Service Accounts tab, you can select the server startup options for the SQL
Server services being installed by selecting the startup type in the drop-down selection list
to the right of the service. It is highly recommended to autostart the SQL Server service so
it’s available when the system is started. (If necessary, you can change the startup options
for the SQL Server services later, using the SQL Server Configuration Manager.)

NOTE

The SQL Server Browser service is installed only once, no matter how many instances
you install.

NOTE

If you are not sure what accounts to set up for the various services, don’t worry too
much at this point. You can always change the service accounts later using the SQL
Server Configuration Manager.

The Server Configuration page also allows you to override the default SQL Server collation
settings. You do so by first clicking on the Collation tab (see Figure 8.16). Collations are
important because they are used to determine case sensitivity of textual data for compar-
isons, sort order in indexes, and so on.

 Download from www.wowebook.com

ptg

205Installation Walkthrough
8

If you’re running Windows in the United States, the collation selection defaults to
SQL_Latin1_General_CP1_CI_AS for the Database Engine. The default settings should be
changed only if the collation setting for this installation of SQL Server needs to match the
collation settings used by another instance of SQL Server, or if it needs to match the
Windows system locale of another computer. If you need to change the collation settings,
click on the Customize button. This brings up the Database Engine Collation
Customization dialog, where you can select from standardized SQL Collations or customize
your own by specifying a Windows collation setting and the desired sort options.

After making your selections on the Server Configuration page, click Next to move onto
the Database Engine Configuration page. On this page, you can specify the authentication
mode to use for SQL Server. This is done on the Account Provisioning tab (see Figure
8.17). The default setting is for Windows Authentication only. However, Mixed Mode
authentication is required if you plan to have any clients authenticating to SQL Server
2008 R2 but will not be authenticating to a Windows domain. If you do select Mixed
Mode authentication, you also have to enter a password to use for the built-in in SQL
Server administration account (sa). A strong sa password is recommended. The Account
Provisioning page also provides the opportunity to specify local or domain accounts to be
mapped to the sysadmin role in SQL Server (you must provide at least one). These
accounts have unrestricted access to SQL Server for performing SQL Server administration
and maintenance tasks. For more information on user accounts, passwords, and server
roles, see Chapter 11, “Security and User Administration.”

FIGURE 8.16 Server Configuration Collation setting.

 Download from www.wowebook.com

ptg

206 CHAPTER 8 Installing SQL Server 2008

On the Data Directories tab (see Figure 8.18), you can configure the data root directory
and default directories where the user and tempdb data and log files will be created, as
well as the default location for the Backup directory. Note that the System Database
Directory cannot be changed here; you need to return to the Instance Configuration page
and modify the Instance Root directory. In a production installation, for performance
reasons, you should set up multiple drives or drive arrays to store the data and log files.
Typically, you do not want the system data files stored on the C: drive, especially buried
in the Program Files folder. You likely want to locate the data files on a high-perfor-
mance drive setup specifically for database files and away from the system swap file and
other applications. For recoverability purposes, you also should keep your backup files on
a separate drive from your data files. (For more information on database devices and
performance, see Chapter 38, “Database Design and Performance.”) As a general rule, you
also should place the log files on separate disks from the data files, and placing tempdb on
its own disk further helps improve performance

FIGURE 8.17 The Account Provisioning tab.

 Download from www.wowebook.com

ptg

207Installation Walkthrough
8

FIGURE 8.18 The Data Directories tab.

NOTE

If you are planning on installing multiple SQL Server instances on the same server, con-
sider using separate subdirectories for each instance’s data and log files. This way, you
avoid potential conflicts between data and log filenames for databases with the same
names created in more than on SQL Server instance. As you notice, by default, the
SQL Server Installer creates subdirectories under the specified root directory name
using the SQL Server version number and instance name (for example,
MSSQL10_50.MSSQLSERVER) and then an additional subdirectory for the services type
(MSSQL for SQL Server, MSAS for Analysis Services, and MSRS for Reporting Services).

The final tab on the Database Engine Configuration tab is FILESTREAM (see Figure 8.19).
The FILESTREAM data type is a column property available in SQL Server 2008. FILESTREAM
storage is implemented as a varbinary(max) column, but the actual data is stored as BLOBs
in the file system. Because of security considerations, FILESTREAM, by default, is disabled.
If you want to use the FILESTREAM option, click the Enable FILESTREAM for Transact-SQL
Access check box to enable FILESTREAM capabilities. This control must be checked before
the other control options will be available. The Enable FILESTREAM for File I/O Streaming
Access check box enables Win32 streaming access for FILESTREAM. If this option is
selected, you can specify the name of the Windows share in which the FILESTREAM data

 Download from www.wowebook.com

ptg

208 CHAPTER 8 Installing SQL Server 2008

will be stored. The Allow Remote Clients to Have Streaming Access to FILESTREAM Data
check box determines whether to allow remote clients to access this FILESTREAM data on
this server. For more information on defining and using FILESTREAM data in SQL Server
2008, see Chapters 24, “Creating and Managing Tables,” and 42, “What’s New for Transact-
SQL in SQL Server 2008.” If you are unsure whether you need or want to use FILESTREAM
data, you can leave this option disabled during the install. You can enable FILESTREAM
data at any time via the SQL Server Configuration Manager.

Some of the remaining configuration screens depend on which features you selected in
the Feature Selection page. For example, if you chose to install Analysis Services or
Reporting Services, you have configuration pages to specify the installation options for
these features. For more information on configuring Analysis Services and Reporting
Services, see Chapters 51, “SQL Server 2008 Analysis Services,” and 53, “SQL Server 2008
Reporting Services.” As with the FILESTREAM option, you do not have to install Analysis
Services or Reporting Services during the initial install. You can always run the SQL Server
Installation Center later to add these features to an existing SQL Server instance.

After you finish making your selections, click Next to move on to the Error Reporting
page. On the Error Reporting page, you have the option to indicate whether you want to
have error reports sent to Microsoft automatically for any of the SQL Server services that
run without user interaction. This option, if enabled, helps Microsoft improve future
releases of SQL Server features by sending error reports to Microsoft automatically. This

FIGURE 8.19 The FILESTREAM tab.

 Download from www.wowebook.com

ptg

209Installation Walkthrough
8

process is colloquially known as “phoning home,” and you may be inclined to keep this
option unchecked. Note that doing so reduces Microsoft’s capability to gather important
information that can helpful for identifying possible bugs and developing fixes in future
service pack releases. Specify whether you want to participate and click Next to continue
to the Installation Configuration Rules page, as shown in Figure 8.20.

NOTE

In SQL Server 2008, the Error Reporting page was referred to as the Error and Usage
Reporting page. In addition to the option to have error reports sent to Microsoft auto-
matically, it also provided the option to participate in the Customer Experience
Improvement program.

The Installation Configuration Rules page runs a final set of checks to determine if there
are any issues that will prevent a successful installation of SQL Server 2008. If no errors are
reported, click Next to continue to the Ready to Install page (see Figure 8.21). This page
displays a summary of the installation options chosen as well as the file locations speci-
fied. Review this information to ensure the features and file locations match what you

FIGURE 8.20 The Installation Configuration Rules page.

 Download from www.wowebook.com

ptg

210 CHAPTER 8 Installing SQL Server 2008

specified during the previous screens. This page also displays the location of the
Configuration file path where you can find the ConfigurationFile.ini file generated by
the installer. This .ini file can be used for unattended installations, which are discussed
later in this chapter. The ConfigurationFile.ini file is located in the same place where
you can find the installation log files, which you can review if any problems occur during
the installation.

If everything looks satisfactory on the Ready to Install Page, click the Install button to
proceed with the SQL Server installation. This displays the Installation Progress screen,
which shows a progress bar and messages to allow you to track the progress of the installa-
tion. When the setup process is complete, the Installer displays the Complete page, which
contains a hyperlink to the Installer log file and supplemental information about the
installation.

One of the notes that may be displayed in the Supplemental Information section of the
Complete page refers to the installation of the SQL Server sample databases. If you’ve
worked with previous versions of SQL Server, you may remember that there was an option
to install the sample databases during the SQL Server installation. With SQL Server 2008,
the sample databases are not part of the SQL Server Installation Center, nor are they avail-
able on the install media. To install the sample databases and sample code for non-Express
editions of SQL Server 2008, you need to go to the Microsoft CodePlex website to down-
load the installer for the sample databases. There is a link to the SQL Server samples on
the CodePlex website on the Resources page of the SQL Server Installation Center.

FIGURE 8.21 The Ready to Install Page.

 Download from www.wowebook.com

ptg

211Installation Walkthrough
8

FIGURE 8.22 The Complete page.

The Supplemental Information section also provides a link to the latest readme file for the
release of SQL Server installed and a note regarding how SQL Server updates are now avail-
able via Microsoft Update. Before leaving the Installation Center, you might want to click
the Search for Product Update link on the Installation page to see whether there are any
critical hotfixes or service packs already available for your SQL Server installation.

Other Options Available in the SQL Server Installation Center

Before leaving the SQL Server Installation Center, let’s explore a few other utilities avail-
able from the main menu. The Maintenance menu provides tools to upgrade an installed
SQL Server 2008 Edition (for example, from Standard Edition to Enterprise Edition), repair
a corrupt installation, or remove a node from a SQL Server 2008 cluster. The Tools menu
provides links to the System Configuration Checker, the Installed features discovery report
that generates information regarding all SQL Server products and features installed on the
local machine, and a utility to upgrade existing SQL Server 2005 Integration Services pack-
ages to the SQL Server 2008 Integration Services package format.

Finally, on the Advanced menu, there are options to prepare and complete a SQL Server
failover cluster and to install in instance of SQL Server 2008 from an existing configura-
tion file. Installing using an existing configuration file allows you to repeat an installation
without having to go through all the individual steps and enter/select all the options you
normally have to go through with the installation wizard.

 Download from www.wowebook.com

ptg

212 CHAPTER 8 Installing SQL Server 2008

Installing SQL Server Using a Configuration File
If you need to install SQL Server 2008 to multiple machines, you’ll likely want to do so
without having to manually select the same options over and over. Running the installer
using a configuration file provides this much-needed timesaving feature. With the SQL
Server 2008 installer, you have the option of running the installer with a configuration file
in a couple of ways: using the Installer Wizard with options prefilled by the configuration
file or using a fully automated and unattended installation from the command line. If you
use the GUI with the options prefilled by the configuration file, you have the opportunity
to review and change options along the way as necessary.

The ConfigurationFile.ini file is a text file composed of parameters in name/value
pairs along with descriptive comments. Many of the parameter names correspond to the
screens and screen options you would see when using the Installer Wizard. Here are
some examples:

. INSTANCENAME—Specifies a named instance name for the value or specifies the
special value MSSQLSERVER to install the default instance.

. FEATURES—Specifies which features to install, uninstall, or upgrade. The list of top-
level features include SQL, AS, RS, IS, and Tools. The SQL feature installs the
Database Engine, Replication, and Full-Text. The Tools feature installs Management
Tools, Books Online, Business Intelligence Development Studio, and other shared
components.

. INSTALLSHAREDIR—Specifies the root installation directory for native shared
components.

. INSTANCEDIR—Specifies the installation directory for instance-specific components.

. INSTALLSQLDATADIR—Specifies the Database Engine root data directory.

. SQLBACKUPDIR—Specifies the default directory for the Database Engine backup files.

. SQLUSERDBDIR—Specifies the default directory for the Database Engine user
databases.

. SQLUSERDBLOGDIR—Specifies the default directory for the Database Engine user
database logs.

. SQLTEMPDBDIR—Specifies the directory for Database Engine tempdb files.

. SQLCOLLATION or ASCOLLATION—Specifies values to set the collation for SQL Server
or Analysis Services.

. SQLSVCACCOUNT—Specifies the user account for the SQL Server service:
domain\user or system account.

. TCPENABLED—Specifies whether the TCP/IP protocol is enabled (1) or disabled (0).

. NPENABLED—Specifies whether the Named Pipes protocol is enabled (1) or
disabled (0).

 Download from www.wowebook.com

ptg

213Installing SQL Server Using a Configuration File
8

. SECURITYMODE—Specifies authentication mode for SQL Server. You can use the spe-
cial value “SQL” here to override the default of Windows-only authentication.

The following example shows the contents of a configuration file for SQL Server 2008 R2:

;SQLSERVER2008 Configuration File

[SQLSERVER2008]

; Specify the Instance ID for the SQL Server features you have specified. SQL

Server directory structure, registry structure, and service names will reflect

the instance ID of the SQL Server instance.

INSTANCEID=”MSSQLSERVER”

; Specifies a Setup work flow, like INSTALL, UNINSTALL, or UPGRADE. This is a

required parameter.

ACTION=”Install”

; Specifies features to install, uninstall, or upgrade. The list of top-level

features include SQL, AS, RS, IS, and Tools. The SQL feature will install the

database engine, replication, and full-text. The Tools feature will install

Management Tools, Books online, Business Intelligence Development Studio, and

other shared components.

FEATURES=SQLENGINE,REPLICATION,FULLTEXT,CONN,IS,BC,BOL,SSMS,ADV_SSMS

; Displays the command line parameters usage

HELP=”False”

; Specifies that the detailed Setup log should be piped to the console.

INDICATEPROGRESS=”False”

; Setup will not display any user interface.

QUIET=”False”

; Setup will display progress only without any user interaction.

QUIETSIMPLE=”False”

; Specifies that Setup should install into WOW64. This command line argument is

not supported on an IA64 or a 32-bit system.

X86=”False”

; Detailed help for command line argument ENU has not been defined yet.

ENU=”True”

; Parameter that controls the user interface behavior. Valid values are Normal for

the full UI, and AutoAdvance for a simplied UI.

UIMODE=”Normal”

 Download from www.wowebook.com

ptg

214 CHAPTER 8 Installing SQL Server 2008

; Specify if errors can be reported to Microsoft to improve future SQL Server

releases. Specify 1 or True to enable and 0 or False to disable this feature.

ERRORREPORTING=”True”

; Specify the root installation directory for native shared components.

INSTALLSHAREDDIR=”C:\Program Files\Microsoft SQL Server”

; Specify the installation directory.

INSTANCEDIR=”C:\SQL2008R2”

; Specify that SQL Server feature usage data can be collected and sent to

Microsoft. Specify 1 or True to enable and 0 or False to disable this feature.

SQMREPORTING=”True”

; Specify a default or named instance. MSSQLSERVER is the default instance for

non-Express editions and SQLExpress for Express editions. This parameter is

required when installing the SQL Server Database Engine (SQL), Analysis Services

(AS), or Reporting Services (RS).

INSTANCENAME=”MSSQLSERVER”

; Agent account name

AGTSVCACCOUNT=”SQLADMIN”

; Auto-start service after installation.

AGTSVCSTARTUPTYPE=”Automatic”

; Startup type for Integration Services.

ISSVCSTARTUPTYPE=”Automatic”

; Account for Integration Services: Domain\User or system account.

ISSVCACCOUNT=”SQLADMIN”

; Startup type for the SQL Server service.

SQLSVCSTARTUPTYPE=”Automatic”

; Level to enable FILESTREAM feature at (0, 1, 2 or 3).

FILESTREAMLEVEL=”1”

; Specifies a Windows collation or an SQL collation to use for the Database Engine.

SQLCOLLATION=”SQL_Latin1_General_CP1_CI_AS”

; Account for SQL Server service: Domain\User or system account.

SQLSVCACCOUNT=”SQLADMIN”

 Download from www.wowebook.com

ptg

215Installing SQL Server Using a Configuration File
8

; Windows account(s) to provision as SQL Server system administrators.

SQLSYSADMINACCOUNTS=”SQLADMIN”

; The default is Windows Authentication. Use “SQL” for Mixed Mode Authentication.

SECURITYMODE=”SQL”

; The Database Engine root data directory.

INSTALLSQLDATADIR=”C:\SQL2008R2”

; Default directory for the Database Engine backup files.

SQLBACKUPDIR=”C:\SQL2008R2\MSSQL10_50.MSSQLSERVER\MSSQL\Backup”

; Default directory for the Database Engine user databases.

SQLUSERDBDIR=”C:\SQL2008R2\MSSQL10_50.MSSQLSERVER\MSSQL\Data”

; Default directory for the Database Engine user database logs.

SQLUSERDBLOGDIR=”C:\SQL2008R2\MSSQL10_50.MSSQLSERVER\MSSQL\Data”

; Directory for Database Engine TempDB files.

SQLTEMPDBDIR=”C:\SQL2008R2\MSSQL10_50.MSSQLSERVER\MSSQL\Data”

; Provision current user as a Database Engine system administrator for

SQL Server 2008 R2 Express.

ADDCURRENTUSERASSQLADMIN=”False”

; Specify 0 to disable or 1 to enable the TCP/IP protocol.

TCPENABLED=”0”

; Specify 0 to disable or 1 to enable the Named Pipes protocol.

NPENABLED=”0”

; Startup type for Browser Service.

BROWSERSVCSTARTUPTYPE=”Disabled”

; Add description of input argument FTSVCACCOUNT

FTSVCACCOUNT=”NT AUTHORITY\LOCAL SERVICE”

Depending on which options you chose during an install, other options may be listed in
the Configuration.ini file, some of which are designed solely for clustered installs,
Analysis Services, Reporting Services, Integration Services, or Tools.

To create a configuration file (sorry, no configuration file template is available on the
installation media), run the installation program and follow the wizard all the way
through to the Ready to Install page where the location of the Configuration.ini file
generated is specified (see Figure 8.21). If you do not want to continue with an actual

 Download from www.wowebook.com

ptg

216 CHAPTER 8 Installing SQL Server 2008

installation at this point, simply click the Cancel button to cancel the setup. At this point,
you can copy the Configuration.ini file to another location so you can make edits to it.

NOTE

The Installer writes out all the appropriate parameters for the options and values speci-
fied, with the exception of sensitive information such as passwords. For an unattended
install, these values can be provided at the command prompt when you run
setup.exe. In addition, the new SQL Server 2008 R2
/IAcceptSQLServerLicenseTerms parameter is also not written out to the configura-
tion file and requires either you modify the configuration file or supply a value at the
command prompt.

The setup.exe command-line program can be found at the root level of the installation
media. To use a configuration file to install a standalone SQL Server instance, run the
installation through the command-line setup.exe program and supply the
ConfigurationFile.ini using the ConfigurationFile parameter, as in the following
example:

Setup.exe /ConfigurationFile=CustomConfigurationFile.INI

If you want to override any of the values in the configuration file or provide values not
specified in the configuration file, you can provide additional command-line parameters
to setup.exe. For example, to avoid having to enter the service account passwords during
the installation, you can enter them on the command line using the password parameters
to config.exe:

Setup.exe /SQLSVCPASSWORD=”mypassword” /AGTSVCPASSWORD=”mypassword”

/ASSVCPASSWORD=”mypassword” /ISSVCPASSWORD=”mypassword”

/RSSVCPASSWORD=”mypassword” /ConfigurationFile=CustomConfigurationFile.INI

NOTE

The password parameters are required to run a fully unattended installation. Also, if
the SECURITYMODE setting is set to SQL in the configuration file or via the command-
line parameter, you need to provide the /SAPWD parameter to provide a password for
the sa account.

Most of the other available setup.exe command-line parameters are the same as the para-
meter names used in the configuration file as listed previously. For full details of the avail-
able setup.exe parameters, refer to SQL Server Books Online.

 Download from www.wowebook.com

ptg

217Installing SQL Server Using a Configuration File
8

Running an Automated or Manual Install

When installing SQL Server from the command prompt, you can also specify what level of
the installer interface you want to run, either silent, basic, or full interaction. SQL Server
supports full quiet mode by using the /Q parameter or Quiet Simple mode by using the
/QS parameter. The /Q switch is intended for running unattended installations. With this
switch provided, Setup runs in quiet mode without any user interface. The /QS switch
only shows progress via the GUI; it does not accept any input and displays no error
messages if encountered.

Regardless of the installation method chosen, you are required to confirm acceptance of
the software license terms as an individual or on behalf of an entity, unless your use of the
software is governed by a separate agreement such as a Microsoft volume licensing agree-
ment or a third-party agreement with an ISV or OEM. For full unattended installations
(using the /Q or /QS parameters) with SQL Server 2008 R2, you must include the
/IACCEPTSQLSERVERLICENSETERMS parameter to avoid the display of the License Terms
page. Following is a sample command line for running an unattended installation of SQL
Server 2008:

C:\Documents and Settings\rrankins\My Documents\Downloads\SQL2008\R2

Nov CTP>setup.exe /configurationfile=customconfigurationfile.ini

/Q /IACCEPTSQLSERVERLICENSETERMS /SQLSVCPASSWORD=”riddler”

/AGTSVCPASSWORD=”riddler” /SAPWD=”riddler”

SQL Server 2008 R2 introduces a new option to the setup.exe that allows you to run a
somewhat more attended mode of the installation that gives you a bit more control over
the install than the /Q and /QS parameters, while streamlining the install somewhat. You
can now specify the /UIMODE parameter instead of the /Q or /QS switches. The /UIMODE
parameter specifies whether to present the full set of Installer Wizard pages for review and
confirmation while running the setup or to present a minimum number of pages during
setup. /UIMODE=Normal, the default option, presents all setup dialog boxes for the selected
features, allowing you to review the values or manually enter values not provided in the
configuration file (such as service account passwords). You can specify the
/UIMODE=AutoAdvance option to skip nonessential dialogs and auto advances through a
number of pages, including the Ready to Install page.

NOTE

Although SQL Server 2008 Configuration.ini files are compatible with the SQL
Server 2008 R2 setup.exe program, some of the options generated in a SQL Server
2008 R2 Configuration.ini file are not compatible with the pre-R2 installer, such as
the ENU, UIMODE, FARMADMINPORT, and IACCEPTSQLSERVERLICENSETERMS parameters.

 Download from www.wowebook.com

ptg

218 CHAPTER 8 Installing SQL Server 2008

Installing Service Packs and Cumulative Updates
If you are installing SQL Server 2008 instead of SQL Server 2008 R2, it is recommended that
you install SQL Server 2008 Service Pack 1. SQL Server 2008 SP1 doesn’t provide any signif-
icant new features for SQL Server 2008 but does provide a number of fixes to the GA release
version of SQL Server 2008 (Microsoft Knowledge Base article 968369 lists all the fixes).

Service Pack 1 does provide a few new features primarily to ease the deployment of service
packs and cumulative updates. The first of these is Slipstream installations. Slipstreaming is
an installation method that integrates the base installation files for SQL Server with its
service packs and cumulative updates and enables you to install them in a single step. You
can slipstream SQL Server 2008 SP1 and subsequent cumulative updates with the original
installation media so that original media and the updates are installed at the same time.
The next section in this chapter describes how to set up a Slipstream installation.

SQL Server 2008 SP1 also provides the capability to uninstall SQL Server 2008 cumulative
updates or service packs via the Programs and Features Control Panel (or the Add/Remove
Programs Control Panel in Windows XP or Windows Server 2003).

Before installing SP1, you should make sure to back up all user-created databases, as well
as the system databases master, model, msdb, and any replicated databases. If you have
installed Analysis Services, back up the entire OLAP directory (as discussed earlier in this
chapter, in the “Installation Paths” section) and all its subdirectories.

You also should make sure to close all open connections to the instance to which you are
applying SP1 (including any connections via the management tools; setup should prompt
you to close them) and make sure the various SQL Server services are started in the
Services Control Panel. Also, be sure master and msdb each have 500KB free (or that they
are autogrow enabled).

When you’re ready, log on to the machine as an admin and start the downloaded SP1
executable. After extracting the contents to a temporary folder on the C: drive, the SP1
setup launches, displaying the Welcome screen shown in Figure 8.23. As you can see from
this window, the SP1 Welcome screen runs the SP1 setup support rules to verify that the
SP1 install can be run.

Click Next to display the License Agreement screen. Click the check box to select the
license agreement and then click Next again to advance to the Select Features screen to
display and select the installed features to be updated (see Figure 8.24). The ensuing
Feature Selection window lists (again) the features to be updated, organized in tree
fashion, by SQL Server instance name. You can uncheck the features or instances you do
not want to upgrade to SP1, except for shared features, which are required to be updated.

Click Next to move onto the Check Files in Use screen (see Figure 8.25). This screen iden-
tifies any open or running files that the SP1 setup program needs access to during the
install. If any files are listed, you have the option to shut down the services or applica-
tions associated with the files and run the check again to see whether the all items are
cleared from the list. Note that it is not critical for the Files in Use list to be empty, but if

 Download from www.wowebook.com

ptg

219Installing Service Packs and Cumulative Updates
8

FIGURE 8.23 SQL Server 2008 SP1 Welcome screen.

FIGURE 8.24 SQL Server 2008 SP1 Feature Selection screen.

 Download from www.wowebook.com

ptg

220 CHAPTER 8 Installing SQL Server 2008

any files are listed, you need to reboot the system after running the SP1 setup to complete
the installation.

Click Next again to proceed to the Ready to Update screen (see Figure 8.26), which
displays a summary of the instances and features that will be updated to SP1. Click Update
to start the installation and display the Update Progress screen. When the SP1 installation
is complete, click Next to proceed to the Complete screen. The Complete screen displays
the location of the SP1 summary log file (see Figure 8.27). The default location of the SP1
summary log file is C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\LOG.

Installing SP1 from the Command Line

Like the SQL Server 2008 main install, SP1 can also be installed from the command line
with no user interaction. This capability is useful if you need to install SP1 to a number of
servers and want to avoid having to go through all the SP1 Install Wizard screens each
time. To run SP1 from the command line, you must first extract the setup files from the
SP1 download file, which is an executable archive file. You can do this by running the
SQLServer2008SP1-KB968369-x64-ENU.exe file with the /x option from the command line.
This launches the extractor, which prompts you for a location to extract the files to.
Alternatively, you can specify a directory on a local drive to have it extract the setup files
to automatically:

SQLServer2008SP1-KB968369-x64-ENU.exe /x:C:\SP1

FIGURE 8.25 SQL Server 2008 SP1 Check Files in Use screen.

 Download from www.wowebook.com

ptg

221Installing Service Packs and Cumulative Updates
8

FIGURE 8.26 SQL Server 2008 SP1 Ready to Update screen.

FIGURE 8.27 SQL Server 2008 SP1 Installation Complete screen.

 Download from www.wowebook.com

ptg

222 CHAPTER 8 Installing SQL Server 2008

After extracting the SP1 setup files to a folder, you can run the setup.exe program from
the command line. The SP1 setup program supports options similar to the SQL Server
2008 installer command-line options (although significantly fewer options are available):

. /HELP—Displays these command-line parameters.

. /ALLINSTANCES—Specifies that all instances are to be included in the setup
operation.

. /CLUSTERPASSIVE—Specifies that the setup utility should not automatically start
and stop the SQL Server services if running in a non-Microsoft cluster environment.

. /INDICATEPROGRESS—Specifies that the detailed Setup log messages should be
displayed to the console.

. /INSTANCENAME—Specifies the default or named instance to be updated

. /QUIET—Runs the install in full unattended mode. Setup does not display any user
interface.

. /QUIETSIMPLE—Runs the install in Quiet Simple mode. Setup displays the wizard
screens but without any user interaction.

. /X86—Specifies that Setup should install a 32-bit edition into WOW64 on an x64-
based system.

For example, to install SP1 with no user interaction for all instances on a server, you
would run the following command:

setup.exe /quiet /allinstances

Slipstream Installations
With the release of SQL Server 2008 SP1, Microsoft provides the capability to create
Slipstream installations of SQL Server 2008. Slipstreaming is a method of integrating a
SQL Server 2008 update with the original installation media so that the original media
and update are installed at the same time. This capability can be a huge timesaver over
having to manually run a service pack and possible cumulative update installations after
running a full SQL Server install, especially if you have to repeat the installation in multi-
ple environments.

Slipstreaming is supported in the following scenarios:

. Installing the original media and a service pack

. Installing the original media, a service pack, and a cumulative update to the service
pack

 Download from www.wowebook.com

ptg

223Slipstream Installations
8

NOTE

Slipstreaming a cumulative update for SQL Server 2008 with the original media but
without a service pack is not supported because slipstreaming wasn’t supported until
SQL Server 2008 SP1 was released. Also, a Slipstream installation cannot be per-
formed to update a SQL Server 2008 instance to SQL Server 2008 R2.

If you are doing a single install of SQL Server 2008 and at the same time want to apply
SP1 and possibly a cumulative update as well, you can run the Slipstream installation by
performing the following steps:

1. If they are not installed already on the target machine, install the required prerequi-
sites for the SQL Server 2008 Installer (.NET Framework 3.5 SP1 and Windows
Installer 4.5). You can install them manually from the SQL Server install disk (the
installers are located in the Drive_Letter:\platform\redist\Windows Installer
folder). Alternatively, after you extract the service pack files, run the sqlsupport.msi
file from within the folder where the service pack files have been extracted. For
example, if you extracted the Service pack to the C:\sql2k8xp1 folder on an X86
platform, this file would be found in the C:\SQL2K8SP1\x86\setup\1033 folder.

NOTE

To confirm whether the setup support files are installed, search for the Microsoft SQL
Server 2008 Setup Support Files entry in the Programs and Features Control Panel (or
the Add or Remove Programs Control Panel in operating systems prior to Windows
Vista or Windows Server 2008).

NOTE

On the IA-64 platform, the .NET Framework 3.5 is not supported. The .NET Framework
2.0 SP2 is required instead. The .NET Framework 2.0 SP2 is located in the
Drive_Letter:\ia64\redist\2.0\NetFx20SP2_ia64.exe folder on the source media.

2. If not done already, download the Service Pack (PCU) package that matches your
system architecture and, if desired, the cumulative update (CU) package you want
to install.

3. For each package you want to include in the Slipstream installation, extract the
contents to a folder on the local drive by running a command similar to the follow-
ing at the command prompt from within the folder where you downloaded the
package(s):

Name_of_the_PCU_or_CU_package.exe /x:Root_of_path_to_extract_to\<PCU | CU>

 Download from www.wowebook.com

ptg

224 CHAPTER 8 Installing SQL Server 2008

4. Now things get a bit tricky. Because Slipstream support is introduced with SP1, the
setup.exe program that shipped with the original SQL Server 2008 installation
media doesn’t support the /PCUSource or /CUSource options that allow you to speci-
fy the locations of the service pack and cumulative updates to be slipstreamed.
Instead, you need to run the SQL Server 2008 Setup program for Service Pack 1 and
specify the action as INSTALL, and the file paths for the original media, as well as ser-
vice pack and cumulative update files. These are specified using the /ACTION,
/MEDIASource, /PCUSource, and /CUSource parameters. The following example shows
how to run a slipstream install of SQL Server 2008 from the install CD in the D:
drive with SP1 extracted to the C:\SQLServer2008SP1 folder:

C:\SQLServer2008SP1>setup.exe /PCUSource=C:\SQLServer2008SP1 /ACTION=INSTALL

/MEDIASOURCE=D:\

This command runs the SQL Server installation in the normal GUI mode, requiring
you to specify and confirm all settings. If you want, you can also choose to run the
install in a limited interface or automated mode, as described previously in this
chapter in the section describing how to use a configuration file. However, the first
time you run a Slipstream installation, you should at least use an interface that
allows you to view the Ready to Install page before running the installation so that
you can verify whether the desired Slipstream installation is being performed. If the
setup utility is running a Slipstream installation, it is indicated in the Action field, as
shown in Figure 8.28.

FIGURE 8.28 Verifying a Slipstream installation on the Ready to Install page.

 Download from www.wowebook.com

ptg

225Summary
8

Summary
This chapter provides a fairly detailed overview of the SQL Server 2008 install process
from start to finish. The chapter shows how the new Installer Wizard makes it easy to
install as many instances as you like, with whatever feature sets and in whatever configu-
ration you choose.

The chapter also shows how the installer reports progress, failure, and success on an indi-
vidual task basis rather than with one seemingly endless progress bar, making it a lot
easier to rectify problems without calling Microsoft or scouring the newsgroups to figure
out what went wrong.

Chapter 9, “Upgrading to SQL Server 2008,” takes a similar approach to examining the
process of upgrading from SQL Server 2000 or SQL Server 2005 to SQL Server 2008 or SQL
Server 2008 R2.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 9

Upgrading to SQL
Server 2008

IN THIS CHAPTER

. What’s New in Upgrading SQL
Server

. Using the SQL Server Upgrade
Advisor (UA)

. Destination: SQL Server 2008
or SQL Server 2008 R2

. Upgrading Using a
Configuration File

. Slipstreaming Upgrades74

. Upgrading Other SQL Server
Components

SQL Server 2008 offers a number of new features and
improvements that make upgrading desirable. You can
upgrade instances of SQL Server 2000 and SQL Server 2005
to SQL Server 2008 or SQL Server 2008 R2, as well as
upgrade SQL Server 2008 to SQL Server 2008 R2. Whether
you’re a gung-ho developer or the most conservative of
administrators, there’s an upgrade path to suit your comfort
level. This chapter provides best practices and recommenda-
tions for upgrading to SQL Server 2008 with minimal issues.

What’s New in Upgrading SQL
Server
SQL Server 2008 provides a new installer program for
performing installations and upgrades. The new features of
the SQL Server 2008 Installer include

. A new SQL Server 2008 Installation Center landing
page, which includes a number of options for plan-
ning, installing, and maintaining a SQL Server imple-
mentation; links to SQL Server documentation for
planning and reviewing before starting the upgrade;
and a link to install the Upgrade Advisor.

. The Feature Upgrade Wizard, which allows DBAs to
upgrade or change the installed edition of SQL Server
2008 or SQL Server 2008 R2 (for example, upgrading
from Standard Edition to Enterprise Edition without
having to perform a complete reinstall).

 Download from www.wowebook.com

ptg

228 CHAPTER 9 Upgrading to SQL Server 2008

. A discovery report that provides a detailed information regarding all SQL Server
components, features, and settings associated with an install or upgrade.

. The potential to automate SQL Server upgrades by using a configuration file.

. A tool that allows for a smooth transition of SQL Server Integration Services (SSIS)
packages by automatically upgrading them from SQL Server 2005 to the SQL Server
2008 Integration Services format.

Also new in SQL Server 2008 is a refined Upgrade Advisor. The Upgrade Advisor tool
allows a DBA to fully analyze existing SQL Server 2005 and SQL Server 2000 installations
for issues that may surface when upgrading to SQL Server 2008 or SQL Server 2008 R2.
Addressing these issues before conducting the upgrade should lead to a smoother experi-
ence when transitioning to SQL Server 2008.

With the release of Service Pack 1, SQL Server 2008 also now supports Slipstream installa-
tions. Slipstreaming is a method of integrating a SQL Server 2008 update (such as a
service pack or cumulative update) with the original installation media so that the origi-
nal media and update are installed at the same time. This can be a huge timesaver over
having to manually apply service packs or cumulative updates after performing a full
installation or upgrade.

NOTE

The focus of this chapter is on upgrade options and best practices rather than a
screen-by-screen walkthrough of the upgrade process. An upgrade installation is not
much different from a new installation. See Chapter 8, “Installing SQL Server 2008,”
for a detailed walkthrough and description of the installer screens and options.

Using the SQL Server Upgrade Advisor (UA)
It would be a daunting task indeed to try to test every stored procedure and function,
every table and view, every online analytical processing (OLAP) cube, every Data
Transformation Services (DTS) or SQL Server Integration Services (SSIS) package, and so on
that your team has built to make sure they still work after you migrate them to SQL
Server 2008.

With the availability of the SQL Server Upgrade Advisor (UA), you can relax a bit and let
the combined experience and testing of early adopters and the SQL Server development
team go to work for you.

NOTE

Even though the UA is a great tool, if you have the resources to do so, it is a good idea
to set up an additional test environment just for SQL Server 2008. Also, you should
thoroughly test your upgraded objects and code after the upgrade on a dry run, just to
be sure you don’t miss anything. Remember to make full backups!

 Download from www.wowebook.com

ptg

229Using the SQL Server Upgrade Advisor

FIGURE 9.1 Installing the Upgrade Advisor from the SQL Server 2008 Installer.

The UA advises on which aspects of your current setup should or need to be changed to
become compatible with SQL Server 2008. Let’s look at how it works.

Getting Started with the UA

Before running the Upgrade Advisor, you must first install it. The easiest way to install the
Upgrade Advisor is to start the SQL Server 2008 Installer. On the Installer Landing page is
an option to install the Upgrade Advisor (see Figure 9.1). Alternatively, the Upgrade
Advisor is available in the Servers\redist\Upgrade Advisor folder of the SQL Server
installation media, or from the Microsoft Download Center. The Upgrade Advisor has the
following system requirements:

. Windows XP Service Pack 2 (SP2) or later, Windows Vista, Windows Server 2003 SP2
or later, or Windows Server 2008 SP2, Windows 7, and Windows Server 2008 R2.

. Windows Installer beginning with version 4.5 (required by the .NET Framework; you
can install Windows Installer from the Windows Installer website)

. The .NET Framework

9

NOTE

If not installed already, the .NET Framework 2.0 is available on the SQL Server 2008
product media, and from the SDK, redistributable, and service pack download website.
To install the .NET Framework 2.0 from the SQL Server 2008 media, locate the root of
the disk drive. Then double-click the \redist folder, double-click the \2.0 folder, and
run Dotnetfx.exe (for 32-bit) or Dotnetfx64.exe (for 64-bit), depending on your oper-
ating system.

 Download from www.wowebook.com

ptg

230

If you run the SQL Server Installer, it installs the Windows Installer and .NET Framework
requirements automatically if they are not detected.

If upgrading from SQL Server 2000 Analysis Services, you need to install the SQL Server
2000 Decision Support Objects (DSOs) on the system where UA will be run to scan
upgrade issues in Analysis Services. To install DSOs, run the SQL Server 2000 Setup
program and click Install SQL Server 2000 Components. Click Analysis Services to start the
Analysis Services Setup program. In Select Components, make sure that the Decision
Support Objects component is selected.

Additionally, if you are upgrading SQL Server 2000 DTS packages, the SQL Server 2000
client components are required to scan SQL Server 2000 DTS packages. The SQL Server
2000 client components can be installed from the SQL Server 2000 installation disk.

If you are upgrading from SQL Server 2005 DTS packages that were migrated from SQL
Server 2000, you need to install the SQL Server 2005 backward-compatibility components
to scan SQL Server 2005 DTS. Use the SQL Server 2005 installation disk to install back-
ward-compatibility components.

NOTE

The location where you can install SQL Server Upgrade Advisor depends on what you
will be analyzing. Upgrade Advisor supports remote analysis of all supported compo-
nents except Reporting Services. If you are not scanning instances of Reporting
Services, you can install Upgrade Advisor on any computer that can connect to your
instance of SQL Server and that meets the Upgrade Advisor prerequisites. If you are
scanning instances of Reporting Services, you must install Upgrade Advisor on the
Report Server.

As described in the following sections, the UA has two main functional areas: the Analysis
Wizard and Report Viewer. The first time you use Upgrade Advisor, run the Upgrade
Advisor Analysis Wizard to analyze SQL Server components. When the wizard finishes the
analysis, you can view the resulting reports in the Upgrade Advisor Report Viewer.

The Analysis Wizard

You’ll be glad to know that the analysis process does not modify any code or data; that is
left for you to do (or not do) at a later time. As an example, let’s run the UA’s Analysis
Wizard against all the SQL Server components of a locally installed SQL Server 2005
instance. The Analysis Wizard examines objects that can be accessed, such as scripts,
stored procedures, triggers, and trace files. Upgrade Advisor cannot analyze desktop appli-
cations or encrypted stored procedures.

To start the process, click the Launch Upgrade Advisor Analysis Wizard hyperlink at the
bottom of the Welcome page (see Figure 9.2). When the Analysis Wizard’s Welcome page
appears, click Next. When you reach the SQL Server Components screen, choose all the
components to be analyzed by checking their corresponding check boxes (see Figure 9.3).

CHAPTER 9 Upgrading to SQL Server 2008

 Download from www.wowebook.com

ptg

231

FIGURE 9.2 The Upgrade Advisor Welcome page.

Using the SQL Server Upgrade Advisor
9

FIGURE 9.3 Choosing the components to be analyzed by the UA’s Analysis Wizard.

 Download from www.wowebook.com

ptg

232

FIGURE 9.4 Choosing the databases and files for the UA to analyze.

NOTE

Be sure to select only components that are actually installed on the server being
upgraded; otherwise, the Upgrade Advisor stalls at the appropriate feature screen with
an error message that the feature could not be found on the specified server.

When the Connection Parameters screen appears, choose the target server, select an authen-
tication method, and if using SQL Server authentication, enter your username and password
so that the UA can connect to your instance. Click Next, and the SQL Server Parameters
screen, shown in Figure 9.4, appears. Choose which (if any) databases to analyze.

CHAPTER 9 Upgrading to SQL Server 2008

You can also use this screen to ask the UA to analyze one or more SQL Profiler trace (.trc)
files. This feature is useful for analyzing the T-SQL statements submitted from one or more
applications for deprecated or discontinued features. You would want to set up and run a
trace in SQL Profiler ahead of time to capture a representative sample of the T-SQL
executed against the server. You can also scan T-SQL batch files (maintenance scripts,
procedures, functions, triggers, and so on) to check for deprecated or discontinued features
used in the SQL scripts.

For this example, create a SQL batch file that contains the following T-SQL commands,
most of which are deprecated in SQL Server 2008, just to test the UA:

use bigpubs2008

go

EXEC sp_configure ‘set working set size’

 Download from www.wowebook.com

ptg

233Using the SQL Server Upgrade Advisor
9

SELECT * FROM master..syslockinfo

DECLARE @ptr varbinary(16)

SELECT @ptr = TEXTPTR(pr_info)

FROM pub_info

WHERE pub_id = ‘6380’

SELECT *

FROM Stores s, Stores s2

WHERE s.Stor_Id *= s2.Stor_Id

AND s.Stor_name <> s2.Stor_name

READTEXT pub_info.pr_info @ptr 0 25

When you’re ready, click Next, and the Upgrade Advisor presents screens for each of the
SQL Server components you selected previously (refer to Figure 9.3) asking for login infor-
mation or to select packages to analyze. Note that if you selected a component, but that
component isn’t installed on the server you are upgrading, the Upgrade Advisor reports
that no instances of that component could be found on the server and you cannot
proceed until you go back and deselect the component.

If you selected to analyze DTS or SSIS packages, the DTS and SSIS Parameters screens (shown
in Figure 9.5) give you the option to analyze all the packages stored in the target instance or
to specify one or more package files to be analyzed.

FIGURE 9.5 Choosing the DTS and SSIS packages to analyze.

 Download from www.wowebook.com

ptg

234 CHAPTER 9 Upgrading to SQL Server 2008

FIGURE 9.6 The Upgrade Advisor Progress screen.

Note that the DTS Parameters screen advises that you must install the Legacy
Components feature when installing SQL Server 2008; otherwise, SQL Server 2008 will not
be able to run your DTS packages (unless they are upgraded to the new SSIS format). To
upgrade your DTS packages, you need to use the DTS Migration Wizard, which is installed
with SSIS and discussed later in this chapter, in the section “Migrating DTS Packages.”

When you’re all set with your DTS and SSIS selections, click Next to reach the Confirm
Upgrade Advisor Settings screen. Make sure that all the SQL Server services you are analyz-
ing are running and (if you’re happy with your selections) click the Run button to begin
the analysis.

As you can see from the Upgrade Advisor Progress screen that appears (see Figure 9.6), the
wizard performs a task-based study of each component, providing per-step reporting, similar
to the installer and the System Configuration Checker (both discussed in Chapter 8).

When the analysis is complete, the UA Progress screen presents a Launch Report button.
The output of the UA Analysis Wizard is an XML report that you can view via the
second major component of the UA, the Report Viewer, described in the next section.

NOTE

You can view your last-generated report by using the Report Viewer; you can find the
link to launch it on the main screen. If you run the UA more than once against the
same SQL Server instance, however, you must save your previously generated reports
to a directory other than the default output directory; otherwise, the previously gener-
ated report will be overwritten.

 Download from www.wowebook.com

ptg

235Using the SQL Server Upgrade Advisor
9

UA reports are saved by default to the folder My Documents\SQL Server 2008 R2
Upgrade Advisor Reports\Servername, and then they are broken down into sepa-
rate XML files by component (for example, AS.xml for Analysis Services, DE.xml for the
Database Engine).

You can launch the Report Viewer to figure out what to do about the issues the UA may
have uncovered. Click the Launch Report button to proceed.

The Report Viewer

The Report Viewer is one of the most important tools in the upgrade process because it
provides per-issue messaging, resolution tracking, and (in many cases) hyperlinks to the
compiled help documentation distributed with the UA.

Issues are organized in the Report Viewer on a per-server and then per-component basis.
They can be filtered by type (that is, all issues, all upgrade issues, pre-upgrade issues, all
migration issues, and resolved issues), and you can track your resolution progress by
checking the This Issue Has Been Resolved check boxes. Figure 9.7 shows the main user
interface of the Report Viewer.

FIGURE 9.7 SQL Server UA’s Report Viewer.

 Download from www.wowebook.com

ptg

236 CHAPTER 9 Upgrading to SQL Server 2008

Destination: SQL Server 2008 or SQL Server 2008 R2
Now that you have become familiar with how to use the helpful Upgrade Advisor, you’re
ready to begin your extensive pre-upgrade testing phase. After you resolve all the issues
you can, it’s time to take the next step: install SQL Server 2008 (in your test and develop-
ment environments first, of course).

Two different paths lead from SQL Server 2000 or 2005 to SQL Server 2008:

. You can upgrade your existing SQL Server 2000 SP4 or later and SQL Server 2005 SP2
or later instances in-place, using the SQL Server Installer.

. You can install SQL Server 2008 side by side with your current SQL Server instances
and then migrate your data and other content to SQL Server 2008.

The same upgrade paths exist for upgrading from SQL Server 2008 to SQL Server 2008 R2.

The path you choose depends primarily on two factors: your comfort level with the new
platform and the scope of feature use in your current environment. When you have
become familiar with what it takes to travel either path, you’ll find it much easier to make
your decision. The first approach we explore in this chapter is the more conservative side-
by-side migration path.

NOTE

If the server environment where your current SQL Server installation resides is not a
supported platform for performing an in-place upgrade, a side-by-side migration may
be your only option. For example, if you are upgrading from SQL Server 7 or running in
a Windows 2000 server environment, an in-place upgrade is not supported. For a list
of supported in-place upgrade paths, see the “Upgrading In-Place” section, later in
this chapter.

Side-by-Side Migration

SQL Server 2008 can coexist without a problem on the same servers as any existing SQL
Server 2000 or 2005 instances. SQL Server 2008 R2 can coexist on the same servers as any
existing SQL Server 2000, 2005, or 2008 instances. This means you can install one or more
instances of SQL Server 2008 or 2008 R2 without performing an in-place upgrade of any
pre-2008 instances. You don’t have to worry about whether you’re breaking existing func-
tionality. Side-by-side migration is therefore an easy option to investigate.

NOTE

If you are doing a side-by-side installation, be sure your server has sufficient resources
(CPU, memory, disk space) to support running multiple instances of SQL Server.

Many administrators favor the side-by-side approach to upgrading because it gives every-
one on the development team (including eager software folks) a chance to get comfortable

 Download from www.wowebook.com

ptg

237Destination: SQL Server 2008 or SQL Server 2008 R2
9

with the new features in the new SQL Server release before committing to it in production
environments.

In addition, it is far easier to roll back to your previous-version SQL Server components
because installing side by side leaves them intact (unlike upgrading in-place, which
replaces them). When you are reasonably comfortable with the new SQL Server release,
you can go forward confidently in migrating all your objects (presuming that, if you’re
leaving previous versions intact, you’re also ready to perform necessary tasks, such as
changing connection strings, server aliases, and so on).

Avoiding an Unintentional In-Place Upgrade During Setup
If you do intend to go ahead with a side-by-side installation, there’s a small gotcha you
need to watch out for when installing a new instance of SQL Server 2008. When you run
the Setup program, the Instance Name screen is somewhat lengthy in its header’s verbiage,
and if you don’t take the time to read it closely, you might unintentionally upgrade all
your components. This is the lowdown:

. If you choose the Default Instance radio button and you already have a SQL Server
default instance, that default instance is upgraded.

. If you the choose the Named Instance radio button, you need to make sure to enter
a name that you know is not in use as an instance name; otherwise, the existing
named instance is upgraded.

Figure 9.8 shows an example of how to make the right choice and use an instance name,
SQL2008R2, that makes it abundantly clear you are installing a new instance.

FIGURE 9.8 Installing a new named SQL Server 2008 R2 instance.

 Download from www.wowebook.com

ptg

238 CHAPTER 9 Upgrading to SQL Server 2008

Migrating Databases
Now it’s time for the most important task: migrating your databases to SQL Server 2008.
One method of migrating to SQL Server 2008 or 2008 R2 is by backing up your SQL Server
2000 and 2005 databases and restoring them to SQL Server 2008. Another method is to
attach or restore a database from a prior version of SQL Server to SQL Server 2008. When
you migrate using either of these methods, the database is upgraded automatically during
the attach/restore process.

NOTE

Database backups created by using SQL Server 7.0 or earlier are in an incompatible
format and cannot be restored in SQL Server 2008 or 2008 R2. For information on how
to migrate a database from SQL Server 6.5 or 7.0 to SQL Server 2008, see the sec-
tion “Upgrading from SQL Server 7 or SQL Server 6.5,” later in this chapter.

When you use backup and restore to copy a database to another instance of SQL Server,
the source and destination computers can be any platform on which SQL Server runs. The
general steps to upgrade using backup and restore are as follows:

1. Back up the source database that resides on an instance of SQL Server 2000, SQL
Server 2005, SQL Server 2008, or SQL Server 2008 R2.

2. Restore the backup of the source database on the destination SQL Server. Restoring
the database automatically creates all the database files and upgrades the database.

When restoring the database, you might need to use the MOVE option to relocate the data-
base files because SQL Server 2008 and SQL Server 2008 R2 use a different default path
than earlier versions. For more information on using backup and restore, see Chapter 14,
“Database Backup and Restore.”

In SQL Server 2008 R2, you can also use the detach and attach operations to migrate a
user database from SQL Server 2000 or SQL Server 2005. After you attach a SQL Server
2005 or SQL Server 2000 or SQL Server 2008 database to SQL Server 2008 R2, the database
is upgraded automatically and becomes available immediately. For more information on
the syntax and options for detaching and attaching databases, see Chapter 23, “Creating
and Managing Databases.”

Another method of migrating an existing database is by using the SQL Server Copy
Database Wizard to copy databases between multiple instances of SQL Server.

TIP

Before you use any of the methods described here, Microsoft recommends you run the
appropriate DBCC consistency checks to make sure there is no data corruption within
the databases to be migrated.

Using the Copy Database Wizard Using the Copy Database Wizard is probably the easiest
approach to use to migrate your databases to SQL Server 2008 or 2008 R2. To run the

 Download from www.wowebook.com

ptg

239Destination: SQL Server 2008 or SQL Server 2008 R2
9

Copy Database Wizard, using SQL Server Management Studio (SSMS), connect the Object
Explorer to your previous SQL Server version’s instance. Expand Databases and then select
and right-click the database you want to copy (or move) into SQL Server 2008. Then select
Tasks, Copy Database.

When the wizard’s initial Welcome page is displayed, click Next and then select your
source server (the 2000 or 2005 instance). Click Next again and select your destination
server (your newly installed SQL Server 2008 or SQL Server 2008 R2 instance). Click Next
again to bring up the Select the Transfer Method screen. This screen provides two options
for copying or moving your databases to SQL Server 2008:

. Detach and Attach—This option is the same as the detach/attach method
described previously. It’s fast, but it takes the database offline during the migration
process.

. Use the SQL Server Management Objects (SMO) to Import the Database—This
option is slower, but it keeps the source database online during the process.

NOTE

When you use the detach and attach method, SSIS uses the service account of SQL
Server Agent that is running on the 2008 (destination) instance. This account must be
able to access the file systems of both servers; otherwise, the wizard will fail.

Select the option that works best for you and then click Next. The Select Databases screen
appears, and, as Figure 9.9 shows, you should check the Copy (not Move) check boxes for
the databases you want to migrate.

FIGURE 9.9 Selecting the databases to copy to SQL Server 2009.

 Download from www.wowebook.com

ptg

240 CHAPTER 9 Upgrading to SQL Server 2008

FIGURE 9.10 Copy Database Wizard Configure Destination Database screen.

CAUTION

After a pre-2008 database is upgraded (in case you choose the Move Database option
or you perform an attach or restore and delete the original), it cannot be downgraded
back to its former version—not even if you attempt to detach/attach or restore it to
SQL 2000 or 2005. Thus, it is especially important to create full backup copies of all
your databases before you upgrade. It’s also a good idea to back up the entire
Program Files/Microsoft SQL Server directory tree.

After you make your database selections, click Next, and the Configure Destination
Database screen appears for each database you selected in the previous step. This screen
allows you to rename the database on the destination server if you so desire (see Figure
9.10). It also provides options to overwrite any existing databases or MDF (data) and LDF
(log) files on the destination server or to create new ones in the folders of your choice.
Make your selections and click Next.

The Select Database Objects screen that appears next (see Figure 9.11) provides some real
power because it allows the server-wide objects (those stored in the system databases and
source database) to be imported. These objects include stored procedures residing in
master, SQL Server Agent jobs, custom user-defined error messages, SSIS packages, and
SQL Server logins. You need to click the ellipsis button to choose the specific ones you
want to import (rather than choosing them all, which is the default).

When you’re finished selecting the objects you want brought over, click Next again. The
Configure the Package screen that appears next provides the opportunity to name and
save the SSIS package created for migrating the database, and to specify how you want to
log the messages generated during the transfer. Click Next to present the Schedule the

 Download from www.wowebook.com

ptg

241Destination: SQL Server 2008 or SQL Server 2008 R2
9

FIGURE 9.11 Importing server-wide objects, using the Copy Database Wizard.

Package screen, which allows you to run the transfer immediately or schedule it to run at
a specific time. You are also given an opportunity to specify an SSIS proxy account to use
to run the transfer (you should make sure it’s an account that has appropriate permissions
on both the source and destination servers to ensure a successful transfer).

After you make your scheduling choices, click Next to display the Complete the Wizard
screen (see Figure 9.12). Here, you have an opportunity to review the choices you’ve made
on the prior screens. If everything looks okay, click Finish to complete the wizard and
start or schedule the Copy Database package.

FIGURE 9.12 The Copy Database Complete the Wizard screen.

 Download from www.wowebook.com

ptg

242 CHAPTER 9 Upgrading to SQL Server 2008

Database Compatibility Level Migrating pre-2008 databases into SQL Server 2008 brings
up the question of compatibility issues and database compatibility levels. The compatibil-
ity level is a per-database setting that controls T-SQL execution behavior with regard to
SQL Server’s versioning system.

The T-SQL execution engine is flexible insofar as it has the capacity to switch between
varying, version-dependent behaviors according to the current compatibility-level setting.

When a database is upgraded to SQL Server 2008 from any earlier version of SQL Server,
the database retains its existing compatibility level if it is at least 80 (SQL Server 2000).
Upgrading a database with a compatibility level below 80 sets the database to compatibil-
ity level 80.

Compatibility level affects behaviors only for the specified database, not for the entire
server. An important point to understand about database compatibility levels, however, is
that the database compatibility-level setting is intended to provide only partial backward
compatibility with earlier versions of SQL Server. It does not prevent the use of new T-SQL
features available in SQL Server 2008 such as new data types and statements.

The compatibility-level setting is provided primarily as an interim migration aid to work
around version differences in the behaviors that are controlled by the relevant compatibil-
ity-level setting. Essentially, it allows T-SQL code that may be using deprecated features or
expects pre-100 level behaviors for certain commands to continue operating as it did in
the prior version of SQL Server. Using the compatibility-level setting should not be viewed
as a permanent solution. It should be used only until the T-SQL code affected by behav-
ioral differences in SQL Server 2008 can be converted to work properly in SQL Server
2008. Then you can use ALTER DATABASE to change the compatibility level to 100.

You can find a full list of the behavioral differences between the compatibility-level settings
in the Books Online article associated with the “ALTER DATABASE Compatibility Level”
topic. This option can be used to set the compatibility level for a particular database.

To view the current compatibility level of a database, query the compatibility_level
column in the sys.databases catalog view:

select compatibility_level from sys.databases where name = db_name()

go

compatibility_level

90

Upgrading In-Place

Now that you’ve seen how to migrate your databases to SQL Server 2008 by following the
side-by-side migration path, let’s look at the alternative: upgrading in-place. Unlike a side-
by-side install, an in-place upgrade permanently modifies the SQL Server components,
data, and metadata objects, and there is no going back. You will likely be more comfort-
able taking the side-by-side migration path than doing an in-place upgrade, unless a side-

 Download from www.wowebook.com

ptg

243Destination: SQL Server 2008 or SQL Server 2008 R2
9

by-side migration is not possible because of disk space limitations, you have very few SQL
Server features in use, or you are fairly confident about the potential success of the
upgrade process because you’ve done extensive issue resolution with the assistance of the
Upgrade Assistant.

If you are performing an in-place upgrade of the Database Engine, it is strongly recom-
mended that you first do the following:

. Create full, verified backups of your existing SQL Server databases.

. Run the appropriate DBCC consistency checks (for example, DBCC CHECKDB and DBCC
CHECKFILEGROUP).

. Make sure the system databases on your pre-2008 instances (for example, master,
msdb, tempdb, and model) are all set to auto-grow.

. Disable any startup stored procedures that get kicked off when the SQL Server
service starts.

. Disable database replication and empty the replication log.

After you perform all these actions, you are ready to begin the upgrade process.

Upgrading the Database Engine
You perform an in-place upgrade by running the SQL Server Installation Center. On the
Installation page, you can invoke the Upgrade Wizard to upgrade from SQL Server 2000,
2005, or 2008 (see Figure 9.13). After first running the Setup Rules check and installing the
Setup Support Files, the Upgrade Wizard essentially runs the installation process. (The
installation process and all its screens are described in Chapter 8 under the heading,
“Install Screens, Step by Step.”) The key differences between running a new install versus
an upgrade is that during the upgrade process, you choose an existing default or named
instance on the Select Instance screen (see Figure 9.14).

After selecting the instance to upgrade, you see the Feature Selection page. The features to
be upgraded are preselected. You cannot change the features to be upgraded, and you
cannot add features during an upgrade operation. To add features, you need to run the
Installation Center again after the upgrade operation is complete.

After making choices on the Features Selection page, step through the Instance
Configuration, Disk Space Requirements, and Server Configuration screens, making
changes as necessary. For example, authentication and login information are carried
forward from the previous instance of SQL Server. You can assign the same login account
to all SQL Server services, or you can configure each service account individually. You can
also specify whether services start automatically, are started manually, or are disabled.

Next, you are presented with options for upgrading your full-text catalogs. In SQL Server
2005 and earlier versions, each full-text index resided in a full-text catalog that belonged
to its own filegroup and was treated as a database file. In SQL Server 2008, a full-text
catalog is a logical concept that refers to a group of full-text indexes and is no longer
treated as a separate database file with a physical path. However, during upgrade of any

 Download from www.wowebook.com

ptg

244 CHAPTER 9 Upgrading to SQL Server 2008

FIGURE 9.13 Running the Upgrade Wizard from the Installation Center.

FIGURE 9.14 The Select Instance screen in the SQL Server Installation Center.

 Download from www.wowebook.com

ptg

245Destination: SQL Server 2008 or SQL Server 2008 R2
9

full-text catalog, a new filegroup is still created on the same disk to maintain the pre-
upgrade disk I/O behavior. If the old full-text catalog path is invalid, though, the upgrade
places the full-text index in the same filegroup as the base table or in the primary file-
group if the table is partitioned.

Three options are available for upgrading your existing full-text catalogs:

. Import—Typically, import is the fastest method of upgrading, but an imported full-
text catalog does not use the new and enhanced word breakers introduced in SQL
Server 2008, so you might want to rebuild your full-text catalogs eventually if not
during the upgrade.

. Rebuild—This method uses the new SQL Server 2008 word breakers, but rebuilding
indexes can take awhile.

. Reset—When you use this method, SQL Server 2005 full-text catalog files are
removed, but the metadata for full-text catalogs and full-text indexes is retained.
The catalog remains empty until you manually issue a full population after the
upgrade completes.

After choosing your full-text upgrade option, you next choose your Error Reporting
options, and then the Upgrade Rules check is run to validate your system configuration
with the options and features chosen during the upgrade process. If all the rules pass, you
can review the upgrade operation on the Ready to Upgrade page, which also displays the
path to the upgrade configuration file (this is useful for setting up and performing unat-
tended upgrades from the command line, as discussed later in this chapter). If everything
looks okay, click Upgrade to begin the upgrade process. The upgrade process automatically
upgrades all objects that are common to all databases, including the following:

. Tables, views, indexes, and constraints

. Stored procedures, functions, and triggers

. User-defined types, rules, and defaults

. Logins, users, and permissions

. Database diagrams

You can monitor the upgrade progress on the Upgrade Progress screen. Depending on
your hardware configuration and the features to be upgraded, the upgrade operation can
take from approximately 30 minutes to several hours. The databases on the instance being
upgraded remain unavailable until the upgrade is complete.

When the upgrade finishes, it displays the upgrade status of each component and also
provides the location of the upgrade log. A system restart may be required in some cases if
any upgraded components were in use during the upgrade process.

 Download from www.wowebook.com

ptg

246 CHAPTER 9 Upgrading to SQL Server 2008

When your upgrade of the Database Engine is complete, it is recommended that you
perform the following on all databases (also recommended for side-by-side migration):

. Repopulate your full-text catalogs if you chose not to rebuild them during the upgrade.

. Run the sp_updatestats system stored procedure to update statistics.

. Reregister your server in SSMS.

The SQL Server 2008 Upgrade Matrix
No software upgrade section would be complete without an illustrative table showing the
versions and editions of SQL Server for which the upgrade methods described thus far are
supported. They are presented in Table 9.1.

TABLE 9.1 Supported Upgrade Paths to SQL Server 2008 and 2008 R2

Previous SQL Server Edition Supported Upgraded Edition

SQL Server 2000 Enterprise
Edition SP4

SQL Server 2008 Enterprise Edition
SQL Server 2008 R2 Enterprise Edition
SQL Server 2008 R2 Datacenter Edition

SQL Server 2000 IA64 Enterprise
Edition SP4

SQL Server 2008 IA64 Enterprise Edition
SQL Server 2008 R2 IA64 Enterprise Edition
SQL Server 2008 R2 IA64 Datacenter Edition

SQL Server 2000 Developer
Edition SP4

SQL Server 2008 Developer Edition
SQL Server 2008 R2 Developer Edition

SQL Server 2000 IA64 Developer
Edition SP4

SQL Server 2008 IA64 Developer Edition
SQL Server 2008 IA64 R2 Developer Edition

SQL Server 2000 Standard
Edition SP4

SQL Server 2008 Standard Edition
SQL Server 2008 Enterprise Edition
SQL Server 2008 R2 Standard Edition
SQL Server 2008 R2 Enterprise Edition

SQL Server 2000 Workgroup
Edition SP4

SQL Server 2008 Workgroup Edition
SQL Server 2008 Standard Edition
SQL Server 2008 Enterprise Edition
SQL Server 2008 R2 Workgroup Edition
SQL Server 2008 R2 Standard Edition
SQL Server 2008 R2 Enterprise Edition

SQL Server 2000 Personal
Edition SP4

Not supported

SQL Server 2000 Evaluation Edition Not supported

 Download from www.wowebook.com

ptg

247Destination: SQL Server 2008 or SQL Server 2008 R2
9

TABLE 9.1 Supported Upgrade Paths to SQL Server 2008 and 2008 R2

Previous SQL Server Edition Supported Upgraded Edition

SQL Server 2000 MSDE 2000 SP4 SQL Server 2008 Express
SQL Server 2008 Express with Tools
SQL Server 2008 Express with Advanced Services
SQL Server 2008 Workgroup
SQL Server 2008 R2 Express
SQL Server 2008 R2 Express with Tools
SQL Server 2008 R2 Express with Advanced Services
SQL Server 2008 R2 Workgroup

SQL Server 2005 Enterprise
Edition SP2

SQL Server 2008 Enterprise Edition
SQL Server 2008 R2 Enterprise Edition
SQL Server 2008 R2 Datacenter Edition

SQL Server 2005 IA64 Enterprise
Edition SP2

SQL Server 2008 IA64 Enterprise Edition
SQL Server 2008 R2 IA64 Enterprise Edition
SQL Server 2008 R2 IA64 Datacenter Edition

SQL Server 2005 X64 Enterprise
Edition SP2

SQL Server 2008 X64 Enterprise Edition
SQL Server 2008 R2 X64 Enterprise Edition
SQL Server 2008 R2 X64 Datacenter Edition

SQL Server 2005 Developer
Edition SP2

SQL Server 2008 Developer Edition
SQL Server 2008 R2 Developer Edition

SQL Server 2005 IA64 Developer
Edition SP2

SQL Server 2008 IA64 Developer Edition
SQL Server 2008 IA64 R2 Developer Edition

SQL Server 2005 X64 Developer
Edition SP2

SQL Server 2008 X64 Developer Edition
SQL Server 2008 X64 R2 Developer Edition

SQL Server 2005 Standard
Edition SP2

SQL Server 2008 Standard Edition
SQL Server 2008 Enterprise Edition
SQL Server 2008 R2 Standard Edition
SQL Server 2008 R2 Enterprise Edition

SQL Server 2005 IA64 Standard
Edition SP2

SQL Server 2008 IA64 Enterprise Edition
SQL Server 2008 R2 IA64 Enterprise Edition

SQL Server 2005 X64 Standard
Edition SP2

SQL Server 2008 X64 Standard Edition
SQL Server 2008 R2 X64Standard Edition
SQL Server 2008 X64 Enterprise Edition
SQL Server 2008 R2 X64 Enterprise Edition

 Download from www.wowebook.com

ptg

248 CHAPTER 9 Upgrading to SQL Server 2008

TABLE 9.1 Supported Upgrade Paths to SQL Server 2008 and 2008 R2

Previous SQL Server Edition Supported Upgraded Edition

SQL Server 2005 Workgroup Edition
SP2

SQL Server 2008 Workgroup Edition
SQL Server 2008 Standard Edition
SQL Server 2008 Enterprise Edition
SQL Server 2008 R2 Workgroup Edition
SQL Server 2008 R2 Standard Edition
SQL Server 2008 R2 Enterprise Edition

SQL Server 2005 Personal
Edition SP2

Not supported

SQL Server 2005 Evaluation Edition Not supported

SQL Server 2005 Express SP2 SQL Server 2008 Express
SQL Server 2008 Express with Tools
SQL Server 2008 Express with Advanced Services
SQL Server 2008 Workgroup
SQL Server 2008 Standard Edition
SQL Server 2008 Enterprise Edition
SQL Server 2008 R2 Express
SQL Server 2008 R2 Express with Tools
SQL Server 2008 R2 Express with Advanced Services
SQL Server 2008 R2 Workgroup
SQL Server 2008 R2 Standard Edition
SQL Server 2008 R2 Enterprise Edition

SQL Server 2005 Express SP2
Advanced

SQL Server 2008 Express with Advanced Services
SQL Server 2008 Workgroup
SQL Server 2008 Standard Edition
SQL Server 2008 Enterprise Edition
SQL Server 2008 R2 Express with Advanced Services
SQL Server 2008 R2 Workgroup
SQL Server 2008 R2 Standard Edition
SQL Server 2008 R2 Enterprise Edition

SQL Server 2008 Enterprise Edition SQL Server 2008 R2 Enterprise Edition
SQL Server 2008 R2 Datacenter Edition

SQL Server 2008 IA64 Enterprise
Edition

SQL Server 2008 R2 IA64 Enterprise Edition
SQL Server 2008 R2 IA64 Datacenter Edition

SQL Server 2008 X64 Enterprise
Edition

SQL Server 2008 R2 X64 Enterprise Edition
SQL Server 2008 R2 X64 Datacenter Edition

 Download from www.wowebook.com

ptg

249Destination: SQL Server 2008 or SQL Server 2008 R2
9

TABLE 9.1 Supported Upgrade Paths to SQL Server 2008 and 2008 R2

Previous SQL Server Edition Supported Upgraded Edition

SQL Server 2008 Developer Edition SQL Server 2008 R2 Developer Edition
SQL Server 2008 R2 Datacenter Edition

SQL Server 2008 IA64 Developer
Edition

SQL Server 2008 R2 IA64 Developer Edition
SQL Server 2008 R2 IA64 Datacenter Edition

SQL Server 2008 X64 Developer
Edition

SQL Server 2008 R2 X64 Developer Edition
SQL Server 2008 R2 X64 Datacenter Edition

SQL Server 2008 Standard Edition SQL Server 2008 R2 Standard Edition
SQL Server 2008 R2 Enterprise Edition
SQL Server 2008 R2 Datacenter Edition

SQL Server 2008 X64 Standard
Edition

SQL Server 2008 R2 X64Standard Edition
SQL Server 2008 R2 X64 Enterprise Edition
SQL Server 2008 R2 X64 Datacenter Edition

SQL Server 2008 Workgroup Edition SQL Server 2008 R2 Workgroup Edition
SQL Server 2008 R2 Standard Edition
SQL Server 2008 R2 Enterprise Edition
SQL Server 2008 R2 Datacenter Edition

SQL Server 2008 X64 Workgroup
Edition

SQL Server 2008 R2 X64 Workgroup Edition
SQL Server 2008 R2 X64 Standard Edition
SQL Server 2008 R2 X64 Enterprise Edition
SQL Server 2008 R2 X64 Datacenter Edition

SQL Server 2008 Web Edition SQL Server 2008 R2 Web Edition
SQL Server 2008 R2 Standard Edition
SQL Server 2008 R2 Enterprise Edition

SQL Server 2008 X64 Web Edition SQL Server 2008 R2 X64 Web Edition
SQL Server 2008 R2 X64 Standard Edition
SQL Server 2008 R2 X64 Enterprise Edition

SQL Server 2008 Express SQL Server 2008 R2 Express
SQL Server 2008 R2 Express with Tools
SQL Server 2008 R2 Express with Advanced Services
SQL Server 2008 R2 Workgroup
SQL Server 2008 R2 Standard Edition
SQL Server 2008 R2 Enterprise Edition
SQL Server 2008 R2 Datacenter Edition

 Download from www.wowebook.com

ptg

250 CHAPTER 9 Upgrading to SQL Server 2008

NOTE

As you see in Table 9.1, direct upgrades from versions prior to SQL Server 2000 SP4
or SQL Server 2005 versions prior to SP2 are not supported. Options for migrating
databases from these versions of SQL Server are presented later in this chapter.

Upgrading Using a Configuration File
If you need to upgrade multiple SQL Server 2008 instances, you’ll likely want to do so
without having to run the Installation Center utility each time and manually select the
same options over and over. Fortunately, you can run an upgrade via the Installation
Center using a configuration file. Using a configuration file, you have a couple options for
how you run the upgrade: using the Upgrade Wizard with options prefilled by the config-
uration file or as a fully automated and unattended installation from the command line. If
you run using the GUI with the options prefilled by the configuration file, you have the
opportunity to review and change options along the way as necessary.

NOTE

If you’ve never run a SQL Server installation using the setup feature of SQL Server, you
should refer to the “Installing SQL Server Using a Configuration File” section in Chapter
8 for a detailed description of the process and options available.

TABLE 9.1 Supported Upgrade Paths to SQL Server 2008 and 2008 R2

Previous SQL Server Edition Supported Upgraded Edition

SQL Server 2008 Express Advanced SQL Server 2008 R2 Express with Advanced Services
SQL Server 2008 R2 Workgroup
SQL Server 2008 R2 Standard Edition
SQL Server 2008 R2 Enterprise Edition
SQL Server 2008 R2 Datacenter Edition

SQL Server 2008 Evaluation Edition Not supported

 Download from www.wowebook.com

ptg

251Slipstreaming Upgrades
9

Following are a few of the parameters relevant to running an upgrade using a configura-
tion file:

. /ACTION=UPGRADE—Specifies that you are running an upgrade.

. /INSTANCENAME—Specifies the SQL Server instance to be upgraded. For the default
instance, you use the special value MSSQLSERVER.

. /CONFIGURATIONFILE—Specifies the configuration file to use for the upgrade.

. /INSTANCEDIR—Specifies a nondefault installation directory for shared compo-
nents to be upgraded.

. /UIMODE—Specifies whether to present only the minimum number of dialog boxes
during setup. Normal presents all setup dialogs; AutoAdvance skips nonessential
dialog boxes.

. /FTUPGRADEOPTION—Specifies the full-text catalog upgrade option. Valid values are
REBUILD, RESET, and IMPORT.

To create an upgrade configuration file, run the Upgrade Wizard as described previously
and follow it all the way through to the Ready to Install page where the location of the
generated Configuration.ini file is specified. At this point, you can click the Cancel
button if you don’t want to actually perform the upgrade. Then copy the
Configuration.ini file to another location so you can make any necessary edits to it.

To run an upgrade using a configuration file, you need to run the setup.exe program,
which can be found at the root level of the installation media. If you want to override any
of the values in the configuration file or provide values not specified in the configuration
file, you can provide additional command-line parameters. For example, to avoid having
to enter the service account passwords during the installation, you can enter them on the
command line using the password parameters to config.exe. Following is a sample execu-
tion to upgrade the default instance and specify the account and password for Reporting
Services and the service account for Integration Services:

Setup.exe /q /ACTION=upgrade /INSTANCENAME=MSSQLSERVER

/RSUPGRADEDATABASEACCOUNT=”myRSaccount” /RSUPGRADEPASSWORD=”myRSpassword”

/ISSVCAccount=”NT Authority\Network Service” /IACCEPTSQLSERVERLICENSETERMS

Note also that the preceding example specifies the /q parameter, which runs the upgrade
in Full Quiet mode, which is intended for running unattended installations. With this
switch provided, Setup runs without any user interface. Another option is to run with the
/QS switch, which shows progress via the GUI but does not accept any input and displays
no error messages if encountered.

Slipstreaming Upgrades
If you are upgrading to SQL Server 2008, you’ll likely want to install Service Pack 1 as well
and possibly the latest cumulative update. In the past, this meant running the upgrade
and then running the Service Pack 1 (SP1) install and cumulative update separately. This

 Download from www.wowebook.com

ptg

252 CHAPTER 9 Upgrading to SQL Server 2008

process can be tedious and time consuming. Fortunately with the release of SP1, SQL
Server 2008 supports Slipstream installations and upgrades. As mentioned previously, slip-
streaming is a method of integrating a SQL Server 2008 update with the original installa-
tion media so that the original media and the update are installed at the same time.

Because slipstreaming was introduced with SQL Server 2008 SP1 and not with the initial
release, a slipstream upgrade must be run from the setup.exe program provided with SQL
Server 2008 SP1. If you run from the SP1 media folder, you need to specify the location of
the SQL Server 2008 installation media using the MEDIASOURCE parameter, as shown in the
following example:

setup.exe /PCUSource=C:\SQLServer2008SP1 /ACTION=UPGRADE /MEDIASOURCE=D:\

/INSTANCENAME=MSSQLSERVER

The /PCUSource parameter is used to specify the location of the SP1 package. You use the
/CUSource parameter to specify the location of a Cumulative Update package you want to
apply as well, if any.

NOTE

A slipstream install cannot be used to update a SQL Server 2008 instance to SQL
Server 2008 R2.

For a full description and more detailed examples on how to set up and run a
Slipstream installation, refer to Chapter 8.

Upgrading from SQL Server 7 or SQL Server 6.5

SQL Server supports upgrading from SQL Server 2000 SP4 and later and SQL Server 2005
SP2 and later. Unfortunately, upgrading directly from SQL Server 7.0 or earlier versions is
not supported. The supported migration path is to first migrate your SQL Server 7.0 (or
earlier) databases to SQL Server 2000 SP4 or 2005 SP2 (upgrades that are supported) and
then upgrade from one of these versions to SQL Server 2008 or 2008 R2.

If you have a SQL Server 2000 SP2 or SQL Server 2005 SP4 instance available, the easiest
way to upgrade your SQL Server 7.0 or earlier databases is to detach them from the source
server and then attach the databases to an instance running either SQL Server 2000 SP2
or SQL Server 2005 SP4. When the database is attached, it is upgraded to that version,
and then you can upgrade the database to SQL Server 2008 R2. Generally, this is the
preferred method.

Another option is to use the SQL Server Import and Export Wizard to copy data from a
7.0 or earlier instance of SQL Server. The main disadvantage of this approach is that it
brings over only tables and data. You have to manually script your stored procedures,
functions, triggers, views, and other database objects and re-create them on the upgraded
target database.

 Download from www.wowebook.com

ptg

253Upgrading Other SQL Server Components
9

Upgrading Other SQL Server Components
Now that you’ve seen how to migrate databases, jobs, logins, custom error messages, and
full-text catalogs, let’s discuss how you can migrate the rest of your SQL Server objects. First,
let’s look at Analysis Services.

Upgrading Analysis Services

The following sections highlight some important considerations you should be aware of
when upgrading Analysis Services.

Upgrading from SQL Server 2005 Analysis Services
You can upgrade an existing instance of SQL Server 2005 Analysis Services to SQL Server
2008 Analysis Services using the Upgrade Wizard. The wizard automatically migrates exist-
ing databases from the old instance to the new instance. The metadata and binary data is
compatible between the SQL Server 2005 and SQL Server 2008, so the data is retained after
you upgrade. You do not have to manually migrate the data. To upgrade an existing
instance of SQL Server 2005 Analysis Services, run the Upgrade Wizard and specify the
name of the existing AS instance as the name of the new AS instance. The AS databases
are upgraded automatically.

NOTE

Users running in a 64-bit environment must upgrade Analysis Services before upgrading
the SQL Server Database Engine. You can, of course, run setup more than once, so in
this situation it is recommended that you upgrade Analysis Services first (separately)
and then upgrade your other components on subsequent runs.

Upgrading from SQL Server 2000 Analysis Services
Because of changes to the underlying architecture of Analysis Services between SQL Server
2000 and SQL Server 2008, you cannot perform an in-place upgrade. You have to migrate
your SQL Server 2000 AS databases to SQL Server 2008.

The first task is to install a new named instance of SQL Server 2008 Analysis Services (SSAS)
by using the SQL Server 2008 Installation Center program. When this process is complete,
you can use the Analysis Services Migration Wizard to import your SQL Server 2000
Analysis Services content into the SQL Server 2008 AS format. This wizard re-creates your
existing OLAP structures on the new instance, without altering the original source material.

If you remove the prior instance of SQL Server 2000 Analysis Services after you have
migrated its databases, you can use the Analysis Services Instance Rename tool to make the
named instance of SQL Server 2008 Analysis Services the default instance on the server.

To launch the Analysis Services Migration Wizard, open the Object Browser and connect
to Analysis Services. Then navigate to the top-level Analysis Services node to find the
wizard. You can also simply select Start, Run and then enter the command
MigrationWizard.exe. You need to make sure that MSSQLServerOLAPService is running
before you begin; you can verify this by using the SQL Server Service Manager.

 Download from www.wowebook.com

ptg

254 CHAPTER 9 Upgrading to SQL Server 2008

Click Next on the Welcome page, and the Specify Source and Destination screen appears
(see Figure 9.15). You need to enter the name of your SQL Server 2000 Analysis Services
server as the source. Then you have two options:

. Server—You can choose this radio button and enter the name of your new SSAS
instance to immediately migrate your OLAP databases.

. Script File—If you select this radio button and enter a filename, the wizard can gen-
erate an XML for Analysis (XMLA) script, which you can later run to perform the
same migration.

Click Next, and the Select Databases to Migrate screen appears; this screen is fairly self-
explanatory. Make your selections and then click Next. The Validating Databases screen
appears. At this point, the wizard performs the migration and reports on its progress,
noting any issues along the way.

When the wizard is done, click Next, and the Completing the Wizard screen appears,
showing a summary report.

NOTE

According to Microsoft, the Analysis Services Migration Wizard is unable to migrate
three OLAP constructs: linked cubes, drill-through options, and remote partitions. You
need to manually re-create these constructs.

When your migration is complete, you need to remember to reprocess your cubes; other-
wise, you are unable to query the new database. In addition, the migrated database
doesn’t yet exploit the features of SSAS’s Unified Dimensional Model (UDM) in your exist-

FIGURE 9.15 The Analysis Services Migration Wizard’s Specify Source and Destination screen.

 Download from www.wowebook.com

ptg

255Upgrading Other SQL Server Components
9

ing cubes. To fully explore that topic and learn more about other new features and func-
tionality in Analysis Services, check out Chapter 51, “SQL Server 2008 Analysis Services.”

Upgrading Reporting Services

SQL Server 2008 supports upgrading from the following earlier editions of Reporting
Services:

. SQL Server 2000 Reporting Services with Service Pack 2 (SP2)

. SQL Server 2005 Reporting Services

You can choose to perform an in-place upgrade or migrate a Reporting Services
Installation to SQL Server 2008. You can run the Upgrade Advisor tool on the Report
Server computer to determine any issues that might prevent a successful upgrade. Known
upgrade issues currently include the following:

. There is no upgrade support for a Report Server that uses a remote SQL Server 2000
Database Engine instance to host the Report Server database.

. There is no support for the SQL Server 2000 Report Server Web service in SQL Server
2008 because this endpoint is discontinued, and any custom features that point to
the ReportServer2000 endpoint no longer run.

. There is no support for earlier versions of the Reporting Services WMI provider because
the Reporting Services WMI provider is not backward compatible with previous ver-
sions. You cannot use the SQL Server 2008 Reporting Services WMI provider with earli-
er versions of Reporting Services.

Performing an In-Place Upgrade of Reporting Services
If you’ve run the Upgrade Advisor and it doesn’t report any issues that would prevent a
successful upgrade (or you’ve addressed any issues it raises), you can perform an in-place
upgrade of any instance of SQL Server 2000 Reporting Services SP2 or SQL Server 2005
Reporting Services.

Before upgrading Reporting Services, you should first back up the following:

. The symmetric key (by using the RSKEYMGMT tool)

. Your Report Server databases

. Configuration files: Rsreportserver.config, Rswebapplication.config,
Rssvrpolicy.config, Rsmgrpolicy.config, Reportingservicesservice.exe.config,
Web.config (for both the Report Server and Report Manager ASP.NET applications),
and Machine.config (for ASP.NET if you modified it for Report Server operations)

. Any customizations to existing Reporting Services virtual directories in IIS

. Your reports

Before running the upgrade, you first need to stop IIS and the Report Services Windows
service on each machine on which you will be running the in-place upgrade. (For a Web
farm [now known as a scale-out implementation] the upgrade must be run on every node.)

 Download from www.wowebook.com

ptg

256 CHAPTER 9 Upgrading to SQL Server 2008

Then run the Installation Center and select your existing instance for upgrade at the
appropriate screen. The Installation Center upgrades the instance in-place, including all its
components and any published reports and snapshots.

Upgrading Reporting Services also requires updates to your Report Server databases.
Because the Report Server database schema can change with each new release of Reporting
Services, it is required that the database version match the version of the Report Server
instance you are using. In most cases, a Report Server database can be upgraded automati-
cally with no specific action on your part. The following list identifies all the conditions
under which a Report Server database is upgraded:

. After a Reporting Services instance is upgraded, the database schema is automatically
upgraded after service startup and the Report Server determines that the database
schema version does not match the server version.

. At service startup, the Report Server checks the database schema version to verify
that it matches the server version. If the database schema version is an older version,
it is automatically upgraded to the schema version that is required by the Report
Server. Automatic upgrade is especially useful if you restored or attached an older
Report Server database. A message is entered in the Report Server trace log file indi-
cating that the database schema version was upgraded.

. The Reporting Services Configuration tool upgrades a local or remote Report Server
database when you select an older version to use with a newer Report Server
instance. In this case, you must confirm the upgrade action before it happens.

NOTE

The Reporting Services Configuration tool no longer provides a separate Upgrade but-
ton or upgrade script. Those features are obsolete in SQL Server 2008 due to the
automatic upgrade feature of the Report Server service.

After the database schema is updated, you cannot roll back the upgrade to an earlier
version. Always back up the Report Server database in case you need to re-create a previ-
ous installation.

SQL Server 2008 introduces changes to the Report Definition Language (RDL), the report
object model, and the rendering object model that affect reports created in earlier versions
of the software. When you upgrade a Reporting Services installation from a prior version
to a SQL Server 2008 Reporting Services installation, existing reports and snapshots that
have been uploaded to a Report Server are automatically upgraded to the new schema the
first time they are processed. If a report cannot be automatically upgraded, the report is
processed using the backward-compatibility mode. Also, if you open an .rdl file in Report
Designer that was created for the SQL Server 2000 or SQL Server 2005 namespace, Report
Designer automatically upgrades the report to the current namespace. After you save the
report, you cannot open it in earlier versions of Report Designer.

 Download from www.wowebook.com

ptg

257Upgrading Other SQL Server Components
9

If you are unable to perform an in-place upgrade of your existing installation for any
reason, your other option is to install a new instance of SQL Server 2008 Reporting Services
and then migrate your Report Server database and configuration files to the new instance.

Migrating to Reporting Services 2008
The migration process for Reporting Services includes a combination of manual and auto-
mated steps. The following tasks are required to perform a Reporting Services migration:

. Back up your Report Server databases, applications, and configuration files.

. Back up the encryption key.

. If it is not installed already, install a new instance of SQL Server 2008 or 2008 R2.

. Move your Report Server database(s) from your SQL Server 2000 or 2005 installation
to your new installation using the detach/attach or backup/restore method.

. Move any custom report items, assemblies, or extensions to the new installation.

. Configure the Report Server.

. Edit the RSReportServer.config file to include any custom settings from your previ-
ous installation.

. Optionally, configure custom Access Control Lists (ACLs) for the new Reporting
Services Windows service group.

. Remove unused applications and tools after you have confirmed that the new
instance is fully operational.

When you are backing up the Report Server configuration files, the files to back up include

. Rsreportserver.config

. Rswebapplication.config

. Rssvrpolicy.config

. Rsmgrpolicy.config

. Reportingservicesservice.exe.config

. Web.config for both the Report Server and Report Manager ASP.NET applications

. Machine.config for ASP.NET if you modified it for Report Server operations

During the install of your new instance of Reporting Services, when you reach the
Reporting Services screen, you need to be sure to select the Install but Do Not Configure
option. After moving your Report Server databases, launch the new Reporting Services
Configuration tool and select the Report Server database that you’ve moved from the previ-
ous installation to automatically upgrade it. Then restore your backed-up encryption key.

Just as with an in-place upgrade, to upgrade the reports themselves, all you need to do is
open them in the Report Designer, which automatically converts them to the new Report
Definition Language format.

 Download from www.wowebook.com

ptg

258 CHAPTER 9 Upgrading to SQL Server 2008

After you successfully migrate your Report Server to a SQL Server 2008 Reporting Services
instance, you might want to perform the following steps to remove programs and files
that are no longer necessary:

. Uninstall the previous version of Reporting Services if it’s no longer needed.

. Remove IIS if you no longer need it on the computer (it’s no longer needed by
Reporting Services 2008).

. Delete RSActivate.exe (if you migrated from SQL Server 2000 installations only).

Upgrading SSIS Packages
When you upgrade an instance of SQL Server 2005 to SQL Server 2008, your existing SQL
Server 2005 Integration Services packages are not automatically upgraded to the package
format that SQL Server 2008 Integration Services uses. You have to manually upgrade your
SQL Server 2005 packages.

There are multiple methods to upgrade SQL Server 2005 packages. Some of the methods
are only temporary. For others, the upgrade is permanent. Table 9.2 lists each of the
upgrade methods and whether the upgrade is temporary or permanent.

The SSIS Package Upgrade Wizard is the recommended approach for upgrading your SQL
Server 2005 SSIS packages. Because you can configure the wizard to back up your original
packages, you can continue to use the original packages if you experience upgrade difficul-
ties. You can run the SSIS Package Upgrade Wizard from SQL Server Management Studio,
from SQL Server Installation Center, or at the command prompt.

To run the wizard from SQL Server Management Studio, connect to Integration Services,
expand the Stored Packages node, right-click the File System or MSDB node, and then
click Upgrade Packages. To run the wizard from SQL Server Installation Center, click

TABLE 9.2 SSIS Upgrade Methods

Upgrade Method Type of Upgrade

Using the dtexec utility installed with SQL
Server 2008

The package upgrade and script migration are
temporary.
The changes are not saved.

Adding a SQL Server 2005 package to an
existing project or opening a SQL Server
2005 package in SQL Server 2008
Integration Services

The package upgrade is permanent if you save
the package.
The script migration is permanent if you add the
package to an existing project or if you open the
package and save the conversion changes.

Using the SSIS Package Upgrade Wizard The package upgrade and script migration are
permanent.

Using the Upgrade method to upgrade one or
more Integration Services packages.

The package upgrade and script migration are
permanent.

 Download from www.wowebook.com

ptg

259Upgrading Other SQL Server Components
9

Tools and then click Upgrade Integration Services packages. At the command prompt,
run the SSISUpgrade.exe file from the C:\Program Files\Microsoft SQL
Server\100\DTS\Binn folder.

Migrating DTS Packages
SSIS is a complete rewrite of the DTS runtime, and this is why your DTS packages are not
automatically migrated to SQL Server 2008 when running an in-place upgrade. You essen-
tially have two options for how to handle your existing DTS packages:

. Install runtime support for DTS packages so you can continue to run your existing
DTS packages.

. Migrate your DTS packages to SSIS using the DTS Package Migration Wizard.

Full DTS support in SQL Server 2008 consists of multiple components. The first compo-
nent is the Client Tools Backward Compatibility option. During an installation or
upgrade, on the Feature Selection page, select Integration Services and choose to install
the Client Tools Backward Compatibility option. This option installs the Execute DTS
2000 Package task for SSIS.

The next component you need to install is DTS runtime support. To install runtime
support for Data Transformation Services packages, go to the Microsoft Download Center
and locate the Microsoft SQL Server 2008 Feature Pack page. From there, download the
Microsoft SQL Server 2005 Backward Compatibility Components (this component has not
been updated for SQL Server 2008). If you also want to use the SQL Server 2008 tools to
open and view DTS packages, you have to download and install the design-time support
as well. This support can also be found in the Microsoft Download Center on the Feature
Pack for Microsoft SQL Server 2005 page.

After you install the DTS runtime support, your DTS packages can run as before. You can
run your DTS packages one of the following ways:

. From the command prompt using the dtsrun.exe utility

. Via SQL Server Agent Jobs by setting the job step to Operating system (CmdExec) and
use the dtsrun utility (dtsrun.exe) to run the package

. Via Integration Services Packages using the Execute DTS 2000 Package task

If you also installed the design-time support, you are able to continue to edit and manage
your DTS packages. You can manage your DTS packages from SQL Server Management
Studio under the Data Transformation Services node, which is available in the
Management/Legacy folder. Here, you can open existing DTS packages stored on the file
system or in the msdb database, or add additional packages to the server by clicking the
Import button. Although DTS packages can be modified and renamed, you cannot create
new DTS packages within SSMS.

The DTS runtime support is intended to be used only on a temporary basis until you have
the opportunity to migrate your DTS packages to SSIS. To migrate your DTS packages to
SSIS, you can use the DTS Package Migration Wizard.

 Download from www.wowebook.com

ptg

260 CHAPTER 9 Upgrading to SQL Server 2008

To run the DTS Package Migration Wizard, you first need to make sure that the SSIS
service is in the running state. In SSMS, open the Object Explorer and navigate to the
Legacy node, under Management. Then right-click the Data Transformation Services
(DTS) node and select the Package Migration Wizard option to migrate one or more pack-
ages (those stored on a server or as files) to SSIS.

NOTE

The Package Migration Wizard is available only in the Developer, Standard, and
Enterprise Editions of SQL Server 2008.

When you run the Package Migration Wizard, you first need to select the source and desti-
nation servers (the source must be a SQL Server 7 or 2000 instance, and the destination
must be a 2008 instance with SSIS running) on the Choose Source Location and Choose
Destination Location screens.

Then click Next to reach the List Packages screen (see Figure 9.16), where you check the
check boxes for the packages you want to bring over. The name for each imported package
is listed in the Destination Package column, and you can click there to edit it.

At the next screen, you can specify a log file for the process. You click Next again and
then click Finish to complete the migration.

As with all the other wizards provided with SQL Server 2008, the Package Migration
Wizard reports progress and any issues on a per-package basis, offering an exportable
report at the end.

FIGURE 9.16 The Package Migration Wizard’s List Packages screen.

 Download from www.wowebook.com

ptg

261Summary
9

After migration is complete, the original DTS package is still available on the SQL Server
7 or 2000 instance, in unmodified form. You can import packages into SQL Server in
SSMS by connecting to SSIS in the Object Explorer and then navigating to the Stored
Packages node and then the MSDB node. If you selected a file system folder as the destina-
tion, right-click the File System node and then select Import Package to display the
migrated packages.

Summary
Now that you’ve taken in a great deal of information to help your organization transition
to SQL Server 2008, it’s time to put that knowledge to work by actively taking the plunge.

If you need even more documentation, you can look to the many other chapters in this
book and even more resources on the Web that can assist you. Of course, there’s an abun-
dance of content on Microsoft’s website (after all, it’s in Microsoft’s interests that
customers upgrade to SQL Server 2008), including webcasts, TechNet, and online learning
courses available to MSDN subscribers.

When your new environment is ready to go, you can move on to Chapter 10, “Client
Installation and Configuration,” to learn how to get your clients up and running with
your new installation of SQL Server 2008.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 10

Client Installation and
Configuration

IN THIS CHAPTER

. What’s New in Client
Installation and Configuration

. Client/Server Networking
Considerations

. Client Installation

. Client Configuration

. Client Data Access
TechnologiesSQL Server 2008 offers a robust client/server architecture

that provides speed and security, simple configuration and
maintenance, and enhanced management capabilities.

This chapter contains the latest information on how to
install, configure, and connect to SQL Server 2008 from the
client side, and it offers key server-side insights that will
help provide a complete understanding of what you need to
do establish a database connection.

What’s New in Client Installation
and Configuration
Client installation and configuration in SQL Server 2008 is
similar to SQL Server 2005 but does have its share of
changes. First and foremost is the introduction of a new
net-library named SQL Native Client 10.0 (SNAC10).
SNAC10 gives applications access to the new features and
data types available with SQL Server 2008. It builds on the
data access component distribution strategy introduced in
SQL Server 2005 that was simply called SQL Native Client
(SNAC or SNAC9).

The good news is that your applications can continue to
access SQL Server 2008 with the older SNAC components.
Both SNAC9 and SNAC10 can be used on the same client
system. SNAC9 is not able to reference new features in SQL
Server 2008, however, so you have to upgrade to SNAC10 to
gain access to them.

Another big change in SQL Server 2008 is the removal of
the Surface Area Configuration (SAC) tool. The SAC tool

 Download from www.wowebook.com

ptg

264 CHAPTER 10 Client Installation and Configuration

was introduced in SQL Server 2005 and was a key part of client configuration. The func-
tionality made available in this tool has now been replaced with Policy-Based
Management features and changes in the SQL Server Configuration Manager (SSCM) tool.
For example, the option to allow Remote Connections that was available in SAC is no
longer there. You should look to the SSCM tool and enable or disable the protocols for
which you want to allow connections. The details of this change are discussed later in this
chapter, and a full discussion of Policy-Based Management is provided in Chapter 22,
“Administering Policy Based Management.”

One last change in SQL Server 2008 Client Installation and Configuration that may rear
its head relates to the BUILTIN\Administrator windows group. By default, this group is no
longer included in the SQL Server sysadmin fixed server role on new SQL Server 2008
installations. So, by default, network administrators and administrators of the machine
where SQL Server is running are not able to log in to SQL Server and administer it. In past
versions of SQL Server, the BUILTIN\Administrator windows group was added to the
sysadmin role. To grant administrators permission to SQL Server, you can manually add
the BUILTIN\Administrator group to the sysadmin SQL Server role, or you can add each
individual network administrator that needs to access SQL Server to that role.

The change to the BUILTIN\Administrator windows group is in line with Microsoft’s strat-
egy to “secure by design, secure by default, and secure in deployment.” This strategy
relates to many aspects of SQL Server, including installation, security, and client installa-
tion and configuration. The strategy is a good one but can cause you, as the administrator,
some extra grief if you are not aware of the impact that these changes can have on you
and your users.

Client/Server Networking Considerations
Before we delve into the features on the client side in SQL Server, it’s important to make
note of a few server-side features. This information will help you gain an understanding of
which networking features are initially configured on the server (after an installation or
upgrade) as well as how incoming connections are dealt with. Such knowledge can be
invaluable in diagnosing connectivity issues.

If you’ve been following along chapter by chapter, you’ve learned how to install or
upgrade an instance of SQL Server 2008. To get your clients up and running fast, you must
be sure the Database Engine is listening for them.

The following sections describe how to set up the server’s basic network configuration,
including configuring it to accept remote connections, learning which protocols it
supports, and understanding how it listens for and responds to client requests.

Server Network Protocols

The first and most basic step after a SQL Server installation or upgrade is to make sure the
appropriate network protocols are configured on the server.

 Download from www.wowebook.com

ptg

265Client/Server Networking Considerations

NOTE

Note that the term server is used here to refer to an instance of the SQL Server 2008
Database Engine. The term client is used generally to mean any program that needs to
communicate with a server. The server and client may reside on the same physical
machine (especially when using SQL Server Mobile and Express Editions).

First, you should ensure that the protocols your clients once used to connect to SQL
Server 7, 2000 or 2005 (or that your clients would like to use) are still supported by SQL
Server 2008 and configured.

You might be surprised to learn that the following protocols that were supported in SQL
Server 2000 are not supported by SQL Server 2005 or SQL Server 2008:

. AppleTalk

. Banyan VINES

. Multiprotocol

. NW Link IPX/SPX

If you were using these protocols and you’ve upgraded from SQL Server 2000, your
clients are no longer able to connect. Following are the only protocols that SQL Server
2008 supports:

. Named pipes

. Shared memory

. TCP/IP

. Virtual Interface Adapter (VIA)

If you were using any of these protocols and you just upgraded, Setup copies your pre-
upgrade settings over to SQL Server 2008, including the enabled state, IP addresses, TCP
ports, pipe names, and so on. Clients can simply test their connections to be sure the
upgrade was successful, and in most cases, no changes need to be made.

NOTE

The Shared memory protocol works only for connections both to and from the same
machine hosting the Database Engine. Shared memory is used by client tools such as
SQL Server Management Studio (SSMS) and SQLCMD, and it’s also a good choice for
use by locally running custom applications because it is secure by design. (It is the
default protocol used by local applications that do not specify otherwise.)

All remote connections to SQL Server are thus disabled by default. Following is an
extremely common client-side error message illustrating connection failure due to disabled
remote connectivity:

1
0

 Download from www.wowebook.com

ptg

266 CHAPTER 10 Client Installation and Configuration

FIGURE 10.1 Enabling remote connections over named pipes using SSCM.

A network-related or instance-specific error occurred while

establishing a connection to SQL Server. The server was not found

or was not accessible. Verify that the instance name is correct and

that SQL Server is configured to allow remote connections.

The exact wording of this message varies slightly, depending on the particular client or
connection method used. The same error also occurs when the Database Engine service
is stopped.

In SQL Server 2008, remote connections must be enabled for each network protocol on
which you want the server to communicate. This is easily accomplished using the SQL
Server Configuration Manager (SSCM). You launch SSCM from the SQL Server 2008
Configuration Tools menu group. In SSCM, you expand SQL Server Network
Configuration and then select the Protocols entry for the SQL Server instance that you
want to configure. In the Details pane, right-click on one of the available protocols (for
example, Named Pipes) and select Enable to allow connections for this protocol (see
Figure 10.1). SSCM serves many purposes and is discussed in detail later in this chapter.

When the protocol is enabled, SQL Server is configured to listen for connections from
clients using the same protocol. You must restart the SQL Server instance for the changes
to take effect and for SQL Server to actually start listening for connections. You can verify
that SQL Server is listening on the protocol that you have enabled by looking at the SQL
Server error log. Each time the SQL Server instance is restarted, messages are written to the
log indicating which protocols it is listening on. The following sample error log messages
show what SQL Server is listening for:

Server is listening on [‘any’ <ipv4> 1719].

Server named pipe provider is ready to accept connection on

[\\.\pipe\MSSQL$INST2008\sql\query].

 Download from www.wowebook.com

ptg

267Client/Server Networking Considerations
1

0

SQL Server listens on all configured protocols simultaneously, giving no preference or
priority to any. This is in contrast to the explicitly prioritized manner in which clients
attempt to connect via all configured protocols. The client configuration is discussed in
detail later in this chapter.

NOTE

In SQL Server 2005, the Surface Area Configuration (SAC) tool also could be used to
allow remote connections and to configure the protocols on which they communicate.
The SAC tool has been removed in SQL Server 2008, so you need to look to the SSCM
to configure your protocols.

The Server Endpoint Layer

A networking feature in SQL Server 2008 adds an additional layer to the client/server
network structure: Tabular Data Stream (TDS) endpoints. When you install (or upgrade to)
SQL Server 2008, a default system endpoint is created on the server for each available
protocol on the server. These endpoints cannot be dropped, and they are created regard-
less of whether the protocol is disabled or otherwise unavailable.

NOTE

The term endpoint in this context refers to the combination of a protocol selection,
one or more IP addresses (or pipe names), and any associated port numbers.

These are the default system endpoints:

. TSQL Local Machine (for shared memory)

. TSQL Named Pipes

. TSQL Default TCP

. TSQL Default VIA

. Dedicated Admin Connection (also known as the DAC)

You can view these endpoints and check their status by executing the following T-SQL
statement:

Use Master

GO

SELECT * FROM sys.endpoints WHERE principal_id = 1

By default, all users are granted access to these endpoints (except the DAC, which is only
for members of the sysadmin role). Administrators can create new endpoints on the server
to increase connection security by stopping (or disabling) the default system endpoints
and then creating new user-defined endpoints that only specific clients can access.

 Download from www.wowebook.com

ptg

268

(Creating a new system endpoint automatically revokes permission on the default
endpoint of the same protocol to the public group.)

NOTE

Only one named pipe and one shared memory endpoint can exist per instance, but
multiple VIA or TCP endpoints (with different port and address settings) can coexist.

Each endpoint communicates with clients via TDS packets, which are formatted on the
server side by SNAC and on the client side by SNAC or another of the net-libraries.

Administrators have the option of stopping and starting endpoints while sessions are still
active, preventing new connections from being made while still supporting existing ones.

An administrator can grant or revoke endpoint access to specific users or groups (for
example, preventing backdoor access through client tools). It is therefore important for
clients to know that this structure exists and to learn how they receive permission to
connect to endpoints through a server-side process known as provisioning.

Client Access Provisioning
There are three fairly straightforward rules of access provisioning. If any one of these rules
is met by an incoming client, that client may access the endpoint. If none are met, the
client is denied access. These are the rules:

. If the client specifies an IP address and a TCP port that match those of a specific
endpoint, the client may connect to it, if the client has permission to do so.

. If only the TCP port specified by the client matches that of a specific endpoint, and
the endpoint is configured to listen on all IP addresses, the client may connect to it,
if the client has permission to do so.

. If neither the TCP port nor IP address is specified, but the default endpoint for the
protocol is enabled, the client may attempt to connect to the endpoint.

NOTE

If the endpoint to which access is successfully provisioned is currently stopped, or if
the user does not have permission to connect to it, no further endpoints are tried and
the client cannot continue.

For example, let’s say a server has three TCP/IP endpoints defined:

. The default (TSQL Default TCP), which listens on all IP addresses and Port 1433 (a
default SQL Server 2008 instance)

. A user-created endpoint called TCP_UserCreated 101_91, configured to listen on IP
address 192.168.1.101 and Port 91

CHAPTER 10 Client Installation and Configuration

 Download from www.wowebook.com

ptg

269Client/Server Networking Considerations
1

0

. A second user-created endpoint, called TCP_UserCreated Any_91, which is config-
ured to listen on all IP addresses and Port 91

A client attempts to connect specifically to 192.168.1.101:91. Because this is an exact
address and port match, the client can try to connect to TCP_UserCreated 101_91. Having
an exact address and port match meets the first provisioning rule.

A second client attempts to connect to any IP address on Port 91. Because there is no
exact address match, the client cannot attempt to connect to TCP_UserCreated 101_91.
However, the client can attempt to connect to TCP_UserCreated Any_91 because it is
configured to listen on all IP addresses. This meets the second provisioning rule.

A third client attempts to connect on any port and any address. If TSQL Default TCP is
started, the client is granted permission to attempt to connect. This meets the third
provisioning rule.

NOTE

Settings such as IP addresses and TCP ports are used to implicitly connect to specific
endpoints. These values are specified by clients in connection strings, data source
names (DSNs), and server aliases, all of which are discussed later in this chapter in
the “Client Configuration” section.

TIP

If, at any time, you want to discover which protocol and endpoint a connected client is
currently using, you can run the following T-SQL to list the current connections and
related protocols. The session_id identifies the server process ID (SPID), and an addi-
tional WHERE clause can be added to the SELECT statement that selects only the SPID
you are interested in:

SELECT name, net_transport, session_id, e.endpoint_id

FROM sys.dm_exec_connections d

JOIN sys.endpoints e

ON e.endpoint_id = d.endpoint_id

go

name net_transport session_id endpoint_id

TSQL Local Machine Shared memory 53 2

Following is an example of the client-side error message that results if the TSQL Default
TCP endpoint is stopped and you try to connect to it:

A connection was successfully established with the server, but then an error

occurred during the login process

 Download from www.wowebook.com

ptg

270

Now that you know a bit about endpoints, let’s go a bit deeper and explore how client
connections are facilitated on the server.

The Role of SQL Browser

You might be surprised to learn that when clients try to connect to SQL Server 2008, their
first network access is made over UDP Port 1434 to the SQL Browser service.

NOTE

Regardless of the encryption status of the connection itself, login credentials are
always encrypted when passed to SQL Server 2008 (to foil any malicious packet sniff-
ing). If a certificate signed by an external authority (such as VeriSign) is not installed on
the server, SQL Server automatically generates a self-signed certificate for use in
encrypting login credentials.

SQL Browser is the upgrade to the SQL Server Resolution Protocol (SSRP) and its job is to
hand out instance names, version numbers, and connection information for each
(nonhidden) instance of the Database Engine (and Analysis Services) residing on a
server—not only for SQL Server 2008 instances, but for SQL Server 2000 and 2005
instances as well.

When clients connect by name, SQL Browser searches for that name in its list and then
hands out the connection data for that instance. It can also provide a list of available
servers and help make connections to the correct server instance or to make a connection
on the dedicated administrator connection (DAC).

Ports, Pipes, and Instances
Default instances of SQL Server 2008 are automatically configured (just as in previous
editions) to listen on all IP addresses and TCP Port 1433.

Named instances, on the other hand, are automatically configured to listen on all IP
addresses, using dynamic TCP port numbers that change when the Database Engine is
restarted. (Most often, these change only when the port number last used by the service is
in use by a different application.)

If the SQL Browser service is not running, the client might need to provide additional
connection information to be able to connect to SQL Server. The additional connection
information includes the specific port or pipe that the SQL Server instance may be listen-
ing on. The only exception to this is if the server is listening on the default port of 1433.
Otherwise, the client must specify the port when connecting with TCP/IP. When dynamic
ports are used, the port number can change at any given time and cause your clients to
have to change their port to match the new server port.

SQL Browser, therefore, is configured to autostart on servers that contain one or more
named instances so that clients can connect by simply providing the server name. The
complexity associated with providing additional port or pipe information is avoided when

CHAPTER 10 Client Installation and Configuration

 Download from www.wowebook.com

ptg

271Client Installation
1

0

the SQL Browser service is running. SQL Browser is also required for enumerating the
server lists used to connect with client tools such as SMSS.

NOTE

If named instances have fixed port numbers known to clients, or if a pipe name is well
known, SQL Browser is not required to connect.

NOTE

For named pipes, the default instance’s pipe name is \sql\query; for named
instances, the pipe name is MSSQL$instancename\sql\query.

When a link is made, endpoint provisioning kicks in to finalize (or reject) the connection.

Client Installation
Now that you have acquired some knowledge about the most important server-side
networking considerations, it’s time to learn how to install and configure the client-side
half of the equation.

Installation Requirements

All SQL Server 2008 installations (including client-tools-only or SNAC-only installations)
require Windows Installer 4.5, which is freely downloadable from Microsoft. It can also be
installed as part of the SQL Server Installation Wizard or manually installed from the SQL
Server media. The location of the installer media varies depending on the media you are
using but an example of the location is as follows:

D:\English\SQL2008\Enterprise\X86\redist\Windows Installer\x86

The same operating system requirements for server installations apply to client tools and
SNAC installations, with one exception: When you install SNAC by itself on top of
Windows XP, only SP1 is required, and when you install SNAC on top of Windows Server
2003, SP1 is not required. You can review the complete list of requirements in Chapter 8,
“Installing SQL Server 2008,” in the section “Installation Requirements.”

Note that SNAC and the client tools both depend on the presence of the .NET Framework
3.5 SP1, and the client tools in turn depend on SNAC. Setup automatically installs both
Framework 3.5 SP1 and SNAC, when required, on the target machine. If incompatible or
beta versions exist that must be uninstalled first, Setup lets you know to use Installer 4.5.

Installing the Client Tools

To install the SQL Server 2008 client tools, you start Setup normally and follow the
prompts as described in Chapter 8. When the Feature Selection screen appears, you check
only the Client Tools Connectivity check box, as shown in Figure 10.2.

 Download from www.wowebook.com

ptg

272

FIGURE 10.2 Performing a client-tools-only installation.

The same kind of install can be done quietly from the command line (Setup doubles as a
command-line application), using the following:

driveletter:\Servers\Setup> Setup.exe /q /ACTION=Install /FEATURES=CONN

/INSTANCENAME=INST2008

That’s all there is to it!

You will be happy to learn that the SQL Server 2008 client tools can safely be installed side
by side with your SQL Server 2000 or 2005 client tools. You can even access databases and
other objects created in either edition (with a few notable exceptions, such as database
diagrams) by using either toolset.

The sections that follow describe how to install and use a few of the client tools for client
configuration and testing.

Installing SNAC

This section shows how easy it is to install SNAC, the key net-library for SQL Server 2008
and beyond.

As mentioned earlier, both the SQL Server 2008 Database Engine and the client tools
depend on SNAC. SNAC is installed when you install the SQL Server connectivity tools, or
you can simply launch it on its own from the SQL Server installation medium by running
driveletter:\Servers\Setup\sqlncli.msi.

Table 10.1 describes the files that the Microsoft Installer (MSI) package installs.

CHAPTER 10 Client Installation and Configuration

 Download from www.wowebook.com

ptg

273

TABLE 10.1 Files Installed by the SNAC MSI Package

Filename Purpose Installed To

Sqlncli.h C++ header file (replaces sqloledb.h) Program Files\Microsoft

SQL Server\100\SDK

sqlncli10.lib C++ library file for calling BCP functions
(replaces odbcbcp.lib)

Program Files\Microsoft

SQL Server\100\SDK

sqlncli10.dll Main library, containing both the ODBC
driver and OLE DB provider (houses all
functionality)

WINDIR\system32

sqlnclir10.rll Resource file WINDIR\system32

s10ch_sqlncli.chm Compiled help file for creating data
sources using SNAC

WINDIR\system32

Client Installation
1

0

TIP

For detailed information on how to write C++ code by using the header and library files
included in the SNAC software development kit (SDK), see the Books Online topic
“Using the SQL Native Client Header and Library Files.”

The SNAC installer has two primary options (shown in Figure 10.3):

. Install SNAC by itself

. Install the SNAC SDK files along with it

FIGURE 10.3 SNAC’s installation options.

 Download from www.wowebook.com

ptg

274 CHAPTER 10 Client Installation and Configuration

NOTE

By default, all network protocols except for VIA are enabled on the client during
installation.

That’s all there is to installing SNAC!

Redistributing SNAC with Custom Client Applications
If you build an application that relies on SNAC, you need to be aware that it can be redis-
tributed in two ways:

. As part of any SQL Server 2008 installation or upgrade

. As a custom application installation dependency

When you are building MSI files for an application, it is important that you register
sqlncli.msi as a package dependency (and, of course, to install it as well, if it is not
present on the destination machine). This helps ensure that SNAC will not be accidentally
uninstalled from the destination machine without first flashing a warning to users, indi-
cating that any application that relies on it will break. To do this, you execute the follow-
ing command early in your application’s installation process:

msiexec /i sqlncli.msi APPGUID={unique identifier for your product}

NOTE

The program name for SNAC found in the Add or Remove Programs Control Panel
applet is Microsoft SQL Server 2008 Native Client, not SQL Native Client, as it is com-
monly known.

Client Configuration
Client configuration is a many-leveled beast, consisting of operating system tasks such as
installing protocols, application tasks such as choosing or coding to a specific Application
Programming Interface (API), provider, or driver, and maintenance tasks such as configur-
ing network settings, building connection strings, and so on. The following sections cover
a broad range of these tasks, focusing on the most common. Many examples utilize
TCP/IP both because it is the default protocol for remote clients and because it is the most
widely used.

No chapter can cover all the possible ways of connecting, but this one is designed to give
you the tools you need to get set up right from the start and to navigate your way in case
specific issues arise.

The first client configuration tool we look at is SSCM.

 Download from www.wowebook.com

ptg

275Client Configuration
1

0

Client Configuration Using SSCM

The Client Network Utility available prior to SQL Server 2005 has been decommissioned,
and all its functionality is now built into SSCM. This includes the capability to create
server aliases, to enable and prioritize network protocols, to control the various SQL Server
services, and more.

NOTE

One thing Microsoft is keen on including in Books Online is that neither Setup nor
sqlncli.msi installs the actual network protocols themselves, nor do they enable
them at the operating system level. This means that if you do not have TCP/IP
installed and you need to start using it, you have to first set it up by using the Network
Connections Control Panel applet (if you’re using Windows, that is).

You can launch SSCM directly from its Start menu icon, or you can access it in the
Services and Applications node of the Computer Management console. When you
have SSCM up and running, to access its client-side functionality, you expand its top-level
node (SQL Server Configuration Manager (servername)) and then you click the SQL
Native Client 10.0 Configuration node. Below it, you click the Client Protocols node
to reveal the enabled state and priority order of each protocol, in grid format, in the right
pane (see Figure 10.4).

From this screen, you can right-click any of the protocols to change their enabled state,
view Properties pages, or change the default connection order (except that of shared
memory, which is always tried first and whose order cannot be changed). The following is
the default connection order for clients connecting without the benefit of a server alias,
connection string, or other means:

FIGURE 10.4 SSCM’s Client Protocols screen.

 Download from www.wowebook.com

ptg

276 CHAPTER 10 Client Installation and Configuration

FIGURE 10.5 The TCP/IP Properties screen.

. Shared memory

. TCP/IP

. Named pipes

(As the grid shows, VIA is disabled by default.) When you are connecting remotely, TCP/IP
is the first protocol attempted because shared memory is local only.

NOTE

When a client does not specify a connection protocol, SNAC automatically tries each
protocol in the list in sequence, according to the Order column. The first protocol to
connect successfully wins.

If the winning connection is subsequently rejected by the server for any reason, no
other protocols are tried.

Note also that local clients using MDAC 2.8 or lower cannot connect using shared
memory, and they are automatically switched to named pipes if they attempt to do so.

Let’s examine one of the protocols. To start, you need to double-click TCP/IP under the
Name column to open the TCP/IP Properties screen (see Figure 10.5).

The values stored here are used by TCP/IP clients as default connection values, and they are
applied only when a specific server alias or other configuration mechanism is not in use.
They are also used by the SQL Server 2008 client tools when shared memory is not available.

 Download from www.wowebook.com

ptg

277Client Configuration
1

0FIGURE 10.6 Alias properties for a new named pipe server alias.

As you can see, the default port, 1433, is set up to connect to the more commonly config-
ured default instances of SQL Server. By editing the values on this page, you can change
the default port number, enabled state, keep-alive values, and other settings (when
editing other protocols). You should edit and enable the protocols according to your
specific needs.

Server Aliases
A server alias is a name that is used like a server name that represents a group of server
settings for use by connecting clients. Server aliases are very handy because of the way
they simplify connection parameters: clients need only specify the alias name, and SNAC
pulls the rest of the information (such as the IP address, TCP port number, and pipe
name) from SSCM at connection time.

To create a server alias, you right-click the Aliases node under SQL Native Client
Configuration and choose New Alias. On the Alias - New screen that appears (see Figure
10.6), you specify the alias name, protocol (except shared memory, for which you cannot
create an alias), and server name. (local, ., and localhost also work for local connections
over TCP/IP or named pipes.)

When you make your protocol selection, the grid rows change to dynamically reveal the
settings particular to that protocol. When you are finished, you click OK, and your alias is
ready for use.

 Download from www.wowebook.com

ptg

278 CHAPTER 10 Client Installation and Configuration

FIGURE 10.7 Importing a certificate on the client computer using the Certificate Import
Wizard.

Connection Encryption

With SQL Server 2008, it is easy to set up Secure Sockets Layer (SSL) encrypted
client/server communication over all protocols. The SNAC net-library handles the tasks of
encryption and decryption on both the server and client ends. (Note that this process
does cause a slight decrease in performance.) Setting it up requires both server-side and
client-side configuration changes; this section covers only the client-side changes in detail.

SQL Server 2008 enables encryption using two types of certificates:

. Certificates generated by and obtained from an external certification authority such
as VeriSign

. Certificates generated by SQL Server 2008 (known as self-signed certificates)

The bit strength of the encryption (40-bit or 128-bit) depends on the bit strength of the
operating systems of the computers involved in the connection.

To set up the server for encryption, your administrator registers a certificate on the server
operating system (using the Certificates Management console) and then installs it in the
Database Engine.

If an externally signed certificate is not installed on the server, SQL Server uses its built-in
self-signed certificate. (A server administrator may also create and save a self-signed certifi-
cate by using SQL Server 2008 via the new CREATE CERTIFICATE and BACKUP CERTIFICATE
T-SQL syntax.) It is also up to the server to decide whether encryption is required or
optional for connecting clients.

The client’s half of the job is to have installed what is known as a root-level certificate that
is issued by the same certification authority as the server’s certificate. To install a root-level
certificate, you right-click the certificate itself (a .cer or .crt file) and select Install
Certificate to launch the Certificate Import Wizard. You click Next on the welcome screen
to reach the Certificate Store screen (see Figure 10.7). Then you select the first radio button
(Automatically Select the Certificate Store) and then click Next. Finally, you click Finish.

 Download from www.wowebook.com

ptg

279Client Data Access Technologies
1

0

FIGURE 10.8 Forcing clients to request an encrypted connection using SSCM.

Next, you launch SSCM, right-click the SQL Native Client 10.0 Configuration node,
and then select Properties. The Flags tab appears (see Figure 10.8) in the Properties window.

You set the Force Protocol Encryption property value to Yes. This causes clients to
request an SSL-encrypted connection when communicating with the Database Engine. If
the server does not respond in kind, the connection is killed.

The Trust Server Certificate property gives clients a choice in how they deal with
server certificates:

. To use a self-signed certificate, you set the property value to Yes. This option
prevents SNAC from validating the server’s certificate.

. To use an externally signed certificate, you set the property value to No, which causes
SNAC to validate the server’s certificate.

SSMS can also connect over an encrypted connection. When connecting using the
Connect to Server dialog, you click the Options button and then click the Connection
Properties tab. Then you choose your database and protocol and, at the bottom left, check
the Encrypt Connection check box.

Client Data Access Technologies
The question of which data access technology to use with SQL Server 2008 is a common
one, with a seemingly easy answer: you use SNAC because it has all the latest and greatest
functionality, all rolled into one. (You learn how to use SNAC in the sections that follow.)

 Download from www.wowebook.com

ptg

280 CHAPTER 10 Client Installation and Configuration

A more correct answer is that your choice depends on which software technologies your
clients currently use and what their specific needs are.

Your data access options consist of providers and drivers, whose functionality is often
encapsulated inside code libraries known as net-libraries (such as SNAC’s sqlncli10.dll).
In addition to these net-libraries, supporting services such as MDAC’s OLE DB Core
Services are also available, providing useful functionality not found in the net-libraries,
such as connection pooling. (ADO.NET also functions as a service, to a certain degree.)

NOTE

The Microsoft Data Access Components (MDAC) has a new name that started with the
Vista operating system. The data access components are now called Windows Data
Access Components or Windows DAC or WDAC. References to MDAC in this chapter
also apply to the Windows DAC.

Provider Choices

A provider is software used for accessing various data stores in a consistent manner
conforming to a specification, such as OLE DB. A provider may contain an API. Clients
that use providers are known as consumers. SMSS and SQLCMD, for example, are
consumers of the SNAC OLE DB provider.

You can choose from the following providers:

. SQL Native Client OLE DB provider—This is the latest OLE DB provider, and it is
built into SNAC; it is also known as SQLNCLI. COM applications might want to
switch to this provider to access the latest functionality; doing so also provides
access to SQL Server 7 and 2000 databases.

. .NET Framework data provider for SQL Server—This data provider is built in to
the System.Data.SqlClient namespace in the .NET Framework. Managed code
applications should use it to access the latest SQL Server 2008 functionality from
.NET 3.5 applications. .NET 1.0, 1.1, and 2.0 applications do not have access to all
the latest SQL Server 2008 functionality through this provider.

. Microsoft OLE DB provider for SQL Server—This OLE DB provider, known as
SQLOLEDB, is specialized for accessing SQL Server data and is distributed with MDAC.
COM applications may continue to use it to access SQL Server 2008, or they can
switch to SQLNCLI for the latest functionality.

. Microsoft OLE DB provider for ODBC—This deprecated OLE DB provider, known
as MSDASQL, is distributed with MDAC. ADO applications can continue to use it to
access SQL Server 2008, but SQL Server does not support the latest SNAC-specific
OLE DB functionality.

Microsoft has also made available a few implementation-specific OLE DB providers, such
as the OLE DB provider for DB2, a COM component for integrating IBM DB2 and SQL
Server 2008 data.

 Download from www.wowebook.com

ptg

281Client Data Access Technologies
1

0

Driver Choices

A driver in this context can be defined as software that conforms to a standard such as
Open Database Connectivity (ODBC) and provides an API for accessing a specific type of
data store. osql.exe is a good example of an application that uses an ODBC driver (the
SNAC driver).

These are the available drivers:

. SQL Native Client ODBC driver—This is the latest ODBC driver, and it is built
into SNAC. COM applications might want to switch to this driver to access the latest
functionality.

. Microsoft ODBC driver for SQL Server—This is the ODBC driver distributed with
MDAC for accessing SQL Server databases. COM applications can continue to use it
to access SQL Server 2008, or they can switch to the SNAC ODBC driver for the
latest functionality. This driver also provides access to SQL Server 7, 2000, and 2005
databases.

. Java Database Connectivity (JDBC) driver—The JDBC driver was built
specifically for accessing SQL Server data from Java code.

CAUTION

Although it is still possible to connect to SQL Server 2008 by using DB-library and
Embedded SQL, Microsoft has deprecated them both, and they will not be supported in
future editions.

Connecting Using the Various Providers and Drivers

Now that you know what your options are in terms of providers and drivers, the following
sections detail them one by one, with a special focus on putting the features in SQL Server
2008 to work.

Using SNAC
SNAC is a net-library that contains both the latest OLE DB provider and ODBC driver for
using the rich features in SQL Server 2008 databases. It is compatible for accessing SQL
Server 7, 2000, and 2005 databases as well.

The code for SNAC is contained in the single dynamic link library sqlncli10.dll, and it
serves as provider, driver, and API for applications that call its underlying COM functions
from unmanaged code (that is, from C or C++).

The bottom line with SNAC is that if you’re building applications that need to exploit the
latest features of SQL Server 2008, you need to use its APIs. If you don’t, your application
will continue to work without SNAC, but those new features will not be available.

 Download from www.wowebook.com

ptg

282 CHAPTER 10 Client Installation and Configuration

FIGURE 10.9 Using the Data Sources (ODBC) tool to configure MARS with a SNAC ODBC DSN.

NOTE

A large number of connection keywords are available for use with SNAC connections. A
few of them are illustrated in the examples that follow, but for a complete reference,
see the Books Online topic “Using Connection String Keywords with SQL Native Client.”

Using OLE DB with SNAC Applications that call the COM APIs for OLE DB need to have
the connection provider value changed from SQLOLEDB to SQLNCLI10. You also need to use
the SNAC header file, as in the following example:

include “sqlncli.h”;

sqlncli.h contains the latest function prototypes and other definitions for use with
SNAC. This file is named the same as it was in SQL Server 2005, but it is installed in a
different location.

NOTE

The SNAC OLE DB provider is OLE DB version 2.0 compliant.

Using ODBC with SNAC To connect to SQL Server 2008 using ODBC, you use a connec-
tion string or a DSN that is accessible to the client application at runtime. The ODBC
driver used with SQL Server 2000 (simply called SQL Server) can still be used but is not
the best option for SQL Server 2005 or 2008. To get the latest SNAC functionality, you
must use the driver called SQL Native Client 10.0 (for example, DRIVER={SQL Native
Client 10.0}).

To create a SNAC ODBC DSN, you run the Data Sources (ODBC) applet found in your
operating system’s administrative tools. You create a system, file, or user DSN, and you
need to be sure to select the SQL Server Native Client 10.0 driver on the Create New Data
Source screen that appears. On this screen, you click the Advanced button to enter any
SNAC-specific connection string keyword-value pairs, as shown in Figure 10.9.

 Download from www.wowebook.com

ptg

283Client Data Access Technologies
1

0

You finish the wizard by entering the configuration data as you normally would, and you
can use you new DSN just as you would any other. For more information on building
COM applications that utilize SNAC, see the Books Online topic “Creating a SQL Native
Client ODBC Driver Application.”

Using ADO with SNAC Of course, the first recommendation is that if you’re still using
ADO, you should switch to ADO.NET if you can. If that isn’t feasible, you can still access
SQL Server 2008 from your ADO applications. But you should do so only if you need the
new features; in this case, you need to start using the SNAC OLE DB provider in your code.
To do so, you first install SNAC, and then you update your connection strings (or DSNs) to
use the new SQLNCLI value for the Provider connection string keyword. Then you set the
DataTypeCompatibility keyword to 80. Here’s an example (in Visual Basic 6 code):

Dim MyConnection As New ADODB.Connection

Dim MyFirstOpenRecordset As New ADODB.Recordset

Dim MySecondOpenRecordset As New ADODB.Recordset

Dim ConnString As String

Dim SelectResultsCount As Integer

Connstring =

“Provider=SQLNCLI; DataTypeCompatibility=80; Database=MyAppsDB;” & _

“Server=.\SQLEXPRESS; AttachDBFileName=c:\MyDBs\MyAppsDB.mdf;” & _

“MARS Connection=true; Integrated Security=SSPI;”

MyConnection.ConnectionString = ConnString

MyConnection.Open

‘ Using 2 open recordsets on one connection puts MARS to work:

Set MyFirstOpenRecordset =

MyConnection.Execute(

“SELECT TOP 10 * FROM MyTable”,

SelectResultsCount,

adCmdText

)

Set MySecondOpenRecordset =

MyConnection.Execute(“SELECT TOP 10 * FROM MySecondTable”, _

SelectResultsCount, adCmdText)

‘ and so on...

Note the use of the AttachDBFileName connection string keyword, which instructs SQL
Server 2008 to attach the specified Microsoft data file (MyAppsDB.mdf).

Using the .NET Framework Data Provider for SQL Server
.NET applications that use the System.Data.SqlClient namespace rely on the .NET
Framework data provider and ADO.NET. To use this provider, you simply add the follow-
ing statement to your C# code file:

using System.Data.SqlClient;

 Download from www.wowebook.com

ptg

284 CHAPTER 10 Client Installation and Configuration

For VB .NET, you use this:

Imports System.Data.SqlClient

And for JScript .NET, you use this:

import System.Data.SqlClient;

Note that the .NET provider supports a variety of connection string styles, including
ODBC, OLE DB, and OLE DB/SNAC, and you can mix and match some of their respective
connection string keywords. For example, Database and Initial Catalog mean the same
thing to ADO.NET, and so do Server and Data Source. But don’t let this fool you: Under
the covers, only the .NET provider is always in use. (This is probably why changing the
value passed to the Provider keyword seems to have no noticeable effect.)

Applications built on .NET Framework 1.0 and 1.1 can access SQL Server 2008 databases
without issue. The only caveat is that those earlier versions of ADO.NET can’t make use of
certain SQL Server 2008 features, such as asynchronous command execution, cache
synchronization, bulk copy, and the new data types. (However, implicit conversions such
as from varchar to xml and from UDTs to varbinary allow their use as T-SQL input from
.NET Framework 1.1 applications.) ADO.NET 2.0 applications, however, have access to the
full gamut of new functionality in SQL Server 2008.

The following is an example of two connection strings (in different styles) that both turn
on the MARS feature for ADO.NET 2.0 applications:

The following is in ODBC style:

Driver={SQL Native Client 10.0}; Database=AdventureWorks2008;

Server=MyServer/SQL08;

Encrypt=yes; Trusted_Connection=yes; MARS_Connection=yes

The following is in OLE DB style:

Provider=SQLNCLI10; Database=AdventureWorks2008; Server=MyServer/SQL08;

Encrypt=yes; Trusted_Connection=yes; MultipleActiveResultSets=true

Notice the use of the keywords MARS_Connection (MultipleActiveResultSets also works)
and Encrypt (which requests connection encryption from the server).

The SQLCLR Context Connection When you need to connect to SQL Server 2008 from
within a managed stored procedure, function, or trigger (known as SQLCLR code), which is
possible only with .NET 2.0 or greater, you use a special type of connection, known as a
context connection. This feature prevents you from having to open a new connection
because the code itself is already running within the context of an open connection.

The connection string for context connections is extremely easy to use (”context connec-
tion=true”), as the C# example in Listing 10.1 illustrates.

 Download from www.wowebook.com

ptg

285Client Data Access Technologies
1

0

LISTING 10.1 Using the Context Connection from a Managed Stored Procedure

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

public partial class StoredProcedures

{

[Microsoft.SqlServer.Server.SqlProcedure]

public static void ContextConnectionTest()

{

using (SqlConnection Context =

new SqlConnection(“context connection=true”))

{

using (SqlCommand TestCommand =

new SqlCommand(“SELECT TOP 10 * FROM Person.Person”, Context))

{

using (SqlDataAdapter Adapter =

new SqlDataAdapter(TestCommand))

{

using (DataSet MyData = new DataSet())

{

Adapter.Fill(MyData);

}

}

}

}

}

}

For more information on building SQLCLR client libraries, see Chapter 43, “SQLCLR:
Developing SQL Server Objects in .NET”

Using MDAC
MDAC contains the OLE DB provider for SQL Server (SQLOLEDB) and the ODBC driver for
SQL Server. MDAC is officially part of the operating system, and, as mentioned earlier,
MDAC and SNAC are distributed and developed on separate tracks: MDAC with the oper-
ating system and SNAC with SQL Server. They do interrelate, however, in that applica-
tions that use SNAC can make use of the core services provided by MDAC, including
support for connection pooling, client-side cursors, ADO support, and memory manage-
ment. As mentioned earlier, to make use of the latest SQL Server 2008 functionality, you
need to use SNAC.

 Download from www.wowebook.com

ptg

286 CHAPTER 10 Client Installation and Configuration

TABLE 10.2 Implicit Type Conversions for SQL Server 2008 Data Types

SQL Server 2008 Data Type Converted to Data Type

varbinary(MAX) Image

xml ntext

nvarchar(MAX) ntext

varchar(MAX) text

UDTs varbinary

TIP

If, at any time, you want to discover which version of MDAC is installed on a machine,
you can simply check the value of the following Registry key (using regedit.exe or
from code):

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\DataAccess\Version

Note also that the planned MDAC version 10.0 release has been killed and super-
seded by SNAC.

If you choose to upgrade from MDAC to SNAC, it’s important to note some key differ-
ences between the two that could affect your applications:

. Return values from SQL Server 2008 to MDAC applications are implicitly type
converted, as shown in Table 10.2.

. Warning and error messages and message handling differ between MDAC and SNAC.

. SNAC requires that T-SQL parameters begin with the @ character; MDAC does not.

. SNAC, unlike MDAC, is not compatible with Visual Studio Analyzer or PerfMon.

For further details, see the Books Online topic “Updating an Application to SQL Native
Client from MDAC.”

Using ODBC with MDAC You can configure an ODBC connection by using a connection
string or DSN that specifies the Microsoft ODBC driver for SQL Server.

For connection strings, you use the keyword-value pair Provider={SQL Server}.

To use a DSN, you run the Data Sources (ODBC) applet, as mentioned earlier. When
choosing a driver, you select the one simply named SQL Server.

Using OLE DB with MDAC You can access SQL Server 2008 databases by using the
Microsoft OLE DB provider for SQL Server (SQLOLEDB). In connection strings or property
values, you use the Provider keyword and the value SQLOLEDB.

 Download from www.wowebook.com

ptg

287Client Data Access Technologies
1

0

NOTE

Unlike with SNAC’s OLE DB provider, with SQLOLEDB you can access both SQL Server
data and data from non–SQL Server data sources. Also, SNAC is not dependent on any
particular version of MDAC because it expects that a compatible MDAC version will be
present on the operating system, as enforced by its own installation requirements.

Using JDBC
Microsoft released a freely downloadable, JDBC 4.0-compliant, Type 4 driver for use with
SQL Server 2008. It can be used from all types of Java programs and servers via the J2EE
connection API.

The following is the basic syntax for a JDBC connection string:

jdbc:sqlserver://ServerName\InstanceName:port;property=value[;property=value]

For complete details on using JDBC, check out Microsoft’s JDBC product documentation
at http://msdn.microsoft.com/en-us/library/ee229547(v=SQL.10).aspx. You might also find
the newsgroup microsoft.public.sqlserver.jdbcdriver helpful.

General Networking Considerations and Troubleshooting

This section provides guidelines for solving some common connectivity issues. You can
perform the following steps as a first line of defense when your connections fail:

1. Check whether the server is configured (via SSCM, as detailed earlier in this chapter,
in the section “Server Network Protocols”) to accept remote connections.

2. Ensure that the SQL Browser service is started.

3. Determine whether clients are specifying the correct port (for using fixed ports with
named instances) in the server alias or connection string.

4. Check whether the client’s network protocols are enabled and configured to correctly
handshake with those of the server. They should use SSCM on both sides, as
explained earlier in this chapter, in the section “Client Configuration Using SSCM.”

5. Be sure you have permission to connect on the server’s endpoints.

6. When using encryption, be sure the server and client certificates match (that is,
check their Common Name (CN) and any other relevant attributes) and are installed
and configured correctly on both sides. (See the section “Connection Encryption,”
earlier in this chapter.)

7. Make certain that your firewalls are configured to permit the required network
traffic. (See the following section, “Firewall Considerations.”)

8. Check to see whether your users have permission to log in to the server and access
the specified database.

9. Make sure that your clients’ choices of providers support the SQL Server 2008
features they are trying to use.

10. Make sure the provider, driver, DSN, server alias, or other connection mechanism is
still valid and hasn’t been altered or removed from the system.

 Download from www.wowebook.com

http://msdn.microsoft.com/en-us/library/ee229547(v=SQL.10).aspx

ptg

288 CHAPTER 10 Client Installation and Configuration

FIGURE 10.10 Creating port exceptions for SQL Server 2008, using Windows Firewall.

11. Network administrators are no longer added to the SQL Server sysadmin role by
default. If the user trying to connect is a network administrator, he or she must be
granted explicit permission with SQL Server 2008. See the topic named “Database
Engine Configuration - Account Provisioning” in Books Online for more information.

Firewall Considerations
For clients to successfully connect through a firewall, it must be configured to allow the
following:

. Bidirectional traffic on UDP Port 1434—This is required only for communica-
tions to and from the SQL Browser service; when SQL Browser is not in use, you can
close this port.

. Bidirectional traffic on any TCP port used by SQL Server—Be sure to open port
1433 for default instances and also open any fixed ports assigned to your named or
default instances. (TCP high port numbers must be opened only when dynamic ports
are used by named instances. Using dynamic port numbers for named instances is
not recommended.) You can determine the ports currently in use via SSCM.

When using Windows Firewall, you can easily open these ports. To do this, you run
Windows Firewall from the Control Panel, and on the main screen that appears, you click
the Exceptions tab. Then you click the Add Port button and enter the required names
(either SQL Server or SQL Browser, for example) and port numbers, one at a time, on the
Add a Port screen that appears (see Figure 10.10).

Tools for Testing Connections
It’s always helpful to have a few tools on your belt for testing client connectivity.

SSCM is a tool that is usually easily accessible, and you can use its Connect to Server
dialog to select a protocol to test (as described earlier in this chapter, in the section “Client
Data Access Technologies”). You can also use SQLCMD with the -S parameter to connect to a
particular server. This is the syntax:

SQLCMD -Sprotocol_prefix:ServerName,PortNumber -E

 Download from www.wowebook.com

ptg

289Summary
1

0

In this syntax, protocol_prefix takes one of the following values:

. np (for named pipes)

. tcp (for TCP/IP)

. lpc (for shared memory)

. via (for VIA)

In the following example, -E indicates the use of a trusted connection:

SQLCMD –Stcp:.\SQL08,1435 -E

When all else fails, you can use telnet to test the openness of a port on the firewall.
Here’s an example:

telnet IP_Address Port_Number

Summary
This chapter covers a lot of ground regarding client-side (and even a bit of server-side)
communication with SQL Server 2008. Some of the sections are admittedly dense enough
to bear rereading, and you probably have questions about your specific setup. You can
always refer to the sections presented in this chapter to pick up tips on how to best
configure and troubleshoot the varying environments you may encounter. And you can
(and should) use the extremely helpful Usenet groups that are devoted to the subject (for
example, microsoft.public.sqlserver.clients or microsoft.public.sqlserver.programming).

Now that your client configuration is complete, you can move on to Chapter 11, “Security
and User Administration,” to learn how to securely administer the Database Engine.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 11

Security and User
Administration

IN THIS CHAPTER

. What’s New in Security and
User Administration

. An Overview of SQL Server
Security

. Authentication Methods

. Managing Principals

. Managing Securables

. Managing Permissions

. Managing SQL Server Logins

. Managing SQL Server Users

. Managing Database Roles

. Managing SQL Server
Permissions

. The Execution Context

Securing your database environment and providing the
right type of access to your users are critical administrative
tasks. This chapter examines the security features in SQL
Server 2008 that relate to user administration and the
objects that users can access.

What’s New in Security and User
Administration
Several new security enhancements have been added to SQL
Server 2008 to help make it more secure than any prior
version. These enhancements build upon the myriad of
security-related changes made in SQL Server 2005 and
follow the policy of “least privileges” that Microsoft has
been pushing. Several of these new changes follow:

. BUILTIN\Administrators—This local Windows
group is no longer included in the SQL Server
sysadmin fixed server role. In prior versions, the
BUILTIN\Administrators account was part of this role,
which meant that network administrators could
access the SQL Server instance even though they were
not given explicit permission. You still have the
option of manually adding this group to the sysadmin
role, but it is not installed this way by default.

. Surface Area Configuration (SAC)—This GUI tool,
which was introduced in SQL Server 2005, has been
removed in SQL Server 2008. It was used to enable or
disable SQL Server features and options, but it has
been replaced in part by the new Policy-Based

 Download from www.wowebook.com

ptg

292 CHAPTER 11 Security and User Administration

TABLE 11.1 SQL Server 2008 Security Components

Principals Permissions Securables

Windows: GRANT/REVOKE/DENY Server Scope

Groups CREATE Login

Domain Login ALTER Endpoint

Local Login DROP Database

SQL Server: CONTROL Database Scope

SQL Login CONNECT User

Server Role SELECT Role

Management feature and in part by an enhanced SQL Server Configuration Manager.
Right-click on the server instance in Object Explorer and choose Facets. You get a
quick look at the number of settings available via facets that are part of Policy-Based
Management. If you select Server Configuration from the drop-down, you see
features such as CLR Integration (that is, CLRIntegrationEnabled) that you could
have set in the past with the Surface Area Configuration tool.

. Local Groups Removed from sysadmin—Several local network groups that were
added to the sysadmin server role in past versions are no longer added to this role.
These accounts include SQLServerMSSQLUser$ COMPUTERNAME $ INSTANCENAME and
SQLServerSQLAgentUser$ COMPUTERNAME $ INSTANCENAME. Only the SQL Server
Service and SQL Server Agent Service accounts are added to the sysadmin role.

An Overview of SQL Server Security
The SQL Server 2008 security model is the best place to start to understand SQL Server
security. The model is based on three categories that separate the basic elements of security:

. Principals—Principals are the entities that request security to SQL Server resources.
They include Windows users, SQL Server users, and database users.

. Securables—Securables are the SQL Server resources to which permissions can be
granted.

. Permissions—Permissions link principals with securables.

Table 11.1 shows the security components contained in each tier of the SQL Server 2008
security model. The columns are ordered from left to right, based on the way security is
established.

 Download from www.wowebook.com

ptg

293An Overview of SQL Server Security
1

1

TABLE 11.1 SQL Server 2008 Security Components

Principals Permissions Securables

Database: EXECUTE Application role

User UPDATE Assembly

Database Role DELETE Message Type

Application Role INSERT Route

REFERENCES Service

RECEIVE Remote Service

Binding

VIEW DEFINITION Fulltext Catalog

TAKE OWNERSHIP Certificate

CONTROL Asymmetric Key

VIEW CHANGE TRACKING Symmetric Key

Contract

Schema

Schema Scope

Table

View

Function

Procedure

Queue

Type

Synonym

Aggregate

XML Schema

Collection

The implementation of the security model is relatively straightforward: you choose the
principal from Column 1, the desired permission from Column 2, and the securable to
assign the permission from Column 3. For example, a SQL LOGIN (the principal) needs to
CREATE (the permission) databases (the securable). Together, these three elements represent
a complete security assignment.

 Download from www.wowebook.com

ptg

294 CHAPTER 11 Security and User Administration

Some complexity has been introduced, based on the hierarchical nature of some of the
security components. Security can be established on these hierarchical components, which
in turn cascades the security to the underlying components. In addition, not all the
permission components apply to every securable. Many of the securables have a select
number of permissions that apply to them; conversely, many permissions apply only to a
select number of securables. For example, SELECT permission is applicable to securables
such as tables and views but would not be appropriate for stored procedures.

The following sections discuss the tiers of the security model and their underlying
components.

Authentication Methods
The first level of security encountered when accessing SQL Server is known as
authentication. The authentication process performs the validation needed to allow a user
or client machine to connect to SQL Server. This connection can be granted via a
Windows login or SQL Server login.

Windows Authentication Mode

Windows Authentication mode validates the account name and password, using informa-
tion stored in the Windows operating system. A Windows account or group must be estab-
lished first, and then security can be established for that account in SQL Server. This mode
has the advantage of providing a single login account and the capability to leverage
domain security features, such as password length and expiration, account locking,
encryption, and auditing. Microsoft recommends this approach.

Mixed Authentication Mode

Mixed authentication allows for both Windows authentication and SQL Server authentica-
tion. SQL Server authentication is based on a login that is created in SQL Server and lives
in SQL Server only. No Windows account is involved with SQL Server authentication. The
account and password are established and maintained in SQL Server. SQL Server logins
can be created with stronger password enforcement that help better protect the login.
This topic is discussed in more detail in the section “Managing SQL Server Logins,” later
in this chapter.

SQL Server authentication is useful in environments in which a Windows domain
controller does not control network access. It can also be useful for Web applications or
legacy applications, where it may be cumbersome to establish a Windows user account for
every connection to the database server.

 Download from www.wowebook.com

ptg

295Managing Principals
1

1

Setting the Authentication Mode

You can select the authentication mode when you install SQL Server, and you can change
it after the installation. To change the authentication mode after installation, you right-
click the server node in the Object Explorer and choose the Properties option. When the
Server Properties dialog appears, you select the Security page (see Figure 11.1). The
Security page allows you to specify Windows Authentication mode or SQL Server and
Windows Authentication mode (that is, mixed authentication). Any changes to the
authentication mode require a restart of SQL Server to make the change effective.

FIGURE 11.1 Changing the authentication mode.

Managing Principals
Principals are the entities that can request permission to SQL Server resources. They are
made up of groups, individuals, or processes. Each principal has its own unique identifier
on the server and is scoped at the Windows, server, or database level. The principals at
the Windows level are Windows users or groups. The principals at the SQL Server level
include SQL Server logins and server roles. The principals scoped at the database level
include database users, data roles, and application roles.

 Download from www.wowebook.com

ptg

296

Logins

Every principal granted security to SQL Server must have an associated login. The login
provides access to SQL Server and can be associated with principals scoped at the
Windows and server levels. These logins can be associated with Windows accounts,
Windows groups, or SQL Server logins.

Logins are stored in the master database and can be granted permission to resources
scoped at the server level. Logins provide the initial permission needed to access a SQL
Server instance and allow you to grant access to the related databases. Permissions to
specific database resources must be granted via a database user. The important point to
remember is that logins and users are directly related to each other but are different enti-
ties. It is possible to create a new login without creating an associated database user, but a
new database user must have an associated login.

To better understand logins, you can look at the sys.server_principals catalog view.
This view contains a row for every server-level principal, including each server login. The
following example selects from this view and displays the results:

select left(name,25) name, type, type_desc

from sys.server_principals AS log

WHERE (log.type in (‘U’, ‘G’, ‘S’, ‘R’))

order by 3,1

/*Results from previous query

name type type_desc

------------------------- ---- ------------

bulkadmin R SERVER_ROLE

dbcreator R SERVER_ROLE

diskadmin R SERVER_ROLE

processadmin R SERVER_ROLE

public R SERVER_ROLE

securityadmin R SERVER_ROLE

serveradmin R SERVER_ROLE

setupadmin R SERVER_ROLE

sysadmin R SERVER_ROLE

sa S SQL_LOGIN

DBSVRXP\LocalUser1 U WINDOWS_LOGIN

HOME\Administrator U WINDOWS_LOGIN

NT AUTHORITY\SYSTEM U WINDOWS_LOGIN

*/

The results from the sys.server_principals selection include the name of the server
principal as well as the type of principal. The rows that have a type_desc value of
SQL_LOGIN, WINDOWS_GROUP, or WINDOWS_LOGIN are all logins established on the SQL Server
instance. A login with a type_desc of SQL_LOGIN represents a login created with SQL
Server authentication. Logins with a type_desc of WINDOWS_GROUP or WINDOWS_LOGIN are

CHAPTER 11 Security and User Administration

 Download from www.wowebook.com

ptg

297Managing Principals
1

1

Windows groups or individual Windows users granted logins to SQL Server. The other
entries with type_desc of SERVER_ROLE are fixed server roles discussed later in this chapter.

The logins established for Windows logins or groups can be part of the local domain of
the SQL Server machine, or they can be part of another domain. In the previous example,
DBSVRXP\LocalUser1 is a login established for a local user on a database server named
DBSVRXP. The HOME\Administrator login is also a Windows login, but it is part of a
network domain named HOME. Both logins are preceded by the domain that they are part
of and are displayed this way in SQL Server.

NOTE

In SQL Server 2000, logins were stored in the syslogins system table in the master
database. The syslogins table is still available for selection as a view, but it is
available only for backward compatibility. The catalog views (including
sys.server_principals) are recommended for use instead.

You might have noticed in the earlier sys.server_principals output that two other
logins are listed that we have not discussed yet. These logins (SA and NT
AUTHORITY\SYSTEM) are system accounts installed by default at installation time.
Each of these accounts serves a special purpose in SQL Server.

The SA account is a SQL_LOGIN assigned to the sysadmin fixed server role. The SA account
and members of the sysadmin fixed server role have permission to perform any activity
within SQL Server. The SA account cannot be removed, and it can always be used to gain
access to SQL Server. The SA account should always have a strong password to prevent
malicious attacks, and it should be used only by database administrators. Users or logins
requiring full administrative privileges can be assigned a separate SQL Server login that is
assigned to the sysadmin fixed server role. This improves the audit trail and limits the
amount of use on the SA account.

The NT AUTHORITY\SYSTEM login is an account related to the local system account under
which SQL Server services can run. It is also added as a member of the sysadmin fixed
server role and has full administrative privileges in SQL Server. This account can also be
removed if the SQL Server services are not running with the local system account. This
should be done with caution, however, because it can affect applications such as
Reporting Services.

One other special account was not listed, but it would have been in SQL Server 2005. The
BUILTIN\Administrators login is a Windows group that corresponds to the local adminis-
trators group for the machine that SQL Server is running on. The BUILTIN\Administrators
group is no longer added by default as a SQL Server login during installation. In SQL
Server 2005, it was also added as a member of the sysadmin fixed server role, but this is no
longer the case. This change improves the security of SQL Server out of the box by limit-
ing the number of people that have access (by default) to the SQL Server instance.

 Download from www.wowebook.com

ptg

298

NOTE

The BUILTIN\Administrators group can be manually added in SQL Server 2008 if
desired. This allows domain administrators and anyone else who has been added to
the local administrators group to have sysadmin privileges. Adding this group is not
recommended but can be done if you want to set network privileges that are similar to
past versions of SQL Server.

SQL Server Security: Users

Database users are principals scoped at the database level. Database users establish a link
between logins (which are stored at the server level) and users (which are stored at the
database level). Database users are required to use the database and are also required to
access any object stored in the database.

Generally, the login name and database username are the same, but this is not a require-
ment. If desired, you could add a login named Chris and assign it to a user named Kayla.
This type of naming convention would obviously cause some confusion and is not recom-
mended, but SQL Server has the flexibility to allow you to do it. In addition, a user can be
associated with a single person or a group of people. This capability is tied to the fact that
a login can be related to a single account or group. For example, a login named training
could be created and tied to a Windows group (that is, domain\training) that contains all
the training personnel. This login could then be tied to a single database user. That single
database user would control database access for all the users in the Windows group.

TIP

The relationship between logins and users can be broken when databases are moved
or copied between servers. The reason is that a database user contains a reference to
the associated login. Logins are referenced based on a unique identifier called a secu-
rity identifier (SID). When a database is copied from one server to another, the users in
that database contain references to logins that may not exist on the destination server
or that may have different SIDs.

You can use the sp_change_users_login system stored procedure to identify and fix
these situations. You can run the following command against a newly restored or
attached database to check for orphaned users:

EXEC sp_change_users_login ‘Report’

If orphaned users are shown in the results, you can rerun the procedure and fix the
problems. For example, if the results indicate that a user named Chris is orphaned,
you can run the following command to add a new login named Chris and tie the
orphaned database user to this newly created login:

EXEC sp_change_users_login ‘Auto_Fix’, ‘Chris’, NULL, ‘pw’

Refer to SQL Server Books Online for full documentation on the
sp_change_users_login system stored procedure.

CHAPTER 11 Security and User Administration

 Download from www.wowebook.com

ptg

299Managing Principals
1

1

You can use the sys.database_principals catalog view to list all the users in a given data-
base. The following example shows a SELECT statement using this view and the results
from the SELECT:

SELECT

left(u.name,25) AS [Name],

type,

left(type_desc,15) as type_desc

FROM

sys.database_principals AS u

WHERE

(u.type in (‘U’, ‘S’, ‘G’))

ORDER BY 1

/*Results from previous query

Name type type_desc

------------------------- ---- ---------------

dbo S SQL_USER

DBSVRXP\LocalUser1 U WINDOWS_USER

guest S SQL_USER

INFORMATION_SCHEMA S SQL_USER

sys S SQL_USER

*/

The SELECT statement in this example returns five rows (that is, five users). This SELECT
was run against the AdventureWorks2008 database, and the only user explicitly added to
the database was the Windows user DBSVRXP\LocalUser1. The other users are special users
who are added by default to each database. These users do not have corresponding server
logins named the same. These users are discussed in the following sections.

The dbo User
The dbo user is the database owner and cannot be deleted from the database. Members of
the sysadmin server role are mapped to the dbo user in each database, which allows them
to administer all databases. Objects owned by dbo that are part of the dbo schema can be
referenced by the object name alone. When an object is referenced without a schema
name, SQL Server first looks for the object in the default schema for the user that is
connected. If the object is not in the user’s default schema, the object is retrieved from the
dbo schema. Users can have a default schema that is set to dbo.

Schemas and their relationship to users are discussed in more detail in the section
“User/Schema Separation,” later in this chapter.

The guest User
The guest user is created by default in each database when the database is created. This
account allows users that do not have a user account in the database to access the data-
base. By default, the guest user does not have permission to connect to the database. To
allow logins without a specific user account to connect to the database, you need to grant

 Download from www.wowebook.com

ptg

300

CONNECT permission to the guest account. You can run the following command in the
target database to grant the CONNECT permission:

GRANT CONNECT TO GUEST

When the guest account is granted CONNECT permission, any login can use the database.
This opens a possible security hole. The default permissions for the guest account are
limited by design. You can change the permissions for the guest account, and all logins
that use it will be granted those permissions. Generally, you should create new database
users and grant permissions to these users instead of using the guest account.

If you want to lock down the guest account, you can. You cannot drop the guest user,
but you can disable it by revoking its CONNECT permission. The following example demon-
strates how to revoke the CONNECT permission for the guest user:

REVOKE CONNECT FROM guest

If you decide to grant additional access to the guest account, you should do so with
caution. The guest account can be used as a means for attacking your database.

The INFORMATION_SCHEMA User
The INFORMATION_SCHEMA user owns all the information schema views installed in each
database. These views provide an internal view of the SQL Server metadata that is inde-
pendent of the underlying system tables. Some examples of these views include
INFORMATION_SCHEMA.COLUMNS and INFORMATION_SCHEMA.CHECK_CONSTRAINTS. The
INFORMATION_SCHEMA user cannot be dropped from the database.

The sys User
The sys account gives users access to system objects such as system tables, system views,
extended stored procedures, and other objects that are part of the system catalog. The sys
user owns these objects. Like the INFORMATION_SCHEMA user, it cannot be dropped from the
database.

TIP

If you are interested in viewing the specific objects owned by any of the special users
discussed in these sections, you can use a SELECT statement like the following:

--Find all objects owned by a given user

SELECT name, object_id, schema_id, type_desc

FROM sys.all_objects

WHERE OBJECTPROPERTYEX(object_id, N’OwnerId’) = USER_ID(N’sys’)

ORDER BY 1

The SELECT in this example shows all the objects owned by the sys user. To change
the user, you simply change the parameter of the USER_ID function in the SELECT
statement from ’sys’ to whatever user you want.

CHAPTER 11 Security and User Administration

 Download from www.wowebook.com

ptg

301Managing Principals
1

1

User/Schema Separation

The changes to schema security introduced in SQL Server 2005 have been carried forward
to SQL Server 2008. Versions of SQL Server before SQL Server 2005 had schemas, but they
did not conform to the American National Standards Institute (ANSI) definition of
schemas. ANSI defines a schema as a collection of database objects that one user owns and
that forms a single namespace. A single namespace is one in which each object name is
unique and there are no duplicates. So, for example, if you have two tables named
customer, they cannot exist in the same namespace.

To fully understand the user/schema changes in SQL Server 2008, you need to understand
how schemas were used in prior versions of SQL Server. In SQL Server 7.0 and 2000, a
default schema was created for each user, and it had the same name as the user. For
example, if you created a new user named Rachael, a corresponding schema named
Rachael would be created as well. There was no option in those releases to change the
default schema for a user, and each user was forever bound to a schema with the same
name. When the user created new objects, the objects were created by default in that
user’s schema, which is always the name of the user. So, if Rachael created an object
named customer, it was placed in the Rachael schema, and the object was owned by
Rachael. When Rachael wanted to reference the object, she could use a three-part name
with the format database.owner.object. If a linked server was used, according to the SQL
Server 2000 documentation, the object in the linked server could be referenced with the
four-part name linked_server.catalog.schema.object. (for example
myserver.AdventureWorks2008.Rachael.Customer). You can see that the schema name is
used prior to the object name when the object is outside the local server. The bottom line
is that the schema and owner were basically the same thing in SQL Server 7.0 and 2000.

With SQL Server 2005 and SQL Server 2008, the owner and schema have been separated.
This is made possible in part by allowing a database user to have a default schema differ-
ent from the name of the user. For example, our sample user Rachael could be assigned
the default schema Sales. When Rachael creates objects in the database, her objects are
created, by default, in the Sales schema. If Rachael wants to reference an object that she
created, she can reference the table in a number of different ways. She can use the full
four-part name (server.database.schema.object) that includes the Sales schema name to
reference the object via a linked server. She can simply refer to the object with the object
name alone, and the Sales schema will be searched first for the object. She can also use a
three-part name or a two part name. If the object name is not found in the Sales schema,

 Download from www.wowebook.com

ptg

302

the dbo schema will be searched. This concept is illustrated in the following sample
SELECT statements that all retrieve the same rows from the Region table that was created
by Rachael in the Adventureworks2008 database.

select * from region

select * from sales.region

select * from AdventureWorks2008.Sales.Region

The important point to remember is that owners and schemas are different from one
another in SQL Server 2008. For example, you can have a customer table created in the
Sales schema, and that table can be owned by a user named Chris. The object should be
referenced with the schema name qualifier, such as Sales.Customer, not Chris.Customer.
This has the distinct advantage of allowing object ownership to change without affecting
the code that references the object. The reason is that database code that references an
object uses the schema name instead of the object owner.

The schema enhancements in SQL Server 2008 go well beyond the user/schema separa-
tion. Schemas are an integral part of all the database objects that exist in SQL Server. As
we delve into more details about SQL Server security and the assignment of permissions,
you will see that schemas play a very important part.

Roles

Roles provide a consistent yet flexible model for security administration. Roles are
similar to the groups used in administering networks. Permissions are applied to a role,
and then members are added to the role. Any member of the role has all the permissions
that the role has.

The use of roles simplifies the administrative work related to security. Roles can be
created based on job function, application, or any other logical group of users. With
roles, you do not have to apply security to each individual user. Any required changes to
permissions for the role can be made to the role security, and the members of the role
receive those changes.

SQL Server has the following three types of roles:

. Fixed server and fixed database roles—These roles are installed by default and
have a predefined set of permissions.

. User-defined roles—These roles are created in each database, with a custom set of
permissions for each set of users assigned to it.

. Application roles—These special roles can be used to manage database access for
an application.

These roles are discussed in the following sections.

CHAPTER 11 Security and User Administration

 Download from www.wowebook.com

ptg

303Managing Principals
1

1

Fixed Server Roles
Fixed server roles are scoped at the server level, which means that the permissions for
these roles are oriented toward server-level securables. These roles contain a variety of
fixed permissions geared toward common administrative tasks. Logins (not users) are
assigned to these roles.

The same fixed server roles available in SQL Server 2000 and SQL Server 2005 are also
available in SQL Server 2008. There is, however, one new role named public that has been
added. Server principals, by default, are granted the permissions that have been granted to
the public role. There are a limited number of permissions that are initially granted to the
public role, but you can change the permissions if you like. A complete list of all the
fixed server roles and their related permissions is shown in Table 11.2.

A single login can be assigned to one or more of these fixed server roles. When multiple
roles are assigned, the combination of all the permissions is allocated to the login.

TABLE 11.2 Fixed Server Roles

Role Permission

bulkadmin Allowed to run the BULK INSERT statement.

dbcreator Allowed to use CREATE, ALTER, DROP, and RESTORE on any database.

diskadmin Allowed to manage disk files that are used by SQL Server.

processadmin Allowed to terminate SQL Server processes.

public Assigned to all logins. Permissions granted to this role are assigned to every
login by default.

securityadmin Allowed to use GRANT, DENY, and REVOKE permissions for logins at the server
and database levels. Members of this role can reset passwords for SQL
Server logins.

serveradmin Allowed to change server-wide configuration properties and shut down the
server, if needed.

setupadmin Allowed to add and remove linked servers and execute some system stored
procedures.

sysadmin Allowed to perform any activity in the server.

 Download from www.wowebook.com

ptg

304 CHAPTER 11 Security and User Administration

NOTE

Keep in mind that when a login is assigned to certain fixed server roles, they have
implied permissions that cascade to the database level. For example, if a login is
assigned to the sysadmin role, that login can perform any activity on the server, and it
can also perform any action on any database on that server. Similarly, if a login is
added to the securityadmin role, the login can change permissions at the database
level as well as the server level.

All the fixed server roles are listed in the SQL Server Management Studio (SSMS) Object
Explorer. Figure 11.2 shows the Object Explorer with the Server Roles node expanded.
You can right-click any of the roles and select Properties to display the logins that are
currently members of the role.

Fixed Database Roles
SQL Server provides fixed roles that define a common set of permissions at the database
level. These fixed database roles are assigned to database users. The permissions defined
for the fixed database roles cannot be changed. Table 11.3 shows the fixed database roles
and their permissions.

FIGURE 11.2 Fixed server roles in Object Explorer.

 Download from www.wowebook.com

ptg

305Managing Principals
1

1

TABLE 11.3 Fixed Database Roles

Role Permission

db_accessadmin Allowed to add or remove database access for logins.

db_backupoperator Allowed to back up the database.

db_datareader Allowed to read all user table data.

db_datawriter Allowed to change the data in all user tables.

db_ddladmin Allowed to run any Data Definition Language (DDL) command against the
database. This includes commands to create, alter, and drop database
objects.

db_denydatareader Denied the right to read all user table data.

db_denydatawriter Denied the right to change the data in any of the user tables.

db_owner Allowed to perform any action on the database. Members of the
sysadmin fixed server role are mapped to this database role.

db_securityadmin Allowed to manage permissions for database users, including member-
ship in roles.

dbm_monitor Allowed to view the most recent status in the Database Mirroring
Monitor.

NOTE

You can find a more granular breakdown of permissions associated with fixed database
roles in the SQL Server Books Online documentation. Look for the subject
“Permissions of Fixed Database Roles.” The extensive table in this documentation
defines the specific permissions for each role. For example, the table shows that the
db_backupoperator role is granted the BACKUP DATABASE, BACKUP LOG, and
CHECKPOINT permissions. This gives you more insight into what the members of this
role can do. Some fixed database roles have a large number of permission defined for
them, such as db_ddladmin, which has more than 30 individual permissions. The
types of permissions and improved granularity available with SQL Server 2008 are dis-
cussed in the “Managing Permissions” section, later in this chapter.

You can also find a list of fixed database roles in the Object Explorer. Figure 11.3 shows
the fixed database roles for the AdventureWorks2008 database. The roles are found under
the Security node within each database. You can right-click a fixed database role and
select Properties to view the member users.

 Download from www.wowebook.com

ptg

306 CHAPTER 11 Security and User Administration

FIGURE 11.3 The fixed database roles in Object Explorer.

Fixed database roles and schemas are related. Figure 11.3 shows the expanded Schemas
node for the AdventureWorks2008 database. You can see that there is a corresponding
schema for each of the fixed database roles. These schemas are automatically created, and
each is owned by the related database role.

The public Role
The public role is a special database role that is like a fixed database role except that its
permissions are not fixed. The permissions for this role can be altered. Every user in a
database is automatically made a member of the public role and in turn receives any
permissions that have been granted to the public role. Database users cannot be removed
from the public role.

The public role is similar in function to the guest user that is installed by default in each
database. The difference is that the permissions granted to the guest user are used by any
login that does not have a user account in the database. In this case, the login is allowed
to enter the database via the guest account. In the case of the public role, the login has
been added as a user of the database and in turn picks up any permissions that have been
granted to the public role.

To view the permissions associated with the public role, you can use a SELECT statement
like the following:

SELECT top 5 g.name,

object_name(major_id) as ‘Object’,

 Download from www.wowebook.com

ptg

307Managing Principals
1

1

permission_name

from sys.database_permissions p

join sys.database_principals g

on p.grantee_principal_id = g.principal_id

and g.name = ‘public’

order by 1,2

/*Results from the previous select

name Object permission_name

------ -------------- ---------------

public all_columns SELECT

public all_objects SELECT

public all_parameters SELECT

public all_sql_modules SELECT

public all_views SELECT

*/

This SELECT utilizes two catalog views that contain security information. The SELECT
returns only the first five permissions for the public role, but the TOP clause can be
removed to return all the permissions.

User-Defined Roles
SQL Server enables you to create your own custom database roles. Like the fixed roles,
user-defined roles can be used to provide a common set of permissions to a group of users.
The key benefit behind using user-defined roles is that you can define your own set of
custom permissions that fit your needs. User-defined roles can have a broad range of
permissions, including the more granular set of permissions made available with SQL
Server 2008.

To demonstrate the power of a user-defined database role, let’s look at a simple example.
Let’s say that you have a group of users who need to read all the tables in a database but
should be granted access to update only one table. If you look to the fixed database roles,
you have the db_datareader and db_datawriter roles, which give you a partial solution.
You can use the db_datareader role to allow the read capability you need, but the
db_datawriter role gives write permission to all the tables—not just one.

One possible solution would be to give every user in the group membership to the
db_datareader group and assign the specific UPDATE permission to each user as well. If the
group contains hundreds of users, you can see that this would be rather tedious. Another
solution might be to create a Windows group that contains every user who needs the
permissions. You can then assign a login and database user to this group and grant the
appropriate permissions. The Windows group is a viable solution but can sometimes be
difficult to implement in a complex Windows domain.

Another approach to this challenge is to use a user-defined database role. You can create
the role in the database that contains the tables in question. After you create the role,
you can include it in the db_datareader role, and you can establish the UPDATE permis-
sion to the single table. Finally, you can assign the individual users or group of users to

 Download from www.wowebook.com

ptg

308 CHAPTER 11 Security and User Administration

the role. Any future permission changes for this set of users can be administered through
the user-defined database role. The script in Listing 11.1 steps through a process that
demonstrates and tests the addition of a database role. This is similar to the example we
just walked through. Parts of the script need to be run by an administrator, and other
parts should be run in a query editor window that is connected to the database with the
newly created testuser.

LISTING 11.1 An Example of User-Defined Database Roles

--The following statements must be run by an administrator to add

--a login and database user with no explicit permissions granted

CREATE LOGIN [TestUser] WITH PASSWORD=N’pw’,

DEFAULT_DATABASE=[master], CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF

GO

GO

USE [AdventureWorks2008]

GO

CREATE USER [TestUser] FOR LOGIN [TestUser]

go

--the following statement fails when executed by the TestUser

--which has no explicit permissions defined in the AdventureWorks2008 database

select top 5 * from person.person

UPDATE person.person SET suffix = ‘Jr.’

WHERE FirstName = ‘Ken’

--The following statement is run by an administrator to:

--1)add a new TestDbRole with permission to UPDATE

--2)grant UPDATE permission on the Person.person table

--3)add the TestUser to the TestDbRole database role

USE [AdventureWorks2008]

GO

--1)

CREATE ROLE [TestDbRole] AUTHORIZATION [dbo]

--2)

GRANT UPDATE ON [Person].[Person] TO [TestDbRole]

GRANT SELECT ON [Person].[Person] TO [TestDbRole]

--3)

EXEC sp_addrolemember N’TestDbRole’, N’TestUser’

--the following statements now succeed when executed

--by the TestUser because the role that it

--was added to has SELECT and UPDATE permission

--on that table

select top 5 * from person.person

UPDATE person.person SET suffix = ‘Jr.’

WHERE ContactID = 1

 Download from www.wowebook.com

ptg

309Managing Securables
1

1

--the following select fails because ‘testdbrole’

--does not permit SELECT on any table but person.person

select * from person.ContactType

--The following statement is run by an administrator

--to add the TestDbRole database role to the db_datareader

--fixed-database role

EXEC sp_addrolemember N’db_datareader’, N’TestDbRole’

GO

--Finally, the testuser can update the Person.person table

-- and select from any other table in the database

select * from person.ContactType

Database roles and permissions are discussed in more detail later in this chapter, in the
sections “Managing Database Roles” and “Managing Permissions.”

Application Roles
Unlike other roles, application roles contain no database users. When an application role
is created (see the section “Managing Database Roles,” later in this chapter), rather than
add a list of users who belong to the role, you specify a password. To obtain the permis-
sions associated with the role, the connection must set the role and supply the password.
This is done using the stored procedure sp_setapprole. You set the role to the sales
application role (with the password PassW0rd) as follows:

EXEC sp_setapprole ‘sales’, ‘PassW0rd’

You can also encrypt the password:

EXEC sp_setapprole ‘sales’, {ENCRYPT N ‘ PassW0rd’}, ‘odbc’

When an application role is set, all permissions from that role apply, and all permissions
inherited from roles other than public are suspended until the session is ended.

So why is it called an application role? The answer is in how it is used. An application role
is used to provide permissions on objects through an application, and only through the
application. Remember that you must use sp_setapprole and provide a password to acti-
vate the role; this statement and password are not given to the users; rather, they are
embedded in the application’s CONNECT string. This means that the user can get the
permissions associated with the role only when running the application. The application
can have checks and balances written into it to ensure that the permissions are being used
for the forces of good and not evil.

Managing Securables
Securables are the entities in SQL Server on which permissions can be granted. In other
words, principals (for example, users or logins) obtain permission to securables. This
chapter describes many examples of securables, including tables, databases, and many

 Download from www.wowebook.com

ptg

310 CHAPTER 11 Security and User Administration

TABLE 11.4 SQL Server 2008 Securables

Server Database Schema

Logins User Table

Endpoints Role View

Databases Application role Function

Assembly Procedure

Message Type Queue

Route Type

Service Synonym

Remote Service Binding Aggregate

Fulltext Catalog XML Schema Collection

Certificate

Asymmetric Key

Symmetric Key

Contract

Schema

entities that have been part of the SQL Server security model in past versions. SQL Server
2008’s security model contains a granular set of securables for applying permissions.

Securables are hierarchical in nature and are broken down into nested hierarchies of
named scopes. Three scopes are defined: at the server, database, and schema levels. Table
11.4 list the securables for each scope.

As mentioned earlier, a hierarchy exists within each scope; in addition, relationships cross
scope boundaries. Servers contain databases, databases contain schemas, and schemas
contain a myriad of objects that are also hierarchical. When certain permissions are
granted on a securable at the server level the permissions cascade; meaning permission is
granted at the database and schema levels. For example, if a login is granted control
permission at the server level, control is implicitly granted at the database and schema
levels. The relationships between securables and permissions can be complicated. The next
section details the different types of permissions and sheds some light on how these
permissions affect securables.

 Download from www.wowebook.com

ptg

311Managing Permissions
1

1

Managing Permissions
Database security is mainly about managing permissions. Permissions are the security
mechanisms that tie principals (for example, logins) to securables (for example, tables).
With SQL Server 2008, permissions can be applied at a granular level that provides a great
deal of flexibility and control.

Permissions in SQL Server 2008 revolve around three commands: GRANT, REVOKE, and DENY.
These three commands were also used in SQL Server 2005 and SQL Server 2000. When
permission is granted, the user or role is given permission to perform an action, such as
creating a table. The DENY statement denies permission on an object and prevents the prin-
cipal from gaining GRANT permission based on membership in a group or role. The REVOKE
statement removes a permission that was previously granted or denied.

When specifying permissions, you need to carefully consider the hierarchy that exists
between GRANT, REVOKE, and DENY. This is particularly important when the principal (for
example, user or login) is part of a group or role and permissions have been granted on
securables at different scopes of the security model. Following are some examples of the
precedence that exists between these statements:

. A GRANT of a permission removes any REVOKE or DENY on a securable. For example, if
a table has SELECT permission denied on it and then the SELECT permission is
granted, the DENY permission is then removed on that table.

. DENY and REVOKE remove any GRANT permission on a securable.

. REVOKE removes any GRANT or DENY permission on a securable.

. Permissions denied at a higher scope in the security model override grants on that
permission at a lower scope. Keep in mind that the security model has the server
scope at the highest level, followed by database and schema. So, if INSERT permis-
sion is denied on tables at the database level, and INSERT on a specific table in that
database is granted at the schema level, the result is that INSERT is denied on all
tables. In this example, a database-level DENY overrides any GRANT at the lower
schema level.

. Permissions granted at a higher scope in the security model are overridden by a DENY
permission at a lower level. For example, if INSERT permission is granted on all tables
at the database scope, and INSERT is denied on a specific table in the database
(schema scope), INSERT is then denied on that specific table.

The assignment of a permission includes the GRANT, DENY, or REVOKE statements plus the
permission that these statements affect. The number of available permissions increased in
SQL Server 2005 and has been carried forward to SQL Server 2008. Familiar permissions
such as EXECUTE, INSERT, and SELECT that were available in SQL Server 2000 are still
around, plus the new permissions that were added in SQL Server 2005. Following are some
of the new types that were added in SQL Server 2005:

 Download from www.wowebook.com

ptg

312 CHAPTER 11 Security and User Administration

. CONTROL—This type confers all defined permissions on the securable. This owner-
ship-like capability also cascades to any lower-level objects in the security hierarchy.

. ALTER—This type confers the capability to change the securable’s properties but
does not include the capability to make ownership changes. If ALTER is applied on a
scope such as a database or a schema, the capability to use ALTER, CREATE, or DROP on
any object in the scope is allocated as well.

. IMPERSONATE—This type allows the principal to impersonate another user or login.

. VIEW DEFINITION—This type allows access to SQL Server metadata. This type of
data is not granted by default in SQL Server 2008; therefore, the VIEW DEFINITION
permission was added to manage access.

The combination of available permissions and the securables that they can be applied to is
extensive. The permissions that are applicable depend on the particular securable. SQL
Server Books Online lists the permissions for specific securables. You can use the index
feature at Books Online to look for “permissions [SQL Server].” There, you will find a
section named “Permissions Applicable to Specific Securables” as well as a section named
“SQL Server Permissions” that lists each securable and its related permissions.

You can also view the available permissions by using system functions and catalog views.
The following example uses the sys.fn_builtin_permissions function to retrieve a partial
listing of all the available permissions:

SELECT top 5 class_desc, permission_name, parent_class_desc

FROM sys.fn_builtin_permissions(default)

order by 1,2

/* Results from previous query

class_desc permission_name parent_class_desc

---------------- --------------- -----------------

APPLICATION ROLE ALTER DATABASE

APPLICATION ROLE CONTROL DATABASE

APPLICATION ROLE VIEW DEFINITION DATABASE

ASSEMBLY ALTER DATABASE

ASSEMBLY CONTROL DATABASE

*/

The granularity with which permissions can be applied with SQL Server 2008 is impressive
and, to some degree, challenging. When you look at all the available permissions, you will
see that some planning is needed to manage them. In the past, fixed database roles were
simple to use but in many cases provided permissions that went beyond what the user
needed. Microsoft has supplied the tools to facilitate the concept of “least privileges,”
which means providing only the privileges that are needed and nothing more. The tools
to help you manage permissions are discussed later in this chapter, in the section
“Managing SQL Server Permissions.”

 Download from www.wowebook.com

ptg

313Managing SQL Server Logins
1

1

Managing SQL Server Logins
You can create and administer logins easily using SSMS. You can use T-SQL as well, but the
GUI screens are often the best choice. The GUI screens present the configurable properties
for a login, including the available options, databases, and securables that can be assigned
to a login. The number of configurable options is extensive and can be difficult to manage
with T-SQL.

Using SSMS to Manage Logins

The visual tools for managing logins in SSMS are accessible via the Object Explorer. You
need to expand the Security node in Object Explorer and right-click the Logins node. Then
you select the New Login option, and the new login screen, shown in Figure 11.4, appears.

The default authentication mode for a new login is Windows Authentication. If you want
to add a login with Windows Authentication, you need to type the name of your
Windows user or group in the Login Name text box. You can also click the Search button
to search for Windows logins. In either case, the login entered for Windows
Authentication should be in the form <DOMAIN>\<UserName> (for example, mydomain\Chris)
or in the form user@company.com.

FIGURE 11.4 Creating a login in SSMS with Windows Authentication.

 Download from www.wowebook.com

ptg

314 CHAPTER 11 Security and User Administration

With Windows Authentication, you have an option to restrict access to the server for the
new login when it is created. If you select Deny Server Access, a command to deny access
to SQL Server is issued immediately after the login is created (for example, DENY CONNECT
SQL TO [DBSVRXP\Chris]). This option can be useful for staging new logins and waiting
until all the appropriate security has been applied prior to allowing the login to access
your SQL Server instance. After you completing the security setup for the login, you can
select the login properties and choose the GRANT SERVER ACCESS option.

You can use the same new login screen shown in Figure 11.4 to add a login with SQL
Server Authentication. Again, you need to provide a login name, but with the standard
SQL Server login, there is no domain associated with the user. The login is independent of
any Windows login and can be named as desired. The login and password for SQL Server
Authentication are stored and maintained in SQL Server.

When SQL Server Authentication is selected, several options related to passwords are
enabled. These options, as shown in Figure 11.5, include Enforce Password Expiration,
Enforce Password Policy, and User Must Change Password at Next Login. These options are
all associated with a more rigid password policy. They are similar to options available with
Windows accounts and provide a more robust security solution for SQL Server logins. The
catch is that the new password options are enforced only on the Windows 2003 Server
operating system and versions above. You can select these options when running SQL
Server on a machine that has an operating system that is lower than Windows 2003
Server, but the hooks between SQL Server and the operating system are not in place to
enforce the password policy.

FIGURE 11.5 Creating a login in SSMS with SQL Server Authentication.

 Download from www.wowebook.com

ptg

315Managing SQL Server Logins
1

1

The next set of options on the General page of the new login allows you to map the login
to a certificate, asymmetric key, or credential. The certificate and asymmetric key selec-
tions allow you to create a certificate-mapped login or an asymmetric key-mapped login.
A certificate-mapped login and an asymmetric key-mapped login are used only for code
signing and cannot be used to connect to SQL Server. If these options are used, the certifi-
cate or asymmetric key must exist on the server before you map the logins to them. The
capability to map the login to a credential on the General page is new to SQL Server
2008. This option simply links the login to an existing credential, but its capabilities may
be expanded.

The default database and default language are the final options located on the General
page of the new login screen. These options are available regardless of the authentication
method selected. The default database is the database that the login will connect to by
default. The master database is selected, but it is generally not the best database to select
for your default. You should choose the default database that your login will use most
often and avoid using any of the system databases as your default. This helps prevent
database users from executing statements against the wrong database, and it also removes
the step of having to change the database every time the user connects. You should make
sure that the login is given access to whatever database you select as the default. (The
Database Access page is discussed later in this chapter.)

The default language determines the default language used by the login. If no default
language is specified and the <default> entry is left in the Language drop-down, the
server’s default language is used. The default language for the server can be retrieved or set
by using the sp_configure system stored procedure. The language selection affects many
things, including date formats, month names, and names of days. To see a list of
languages available on the server and the related options, you use the sys.syslanguages
catalog view.

The new login screen has four other pages available for selection when creating your new
login: Server Roles, User Mapping, Securables, and Status. The Server Roles page allows you
to select one or more fixed server roles for the login to participate in. Figure 11.6 shows
the new login screen with the Server Roles page selected. For a more detailed review of the
permissions related to each server role, refer to the section “Fixed Server Roles,” earlier in
this chapter.

The User Mapping page allows you to select the databases that the login will have access
to. When the Map check box is selected for a database, the Default Schema and User cells
are enabled. The default schema is the schema that will contain the database objects
created by the login. The login can create objects in schemas other than the default if the
login has permission to use the other schemas. If no schema is specified, the default
schema is used. The default schema also comes into play when you’re retrieving database
objects. If no schema is specified on database retrievals, the default schema is searched
first for the database object. If no Default Schema is specified on the Database Access
screen, the default schema is set to dbo. The User data entry area allows you to enter a
database username that is different from the login name. By default, the database user-
name is the same as the login name, but you can change it.

 Download from www.wowebook.com

ptg

316 CHAPTER 11 Security and User Administration

FIGURE 11.6 Choosing a server role.

The other thing that happens when you select the Map check box on the database is that
the list of database roles is enabled in the bottom portion of the screen. You can select one
or more database roles for the login. Both fixed and user-defined database roles are avail-
able for selection. The public database role is selected by default and cannot be deselected.

The Securables page allows you to select server objects for login permissions. The server
objects are limited to object types scoped at the server level. They include Servers,
Endpoints, Logins, and Server Roles object types. The management of all permissions,
including those for Logins, is discussed in detail in the “Managing Permissions” section,
earlier in the chapter.

The last page listed for selection is the Status page, which allows you to configure some
authorization and authentication options. You can grant or deny access to the database
engine on this page, and you can enable or disable the login. You also might need to visit
this page if the login gets locked out. If this happens, you have an option on this page to
reenable the login so that it is not longer locked out.

To modify a login, you right-click the login in the Security node and select Properties.
The same set of property pages available when you create a new login are displayed. You
cannot change the authentication mode after the login has been created, but you can
change all the other settings, if desired.

 Download from www.wowebook.com

ptg

317Managing SQL Server Logins
1

1

To delete a login, you right-click the login and select Delete. The Delete Object screen
appears, and you can click OK to delete the login. A warning message appears, stating
“Deleting server logins does not delete the database users associated with the logins.” If
the login has associated database users, and the login deletion is performed, database
users are orphaned, and you have to manually delete the users associated with the login
in each database.

Using T-SQL to Manage Logins

You can manage logins by using T-SQL statements. This approach is generally not as easy
as using the user-friendly GUI screens that come with SSMS, but sometimes using T-SQL is
better. For example, with installations and upgrades that involve changes to logins, you
can use T-SQL to script the changes and produce a repeatable process.

SQL Server 2008 includes system stored procedures and an ALTER LOGIN statement that
you can use to manage logins. The same system stored procedures available in prior
versions are still available in SQL Server 2008, but they have been deprecated and will not
be available in a future version. Table 11.5 lists the available system stored procedures and
the basic function and current state of each one. The state indicates whether the proce-
dure has been deprecated and whether an alternative exists in SQL Server 2008.

TABLE 11.5 System Stored Procedures for Managing Logins

Store Procedure Function Status

sp_addlogin Add a SQL Server login. Deprecated; use CREATE LOGIN

sp_defaultdb Change the default database. Deprecated; use ALTER LOGIN
instead.

sp_defaultlanguage Change the default language. Deprecated; use ALTER LOGIN
instead.

sp_denylogin Deny server access to a Windows
login.

Deprecated.

sp_droplogin Drop a SQL Server login. Deprecated; use DROP LOGIN
instead.

sp_grantlogin Add a Windows login. Deprecated.

sp_password Change a login’s password. Deprecated; use ALTER LOGIN
instead.

sp_revokelogin Drop a Windows login. Deprecated; use DROP LOGIN
instead.

 Download from www.wowebook.com

ptg

318 CHAPTER 11 Security and User Administration

The system stored procedures have a variety of parameters, which are documented in
Books Online. Because they have been deprecated, they are not the focus of this section.
Instead, this section focuses on a number of examples that utilize the CREATE, ALTER, and
DROP statements. The following example creates a SQL Server login with a password that
must be changed the first time the login connects:

CREATE LOGIN Laura WITH PASSWORD=N’mypassw0rd$’

MUST_CHANGE, CHECK_EXPIRATION=ON

You can then use the following ALTER LOGIN statement to change the default database,
language, and password for the new Laura login:

ALTER LOGIN [Laura] WITH

DEFAULT_DATABASE=[AdventureWorks2008],

DEFAULT_LANGUAGE=[British],

PASSWORD=N’myStr0ngPW’

Finally, you can drop the Laura login by using the following:

DROP LOGIN [Laura]

As you can see, the T-SQL statements for Logins are relatively easy to use. To simplify
matters, you can generate T-SQL statements from SSMS. To do so, you click the Script
button available on the screen that appears after you specify a login action. For example,
if you right-click a login and select Delete, the Delete Object screen appears. At the top of
this screen is a Script button. When you click this button, SSMS scripts the related T-SQL
statements into a query editor window for you to review and execute.

Managing SQL Server Users
The SSMS has a set of friendly user interfaces to manage SQL Server users as well. The
screens are similar to the screens for logins and are also launched from the Object
Explorer. You can also use a set of T-SQL statements to manage users.

Using SSMS to Manage Users

To manage users via SSMS, you open the Object Explorer and expand the Security node
followed by the Users node. The Users node contains a list of the current database users.
To add a new database user, you can right-click the Users node and select New User.
Figure 11.7 shows the Object Explorer window with the option to create a new user
selected for the AdventureWorks2008 database.

Figure 11.8 shows the new database user screen displayed after you select the New User
option. In this figure, a login named Chris is used, and the database user name is Chris as
well. These two names do not need to match but are often the same for consistency. The
login must exist before you can create the user. You can click the ellipsis button next to
the login name to view a list of available logins. After you click the ellipsis, you can click
the Browse button to see the logins that have already been added to SQL Server.

 Download from www.wowebook.com

ptg

319Managing SQL Server Users
1

1

FIGURE 11.7 The New User option in Object Explorer.

FIGURE 11.8 Using SSMS to create a new user.

 Download from www.wowebook.com

ptg

320 CHAPTER 11 Security and User Administration

The default schema must be a valid schema created in the database. If the default schema
is left blank, it defaults to dbo. After the default schema has been set, it is used as the
default location for storing and retrieving database objects.

You can select one or more schemas to be owned by the user, but a given schema can be
owned by only one user in the database. When a schema is selected for ownership for a
user, the previous owner loses ownership, and the new user gains ownership. The follow-
ing example shows the type of T-SQL statement that you can run to accomplish the
ownership change. This example changes the ownership on the Person schema to the
user Laura:

ALTER AUTHORIZATION ON SCHEMA::[Person] TO [Laura]

When you select the Permissions page, you can assign permissions to securables scoped at
the database and schema levels. The management of all permissions, including those for
users, is discussed in detail in the “Managing Permissions” section, earlier in the chapter.

To modify or delete an existing database user, you can right-click the user in the Object
Explorer and choose the related option. To modify the user, you select Properties, and a
screen similar to the one you use to add the user is displayed. To delete the user, you select
the Delete option.

Using T-SQL to Manage Users

CREATE USER, ALTER USER, and DROP USER are the T-SQL commands you use most often to
manage database users. These commands are replacements for the system stored proce-
dures used in prior versions. The system stored procedures, such as sp_adduser,
sp_dropuser, sp_grantdbaccess, and sp_revokedbaccess, have been deprecated and will
be removed in a future version. They are still available for use now, but you should avoid
them when possible.

The following example demonstrates the use of the CREATE USER statement to create a
new database user named Laura, with a default schema Sales:

CREATE USER Laura FOR LOGIN Laura

WITH DEFAULT_SCHEMA = Sales

You can use the ALTER USE statement to change the default schema or the username. The
following example uses the ALTER USER statement to change the name of the database
user currently named Laura to LauraG:

ALTER USER Laura WITH NAME = LauraG

If you want to delete a database user, you use the DROP USER command. The following
example demonstrates how to delete the LauraG from the previous example:

DROP USER [LauraG]

 Download from www.wowebook.com

ptg

321Managing Database Roles
1

1

When dropping database users, you must keep in mind that you cannot drop them if they
are the owners of database objects. An object’s ownership must be transferred to another
database user before that object can be deleted. This applies to schemas that can be owned
by the user as well.

Managing Database Roles
Database roles are custom roles that you can define to group your users and simplify the
administration of permissions. Generally, custom database roles (non-fixed) are created
if the fixed database roles do not meet the security needs of the administrator. (The
assignment of logins and users to fixed server and fixed database roles is covered earlier
in this chapter.)

Using SSMS to Manage Database Roles

You can find database roles in the Object Explorer for each database, under the Security
node, which contains a Roles node. The Roles node contains a Database Roles node,
which lists both fixed and nonfixed database roles. To add a new custom database role
(nonfixed), you right-click the Database Roles node and select New Database Role. A new
database role dialog box appears, as shown in Figure 11.9.

FIGURE 11.9 The new database role dialog box.

 Download from www.wowebook.com

ptg

322 CHAPTER 11 Security and User Administration

You need to enter a name for the role and name for the owner of the role. Like a database
user, a database role can also own schemas. If you click the Add button, you can add data-
base users from the current database to the role.

If you select the Permissions page, you can define the permission for the database role.
This definition includes the selection of database objects scoped at the database and
schema levels. These permissions are discussed in detail in the “Managing Permissions”
section, earlier in this chapter.

Using T-SQL to Manage Database Roles

Some of the T-SQL system stored procedures used in prior versions to manage roles have
been deprecated, including sp_addrole and sp_droprole. The sp_addrolemember and
sp_droprolemember procedures have not been deprecated and are still good choices for
adding members to a role.

The CREATE ROLE and DROP ROLE statements are the new replacements for sp_addrole and
sp_droprole. The following example uses the CREATE ROLE statement to create a new data-
base role named DevDbRole:

CREATE ROLE [DevDbRole]

To assign a user named Chris to the new DevDbRole role, you can use the following:

EXEC sp_addrolemember N’DevDbRole’, N’chris’

Role membership is not limited to database users. It is possible to assign database roles as
members of another role. The following adds the TestDbRole database role to the
DevDbRole role created in the previous example:

EXEC sp_addrolemember N’DevDbRole’, N’TestDbRole’

You cannot use sp_addrolemember to add a fixed database role, a fixed server role, or dbo
to a role. You can, however, add a nonfixed database role as a member of a fixed data-
base role. If, for example, you want to add the DevDbRole database role as a member of
the fixed database role db_dataread, you use the following command:

EXEC sp_addrolemember N’db_datareader’, N’DevDbRole’

The ALTER ROLE statement exists but is limited to changing the name of a role. To drop a
database role, you use the DROP ROLE statement. Keep in mind that all role members must
be dropped before a role can be dropped.

Managing SQL Server Permissions
You can use T-SQL or the visual tools available in SSMS to manage permissions. Based on
the number of available permissions and their complexity, it is recommended that you use
the SSMS tools. The following sections cover these tools from several different angles and

 Download from www.wowebook.com

ptg

323Managing SQL Server Permissions
1

1

look at the management of permissions at different levels of the security model. You learn
how to use T-SQL to manage the permissions as well.

Using SSMS to Manage Permissions

The Object Explorer in SSMS enables you to manage permissions at many different levels
of the permission hierarchy. You can manage permissions at a high level, such as the
entire server, or you can manage permissions at the very lowest level, including a specific
object, such as a table or stored procedure. The degree of granularity you use for permis-
sions depends on your security needs. To demonstrate the scope of permissions, let’s look
at managing permissions at several different levels, starting at a high level and working
down to the object level.

NOTE

There are many different ways to achieve a security goal in SSMS. For example, you
can manage permissions for a database user from the database or from the user. You
can apply permissions on schema objects for the entire schema or to individual
objects. You should always try to choose the permission solution that allows you to
achieve your security goals with the least amount of administrative overhead.

Using SSMS to Manage Permissions at the Server Level
Logins can be granted explicit permissions at the server level. Earlier we looked at fixed
server roles as one means for assigning permissions, but you can manage individual
server-level securables as well. Figure 11.10 shows the Login Properties window for a login
named Chris. You launch this window by right-clicking the login and selecting
Properties. Figure 11.10 shows the Securables page, which allows you to add specific secur-
ables to the grid.

NOTE

You can open a Permissions page like the one shown in Figure 11.10 from many differ-
ent places in the Object Explorer. The title of the dialog box and the content of the grid
vary, depending on the object selected, but the screen is generally the same, no matter
where it is launched. This provides consistency and simplifies the overall management
of permissions.

You can click the Search button shown toward the top of Figure 11.10 to add objects to
the securables grid. When you click this button, the Add Objects window shown in Figure
11.11 is displayed. This window allows you to choose the types of objects you want to
add. If you select Specific Objects, you are taken directly to the Select Objects window. If
you choose All Objects of the Types, you are taken to an intermediate screen that allows
you to select the type of objects you want to assign permissions to.

Again, the Add button and the means for adding objects are fairly consistent for all
permissions. What varies is the object types available for selection. For example, at the
server level, the types of objects available to assign permissions are scoped at the server
level. Figure 11.12 shows the Select Object Types window displayed when you choose the

 Download from www.wowebook.com

ptg

324 CHAPTER 11 Security and User Administration

FIGURE 11.10 Server-level permissions.

FIGURE 11.11 The Add Objects window.

All Objects of the Types option at the server level. You can see that the available objects
are all scoped at the server level.

If the endpoints objects are selected, the securables grid is populated with all the available
endpoints that have permissions to manage. Figure 11.13 shows the Login Properties
window with the endpoints securables populated. The TSQL Named Pipes securable is
selected, which allows you to specify the explicit permissions for the securable in the
bottom grid. In this example, the Grant and With Grant check boxes have been selected
for the control permission. This gives the login named Chris the right to control the
Named Pipes endpoint and also allows him to grant this control right (because With Grant
is selected) to other logins.

The examples we just walked through are related to the assignment of explicit permission
on a specific instance of a securable. You can also apply server permissions at a higher

 Download from www.wowebook.com

ptg

325Managing SQL Server Permissions
1

1

FIGURE 11.12 Server-level object types.

FIGURE 11.13 Server-level securables.

level. For example, you might want to specify permissions for a login to allow that login
to control all server endpoints instead of specific endpoints. You can accomplish this in
several ways. One way to do it is to select the Server object from the list of object types
when adding permissions for a specific login. Another way is to right-click the server
name in the Object Explorer and select Properties. The Server Properties window that
appears has a Permissions page that lists all the logins for the server, along with the
macro-level permissions scoped for the server. Figure 11.14 shows the Server Properties
window with the login Chris selected. The explicit permissions listed in this case are at a
higher level and are not just for one instance. The example shown in Figure 11.14 allows

 Download from www.wowebook.com

ptg

326 CHAPTER 11 Security and User Administration

FIGURE 11.14 The Server Properties window’s Permissions page.

the login Chris to alter any database or any endpoint on the server. This is based on the
Grant check boxes selected.

Using SSMS to Manage Permissions at the Database Level
The same type of hierarchy exists with permissions at the database level as at the server
level. You can apply permissions at a high level to affect many objects of a particular type,
or you can apply them on a specific object. You can also manage the permissions at the
database level on a specific database user, or you can manage them on the database across
many users.

To demonstrate the differences between object types available at the database level, let’s
first look at managing permissions for a specific database user. As with logins, you can
right-click a database user and select Properties. On the Properties window that appears,
you select the Securables page, and you get a screen to assign permissions that is very
similar to the login permissions screen. The difference at the database level is in the object
types available for selection. Figure 11.15 shows the object types available when you
choose the All Objects of Types choice during the addition of securables for a database user.

When a low-level object type such as a table or stored procedure is selected, you are able
to apply explicit permissions to a specific object instance. Figure 11.16 shows an example
of low-level securables available when the Table object type is selected.

 Download from www.wowebook.com

ptg

327Managing SQL Server Permissions
1

1

FIGURE 11.15 Database-level object types.

FIGURE 11.16 Low-level database securables.

 Download from www.wowebook.com

ptg

328 CHAPTER 11 Security and User Administration

FIGURE 11.17 High-level database securables.

To apply permissions at a higher level in the database, you choose the object type
Databases. With this securable added to the permissions grid, you can apply permissions
to a group of objects by selecting a single permission. Figure 11.17 shows the
AdventureWorks2008 database selected as the securable and the related permissions avail-
able. In this example, the login Chris has been granted INSERT, SELECT, and UPDATE
permissions to all the tables in the AdventureWorks2008 database.

Using SSMS to Manage Permissions at the Object Level
The last permission assignment we look at is the object level. SSMS enables you to select a
specific object instance in the Object Explorer and assign permissions to it. This method
allows you to navigate to the object you want via the Object Explorer tree and assign
permissions accordingly. Figure 11.18 shows the Object Explorer tree expanded to the
Stored Procedures node. A specific stored procedure has been right-clicked, and the
Properties option has been selected.

The Properties window has a page dedicated to permissions. You can select the
Permissions page and then select the users or roles you want to add for the specific object,
such as a stored procedure. Figure 11.19 shows the Permissions page with a user named
Chris added to the Users or Roles window at the top of the page. The bottom portion of
the page shows explicit permissions for the user Chris, which includes a DENY permission
on the stored procedure selected.

 Download from www.wowebook.com

ptg

329Managing SQL Server Permissions
1

1

FIGURE 11.18 Object-level permissions selected via Object Explorer.

FIGURE 11.19 Object-level permissions.

 Download from www.wowebook.com

ptg

330 CHAPTER 11 Security and User Administration

NOTE

The methods described here for managing permissions in SSMS are by no means the
only ways you can manage permissions in SSMS. You will find that the assignment of
permissions pervades SSMS and that SSMS allows you to assign permissions in many
different ways. The point to keep in mind is that database roles, application roles,
schemas, and other objects in the security model all have similar methods for assign-
ing permissions.

Using T-SQL to Manage Permissions

As you saw in the SSMS Permissions pages, three options exist for assigning every permis-
sion: GRANT, DENY, and REVOKE. Each option has its own T-SQL statements that can be used
to manage permissions as well. The simplified syntax for the GRANT command is as follows:

GRANT { ALL [PRIVILEGES] }

| permission [(column [,...n])] [,...n]

[ON [class ::] securable] TO principal [,...n]

[WITH GRANT OPTION] [AS principal]

This basic GRANT syntax is similar to that in SQL Server 2000, but the addition of many
permissions and securables in SQL Server 2005 and SQL Server 2008 has expanded the
scope of the command. SQL Server 2005 also introduced the WITH GRANT option which
allows a permission to be granted to a principal and allows the principal to grant that
permission to another principal. The WITH GRANT option has been carried forward to SQL
Server 2008 and is a good way to delegate administrative functions to others.

The simplified syntax for the DENY and REVOKE commands is as follows:

DENY { ALL [PRIVILEGES] }

| permission [(column [,...n])] [,...n]

[ON [class ::] securable] TO principal [,...n]

[CASCADE] [AS principal]

REVOKE [GRANT OPTION FOR]

{

[ALL [PRIVILEGES]]

|

permission [(column [,...n])] [,...n]

}

[ON [class ::] securable]

{ TO | FROM } principal [,...n]

[CASCADE] [AS principal]

You can see that the simplified syntax for DENY and REVOKE is similar in structure to the
GRANT statement. All the statements must identify the permission, securable, and principal
that will receive the permission.

 Download from www.wowebook.com

ptg

331The Execution Context
1

1

The ALL clause has been deprecated in SQL Server 2008. If ALL is specified, it does not
affect all permissions on the object; it affects only a subset of the permissions related to
the securable. The subset of permissions is dependent on the securable.

The following examples demonstrate several different types of permissions you can
manage by using T-SQL commands:

--Grant permissions to create a table

-- to a user named Chris

GRANT CREATE TABLE TO Chris

--Grant ALL permissions on a stored procedure

-- to a database role named TestDBRole

GRANT ALL ON dbo.uspGetBillOfMaterials TO TestDBRole

--DENY UPDATE permission on the Customer table

-- to user named Laura

DENY UPDATE ON OBJECT::sales.customer TO Laura

--REVOKE UPDATE permissions on the Customer table

-- to user named Laura.

REVOKE UPDATE ON OBJECT::sales.customer TO Laura

There are many different flavors of the GRANT, DENY, and REVOKE statements, depending on
the securable they are affecting. Books Online outlines the syntax for each securable and
the permissions that can be applied.

Remember that you can use the Script option to generate the T-SQL from SSMS. The Script
button is available when you’re managing permissions, and using it is a great way to
familiarize yourself with the T-SQL that is used to effect changes. You can select the
permissions you want to apply via the GUI screen and then click the Script button to
generate the T-SQL.

The Execution Context
The execution context determines what permissions are checked when statements are
executed or actions are performed on the database server. By default, the execution context
is set to the principal connected to the server or database. If a user named Chris connects
to the AdventureWorks2008 database, the permissions assigned to Chris are checked.

In SQL Server 2008, you can change the execution context so that permissions are
checked for a principal other than that to which you are connected. You can make this
change in execution context (called context switching) explicitly or implicitly.

 Download from www.wowebook.com

ptg

332 CHAPTER 11 Security and User Administration

Explicit Context Switching

With explicit context switching, you can use the EXECUTE AS statement to change the user
or login used to check permissions. This is similar to the SET USER statement available in
SQL Server 2000 and SQL Server 2005. It is extremely useful for administrators who are
testing the permissions they have set for users or logins. The following example demon-
strates the use of the explicit EXECUTE AS statement:

--Assume that you are connected as an administrator (DBO)

--and want to prevent members of the Public role from

--selecting from the Sales.Customer table

DENY SELECT ON sales.customer TO Public

--We can check that user Laura cannot select from the

-- Sales.Customer table using the EXECUTE AS statement

EXECUTE AS USER = ‘laura’

SELECT TOP 1 * FROM sales.customer

-- Revert to the previous execution context.

REVERT

You can also do explicit context switching at the login level. You can use the EXECUTE AS
statement to switch the execution context to another login instead of a user.

Context switching is linked to the IMPERSONATE permission. As an administrator, you can
grant IMPERSONATE to a login or user to enable that user to execute as that user. For
example, an administrator can temporarily enable another login to run in the same execu-
tion context by using the IMPERSONATE permission and EXECUTE AS statement. The follow-
ing example demonstrates the assignment of the IMPERSONATE permission to a login
named Laura:

--Chris grants the right to Laura to impersonate him

GRANT IMPERSONATE ON LOGIN::[chris] TO [laura]

GO

--Laura can then connect with her login and use

-- the EXECUTE AS command to run commands that

-- normally only Chris has permission to run

EXECUTE AS Login = ‘Chris’

DBCC CHECKDB (AdventureWorks2008)

SELECT USER_NAME()

--Revert back to Laura’s execution context

REVERT

SELECT USER_NAME()

Laura can now use EXECUTE as Chris, who is an administrator. This capability can be
particularly useful when a user or login has many custom permissions that would take a
lot of time to establish for another user or login.

 Download from www.wowebook.com

ptg

333The Execution Context
1

1

Implicit Context Switching

With implicit context switching, the execution context is set within a module such as a
stored procedure, trigger, or user-defined function. The EXECUTE AS clause is placed in the
module and is set to the user that the module will be run as. The context switch is
implicit because the user who runs the module does not have to explicitly specify the
context before running the module. The context is set within the module.

The EXECUTE AS clause has several different options to establish the execution context. All
modules are able to set the context to a specific user or login. Functions, stored proce-
dures, and Data Manipulation Language (DML) triggers can also execute as CALLER, SELF,
or OWNER. DDL triggers can run as CALLER or SELF. Queues can run as SELF or OWNER. The
CALLER option is the default, and it runs the module in the context of the user who called
the module. The SELF option causes the module to run in the context of the user or login
that created the procedure. The OWNER option causes the module to run in the context of
the current owner of the module.

The following example demonstrates the creation and execution of a stored procedure
with the EXECUTE AS clause on a specific user named Chris:

CREATE PROCEDURE dbo.usp_TestExecutionContext

WITH EXECUTE AS ‘chris’

AS SELECT USER_NAME() as ‘User’

--Set the user to someone other than chris to test the

-- implicit EXECUTE AS

SETUSER ‘DBO’

EXEC usp_TestExecutionContext

/*Results of the prior execution

User

chris

*/

This example shows that the USER_NAME retrieved in the stored procedure is Chris, regard-
less of who executed the procedure.

Implicit execution context can be particularly useful in situations in which permissions
cannot be granted to a user directly. For example, TRUNCATE TABLE permissions cannot be
granted explicitly to a user, but a database owner can run this command. Instead of grant-
ing dbo rights to a user needing TRUNCATE permissions, you can create a stored procedure
that does the truncation. You can create the stored procedure with the execution context
of dbo, and you can grant the user rights to execute the stored procedure that does the
truncation. When you use this method, the user can perform the truncation but does not
have any of the other permissions related to a database owner.

 Download from www.wowebook.com

ptg

334 CHAPTER 11 Security and User Administration

Summary
SQL Server 2008 continues the trend of providing more security and more flexible security
to the SQL Server database environment. Several new enhancements have been added to
SQL Server 2008 that add to the slew of security changes added to SQL Server 2005. The
granularity of the permissions and the other security-related features covered in this
chapter allow you to keep your SQL Server environment safe.

Chapter 12, “Data Encryption,” looks at another aspect of SQL Server that helps secure
your database environment. It covers encryption methods that can be implemented to
further protect your data from unauthorized access.

 Download from www.wowebook.com

ptg

CHAPTER 12

Data Encryption

IN THIS CHAPTER

. What’s New in Data Encryption

. An Overview of Data Security

. An Overview of Data Encryption

. SQL Server Key Management

. Column-Level Encryption

. Transparent Data Encryption

. Column-Level Encryption Versus
Transparent Data Encryption

With all the concern about identity theft these days,
there has been increasingly more attention paid to how all
the Personally Identifiable Information (PII) and other
sensitive information stored in databases is being protected.
It is necessary to secure and protect this data to avoid any
potential liability should the PII or sensitive data fall into
the wrong hands, and in some cases, doing so may even be
required by law (for example, Health Insurance Portability
and Accountability Act, or HIPAA, requirements).

Chapter 11, “Security and User Administration,” discusses
methods to secure and control the access to your SQL
Server data via login and user security. This type of security
is usually sufficient to prevent access to the data by anyone
other than properly authorized users. But what if you need
to prevent authorized users, such as your database or server
administrators, from viewing sensitive data? How can you
protect sensitive data from hackers or in the event that a
database backup is stolen?

One method is to encrypt the data. This chapter looks at
two methods provided in SQL Server 2008 for encrypting
data: column-level encryption and transparent data encryp-
tion (TDE). In addition to describing how to implement
both methods, the chapter presents the features and limita-
tions of each of these methods to help you decide which
data encryption method may help you meet your data secu-
rity needs.

 Download from www.wowebook.com

ptg

336 CHAPTER 12 Data Encryption

What’s New in Data Encryption
In SQL Server 2000 and earlier, if you wanted to encrypt data in your databases, you
usually needed to implement some form of client-side encryption. SQL Server itself did
not provide any means of encrypting data at the database level, so all the encryption and
decryption occurred in the application itself. This required custom-written applications to
encrypt and decrypt the data, and only those applications would be able to view the
encrypted data.

SQL Server 2005 introduced the capability to perform column-level (sometimes called cell-
level) encryption. This provided the capability to encrypt data within the database itself at
the column level. However, this method is still not transparent to the applications and
requires changes to the database schema as well as changes to your applications and T-SQL
code to include the proper function calls to encrypt and decrypt the data as it is stored
and retrieved.

SQL Server 2008 introduces a new form of database encryption: transparent data encryp-
tion. TDE allows you to encrypt an entire database without affecting client applications.
The purpose of TDE is to prevent scenarios in which the physical media (such as database
files or backups) containing sensitive data are stolen and then read by attaching the data-
base files or restoring the backups.

NOTE

Both column-level and transparent data encryption are available only in the Enterprise
and Developer Editions of SQL Server 2008 and SQL Server 2008 R2.

Another new feature in SQL Server 2008 is Extensible Key Management (EKM). EKM
enables parts of the cryptographic key hierarchy to be managed by an external source
such as Hardware Security Module (HSM), referred to as a cryptographic provider.
Encryption and decryption operations using these keys are handled by the cryptographic
provider. This allows for flexibility and choice in cryptographic providers as well as
common key management.

An Overview of Data Security
Security is important for every product and every business. By following some simple secu-
rity best practices, you can avoid many security vulnerabilities. This section discusses some
security recommendations that you should consider for your SQL Server implementations.
Securing SQL Server can be viewed as a series of steps, involving four areas: the platform,
authentication, objects (including data), and applications that access the system.

 Download from www.wowebook.com

ptg

337An Overview of Data Security

The platform for SQL Server includes the physical hardware and networking systems
connecting clients to the database servers. The first step in securing your SQL Server envi-
ronment is to provide sufficient physical security by limiting access to the physical server
and hardware components. To enhance the physical security of the SQL Server installa-
tion, you should consider placing the server in a room accessible only by authorized
personnel, ideally a locked computer room with monitored flood detection and fire detec-
tion or suppression systems. In addition, you should physically secure your backup media
by storing it at a secure offsite location.

Next, you need to ensure your system provides sufficient physical network security by
keeping unauthorized users off the network by limiting access to the network to autho-
rized users only. Make sure your database servers are installed in a secure zone of your
company’s intranet behind a firewall. Do not connect your SQL Servers directly to the
Internet. Always make sure there is a firewall between your servers and the Internet and
set it up to block all traffic except for that which is required.

Next, you need to ensure that you have secured your operating system and files. SQL
Server uses operating system files for operation and data storage. Be sure to restrict access
to these files to system administrators only. Use the NTFS file system because it is more
stable and recoverable than FAT file systems. NTFS also enables security options such as file
and directory Access Control Lists (ACLs) and Encrypting File System (EFS) file encryption.

For your installed SQL Server instances, you can enhance the security of the SQL Server
installation by running your SQL Server services under service accounts granted the
minimal permissions necessary for operation (do not run under the Windows
Administrator account!). These accounts should be low-privileged Windows local user or
domain user accounts.

Surface area reduction is also an important security measure. Surface area reduction helps
improve security by providing fewer avenues for potential attacks on a system. In addition
to running services under “least privilege” accounts, this measure also involves stopping
or disabling unused components.

You should also enhance the security of the SQL Server instances through limiting the
individuals, groups, and processes granted access to SQL Server and appropriately limiting
access to the databases and objects the database contains. One way is to require Windows
authentication for connections to SQL Server. If you are using SQL Server authentication
as well, you should be sure to enforce password policies that require strong passwords and
password expiration for all SQL Server logins. For more information on setting up SQL
Server logins and managing database users and object permissions, see Chapter 11.

Even if you follow the recommendations presented here for securing your environment,
you still can be vulnerable to access control problems. Encryption provides another way to
enhance security by limiting data loss even in the rare occurrence that access controls are
bypassed. For example, if a malicious user hacks into the database host computer and
obtains sensitive data, such as credit card numbers, that stolen information might be
useless if it is encrypted.

1
2

 Download from www.wowebook.com

ptg

338 CHAPTER 12 Data Encryption

An Overview of Data Encryption
Encryption is the process of obfuscating data by the use of a key or password. This can
make the data useless without the corresponding decryption key or password. Encryption
does not solve access control problems. However, it enhances security by limiting data loss
even if access controls are bypassed.

Encryption is actually the conversion of readable plaintext into ciphertext, which cannot
be easily understood by unauthorized people. The concrete procedure of carrying out the
encryption is called an algorithm. Decryption is the process of converting ciphertext back
into its original form so it can be understood. Both encryption and decryption require a
key, which must be kept secret because it enables the holder to carry out the decryption.

There are two primary methods of encryption: symmetric key encryption and asymmetric
key encryption. Symmetric key encryption uses the same key for both encryption and
decryption. Asymmetric key encryption, also called public-key encryption, uses two differ-
ent keys for encryption and decryption, which together form a key pair. The key used for
encryption is called a public key. The key used for decryption is referred to as a private key.

Symmetric key encryption is inherently less secure because it uses the same key for both
encryption and decryption operations, and the exchange of data requires transfer of the
key, which introduces a potential for its compromise. This can be avoided with an
asymmetric key because individuals encrypting and decrypting data have their own, sepa-
rate keys. However, asymmetric encryption is based on algorithms that are more complex,
and its impact on performance is more significant, making it often unsuitable in scenarios
involving larger amounts of data. However, it is possible to take advantage of the
strengths of both methods by encrypting data with a symmetric key and then protecting
the symmetric key with asymmetric encryption.

One solution to the dilemma of key distribution is to use digital certificates. A certificate is
a digitally signed piece of software that associates a public key with the identity of the
private key owner, assuring its authenticity. There is an inherent problem with this
approach—namely, how to assure the identity of the certificate issuer. To resolve this issue,
Microsoft provides a number of trusted certificate authorities (known as Trusted Root
Certification Authorities) with the operating system. These certificate authorities are
responsible for verifying that organizations requesting certificates are really what they
claim to be.

Typically, the algorithms used for encryption are industry standard, such as the Advanced
Encryption Standard (AES). The fact that the algorithms are published doesn’t make them
weaker, but rather helps ensure they are strong and robust. Because these algorithms have
been reviewed by thousands of experts around the globe, they have stood the test of time.
SQL Server 2008 allows administrators and developers to choose from among several algo-
rithms, including DES, Triple DES, TRIPLE_DES_3KEY, RC2, RC4, 128-bit RC4, DESX, 128-
bit AES, 192-bit AES, and 256-bit AES. No one algorithm is ideal for all situations, and a
discussion on the merits of each is beyond the scope of this chapter. However, the follow-
ing general principles apply:

 Download from www.wowebook.com

ptg

339SQL Server Key Management

. Strong encryption generally consumes more CPU resources than weak encryption.

. Long keys generally yield stronger encryption than short keys.

. Asymmetric encryption is stronger than symmetric encryption using the same key
length, but it is slower.

. Long, complex passwords are stronger than short passwords.

. If you are encrypting lots of data, you should encrypt the data using a symmetric
key and encrypt the symmetric key with an asymmetric key.

However, what really protects your data from third parties is not so much the algorithm
but the encryption key, which you must keep secure. Keys must be stored securely and
made available only on a need-to-know basis. Ideally, authorized people or systems should
be able to use but not necessarily have a copy of the key. It’s also a security best practice to
implement key rotation, changing keys periodically in case a key has been compromised.
For greater key security, you can also make use of Extensible Key Management, allowing
keys to be managed by an external source such as Hardware Security Module.

SQL Server 2008 provides support for not only encryption of data, but also encryption of
user network connections and stored procedures. The remainder of this chapter discusses
the two methods of data encryption, column-level encryption and transparent data
encryption. Client network encryption is covered in Chapter 10, “Client Installation and
Configuration.” Encryption of stored procedure code is discussed in Chapter 28, “Creating
and Managing Stored Procedures.”

NOTE

Although encryption is a valuable tool to help ensure security, it does incur overhead
and can affect performance, and any use of encryption requires a maintenance strategy
for your passwords, keys, and certificates.

Therefore, encryption should not be automatically considered for all data or connec-
tions. When you are deciding whether to implement encryption, consider how users
access the data. If access is over a public network, data encryption may be required to
increase data security. However, if all access is via a secure intranet configuration,
encryption may not be required.

This chapter describes the encryption methods available in SQL Server 2008 and SQL
Server 2008 R2 along with the pros and cons of implementing these encryption meth-
ods. This information should help you to determine whether using encryption is appro-
priate for implementing your data security solutions.

SQL Server Key Management
SQL Server 2008 provides rich support for various types of data encryption using symmet-
ric and asymmetric keys and digital certificates. As an administrator, you probably need to
manage at least the upper level of keys in the hierarchy shown in Figure 12.1. Each key

1
2

 Download from www.wowebook.com

ptg

340 CHAPTER 12 Data Encryption

Service Master Key
(Protected by DPAPI)

Database Master Key

Certificates Asymmetric Keys

Symmetric Keys Symmetric Keys

Symmetric Keys

Server Level

Database Level

Data

Pwd

Pwd

Data

Data

Pwd

FIGURE 12.1 Key hierarchy in SQL Server 2008.

protects its child keys, which in turn protect their child keys, down through the tree. The
one exception is when a password is used to protect a symmetric key or certificate. This is
how SQL Server lets users manage their own keys and take responsibility for keeping the
key secret.

Each SQL Server instance has its service master key. The service master key is the one key
that rules them all. It is a symmetric key created automatically during SQL Server installa-
tion and is encrypted and protected by the Data Protection API (DPAPI), which is provided
by the underlying Windows OS, using the credentials of the SQL Server service account.
Protection of this key is critical because if it is compromised, an attacker can eventually
decipher every key in the server managed by SQL Server. SQL Server manages the service
master key for you, although you can perform maintenance tasks on it to dump it to a file,
regenerate it, and restore it from a file. However, most of the time you will not need or
want to make any of these changes to the key, although administrators are advised to back
up their service master keys in the event of key corruption.

The main purpose of the server master key is to secure system data, such as passwords
used in instance-level settings such as linked servers or connection strings. The service
master key is also used to secure each of the database master keys. Within each database,
the database master key serves as the basis for creating certificates or asymmetric keys,
which subsequently can be applied to protect data directly or to further extend the
encryption hierarchy (for example, by creating symmetric keys). Creation, storage, and
other certificate and key management tasks can be handled internally, without resorting
to features of the operating system or third-party products.

 Download from www.wowebook.com

ptg

341SQL Server Key Management
1

2

Each database can have a single master key. You must create a database master key
before using it by using the CREATE MASTER KEY Transact-SQL statement with a user-
supplied password:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘R@nD0m!T3%t’

SQL Server encrypts the database master key using a triple DES key derived from the pass-
word as well as the service master key. The first copy is stored in the database, and the
second is stored in the master database. Having the database master key protected by the
server master key makes it possible for SQL Server to decrypt the database master key auto-
matically when required. The application or user does not need to open the master key
explicitly using the password. This is a major benefit of having the keys protected in the
hierarchy.

NOTE

Detaching a database with an existing master key and moving it to another server can
be an issue. The problem is that the new server’s database master key is different
from that of the old server. As a result, the server cannot automatically decrypt the
database master key. This situation can be circumvented by opening the database
master key with the password with which it is encrypted and using the ALTER MASTER
KEY statement to encrypt it with the new database master key.

When the database master key exists, developers can use it to create any of three types of
keys, depending on the type of encryption required:

. Asymmetric keys

. Symmetric keys

. Certificates

TIP

Microsoft recommends against using certificates or asymmetric keys for encrypting
data directly. Asymmetric key encryption is many times slower, and the amount of data
that you can protect using this mechanism is limited, depending on the key modulus. It
is recommended that you protect certificates and asymmetric keys using a password
instead of by the database master key.

Extensible Key Management

Another new feature in SQL Server 2008 that provides greater key security is Extensible
Key Management. EKM enables you to manage your encryption keys via an external
provider. This allows for flexibility and choice in encryption providers as well as common
key management across your enterprise.

 Download from www.wowebook.com

ptg

342

With the growing demand for regulatory compliance and concern for data privacy, organi-
zations are taking advantage of encryption as a way to provide a “defense in depth” solu-
tion. As organizations increasingly use encryption and keys to secure their data, key
management becomes more complex. Some high security databases use thousands of keys,
and you must employ a system to store, retire, and regenerate these keys. This approach is
often impractical using only database encryption management tools. As a solution,
various hardware vendors provide products to store encryption keys on hardware or soft-
ware modules. These products also provide a more secure key management solution
because the encryption keys do not reside with encryption data. They also move the key
management workload from SQL Server to a dedicated key management system.

Extensible key management in SQL Server 2008 also supports the use of Hardware Security
Module, which enables the encryption keys used to protect your data to be stored in an
off-box device such as a smartcard, USB device, or EKM/HSM module, providing a physical
separation of keys from data. SQL Server 2008 Extensible Key Management enables third-
party EKM/HSM vendors to register their modules in SQL Server. When registered, SQL
Server users can use the encryption keys stored on EKM modules. This enables SQL Server
to access the advanced encryption features these modules support such as bulk encryption
and decryption, and key management functions such as key aging and key rotation.

SQL Server 2008 Extensible Key Management also provides data protection from database
administrators. Data can be encrypted by using encryption keys that only the database
user has access to on the external EKM/HSM module.

To summarize, SQL Server 2008 Extensible Key Management provides the following benefits:

. An additional authorization check that enables separation of duties between data-
base administration and key management

. Improved performance through hardware-based encryption/decryption rather than
software-based encryption/decryption

. External encryption key generation

. Physical separation of data and keys

. Encryption key retrieval

. External encryption key retention and encryption key rotation

. Easier encryption key recovery

. Manageable encryption key distribution

. Secure encryption key disposal

When possible, it is highly recommended that you use EKM with both database- and
column-level encryption for more comprehensive key management and hardware-based
cryptography.

CHAPTER 12 Data Encryption

 Download from www.wowebook.com

ptg

343Column-Level Encryption
1

2

Column-Level Encryption
Column-level encryption (sometimes referred to as cell-level encryption) was introduced
in Microsoft SQL Server 2005 and is still fully supported in SQL Server 2008 R2. Column-
level encryption offers a more granular level of encryption than TDE, allowing you to
encrypt specific data columns in the context of specific users.

Column-level encryption is implemented as a series of built-in functions and a key
management hierarchy. Implementing column-level encryption is a manual process that
requires a re-architecture of the application to call the encryption and decryption func-
tions explicitly when storing or retrieving data. In addition, the tables must be modified
to store the encrypted data as varbinary. The data is then recast back to the appropriate
data type when it is read.

Column-level encryption and decryption are provided by pairs of functions that comple-
ment each other:

. EncryptByCert() and DecryptByCert()—Encrypts and decrypts data using the
public key of a certificate to generate a private asymmetric key

. EncryptByAsymKey() and DecryptByAsymKey()—Encrypts and decrypts data using
an asymmetric key

. EncryptByKey() and DecryptByKey()—Encrypts and decrypts data by using a
symmetric key

. EncryptByPassphrase() and DecryptByPassphrase()—Encrypts and decrypts
data by using a passphrase to generate a symmetric key

Before you can begin generating keys to encrypt columns, you must first make sure a data-
base master key has been created:

USE AdventureWorks2008R2;

GO

--If there is no master key, create one now.

IF NOT EXISTS

(SELECT * FROM sys.symmetric_keys

WHERE symmetric_key_id = 101)

CREATE MASTER KEY ENCRYPTION

BY PASSWORD = ‘Th15i$aS7riN&ofR@nD0m!T3%t’

GO

NOTE

The examples in this chapter make use of the AdventureWorks2008R2 database but
can be run in the AdventureWorks2008 database as well; however, there may be differ-
ences in the data values returned. For more information on downloading and installing
the AdventureWorks databases, see the Introduction.

 Download from www.wowebook.com

ptg

344

Encrypting Columns Using a Passphrase

As our first example, let’s keep things simple and look at how to encrypt a column using a
passphrase. To do so, let’s look at the Sales.CreditCard table, which currently stores card
numbers in cleartext:

select top 5 * from Sales.CreditCard

go

CreditCardID CardType CardNumber ExpMonth ExpYear ModifiedDate

------------ -------------- -------------- -------- ------- -----------

1 SuperiorCard 33332664695310 11 2006 2007-08-30

2 Distinguish 55552127249722 8 2005 2008-01-06

3 ColonialVoice 77778344838353 7 2005 2008-02-15

4 ColonialVoice 77774915718248 7 2006 2007-06-21

5 Vista 11114404600042 4 2005 2007-03-05

Credit card numbers really should not be stored in their cleartext form in the database, so
to fix this, first create a copy of the Sales.CreditCard table and define the
CardNumber_encrypt column as a varbinary(256) so you can store the encrypted credit
card numbers in the column (encrypted columns in SQL Server 2008 can be stored only as
varbinary values):

USE AdventureWorks2008R2;

GO

select CreditCardID,

CardType,

CardNumber_encrypt = CONVERT(varbinary(256), CardNumber),

ExpMonth,

ExpYear,

ModifiedDate

into Sales.CreditCard_encrypt

from Sales.CreditCard

where 1 = 2

Now, you can populate the CreditCard_encrypt table with rows from the original
CreditCard table using the EncryptByPassPhrase function to encrypt the credit card
numbers as the rows are copied over:

declare @passphrase varchar(128)

set @passphrase = ‘unencrypted credit card numbers are bad, um-kay’

insert Sales.CreditCard_encrypt (

CardType,

CardNumber_encrypt,

ExpMonth,

ExpYear,

CHAPTER 12 Data Encryption

 Download from www.wowebook.com

ptg

345Column-Level Encryption
1

2

ModifiedDate

)

select top 5

CardType,

CardNumber_encrypt = EncryptByPassPhrase(@passphrase, CardNumber),

ExpMonth,

ExpYear,

ModifiedDate

from Sales.CreditCard

Now, try a query against the CreditCard_encrypt table without decrypting the data and
see what it returns (note, for display purposes, the values in the CardNumber_encrypt
column have been truncated):

select * from Sales.CreditCard_encrypt

go

CreditCardID CardType CardNumber_encrypt ExpMonth ExpYear ModifiedDate

------------ ------------- --------------------- -------- ------- -----------

1 SuperiorCard 0x010000007C65089E... 11 2006 2007-08-30

2 Distinguish 0x010000000C624987... 8 2005 2008-01-06

3 ColonialVoice 0x01000000AA8761A0... 7 2005 2008-02-15

4 ColonialVoice 0x010000002C2857CC... 7 2006 2007-06-21

5 Vista 0x0100000095F6730D... 4 2005 2007-03-05

In the preceding results, you can see that the credit card numbers have been encrypted as
a varbinary value, and no meaningful information can be obtained from this. To view the
data in its unencrypted form, you need to use the DecryptByPassPhrase function and
convert the value back to an nvarchar(25):

declare @passphrase varchar(128)

set @passphrase = ‘unencrypted credit card numbers are bad, um-kay’

select CreditCardID,

CardType,

CardNumber = convert(nvarchar(25), DecryptByPassPhrase(@passphrase,

CardNumber_encrypt)),

ExpMonth,

ExpYear,

ModifiedDate

from Sales.CreditCard_encrypt

GO

 Download from www.wowebook.com

ptg

346

CreditCardID CardType CardNumber ExpMonth ExpYear ModifiedDate

------------ -------------- -------------- -------- ---------------------

1 SuperiorCard 33332664695310 11 2006 2007-08-30

2 Distinguish 55552127249722 8 2005 2008-01-06

3 ColonialVoice 77778344838353 7 2005 2008-02-15

4 ColonialVoice 77774915718248 7 2006 2007-06-21

5 Vista 11114404600042 4 2005 2007-03-05

So that’s a simple example showing how to encrypt a column. You may be thinking,
however, using a passphrase like this probably isn’t very secure. The passphrase used to
encrypt the column would have to be shared with all users and applications that need to
store or retrieve data in the CreditCard_encrypt table. A shared passphrase like this can
be easily compromised, and then the data is visible to anyone who can gain access to the
database. It is usually more secure to encrypt data using a symmetric key or certificate.

Encrypting Columns Using a Certificate
One solution to the problem of encrypting using a shared passphrase is to encrypt the
data using a certificate. A primary benefit of certificates is that they relieve hosts of the
need to maintain a set of passwords for individual subjects. Instead, the host merely estab-
lishes trust in a certificate issuer, which may then sign an unlimited number of certificates.

Certificates can be created within SQL Server 2008 using the CREATE CERTIFICATE
command. The certificate created is a database-level securable that follows the X.509 stan-
dard and supports X.509 V1 fields. The CREATE CERTIFICATE command can load a certifi-
cate from a file or assembly, or it can also generate a key pair and create a self-signed
certificate. The ENCRYPTION BY PASSWORD option is not required; the private key of the
certificate is encrypted using the database master key. When the private key is encrypted
using the database master key, you do not have to specify a decryption password when
retrieving the data using the certificate.

The first step is to create the certificate with the CREATE CERTIFICATE command:

USE AdventureWorks2008R2;

CREATE CERTIFICATE BillingDept01

WITH SUBJECT = ‘Credit Card Billing’

GO

After you create the certificate, the next step is to create a symmetric key that will be
encrypted by the certificate. You can use many different algorithms for encrypting keys.
The supported encryption algorithms for the symmetric key are DES, TRIPLE_DES, RC2,
RC4, RC4_128, DESX, AES_128, AES_192, and AES_256. The following code creates a
symmetric key using the AES_256 encryption algorithm and encrypts it using the
BillingDept01 certificate:

USE AdventureWorks2008R2;

CREATE SYMMETRIC KEY BillingKey2010 WITH ALGORITHM = AES_256

ENCRYPTION BY CERTIFICATE BillingDept01;

GO

CHAPTER 12 Data Encryption

 Download from www.wowebook.com

ptg

347Column-Level Encryption
1

2

Now you empty out the rows inserted previously in the CreditCard_encrypt table using
the PassPhrase encryption method by truncating it:

USE AdventureWorks2008R2;

Truncate table Sales.CreditCard_encrypt

Next reinsert rows from the CreditCard table, this time using the symmetric key associated
with the certificate to encrypt the data using the EncryptByKey function. The EncryptByKey
function requires the GUID of the symmetric key as the first parameter. You can look up this
identifier by running a query against the sys.symmetric_keys table or simply use the
KEY_GUID() function, as in this example:

USE AdventureWorks2008R2;

-- First, decrypt the key using the BillingDept01 certificate

OPEN SYMMETRIC KEY BillingKey2010

DECRYPTION BY CERTIFICATE BillingDept01

-- Now, insert the rows using the symmetric key

-- encrypted by the certificate

insert Sales.CreditCard_encrypt (

CardType,

CardNumber_encrypt,

ExpMonth,

ExpYear,

ModifiedDate

)

select top 5

CardType,

CardNumber_encrypt = EncryptByKey(KEY_GUID(‘BillingKey2010’),

CardNumber),

ExpMonth,

ExpYear,

ModifiedDate

from Sales.CreditCard

If you examine the contents of the CreditCard_encrypt table, you can see that they have
been encrypted:

select * from Sales.CreditCard_encrypt

go

CreditCardID CardType CardNumber_encrypt ExpMonth ExpYear ModifiedDate

------------ ------------- --------------------- -------- ------- -----------

1 SuperiorCard 0x0046C380E7A27749... 11 2006 2007-08-30

2 Distinguish 0x0046C380E7A27749... 8 2005 2008-01-06

 Download from www.wowebook.com

ptg

348

3 ColonialVoice 0x0046C380E7A27749... 7 2005 2008-02-15

4 ColonialVoice 0x0046C380E7A27749... 7 2006 2007-06-21

5 Vista 0x0046C380E7A27749... 4 2005 2007-03-05

Now, an authorized user that specifies the appropriate certificate can retrieve the data by
using DecryptByKey function:

USE AdventureWorks2008R2;

OPEN SYMMETRIC KEY BillingKey2010

DECRYPTION BY CERTIFICATE BillingDept01

select CardType,

CardNumber = convert(nvarchar(25), DecryptByKey(CardNumber_encrypt)),

ExpMonth,

ExpYear,

ModifiedDate

from Sales.CreditCard_encrypt

go

CreditCardID CardType CardNumber ExpMonth ExpYear ModifiedDate

------------ -------------- -------------- -------- ------- -----------

1 SuperiorCard 33332664695310 11 2006 2007-08-30

2 Distinguish 55552127249722 8 2005 2008-01-06

3 ColonialVoice 77778344838353 7 2005 2008-02-15

4 ColonialVoice 77774915718248 7 2006 2007-06-21

5 Vista 11114404600042 4 2005 2007-03-05

When you are done using a key, it is good practice to close the key using the CLOSE
SYMMETRIC KEY statement:

CLOSE SYMMETRIC KEY BillingKey2010

The keys defined in a database can be viewed through the system catalog table,
sys.symmetric_keys:

select name,

pvt_key_encryption_type,

issuer_name,

subject,

expiry_date = CAST(expiry_date as DATE),

start_date = CAST(start_date as DATE)

from sys.certificates

go

name pvt_key_encryption_type issuer_name

subject expiry_date start_date

------------- --------------------- -------------------

------------------- ----------- ----------

CHAPTER 12 Data Encryption

 Download from www.wowebook.com

ptg

349Column-Level Encryption
1

2

BillingDept01 MK Credit Card Billing

Credit Card Billing 2011-05-01 2010-05-01

The certificates defined in a database can be viewed through the system catalog tables,
sys.certificates:

select name,

key_length,

key_algorithm,

algorithm_desc,

create_date = CAST(create_date as DATE),

modify_date = CAST(create_date as DATE),

key_guid

from sys.symmetric_keys

go

name key_length key_algorithm algorithm_desc

create_date modify_date key_guid

------------------------ ----------- ------------- --------------

----------- ----------- ------------------------------------

##MS_DatabaseMasterKey## 128 D3 TRIPLE_DES

2010-04-30 2010-04-30 A3550B00-6BAE-41E2-A1BC-D784DC35779E

BillingKey2010 256 A3 AES_256

2010-04-30 2010-04-30 10C5C800-0B4C-44C2-9F71-5415007C2E81

If the usage of the key and certificate are no longer needed, they should be dropped from
the database:

DROP SYMMETRIC KEY BillingKey2010

DROP CERTIFICATE BillingDept01

NOTE

There is a lot more information about column-level encryption and key management that
could be discussed at this point, but such discussion would be beyond the scope of
this chapter; our intent here is to merely introduce the concepts of data encryption. For
more information on column-level encryption, refer to SQL Server 2008 Books Online.

 Download from www.wowebook.com

ptg

350

Transparent Data Encryption
As mentioned previously, transparent data encryption (TDE) is a new feature introduced in
SQL Server 2008 that allows an entire database to be encrypted. Unlike column-level
encryption, in TDE the encryption and decryption of data is performed automatically by
the Database Engine, and this is fully transparent to the end user and applications. No
changes to the database or applications are needed. Consequently, TDE is the simpler
choice when bulk encryption of data is required to meet regulatory compliance or corpo-
rate data security standards.

The encryption of a database using TDE helps prevent the unauthorized access of data in
the scenario in which physical media or backups have been lost or stolen. Transparent data
encryption uses a database encryption key (DEK) for encrypting the database. The DEK is
stored in the database boot record and is secured by a certificate stored in the master data-
base. The database master key is protected by the service master key, which is in turn
protected by the Data Protection API. When TDE is enabled on a database, attaching data
files to another SQL Server instance or the restoring of a backup to another SQL Server
instance is not permitted until the certificate that was used to secure the DEK is available.

NOTE

Optionally, the DEK can be secured by an asymmetric key that resides in a Hardware
Security Module with the support of Extensible Key Management. The private key of the
certificate is encrypted with the database master key that is a symmetric key, which is
usually protected with a strong password.

For example, if a hard drive that contains database files is stolen, without TDE, those data-
base files can be attached in another SQL Server instance, thus allowing access to the
nonencrypted data in those files. With TDE, the data and log files are automatically
encrypted, and the data within these files cannot be accessed without an encryption key.
Additionally, backups of databases that have TDE enabled are also encrypted automati-
cally. We’re all familiar with stories about how backup tapes containing sensitive informa-
tion have been lost or stolen. With TDE, the data in the backup files is completely useless
without also having access to the key used to encrypt that data.

The encryption and decryption of data with TDE are performed at the page level as data
moves between the buffer pool and disk. Data residing in the buffer pools is not
encrypted. TDE’s specific purpose is to protect data at rest by encrypting the physical files
of the database, rather than the data itself. These physical files include the database file
(.mdf), transaction log file (.ldf), and backup files (.bak). Data pages are encrypted as
they are written from the buffer pool to the database files on disk. Conversely, the data is
decrypted at the page level when the data is read in from the files on disk into the buffer
pool. The encryption and decryption are done using a background process transparent to
the database user. Although additional CPU resources are required to implement TDE,
overall, this approach offers much better performance than column-level encryption.
According to Microsoft, the performance hit averages only about 3–5%.

CHAPTER 12 Data Encryption

 Download from www.wowebook.com

ptg

351Transparent Data Encryption
1

2

TDE supports several different encryption options, such as AES with 128-bit, 192-bit, or
256-bit keys or 3 Key Triple DES. You make your choice when implementing TDE.

Implementing Transparent Data Encryption

Like many encryption scenarios, TDE is dependent on an encryption key. The TDE data-
base encryption key is a symmetric key that secures the encrypted database. The DEK is
protected using a certificate stored in the master database of the SQL Server instance
where the encrypted database is installed.

Implementing TDE for a specific database is accomplished by following these steps:

. Create a master key.

. Create or obtain a certificate protected by the master key.

. Create a database encryption key and protect it by the certificate.

. Configure the database to use encryption.

Listing 12.1 demonstrates the commands needed to encrypt the AdventureWorks2008R2
database, including the creation of a master key, certificate, and DEK protected by the
certificate.

LISTING 12.1 Encrypting the AdventureWorks2008R2 Database

USE master;

GO

--Create the master key which is stored in the master database

CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘mystrongpassword$$’;

GO

-- Create a certificate that is also stored in the master

-- database. This certificate will be used to encrypt a user database

CREATE CERTIFICATE MyCertificate

with SUBJECT = ‘Certificate stored in Master Db’

GO

-- Create a Database Encryption Key (DEK) that is based

-- on the previously created certificate

-- The DEK is stored in the user database

USE AdventureWorks2008R2

GO

CREATE DATABASE ENCRYPTION KEY

WITH ALGORITHM = AES_256

ENCRYPTION BY SERVER CERTIFICATE MyCertificate

GO

 Download from www.wowebook.com

ptg

352

-- Turn the encryption on for the AdventureWorks2008R2

ALTER DATABASE AdventureWorks2008R2

SET ENCRYPTION ON

GO

After you enable TDE, you might want to monitor the progress of the encryption. This can
be done by running the following query:

SELECT DBName = DB_NAME(database_id), encryption_state

FROM sys.dm_database_encryption_keys ;

GO

DBName encryption_state

-------------------- ----------------

tempdb 3

AdventureWorks2008R2 3

This query returns the database encryption state. A database encryption state of 2 means
that encryption has begun, and an encryption state of 3 indicates that encryption has
completed. When the tempdb database and user database you are encrypting reach a state
of 3, the entire user database and tempdb database are encrypted.

When TDE is enabled for a given database, encryption is applied to a variety of files
related to the database, including the following:

. Database Data Files—All data files that contain the database data are encrypted.
These files typically have the extension .mdf or .ndf.

. Database Log Files—The transaction log files are encrypted so that no clear text is
visible in the files. These files typically have the extension .ldf.

. Database Backups—All database backups, including full, differential, and log, are
encrypted.

. Tempdb—If any databases on a server are encrypted with TDE, the tempdb database
is also encrypted.

In addition to these files, you can also manually enable TDE on the distribution and
subscriber database involved in replication. This encrypts a portion of data involved in
replication, but there are still some unencrypted files. Snapshots from snapshot replica-
tion as well as the initial distribution of data for transactional and merge replication are
not encrypted.

Managing TDE in SSMS

You can also view and manage transparent data encryption in SQL Server Management
Studio. To do so, right-click on the database in the Object Explorer for which you want to
configure TDE and select Tasks; then select Manage Database Encryption. If you are setting
up the initial configuration for TDE in a database, you see a dialog like that shown in
Figure 12.2.

CHAPTER 12 Data Encryption

 Download from www.wowebook.com

ptg

353

FIGURE 12.2 Enabling TDE in SSMS.

Transparent Data Encryption
1

2

The options available in this dialog correspond to commands shown in Listing 12.1. You
specify the encryption algorithm to be used and the server certificate used to protect the
database encryption key. When you are ready to enable TDE for the database, put a check
mark in the Set Database Encryption On check box.

If TDE is already enabled for a database, the dialog changes to provide you with options to
re-encrypt the database encryption key and to regenerate the DEK using a different
encryption algorithm. You can also enable/disable database encryption (see Figure 12.3). A
second page displays the current TDE properties and encryption state of the database (see
Figure 12.4).

Backing Up TDE Certificates and Keys

The most important issue to consider when using TDE is that you must back up and retain
the certificate and private key associated with the encryption. If these things are lost or
unavailable, you are not able to restore or attach the encrypted database files on another
server. The following warning message displayed after creating a certificate drives home
this point:

Warning: The certificate used for encrypting the database

encryption key has not been backed up. You should immediately

back up the certificate and the private key associated with the

certificate. If the certificate ever becomes unavailable or if you

must restore or attach the database on another server, you must have

backups of both the certificate and the private key or you will not

be able to open the database.

Backup up the certificate and private key

 Download from www.wowebook.com

ptg

354

FIGURE 12.4 Viewing TDE properties in SSMS.

FIGURE 12.3 Modifying TDE properties in SSMS.

Backing up the certificate, private key, and master key for the server is relatively straightfor-
ward. An example of backing up the master key is shown in the following SQL statement:

BACKUP MASTER KEY TO FILE = ‘c:\mssql2008\backup\masterkey’

ENCRYPTION BY PASSWORD = ‘somekeybackuppassword$$’

CHAPTER 12 Data Encryption

 Download from www.wowebook.com

ptg

355Transparent Data Encryption
1

2

Backing up the certificate and associated private key also uses the BACKUP command. The
following example backs up the certificate created in Listing 12.1:

BACKUP CERTIFICATE MyCertificate TO FILE = ‘c:\mssql2008\backup\MyCertificate’

WITH PRIVATE KEY (FILE = ‘c:\mssql2008\backup\MyCertificatePrivateKey’ ,

ENCRYPTION BY PASSWORD = ‘somecertbackuppassword$$’)

If you want to restore a database backup on another server instance, a master key for the
server must exist. If one does not exist, you can create one by using the CREATE MASTER
KEY ENCRYPTION syntax. After creating the master key, you are able to create the TDE
certificate from a backup of the certificate from the original SQL Server instance, as shown
in the following example:

CREATE CERTIFICATE MyCertificate

FROM FILE = ‘c:\mssql2008\backup\MyCertificate’

WITH PRIVATE KEY (FILE = ‘c:\mssql2008\backup\MyCertificatePrivateKey’,

DECRYPTION BY PASSWORD = ‘somecertbackuppassword$$’)

After the certificate is restored on the other server instance, you can restore the encrypted
database backup. At this point, the restore can be performed just as you would restore any
unencrypted database backup. The restored database is also encrypted and behaves like
the original TDE database.

TDE is a relatively simple and effective way to encrypt and protect your data. Other
encryption methods that exist with SQL Server can protect different elements of your
database. Encryption can be applied to columns of data, an entire table, as well as the
communication that occurs between databases and the clients that access them. The level
of encryption and need to use it depend on the type of data you are securing.

Limitations of TDE

Although TDE offers many benefits over column-level encryption, it has some of its own
limitations, which are important to consider. They include

. TDE is not granular like column-level encryption. The entire database is encrypted,
but only on disk. Sensitive data such as Social Security numbers or credit card
numbers can be seen by anyone who has permission to access those columns. TDE
also does not prevent DBAs from viewing any data in the database.

. TDE does not protect communications between client applications and SQL Server.
Network encryption methods should be used to protect sensitive data flowing over
the network.

. FILESTREAM data is not encrypted.

. When any one database on a SQL Server instance has TDE enabled, the tempdb data-
base is also automatically encrypted. This can affect performance for both encrypted
and nonencrypted databases running on the same instance.

 Download from www.wowebook.com

ptg

356 CHAPTER 12 Data Encryption

TABLE 12.1 Comparison of Column-Level Encryption and Transparent Data Encryption

Features/Limitations Column-Level Encryption Transparent Data Encryption

Data is encrypted on
disk and backups

Yes Yes

Supports HSMs Yes Yes

Data level of encryp-
tion

Granular, at the column level Encrypts the entire database only

User level of encryp-
tion

Encrypted data can be restricted at
the user level on a need-to-know
basis

Any user with sufficient database
permissions can view encrypted
data

Impact on applica-
tions

Database applications need to be
modified

Completely transparent to applica-
tions and end users

Indexing of encrypted
data

Encrypted columns cannot be
indexed

No restrictions on indexes

Performance impact May be significant depending on
the type of encryption key used

Small impact on performance
(3–5%)

. Databases encrypted with TDE can’t take advantage of SQL Server 2008’s new backup
compression. If you want to take advantage of both backup compression and
encryption, you have to use a third-party application, such as Idera's SQL Safe
Backup or Redgate's SQL Backup, which both have the capability to both compress
and encrypt backups.

Column-Level Encryption Versus Transparent Data
Encryption
So is column-level encryption or transparent data encryption the right solution for your
systems? Both column-level encryption and transparent data encryption provide a means
of obfuscating sensitive data to protect it from unauthorized access. However, they do so
in different ways.

TDE prevents the unauthorized access of the contents of the database files and backups,
but does not protect sensitive data within the database from being viewed by authorized
users or database administrators. Column-level encryption provides more granular control
over the data being encrypted but is not transparent to your applications.

Table 12.1 lists the similarities and differences between column-level encryption and TDE.

For some organizations, you might want to consider implementing both column-level
encryption along with TDE for a database. Although this combination is more complex to
set up and administer, it offers greater security and encryption granularity than does
either method used alone. TDE protects the database files and backups from unauthorized

 Download from www.wowebook.com

ptg

357Summary
1

2

access, whereas column-level encryption protects sensitive data within the database from
being accessed by authorized users, including DBAs. Implementing TDE in conjunction
with cell-level encryption provides a layered approach to data security, which enhances its
effectiveness.

The main disadvantage to implementing column-level encryption is that it isn’t transpar-
ent to the end-user applications. In addition to requiring changes to the database schema,
it also requires changes in the applications to include the proper function calls to encrypt
and decrypt the data as it is stored and retrieved. Another issue with column-level encryp-
tion is that you cannot index encrypted columns, nor can you generate statistics on the
encrypted columns. This can affect query performance because search arguments that
reference encrypted columns cannot be optimized. For this reason, typically only the most
sensitive columns of a table that do not need to be indexed are encrypted.

Summary
Chapter 11, “Security and User Administration,” discusses methods to secure and control
the access to your SQL Server data via login and user security to prevent unauthorized
users from accessing your SQL Server instances and databases. Column-level encryption, as
discussed here, takes these protections a step further by preventing authorized users, such
as your database or server administrators, from viewing sensitive data within a database.
Transparent data encryption protects all your data from being accessed by unauthorized
users in the event that your database files or backups are lost or stolen.

Chapter 13, “Security and Compliance,” discusses security methods available in SQL
Server and how they can be implemented to meet your security compliance requirements.
It also covers the new data auditing methods you can use to track changes to your data
and database objects.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 13

Security and Compliance

IN THIS CHAPTER

. Exposure and Risk

. Across the Life Cycle

. The Security Big Picture

. Identity Access Management
Components

. Compliance and SQL Server

. SQL Server Auditing

. Setting Up Auditing via T-SQL

. SQL Injection Is Easy to Do

As you complete what you think is your best database
design and application on the planet, you stop yourself
dead in your tracks and say, with hesitation, “What about
the security and compliance implications?” Now is not the
time to start thinking about these aspects. In fact, as we
show you in this chapter, you should start considering these
issues from the beginning of the development life cycle.

With the growth of software and database development in
the world, there is a rise in the demand for security best
practices to achieve the goals of creating secure software.
Best practices must start from the glass and reach through
the application, to the database layer, and even to the oper-
ating system and the physical file levels. Best practices are
also meant to be scrutinized for overall results on the basis
of the level of security, efficiency, and complexity they
provide. How much and which best practice to use can also
be considered on the basis of confidentiality, integrity, and
availability (which is known as CIA). Software security must
be considered at many layers and is additive in nature—
each layer providing the necessary security and compliance
of one part of the bigger puzzle. To get it right, you must
“design in” security from the beginning.

In this chapter we discuss security aspects in conjunction
with a traditional development life cycle; this includes
aspects such as vulnerability assessments, threat modeling,
and identity management. You can take many steps to
prevent SQL injection, for example, and other vulnerabilities.
We also talk about compliance aspects in regards to global
and regional regulations such as the Health Insurance
Portability and Accountability Act (also known as HIPAA),

 Download from www.wowebook.com

ptg

360 CHAPTER 13 Security and Compliance

Limited Exposure
(Internal/Intranet Only)

Exposable
(External Internet)

Low
Sensitivity
(Public)

Low Risk Medium Risk

Medium
Sensitivity

(Confidential)
Medium Risk High Risk

High
Sensitivity

(Highly Confidential)
High Risk High RiskD

at
a/

A
p

p
lic

at
io

n

Exposure End Points

FIGURE 13.1 The exposure endpoints “risk” by category of data/application sensitivity.

the Payment Card Industry (PCI) standards, and data privacy regulations such as
Personally Identifiable Information (PII).

We also provide a simple example of using the SQL Server Auditing feature that can be
extremely useful in identifying and monitoring compliance of access and usage at the SQL
Server database or object levels. And lastly, we show you how to do some malicious
damage with SQL injection. We show you how to do this so that you can learn how to
prevent it. But first, let’s try to better understand what exposure and risk are all about.

Exposure and Risk
You must understand that security is really “risk management” or “risk mitigation.” It can
be very difficult to completely secure an application or environment. However, you are
able to control or limit damage by following certain practices. Your data and applications
have different levels of security requirements depending on the exposure endpoints (an
exposure endpoint is defined by who is using the application and data). Figure 13.1 shows a
simple matrix of data and application sensitivity versus the exposure endpoints of that
application. By definition, the more external facing your application is (such as to the
Internet) and the higher the sensitivity of the data involved, the higher risk precautions
you have to take.

Let’s say you have an internal company SQL Server–based application that has only very
low sensitivity data (public-facing data such as benefits data). You freely share this type of
data with whoever wants to see it. The types of controls or rigor are likely very small for
this type of application—perhaps as simple as an integrated Active Directory with your
SQL Server and read-only access for all user roles.

On the other side of the spectrum, you may have applications generating financial trans-
actions with credit card data that must have zero vulnerabilities, encrypt data across the
network, encrypt data at rest within SQL Server, and use the new SQL auditing feature for
database-level monitoring of all data accesses.

 Download from www.wowebook.com

ptg

361Across the Life Cycle
1

3

A big part of the risk management aspect is understanding what the impact of this risk
would be if your system is compromised. It is always best to identify this aspect up front
in some type of risk “cost” or “impact.” Many financially strong companies have gone out
of business as a result of security breaches they had not anticipated or considered. It is
better to plan for such risk from the beginning.

Another aspect to consider is staying compliant with data you use in nonproduction envi-
ronments. Often, companies needlessly put their entire livelihood at risk by using live
data values in nonproduction environments. If PII or other company-sensitive data is
available in your nonproduction environments (such as in Development, Test, and
Quality Assurance platforms), you are violating laws and regulations around the globe and
putting your company and your customers at risk. You can easily employ data subsetting
and masking to your nonproduction data. Putting this practice in place is a great idea.

Across the Life Cycle
We introduce formal development life-cycle concepts in other chapters. In those chapters,
such as Chapter 41, “A Performance and Tuning Methodology,” the emphasis is on design-
ing in performance from the beginning. A part of good design is how you have complied
with laws and regulations, how you have protected the data you access or store, how you
have secured your application and data, and how you have verified all this. For these
reasons, we provide some details and describe what must be done across the development
life cycle to properly address security and compliance. We term this process the “risk miti-
gation” of what you build.

Figure 13.2 shows a formal waterfall development life cycle with key security and compli-
ance items identified at each relevant phase. Getting into the risk mitigation business starts
by giving security and compliance the full commitment and recognition they deserve.

This step starts with a clear statement of security and compliance objectives as you are
sizing up your application in the assessment phase. These objectives often take the form
of stating how you will address the rules, laws, data sensitivities, access considerations,
and eventual end users (and the countries they reside in).

Next, you focus on the clear identification and specification of all security and scope of
compliance. You look at the details of exactly where the compliance or security lines need
to be, determine how you must fully address them, and clearly identify which must be
adhered to for your application. Often, organizations have security information analysts
and data privacy groups that contribute to this part of your development efforts. They, in
turn, bring others to the table, such as legal, auditing, and even corporate communica-
tions folks.

As you go into the design phase, you must complete the full analysis and design of every
security and compliance element for your application. As part of this analysis and design
phase, you should start enumeration test plans that must be completely verified before
your application can be delivered to its users.

 Download from www.wowebook.com

ptg

362

Security & Compliance

ImplementationDeploy

Development
Life Cycle

Phases

Construct

Design

Initiate

Risk Mitigation/Compliance

Statement of Security & Compliance Objective

Security & Compliance Scope Identified

Security & Compliance Analysis & Design

Security & Compliance Prototyping

Security & Compliance Test Plans

Security & Compliance Code/Test

Security &
Compliance
Acceptance

System Test &
Acceptance

Code & Test

Prototype

Identify &
Design

Assessment

FIGURE 13.2 Security and compliance across the development life cycle.

In the prototyping phase, you have a chance to start demonstrating how security, access,
privacy, and compliance will be addressed. This phase is very important because of all the
complications, rules, laws, and issues that are at stake and must be verified. We have not
run a development effort without extensive prototyping of as many security and compli-
ance tests as are humanly possible. It is this risk that must be fully addressed early and
never as an afterthought!

As you fully code and test your database and application, you must never skip the secu-
rity testing and validation. It is best to put these tests first in your overall test plans. As
your application completely takes shape, a complete application scan for vulnerabilities
can be performed. Popular tools such as AppScan are essential tools of the trade for
performing this task.

Finally, as you near deployment, you should make sure all the security and compliance
acceptance tests are met. You need to capture these results fully because the successful
completion of this part of acceptance testing can be shown in SOX compliance auditing.

The Security Big Picture
Now, let’s turn to the bigger security and compliance picture that shows many of the
layers involved in a broader security enforcement approach. Figure 13.3 shows many of
these layers, starting at the top with solid guidelines, policies, and compliance-reporting
capabilities. You must start with these components to guarantee that you are aware of
what must be done and have a way to show you are doing what the policies outline.

Next, you must define and create other aspects of security and compliance, such as security
event management, alerting and monitoring, complete threat models, and vulnerability

CHAPTER 13 Security and Compliance

 Download from www.wowebook.com

ptg

363

Internet Protocol
Network Access

Control
Disk

Encryption (host)Autonomous System

File Integrity Checking (MD5, SH1, ..) Policy Compliance

Distributed Denial of Service (DDoS)

Access Control Lists (ACLs)Intrusion Detection/Intrusion Prevention

Database Security Auditing

Business Continuity/Disaster Recovery Security Event Management Alerts and Monitoring

Vulnerability Assessment Threat Modeling Identity Management/SSO

Security Standards & Guidelines Security Compliance Reporting

FIGURE 13.3 Security enforcement layers and components.

The Security Big Picture
1

3

assessment objectives. These types of components must also reach into and be enforceable
across major events such as disaster recovery (to ensure business continuity) and continue
to support what you have deployed around identity management and single sign-on.

The next inner layer is where your database security is defined, along with any database-
level or database instance–level auditing you put into place. It is also this layer where
messy things such as SQL injection can occur and Denial of Service often surfaces. Getting
some type of intrusion detection and prevention scheme into place is essential. Clear
access controls are also essential. Later in this chapter, we describe some basic SQL
Server–based auditing at the database level. Chapters 11, “Security and User
Administration,” and 12, “Data Security,” also describe much of what you must do around
overall security administration and database-level security. Figure 13.3 highlights these
two critical areas.

Moving further down the layers of security, you find file integrity checking, secure
Internet protocols, disk-level encryption, and other security-enhancing items. They all
work together to bring you what should be a more secure (and compliant) place to deploy
your applications within.

With SQL Server 2008 R2, you are essentially out-of-the-box ready to do absolutely
nothing. In other words, Microsoft has taken the policy to “allow nothing,” and any
access, execution, or other action must be explicitly granted. Believe it or not, this is the
right thing to do. This approach ensures that all objects and accesses are explicitly
declared and, by definition, are fulfilling security and many compliance regulations.

 Download from www.wowebook.com

ptg

364 CHAPTER 13 Security and Compliance

The Open Web Application Security Project (OWASP; www.owasp.org) lists its recent top
10 application vulnerabilities as follows:

. SQL Injection

. Cross-Site Scripting

. Broken Authentication and Session Management

. Insecure Direct Object References

. Cross-Site Request Forgery

. Security Misconfiguration

. Failure to Restrict URLs

. Unvalidated Redirects and Forwards

. Insecure Cryptographic Storage

. Insufficient Transport Layer Protection

Identity Access Management Components
One of the key areas identified in the security big picture (as you can see looking back at
Figure 13.3) is identity management. It is key in the sense that well-managed identities are
essential to well-managed security. There is a quite a bit to consider when talking about
identities. Figure 13.4 shows a common “identity universe” for a company that has both
internal- and external-facing applications. In other words, identities are both customers
that interact with the business and internal identities such as employees and other work-
force identities (contractors, temps, partners, and so on). Both sets of identities must be
managed well, and often there are overlapping identities that require accesses (and iden-
tity management) in both areas (internal and external).

Often, companies use one internal-facing LDAP directory such as Microsoft’s Active
Directory for managing their internal identities and then another LDAP directory such as
Sun One LDAP for managing all external-facing identities (for forums, eStore, and so on).
Then they create triggers or synchronization jobs that do a “search before create” type of
processing when new identities are created within either LDAP directory. Because overlap
is rare, not much extra “create” overhead occurs, but when they do overlap, only one
identity (such as a partner identity that might be in that company’s internal and external
LDAP directories) gets created. This is effectively “mastering” the user identities. It is
recommended that you consider both sources of identities at all times. You should also
establish strict access roles for all identities with the least rights going to anonymous
identities.

More and more companies are also now moving to concepts such as Open ID, where a
company can utilize the authentication and identification established by third-party Open
ID providers and grant trust to these identities with very high confidence. The industry is
moving this way fast. Figure 13.5 shows the logical components of identity access
management.

 Download from www.wowebook.com

www.owasp.org

ptg

365Identity Access Management Components
1

3

Company Identities

Internally-Facing
Identities

Externally-Facing
Identities

Employees

Temps

Others

Partners
(and their Contacts)

Forums

Customers
(Registered/Subscription/Anonymous)

Prospects

Leads

Opportunities

Touch/Use
Internal

Applications/Data

Sell/Service/Buy/Use
Products, Services, Data

Mergers and
Acquisitions

Social
Networking

App
Store…

Identity Universe

Mergers and
Acquisitions

Mergers and
Acquisitions

FIGURE 13.4 Identity universes (internal and external-facing applications).

Logical Components of
Identity Access Management

Applications/Access Points

Access ManagementIdentity Life-Cycle Management

Directory Services

- User Management
- Credential Management
- Entitlement Management
- Identity Integration
- Provisioning/De-provisioning

- Authentication & SSO
- Trust & Federation
- Entitlements & Authorization
- Security Auditing/Compliance
- Identity Propagation
- Impersonation & Delegation

- Users - Attributes
- Groups - Roles
- Credentials - Policies

Applications/Access Points

FIGURE 13.5 Logical components of identity access management.

 Download from www.wowebook.com

ptg

366 CHAPTER 13 Security and Compliance

This figure shows that you must carefully address full identity life-cycle management,
which includes user ID management, credential management, entitlement management,
identity integration (between multiple LDAPs), and provisioning and deprovisioning iden-
tities. Access management is all about authentication, single sign-on, authorization, and
impersonation and delegation rules. And, the directory services themselves define the
users, groups, all attributes (or elements) of a user or group, roles, policies to enforce, and
credentials to be used. All applications and access points must be plugged in to this iden-
tity access management framework. All risk is minimized by a sound identity access
management foundation.

Compliance and SQL Server
On the global level, hundreds of compliance laws are in place that affect almost every
aspect of data access, data protection, data movement, and even data storage. Countries
such as Germany now have some of the most severe data compliance rules on the planet,
such as strict control of how certain personal data is stored and what personal data can be
stored; these rules even prohibit personal data from being transmitted (or moved) across
German borders. If you are planning to create applications and databases that will span
countries or contain sensitive or private data, you must “design in” the rules and enforce-
ments from the beginning (as we have been stressing throughout this chapter).

Let’s address the most common “sensitive” data: Personal Identifiable Information (or PII
for short). PII data is at the center of most global data privacy laws and regulations. As
you can see from a subset of the PII data model in Figure 13.6, PII data is any personal
information that identifies an individual, such as name; address; driver’s license number;
other government-issued identification (such as passport number); and even gender,
ethnicity, and age.

If you have any databases or applications that have this type of data in it, you are bound
by local and/or regional laws and regulations whether you like it or not. It is the law. You
must then protect this data in accordance with those regulations and laws; otherwise, you
become liable for fines, lawsuits, or worse (risk exposure of that data could put you out of
business). As you can also see in Figure 13.6, there are different sensitivity levels around
PII data. Something like a person’s name is considered low sensitivity, whereas an
employee ID is considered medium sensitivity. And marital status, gender, Social Security
number, bank account number, driver’s license number, and passport number are consid-
ered high sensitivity and often must be treated with special care and feeding with capabili-
ties such as encryption in transit and at rest (while stored in a table).

Following is a list of some of the many laws and regulations that have been put into effect
and that you will likely have to address in your application:

. The Health Insurance Portability and Accountability Act (also known as HIPAA) was
introduced in 1996 to protect critical health and patient information. HIPAA forces
companies to strictly control data identified under its jurisdiction.

 Download from www.wowebook.com

ptg

367Compliance and SQL Server
1

3

Billing Profile
Non-K

"Card Number"
"Card Type"

PIN
"Security Code"

Bank
"Bank Account Number"
"Bank Routing Number"

Customer Physical Address
Non-K
"Street Address"

City
State

"Postal Code"

Personnel Demographic
Non-K

BirthDate
Gender
"Marital Status"
Children

Government Identification
Non-Ke

"Social Security Number"
"Passport Number"

"Drivers License Number"
"Other Government ID"

Purchases
Non-K

Product
"Purchase Date"

"Purchase Amount"
"Renewal Date"

Personnel Name
Non-K

"First Name"
"Middle Name"
"Last Name"

Internal Contact Information
Non-K

"Office Phone Number"
"Job Title"

"Site Location"

Consumer Customer Name
Non-Ke

"First Name"
"Last Name"

Customer Contact
Points

Personnel
Non-K

"Employee ID"

Sales Entity

Enterprise/SMB Customer

Consumer Customer

Customer Electronic
Address

Low Sensitivity

Medium Sensitivity

High Sensitivity

characterized by

Referenced by

Provided
Known by

Made

Made

Made

Specifies

Installed

provided

Installed

Identified via

has provided

Known by

Specifies

FIGURE 13.6 Personally Identifiable Information (PII).

. The Sarbanes-Oxley Act (known as SOX), put into place in 2002, requires auditors to
assess and report on the effectiveness of a company’s internal controls on informa-
tion and extend into the authorization of access and updates to data.

. The Gramm-Leach-Bliley Act (GLBA) of 1999 further defines steps that must be taken
by financial institutions to protect, secure, and prevent access of core financial data.

. California’s Information Practices Act of 2005 details strict controls around PII data,
what needs to be encrypted, and laws surrounding breaches of controlled data.

. The Children’s Online Privacy Protection Act, passed in 1998, focuses on the proce-
dures to protect the confidentiality, security, and integrity of personal information
collected from children.

Other industry-oriented laws and regulations have emerged, such as the Payment Card
Industry data security standard (PCI standard). It is focused on what must be done to
ensure credit card information is secure from the moment a customer makes a purchase
until the merchant disposes of the credit card transactions.

Two great books on security and compliance are Cryptography in the Database by Kevin
Kenan (2006, Addison-Wesley) and The Executive Guide to Information Security by Mark
Egan (2005, Addison-Wesley). These books will make great focused additions to your tech-
nology library.

 Download from www.wowebook.com

ptg

368 CHAPTER 13 Security and Compliance

SQL Server Auditing
Introduced with SQL Server 2008 is the SQL Server Audit feature. This long-overdue feature
now adds a great native auditing functionality into the SQL Server Database Engine.

NOTE

The SQL Server Audit feature is available only in the SQL Server 2008 Enterprise and
Developer Editions.

An audit is the combination of several elements into a single package for a specific group
of server actions or database actions. The components of SQL Server Audit combine to
produce an output that is called an audit.

The SQL Server Audit feature in SQL Server 2008 is intended to replace SQL Trace as the
preferred auditing solution. SQL Server Audit is meant to provide full auditing capabilities,
and only auditing capabilities, unlike SQL Trace, which also serves for performance debug-
ging. The SQL Server Audit feature is built on top of Extended Events, a new high-perfor-
mance eventing infrastructure introduced in SQL Server 2008. SQL Server Audit leverages
the performance benefits of Extended Events, which provides both asynchronous and
synchronous write capabilities (by default, SQL Server Audit uses the asynchronous event-
ing model).

NOTE

By default, the audit events are written to the audit target in an asynchronous fashion for
performance reasons. When tighter guarantees of audit records being written to the
audit log are required, you can select synchronous write, with the understanding that
some amount of performance degradation should be expected. The choice of asynchro-
nous or synchronous is controlled by the QUEUE_DELAY option of the CREATE AUDIT DDL.

SQL Server Audit is also tightly integrated with the Windows operating systems and can
push (write) its audits to the Windows Application or Security Event Log. With SQL Server
Auditing, you can set up auditing of just about any event or execution within SQL Server,
and it can be as granular as you need (right down to a table and operation level). This
capability is important because not only can you track all these events, but you can use
this auditing capability to fulfill application and database audit compliance and look for
patterns of misuse, or even specific “hot” objects that contain the most sensitive data in
your database.

As you can see in Figure 13.7, a branch under each database called Security contains
several of the common security-related nodes that you’ve seen before (Users, Roles,
Schemas, and so on). But now, there is a Database Audit Specifications branch from
which you can set up and view the database audit specifications you have defined. You

 Download from www.wowebook.com

ptg

369SQL Server Auditing
1

3

FIGURE 13.7 The new Database Audit Specifications item in the SQL Server
Management Studio (SSMS) Object Explorer.

can have as many specifications as you want, and again, they can be at varying levels of
granularity.

Before you can set up a Database Audit Specification, however, you must first set up a SQL
Server Audit object. To do this, you must use a couple of new entries in the Object
Explorer under the Security folder at the SQL Server instance level: Audits and Server
Audit Specifications.

Essentially, three main objects describe audits in SQL Server 2008:

. The Server Audit object—Used to describe the target for audit data, plus some top-
level configuration settings. This destination can be a file, the Windows Application
log, or the Windows Security log. The Server Audit object contains no information
about what is being audited—just where the audit data is going. Multiple Server
Audit objects can be defined with each object independent from one another (that
is, they can each specify a different destination).

. The Server Audit Specification object—Used to describe what to audit at a server
instance-wide level. A server audit specification must be associated with a Server
Audit object to define where the audit data is written. There is a one-to-one relation-
ship between the Server Audit Specification object and the Server Audit object.

. The Database Audit Specification—Used to describe what to audit at a specific
database level. Where the audit data is written is determined by the Server Audit
object it is associated with. Each database audit specification can be associated with

 Download from www.wowebook.com

ptg

370 CHAPTER 13 Security and Compliance

FIGURE 13.8 Creating a new Server Audit object in Object Explorer at the Server instance
level.

only one server audit. A server audit can be associated with audit specifications for
multiple databases, but only one database audit specification per database.

To create a new Server Audit object, right-click on the Audits item in Object Explorer and
select New Audit (see Figure 13.8).

When you set up a Server Audit object, you specify where the audit information will be
written to. In Figure 13.9, you can see that we are creating a server audit named
NEW_SQL_Server_Audit and are defining it to use the Application log at the Windows oper-
ating system level as the audit destination. You can also choose to write to the Windows
Security log or to a text file. Events written to the Application or Security Event log can be
accessed with Event Viewer or with specialized Event log management software, such as
Microsoft Systems Center Operations Manager.

NOTE

Depending on the volume of audit targets being monitored, better performance may be
achieved by using a file as the audit target rather than the Windows Event log. Also,
when written to a file, the audit data is accessible through a built-in table-valued func-
tion (fn_get_audit_file), which allows the use of regular SELECT syntax to query the
audit trail.

NOTE

You can also configure the Audit object to shut down the SQL Server instance if, for
whatever reason, SQL Server Audit is unable to write its audit events to the audit tar-
get. Although shutting down the server instance may seem drastic, doing so may be
necessary for certain scenarios, to ensure that the server cannot operate without its
activity being audited.

 Download from www.wowebook.com

ptg

371SQL Server Auditing
1

3

FIGURE 13.9 The Create Audit dialog.

FIGURE 13.10 The Create Database Audit Specification dialog.

After you set up the Server Audit object, the next step is to go to the Database Audit
Specifications folder, as shown in Figure 13.7, in the database for which you want to set
up auditing. Right-click this folder and select New Database Audit Specification to bring
up the dialog shown in Figure 13.10. This is where you define your database-level audits.

In the Create Database Audit Specification dialog, you specify the name of the Database
Audit object and the Server Audit object it will be running under. In this example, the
Database Audit name is NEW_Database_Audit_Specification, and it will be running under

 Download from www.wowebook.com

ptg

372 CHAPTER 13 Security and Compliance

the NEW_SQL_Server_Audit Audit object defined in Figure 13.9. In this example, the data-
base audit is being set up to audit any SELECT statements (reads) run against the Employee
table (which, of course, contains company-sensitive employee data) by any user (public).

At this point you have created a Server Audit object and database audit specification asso-
ciated with the server audit. However, neither of these audits is enabled. You can enable
them by right-clicking on each and selecting Enable. As soon as the Server Audit object is
enabled, it begins auditing and writing audit records to the specified destination (in this
example, the Windows Application log).

NOTE

If your SQL Server login is configured for a default database other than master,
enabling the SQL Server Audit object via SSMS fails with the following message:

Cannot alter a server audit from a user database. This operation must be

performed in the master database.

If you receive this error, you need to enable/disable the server audit via T-SQL, as
shown in Listing 13.1.

You can review the details by right-clicking on the Server Audit and selecting View Audit
Logs or, if you are auditing to the Windows Application or Security Event Log, by opening
the Windows Event Viewer directly. One of the advantages of opening the Audit log from
within SSMS is that it automatically filters the log to show only SQL Server Audit events.
In Figure 13.11, you can see that we’ve opened the Log File Viewer and selected to view
the Application log (where we directed our SQL Server Audit to go). A few SELECT state-
ments were run against the Employee table and, sure enough, the audit information of the
SELECT statements shows up in the Application log.

Within the Log File Viewer, you can filter your audit results or search them to look for
patterns, specific violations, and so on. From the Log File Viewer, you also have the option
of exporting the audit logs to a text file or to a comma-separated values (CSV) file. With a
CSV file, you could import the audit logs into a database for further analysis and correla-
tion. It’s up to your security and audit team to decide how these audits are to be used.

In addition to database-level auditing of actions at the database level, you can also set up
auditing of server-level events, such as management changes and logon and logoff opera-
tions. These are set up in the SSMS Object Explorer through the Server Audit Specifications
item in the Security folder for the SQL Server instance (refer to Figure 13.8).

Setting Up Auditing via T-SQL
Alternatively, you can set up auditing with T-SQL statements and also switch the audit
off and on using the ALTER SERVER AUDIT command by using WITH (STATE=ON) or WITH
(STATE=OFF), as shown in Listing 13.1.

 Download from www.wowebook.com

ptg

373Setting Up Auditing via T-SQL
1

3

FIGURE 13.11 Log File Viewer showing the audit events of a SQL Server Audit object.

LISTING 13.1 Setting Up Auditing with T-SQL

/* Create the SQL Server Audit object, and send the results to the

Windows Application event log. */

USE master;

go

CREATE SERVER AUDIT NEW_SQL_Server_Audit

TO APPLICATION_LOG

WITH (QUEUE_DELAY = 1000, ON_FAILURE = CONTINUE);

GO

/* Create the Database Audit Specification object using an Audit event */

USE AdventureWorks2008R2;

GO

CREATE DATABASE AUDIT SPECIFICATION NEW_Database_Audit_Specification

FOR SERVER AUDIT NEW_SQL_Server_Audit

ADD (SELECT

ON OBJECT::[HumanResources].[Employee]

BY [public])

WITH (STATE = ON);

GO

 Download from www.wowebook.com

ptg

374 CHAPTER 13 Security and Compliance

/* Enable the audit. */

USE master;

go

ALTER SERVER AUDIT NEW_SQL_Server_Audit

WITH (STATE = ON);

/* Test the audit is working */

USE AdventureWorks2008R2;

GO

SELECT * from HumanResources.Employee;

GO

/* Disable the audit. */

USE master;

GO

ALTER SERVER AUDIT NEW_SQL_Server_Audit

WITH (STATE = OFF);

GO

It is recommended that you create your audit specifications with scripts so that you can
easily manage them and not have to re-create them via SSMS dialogs.

SQL Injection Is Easy to Do
As we previously stated, SQL injection is the number-one security vulnerability globally as
reported and tracked by the Open Web Application Security Project (OWASP; www.owasp.
org). Because of this continued vulnerability, we decided to show you how to do SQL
injection. However, keep in mind that we are showing you how to do it so that you can
prevent this situation from happening to you. You need to make sure you include the
vulnerability checks as a part of your coding and design reviews. Then this will never
happen to you.

If you have a typical .NET forms application that prompts users to provide filter criteria to
locate information, this is often a perfect place for hackers to add their own malicious
code to do damage. Even your own employees might be hackers or want to cause harm.
We call these folks “Evil SQL’ers.”

The most common way SQL injection occurs is with the direct insertion of code into a
variable that is part of a SQL statement. In other words, a user-defined variable is concate-
nated with a partially defined SQL statement and then subsequently executed as part of
the application. The hacker adds a terminating character to the first part of the input and
then follows it up with his or her own destructive SQL statement.

Let’s consider the following simple Contact Name search application as an example. A
.NET forms application might define a variable called ContactFirstName and then prompt
the end user for a value to search for any contact’s first name that begins with a set of

 Download from www.wowebook.com

www.owasp.org
www.owasp.org

ptg

375SQL Injection Is Easy to Do
1

3

characters such as “Don.” Such an operation might result in finding “Don,” “Donald,”
and “Donny” matching rows. The code might look like this:

var ContactFirstName;

ContactFirstName = Request.form (“ContactFirstName”);

var sql = “SELECT * FROM [AdventureWorks].[Person].[Contact]

WHERE [FirstName] like ‘“ + ContactFirstName + “%’”;

The subsequent SQL code that would be submitted to SQL Server for execution would be
as follows:

SELECT * FROM [AdventureWorks].[Person].[Contact]

WHERE [FirstName] Like ‘Don%’;

This code works perfectly.

To test this code as if you are an “Evil SQL’er,” create a table named XtraContactsTable
that you can pretend is your primary contacts table where all your company’s contacts are
stored. Go ahead and create this empty table for this evil test. The simple CREATE state-
ment could be

CREATE TABLE [dbo].[XtraContactsTable]

([ContactFirstName] [nchar](10) NULL) ON [PRIMARY];

To be really evil, attempt to drop this table and cause severe damage to this company
using the SQL injection method. Now, at the applications prompt for a contact first name,
you, acting as the evil SQL’er, can instead type the following:

Don’; drop table [dbo].[XtraContactsTable] --

The subsequent SQL code that is sent to SQL Server for execution is

SELECT * FROM [AdventureWorks].[Person].[Contact]

WHERE [FirstName] Like ‘Don%’;

drop table [dbo].[XtraContactsTable] --

The first part of the query is executed, followed by the DROP TABLE statement. Try this
with the table you just created. After you execute the entire “valid” SQL statement, you
see rows returned from the first part of the query, and the drop of the XtraContactsTable
is also executed. If the evil code had simply used the Employee table name or the Contact
table name, all your company’s most sacred data would be gone in a flash.

That is SQL injection! It is easier to do than you think. And now you know how to do it,
which means you must also prevent this and other SQL injection vulnerabilities from the
beginning. In this case, you should write code to reject quotation marks, specific delim-
iters (such as ;), and comment characters such as - - and /*...*/. We have included this
SQL code example on the CD with this book as well.

Another popular method by Evil SQL’ers is to put a nasty piece of code into text or char
data that will be stored as data in a table. When (or if) the data is ever used as part of a

 Download from www.wowebook.com

ptg

376 CHAPTER 13 Security and Compliance

FIGURE 13.12 Reprinted with permission from xkcd.com.

SQL statement (and concatenated to SQL code as just demonstrated), the code in the data
is executed. Pretty tricky! Sort of like a time bomb waiting to explode.

NOTE

For additional examples of SQL injection and SQL coding tips to help prevent SQL injec-
tion attacks, see Chapter 43, “Transact-SQL Programming Guidelines, Tips, and Tricks.”

Summary
As stated earlier, best practices for security and compliance must start from the glass and
reach through the application, to the database layer, and even to the operating system
and the physical file levels. This chapter describes an orderly process to follow as you
develop applications that include security and compliance reviews and add testing all
along the way. You should never wait until your application is done to start checking for
security vulnerabilities; verify adherence to compliance rules or regulations; or determine
what data needs to be protected, encrypted, or perhaps not even stored.

Taking advantage of the new SQL Server Auditing feature can be extremely useful in iden-
tifying and monitoring compliance of access and usage at the SQL Server database or
object levels. Now you know how to do a little damage via SQL injection. You should also
know how to prevent this type of damage. Remember, software security is really risk
management. It is this risk that must be analyzed thoroughly. After you analyze it,
responding in a known situation is always easier. Risks can appear due to architectural
problems or with holes in applications (such as with SQL injection). The main aim of soft-
ware security is to just fall safely and carefully and to limit the damage. We don’t want to
read about your failing in the newspaper or on Twitter.

In the next chapter, you learn about database backup and restores. To fix damage caused
by security issues like those described in this chapter, you may have to restore your data-
base to its state before the attack occurred. We hope that this never happens to you.

 Download from www.wowebook.com

ptg

CHAPTER 14

Database Backup and
Restore

IN THIS CHAPTER

. What’s New in Database
Backup and Restore

. Developing a Backup and
Restore Plan

. Types of Backups

. Recovery Models

. Backup Devices

. Backing Up a Database

. Backing Up the Transaction Log

. Backup Scenarios

. Restoring Databases and
Transaction Logs

. Restore Scenarios

. Additional Backup
Considerations

You need to perform database backups to protect your
investment in data. Making backups may seem mundane,
but consider Murphy’s Law (“If anything can go wrong, it
will”) when you are considering your backup plan. For
example, if you forget to add a new database to your
backup plan, that database will crash. If you neglect to run
a test restore of your backups, those backups will not restore
properly. This type of thinking may seem a bit defeatist, but
it can help you create a robust backup solution that allows
you to sleep comfortably knowing you have a good plan.

Fortunately, SQL Server comes with many different backup
and restore options you can use to develop a robust backup
plan and avoid those worst-case scenarios. This chapter
covers the key considerations in developing a backup and
restore plan and then covers the options available with SQL
Server to implement that plan.

What’s New in Database Backup
and Restore
The majority of the backup and restore features that existed
in SQL Server 2005 still exist in SQL Server 2008. A few
options, however, have been eliminated or deprecated. For
example, the backup options used to truncate the transac-
tion log in prior versions are no longer supported.
Specifically, the NO_LOG and TRUNCATE_ONLY options have
been eliminated. The alternative for performing this kind of
operation is to set the database recovery model to simple.

Several other deprecated features are still available in SQL
Server 2008 but will be removed in a future version of SQL

 Download from www.wowebook.com

ptg

378 CHAPTER 14 Database Backup and Restore

Server. The Tape backup option is one example. The option to set a password on a backup
or media-set will be removed in the next version of SQL Server. The protection provided
by these passwords is weak, which is the reason they are being removed.

The biggest enhancement in backup and restore is the ability to create a compressed
backup. Compressed backups use less space and can be created in less time than conven-
tional backups. The creation of compressed backups can be established server-wide or can
be enabled on a single backup using the COMPRESSION option. This feature is available only
in SQL Server 2008 Enterprise and Developer Editions.

Developing a Backup and Restore Plan
Developing a solid backup and restore plan for SQL Server is one of the most critical tasks
an administrator performs. Simply put, if you are a database administrator (DBA) and have
a significant loss of data in a database you are responsible for, your job may be on the
line. You need to carefully examine the backup needs of your organization, document
those needs, and deliver a plan that defines how your backup and restore plan will meet
those needs.

The best place to start in identifying the backup requirements is to ask the right questions.
The following questions can help drive out the answers you need:

. How much data loss is acceptable? For example, if you choose to do only full data-
base backups each night, would it be acceptable to lose all the data added to the
database during the next day? This could happen if you had a failure and had to
restore to the last full backup.

. What is the nature of the database? For example, is the database used for a data
warehouse, or is it used for a high-volume transaction processing system?

. How often does the data in the database change? Some databases may change very
little or not at all during the day but sustain heavy batch updates during the evening.

. What is the acceptable recovery time in the event a database must be restored from
previous backups? This question is directly related to the amount of downtime
acceptable for the applications using the database.

. Is there a maintenance window for the application/database? The maintenance
window is typically a period of time when the database or server can be taken
offline. What are the exact times of the maintenance windows?

. What is the size of the database(s) you need to back up?

. What media is available for backup, and where is the media located?

. What is the budget for database backup and recovery? If no budget has been estab-
lished, the answers to some of the preceding questions drive the cost of the solution.

Some of the questions that need to be asked to come up with a good backup and restore
plan may raise some eyebrows. For example, you may find that the answer you get for the
question “How much data loss is acceptable?” is “None!” Don’t panic. There are sensible

 Download from www.wowebook.com

ptg

379Types of Backups

responses for these types of answers. The reality is that you can deliver a solution that
virtually eliminates the possibility of data loss—but that comes at a cost. The cost may
come in the form of real dollars as well as other costs, such as performance or disk space.
As with many other technical solutions, you need to consider trade-offs to come up with
the right plan.

NOTE

Many of the questions that relate to database backup and restore are related to sys-
tem backups as well. System-wide backups, which happen independently of SQL Server
backups, capture all or most of the files on a server and write them to appropriate
media. These server backups are often performed by DBAs, system administrators, and
the like. You should consider having the person or persons responsible for the system
backups present when asking the database backup and restore questions. This will
help with the coordination and timing of the backups.

When you have the answers to these questions, you need to document them, along with
your recommended solution. You should identify any assumptions and make sure to
outline any portion of the plan that has not met the requirements.

The good news is that the implementation of the plan is often less difficult than coming
up with the plan itself. Microsoft provides a myriad of tools to create database backups
that can meet the needs of your organization. The remainder of this chapter focuses on
the details required to finalize a solid backup and recovery plan.

Types of Backups
SQL Server offers several different types of backups you can use to restore a database to a
former state. Each of these backups uses a file or set of files to capture the database state.
The files are found outside the SQL Server database and can be stored on media such as
tape or hard disk.

As described in the following sections, these backup types are available with SQL Server
2008:

. Full database backups

. Differential database backups

. Partial backups

. Differential partial backups

. File and filegroup backups

. Copy-only backups

. Transaction log backups

1
4

 Download from www.wowebook.com

ptg

380 CHAPTER 14 Database Backup and Restore

Full Database Backups

A full database backup is an all-inclusive backup that captures an entire database in one
operation. This full backup can be used to restore a database to the state it was in when
the database backup completed. The backup is transactionally consistent, contains the
entire database structure, and contains the related data stored in these structures.

As with many other backups, SQL Server allows for updates to the database while a full
backup is running. It keeps track of the changes occurring during the backup by capturing
a portion of the transaction log in the database backup. The backup also records the log
sequence number (LSN) when the database backup is started, as well as the LSN when the
database backup completes. The LSN is a unique sequential number you can use to deter-
mine the order in which updates occur in the database. The LSNs recorded in the backup
are used in the restore process to recover the database to a point in time that has transac-
tional consistency.

A full database backup is often used in conjunction with other backup types; it establishes
a base for these other types if a restore operation is needed. The other backup types are
discussed in the following sections, but it is important not to forget about the full backup
that must be restored first in order to utilize other backup types. For example, let’s say you
are making hourly transaction log backups. If the database is to be recovered using those
transaction log backups, the last full database backup must be restored first, and then the
subsequent log backups can be applied.

Differential Database Backups

Differential database backups capture changes to any data extent that happened since the
last full database backup. The last full database backup is referred to as the differential base
and is required to make the differential backup useful. Each data extent that is monitored
consists of eight physically contiguous data pages. As changes are made to the pages in an
extent, a flag is set to indicate that a change has been made to the extent. When the
differential database backup is executed, only those extents that have had pages modified
are written to the backup.

Differential database backups can save backup space and improve the overall speed of
recovery. The savings in space and time are directly related to the amount of change that
occurs in the database. The amount of change in the database depends on the amount of
time between differential backups. When the number of database changes since the last
backup is relatively small, you achieve the best results. If, however, a significant number
of changes occur to the data between differential backups, the value of this type of backup
is diminished.

Ultimately the number of data pages that are affected by the changes determine the
number of pages that must be included in the differencial backup. The number of pages is
affected by the indexing structure as well as the nature of the updates. If for example,

 Download from www.wowebook.com

ptg

381Types of Backups

there are many rows that are changed but those rows are all clustered on a limited number
of data pages then the differencial backup will not be that large.

Partial Backups

Partial backups provide a means for eliminating read-only data from a backup. In some
implementations, a portion of the data in a database may not change and is strictly used
for inquiry. If this data is placed on a read-only filegroup, you can use partial backups to
back up everything except the read-only data. This technique reduces the size of your
backup and reduces the time it takes to complete the backup. The read-only filegroups
should still be backed up, but this needs to occur only after the read-only data is loaded.

Differential Partial Backups

Differential partial backups work like differential database backups but are focused on the
same type of data as partial backups. The extents that have changed in filegroups that are
not read-only are captured in this type of backup. This includes the primary filegroup and
any read/write filegroups defined at the time of the backup. Like differential database
backups, these backups also require a differential base, but it must be a single differential
base. In other words, multiple base backups that have been taken at different times for
different database files will not work. You must use a single base backup that encompasses
all of the database files.

File and Filegroup Backups

File and filegroup backups are targeted at databases that contain more than one filegroup.
In these situations, the filegroup or files in the filegroups can be backed up independently.
If a filegroup is backed up, all the files defined in the filegroup are backed up.

File and filegroup backups are often used for larger databases where the creation time for a
full database backup takes too long or the resulting backup is too large. In these situations,
you can stagger the backups of the files or filegroups and write them to different locations.

The main disadvantage of this type of backup is the increase in administrative overhead.
Each of the files in the database must be backed up, and a complete set of these files must
be retained to restore the database. For a full recovery model, the transaction log backups
must also be retained.

NOTE

SQL Server 2008 supports file and filegroup backups for all recovery models, including
simple recovery. The catch with simple recovery is that the files and filegroups are lim-
ited to read-only secondary filegroups. SQL Server 2000 did not allow these types of
backups with simple recovery.

1
4

 Download from www.wowebook.com

ptg

382 CHAPTER 14 Database Backup and Restore

Copy-Only Backups

Copy-only backups allow a backup of any type to be taken without affecting any other
backups. Normally, a database backup is recorded in the database itself and is identified as
part of a chain that can be used for restore. For example, if a full database backup is taken,
any subsequent differential database backups use this full database backup as their base. A
restore process utilizing the differential database backups would have a reference to the
full database backup, and that backup would have to be available.

Copy-only backups do not affect the restore chain. They are useful in situations in which
you simply want to get a copy of the database for testing purposes or things of this
nature. Microsoft has made it easier to make this kind of backup by adding the Copy Only
Backup check box when performing a backup using SQL Server Management Studio
(SSMS). In SQL Server 2005, the Copy Only Backup had to be performed via the Transact-
SQL (T-SQL) BACKUP command. An example of the copy-only backup is provided later in
this chapter, in the section “Backing Up a Database.”

Transaction Log Backups

Transaction log backups capture records written to the transaction log file(s) defined for a
database. The full and bulk-logged recovery models are the only models that support
transaction log backups. These models cause transaction events to be retained in the trans-
action log so that they can be backed up. Simple recovery mode causes the transaction log
to be truncated periodically and thus invalidates the usefulness of the transaction log
backups.

The transaction log backups and their strong ties to the recovery model are discussed in
more detail in the next section.

Recovery Models
Each database has a recovery model that determines how transactions will be written to
the transaction log. The recovery model you choose has a direct impact on your ability to
recover from a media failure. These following three recovery models are available with
SQL Server 2008:

. Full recovery

. Bulk-logged

. Simple

You set the recovery model via T-SQL or the Database Properties window in SSMS. The
following example shows the T-SQL command you can use to change the
AdventureWorks2008 database to the bulk-logged model:

ALTER DATABASE [AdventureWorks2008] SET RECOVERY BULK_LOGGED WITH NO_WAIT

 Download from www.wowebook.com

ptg

383Recovery Models

FIGURE 14.1 Setting the recovery model in SSMS.

Figure 14.1 shows the Options page on the Database Properties window, which also allows
you to select a recovery model.

1
4

Full Recovery

The full recovery model gives you the most protection against data loss. A database set to
full recovery will have all database operations written to the transactions log. These opera-
tions include insertions, updates, and deletions, as well as any other statements that
change the database. In addition, the full recovery model captures any database inserts
that are the result of a BCP command or BULK INSERT statement.

In the event of a media failure, a database that is in full recovery can be restored to the
point in time at which the failure occurred. Your ability to restore to a point in time is
dependent on your database backup plan. If a full database backup is available, along with
the transaction log backups that occurred after the full database backup, you can recover
to the point of the last transaction log backup. In addition, if your current transaction log
is available, you can restore up to the point of the last committed transaction in the trans-
action log.

This recovery model is the most comprehensive, but in some respects, it is the most
expensive. It is expensive in terms of the transaction log space needed to capture all the
database operations. The space can be significant with databases that have a lot of update
activity or with databases that have large bulk load operations. It is also expensive in

 Download from www.wowebook.com

ptg

384

terms of server overhead because every transaction is captured and retained in the transac-
tion log so that they can be recovered in the event of a failure.

TIP

A common problem in SQL Server environments involves a database that is set to full
recovery but whose transaction log is never backed up. In this scenario, the transaction
log can grow to the point that it fills up the drive on which the transaction log is locat-
ed. You need to ensure that you have regularly scheduled backups of the transaction
log if you have set your database to full recovery. The transaction log backups allow
you to recover from a media failure and also remove the inactive portion of the transac-
tion log so that it does not need to grow.

Bulk-Logged Recovery

The bulk-logged recovery model is similar to full recovery, but it differs in the way that
bulk operations are captured in the transaction log. With full recovery mode, SQL Server
writes every row to the transaction log that is inserted with BCP or BULK INSERT. Bulk-
logged recovery keeps track of the extents that have been modified by a bulk load opera-
tion but does not write each row to the transaction log. This reduces the overall size of the
transaction log during bulk load operations and still allows the database to recover after a
bulk load operation has occurred.

The biggest downside to setting a database to bulk-logged recovery is that the log backups
for the databases can be large. The log backups are large because SQL Server copies all the
data extents that have been affected by bulk load operations since the last backup of the
transaction log. Remember that data extents consist of eight data pages each, and each
page is 8KB in size. This may not seem like much by today’s standards, but it can be
significant when you’re bulk loading a large table. For example, consider a table occupy-
ing 1GB of space that is truncated each week and reloaded with a bulk insert. The bulk
insert operation goes relatively fast because the rows are not being written to the transac-
tion log, but the backup of the transaction log is much larger.

NOTE

In testing we did on a table with approximately 2.4 million rows (that occupied 500MB
of space), the log file grew over 2GB during a bulk insert operation that reloaded all
rows in a full recovery mode database. In contrast, the same bulk insert operation on
the database with bulk-logged recovery grew the log by only 9MB. However, the backup
of the 9MB transaction log was approximately 500MB. This is much larger than the
actual log itself because the bulk operation caused all the modified extents from the
bulk insert operation to be stored in the log backup as well.

The other downside to bulk-logged recovery is that with it, you may sacrifice the ability to
restore to the most recent point in time. This situation occurs if a bulk insert operation

CHAPTER 14 Database Backup and Restore

 Download from www.wowebook.com

ptg

385Backup Devices
1

4

has occurred since the last database backup and a media failure occurs. In this case, the
restores can occur for any backups that were taken that do not contain a bulk insert opera-
tion, but any outstanding changes that were retained in the transaction log cannot be
applied. The reason is that bulk operations are not written to the log directly in this model
and cannot be recovered. Only bulk operations captured in a backup can be restored.

If transactions have occurred in a database since the last backup, and no bulk insert opera-
tions have occurred, you can recover those pending transactions as long as the media
containing the transaction log is still available. The tail of the transaction log can be
backed up and applied during a restore operation. The tail of the log and other restore
scenarios are discussed in the “Restore Scenarios” section, later in this chapter.

Simple Recovery

The simple recovery model is the easiest to administer, but it is the option that has the
greatest possibility for data loss. In this mode, your transactions log is truncated automati-
cally based on a checkpoint in the database. These checkpoints happen often, and they
cause the data in the transaction log to be truncated frequently.

NOTE

Prior to SQL Server 2000, the trunc. log on checkpoint database option was
used to truncate the log on a checkpoint and produce the same type of behavior as
simple recovery. This database option and the equivalent backup options NO_LOG and
TRUNCATE_ONLY are no longer supported. The only supported method for truncating
the transaction log in SQL Server 2008 is to switch the database to use the simple
recovery model.

The most important point to remember about the simple recovery model is that with it,
you cannot back up the transaction log that captures changes to your database. If a media
failure occurs, you are not able to recover the database activity that has occurred since the
last database backup. This is a major exposure, so simple recovery is not recommended for
production databases. However, it can be a good option for development databases where
the loss of some transactions is acceptable. In these types of environments, simple recov-
ery can equate to saved disk space because the transaction log is constantly truncated. The
administration in these environments is reduced as well because the transaction log
backups are not an option and thus do not need to be managed.

For a more detailed discussion of the transaction log, see Chapter 31, “Transaction
Management and the Transaction Log.”

Backup Devices
A backup device is used to provide a storage destination for the database backups created
with SQL Server. Backups can be written to logical or physical devices. A logical device is
essentially an alias to the physical device and makes it easier to refer to the device when

 Download from www.wowebook.com

ptg

386

performing database backups. The physical backup devices that SQL Server can write to
include files on local disks, tape, and network shares.

Disk Devices

A disk device is generally stored in a folder on a local hard drive. This should not be the
same hard drive where your data is stored! Disk devices have several advantages, including
speed and reliability. If you have ever had a backup fail because you forgot to load a tape,
you can appreciate the advantage of disk backups. On the other hand, if backups are
stored on a local disk and the server is destroyed, you lose your backups as well.

NOTE

Disks have become increasingly popular media as the prices have fallen. Storage area
networks (SANs) and other large-scale disk solutions have entered mainstream usage
and offer a large amount of storage at a relatively inexpensive price. They also offer
redundancy and provide fault tolerance to mitigate the chance of losing data on a disk.
Finally, increased network bandwidth across LANs and WANs has allowed for the move-
ment of backups created on disk to alternate locations. This is a simple way to achieve
additional fault tolerance.

Tape Devices

Tape devices are used to back up to tape. Tape devices must be directly connected to the
server, and parallel backups to multiple drives are supported to increase throughput. Tape
backups have the advantage of being scalable, portable, and secure. Scalability is impor-
tant as a database grows; available disk space often precludes the use of disk backups for
large databases. Because tapes are removable media, they can easily be transported offsite,
where they can be secured against theft and damage.

SQL Server supports the Microsoft Tape Format (MTF) for backup devices, which means
that SQL Server backups and operating system backups can share the same tape. This capa-
bility is convenient for small sites with shared use servers and only one tape drive. You
can schedule your SQL Server backups and file backups without having to be onsite to
change the tape.

Network Shares

SQL Server 2008 allows the use of both mapped network drives and Universal Naming
Convention (UNC) paths in the backup device filename. A mapped network drive must be
mapped as a network drive in the session in which SQL Server is running. This is prone to
error and generally not recommended. UNC paths are much simpler to administer. With
UNC backup devices, the SQL Server service account must be able to see the UNC path on
the network. This is accomplished by granting the service account full control permission
on the share or by making the service account a member of the Administrators group on
the remote computer.

Keep in mind that backups performed on a network share should be done on a dedicated
or high-speed network connection, and the backup should be verified to avoid potential

CHAPTER 14 Database Backup and Restore

 Download from www.wowebook.com

ptg

387Backup Devices
1

4

corruption introduced by network error. The time it takes a backup to complete over the
network depends on network traffic, so you need to take this factor into consideration
when planning your backups.

Media Sets and Families

When you’re backing up to multiple devices, the terms media set and media family are used
to describe the components of the backup. A media set is the target destination of the
database backup and comprises several individual media. All media in a media set must be
of the same type (for example, all tape or all disk). A media family is the collection of
media associated with an individual backup device. For example, a media family could be
a collection of five tapes contained in a single tape device.

The first tape in the media family is referred to as the initial media, and the subsequent
tapes are referred to as continuation media. All the media families combined are referred to
as the media set. If, for example, a backup is written to 3 backup devices (each with 4
tapes), the media set would contain 3 media families and consist of a total of 12 tapes. It
is recommended to use the MEDIANAME parameter of the BACKUP command to specify a
name for the media set. This parameter associates the multiple devices as members of the
media set. The MEDIANAME parameter can then be referenced in future backup operations.

Creating Backup Devices

You can create logical backup devices by using T-SQL or SSMS. The T-SQL command for
creating these logical backup devices is sp_addumpdevice, which has the following syntax:

sp_addumpdevice [@devtype =] ‘device_type’

, [@logicalname =] ‘logical_name’

, [@physicalname =] ‘physical_name’

[, { [@cntrltype =] controller_type |

[@devstatus =] ‘device_status’ }

]

The following sample script demonstrates the creation of the different types of backup
devices:

-- Local Disk

EXEC sp_addumpdevice ‘disk’, ‘diskdev1’,

‘c:\mssql2008\backup\AdventureWorks2008.bak’

-- Network Disk

EXEC sp_addumpdevice ‘disk’, ‘networkdev1’,

‘\\myserver\myshare\AdventureWorks2008.bak’

-- Tape

EXEC sp_addumpdevice ‘tape’, ‘tapedev1’, ‘\\.\tape0’

To create backup devices with SSMS, you navigate to the Server Objects node in the
Object Explorer and right-click Backup Devices and then New Backup Device; the Backup

 Download from www.wowebook.com

ptg

388

FIGURE 14.2 The Back Up Database window in SSMS.

Device screen appears. This screen includes a text box for the device name, along with a
section to select the destination for the device. This is the physical location, and you can
select either Tape or File.

Backing Up a Database
Now that you know the types of backups, the recovery models they relate to, and the
devices you can write to, you are ready to back up your database. You can create backups
with SQL Server 2008 by using either the SSMS or T-SQL. Some backups are supported
only through T-SQL, but the vast majority can be accomplished with either tool.

Creating Database Backups with SSMS

The backup options in SSMS are accessible through the Object Explorer. For example, you
can right-click the AdventureWorks2008 database in the SSMS Object Explorer, select Tasks
and Backup, and a backup window like the one shown in Figure 14.2 appears.

CHAPTER 14 Database Backup and Restore

The Source section on the Back Up Database window contains information relative to the
database that will be backed up. The target database is displayed in the first drop-down,
along with the recovery model set for the database. The backup types available in the
drop-down are dependent on the recovery model. For simple recovery, only full and differ-

 Download from www.wowebook.com

ptg

389

FIGURE 14.3 The Back Up Database Options page in SSMS.

Backing Up a Database
1

4

ential backup types are available. For full recovery and bulk-logged recovery models, all
backup types are available in the drop-down.

The Backup Set section allows you to give the backup a meaningful name and specify
when the backup set will expire. When the backup set expires, the backup can be overwrit-
ten and is no longer retained. If the backup is set to expire after 0 days, it will never expire.

The Destination section identifies the disk or tape media that will contain the backup. You
can specify multiple destinations in this section by clicking the Add button. For disk
media, you can specify a maximum of 64 disk devices. The same limit applies to tape
media. If multiple devices are specified, the backup information is spread across those
devices. All the devices must be present for you to be able to restore the database. If no
tape devices are attached to the database server, the Tape option is disabled.

You can select several different types of options for a database backup. Figure 14.3 shows
the options page available when you back up a database by using SSMS.

The Overwrite Media section allows you to specify options relative to the destination
media for the backup. Keep in mind that a given media set can contain more than one
backup. This can occur if the Append to the Existing Backup Set options is selected. With
this option, any prior backups contained on the media set are preserved, and the new
backup is added to it. With the Overwrite All Existing Backup Sets option, the media set
contains only the latest backup, and no prior backups are retained.

 Download from www.wowebook.com

ptg

390 CHAPTER 14 Database Backup and Restore

You can use the options in the Reliability section to ensure that the backup that has been
created can be used reliably in a restore situation. Verifying the backup when finished is
highly recommended, but doing so causes the backup time to be extended during the veri-
fication. Similarly, the Perform Checksum Before Writing to Media option helps ensure
that you have a sound backup, but again, it causes the database backup to run longer.

The options in the Transaction Log section are available for databases in the full recovery
or bulk-logged model. These options are disabled in the simple recovery model. The
Truncate the Transaction Log option causes any inactive portion of the transaction log to
be removed after the database backup is complete. The inactive portion of the log and
other detail of the transaction log are discussed in more detail in Chapter 30 “Transaction
Management and the transaction log”. This option, the default, helps keep the size of the
transaction log manageable. The Back Up the Tail of the Log option is related to point-in-
time restores and is discussed in more detail in the “Restore Scenarios” section later in
this chapter.

The set of options in the Tape Drive section are enabled only when tape has been selected
for the destination media. Selecting the Unload the Tape After Backup option causes the
media tape to be ejected when the backup completes. This option can help identify the
end of a backup and prevent the tape from being overwritten the next time the backup
runs. The Rewind the Tape Before Unloading option is self-explanatory; it causes the tape
to be released and rewound before you unload the tape. The last set of options relate to
compressed database backups. The options for compressed backups are discussed in detail
in the Compressed Backup secion later in this chapter.

NOTE

Keep in mind that all backups can be performed while the database is in use. SQL
Server is able to keep track of the changes occurring during the backup and can main-
tain transactional consistency as of the end of the backup. You need to consider some
performance overhead during the actual backup, but the backup can occur during active
database hours. However, it is still a good idea to schedule your database backups
during off-hours, when database activity is at a minimum.

Creating Database Backups with T-SQL

The T-SQL BACKUP command offers a myriad of options to perform all the backup opera-
tions available in SSMS. However, SSMS does not support some backup operations that can
be performed only with T-SQL.

The BACKUP command comes in three different flavors. The first flavor involves the backup
of a database. The command syntax starts with BACKUP DATABASE, followed by the relevant
parameters and options. The second flavor involves the backup of a file or filegroup that is
part of the database. The command syntax for this type of backup also utilizes the BACKUP

 Download from www.wowebook.com

ptg

391Backing Up a Database
1

4

DATABASE command, but a file or filegroup is specified after the database name to identify
which parts of the database should be backed up. The last flavor involves the backup of
the database’s transaction log. The syntax for backing up the transaction log starts with
BACKUP LOG. Each flavor shares many of the same options. The basic syntax for backing up
a database follows:

BACKUP DATABASE { database_name | @database_name_var }

TO < backup_device > [,...n]

[[MIRROR TO < backup_device > [,...n]] [...next-mirror]]

[WITH

[BLOCKSIZE = { blocksize | @blocksize_variable }]

[[,] { CHECKSUM | NO_CHECKSUM }]

[[,] COMPRESSION | NO_COMPRESSION]

[[,] COPY_ONLY]

[[,] { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }]

[[,] DESCRIPTION = { ‘text’ | @text_variable }]

[[,] DIFFERENTIAL]

[[,] EXPIREDATE = { date | @date_var }

| RETAINDAYS = { days | @days_var }]

[[,] PASSWORD = { password | @password_variable }]

[[,] { FORMAT | NOFORMAT }]

[[,] { INIT | NOINIT }]

[[,] { NOSKIP | SKIP }]

[[,] MEDIADESCRIPTION = { ‘text’ | @text_variable }]

[[,] MEDIANAME = { media_name | @media_name_variable }]

[[,] MEDIAPASSWORD = { mediapassword | @mediapassword_variable }]

[[,] NAME = { backup_set_name | @backup_set_name_var }]

[[,] { NOREWIND | REWIND }]

[[,] { NOUNLOAD | UNLOAD }]

[[,] RESTART]

[[,] STATS [= percentage

]]

]

The number of options is extensive, but many of them are optional. A BACKUP DATABASE
command can be as simple as the following example:

BACKUP DATABASE [AdventureWorks2008]

TO DISK = N’C:\mssql2008\backup\AdventureWorks2008_COPY.bak’

The first part of the BACKUP command is related to the database you want to back up
(database_name), followed by the location to which you want to write the backup
(backup_device). The remainder of the syntax relates to the options that can be specified
following the WITH clause. These options determine how your backup will be created and
the properties of the resulting backup. Table 14.1 outlines these options.

 Download from www.wowebook.com

ptg

392 CHAPTER 14 Database Backup and Restore

TABLE 14.1 BACKUP DATABASE Options

Option Description

BLOCKSIZE The physical block size that will be used to create the backup.
The default is 64KB.

CHECKSUM | NO_CHECKSUM When CHECKSUM is specified, a checksum is calculated before
the backup is written to validate that the backup is not corrupt.
The default is NO_CHECKSUM.

COMPRESSION |
NO_COMPRESSION

This new option in SQL Server 2008, available only with the
Enterprise or Developer Edition, causes the backup file to be
compressed. The default is NO_COMPRESSION.

STOP_ON_ERROR |
CONTINUE_AFTER_ERROR

This option is used in conjunction with the CHECKSUM option. The
STOP_ON_ERROR option, which is the default, causes the backup
to fail if the checksum cannot be validated.

DESCRIPTION This is a 255-character description of the backup set.

DIFFERENTIAL This option causes a differential backup to occur, which captures
changes only since the last backup.

EXPIREDATE This option specifies the date on which the backup set will expire
and be overwritten.

RETAINDAYS This option specifies the number of elapsed days before the
backup set can be overwritten.

PASSWORD This is a password that must be specified when restoring the
backup set.

FORMAT | NOFORMAT FORMAT causes the existing media header and backup set to be
overwritten. The default is NOFORMAT.

INIT | NOINIT The INIT option causes a backup set to be overwritten. The
backup set is not overwritten if the backup set has not expired or
if it does not match the media name specified with the NAME
option. NOINIT, which is the default, causes the backup set to
be appended to the existing media.

NOSKIP | SKIP NOSKIP, which is the default, allows backup sets to be overwrit-
ten if they have expired. The SKIP option skips expiration and
media name checks and is used to prevent the overwriting of
backup sets.

MEDIADESCRIPTION This is a 255-character description for the entire backup media
containing the backup sets.

 Download from www.wowebook.com

ptg

393Backing Up the Transaction Log
1

4

TABLE 14.1 BACKUP DATABASE Options

Option Description

MEDIANAME This is a 128-character name for the backup media. If it is speci-
fied, the target media must match this name.

MEDIAPASSWORD This is a password for the media set. When media is created
with this password, the password must be supplied to be able to
create a backup set on that media or to restore from that media.

NAME This is a 128-character name for the backup set.

NOREWIND | REWIND This option is used for tape operations. REWIND, which is the
default, causes the tape to be released and rewound after it fills.

NOUNLOAD | UNLOAD This option is used for tape operations. NOUNLOAD, which is the
default, causes the tape to remain in the tape drive after a
backup completes. UNLOAD causes the tape to be rewound and
unloaded when the backup completes.

RESTART This option has no effect and is in place only for backward
compatibility.

STATS This option causes completion statistics to be displayed at the
specified interval to assess progress.

COPY_ONLY This option allows a backup to be made without affecting the
normal sequence of backups.

The “Backup Scenarios” section, later in this chapter, provides some examples of how to
use these options.

Backing Up the Transaction Log
As discussed, the full and bulk-logged recovery models cause transactions to be written to
the database’s transaction log. These transactions should be backed up periodically for two
main reasons. First, the transaction log backups can be used in case of a media failure to
restore work completed in the database. These backups limit your exposure to data loss
and enable you to reapply changes that have occurred.

The second reason for backing up the transaction log is to keep the size of the log
manageable. Keep in mind that SQL Server is a write-ahead database management system
(DBMS) and thus writes most changes to the transaction log first, before it updates the
actual data files. This type of DBMS is great for recovery purposes, but it can be a real
headache if you do not periodically clear those transactions from the log. Without a

 Download from www.wowebook.com

ptg

394 CHAPTER 14 Database Backup and Restore

FIGURE 14.4 Backing up the transaction log in SSMS.

backup or manual truncation, the log can fill to a point where it will use up all the space
on your disk.

Creating Transaction Log Backups with SSMS

The same backup screen utilized for database backups in SSMS can also be used for trans-
action log backups. Figure 14.4 shows the Back Up Database window with Transaction Log
selected as the backup type. A device must be selected to write the backup to, and some
additional options on the Options page that relate to the transaction log are enabled.

Creating Transaction Log Backups with T-SQL

When you back up a transaction log by using T-SQL, you use the BACKUP LOG command,
which includes all the previously listed options except the DIFFERENTIAL option.
(Differential backups do not apply to transaction logs.) Several additional options are
available for transaction log backups. The following abbreviated syntax for the BACKUP
LOG command shows the options used exclusively for backing up transaction logs:

BACKUP LOG { database_name | @database_name_var }

TO < backup_device > [,...n]

[[MIRROR TO < backup_device > [,...n]] [...next-mirror]]

[WITH

 Download from www.wowebook.com

ptg

395Backing Up the Transaction Log
1

4

....

[[,] NO_TRUNCATE]

[[,] { NORECOVERY | STANDBY = undo_file_name }]

The options specific to BACKUP LOG are discussed in detail in the following sections.

The NO_TRUNCATE Option
You use the NO_TRUNCATE option when the log is available, but the database is not. This
option prevents the truncation of the transaction log after a backup occurs. Under normal
circumstances, the BACKUP LOG command not only writes to the transaction log, but also
signals a checkpoint for the database to flush any dirty buffers from memory to the
database files. This behavior becomes a problem when the media containing the database
is unavailable and you must capture the current contents of a log to a backup file for
recovery. If you last did a log backup four hours ago, this would mean the loss of all the
input since then. If your log is on a separate disk that is not damaged, you have those
four hours of transactions available to you, but BACKUP LOG fails because it can’t run a
checkpoint on the data files. You run BACKUP LOG with the NO_TRUNCATE option, and the
log is backed up, but the checkpoint is not run because the log is not actually cleared.
You now have this new log backup to restore as well, enabling recovery to the time of
failure. The only transactions lost are those that were not yet committed.

The NORECOVERY | STANDBY= undo_file_name Options
The NORECOVERY option causes the tail of the log to be backed up and leaves the database
in a RESTORING state, which allows additional transaction logs to be applied, if necessary.
The tail of the log is the active portion of the log that contains transactions not yet
backed up. This “tail” is critical in restore situations in which all committed transactions
are reapplied. Typically, the NORECOVERY option is used with the NO_TRUNCATE option to
retain the contents of the log.

The STANDBY option also backs up the tail of the log, but it leaves the database in a read-
only/standby state. The read-only state allows inquiry on the database and allows
additional transaction logs to be applied to the database as well. undo_file_name must be
supplied with the STANDBY command so that transactions not committed and rolled back
at the time of the backup can be reapplied if additional transaction logs are applied to the
database. This STANDBY option produces the same results as executing BACKUP LOG WITH
NORECOVERY followed by a RESTORE WITH STANDBY command.

NOTE

As mentioned earlier, Microsoft has removed the NO_LOG and TRUNCATE_ONLY options
available with earlier versions of SQL Server, including SQL Server 2005. Setting a
database to use the simple recovery model is the alternative to these options.

 Download from www.wowebook.com

ptg

396 CHAPTER 14 Database Backup and Restore

Backup Scenarios
Typically, several different types of backups are used in a comprehensive backup plan.
These backups are often combined to produce maximum recoverability while balancing
the load on the system and amount of time to recover the database. The following backup
scenarios outline some of the ways SQL Server backups are used.

NOTE

Many of the examples that follow utilize a backup directory named
c:\mssql2008\backup. If you are interested in running some of these examples on
your own system, you need to create this directory on the database server first before
running the scripts that reference this directory. You can use backup and data directo-
ries different from the default directory to simplify the directory structure for the SQL
Server files. Typically, these directories should not be on the C: drive, but the C: drive
is used here for simplicity.

Full Database Backups Only

A full database backup, without the use of other database backups, is often found in
nonproduction environments where the loss of transactional data is relatively unimpor-
tant. Some development environments are good examples of this. In these environments,
a nightly full backup is sufficient to ensure that recent Data Definition Language (DDL)
changes and the related development data for the day are captured. If a catastrophic
failure occurs during the day and causes a restore to occur, the database can be restored
from the prior night’s backup. The following example shows a full backup of the
AdventureWorks2008 database:

--Full Database Backup to a single disk device

BACKUP DATABASE [AdventureWorks2008]

TO DISK = N’C:\mssql2008\backup\AdventureWorks2008.bak’

WITH NOFORMAT, INIT, NAME = N’AdventureWorks2008-Full Database Backup’,

SKIP, NOREWIND, NOUNLOAD, STATS = 10

The sole use of daily full database backups needs to be carefully considered. The benefits
of limited administration and limited backup space requirements have to be weighed
against the costs of losing an entire day’s transactions.

Full Database Backups with Transaction Log Backups

Compared to making a full database backup only, a more comprehensive approach to
database backups includes the use of transaction log backups to augment the recoverabil-
ity of full database backups. Transaction log backups that are taken periodically capture
incremental database activity that can be applied to a full database backup during data-
base restore.

You need to measure the frequency of the transaction log backup against the tolerance for
data loss. For example, if the requirement is to prevent no more than one hour’s worth of

 Download from www.wowebook.com

ptg

397Backup Scenarios
1

4

work, the transaction log backups should be taken hourly. If the media on which the
backup is stored is accessible, you should lose no more than one hour’s worth of data.

As mentioned earlier, the database must be placed in full or bulk-logged recovery mode to
capture transaction log backups. Listing 14.1 shows the commands necessary to place the
AdventureWorks2008 database in full recovery mode, the required backup to establish a
base, followed by the command to perform the actual transaction log backup.

LISTING 14.1 Full Backups with Transaction Logs

--First need to change the recovery model from simple to full

--so that the tlogs are available for backup

ALTER DATABASE [AdventureWorks2008] SET RECOVERY FULL WITH NO_WAIT

--*** A Full database backup must be taken after the

--*** recovery mode has been changed

--*** in order to set a base for future tlog backups.

--*** If the full backup is not taken

--*** then tlog backups will fail.

--The Following full backup utilizes two devices on the same drive.

--Often times multiple devices are backed up to different drives.

--Backing up to different drives

-- can speed up the overall backup

time and help when you are running low on space on a drive

-- where your backups are written.

BACKUP DATABASE [AdventureWorks2008]

TO DISK = N’C:\mssql2008\backup\AdventureWorks2008_Full_Dev1.bak’,

DISK = N’C:\mssql2008\backup\AdventureWorks2008_Full_Dev2.bak’

WITH NOFORMAT, NOINIT, SKIP, NOREWIND, NOUNLOAD, STATS = 10

--Transaction log backups can be taken now that a base has been established

--The following tlog backup is written to a single file

BACKUP LOG [AdventureWorks2008]

TO DISK = N’C:\mssql2008\backup\log\AdventureWorks2008_FirstAfterFull.trn’

WITH NOFORMAT, INIT, NAME = N’AdventureWorks2008-Transaction Log Backup’,

SKIP, NOREWIND, NOUNLOAD, STATS = 10, CHECKSUM

Differential Backups

Differential backups can be used to reduce the amount of time required to restore a data-
base and can be particularly useful in environments where the amount of data that
changes is limited. Differential backups capture only the database extents that have
changed since the last database backup—typically, a full database backup.

 Download from www.wowebook.com

ptg

398 CHAPTER 14 Database Backup and Restore

FIGURE 14.5 A backup plan that includes differential backup.

The addition of differential backups to a plan that includes full database backups and
transaction log backups can significantly improve the overall recovery time. The differen-
tial database backup eliminates the need to apply any transaction log backups that have
occurred from the time of the last full backup up until the completion of the differential
backup. Figure 14.5 depicts a backup plan that includes full database backups, transaction
log backups, and differential backups. The differential backups are executed on a daily
basis between the full backups.

It is important to remember that differential backups are cumulative and contain all
changes since the last differential base. There is no need to apply previous differential
backups if the new differential base has not been established. For example, in the backup
plan shown in Figure 14.5, if a media failure occurred in the middle of the day on January
3, the differential backup that would be used is the one taken at the beginning of the day
on January 3; the differential backup that occurred on January 2 would not be needed.
The full backup from January 1, the differential from January 3, and any transaction log
backups that had occurred since the differential on January 3 would be used to restore the
database.

You can create differential backups by using SSMS or T-SQL. The following example
demonstrates the creation of a differential backup for the AdventureWorks2008 database
using T-SQL:

BACKUP DATABASE [AdventureWorks2008]

TO DISK = N’C:\mssql2008\backup\AdventureWorks2008_Diff2.bak’

WITH DIFFERENTIAL , NOFORMAT, INIT,

NAME = N’AdventureWorks2008-Differential Database Backup’,

SKIP, NOREWIND, NOUNLOAD, STATS = 10

Partial Backups

Partial backups are useful when read-only files or filegroups are part of a database. Listing
14.2 contains the commands necessary to add a read-only filegroup to the
AdventureWorks2008 database. The commands in Listing 14.2 do not perform a partial

 Download from www.wowebook.com

ptg

399Backup Scenarios
1

4

backup, but they do modify a sample database so that a partial database would make
sense.

LISTING 14.2 Adding a Read-Only Filegroup to a Database

--Need to add a read only filegroup first to demonstrate

ALTER DATABASE AdventureWorks2008

ADD FILEGROUP ReadOnlyFG1

GO

-- Add a file to the Filegroup

ALTER DATABASE AdventureWorks2008

ADD FILE

(NAME = AdventureWorks2008_ReadOnlyData,

FILENAME = ‘C:\mssql2008\data\AdventureWorks2008_ReadOnlyData.ndf’,

SIZE = 5MB,

MAXSIZE = 100MB,

FILEGROWTH = 5MB) TO FILEGROUP ReadOnlyFG1

go

--Create a table on the ReadOnly filegroup

CREATE TABLE AdventureWorks2008.dbo.MyReadOnlyTable

(FirstName varchar(50),

LastName varchar(50),

EMailAddress char(1000))

ON ReadOnlyFG1

--Insert some data into the new read only Filegroup

insert AdventureWorks2008.dbo.MyReadOnlyTable

select LastName, FirstName, ‘xxx’

from AdventureWorks2008.person. person

--Make the filegroup readonly

ALTER DATABASE [AdventureWorks2008] MODIFY FILEGROUP [ReadOnlyFG1] READONLY

When you have a filegroup that contains read-only data, a partial backup can be valuable.
The partial backup by default excludes any read-only filegroups and backs up only the
read/write data that could have changed.

Listing 14.3 contains three separate backup commands that relate to the partial backup.
The first backup command is not a partial backup but instead backs up the read-only file-
group. If the read-only filegroup is not backed up prior to the partial backup, the read-
only filegroup is backed up, as is part of the partial backup. The second backup command
creates the actual partial backup. The key parameter in this backup is
READ_WRITE_FILEGROUPS, which causes the backup to skip the read-only data. The third
backup command in Listing 14.3 shows that it is possible to perform a partial backup that
includes the read-only data as well. This command includes a specific reference to the
read-only filegroup, which causes it to be backed up as well.

 Download from www.wowebook.com

ptg

400 CHAPTER 14 Database Backup and Restore

LISTING 14.3 Making a Partial Backup

--Need to backup the readonly filegroup that was created

-- or it will be included in the partial backup

BACKUP DATABASE [AdventureWorks2008]

FILEGROUP = N’ReadOnlyFG1’

TO DISK = N’C:\mssql2008\backup\AdventureWorks2008_ReadOnlyFG.bak’

WITH NOFORMAT, NOINIT, NAME = N’AdventureWorks2008-Full Filegroup Backup’,

SKIP, NOREWIND, NOUNLOAD, STATS = 10

--Create the Partial Database Backup

--It will not contain the data from readonly filegroup

--The partial database backup can be restored without affecting

-- the data in the readonly filegroup

BACKUP DATABASE [AdventureWorks2008] READ_WRITE_FILEGROUPS

TO DISK = N’C:\mssql2008\backup\AdventureWorks2008_Partial.bak’

WITH NOFORMAT, INIT, NAME = N’AdventureWorks2008-Partial Database Backup’,

SKIP, NOREWIND, NOUNLOAD, STATS = 10

--It is possible to backup the readonly filegroup(s) as well

--by listing the readonly filegroups in the backup command as shown in the

--following backup command

BACKUP DATABASE [AdventureWorks2008] FILEGROUP = ‘ReadOnlyFG1’,

READ_WRITE_FILEGROUPS

TO DISK = N’C:\mssql2008\backup\AdventureWorks2008_Partial_WithReadOnly.bak’

WITH NOFORMAT, INIT, NAME = N’AdventureWorks2008-Partial Database Backup’,

SKIP, NOREWIND, NOUNLOAD, STATS = 10

File/Filegroup Backups

Much of our discussion thus far has focused on backing up an entire database, but it is
possible to back up only particular files or a group of files in a filegroup. A SQL Server
database, by default, has only two files: the data file (with the file extension .mdf) and the
log file (with the extension .ldf). You can add additional files and filegroups that contain
these files to extend the database beyond the original two files. These additional files are
often data files added to larger databases that require additional space. With very large
databases, performing a full backup that contains all the database files can take too much
time. In such a case, the individual files or filegroups can be backed up separately,
enabling you to spread out the backup.

Listing 14.4 shows the T-SQL command that can be used to back up the read-only file you
added to the AdventureWorks2008 database in Listing 14.3.

 Download from www.wowebook.com

ptg

401Backup Scenarios
1

4

LISTING 14.4 Creating a File Backup

BACKUP DATABASE [AdventureWorks2008] FILE = ‘AdventureWorks2008_ReadOnlyData’

TO DISK = N’C:\mssql2008\backup\AdventureWorks2008_ReadOnlyData.bak’

WITH NOFORMAT, INIT, NAME = N’AdventureWorks2008-Readonly File Backup’,

SKIP, NOREWIND, NOUNLOAD, STATS = 10

There is some additional administrative overhead associated with file and filegroup
backups. Unlike a full database backup that produces one file that contains the entire
database, the file backups do not stand by themselves and require other backups to be able
to create the entire database. You need to keep the following points in mind when
performing file and filegroup backups:

. A file or filegroup backup does not back up any portion of the transaction log. To
restore a file or filegroup backup, you must have the transaction log backups since
the last file or filegroup backup, including the tail of the log, for the database system
to ensure transactional consistency. This also implies that the database must be in
full or bulk-logged recovery because these are the only models that support transac-
tion log backups.

. Individual file or filegroup backups can be restored from a full database backup.

. Point-in-time recovery is not permitted with file or filegroup backups.

. Differential backups can be combined with file or filegroup backups. These differen-
tial backups capture only those extents that have changed since the file or filegroup
backup was made.

File and filegroup backups can be very powerful options for very large databases, but you
need to ensure that the relevant backups can be accounted for. In all backup situations,
the key to a successful plan is testing your backup strategy; this is particularly true with
file and filegroup backups.

Mirrored Backups

The use of mirrored backups can help diminish the possibility of losing a database backup.
Database backups can be your lifeline to recovery, and you do not want to lose them.
Mirrored backups simultaneously write the backup information to more than one media
set. You can mirror the backup to two, three, or four different media sets. Listing 14.5
gives an example of a mirrored backup that writes two different media sets.

LISTING 14.5 Creating a Mirrored Backup

BACKUP DATABASE AdventureWorks2008

TO disk = ‘C:\mssql2008\backup\AdventureWorks2008_Mirror1a.bak’,

 Download from www.wowebook.com

ptg

402 CHAPTER 14 Database Backup and Restore

disk = ‘C:\mssql2008\backup\AdventureWorks2008_Mirror1b.bak’

MIRROR TO disk = ‘c:\mssql2008\backup\AdventureWorks2008_Mirror2a.bak’,

disk = ‘C:\mssql2008\backup\AdventureWorks2008_Mirror2b.bak’

WITH FORMAT,

MEDIANAME = ‘AdventureWorks2008MirrorSet’

The example in Listing 14.5 is simplistic and demonstrates only the backup’s capability to
write to two different locations. At the end of the backup example, four files will exist.
Each pair of files can be used to restore the database. In the real world, a backup like that
in Listing 14.5 would write to two different disk or tape drives. Storing the media on the
same drive is very risky and does not give you all the advantages a mirror can afford.

Copy-Only Backups

If you want a backup that will not affect future or past backups, copy-only backups are for
you. The copy-only backup allows you to make a database or log backup without identify-
ing the backup as one that should be included in a restore sequence.

Contrast this with a full database backup: If a full database backup is taken, the informa-
tion related to this backup is captured in the system tables. This backup can form the base
for other backups, such as transaction log backups or differential backups, and must be
retained to be able to restore the backups that depend on the base.

The following example shows a copy-only backup; the COPY_ONLY parameter is the key to
creating this kind of backup:

BACKUP DATABASE [AdventureWorks2008]

TO DISK = N’C:\mssql2008\backup\AdventureWorks2008_COPY.bak’

WITH COPY_ONLY

Compressed Backups

How would you like to create a backup file that is smaller and takes less time to create?
Sign me up. This has got to be an option that the average database user would love to use.
Compressed backups are smaller in size than uncompressed backups. The reduced size of a
compressed backup typically requires less device I/O and can therefore reduce backup
times significantly.

You must be aware that there are some trade-offs, however. First, this feature is available
only with Enterprise Edition or Developer Edition. Second, the creation of a compressed
backup can impact on the performance of concurrent operations on your database server
while the backup is being created. Specifically, CPU usage increases during the backup.
This may or may not be an issue for you. Consider that many full database backups are
taken during off-hours, so there are more CPU cycles available during this time. Either
way, you should monitor the CPU usage using compression versus not using compression
to evaluate the impact. Another option is to create low-priority compressed backups in a

 Download from www.wowebook.com

ptg

403Restoring Databases and Transaction Logs
1

4

session whose CPU usage is limited by the Resource Governor. (For more information on
using the Resource Governor, see Chapter 40, “Managing Workloads with the Resource
Governor.”)

When you get past these hurdles, the creation of a compressed backup is straightforward.
One option is to set a server option so that all backups are created as compressed files by
default. You can use the sp_configure stored procedure to set the backup compression
default. If this is set to true, future backups will be created in a compressed format unless
the backup is specifically created with the NO_COMPRESS option.

You also have the option of creating a compressed backup regardless of the server option.
This is done using the new COMPRESSION option available with the T-SQL BACKUP
command. The following example shows how to create an AdventureWorks2008 backup in
the compressed format:

BACKUP DATABASE [AdventureWorks2008]

TO DISK = N’C:\MSSQL2008\Backup\AdventureWorks2008_compressed.bak’

WITH NOFORMAT, NOINIT,

NAME = N’AdventureWorks2008-Full Database Backup’,

SKIP, NOREWIND, NOUNLOAD, COMPRESSION, STATS = 10

The compression is quite impressive. In some simple tests performed on the
AdventureWorks2008 database, the compressed backup was one fourth the size of a
noncompressed backup. The compression ratio varies depending on the type of data in
the database that you are backing up but can be as good as or better than 4:1.

System Database Backups

The system databases are the master, model, msdb, resource, tempdb, and distribution
databases. SQL Server uses these databases as part of its internal workings. All these data-
bases should be part of your backup plan, except for resource and tempdb. You can find
detailed descriptions of these databases in Chapter 7, “SQL Server System and Database
Administration.” The important point to remember about all these databases is that they
contain key information about your SQL Server environment. The msdb database contains
information about backups and scheduled jobs. The master database contains information
about all the user databases stored on the server. This information can change over time.

To ensure that you do not lose the information the system databases contain, you should
back up these databases as well. Typically, nightly full database backups of these databases
suffice. You can use the same backup T-SQL syntax or SSMS screens that you use for a user
databases to accomplish this task.

Restoring Databases and Transaction Logs
A database restore allows a database or part of a database to be recovered to a state that it
was in previously. This state includes the physical structure of the database, configuration
options, and data contained in the database. The options you have for recovery are
heavily dependent on the backup plan you have in place and way you have configured

 Download from www.wowebook.com

ptg

404 CHAPTER 14 Database Backup and Restore

your database. Databases that are set to simple recovery mode have limited options for
database restore. Databases that are in full recovery mode and have frequent backups have
many more restore options. Following are the basic options for restore:

. Restore an entire database.

. Perform a partial restore.

. Restore a file or page from a backup.

. Restore a transaction log.

. Restore a database to a point in time by using a database snapshot.

The following sections delve further into the restore options listed here. They focus on the
means for accomplishing these restores and some of the common restore scenarios you
might encounter.

Restores with T-SQL

The command to restore a database in SQL Server is aptly named RESTORE. The RESTORE
command is similar to the BACKUP command in that it can be used to restore a database,
part of a database, or a transaction log. You restore an entire database or part of a database
by using the RESTORE DATABASE syntax. You do transaction log restores by using the
RESTORE TRANSACTION syntax.

Database Restores with T-SQL
Listing 14.6 shows the full syntax for RESTORE DATABASE.

LISTING 14.6 RESTORE DATABASE Syntax

--To Restore an Entire Database from a Full database backup (a Complete Restore):

RESTORE DATABASE { database_name | @database_name_var }

[FROM <backup_device> [,...n]]

[WITH

[{ CHECKSUM | NO_CHECKSUM }]

[[,] { CONTINUE_AFTER_ERROR | STOP_ON_ERROR }]

[[,] ENABLE_BROKER]

[[,] ERROR_BROKER_CONVERSATIONS]

[[,] FILE = { file_number | @file_number }]

[[,] KEEP_REPLICATION]

[[,] MEDIANAME = { media_name | @media_name_variable }]

[[,] MEDIAPASSWORD = { mediapassword |

@mediapassword_variable }]

[[,] MOVE ‘logical_file_name’ TO ‘operating_system_file_name’]

[,...n]

[[,] NEW_BROKER]

[[,] PARTIAL]

[[,] PASSWORD = { password | @password_variable }]

[[,] { RECOVERY | NORECOVERY | STANDBY =

 Download from www.wowebook.com

ptg

405Restoring Databases and Transaction Logs
1

4

{standby_file_name | @standby_file_name_var }

}]

[[,] REPLACE]

[[,] RESTART]

[[,] RESTRICTED_USER]

[[,] { REWIND | NOREWIND }]

[[,] STATS [= percentage]]

[[,] { STOPAT = { date_time | @date_time_var }

| STOPATMARK = { ‘mark_name’ | ‘lsn:lsn_number’ }

[AFTER datetime]

| STOPBEFOREMARK = { ‘mark_name’ | ‘lsn:lsn_number’ }

[AFTER datetime]

}]

[[,] { UNLOAD | NOUNLOAD }]

]

Once again, there are many available options for restoring a database, but a simple restore
is fairly straightforward. The following example demonstrates a full restore of the
AdventureWorks2008 database:

RESTORE DATABASE [AdventureWorks2008]

FROM DISK = N’C:\mssql2008\backup\AdventureWorks2008_FullRecovery.bak’

WITH FILE = 1, NOUNLOAD, REPLACE, STATS = 10

For more sophisticated restores, you can specify options following the WITH clause. Table
14.2 briefly describes these options. Many of the options are the same as for the BACKUP
command and provide similar functionality.

TABLE 14.2 RESTORE DATABASE Options

Option Description

CHECKSUM | NO_CHECKSUM When CHECKSUM is specified, a checksum is calcu-
lated before the backup is restored. If the check-
sum validation fails, the restore fails as well. The
default is NO_CHECKSUM.

STOP_ON_ERROR | CONTINUE_AFTER_ERROR The STOP_ON_ERROR option, which is the default,
causes the backup to fail if an error is encoun-
tered. CONTINUE_AFTER_ERROR allows the restore
to continue if an error is encountered.

ENABLE_BROKER This option starts the Service Broker so that
messages can be received.

 Download from www.wowebook.com

ptg

406 CHAPTER 14 Database Backup and Restore

TABLE 14.2 RESTORE DATABASE Options

Option Description

ERROR_BROKER_CONVERSATIONS Service Broker conversations with the database
being restored are ended, with an error stating that
the database is attached or restored.

FILE = { file_number | @file_number } This option identifies the backup set number to be
restored from the backup media. The default is 1,
which indicates the latest backup set.

KEEP_REPLICATION This option prevents replication settings from being
removed during a restore operation. This is impor-
tant when setting up replication to work with log
shipping.

MEDIANAME This is a 128-character name for the backup
media. If it is specified, the target media must
match this name.

MEDIAPASSWORD This is a password for the media set. If the media
was created with a password, the password must
be supplied to restore from that media.

MOVE This option causes the specified
logical_file_name to be moved from its original
file location to another location.

NEW_BROKER This option creates a new service_broker_guid.

PARTIAL This option causes a partial restore to occur that
includes the primary filegroup and any specified
secondary filegroup(s).

PASSWORD This password is specific to the backup set. If a
password was used when creating the backup set,
a password must be used to restore from the
media set.

RECOVERY | NORECOVERY | STANDBY The RECOVERY option, which is the default, restores
the database so that it is ready for use.
NORECOVERY renders the database inaccessible but
able to restore additional transaction logs. The
STANDBY option allows additional transaction logs
to be applied but the database to be read. These
options are discussed in more detail later in this
section.

 Download from www.wowebook.com

ptg

407Restoring Databases and Transaction Logs
1

4

Various options are utilized in the “Restore Scenarios” section, later in this chapter. Those
restore scenarios provide a frame of reference for the options and further meaning about
what they can accomplish.

Transaction Log Restores with T-SQL
The syntax details and options for restoring a transaction log backup are similar to those
for RESTORE BACKUP. The options not available with RESTORE LOG include ENABLE_BROKER,
ERROR_BROKER_CONVERSATIONS, NEW_BROKER, and PARTIAL.

The RECOVERY | NORECOVERY | STANDBY options are particularly important when perform-
ing transaction log restores and also when restoring a database that will have transaction

TABLE 14.2 RESTORE DATABASE Options

Option Description

REPLACE This option causes the database to be created
with the restore, even if the database already
exists.

RESTART This option allows a previously interrupted restore
to restart where it was stopped.

RESTRICTED_USER This option restricts access to the database after
it has been restored. Only members of the
db_owner, dbcreator, or sysadmin role can
access it.

REWIND | NOREWIND This option is used for tape operations. REWIND,
which is the default, causes the tape to be
released and rewound.

STATS This option causes completion statistics to be
displayed at the specified interval to assess
progress.

STOPAT | STOPATMARK | STOPBEFOREMARK This option causes a restore to recover to a speci-
fied date/time or to recover to a point defined by a
specific transaction. The STOPAT option restores
the database to the state it was in at the date and
time. The STOPATMARK and STOPBEFOREMARK
options restore based on the specified marked
transaction or LSN.

UNLOAD | NOUNLOAD This option is used for tape operations. NOUNLOAD
cause the tape to remain in the tape drive after a
restore completes. UNLOAD, which is the default,
causes the tape to be rewound and unloaded when
the restore completes.

 Download from www.wowebook.com

ptg

408 CHAPTER 14 Database Backup and Restore

logs applied. If these options are used incorrectly, you can render your database inaccessi-
ble or unable to restore subsequent transaction log backups. With the RECOVERY option,
any uncommitted transactions are rolled back, and the database is made available for use.
When a restore (of either a database or transaction log) is run with this option, no further
transaction logs can be applied. The NORECOVERY and STANDBY options do allow subsequent
transaction logs to be applied. When the NORECOVERY option is specified, the database is
completely unavailable after the restore and is left in a restoring state. In this state, you
cannot read the database, update the database, or obtain information about the database,
but you can restore transaction logs.

With the STANDBY option, the database is left in a read-only state that allows some data-
base access. standby_file_name must be specified with the STANDBY option. The standby
file contains uncommitted transactions rolled back to place the database in a consistent
state for read operations. If subsequent transaction log backups are applied to the STANDBY
database, the uncommitted transactions in the standby file are reapplied to the database.

CAUTION

Take note of the standby_file_name name used when restoring with the STANDBY
option and make sure the file is secure. If another restore operation is performed and
the same standby_file_name is used, the previous standby file is overwritten. The
database cannot be fully recovered without the standby file, so you have to perform all
the restore operations again.

We speak from personal experience on this one. During a data recovery drill, for a large
database (approximately 1TB), we spent hours restoring the transaction logs on a set
of log-shipped databases. We manually restored the last log to be applied to place the
database in STANDBY mode. Another database also in the data recovery drill was also
placed in STANDBY, and unfortunately, the same standby file was used on this data-
base. This caused more than one person a very long night. Be careful!

Some of the other options of the RESTORE DATABASE command are covered in the “Restore
Scenarios” section, later in this chapter. Once again, many of these options are not
required for most types of restores. For example, the following command uses basic
options to restore a transaction log backup to the AdventureWorks2008 database:

RESTORE LOG [AdventureWorks2008] FROM

DISK =

N’C:\mssql2008\backup\AdventureWorks2008\AdventureWorks2008_backup_200906091215.trn’

WITH FILE = 1, NOUNLOAD, STATS = 10, NORECOVERY

Typically, the individual restore commands you will use are along the lines of the preced-
ing example. The restores become more complicated when many restores of different
types are involved in a recovery option. Fortunately, SSMS can help ease this pain.

 Download from www.wowebook.com

ptg

409Restoring Databases and Transaction Logs
1

4

Restoring by Using SSMS

The restore capabilities in SSMS are comprehensive and can reduce the amount of time
needed to perform a restore and limit the number of errors. This is partly due to the fact
that SSMS keeps track of the backups that have occurred on a server. When a restore oper-
ation is requested for a database, SQL Server reads from its own system tables and presents
a list of backups that it knows about that can be restored. In situations in which many
files need to be restored, SSMS can be an invaluable tool.

You access the restore functions in SSMS by right-clicking the database in the Object
Explorer and selecting Tasks and then Restore. The options available for restore include
Database, File and Filegroups, and Transaction Log. Which restore options are enabled
depends on the state of the database being restored. The Transaction Log option is
disabled for databases that were restored with the RECOVERY option or are set to simple
recovery mode. Figure 14.6 shows an example of the restore screen that is displayed when
you select a database restore for the AdventureWorks2008 database.

The Restore Database window can show more than one type of backup, depending on
what is available. The first backup shown in Figure 14.6 is a full backup, followed by a
series of transaction log backups. The beauty of this screen is that the backups are shown
in the order in which they should be applied. This order is very important with restores

FIGURE 14.6 A database restore with SSMS.

 Download from www.wowebook.com

ptg

410 CHAPTER 14 Database Backup and Restore

because they must be applied in the order in which they occurred. You can choose to
apply all the backups or selectively choose the backups you want to apply. If you uncheck
the first full database backup, all subsequent log backups are unchecked as well. If you
recheck the full database backup and click one of the transaction log backups toward the
bottom of the list, all the required backups that happened prior to the selected backups
are also selected.

Figure 14.7 shows an example or the Options page of the Restore Database window for the
AdventureWorks2008 database. The Options page allows you to specify many of the T-SQL
RESTORE options reviewed previously. The Overwrite the Existing Database option is equiv-
alent to the REPLACE parameter and forces a replacement of the restored database if it
exists already. The Preserve the Replication Settings option is equivalent to
KEEP_REPLICATION. The Restrict Access to the Restored Database option is the same as
using the RESTRICTED_USER option with the T-SQL RESTORE command. The Prompt Before
Restoring Each Backup option does not have a T-SQL equivalent; it displays a prompt
before restoring each backup set to ask whether you want to restore it.

The last three options on the Options page relate the recovery state of the last backup set
restored. The first option is synonymous with the RECOVERY option, the second option is
the same as NORECOVERY, and the last option is equivalent to the STANDBY option. The
standby filename must be supplied with the STANDBY option and defaults to the default
backup directory for the server. By default, the name of the file contains the name of the
database being restored.

FIGURE 14.7 Restore options with SSMS.

 Download from www.wowebook.com

ptg

411Restoring Databases and Transaction Logs
1

4

TIP

You should click the Script button available on the Restore Database window if you
want to see what is going on under the hood of the SSMS restores or want to run a
restore later. You can learn a lot about the T-SQL options and how they work by script-
ing out the commands.

Restore Information

Backup files and system tables contain a wealth of information about what can be restored
or already has been restored. You can retrieve information from the backup files by using
variations of the RESTORE command. These variations do not actually perform the restore
operation but provide information about the backups that can be restored. The RESTORE
commands and some useful system tables are detailed in the following sections.

The RESTORE FILELISTONLY Command
The RESTORE FILELISTONLY command returns a result set that contains a list of the data-
base and log files contained in the backup. An example of this command follows:

RESTORE FILELISTONLY

FROM DISK = ‘C:\mssql2008\backup\AdventureWorks2008_Partial.bak’

The results from this type of restore include the logical and physical filenames, the type of
each file, and the size of each file.

The RESTORE HEADERONLY Command
The RESTORE HEADERONLY command returns a result set that contains the backup header
data for all backup sets on the specified backup device. This command is useful when
multiple backup sets are written to the same device. An example of this command follows:

RESTORE HEADERONLY

FROM DISK = ‘C:\mssql2008\backup\AdventureWorks2008_Partial.bak’

More than 50 columns are returned in the result set. Some particularly useful pieces of
information include the start and finish time for the backup, recovery mode when the
backup was taken, type of backup, and name of the computer from which the backup was
performed.

The RESTORE VERIFYONLY Command
The RESTORE VERIFYONLY command verifies that a backup set is complete and readable.
The restore does not attempt to verify the structure of the data in the backups, but it has
been enhanced to run additional checks on the data. The checks are designed to increase
the probability of detecting errors. An example of this command follows:

 Download from www.wowebook.com

ptg

412 CHAPTER 14 Database Backup and Restore

RESTORE VERIFYONLY

FROM DISK = ‘C:\mssql2008\backup\AdventureWorks2008_Partial.bak’

/*Result from the prior RESTORE VERIFYONLY command

The backup set on file 1 is valid.

*/

The results from the prior example show that the RESTORE VERIFYONLY command does not
contain much output, but the value of this command is in helping ensure that the
backups are sound.

Backup and Restore System Tables
The system tables for backups and restores are found in the msdb system database. These
system tables are used to keep historical information about the backups and restores that
have occurred on the server. These system tables are listed in Table 14.3.

Refer to “Backup and Restore Tables” in the “System Tables” section of SQL Server Books
Online for a detailed description of each table, including each column that can be
retrieved.

TABLE 14.3 Backing Up and Restoring System Tables

msdb System Table Description

backupfile Contains one row for each data or log file of a database.

backupfilegroup Contains one row for each filegroup in a database at the time of backup.

backupmediafamily Contains a row for each media family.

backupmediaset Contains one row for each backup media set.

backupset Contains a row for each backup set.

logmarkhistory Contains one row for each marked transaction that has been committed.

restorefile Contains one row for each restored file. These include files restored indi-
rectly, by filegroup name.

restorefilegroup Contains one row for each restored filegroup.

restorehistory Contains one row for each restore operation.

suspect_pages Contains one row per page that failed with an 824 error (with a limit of
1,000 rows).

sysopentapes Contains one row for each currently open tape device.

 Download from www.wowebook.com

ptg

413Restoring Databases and Transaction Logs
1

4

You are able to query these tables to obtain a variety of information related to backups and
restores. You can tailor these queries to look at a specific database or a specific time frame.
The following example retrieves restore information for the AdventureWorks2008 database:

select destination_database_name ‘database’, h.restore_date, restore_type,

cast((backup_size/1024)/1024 as numeric(8,0)) ‘backup_size MB’,

f.physical_device_name

from msdb..restorehistory h (NOLOCK)

LEFT JOIN msdb..backupset b (NOLOCK)

ON h.backup_set_id = b.backup_set_id

LEFT JOIN msdb..backupmediafamily f (NOLOCK)

ON b.media_set_id = f.media_set_id

where h.restore_date > getdate() - 5

and UPPER(h.destination_database_name) = ‘AdventureWorks2008’

order by UPPER(h.destination_database_name), h.restore_date desc

This example displays information related to restores that have been executed in the past
five days for the AdventureWorks2008 database. The restore date, type of restore, size of the
backup, and physical location of the file used for the restore are displayed when you run
this query.

CAUTION

Queries against system tables are acceptable and can provide a wealth of information,
but you need to exercise caution whenever you are dealing with a system table. SQL
Server uses these tables, and problems can occur if the values in them are changed or
their physical structure is altered.

Backup and Restore Report
A set of standard reports that come with SQL Server 2008 provide a variety of information
about your databases, including recent restores and backups. You can access these reports
by right-clicking on a database in the SSMS Object Explorer, then Reports, and then
Standard Reports. You see over a dozen reports ready for you to run.

A report particularly useful for obtaining restore and backup information is named
Backup and Restore Events. This report details the latest backup and restore events that
have occurred on a particular database. An example of this report is shown in Figure 14.8.

The interactive report allows you to drill down into each backup or restore event to obtain
more information. For example, the restore information shown in Figure 14.8 was
obtained by clicking on the plus button next to the Successful Restore Operations label.
You can then drill down into an individual restore to obtain more information, including
the physical files involved in the operation.

 Download from www.wowebook.com

ptg

414 CHAPTER 14 Database Backup and Restore

FIGURE 14.8 Backup and Restore Events report.

Restore Scenarios
Restore scenarios are as varied as the backup scenarios that drive them. The number of
scenarios is directly related to the types of backups taken and frequency of those backups.
If a database is in simple recovery mode and full database backups are taken each night,
your restore options are limited. Conversely, full recovery databases that have multiple
filegroups and take a variety of different types of backups have a greater number of
options that can be used to restore the database.

The following sections describe a number of restore scenarios to give you a taste of the
types of restores you may encounter. The scenarios include some restores performed with
T-SQL and others performed with SSMS.

Restoring to a Different Database

You can restore a database backup to a different database. The database you’re restoring to
can be on the same server or a different server, and the database can be restored to a
different name, if needed. These types of restores are common in development environ-
ments where a production backup is recovered on a development server or multiple copies
of the same development database are restored to different database names for use by
different groups.

Listing 14.7 shows the T-SQL RESTORE command you can use to create a new database
named AdventureWorks2008_COPY from the backup of the AdventureWorks2008 database.
Take note of the MOVE options that specify where the database files for the new

 Download from www.wowebook.com

ptg

415Restore Scenarios
1

4

AdventureWorks2008_COPY database will exist. Each MOVE option must refer to the logical
name for the file and include a physical file location that is a valid location on the server.
In addition, the referenced file cannot be used by another database. The only exception is
when you are restoring to the database that is using the files and the REPLACE option is
used.

LISTING 14.7 Restore to a Different Database

RESTORE DATABASE [AdventureWorks2008_COPY]

FROM DISK = N’C:\mssql2008\backup\AdventureWorks2008.bak’

WITH FILE = 1,

MOVE N’AdventureWorks2008_Data’ TO

N’C:\mssql2008\data\AdventureWorks2008_Copy.mdf’,

MOVE N’AdventureWorks2008_Log’ TO

N’C:\mssql2008\data\AdventureWorks2008_Copy_log.ldf’,

NOUNLOAD, STATS = 10

TIP

A restore of a database backup taken from another server can cause problems after
the restore completes. The problems are caused by broken relationships between the
database users captured in the backup file and the associated logins on the server to
which the backup is restored. The relationships are broken because each login
receives a unique ID assigned to it when it is added. These unique IDs can and will be
different across servers, even though the logins may have the same name. The unique
ID from the login is stored with each database user in order to identify the login that
the user is associated with. When the unique ID for the login is different or not found,
you get spurious errors when trying to connect to the database with these users or
when trying to administer these users in SSMS.

The sp_change_users_login system stored procedure is designed to correct these
broken relationships. You can run this procedure with the ”report” option in the data-
base in question to help identify any problems (that is, sp_change_users_login
“report”). The stored procedure also has options to fix the broken relationships. For
example, sp_change_users_login “autofix”, “myuser” fixes the relationship for
the ”myuser” database user. You should check SQL Server Books Online for further
options and details on this stored procedure.

Another quick-and-dirty means for fixing orphaned database users is to delete the
users from the database and then re-create them. Of course, the login must exist on
the server, and all the permissions associated with the database user must be
reestablished. Permissions can be overlooked or missed with this method, so it is
safer to stick with the sp_change_users_login procedure.

 Download from www.wowebook.com

ptg

416 CHAPTER 14 Database Backup and Restore

Restoring a Snapshot

Database snapshots, which were introduced in SQL Server 2005, provide a fast method for
capturing a transactionally consistent view of a database. The snapshot is created as
another read-only database linked to the original database from which the snapshot was
taken. As changes are made to the original database, the database engine uses a copy-on-
write method to keep the snapshot consistent.

After a snapshot is taken, you can revert back to the snapshot at a later time and restore
the original database to the state it was in when the snapshot was taken. You do not
create the snapshot by backing up a database, but you can restore it using methods similar
to restoring a backup. The following examples shows the syntax to revert a database back
to a database snapshot:

RESTORE DATABASE { database_name | @database_name_var }

FROM DATABASE_SNAPSHOT database_snapshot_name

Database snapshots are available only with the Enterprise or Development Editions of SQL
Server. They are discussed in more detail in Chapter 32, “Database Snapshots.”

Restoring a Transaction Log

Transaction log restores deserve special attention because of their dependency on other
backup types. Typical transaction log restores occur after a full or differential database
restore has occurred. After this base is established, the transaction log restores must be
done in the same sequential order as the backups that were taken.

Fortunately, SSMS does a good job of presenting the available backups in the order in
which they must be applied. You can do the entire restore sequence with SSMS, including
a full restore followed by a restore of any other backups, including transaction log
backups. To restore transaction log backups (independent of other backups), you can select
the Transaction Log option. Figure 14.9 shows a sample screen for restoring transaction
logs in the AdventureWorks2008 database.

The transaction logs shown in Figure 14.9 are listed in the order in which they were taken
and the order in which they need to be applied. You can uncheck some of the available
backups, but you are not allowed to select backups that are not in the correct sequence. In
other words, you can uncheck backups from the bottom of the list, but if you uncheck
backups toward the top of the list, all backups found below that item are unchecked as
well.

It is important to remember that you can restore transaction log backups only to a data-
base that is in the NORECOVERY or STANDBY state. Make sure that every restore prior to the
last one uses one of these options. When you restore the last transaction log, you should
use the RECOVERY option so that the database is available for use.

 Download from www.wowebook.com

ptg

417Restore Scenarios
1

4

FIGURE 14.9 Transaction Log Restore.

Restoring to the Point of Failure

A disk failure on a drive that houses database files is a reality that some database adminis-
trators must deal with. This situation can give pause to the most seasoned administrators,
but it is a situation that can be addressed with little or no data loss. Don’t panic! You need
to first identify the available backups.

NOTE

It is hoped the disk that experienced a failure is not the same disk that houses your
backups. Database backups should always be stored on separate media. One of the
best approaches is to write the backups to a drive that does not contain any other SQL
Server files and write the contents of that drive to tape. This minimizes the possibility
of losing one of those all-important backups.

The backup components that you need to restore to the point of failure include the
following:

. A backup of the tail of the transaction log

. A full database backup or file/filegroup backup to establish a base

 Download from www.wowebook.com

ptg

418 CHAPTER 14 Database Backup and Restore

. The full sequence of transaction log backups created since the full database backup

The following sections describe the detailed steps for recovery that relate to these backup
components.

NOTE

The restore steps outlined in the following sections do not address the recovery of the
actual disk that failed. The recovery of hardware, such as a disk, is beyond the scope
of this book, but it needs to be addressed to get your environment back to the state it
was in prior to the failure.

Backing Up the Tail of the Transaction Log
The first thing you should do in the event of a damaged database is to back up the tail of
the transaction log. The tail of the transaction log is found in the active SQL Server trans-
action log file(s). This tail is available only for databases that are in full or bulk-logged
recovery mode. This tail contains transactions not backed up yet. The following example
shows how to back up the tail of the log for the AdventureWorks2008 database using T-
SQL:

BACKUP LOG [AdventureWorks2008]

TO DISK = N’C:\mssql2008\backup\log\AdventureWorks2008_Tail.trn’

WITH NO_TRUNCATE

NO_TRUNCATE prevents the transactions in the log from being removed and allows the
transaction log to be backed up, even if the database is inaccessible. This type of backup is
possible only if the transaction log file is accessible and was not on the disk that had the
failure.

Recovering the Full Database Recovery
After you back up the tail of the transaction log, you are ready to perform a full database
restore. This restore, which is based on a full database backup or a file/filegroup backup,
overwrites the existing database. It is imperative that the full database restore be done
with the NORECOVERY option so that the transaction log backups and tail of the log can be
applied to the database as well. The following example restores a full backup of the
AdventureWorks2008 database, using the T-SQL RESTORE command:

RESTORE DATABASE [AdventureWorks2008]

FROM DISK = N’C:\mssql2008\backup\AdventureWorks2008.bak’

WITH FILE = 1, NORECOVERY, NOUNLOAD, REPLACE, STATS = 10

Upon completion of this type of restore, the database appears in the SSMS Object Explorer
with ”(Restoring...)” appended to the end of the database name. The database is now
ready for transaction log backups to be applied.

 Download from www.wowebook.com

ptg

419Restore Scenarios
1

4

Restoring the Transaction Log Backup
The final step in recovery is to apply the transaction log backups. These backups include
all the transaction log backups since the last full backup plus the tail of the log you
backed up after the media failure. If differential backups were taken since the last full
backup, you can apply the last differential backup and apply only those transaction log
backups that have occurred since the last differential backup.

You can restore transaction log backups by using T-SQL or SSMS. To restore with SSMS,
you can right-click the database in the restoring state and select the Transaction Log
Restore option. The Restore Transaction Log screen lists the available transaction log
backups, including the backup of the transaction log tail. You need to select all the trans-
action logs, including the tail. You should make sure to go to the Options tab and select
the Recovery option so that your database is available after the restore completes.

Alternatively, you can use T-SQL to perform the transaction log backup restores. The
following example shows a series of transaction log restores. The first two restores are
done with the NORECOVERY option. The last command restores the tail of the log and uses
the RECOVERY option to make the database available for use:

RESTORE LOG [AdventureWorks2008]

FROM DISK =

N’C:\mssql2008\backup\AdventureWorks2008_backup_200906180922.trn’

WITH FILE = 1, NORECOVERY, NOUNLOAD, STATS = 10

GO

RESTORE LOG [AdventureWorks2008]

FROM DISK =

N’C:\mssql2008\backup\AdventureWorks2008_backup_200906180923.trn’

WITH FILE = 1, NORECOVERY, NOUNLOAD, STATS = 10

GO

RESTORE LOG [AdventureWorks2008]

FROM DISK =

N’C:\mssql2008\backup\log\AdventureWorks2008_Tail.trn’

WITH FILE = 3, NOUNLOAD, STATS = 10

GO

When many transaction log backups are involved, using T-SQL to perform the restores can
be challenging. The restores must occur in the proper order and refer to the proper loca-
tion of the backup file(s). Restores done with SSMS are typically less prone to error.

Restoring to a Point in Time

Databases in the full or bulk-logged recovery models can be restored to a point in time.
This type of restore is similar to the point-of-failure scenario covered previously, but it
allows for a more precise restore operation. These restores allow the database to be recov-
ered to a time prior to a particular event. Malicious attacks or erroneous updates are some
examples of events that would justify a point-in-time restore.

 Download from www.wowebook.com

ptg

420 CHAPTER 14 Database Backup and Restore

NOTE

There are some limitations on point-in-time restores of databases set to the bulk-
logged recovery model. Point-in-time restores are not possible on transaction log back-
ups that contain bulk load operations. Point-in-time restores can occur using
transaction log backups that occurred prior to the bulk load operation, as long as a
bulk load did not occur during the time of these backups.

A point-in-time restore can be done using one of the following:

. A specific date/time within the transaction log backup

. A specific transaction name inserted in the log

. An LSN

Point-in-time restores can be done with T-SQL or SSMS. Figure 14.10 shows the General
page that allows you to specify the Point in Time option. The default is to restore to the
most recent time possible, but you can click on the ellipsis to display the Point in Time
Restore dialog box, which is shown in the middle of Figure 14.10. You can select the date
to restore to by using the date drop-down and enter the time to restore to as well.

FIGURE 14.10 A point-in-time restore.

 Download from www.wowebook.com

ptg

421Restore Scenarios
1

4

Online Restores

Online restores were new to SQL Server 2005 and continue to be supported in SQL Server
2008. They allow a filegroup, file, or specific page within a file to be restored while the
rest of the database is online. The file or filegroup that is being restored to must be offline
during the duration of the online restore.

TIP

You should take a full backup of a database immediately before taking a read-only file
offline. This simplifies the online restore process and eliminates the need to apply a
bunch of transaction log backups prior to the online restore. This applies only to data-
bases in full or bulk-logged recovery.

The following example demonstrates how to take a read-only file offline:

ALTER DATABASE AdventureWorks2008

MODIFY FILE (NAME = ‘AdventureWorks2008_ReadOnlyData’, OFFLINE)

When the file is offline, you can perform a restore to that file without affecting the rest of
the database. The following example shows an example of an online restore of a read-only
file to the AdventureWorks2008 database:

RESTORE DATABASE [AdventureWorks2008]

FILE = N’AdventureWorks2008_ReadOnlyData’

FROM DISK = N’C:\mssql2008\backup\AdventureWorks2008_ReadOnlyData.bak’

WITH FILE = 1, NOUNLOAD, STATS = 10, RECOVERY

Restoring the System Databases

The SQL Server 2008 system databases that can be restored are the master, msdb, model,
and distribution databases. Each of these databases performs an essential role in the
operation of SQL Server. If these databases are damaged or lost, they can be restored from
database backup files in a similar fashion to user databases.

The master database, which contains information about other databases and is required to
start SQL Server, has some special restore considerations. It must be operational before
restores of other system databases can be considered. When you are restoring the master
database, there are two basic scenarios. The first scenario involves a restore of the master
database when the master database currently used by SQL Server is operational. In the
second scenario, the master database is unavailable, and SQL Server is unable to start.

The first master database restore scenario is less involved and typically less stressful than
the second. In the first scenario, your SQL Server can be up and running until the time
you want to do the restore. When you are ready to do the restore, the SQL Server instance
must be running in single-user mode. The server can be started in single-user mode via a

 Download from www.wowebook.com

ptg

422 CHAPTER 14 Database Backup and Restore

command prompt window. You stop the currently running SQL Server service, open a
command prompt window, navigate to the directory where the sqlservr.exe file exists
(typically C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Binn\), and run the
following command:

sqlservr.exe –m

When this command is executed, the SQL Server instance is running in the command
prompt window. This window must be kept open for the SQL Server instance to keep
running. The service for SQL Server appears as stopped, but the database engine is truly
running.

The –m parameter places the server in single-user mode and allows a single administrator
connection to the server. You can use that one connection to connect to the server to use
the Object Explorer, a database query window in SSMS, SQLCMD, or any other tool that
allows you to establish a connection and run commands against the database server. If
you use the SSMS Object Explorer connection, you can right-click on the master database
and select the Restore option. You need to enter master for the database to restore and
select the overwrite option. You can instead run a T-SQL RESTORE command to achieve the
same result.

When the restore of the master database is complete, SQL Server is automatically shut
down. If you performed the restore using Object Explorer, you can expect to get an error
message at the end of the restore process because SQL Server was shut down. You can
simply close the command prompt window you used earlier and establish a new connec-
tion to the database server. All the databases, logins, and so on that were present prior to
the backup are reestablished.

In the second scenario, the master database is damaged or unavailable, and SQL Server
cannot start. If SQL Server is unable to start, you must reestablish a base environment like
that which existed when SQL Server was initially installed. Using the REBUILDDATABASE
option in setup.exe is one way to re-create all the system databases and reestablish this
base environment. The REBUILDDATABASE parameter is part of a SQL Server installation that
is done from the command prompt. You need the installation media for the edition of
SQL Server installed on the machine. After you insert the disk and when you have access
to the installation files, you can use the following syntax to launch the Setup program
from a command prompt window:

start /wait <CD or DVD Drive>\setup.exe /qn

INSTANCENAME=<InstanceName> REINSTALL=SQL_Engine

REBUILDDATABASE=1 SAPWD=<NewStrongPassword>

InstanceName should be set to MSSQLSERVER for a default instance of SQL Server or the
name of the instance, if it is not the default. In addition, a new SA password needs to be
supplied for the SAPWD parameter. The /qn parameter suppresses all the setup dialog boxes
and error messages and causes the installation to run silently. If you want to receive more
information during the installation, you can specify the /qb parameter.

 Download from www.wowebook.com

ptg

423Additional Backup Considerations
1

4

NOTE

If you get a message about a missing Windows Installer, you can find that software on
the SQL Server media in the Redist folder. You may also find that the setup.exe file
is not found on the root of your installation media. If this is the case, you need to
change the directory in the command prompt window to the location of the setup.exe
file on the installation media prior to executing the command to launch the setup pro-
gram. Finally, remember to reinstall any service packs or patches you may have
installed. The execution of the command prompt setup reverts the server back to the
original software release.

At the end of the installation, all the system database files are installed to their original
locations. This includes the original master.mdf, mastlog.ldf, msdbdata.mdf, and
msdblog.ldf files, as well as the related database files for the other system databases. Any
of the user databases you may have added to the server are no longer known by the
master database and in turn are not available in the Object Explorer or other database
tools.

If you have a backup of the master database, you can restore it after the command prompt
installation is complete. You follow the procedures outlined in the first scenario, earlier in
this section, to restore the master database from a backup. At the completion of the
restore, any user databases present at the time of the master database backup are now
available. You can also run restores for other system databases at this time, including the
msdb database, which contains all your scheduled jobs and history.

If you do not have a backup of the master database, this is not the end of the world. You
still have the option of manually attaching your user databases or restoring them from
backup files. Attaching the database is typically much faster than restores from backup
files and is the preferred method. You must also reestablish logins, backup devices, server
triggers, and any other server-level objects stored in the master database. Depending on
your environment, this can be a lengthy operation, but you can easily avoid it by making
those all-important system database backups.

Additional Backup Considerations
A sound backup plan goes beyond the commands and tools described thus far in this
chapter. There are several other considerations, detailed in the following sections, that
should be considered as well.

Frequency of Backups

How often you back up your databases depends on many factors, including the following:

. The size of your databases and your backup window (that is, the time allocated to
complete the task of backing up the database)

 Download from www.wowebook.com

ptg

424 CHAPTER 14 Database Backup and Restore

. The frequency of changes to the data and method by which it is changed

. The acceptable amount of data loss in the event of a failure

. The acceptable recovery time in the event of a failure

First, you must establish what your backup window will be. Because SQL Server allows
dynamic backups, users can still access the database during backups; however, this affects
performance. This means you should still schedule backups for low-activity periods and
have them complete in the shortest possible time.

After you establish your backup window, you can determine your backup method and
schedule. For example, if it takes 4 hours for a full backup to complete, and the database is
quiescent between midnight and 6:00 a.m., you have time to perform a full backup each
night. On the other hand, if a full backup takes 10 hours, and you have a 2-hour window,
you should consider monthly or weekly backups, perhaps in conjunction with filegroup,
differential, and transaction log backups. In many decision-support databases populated
with periodic data loads, it might suffice to back up once after each data load.

Backup frequency is also directly tied to acceptable data loss. In the event of catastrophic
failure, such as a fire in the server room, you can recover data only up to the point of the
last backup moved offsite. If it is acceptable to lose a day’s worth of data entry, nightly
backups might suffice. If your acceptable loss is an hour’s worth of data, hourly transac-
tion log backups would have to be added to the schedule.

Your backup frequency affects your recovery time. In some environments, a weekly full
backup plus transaction log backups taken every 10 minutes provide an acceptable data
loss factor. A failure a few days after backup would require a full database restore and the
application of hundreds of transaction logs. Adding a daily differential backup in this case
would vastly improve restore time. The full and differential backups would be restored,
and then six logs would be applied for each hour between the differential backup and the
time of failure.

Using a Standby Server

If the ability to quickly recover from failure is crucial to your operation, you might
consider implementing a standby server. Implementing a standby server involves backing
up the production server and then restoring it to the standby server, leaving it in recovery
mode. As transaction logs are backed up on the production server, they are applied to the
standby server. If a failure occurs on the production server, the standby server can be
recovered and used in place of the production server. If the production server is still
running, you should not forget to back up the current log with the NO_TRUNCATE option
and restore it to the standby server as well before bringing it online.

NOTE

Another advantage of restoring backups to a standby server is that it immediately vali-
dates your backups so you can be assured of whether they are valid. There is nothing
worse than finding out during a recovery process that one of the backup files is dam-
aged or missing.

 Download from www.wowebook.com

ptg

425Additional Backup Considerations
1

4

The STANDBY =undo_file_name option plays a key role in the application of transaction
logs to the standby server. When the database and subsequent log backups are restored
to the standby server with this option, the database is left in recovery mode but is avail-
able as a read-only database. Now that the standby database is available for queries, it
can actually reduce load on the production database by acting as a decision support
system (DSS). Database Consistency Checks (DBCC) can be run on it as well, further
reducing the load on the production system.

For the database to be available for reads, the data must be in a consistent state. This
means that all uncommitted transactions must be rolled back. This rollback is usually
handled by the RECOVERY option during a restore. In the case of a standby server, this
would cause a problem because you would intend to apply more logs, which could, in
fact, commit those transactions. This situation is handled by the undo_file_name clause of
the STANDBY option. The file specified here holds a copy of all uncommitted transactions
rolled back to bring the standby server to a consistent, read-only state. If those transac-
tions subsequently commit a log restore, this undo information can be used to complete
the transaction.

The application of hundreds or thousands of transaction logs to the standby server can be
challenging. Fortunately, SQL Server 2008 includes log shipping, which automates the
transfer of logs to the standby server. Log shipping, which can be configured in SSMS, uses
SQL Server Agent jobs on the primary server to back up the transaction log and copy it to
a folder on the standby server. SQL Server Agent on the standby server then executes a
load job to restore the log. Automating your standby server with log shipping reduces
administration and helps to ensure that the standby database is up-to-date. For further
details on log shipping, see Chapter 19, “Replication.” Log shipping isn’t a form of replica-
tion but is covered in Chapter 19 as an alternative to replication.

Snapshot Backups

Snapshot backups are developed in conjunction with independent hardware and software
vendors. These backups are not related to SQL Server database snapshots and are not
accessible from any of the SQL Server tools. They utilize backup and restore technology
and can provide relatively fast backup and restore operations. Snapshot backups are typi-
cally utilized on very large databases that are unable to perform database backups and
restores in a timely fashion using SQL Server’s conventional backup and restore resources.

Considerations for Very Large Databases

When it comes to backup and recovery, special consideration must be given to very large
databases, which are known as VLDBs. A VLDB has the following special requirements:

. Storage—Size might dictate the use of tape backups over the network or a disk.

. Time—As your time to backup increases, the frequency of backups might have to be
adjusted.

. Method—How you back up your database is affected by its size. Differential or file
and filegroup backups might have to be implemented.

 Download from www.wowebook.com

ptg

426 CHAPTER 14 Database Backup and Restore

. Recovery—Partial database recovery, such as restoring a file or filegroup, might be
required due to the prohibitive time required to restore the entire database.

When designing a VLDB, you must integrate your backup plan with storage, performance,
and availability requirements. Larger databases take longer to back up because the backup
sizes are larger, and restores on this type of database can take much longer to complete
than with a smaller database.

Maintenance Plans

SQL Server includes maintenance plans that provide database maintenance tasks, includ-
ing optimization, integrity checks, and backups. The backup options available in the
maintenance plans are comprehensive and include the capability to regularly schedule
full, differential, and transaction log backups. This type of automation is essential to
ensure that your backups are taken with a reliable tool at regular intervals.

You can create maintenance plans from within SSMS. If you open the Management node in
the Object Explorer, you see a node named Maintenance Plans. If you right-click this
node, you can select New Maintenance Plan to create a plan from scratch, or you can
select Maintenance Plan Wizard to have a wizard guide you through the creation of a new
maintenance plan. The following options that relate to backups are available as part of a
maintenance plan:

. Back Up Database (Full)

. Back Up Database (Differential)

. Back Up Database (Transaction Log)

Using these tasks in a maintenance plan is a great start to a solid backup and recovery
plan. Refer to Chapter 33, “Database Maintenance,” for further details about creating a
maintenance plan.

Summary
Having a database environment without a solid backup and recovery plan is like owning a
home without an insurance policy to protect it. If you develop a plan to minimize the
possibility of losing a database, you have essentially bought an insurance policy for your
data. In the event of a problem, you can call on the backups that you have invested in
and recover the loss with a minimal amount of cost.

Chapter 15, “Database Mail,” explores a comprehensive mail feature offered with SQL
Server 2008. Database Mail allows you to send email notifications from SQL Server. These
notifications can be tied to scheduled jobs and alerts within SQL Server, including jobs
that can execute those all-important database backups.

 Download from www.wowebook.com

ptg

CHAPTER 15

Database Mail

IN THIS CHAPTER

. What’s New in Database Mail

. Setting Up Database Mail

. Sending and Receiving with
Database Mail

. Using SQL Server Agent Mail

. Related Views and Procedures

Database Mail is SQL Server 2008’s emailing component,
built as the replacement for SQL Mail. Although SQL Mail
can still be enabled in SQL Server 2008 (for backward
compatibility, although it is deprecated), it’s a simple task to
convert all your existing SQL Mail code and SQL Agent Mail
notifications to Database Mail. And you’ll surely want to.

What’s New in Database Mail
Database Mail is an enterprise-class implementation
designed with all the features you’d expect from this next-
generation database server, most of which are not available
in SQL Mail. These features include support for multiple
email profiles and accounts, asynchronous (queued)
message delivery via a dedicated process in conjunction
with Service Broker, cluster-awareness, 64-bit compatibility,
greater security options (such as governing of mail attach-
ment size and prohibition of file extensions), and simplified
mail auditing. Database Mail also utilizes the industry-stan-
dard Simple Mail Transfer Protocol (SMTP), signaling the
end of reliance on Extended Messaging Application
Programming Interface (Extended MAPI).

Database Mail has more capabilities and is more scalable
and reliable than SQL Mail, especially when stressed with
the heavier usage scenarios common today. And, thankfully,
it’s a good deal easier to successfully configure than its
predecessor.

 Download from www.wowebook.com

ptg

428 CHAPTER 15 Database Mail

Setting Up Database Mail
Unlike with SQL Mail, setting up profiles and accounts for use with Database Mail is easy
to accomplish, thanks mainly to the Database Mail Configuration Wizard, found in the
SQL Server Management Studio (SSMS) Object Browser. You can use this wizard both to set
up and manage Database Mail. Before using it, you need to switch on the Database Mail
feature, which is off by default, in keeping with Microsoft’s secure-by-default approach.
Follow these steps to do so.

Configure the Database Mail XPs configuration option by running the following T-SQL
code in a new query window (while logged in as sysadmin, of course):

use Master

GO

sp_configure ‘show advanced options’, 1;

GO

RECONFIGURE;

GO

sp_configure ‘Database Mail XPs’, 1;

GO

RECONFIGURE

GO

Configuration option ‘show advanced options’ changed from 0 to 1. Run the

RECONFIGURE statement to install.

Configuration option ‘Database Mail XPs’ changed from 0 to 1. Run the

RECONFIGURE statement to install.

If you ever want to disable Database Mail, you can run this:

sp_configure ‘Database Mail XPs’, 0;

This statement prevents Database Mail from starting in response to a call to
sysmail_start_sp (discussed later in this chapter). If Database Mail is running when you
make this call, it sends unsent queued mail until the mail sending process
(DatabaseMail.exe) has been idle for the duration of the
DatabaseMailExeMinimumLifeTime configuration setting (discussed later in this chapter);
then it stops.

You also need to enable Service Broker in msdb (if not done already) because Database Mail
relies on it as part of its implementation. To do this, you stop the SQL Server Agent service
and then execute the following script:

USE master

GO

ALTER DATABASE msdb SET ENABLE_BROKER

 Download from www.wowebook.com

ptg

429Setting Up Database Mail

You can check the status of Service Broker on msdb by using the following code:

Use Master

GO

SELECT is_broker_enabled

FROM sys.databases

WHERE name = ‘msdb’

GO

is_broker_enabled

————————-

1

(1 row(s) affected)

To receive message send requests from outside the SQL Server instance, you need to create
an endpoint (preferably a certificate-secured one) associated with Service Broker. To accom-
plish this, refer to the “Service Broker Routing and Security” section in Chapter 49, “SQL
Server Service Broker” (on the CD), or consult the “Create Endpoint” topic in Books Online.

To complete this configuration, you need to return to SSMS and establish a connection to
the same SQL Server instance for which you just enabled Database Mail. You connect the
Object Browser to that instance and expand the Management folder to reveal the
Database Mail node. Then you right-click the Database Mail node and select the
Configure Database Mail menu option to launch the Database Mail Configuration Wizard.

Creating Mail Profiles and Accounts

After you pass the Database Mail Configuration Wizard’s welcome screen, you are
presented with the opportunity to set up Database Mail (“for the first time”). You can
achieve this by creating the required profiles, profile security settings, SMTP accounts, and
system-wide mail settings. You should leave the first radio button (Set Up Database Mail
by Performing the Following Tasks) selected and then click Next.

NOTE

In Database Mail, you use mail profiles. A mail profile is simply a securable container
for a group of SMTP accounts that is used when sending mail. In contrast to SQL Mail,
with Database Mail, you can set up multiple profiles containing multiple accounts,
allowing for finer-grained administrative control. You can create one profile for admintra-
tors and another for regular users, for example, or create distinct profiles dedicated to
various software applications.

Note also that to use Database Mail, you no longer need to run the SQL Server or SQL
Server Agent Windows services under user accounts (rather than using the default,
LocalSystem), nor do you need to install Microsoft Outlook (or any other Extended
MAPI client) on the machine hosting SQL Server 2008.

In the New Database Mail Account screen that appears (see Figure 15.1), you name (using
a valid sysname) and describe your first profile in the provided text boxes, and then you

1
5

 Download from www.wowebook.com

ptg

430 CHAPTER 15 Database Mail

FIGURE 15.1 Using the Database Mail Configuration Wizard to set up SMTP accounts.

click Add to add your first SMTP account. This process is much like the process of setting
up the SMTP (or sending) portion of your email accounts with your regular email client
software. To create the SMTP account, you specify a name, an optional description, a user
display name, an email address, an optional reply address, a server name, a port, and an
authentication mode, which is used to authenticate to the specified SMTP server (as
required by your SMTP provider). For many non-Windows SMTP providers, anonymous
(no authentication) or basic (simple user name/password) authentication is usually
required. If your provider requires Windows Authentication, the credentials under which
the SQL Server Windows service runs are supplied to the SMTP server at runtime.

Instead of using the wizard, you can add a new profile via T-SQL. For example, the follow-
ing three examples introduce the Database Mail stored procedures
sysmail_add_profile_sp, sysmail_add_account_sp, and sysmail_add_profileaccount_sp.

The first script creates the new profile:

EXEC msdb.dbo.sysmail_add_profile_sp

@profile_name = ‘Default SQL 2008 Profile’,

@description = ‘Used for general-purpose emailing.’

The second script creates the new SMTP account:

EXEC msdb.dbo.sysmail_add_account_sp

@account_name = ‘UnleashedMailAcct1’,

 Download from www.wowebook.com

ptg

431Setting Up Database Mail
1

5

@description = ‘The first SMTP Account.’,

@email_address = ‘sql2008@samspublishing.com’,

@display_name = ‘SQL 2008 Mail Account 1’,

@mailserver_name = ‘smtp.samspublishing.com’ ;

The third script associates this new account with the new profile:

EXEC msdb.dbo.sysmail_add_profileaccount_sp

@profile_name = ‘Default SQL 2008 Profile’,

@account_name = ‘UnleashedMailAcct1’,

@sequence_number =1;

The great thing you’ll find when adding SMTP accounts is that Database Mail allows you
to provide more than one SMTP account for the same profile. You can order the SMTP
accounts by priority (using the Move Up/Move Down buttons) so that if a mail send via
the top-level (or first) account fails, the second account will be used to retry sending, and
so on. This is called SMTP failover priority, and there are two mail settings that control how
it works. These settings, found on the Configure System Parameters screen of the wizard,
are AccountRetryAttempts and AccountRetryDelay. AccountRetryAttempts specifies how
many mail send retries Database Mail will make before failing over to the SMTP account of
next-highest priority. AccountRetryDelay specifies (in seconds) how long to wait between
mail send retries. These features represent a big improvement in reliability over SQL Mail,
which had no such retry capabilities.

After adding the new account to the profile, click Next to set up the profile security
settings on the Manage Profile Security screen. Database Mail profiles have two levels of
security (with two corresponding tabs on the wizard screen):

. Public—The profile can be used by all msdb users.

. Private—The profile can be used only by specific users or members of a specific role.
(Note that to send mail, users must have DatabaseMailUserRole membership in
msdb. Use sp_addrolemember to accomplish this.) Specify these users on the Private
Profiles tab of the Manage Profile Security screen.

In this case, check the check box under the Public column of the data grid on the Public tab;
then click the word No under the Default Profile column. A drop-down list appears, allowing
you to make the profile the default (by changing the selection to Yes). The default profile on
the server is used when you invoke sp_send_dbmail (the successor to xp_sendmail) without
specifying any profile name for the @profile_name parameter. It’s a good idea to have a
default profile set up for general mailing purposes, especially when testing.

To set profile security using T-SQL, run the following call to the stored procedure
sysmail_add_principalprofile_sp:

exec msdb.dbo.sysmail_add_principalprofile_sp

@profile_name = ‘Default SQL 2008 Profile’,

@principal_name = ‘public’,

@is_default = 1 ;

 Download from www.wowebook.com

ptg

432

TABLE 15.1 T-SQL Stored Procedures

Stored Procedure Name Purpose

sysmail_delete_profile_sp Delete a profile

sysmail_delete_account_sp Delete an account

sysmail_delete_principalprofile_sp Delete the association between a profile and a
user or role (revokes permission for the principal
on use of the profile)

sysmail_delete_profileaccount_sp Delete the association between a profile and an
account

sysmail_update_profile_sp Update a profile

sysmail_update_account_sp Update an account

sysmail_update_principalprofile_sp Update the association between a profile and a
user or role

sysmail_update_profileaccount_sp Update the association between a profile and an
account

A third way to configure all the previously mentioned mail objects (in the form of a T-SQL
script) is to use an SMSS Database Mail query template. To do this, you open the Template
Explorer via the View menu (or by pressing Ctrl+Alt+T), and then you expand to the
Database Mail folder and double-click Simple Mail Database Configuration. Then you
connect to your SQL Server instance and, from the Query menu, select the Specify Values
for Template Parameters option (or press Ctrl+Shift+M) to fill in the desired parameter
values, which correspond to the parameters of the stored procedures mentioned previ-
ously.

Using T-SQL to Update and Delete Mail Objects

To delete or update profiles, accounts, profile-account associations, and profile security
settings (note: do so in reverse order), you use the stored procedures shown in Table 15.1.

CHAPTER 15 Database Mail

For example, to delete a profile, you execute this:

exec msdb.dbo.sysmail_delete_profile_sp @profile_name=’Undesireable Profile Name’

To update a profile’s security, changing it from the default to the nondefault profile, you
execute the following:

exec msdb.dbo.sysmail_update_principalprofile_sp

@profile_name = ‘Default SQL 2008 Profile’,

 Download from www.wowebook.com

ptg

433Setting Up Database Mail
1

5

@principal_name = ‘public’,

@is_default = 0;

Alternatively, you can simply return to the wizard and select one of the Manage options to
alter or drop any of the settings or objects. (Of course, under the covers, the wizard proba-
bly uses all these stored procedures.)

Setting System-wide Mail Settings

You use the Configure System Parameters screen in the Database Mail Configuration
Wizard to configure the system-wide Database Mail settings. (Click Next on the Select
Configuration Task screen to reach this screen, if you haven’t already.) You’ve seen the
first two settings that appear in the grid (AccountRetryAttempts and AccountRetryDelay)
in an earlier section (“Creating Mail Profiles and Accounts”) as they relate to SMTP
failover priority. These are the other four:

. Maximum File Size (Bytes)—This setting specifies the maximum size of any one
email attachment.

. Prohibited Attachment File Extensions—This setting specifies which potentially
dangerous or undesirable attachment types to ban from exchanged emails.

. Database Mail Executable Minimum Lifetime (seconds)—This setting specifies
how long (minimally) the database mail process (that is, DatabaseMail.exe, which is
activated by Service Broker) should run idly before closing after it finishes emptying
the mail send queue.

. Logging Level—This setting specifies the quality of email auditing to use, and it
can be set to Normal (errors only), Extended (errors, warnings, and informational
messages; this is the default), or Verbose (the same as Extended, plus success mes-
sages and other messages that are useful when you debug problems with
DatabaseMail.exe). To view Database Mail’s primary log, right-click the Database
Mail folder in the Object Browser and then click the View Database Mail Log menu
option. Examine and maintain the log by using the Log File Viewer that is launched.
You can also use the built-in stored procedure sysmail_delete_log_sp to clear the
log, or query the msdb sysmail_event_log view to see its contents in tabular format.

To change any of these configuration settings via T-SQL script, use the
sysmail_configure_sp stored procedure. sysmail_configure_sp takes two parameters: the
name of the setting (minus any spaces) and its new value. The following example uses the
sysmail_configure_sp procedure to change AccountRetryDelay to two minutes:

exec msdb.dbo.sysmail_configure_sp ‘AccountRetryDelay’, 1200

Testing Your Setup

The final step in setting up Database Mail is to ask SQL Server to send a test email. To do
this, right-click the Database Mail folder in the Object Browser and then click the Send
Test E-mail menu option.

 Download from www.wowebook.com

ptg

434 CHAPTER 15 Database Mail

If the test fails, click Troubleshoot, and SMSS opens the “Troubleshooting Database Mail”
Books Online topic, which provides a solid set of troubleshooting steps to get you started.

If the mail is sent by SQL Server and successfully received in your client software’s inbox,
you can proceed to the next section to learn how to use the sp_send_dbmail stored proce-
dure to send email from T-SQL. Otherwise, look for more troubleshooting help in the
“Related Views and Procedures” section of this chapter.

Sending and Receiving with Database Mail
If you’re building client applications that rely heavily on Database Mail, it’s crucial to gain
an in-depth understanding of its underlying architecture. The following sections provide
detailed information on its inner workings.

The Service Broker Architecture

As noted earlier, SQL Server relies on Service Broker (SSB) to activate the Database Mail
process (DatabaseMail.exe) used to send mail. DatabaseMail.exe uses ADO.NET to
connect to SQL Server and to read from and write to SSB queues (found in msdb) that hold
send requests and send statuses in the form of typed SSB messages. You can view these
queues (InternalMailQueue and ExternalMailQueue) in the Object Browser by selecting
Service Broker and then the Queues folder. If you look a bit further in the Object
Browser, you see how the mail transmission architecture is implemented (in part) as an
SSB application, as you find the corresponding internal and external Database Mail SSB
services (InternalMailService and ExternalMailService), SSB message types (SendMail
and SendMailStatus), and a single SSB contract (SendMail/v1.0).

SSB’s involvement with Database Mail works like this:

1. sp_send_dbmail (as the SSB initiator) is invoked and returns immediately. Under the
covers, this adds an SSB message of type SendMail to the SSB mail queue, activating
the undocumented internal stored procedure sp_ExternalMailQueueListener. Note
that the mail message itself is saved to one or more of the msdb tables (such as
sysmail_unsentitems and sysmail_attachments) if there are any attachments.

2. SSB launches DatabaseMail.exe (running under the credentials of the SQL Server
service), which, in turn, connects back to SQL Server, using Windows
Authentication.

3. DatabaseMail.exe reads the queued SSB send message, retrieves the mail message
data, sends the email, and, finally (acting as the SSB target), places a message of
type SendMailStatus in the mail status queue, reporting on the mail sending
success or failure.

4. When there’s nothing left to be sent in the outbound queue, and the maximum
process idle time has been reached, DatabaseMail.exe exits.

 Download from www.wowebook.com

ptg

435Sending and Receiving with Database Mail
1

5

By using SSB, Database Mail inherits the reliability of the SSB message transmission archi-
tecture. If you want to learn more about Service Broker and how its constructs work,
consult Chapter 49 (on the CD) for full details.

Sending Email

The SSB queues that Database Mail uses must first be enabled before you can send mail
from a session. You do this by executing the msdb stored procedure sysmail_start_sp.
This procedure is similar to its predecessor, xp_startmail (as it must be called before
sending), except that it has no parameters and, of course, has nothing to do with MAPI. It
returns 0 or 1, indicating success or failure. If you don’t call this procedure, you receive
this error message:

Mail not queued. Database Mail is stopped. Use sysmail_start_sp to

start Database Mail.

To temporarily disable SSB’s activation of the mail process, you execute sysmail_stop_sp
(also with no parameters), which returns 0 or 1. If you send mail from code after this
disabling this process, these messages will be queued. The external process is not started
until sysmail_start_sp is called again. To check on the status of Database Mail, you can
execute sysmail_help_status_sp (with no parameters). To check on the status of the
queues, you execute sysmail_help_queues_sp.

After you execute sysmail_start_sp, you’re ready to begin sending mail using the
sp_send_dbmail stored procedure. It has 21 parameters, most of which are optional. As the
query engine will tell you if you try to execute it with no or too few parameters, at least
one of the following parameters must be specified: @body, @query, @file_attachments, or
@subject. You also must specify one of the following: @recipients, @copy_recipients, or
@blind_copy_recipients.

NOTE

For the following T-SQL examples to work, you must first configure a default profile
using either the Database Mail Configuration Wizard or Database Mail stored proce-
dures, as detailed earlier.

A minimally parameterized test call might look like the following:

exec msdb.dbo.sp_send_dbmail @body=’Testing...’, @subject=’A Test’,

@recipients=’test@samspublishing.com’

go

Mail Queued.

Table 15.2 describes the parameters, their types, and the xp_sendmail parameters to which
they may correspond, to help you along in converting your existing T-SQL code.

 Download from www.wowebook.com

ptg

436 CHAPTER 15 Database Mail

TABLE 15.2 Parameters for Database Mail Stored Procedure sp_send_dbmail

Parameter Description xp_sendmail

Parameter to Which It
Corresponds

@profile_name The sysname of the profile whose
SMTP accounts will be used to
send.

Not available in
xp_sendmail.

@recipients A varchar(max) semicolon-delim-
ited list of the recipients’ email
addresses.

Same as xp_sendmail.

@copy_recipients A varchar(max) semicolon-delim-
ited list of the carbon copy recipi-
ents’ email addresses.

Same as xp_sendmail.

@blind_copy_recipients A varchar(max) semicolon-delim-
ited list of the blind carbon copy
recipients’ email addresses.

Same as xp_sendmail.

@subject The nvarchar(255) email subject. Same as xp_sendmail.

@body The nvarchar(max) email body. Was @message in
xp_sendmail.

@body_format One of the two varchar (20)
email format type strings, either
’HTML’ or ’TEXT’ (the default).

Not available in
xp_sendmail.

@importance One of the three varchar (6)
email importance strings, either
’Low’, ’Normal’ (the default), or
’High’.

Not available in
xp_sendmail.

@sensitivity One of the four varchar (12)
email sensitivity strings, either
’Normal’ (the default),
’Personal’, ’Private’, or
’Confidential’.

Not available in
xp_sendmail.

@file_attachments An nvarchar(max) semicolon-
delimited list of absolute paths to
files to attach.

Was @attachments in
xp_sendmail.

 Download from www.wowebook.com

ptg

437Sending and Receiving with Database Mail
1

5

TABLE 15.2 Parameters for Database Mail Stored Procedure sp_send_dbmail

Parameter Description xp_sendmail

Parameter to Which It
Corresponds

@query An nvarchar(max) T-SQL code
string to be executed when the
message is sent. The code is
executed in a different session
than the calling session, so vari-
able scope is a consideration.

Same as xp_sendmail.

@execute_query_database The sysname of the database in
which the T-SQL in query is to be
executed.

Was @dbuse in
xp_sendmail.

@attach_query_result_as_file A bit value indicating whether the
results of the T-SQL in query
should be an attachment (1) or
appended to the body (0; the
default).

Was @attach_results
in xp_sendmail.

@query_attachment_filename The nvarchar(255) filename for
the attached query results (as per
@query and
@attach_query_result_as_file).
If not specified, the generated file-
name is arbitrary (usually
QueryResults [some
number].txt)

In xp_sendmail, the
first filename in
@attachments was
used.

@query_result_header A bit value indicating whether the
query result (1; the default) should
include the column headers.

Was @no_header in
xp_sendmail.

@query_result_width An int value (defaulting to 256;
you specify a number between 10
and 32767) indicating how wide a
line in the query results should be
before line wrapping occurs.

Was @width in
xp_sendmail.

@query_result_separator A char(1) value (defaulting to a
space) that indicates the query
results column separator.

Was @separator in
xp_sendmail.

 Download from www.wowebook.com

ptg

438 CHAPTER 15 Database Mail

TABLE 15.2 Parameters for Database Mail Stored Procedure sp_send_dbmail

Parameter Description xp_sendmail

Parameter to Which It
Corresponds

@exclude_query_output A bit value that indicates whether
to suppress the query output (such
as rowcounts, print statements,
and so forth) from being printed on
the query console. 0 (do not
suppress) is the default.

Was @no_output in
xp_sendmail.

@append_query_error A bit value that indicates whether
to send the email if the query to
be executed raises an error. If set
to 1, the error message is
appended to the query output, and
the query window for the session
also displays the error (“A severe
error occurred on the current
command. The results, if any,
should be discarded.”). If set to 0
(the default), the message is not
sent, and sp_send_dbmail returns
1.

Not available in
xp_sendmail, but
similar to @echo_error.

@query_no_truncate A bit value that indicates whether
to truncate query results having
long values (such as
varchar(max), text, xml, and so
on) greater than 256. It defaults to
0 (off). Microsoft warns that using
this can slow things down, but it is
the only way to properly send
these types.

Not available in
xp_sendmail.

@mailitem_id An output parameter, an int value
indicating the unique mailitem_id
of the message. You see this as a
column in the views discussed in
the section “Related Views and
Procedures,” later in this chapter.

Not available in
xp_sendmail.

Note that the @type and @set_user parameters for xp_sendmail are not available. @type, of
course, is obsolete because it is MAPI specific. @set_user is also obsolete because the
content of the T-SQL to be executed may contain an EXECUTE AS statement.

 Download from www.wowebook.com

ptg

439Sending and Receiving with Database Mail
1

5

Now that you’re familiar with the flurry of mail sending options, let’s look at a few exam-
ples and then examine how to track your sent messages by using the system views. Both of
the following examples rely on sending via the default profile of the current user context.
If the user has a default private profile assigned, it is used. If not, the default public profile
is used (as in these examples). If there is no default public profile, an error is raised.

The example shown in Listing 15.1 sends an email containing an xml result to a recipient
as an attached Extensible Application Markup Language (XAML) document, retrieved from
the AdventureWorks2008.Production.Illustration column.

LISTING 15.1 Sending XML as an Attachment with Database Mail

USE AdventureWorks2008

GO

DECLARE

@subject nvarchar(255),

@body varchar(max),

@query nvarchar(max),

@IllustrationId int,

@query_attachment_filename nvarchar(255),

@mailitem_id int

SELECT

@IllustrationId = pi.IllustrationId,

@subject = ‘XAML for “‘ + pm.Name + ‘“ attached. ‘

FROM Production.Illustration pi

JOIN Production.ProductModelIllustration pmi

ON pmi.IllustrationId = pi.IllustrationId

JOIN Production.ProductModel pm

ON pm.ProductModelID = pmi.ProductModelID

SELECT

@body =

N’Attached, please find the XAML diagram for illustration #’ +

CAST(@IllustrationId as nvarchar(10)) +

‘. A XAML browser plug-in is required to view this file.’

SELECT @query =

N’SELECT Diagram FROM Production.Illustration

WHERE IllustrationId = ‘ + CAST(@IllustrationId as nvarchar(10))

SELECT @query_attachment_filename = N’PM_’ +

CAST(@IllustrationId as nvarchar(10)) + ‘.xaml’

 Download from www.wowebook.com

ptg

440 CHAPTER 15 Database Mail

exec msdb.dbo.sp_send_dbmail

@subject=@subject,

@body=@body,

@recipients=’test@samspublishing.com’,

@query=@query,

@execute_query_database=’AdventureWorks2008’,

@attach_query_result_as_file=1,

@query_attachment_filename=@query_attachment_filename,

@query_no_truncate=1,

@exclude_query_output=1,

@query_result_width=32767,

@mailitem_id=@mailitem_id OUTPUT

SELECT sent_status, sent_date

FROM msdb.dbo.sysmail_allitems

WHERE mailitem_id = @mailitem_id

GO

sent_status sent_date

—————- ————-

unsent NULL

(1 row(s) affected)

Note that you must set @query_no_truncate to 1 and @query_result_width to the
maximum (to be safe) value for the attached query results to contain consistently well-
formed XML. In addition, you should not include any carriage returns or line feeds in the
body of the message, or the SMTP servers may not be able to send it.

The example in Listing 15.2 sends some query results as a comma-separated value (CSV)
file that can be imported into programs such as Microsoft Excel. (You need to use the Get
External Data command to accomplish this with Excel 9.)

LISTING 15.2 Sending CSV Data as an Attachment with Database Mail

USE AdventureWorks2008

GO

DECLARE @mailitem_id int, @tab char(1)

SET @tab = char(13)

exec msdb.dbo.sp_send_dbmail

@subject=’D. Margheim, Contact Info’,

@body=’Attached is Diane Margheim’’s contact info, in CSV format.’,

@recipients=’test@samspublishing.com’,

@query=N’SELECT BusinessEntityID, Title, FirstName, MiddleName, LastName

FROM Person.Person

WHERE BusinessEntityId = 8’,

@execute_query_database=’AdventureWorks2008’,

 Download from www.wowebook.com

ptg

441Using SQL Server Agent Mail
1

5

@attach_query_result_as_file=1,

@query_attachment_filename=’DMargheim.csv’,

@exclude_query_output=1,

@query_result_separator=’,’,

@mailitem_id=@mailitem_id OUTPUT

SELECT sent_status, sent_date

FROM msdb.dbo.sysmail_allitems

WHERE mailitem_id = @mailitem_id

GO

sent_status sent_date

—————- ————-

unsent NULL

(1 row(s) affected)

Notice that in both of these code listings, the values selected from the sent_status and
sent_date columns of sysmail_allitems indicate that the mail has not yet been sent. The
reason is that mail sending (like all other SSB messaging) is asynchronous: The message is
immediately queued, and the Mail process later picks it up and sends it. To find out more
about system views such as sysmail_allitems, see the section “Related Views and
Procedures,” later in this chapter.

Receiving Email

The only way for SQL Server 2008 to receive email is by using the legacy stored proce-
dures, such as sp_processmail, with SQL Mail. Database Mail does not support receiving
incoming messages because there is no IMAP or POP3 support. This may have something
to do with the fact that receiving email can represent a major security risk. Imagine what
a denial-of-service attack on a database cluster could do to an organization. Or consider
the danger of an incoming email request resulting in the execution of a query such as
DROP DATABASE X. Most SQL Server data is too precious to jeopardize in this manner.
Microsoft has also made it clear that SQL Mail will be phased out in the next release of
SQL Server. Plus, there are many better alternatives to using this methodology, such as
using native Web services (as discussed in Chapter 48, “SQL Server Web Services”), using
.NET CLR-integrated assembly code (as discussed in Chapter 45, “SQL Server and the .NET
Framework”), or building a dedicated Service Broker application (as discussed in Chapter
49).

Using SQL Server Agent Mail
As with SQL Server 2000, SQL Server 2008’s Agent has the capability to send email notifi-
cations. They may be triggered by alerts or scheduled task completions, such as jobs. SQL
Server 2008 provides the option of using either SQL Mail or Database Mail to do the
sending, but SQL Mail will soon be phased out, and Database Mail is by far the more
robust choice. As with Database Mail, SQL Server Agent Mail is turned off by default, and
you must configure it via SMSS or T-SQL, as described in the following sections.

 Download from www.wowebook.com

ptg

442 CHAPTER 15 Database Mail

Job Mail Notifications

The following sections show an example in which you create a SQL Server Agent Mail
operator that SQL Server Agent will notify when a job completes.

Creating an Operator
First, you need to create an operator. To do so, using the Object Browser, you expand the
SQL Server Agent node and then right-click the Operators folder and select New
Operator. Then you should name this new operator Test Database Mail Operator and
provide an email address for testing purposes in the Email Name text box. You can use
any valid email address you can access with your email client software. You click OK to
save the new operator.

Enabling SQL Agent Mail
Next, you need to enable SQL Server Agent to use Database Mail. You right-click the SQL
Server Agent node and then select Properties. On the left side of the Properties dialog
that appears (see Figure 15.2), you click the Alert System link. Under the Mail Session
group, you check the Enable Mail Profile check box. In the Mail System drop-down list,
you select Database Mail (this is also the place where you can choose SQL Mail, if you
desire). In the Mail Profile drop-down list, you select the default SQL 2008 profile you
created earlier and then click OK. By doing this, you are telling SQL Server Agent to use
the SMTP servers in your default profile to send email. You need to restart SQL Server
Agent by using the right-click menu.

FIGURE 15.2 Using the SQL Server Agent Properties dialog to configure Database Mail.

 Download from www.wowebook.com

ptg

443Using SQL Server Agent Mail
1

5

Creating the Job
Next, you need to create the job. You begin by right-clicking the Jobs folder and then
selecting New Job. You should name the job Database Mail Test Job and select an
owner. Then you should check the Enabled check box near the bottom of the dialog and
click the Steps link on the left side of the dialog. Next, you click the New button and add
a step named Test Mail Step 1. You should leave the type as Transact-SQL and then
change the database selection to AdventureWorks2008. In the Command text box, you
enter the following code:

RAISERROR(‘This is simply a test job.’, 10, 1)

Next, you click the Advanced link on the left side of the dialog, and in the On Success
Action drop-down list, you select Quit the Job Reporting Success. Then you click the
Notifications link on the left side of the dialog. Next, under Actions to Perform When the
Job Completes, you check the Email check box and select the operator you just created.
From the drop-down to the right, you select When the Job Completes and then click OK to
save the job.

Testing the Job-Completion Notification
To test the email configuration and notification you just set up, you right-click the job
name under the Jobs folder and then select Start Job. If everything is set up properly, an
email message appears in your inbox, indicating the job’s successful completion. Its body
text might look something like this:

JOB RUN: ‘Database Mail Test Job’ was run on 5/7/2009 at 8:37:22 PM

DURATION: 0 hours, 0 minutes, 0 seconds

STATUS: Succeeded

MESSAGES: The job succeeded. The Job was invoked by User [TestUser].

The last step to run was step 1 (Test Mail Step 1).

Alert Mail Notifications

As another example, in the following sections, you’ll create a simple user-defined alert
that you can trigger directly from T-SQL script.

Creating an Alert
You start by creating an alert. To do this, you use the Object Browser to expand the SQL
Server Agent node; then you right-click the Alerts node and select New Alert. In the
Alert Properties dialog that appears (see Figure 15.3), you name the new alert Database
Mail Test Alert and make sure the Enabled check box is checked. For the Event type,
you leave the selection on SQL Server Event Alert. Under Event Alert Definition, select
AdventureWorks2008 from the Database Name drop-down list, and then click the Severity
option button and choose 010 - Information. Next, check the Raise Alert When Message
Contains check box and type the phrase This is a Test in the Message Text text box.

 Download from www.wowebook.com

ptg

444 CHAPTER 15 Database Mail

On the left side of the alert properties dialog, you click the Response link. Then you check
the Notify Operators check box and, in the Operator list, check the Email check box to
the right of the Test Database Mail Operator grid row. Finally, you click OK to close and
save the new custom alert.

Testing the Alert Notification
To test your new alert notification, you open a new query window in SMSS and enter the
following code:

USE AdventureWorks2008

go

RAISERROR(‘This is an alert mail test’, 10, 1) WITH LOG

go

‘This is an alert mail test’

Because you specified WITH LOG, this simple statement writes an event to the Windows
Event log, which in turn triggers the alert because the database context, message text, and
severity all match the conditions of the alert. An email message should have appeared in
your inbox, indicating the alert’s successful triggering. This message should contain body
text such as this:

DATE/TIME: 5/7/2009 9:00:45 PM

DESCRIPTION: Error: 50000 Severity: 10 State: 1 This is an alert

FIGURE 15.3 Creating a SQL Server event alert with a Database Mail notification.

 Download from www.wowebook.com

ptg

445Related Views and Procedures
1

5

mail test

COMMENT: (None)

JOB RUN: (None)

Related Views and Procedures
To report on the status of all your Database Mail objects without relying on wizards and
properties pages, you need some tabular views and stored procedures. msdb contains many
system tables, views, and corresponding stored procedures that make this task easy. The
following section lists the tables (or views) and their columns, noting the stored procedure
(if any) that you can use to read from them.

Viewing the Mail Configuration Objects

The first set of msdb objects we’ll review are those related to system objects such as
profiles, profile security, and accounts:

. sysmail_profile—Contains basic profile data, including the unique profile_id,
name, description, last_mod_datetime, and last_mod_user name. You execute
sysmail_help_profile_sp to retrieve this data by @profile_name or @profile_id.

. sysmail_principalprofile—Contains profile security settings, including the
profile_id, associated principal (or user) (principal_SID), profile default status
(is_default: 1 for yes or 0 for no), last_mod_datetime, and last_mod_user name.
You execute sysmail_help_principalprofile_sp to retrieve this data by
@profile_name, @profile_id, @principal_name, or @principal_id (not principal
SID). Here’s an example:

exec msdb.dbo.sysmail_help_principalprofile_sp

@profile_name=’Default SQL 2008 Profile’

. sysmail_account—Contains basic account data, including the unique
account_id, name, description, email_address, display_name, replyto_address,
last_mod_datetime, and last_mod_user name. You execute
sysmail_help_account_sp to retrieve this data by @account_id or @account_name.

. sysmail_server—Contains account SMTP server data, including the unique
related account_id and servertype, servername, port, server username, server
authentication data (credential_id), SSL status (enable_SSL), last_mod_datetime,
and last_mod_user name. (sysmail_help_account_sp returns data from this table as
well.)

. sysmail_servertype—Contains servertype data for accounts’ servers. (SMTP is
the only currently supported type, although it seems this system was built for exten-
sibility, as the columns is_incoming and is_outgoing may leave the door open for
adding POP or IMAP servers sometime in the future.) Also includes
last_mod_datetime and last_mod_user name. (sysmail_help_account_sp returns
data from this table as well.)

 Download from www.wowebook.com

ptg

446 CHAPTER 15 Database Mail

To join sysmail_account, sysmail_server, and sysmail_servertype (as
sysmail_help_account_sp seems to do), you can try a query such as the following:

SELECT *

FROM msdb.dbo.sysmail_account a

JOIN msdb.dbo.sysmail_server s

ON a.account_id = s.account_id

JOIN msdb.dbo.sysmail_servertype st

ON st.servertype = s.servertype

. sysmail_profileaccount—Maintains the profile-account relationship, including
the profile_id, account_id, account priority sequence_number, last_mod_datetime,
and last_mod_user name. You execute sysmail_help_profileaccount_sp to retrieve
this data by @account_id, @account_name, @profile_id, or @profile_name.

. sysmail_configuration—Contains the system-wide mail configuration settings
(paramname, paramvalue, description), and when and by whom each was last modi-
fied (last_mod_datetime and last_mod_user name). You execute
sysmail_help_configure_sp to query this data by @parameter_name. Here’s an
example:

exec msdb.dbo.sysmail_help_configure_sp

@parameter_name=’accountretrydelay’

Viewing Mail Message Data

The second set of msdb objects (and perhaps the more important ones) we’ll review are
those used to discover the status of mail messages.

The first thing you need to do is to check on the status of the mail messages you’ve
attempted to send, without relying on inboxes to tell you if they’ve been received. Several
views in msdb enable this, most of which may be filtered by mail account, sending user,
send date, status, and more. To begin this process, you query the view sysmail_allitems,
which contains all the data about your messages (subjects, recipients, importance, and so
on) as well as send_request_date, sent_date, and sent_status. Here’s an example:

SELECT mailitem_id, subject, sent_status

FROM msdb.dbo.sysmail_allitems

go

mailitem_id subject sent_status

———————————————————————————————————————-

1 Database Mail Test sent

2 C. Adams, Contact Info sent

3 XAML for HL Touring Seat/Saddle attached. sent

4 SQL Server Job System: ‘Database Mail Test Job’ sent

(4 row(s) affected)

 Download from www.wowebook.com

ptg

447Related Views and Procedures
1

5

Because all these messages have a sent_status of sent, the contents of this recordset are
analogous to what you’d find if you queried the view sysmail_sentitems. But suppose
your sent_status column read failed. In that case, you’d start by querying the
sysmail_faileditems view (a subset of sysmail_allmailitems) in conjunction with
sysmail_event_log (which contains the detailed textual reasons why failures have
occurred). Here’s an example:

SELECT f.subject, f.mailitem_id, l.description

FROM msdb.dbo.sysmail_event_log l

JOIN msdb.dbo.sysmail_faileditems f

ON f.mailitem_id = l.mailitem_id

WHERE event_type = ‘error’

ORDER BY log_date

go

subject mailitem_id description

———-

Database Mail Test 3 The mail could not be sent because[...]the

string is not in the form required for an e-mail address

(1 row(s) affected)

Note that the quality of the contents of sysmail_event_log depends on the Log Level
system-wide mail configuration setting (discussed earlier in the section “Setting System-
wide Mail Settings”). The Log File Viewer also uses this table’s contents. To permanently
delete its contents, you use the stored procedure sysmail_delete_log_sp.

To query how many messages are queued (waiting to be sent) and for how long, you use
the sysmail_unsentitems view. Here’s an example:

SELECT

mailitem_id,

subject,

DATEDIFF(hh, send_request_date, GETDATE()) HoursSinceSendRequest

FROM msdb.dbo.sysmail_unsentitems

If you’re unsure why messages aren’t being sent, you can try the following:

. Execute sysmail_help_queue_sp, whose resulting state column tells the state of the
mail transmission queues: INACTIVE (off) or RECEIVES_OCCURRING (on). To see the
status for only the mail (outbound) or status (send status) queues, you use the
@queue_type parameter.

. Execute sysmail_help_status_sp, whose resulting Status column tells you the state
of Database Mail itself: STOPPED or STARTED.

 Download from www.wowebook.com

ptg

448 CHAPTER 15 Database Mail

Summary
This chapter showed how Database Mail has elevated the status of emailing with SQL
Server from somewhat difficult to use to enterprise class. Microsoft has achieved this goal
by relying on cross-platform industry standards, by making configuration easy, by provid-
ing a comprehensive set of system objects for storage and tracking, by adding failover
capability, and by utilizing the Service Broker infrastructure.

Chapter 16, “SQL Server Scheduling and Notification,” digs much deeper into configur-
ing SQL Server Agent jobs and alerts, as well as using Database Mail for job and alert
notifications.

 Download from www.wowebook.com

ptg

CHAPTER 16

SQL Server Scheduling
and Notification

IN THIS CHAPTER

. What’s New in Scheduling and
Notification

. Configuring the SQL Server
Agent

. Viewing the SQL Server Agent
Error Log

. SQL Server Agent Security

. Managing Operators

. Managing Jobs

. Managing Alerts

. Scripting Jobs and Alerts

. Multiserver Job Management

. Event Forwarding

Automation is the key to efficiency, and the SQL Server
Agent is your automation tool in SQL Server 2008. This
chapter delves into the administrative capabilities of the
SQL Server Agent and its capability to schedule server activ-
ity and respond to server events.

The SQL Server Agent, which runs as a Windows service, is
responsible for running scheduled tasks, notifying operators
of events, and responding with predefined actions to errors
and performance conditions. The SQL Server Agent can
perform these actions without user intervention, utilizing
the following:

. Alerts—Alerts respond to SQL Server or user-defined
errors, and they can also respond to performance
conditions. An alert can be configured to run a job as
well as notify an operator.

. Jobs—A job is a predefined operation or set of opera-
tions, such as transferring data or backing up a trans-
action log. A job can be scheduled to run on a regular
basis or called to run when an alert is fired.

. Operators—An operator is a user who should be noti-
fied when an alert fires or a job requests notification.
The operator can be notified by email, by pager, or via
the NET SEND command.

 Download from www.wowebook.com

ptg

450 CHAPTER 16 SQL Server Scheduling and Notification

NOTE

The SQL Server Agent is not supported with the SQL Server Express Edition or SQL
Server Express Advanced Edition. It is supported in all the other editions of SQL
Server 2008, however. You can use the Windows Task Scheduler as an alternative for
scheduling when using the SQL Server Express Editions. The Task Scheduler has basic
scheduling capabilities but does not compare to the robust features found in the SQL
Server Agent.

What’s New in Scheduling and Notification
A new feature added to SQL Server 2008 Scheduling and Notification is the capability to
execute PowerShell scripts. PowerShell is a command-line scripting language that allows
administrators to achieve greater control and productivity. SQL Server 2008 comes with
several PowerShell snap-ins that give you access to a variety of SQL Server objects. Scripts
that are written to access these objects can be run from SQL Server jobs using the new
PowerShell job type. You can find a more detailed discussion of PowerShell’s capabilities in
the next chapter, “Administering SQL Server 2008 with PowerShell.”

Policy-Based Management is another new feature in SQL Server 2008. This feature does
not fall directly under Scheduling and Notification, but it provides related management
features. For example, some of the multiserver concepts discussed later in this chapter can
be replaced or augmented through the use of Policy-Based Management. This feature is
covered in Chapter 22, “Administering Policy Based Management.”

Configuring the SQL Server Agent
The primary configuration settings for the SQL Server Agent are located within the Object
Explorer and SQL Server Configuration Manager. Most of the settings that define how the
SQL Server Agent will execute are defined via the SQL Server Agent Properties accessible
from the Object Explorer. The SQL Server Configuration Manager contains settings related
to the SQL Server Agent’s service. The service settings are limited but contain important
properties such as the Startup Account for the SQL Server Agent.

Configuring SQL Server Agent Properties

Figure 16.1 shows the SQL Server Agent Properties dialog that appears when you right-
click and select Properties on the SQL Server Agent node located on the root of the
Object Explorer tree.

You can set several different types of properties in the SQL Server Agent Properties dialog.
The General options are displayed by default, and they include the capability to set the

 Download from www.wowebook.com

ptg

451Configuring the SQL Server Agent

FIGURE 16.1 SQL Server Agent properties.

auto restart options and define an error log for the SQL Server Agent. Selecting the option
Auto Restart SQL Server Agent If It Stops Unexpectedly is best for most installations. There
is usually a heavy dependency on the Agent performing its actions, and you probably
want the service to be restarted if it has been inadvertently stopped.

The Advanced page contains options for event forwarding and idle CPU conditions. The
event forwarding options are discussed in detail in the section “Event Forwarding,” later
in this chapter. The idle CPU options define conditions related to the execution of jobs
that have been set up to run when the CPU is idle. You can define idle CPU conditions
such as the average CPU percentage that the CPU must be below to be considered idle.

The Alert System page is related to configuring email notification and is discussed in the
“Configuring Email Notification” section, later in this chapter.

The Job System page has an option to set the shutdown time-out interval. This option
determines the amount of time the SQL Server Agent waits for jobs to complete before
finalizing the shutdown process. There is also an option related to proxy accounts
discussed in the “SQL Server Agent Proxy Account” section, later in this chapter.

The Connection page includes an option to set an alias for the local host server. This
option is useful if you cannot use the default connection properties for the local host and
need to define an alias instead.

1
6

 Download from www.wowebook.com

ptg

452 CHAPTER 16 SQL Server Scheduling and Notification

The History page options are related to the amount of job history that will be retained.
You have the option to limit the size of the job history log and/or remove job history that
is older than a set period of time.

TIP

Careful attention should be given to the amount of history that is retained. Every time
a job is run, the history of that execution and the related detail is saved. The need for
careful monitoring is particularly true when dealing with SQL Server instances that have
a large number of databases. The msdb database contains the job history records and
can become sizable over time if the history is not removed. For example, we have seen
environments where close to 700 databases were installed on one SQL Server
instance. The company was performing SQL Server log backups every 15 minutes on
each of these databases and full backups each night. When you do the math (4 log
backups/hour * 700 databases = 2800 backups/hour), you can see that the amount
of history written to the msdb database can be significant.

Configuring the SQL Server Agent Startup Account

The startup account defines the Microsoft Windows account the SQL Server Agent service
uses. The selection of this account is critical in defining the level of security that the SQL
Server Agent will have. Access to resources on the server on which SQL Server is running
and access to network resources are determined by the startup account. This selection is
particularly important in cases in which the SQL Server Agent needs to access resources on
other machines. Examples of network access that the SQL Server Agent might need
include jobs that write backups to a drive on another machine and jobs that look for files
found on other servers on the network.

The startup account for the SQL Server Agent is set initially during the installation of SQL
Server, but you can change it by using several different tools such as the Windows Service
Control Manager and SQL Server Configuration Manager. The Windows Service Control
Manager is a good tool for viewing all the services on your server, but changes to the SQL
Server services are better made through the SQL Server Configuration Manager. The
Configuration Manager is more comprehensive and makes additional configuration
settings, such as Registry permissions, that ensure proper operation.

The SQL Server Configuration Manager is a consolidated tool that allows you to manage
network options and services related to SQL Server. To launch this tool, you select Start,
Microsoft SQL Server 2008, Configuration Tools. Figure 16.2 shows an example of the
Configuration Manager with the SQL Server 2008 services selected for viewing. To change
the startup account for the SQL Server Agent, you can right-click on its service and select
Properties.

The startup account used by the SQL Server Agent is initially determined during the instal-
lation of SQL Server. You have the option of choosing one of several built-in accounts, or
you can select a domain account. The built-in accounts are available by default and do not

 Download from www.wowebook.com

ptg

453Configuring the SQL Server Agent

FIGURE 16.2 SQL Server Agent service properties.

require any network administration to use them. These accounts, however, should be used
with caution because they can provide network access to the SQL Server Agent that may
not be desired. Generally, you want to provide the minimum amount of security necessary
for the SQL Server Agent to perform its tasks.

The recommended startup account for the SQL Server Agent is a Windows account. You
specify a Windows startup account for SQL Server Agent by using the This Account option
on the Service Properties window. The Windows account can be a local user account or
domain user account. It must be a member of the SQL Server sysadmin fixed server role on
the local SQL Server instance. The use of this type of startup account provides the most
flexibility and allows you to tailor the network and local resources that the SQL Server
Agent has permission to access.

The Windows account does not have to be a member of the Windows administrators
group. In fact, exclusion from the administrators group is recommended in most cases.
This approach adheres to the principle of least privileges, which says that you should limit
the amount of security provided to only that which is needed. In many cases, inclusion in
the administrators group is not needed and only increases exposure to security threats.

The Windows account you choose with the This Account option must have certain secu-
rity rights to be able to function as the startup account for SQL Server. The account must
have permission to log on as a service. You can set this permission and others by using the
Local Security Policy application, which can be found under Administrative Tools. You can
select the Local Policies node and then select User Rights Assignment to display a list
of all the security settings, including Log On as a Service Policy. You should make sure the
account you chose or the group that it is in is included in this policy.

TIP

The Local Security Policy editor can be hard to find. In most operating systems, you can
click Start Run then enter secpol.msc to launch the Local Security Policy editor.

1
6

 Download from www.wowebook.com

ptg

454

Configuring Email Notification

The SQL Server Agent can send email notifications; it can send email via SQL Mail or
Database Mail. SQL Mail was retained for backward compatibility. It utilizes an Extended
Messaging Application Programming Interface (Extended MAPI) interface to send email
and requires that you install an email application (such as Outlook) that supports
Extended MAPI communication on the computer that is running SQL Server.

Database Mail, which is now the recommended mail solution for the SQL Server Agent, is
the focus of this section. It was added in SQL Server 2005, and it utilizes Simple Mail
Transfer Protocol (SMTP) instead of Extended MAPI to send mail. This simplifies email
setup and has many benefits over SQL Mail, including the following:

. There is no requirement that an email client be installed on the SQL Server machine.

. Email is queued for later delivery if the mail server stops or fails.

. Multiple SMTP servers can be specified so that mail continues to be delivered in the
event that one of the SMTP servers stops.

. Database Mail is cluster aware.

Database Mail is disabled by default in SQL Server 2008 but can be enabled using the
Database Mail Configuration Wizard. This wizard provides a comprehensive means for
configuring Database Mail. The Database Mail Configuration Wizard is not launched from
the SQL Server Agent node. Instead, you can launch it by expanding the Management
node, right-clicking Database Mail, and selecting Configure Database Mail. This wizard
guides you through the configuration of mail profiles, SMTP accounts, and other options
relevant to Database Mail. The Configuration Wizard and many other details related to
Database Mail are discussed in detail in Chapter 15, “Database Mail.”

After you set up Database Mail and confirm that it is working properly, you can select it as
your mail system for the SQL Server Agent to send mail. You do this by right-clicking the
SQL Server Agent node in the Object Explorer and selecting Properties. Then you select
the Alert System page in the SQL Server Agent Properties dialog, and the screen shown in
Figure 16.3 appears. In this figure, Database Mail is selected as the mail system, along with
a mail profile for Database Mail created with the Database Mail Configuration Wizard. The
mail profile you select can have multiple SMTP accounts assigned to it. This allows for
redundancy in the event that the mail cannot be sent to one of the SMTP accounts.

To ensure proper functioning of the alert system, you should restart the SQL Server Agent
service after the alert system has been configured. If you experience problems sending
notifications via the SQL Server Agent, you should check the service account that SQL
Server is running under. If the SQL Server Agent is running with the local system account,
resources outside the SQL Server machine will be unavailable; this includes mail servers
that are on other machines. You should change the service account for the SQL Server
Agent to a domain account to resolve this issue. Chapter 15 provides more information on
using Database Mail in SQL Server 2008.

CHAPTER 16 SQL Server Scheduling and Notification

 Download from www.wowebook.com

ptg

455

FIGURE 16.3 The Alert System page of the SQL Server Agent Properties dialog.

Configuring the SQL Server Agent
1

6

SQL Server Agent Proxy Account

Proxy accounts allow non–Transact-SQL (non–T-SQL) job steps to execute under a specific
security context. By default, only users in the sysadmin role can execute these job steps.
Non-sysadmin users can be assigned to a proxy account to allow them to run the special
job steps. In SQL Server 2000, a single proxy account was provided for this function. With
SQL Server 2008, multiple proxy accounts can be established, each of which can be
assigned to a different SQL Server Agent subsystem.

To establish a proxy account for the SQL Server Agent, you must first create a credential. A
credential contains the authentication information necessary to connect to a resource
outside SQL Server. The credential is typically linked to a Windows account that has the
appropriate rights on the server. To create a credential, you open the Security node in the
Object Explorer, right-click the Credentials node, and select New Credential. You give the
credential a name, enter an identity value that corresponds to a valid Windows account,
and provide a password for the account.

After creating a credential, you can create a new proxy account and link it to the creden-
tial. To create a new proxy account, you expand the SQL Server Agent node in the Object
Explorer tree, right-click Proxies, and select New Proxy Account. Figure 16.4 shows an
example of the New Proxy Account dialog. In this example, the proxy name and creden-
tial name are the same, but they do not need to be. The only subsystem selected for the

 Download from www.wowebook.com

ptg

456 CHAPTER 16 SQL Server Scheduling and Notification

FIGURE 16.4 Creating a new proxy account.

sample proxy account in Figure 16.4 is the operating system, but a proxy account can be
linked to multiple subsystems.

After a proxy account is created, a sysadmin can assign one or more SQL logins, msdb roles,
or server roles to the proxy. You do this by using the Principals page of the New Proxy
Account dialog. A proxy account can have zero or many principals assigned to it.
Conversely, a principal can be assigned to many different proxies. Linking non-admin
principals to the proxy allows the principal to create job steps for subsystems that have
been assigned to the proxy.

Proxy accounts are referenced within a SQL Server Agent job step. The General page of the
Job Step Properties dialog contains a Run As drop-down that lists valid accounts or proxies
that can be used to run the particular job step. After you add a proxy account, you see it
in this drop-down list. Keep in mind that the account is not visible for a T-SQL job step
that does not utilize a proxy account. Steps that utilize the T-SQL subsystem execute under
the job owner’s context and they do not utilize a proxy account.

Viewing the SQL Server Agent Error Log
The SQL Server Agent maintains an error log that records information, warnings, and error
messages concerning its operation. A node named Error Logs is located in the SQL Server
Agent tree in the Object Explorer. The Error Logs node contains multiple versions of the

 Download from www.wowebook.com

ptg

457Viewing the SQL Server Agent Error Log
1

6

SQL Server Agent error log. By default, a maximum of 10 versions of the error log are
displayed under the Error Logs node. The versions displayed include the current error log
and the last 9 versions. Each time the SQL Server Agent is restarted, a new error log is
generated, with a name that includes a time stamp. The first part of the current version’s
name is Current. Names of older logs start with Archive #, followed by a number; the
newer logs have lower numbers. The SQL Server error log works in much the same way as
the SQL Server Agent’s error log.

TIP

You can cycle the error log at any time without stopping and starting the SQL Server
Agent. To do so, you right-click the Error Logs node in the Object Explorer and select
Recycle; a new error log is then generated. You can also use the
msdb.dbo.sp_cycle_agent_errorlog stored procedure to cycle the error log. You need
to remember to also select the Refresh option to show the latest available error logs.

To view the contents of any of the logs, you need to double-click the particular log.
Double-clicking a particular log file launches the Log File Viewer. The Log File Viewer
contains the SQL Server Agent error logs in addition to logs that are associated with other
SQL Server components, including Database Mail, SQL Server, and Windows NT. Figure
16.5 shows a sample Log File Viewer screen with the current SQL Server Agent error log
selected for display. The Log File Viewer provides filtering capabilities that allow you to
focus on a particular type of error message, along with other viewing capabilities that are
common to all the logs available for viewing.

FIGURE 16.5 The SQL Server Agent error log.

 Download from www.wowebook.com

ptg

458 CHAPTER 16 SQL Server Scheduling and Notification

SQL Server Agent Security
Many changes were made to the security model related to the SQL Server Agent in SQL
Server 2005. In the past, everyone could view the SQL Server Agent. Starting in SQL Server
2005, logins must be a part of the sysadmin server role or assigned to one of three msdb
database roles to be able to view and modify the SQL Server Agent. The SQL Server Agent
node does not appear in the Object Explorer tree if the login does not have the appropri-
ate permissions. Following are the msdb database roles and their basic permissions:

. SQLAgentUserRole—Users with this permission can create and manage local jobs
and job schedules that they own. They cannot create multiserver jobs or manage
jobs that they do not own.

. SQLAgentReaderRole—Users with this permission can view jobs that belong to
other users in addition to all the permissions associated with SQLAgentUserRole.

. SQLAgentOperatorRole—Users with this permission can view operators and alerts
and control jobs owned by other users. The job control on jobs owned by other
users is limited to stopping or starting and enabling or disabling those jobs.
SQLAgentOperatorRole also has all the permissions available to SQLAgentUserRole
and SQLAgentReaderRole.

SQLAgentUserRole has the fewest privileges, and each subsequent role has increasing levels
of security. In addition, each subsequent role inherits the permissions of the roles with
fewer permissions. For example, SQLAgentReaderRole can do everything that
SQLAgentUserRole can do and more. Refer to the topic “Implementing SQL Server Agent
Security” in SQL Server Books Online for a detailed list of all the permissions related to the
new database roles.

Managing Operators
Operators are accounts that can receive notification when an event occurs. These accounts
are not linked directly to the user and login accounts that are defined on the server. They
are basically aliases for people who need to receive notification based on job execution or
alerts. Each operator can define one or more electronic means for notification, including
email, pager, and the NET SEND command.

To add a new operator, you expand the SQL Server Agent node in the Object Explorer
and right-click the Operators node. Then you select New Operator from the right-click
menu. Figure 16.6 shows the New Operator screen, with many of the fields populated for
the creation of a new operator named LauraG.

The General page of the New Operator screen allows you to enter the name of the opera-
tor, the notification options, and the “on duty” scheduled for the operator. The operator
name can be any name, but it must be unique within the SQL Server instance and must
be no more than 128 characters. The operator name can be the same as another login or
user on the server, but this is not required.

 Download from www.wowebook.com

ptg

459Managing Operators
1

6

FIGURE 16.6 Creating a new operator.

The notifications options are the key to operators. You create operators so that you can
then define notification options and have messages sent from SQL Server.

If you use the email notification option, the email address you specify must be a valid
address that can be reached via Database Mail or SQL Mail. One of the two mail options
must be configured before the email functionality will work. If Database Mail is config-
ured, the email is sent via an SMTP server. To send email with SQL Mail, SQL Server must
be able to access a Microsoft Exchange server, and you must have the Extended MAPI
client installed on the SQL Server machine.

The NET SEND notification option causes a pop-up window to appear on the recipient’s
computer; this window contains the notification text. In the Net Send Address text box,
you specify the name of the computer or user that is visible on the network to the SQL
Server machine. For NET SEND to work, the Messenger service on SQL Server must be
started. This Messenger service must also be started on the machine that is receiving the
NET SEND message. You can test the basic NET SEND capabilities by executing NET SEND at
the command prompt. The basic syntax for NET SEND follows:

NET SEND {name | * | /domain[:name] | /users} message

The following example uses the NET SEND command to send the message “Test net send
message” to the operator LauraG:

NET SEND LauraG “Test net send message”

 Download from www.wowebook.com

ptg

460 CHAPTER 16 SQL Server Scheduling and Notification

The final notification option is through a pager email address. Pager email requires that
third-party software be installed on the mail server to process inbound email and convert
it to a pager message. The methods for implementing pager email and the available soft-
ware are dependent on the pager provider. You should contact your pager vendor for
implementation details.

If you implement pager notification, you can also define the pager schedule for the opera-
tor. The Pager on Duty Schedule section of the New Operator dialog allows you to define
the days and times when the operator will be available to receive a page. The General page
includes a check box for each day the operator can receive a page. It also includes the
Workday Begin and Workday End settings, which you can use to define the valid time
periods to receive a page.

The other page available when defining a new operator is the Notifications page, which
displays the alerts and jobs for which the operator will receive notifications. For a new
operator, the Alert List or Job List is empty, as shown in Figure 16.7.

You’ll have a better understanding of the usefulness of operators after you read the follow-
ing discussions of jobs and alerts. Jobs and alerts can have operators linked to them for
notification purposes.

FIGURE 16.7 The Notifications page of the New Operator dialog.

 Download from www.wowebook.com

ptg

461Managing Jobs
1

6

Managing Jobs
A job is a container for operations that can be executed by the SQL Server Agent. Jobs can
be run once or scheduled to run on a regular basis. Jobs provide the basis for SQL Server
automation and allow for the execution of many different types of operations, including
T-SQL, SQL Server Integration Services (SSIS) packages, and operating system commands.

Defining Job Properties

The Jobs node is located under SQL Server Agent in the Object Explorer. You right-click
the Jobs node and select New Job to create a new SQL Server Agent job. A New Job dialog
like the one shown in Figure 16.8 appears.

NOTE

Only logins that are part of one of the msdb fixed database roles or are members of
the sysadmin fixed server role are able to create or modify jobs.

The General properties page shown in Figure 16.8 contains the basic information about
the job, including the name and description. The owner of the job defaults to the login

FIGURE 16.8 The New Job dialog.

 Download from www.wowebook.com

ptg

462 CHAPTER 16 SQL Server Scheduling and Notification

for the person creating the job; however, if the login of the person creating the job is part
of the sysadmin fixed server role, the default can be changed. You use the Category selec-
tion to group or organize jobs. There are several predefined categories for selection, includ-
ing Database Maintenance and Log Shipping. The default category is set to
[Uncategorized(local)].

Defining Job Steps

After you add the general information for a new job, you are ready to add the job steps
that actually perform the work. To do this, you select the Steps page on the left side of the
New Job dialog, and the job steps for this job are listed. To create a new job step, you click
the New button, and a New Job Step dialog like the one shown in Figure 16.9 appears.

A step name is the first piece of information you need to provide for the job step. It can
be up to 128 characters long and must be unique within the job. Then you need to select
a job step type. The SQL Server Agent can run a variety of types of job steps, including the
following:

. ActiveX script (Visual Basic, Java, Perl script)

. Operating System (CmdExec)

. PowerShell

FIGURE 16.9 The New Job Step dialog.

 Download from www.wowebook.com

ptg

463Managing Jobs
1

6

. Replication Distributor

. Replication Merge

. Replication Queue Reader

. Replication Snapshot

. Replication Transaction Log Reader

. SQL Server Analysis Services Command

. SQL Server Analysis Services Query

. SQL Server Integration Services Package

. Transact-SQL script (T-SQL)

SQL Server Analysis Services Command, Server Analysis Services Query, and SQL
Server Integration Services Package are types that were added in SQL Server 2005.
They provide integration with SQL Server Analysis Services (SSAS) and SSIS. Chapters 45,
“SQL Server and the .NET Framework,” and 46, “SQLCLR: Developing SQL Server Objects
in .NET,” provide detailed discussions of these technologies. The PowerShell job type was
added in SQL Server 2008; further information on PowerShell is provided in Chapter 17,
“Administering SQL Server 2008 with PowerShell.”

The Step properties page displays different information, depending on the type of step
selected. When the Transact-SQL script (T-SQL) type is selected, you see a window
similar to the one shown in Figure 16.9. If you choose the SQL Server Integration
Services Package type, the Step properties page changes to allow you to enter all the rele-
vant information needed to execute an SSIS package.

In many cases (including T-SQL), a command window is available to input the step
commands. With a T-SQL command, you can enter the same type of commands you would
enter in a query window. You click the Parse button to validate the SQL and ensure proper
syntax. The Operating system (CmdExec) type allows you to enter the same types of
commands that you can enter in a command prompt window. Each step type has its own
command syntax that you can test in the native environment to ensure proper operation.

You can select the Advanced page to configure job flow information and other informa-
tion related to the job step. On Success Action allows you to specify the action to perform
when the current job step completes. Actions include the execution of the next job step (if
one exists) and the ability to set job status based on the step completion. The same selec-
tion options also exist for On Failure Action.

The Retry options define the options that relate to retrying the job step in the event that
the job step fails. Retry Attempts defines the number of times the job step will be re-
executed if it fails. Retry Intervals (Minutes) defines the amount of time (in minutes)
between retry attempts.

 Download from www.wowebook.com

ptg

464 CHAPTER 16 SQL Server Scheduling and Notification

TIP

The Retry options are useful for polling scenarios. For example, you might have a job
step that tests for the existence of a file during a given period of the day. The job can
be scheduled to start at a time of day when the file is expected. If the file is not there
and the step fails, Retry Attempts can be set to poll again for the file. Retry Interval
determines how often it retries, and the combination of Retry Attempts and Retry
Interval determines the total polling window. For example, if you want to check for the
file for 2 hours, you can set Retry Attempts to 24 with a Retry Interval of 5 minutes. If
the job step fails more than the number of retries, the step completes in failure.

The last set of options on the Advanced page relate to the output from the job step. Job
step output can be saved to an output file that can be overwritten each time the job step
is run, or the output can be appended each time. The Log to Table option writes the job
step output to the sysjobstepslogs table in the msdb database. The table contains one
row for each job step with the Log to Table option enabled. If Append Output to Existing
Entry in Table is enabled, the sysjobstepslogs data row for the step can contain output
for more than one execution. If this option is not selected, the table contains only execu-
tion history for the last execution of the step.

CAUTION

If you choose the Append Output to Existing Entry in Table option, the size of the
sysjobstepslogs table will grow over time. You should consider using the
sp_delete_jobsteplog stored procedure to remove data from the sysjobstepslogs
table. This stored procedure has several different parameters that allow you to filter the
data that will be removed. You can use these parameters to remove log data by job, job
step, date, or size of the log for the job step.

Defining Multiple Jobs Steps

You can define multiple jobs steps in a single job. This allows you to execute multiple
dependent job actions. The job steps run one at a time (serially), and you can specify the
order of the job steps. The job order and the related dependencies are called control of flow.

Figure 16.10 shows an example of a job that has multiple dependent job steps. Take note
of the On Success and On Failure columns, which define the control of flow. For example,
if step 1 succeeds, the next step occurs. If step 1 fails, no further steps are executed, and
the job quits, reporting a job failure. The control of flow is slightly different for the second
step, whereby the control of flow passes to the next step on success but flows to the
fourth step if a failure occurs.

The control of flow is defined on each job step. As discussed earlier in this chapter, the
Advanced tab of the New Job Step dialog provides drop-down lists that allow you to
specify the actions to take on success and on failure. In addition, the Steps page that lists
all of a job’s steps allows you to specify the start step for the job. The drop-down box at

 Download from www.wowebook.com

ptg

465Managing Jobs
1

6

FIGURE 16.10 Multiple job steps.

the bottom of the Steps page provides this function. You can also use the Move Step
arrows to change the start step. Manipulating the start step is useful when you’re restart-
ing a job manually, as in the case of a job failure; in this situation, you might want to set
the job to start on a step other than the first step.

NOTE

SSIS provides the same type of flow control capabilities as the SQL Server Agent. In
fact, maintenance plans that contain multiple related actions (such as optimization,
backup, and reporting) utilize SSIS packages. A scheduled job starts an SSIS package,
which executes the package in a single step, but the actual maintenance steps are
defined within the package. The SSIS Designer utilizes a graphical tool that depicts the
flow of control and allows you to modify the individual steps.

Defining Job Schedules

The SQL Server Agent contains a comprehensive scheduling mechanism you can use to
automate the execution of your jobs. A job can have zero, one, or more schedules assigned
to it. You can view the schedules associated with a job by selecting the Schedules page of
the Job Properties screen. To create a new schedule for a job, you can click the New button

 Download from www.wowebook.com

ptg

466 CHAPTER 16 SQL Server Scheduling and Notification

at the bottom of the Schedules page. Figure 16.11 shows the New Job Schedule Properties
page, with a sample schedule and options defined. The options on this screen vary,
depending on the frequency of the job schedule. For example, if the frequency of the
schedule shown in Figure 16.11 were changed from daily to weekly, the screen would
change to allow for the selection of specific days during the week to run the job.

You have the ability to share job schedules so that one job schedule can be utilized by
more than one job. When you select the Schedule page, a Pick button is available at the
bottom of the page. If you click the Pick button, a screen appears showing all the defined
schedules. If you highlight one of the schedules in the list and click OK, the schedule is
linked to the related job. You can also view all the jobs associated with a particular sched-
ule by editing the schedule and clicking the Jobs in Schedule button in the top-right
portion of the Job Schedule Properties screen.

Tracking multiple job schedules and schedule execution can be challenging in an environ-
ment that has many jobs and schedules. The sp_help_jobs_in_schedule, and
sp_help_jobactivity stored procedures are helpful system stored procedures that are
found in the msdb database. The sp_help_jobs_in_schedule stored procedure provides
information about the relationship between jobs and schedules. The sp_help_jobactivity
stored procedure provides point-in-time information about the runtime state of SQL

FIGURE 16.11 The New Job Schedule Properties page.

 Download from www.wowebook.com

ptg

467Managing Jobs
1

6

Server jobs. This stored procedure returns a lot of information, including recent job execu-
tions, the status of those executions, and the next scheduled run date.

Defining Job Notifications

The Notifications page of the Job Properties dialog, as shown in Figure 16.12, allows you
to define the notification actions to perform when a job completes.

As discussed earlier in this chapter, notifications can be sent via email, pager, or NET SEND
command. The notifications for a Schedule Job can be sent based on the following events:

. When the job succeeds

. When the job fails

. When the job completes

Each of these events can have a different notification action defined for it. For example, a
notification might send an email if the job succeeds but page someone if it fails.

You also have the option of writing notification information into the Windows
Application event log or automatically deleting the job when it completes. These two

FIGURE 16.12 The Notifications page of the Job Properties dialog.

 Download from www.wowebook.com

ptg

468 CHAPTER 16 SQL Server Scheduling and Notification

options are also available on the Notifications page. Writing events to the Application log
is a useful tracking mechanism. Monitoring software is often triggered by events in the
application log. The automatic job deletion options are useful for jobs that will be run
only once. As with the other notification options, you can set up the delete job action
such that it is deleted only when a specific job event occurs. For example, you might want
to delete the job only if the job succeeds.

Viewing Job History

You view job history via the Log File Viewer, which is a comprehensive application that
allows for many different types of logs to be viewed. You right-click a job in the SQL
Server Agent and select History to display the Log File Viewer. Figure 16.13 shows the Log
File Viewer with several examples of job history selected for viewing.

Compared to viewing job history in SQL Server versions prior to SQL Server 2005, the
current form of the Log File Viewer has some distinct advantages for viewing job history.
In the Log File Viewer, you can select multiple jobs for viewing at one time. To view job
step details, you expand the job entries and select a job step. You can use the row details
shown below the log file summary to troubleshoot job errors and isolate problems. The
Log File Viewer also has filtering capabilities that allow you to isolate the jobs to view.
Click on the Filter button and the Filter Settings dialog appears. You can filter jobs by
using a number of different settings, including User, Start Date, and Message Text. You
must click the Apply Filter button for the selected filtering option to take effect.

The amount of history that is kept is based on the history settings defined for the SQL
Server Agent. You access the history settings by right-clicking the SQL Server Agent node,
selecting Properties, and then selecting the History page on the left part of the screen. The
settings available on the History page are shown in Figure 16.14. By default, the job

FIGURE 16.13 Job history shown in the Log File Viewer.

 Download from www.wowebook.com

ptg

469Managing Alerts
1

6

history log is limited to 1,000 rows, with a maximum of 100 rows per job. You can also
select the Automatically Remove Agent History option and select a period of time to retain
history. This setting causes the SQL Server Agent to periodically remove job history from
the log. This is a good approach for keeping the size of the log manageable.

Managing Alerts
The SQL Server Agent can monitor events that occur on the database server and automati-
cally respond to these events with alerts. Alerts can be fired based on SQL Server events,
performance conditions, and Windows Management Instrumentation (WMI) events. After
an alert is fired, the SQL Server Agent can respond by notifying an operator or executing a
job. This provides a proactive means for identifying and reacting to critical conditions on
a database server.

Defining Alert Properties

To define alerts, you select the SQL Server Agent node in the Object Explorer tree and
then right-click on the Alerts node and select New Alert. Figure 16.15 shows an example
of the New Alert dialog that appears.

FIGURE 16.14 Job history settings.

 Download from www.wowebook.com

ptg

470 CHAPTER 16 SQL Server Scheduling and Notification

The General page selected in Figure 16.15 allows you to define the basic alert properties,
including the name of the alert and type of event you want the alert to respond to. The
default type of alert, the SQL Server event alert, is triggered by SQL Server events that
write to the Windows Application event log. SQL Server writes to the Application event
log when the following events occur:

. When sysmessages errors with a severity of 19 or higher are generated. You can use
the sys.sysmessages catalog view to view all the sysmessages that are stored in the
server. You can create new user-defined messages by using the sp_addmessage stored
procedure; they must have a msg_id (or error number) that is greater than 50,000.
The error message must be created before you can reference the error number in an
alert.

. When sysmessages errors are generated by the database engine. These messages have
error numbers lower than 50,000 and are installed by default.

. When any RAISERROR statement is invoked with the WITH LOG option. The WITH LOG
statement forces the event to be written to the Application event log. Messages
generated with RAISERROR that have a severity level greater than 18 are required to
write to the Application event log.

FIGURE 16.15 The General page of the New Alert dialog.

 Download from www.wowebook.com

ptg

471Managing Alerts
1

6

. When sysmessages have been altered with the sp_altermessage statement to write
to the application log. The sp_altermessage command has a write_to_log parame-
ter that you can use to modify error numbers found in sys.messages. When the
write_to_log parameter is set to WITH_LOG, these message automatically write to the
Application event log, regardless of whether the WITH_LOG option is used when the
error is raised.

. When application calls are made to xp_logevent to log an event to the application
log.

The bottom portion of the General page of the New Alert dialog allows you to define
which events in the Application event log the alert should respond to. You can have the
event respond to a specific error number, the error severity level, or specific text that is
contained in the error message. The sys.sysmessages catalog view contains a complete
list of all the error message details for all the supported languages. You can use the follow-
ing SELECT statement to list the error messages for the English language:

SELECT * FROM SYS.SYSMESSAGES

where msglangid = 1033

order by msglangid, error

You can define an alert for hundreds of messages. For example, you can define an alert
that responds to changes to database options. You do this by selecting error number 5084,
which is triggered whenever a change is made to the database options. You can also
narrow the scope of the alert to look at a specific database by using the Database Name
drop-down. This limits the alert to errors that occur in the specific database you choose.
The default option is to look at all databases.

The two other types of alerts you can define are SQL Server performance condition alerts
and WMI event alerts. A SQL Server performance condition alert reacts to performance
conditions on the server. Figure 16.16 shows an example of this type of alert.

When you select a SQL Server performance condition alert, you need to select the perfor-
mance object and counter for that object to monitor. The SQL Server performance objects
and counters available on the General page of the New Alert dialog are a subset of those
available in the Windows Performance Monitor application. These performance metrics
encompass key indicators, such as memory, CPU, and disk space.

After selecting the object and counter, you need to define the performance threshold for
the alert at the bottom of the General page, below the Alert if Counter label. In the
example shown in Figure 16.16, the alert is monitoring the transaction log file for the
AdventureWorks database. The threshold has been set such that the alert will fire if the
transaction log for this database rises above 2KB.

The WMI event alerts use WMI to monitor events in an instance of SQL Server. The SQL
Server Agent can access SQL Server events by using the WMI provider for server events by
issuing WMI Query Language (WQL) statements. WQL is a scaled-down version of SQL
that contains some WMI-specific extensions. When a WMI query is run, it essentially
creates an event notification in the target database so that a related event will fire. The

 Download from www.wowebook.com

ptg

472 CHAPTER 16 SQL Server Scheduling and Notification

FIGURE 16.16 A SQL Server performance condition alert on the General page.

number of WMI events is extensive. Refer to the “WMI Provider for Server Events Classes
and Properties” topic in SQL Server Books Online for a complete list.

Figure 16.17 shows an example of a WMI event alert. This example uses a WQL query that
detects any Data Definition Language (DDL) changes to any of the databases on the server.
After the alert is created, you can test it by running a DDL statement against the database
(for example, alter table Person.address add newcol int null).

Defining Alert Responses

The definition of an alert has two primary components. As discussed earlier in this
chapter, the first component involves the identification of the event or performance
condition that will trigger the alert. The second part of an alert definition involves the
desired response when the alert condition is met. You can define an alert response by
using the Response page on the alert’s Properties screen. Figure 16.18 shows a sample
response that has been configured to use NET SEND on a message to the operator named
ChrisG.

Operator notification and job execution are the two responses to an alert. Operator notifi-
cation allows for one or more operators to be notified via email, pager, or the NET SEND
command. Job execution allows for the execution of a job that has been defined in the
SQL Server Agent. For example, you could execute a job that does a database backup for
an alert that is triggered based on database size. You can define both job execution and
operator notification in a single alert; they are not mutually exclusive.

 Download from www.wowebook.com

ptg

473Managing Alerts
1

6

FIGURE 16.17 The General page showing a WMI event alert.

FIGURE 16.18 Configuring an alert response.

 Download from www.wowebook.com

ptg

474 CHAPTER 16 SQL Server Scheduling and Notification

You can further define an alert response by using the Options page of an alert’s Properties
window (see Figure 16.19).

You can include an alert’s error text in the operator notification message on this page.
This alert error text provides further details about why the alert was fired. For example, if
you have an alert that is triggered by changes to database options, the alert error text
would include the actual option that was changed. You can also define additional notifica-
tion text that is included when the message is sent. This message could include directives
for the operators or additional instructions. Finally, you can define the amount of time
that the alert will wait before responding to the alert condition again. You do this by
using the Delay Between Responses drop-downs (Minutes and Seconds) to set the wait
time. This capability is useful in situations in which an alert condition can happen repeat-
edly within a short period of time. You can define a response delay to prevent an unneces-
sarily large number of alert notifications from being sent.

Scripting Jobs and Alerts
SQL Server has options that allow for the scripting of jobs and alerts. As with many of the
other objects in SQL Server, you might find that it is easier and more predictable to gener-
ate a script that contains the jobs and alerts on the server. You can use these scripts to

FIGURE 16.19 Alert options.

 Download from www.wowebook.com

ptg

475Scripting Jobs and Alerts
1

6

reinstall the jobs and alerts or deploy them to another server. You can right-click the job
or alert you want to script and choose a scripting option to generate the T-SQL for the
individual object. You can also select the Job or Alerts node to view the Object Explorer
Details that lists all the objects. You can also display the Object Explorer Details through
the View menu or by selecting it as the active tab. When Object Explorer Details is
selected, you have the option of selecting one or more jobs to script. You can select multi-
ple jobs by holding down the Ctrl key and clicking the jobs you want to script.

Figure 16.20 shows a sample Object Explorer Details for jobs, with several of the jobs
selected for scripting. To generate the script, you simply right-click one of the selected jobs
and select the Script Job As menu option to generate the desired type of script.

NOTE

With SQL Server 2008, you can also filter the jobs you want to script by using the filter-
ing capabilities that are available on the Object Explorer Details. For example, you can
filter on jobs whose names contain specific text. After you filter the jobs, you can script
the jobs that are displayed. The filtering options and the capability to selectively script
jobs are particularly useful in environments in which many jobs and alerts exist.

FIGURE 16.20 Script generation for jobs.

 Download from www.wowebook.com

ptg

476 CHAPTER 16 SQL Server Scheduling and Notification

Multiserver Job Management
Multiserver job management allows you to centralize the administration of multiple target
servers on a single master server. The master server is a SQL Server instance that contains
the job definitions and status information for all the enlisted target servers. The target
servers are SQL Server instances that obtain job information from the master server and
continually update the master server with job statistics.

Multiserver job management is beneficial in SQL Server environments in which there are
many instances to manage. You can establish jobs, operators, and execution schedules one
time on the master server and then deploy them to all the target servers. This promotes
consistency across the enterprise and can ease the overall administrative burden. Without
multiserver job management, administrative jobs must be established and maintained on
each server.

Creating a Master Server

The first step in creating a multiserver environment involves the creation of a master
server. SQL Server 2008 provides the Master Server Wizard, which simplifies this task. You
launch the Master Server Wizard by right-clicking the SQL Server Agent node in the
Object Explorer and selecting Multi Server Administration and Make This a Master. The
Master Server Wizard then guides you through the creation of an operator to receive
multiserver job notifications and allows you to specify the target servers for SQL Server
Agent jobs.

Figure 16.21 shows the Master Server Wizard screen that allows you to add information
related to the master server’s operator. The operator created on the master server, named
MSXOperator, is the only one that can receive notifications for multiserver jobs.

FIGURE 16.21 The Master Server Wizard.

 Download from www.wowebook.com

ptg

477Event Forwarding
1

6

The Master Server Wizard also validates the service accounts that the SQL Server Agent
uses on the target servers. These accounts are typically Windows domain accounts that are
in the same domain as the master server. The service accounts are important because the
target servers utilize Windows security to connect to the master server and download jobs
for the SQL Server Agent. The validation process and security considerations are simplified
if the master server and target servers are run with the same domain account.

Enlisting Target Servers

The Master Server Wizard allows you to enlist one or more target servers. Enlisting a target
server identifies it to the master server and allows the master server to manage the
administration of its jobs. You can also enlist additional target servers after the wizard
completes. You do this by right-clicking the SQL Server Agent node of the target server
and then selecting Multi Server Administration and then Make This a Target. Doing so
launches the Target Server Wizard, which guides you through the addition of another
target server. The Target Server Wizard performs some of the same actions as the Master
Server Wizard, including the following:

. It ensures that the SQL Server versions on the two servers are compatible.

. It ensures that the SQL Server Agent on the master server is running.

. It ensures that the Agent Startup account has rights to log in as a target server.

. It enlists the target server.

Creating Multiserver Jobs

After setting up the master and target servers, you can create jobs on the master server and
specify which target servers they should run on. Periodically, the target servers poll the
master server. If any jobs defined for them have been scheduled to run since the last
polling interval, the target server downloads the jobs and runs them. When a job
completes, the target server uploads the job outcome status to the master server.

Event Forwarding
Event forwarding is another multiserver feature that allows a single SQL Server instance to
process events for other servers in your SQL Server environment. This involves the desig-
nation of an alerts management server to which other servers can forward their events.
You enable the alerts management server by right-clicking the SQL Server Agent node
and selecting Properties. When the Properties pages appears, you click the Advanced page
(see Figure 16.22).

 Download from www.wowebook.com

ptg

478 CHAPTER 16 SQL Server Scheduling and Notification

To configure event forwarding, you select the Forward Events to a Different Server option
on the Advanced page. You can then select the SQL Server instance you want as the alerts
management server by using the Server drop-down. The servers shown in the drop-down
are those that have been registered in SSMS. If the server you want does not appear in the
drop-down, you need to choose Registered Servers from the View menu and ensure that
the server is registered.

You can choose to forward unhandled events, all events, or only a subset of the events.
The default is to send all unhandled events, but you can customize this for your needs.
You can further limit the messages that are forwarded by specifying the severity level that
the message must have in order to be forwarded. For example, you can configure the
servers to forward only fatal error messages that have a severity greater than or equal to
Level 19. In this scenario, you could define alerts on the alerts management server that
respond to these fatal errors and notify operators that specialize in their resolution.

You need to consider a number of trade-offs when using event forwarding. You need to
weigh the benefits of central administration and a lack of redundancy against the disad-
vantages of having a single point of failure and increased network traffic. The available
network bandwidth, number of servers involved in event forwarding, and stability of the
alerts management server are some of the key factors you need to think about in making
your decision.

FIGURE 16.22 Configuring event forwarding.

 Download from www.wowebook.com

ptg

479Summary
1

6

Summary
The SQL Server Agent in SQL Server 2008 delivers a powerful set of tools to make your
administrative life easier. It provides automation in the form of jobs, operators, and alerts
that help you deliver a consistent and healthy database environment. After you have set
up the appropriate automation with the SQL Server Agent, you can rest assured that you
have been proactive in managing your database environment.

PowerShell is another tool to help with your automation needs. This new tool, that was
integrated into SQL Server 2008, provides a powful command-line facility you can use to
access SQL Server objects. This tool is discussed in Chapter 17.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 17

Administering SQL
Server 2008 with

PowerShell

. Overview of PowerShell

. PowerShell Scripting Basics

. PowerShell in SQL Server 2008

. Step-By-Step Examples

Windows PowerShell is Microsoft’s next-generation
scripting language. More and more server-based products
are being released with various levels of support for this
scripting language.

This chapter provides an overview of what Windows
PowerShell is and describes some of the basic features of
Windows PowerShell that SQL Server 2008 users should find
useful. It also presents examples that demonstrate the use of
these features with SQL Server 2008.

SQL Server 2008 includes additional features to support
PowerShell. The chapter also presents step-by-step examples
showing how to use Windows PowerShell for various OS
and database tasks.

What’s New with PowerShell
The integration of Windows PowerShell into the SQL Server
environment is new to SQL Server 2008. The PowerShell
scripting language has been around for some time, but it
was not installed with prior versions of SQL Server or inte-
grated into the SQL Server environment. With SQL Server
2008, it is installed, and there are now means for easily
accessing SQL Server objects via this powerful scripting
shell.

The SQLPS utility is at the crux of the new PowerShell inte-
gration in SQL Server 2008. SQLPS is a command-line shell
that loads and registers SQL Server snap-ins that provide
access to SQL Server via PowerShell. There is no need to
manually reference or load the SQL Server libraries, which is

 Download from www.wowebook.com

ptg

482 CHAPTER 17 Administering SQL Server 2008 with PowerShell

necessary if you launch the PowerShell environment independently using the native
PowerShell (powershell.exe) utility.

In SQL Server 2008, the new SQLPS utility has also been integrated into the SQL Server
Management Studio (SSMS) environment. You can launch a SQLPS session by right-clicking
on an object in the Object Explorer tree and selecting Start PowerShell. A SQLPS command
window is launched with the path for that object already referenced. You can now work
with the properties of that object in a command-line environment that provides options
that go beyond the traditional GUI environment.

The integration of SQLPS is also visible in the SQL Server Agent. You can now add
PowerShell job steps to SQL Server jobs. The PowerShell commands that you can enter for
the job step are the same as you would enter interactively in a PowerShell session. This
new kind of job step allows you to schedule PowerShell commands and integrate
PowerShell actions with other SQL Server Agent job steps.

Overview of PowerShell
Windows PowerShell is Microsoft’s next-generation automation and scripting language. It
is built on the Microsoft .NET 2.0 Framework.

Windows PowerShell was first released to the public in November 2006 as version 1.0. It
was released as a separate install for Windows XP and Windows 2003, and shortly after, an
install for Windows Vista was made available. Since its release, Windows PowerShell has
been downloaded over two million times.

NOTE

From this point on, we refer to Windows PowerShell simply as PowerShell.

When Windows Server 2008 was released, PowerShell was provided with the operating
system. To have access to PowerShell, you simply had to add the Windows PowerShell
feature through the new Server Manager.

NOTE

Currently, PowerShell is not available on Windows Server 2008 Core because of the .NET
Framework requirement. Server 2008 Core officially doesn’t support the .NET Framework.

In 2008, Microsoft announced that PowerShell is now part of its Common Engineering
Criteria for 2009 and beyond. This announcement basically means that all of Microsoft’s
server products should have some level of PowerShell support. Microsoft Exchange 2007
was the earliest server-class product to come out with full PowerShell support. In fact, all
of Exchange’s administrative tasks are based on PowerShell. The PowerShell functionality
in Exchange is actually named Exchange Management Shell.

 Download from www.wowebook.com

ptg

483Overview of PowerShell

NOTE

PowerShell 1.0 is installed by default when SQL Server 2008 client software or
Database Services are installed. Keep in mind that PowerShell 1.0 is not the latest
version available. The next version, PowerShell version 2, is available for download and
is installed by default with newer operating systems such as Windows Server 2008
R2. V2 introduces a number of new features that are not covered in this chapter.

NOTE

The intent of this chapter is to introduce the basic concepts and functionality of
PowerShell and how it integrates with SQL Server 2008. Use of more advanced
features is beyond the scope of what can be covered in a single chapter.

For more information on PowerShell, be sure to check out the main PowerShell address
at http://www.microsoft.com/powershell and also the PowerShell team blog at http:/
/blogs.msdn.com/powershell.

A number of script examples and resources are also available in the Microsoft
Technet PowerShell Script Center: http://technet.microsoft.com/en-us/scriptcenter/
powershell.aspx

If you want to get into some of the more advanced features and capabilities of
PowerShell, you may also want to check out a PowerShell-specific book such as
Windows PowerShell Unleashed from Sams Publishing.

Start Using PowerShell Now

PowerShell supports all the regular DOS commands and can run scripts written in any
other language (the script engine specific to that scripting language still needs to be used).
If any kind of scripting is currently being done, there is no reason why users can’t start
using PowerShell now, even if they are not using its vast functionality.

Common Terminology

Here are some of the common terms used when working with PowerShell:

. Cmdlet—This is the name given to the built-in commands in PowerShell. Cmdlets
are the most basic component within PowerShell and are used when doing anything
in PowerShell. They are always of the form “verb-noun.” Cmdlets also have argu-
ments called parameters, and values can be passed to these parameters.

. Script—With automation comes the requirement for scripts. Using scripts is as
simple as putting a single cmdlet in a file and then executing the file. In PowerShell,
scripts have the extension .ps1 and can be executed or invoked by simply calling it
as ./my_script.ps1.

. Pipeline—This PowerShell functionality allows a series of cmdlets to be combined
together using the pipe character (|). The output from one cmdlet is then piped to
the following cmdlet for further processing.

1
7

 Download from www.wowebook.com

http://www.microsoft.com/powershell
http://blogs.msdn.com/powershell
http://blogs.msdn.com/powershell
http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx
http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx

ptg

484 CHAPTER 17 Administering SQL Server 2008 with PowerShell

. Provider—Using this PowerShell functionality, a data store is presented to the user
in a format similar to a file system. Some of the “core” cmdlets are typically used to
do various tasks such as creating items like files and/or folders.

. Snap-in—PowerShell functionality can be extended with the use of snap-ins. They
are basically DLL files written in a .NET programming language such as C# or
VB.NET. DBAs can load these snap-ins in their PowerShell session to add additional
functionality such as additional cmdlets and/or providers.

. Tab completion—This PowerShell functionality allows the user to press the Tab key
to autocomplete supported commands and parameters.

. Aliases—Theseare shorter names that can be used for cmdlets. For example, some
typical UNIX and DOS commands have had aliases for them created in PowerShell.
These aliases map to the actual PowerShell cmdlet.

Object-Based Functionality

As mentioned earlier, PowerShell is built on the .NET Framework. This implies that every-
thing within PowerShell is object based. This is a familiar concept for anyone who is already
familiar with the .NET Framework or .NET programming languages such as C# or VB.NET.

This object-based functionality is an important concept to remember if you want to dive
deeper into PowerShell. PowerShell provides many features, and it can also use additional
features provided by other .NET assemblies.

SQL Server Management Objects

SQL Server Management Objects (SMO) are a very useful tool to advanced users and devel-
opers when dealing with the automation of SQL Server 2005 and 2008. A lot of the
features within SQL Server (core engine, agent, mail, and so on) are packaged into easy-to-
access .NET libraries that can be accessed from PowerShell.

Most of the functionality provided by the new PowerShell support in SQL 2008 is based
on SMO.

As for SQL Server 2005, PowerShell can still be used to administer this version via SMO.
The only difference is that the relevant assemblies must be loaded manually.

WMI

Windows Management Instrumentation (WMI) is a Windows service that provides remote
control and management. PowerShell provides some built-in support for retrieving infor-
mation via WMI.

Although the main goal of WMI may be to provide remote access, it can also be used
locally and can provide a wealth of information about a system. For example, WMI can be

 Download from www.wowebook.com

ptg

485Overview of PowerShell

FIGURE 17.1 Selecting the Windows PowerShell feature.

used to easily query disk space and installed patches. Examples of using WMI are shown
later in this chapter.

Installing PowerShell

As of Windows Server 2008, adding the PowerShell feature is easy using the new Server
Manager application. With previous versions of Windows, PowerShell was a separate
install, which required downloading and installing an external package.

To install PowerShell on Server 2008, start Server Manager, go to the Features node, then
click Add Features, and simply check the box for Windows PowerShell, as shown in Figure
17.1.

1
7

PowerShell Console

You can accessing PowerShell directly from the Start menu, by opening All Programs, and
choosing Windows PowerShell 1.0, then finally Windows PowerShell (alternatively, on
some systems, such as Windows 7, you can find the Windows PowerShell folder under the
Accessories folder in the Start menu). The Windows PowerShell console opens, as shown
in Figure 17.2.

 Download from www.wowebook.com

ptg

486

FIGURE 17.2 Opening the PowerShell console.

NOTE

The prompt displayed in examples of the PowerShell console in this chapter has been
changed from the default.

Scriptable and Interactive

PowerShell can be used as a scripting language, by creating reusable scripts that can auto-
mate various tasks, and it can also be used interactively, by opening up a console window
and entering commands line by line.

In interactive mode, PowerShell is intelligent enough to know when a command is not
complete and actually displays >> on a new line when it believes a complete command
has not been entered.

Default Security

After PowerShell has been installed, it is very secure out of the box. Here are two of the
default security features:

. PowerShell cannot run any scripts. If you attempt to double-click on any .ps1 script,
it simply opens the contents in Notepad.

. PowerShell cannot be accessed remotely.

CHAPTER 17 Administering SQL Server 2008 with PowerShell

 Download from www.wowebook.com

ptg

487Overview of PowerShell
1

7

Execution Policy

By default, PowerShell can only be used interactively from the console. This is part of the
default security. To be able to actually run scripts, you must set the execution policy. The
easiest way to set this policy is to use the Set-ExecutionPolicy cmdlet, as follows:

PS>Set-ExecutionPolicy RemoteSigned

Basically, when you use the value RemoteSigned, PowerShell is set to be able to run scripts
that have been created locally, but if a script is downloaded from the Internet, for
example, it must be signed.

NOTE

The details of the different execution policy settings available or the advantages and
disadvantages of different possibilities are not covered in this chapter. Using
RemoteSigned is one of the better trade-offs between functionality and security for
most users.

Profiles

As users become more and more familiar with PowerShell, they typically develop
customizations that they may want to save for the next time PowerShell is opened.
PowerShell has several profiles that can be used to configure user and system-wide
settings. The system-wide profile is easy to access using the following:

PS>notepad $profile

NOTE

On a new install, this file typically doesn’t exist, so don’t be surprised if a window pops
up asking you to create the file. Adding commands to the profile is usually as easy as
adding the exact same commands that you would execute in the shell directly into the
profile.

Built-in Help Features

As mentioned earlier, cmdlets are the most basic component of PowerShell. Three of these
cmdlets are essential in attempting to learn PowerShell. Even advanced users may still use
these cmdlets on a daily basis:

. Get-Command—This cmdlet is essential in discovering what commands can be used
and what might be available on the system to help with a certain task.

. Get-Help—When you are looking for additional details, specifically on other
cmdlets, this is the main cmdlet to use.

 Download from www.wowebook.com

ptg

488

. Get-Member—Absolute beginners don’t typically start using this cmdlet when first
initiated into PowerShell, but for advanced users, and easier discovery, this cmdlet is
very useful.

Let’s look at each of these cmdlets in more detail.

Get-Command

The Get-Command cmdlet can be used to get a listing of an entire list of cmdlets on the
system, but it can also be used to get cmdlets that can be used for a specific task or
purpose. For example, Get-Command alone in the console prints the entire list of available
cmdlets available in the current console:

PS>Get-Command

If this is the first time you have ever opened a PowerShell console, how do you write to
the console? How about displaying something as simple as “Welcome to SQL 2008”? You
can pass something basic to Get-Command, such as the string ”*write*”:

PS>Get-Command *write*

What results is a listing of all the cmdlets that have the string ”write” in any part of
their name.

In addition, the preceding command also displays any applications and aliases (aliases are
discussed later in this chapter) found in the current user’s path.

PowerShell can be pretty smart. The preceding sample is actually a shortcut for something
longer like this:

PS>Get-Command -Name *write*

Based on how the cmdlet is programmed, cmdlets can automatically assign a particular
value to a parameter even when the parameter isn’t explicitly typed out.

Originally, we were looking for a cmdlet to display something on the console and found
the cmdlet Write-Host. Let’s try it:

PS>Write-Host “Welcome to SQL 2008”

Get-Help

The learning curve with PowerShell can be relatively steep. Sometimes you can find a
particular command for a particular task, such as the Write-Host cmdlet in the preceding
section, but you might not always be sure how to actually use it. Write-Host is simple, but
what if Write-Host had other useful features, or help was required for some other cmdlet?

Get-Help is a very useful cmdlet. Just using Get-Help alone provides some default help
information:

PS>Get-Help

CHAPTER 17 Administering SQL Server 2008 with PowerShell

 Download from www.wowebook.com

ptg

489Overview of PowerShell
1

7

To get help on a particular cmdlet, you can use Get-Help and pass the other cmdlet as an
argument:

PS>Get-Help Write-Host

That approach might not provide a lot of useful information; perhaps the –Full and
–Examples parameters are more useful:

PS>Get-Help Write-Host -Full

Passing the –Full parameter gives a detailed description of the cmdlet and all its parame-
ters (including what types of values they accept). If you are a more experienced user, the
–Examples parameter is very useful, because it just gives some examples of using the
cmdlet, which is an easy way to remember the syntax of a particular command:

PS>Get-Help Write-Host -Examples

NOTE

Get-Help works on other cmdlets, but it can also be used when you are looking for
additional details on other concepts in PowerShell. To get a listing of the built-in help
for various concepts in PowerShell, you can run the command Get-Help about_*.

Get-Member

Because everything in PowerShell is object based, some of the features that can be accessed
are always visible. To find out more about a particular object, you can use the Get-Member
cmdlet to look at all its members (the more interesting members of a .NET object are
usually its properties and methods).

Using something simple like ”AdventureWorks2008R2”, you can easily look at PowerShell’s
members (possibly without having to consult any .NET developer-focused documenta-
tion). ”AdventureWorks2008R2” is a string—in other words, a combination of alphanu-
meric characters (that can include spaces). The following example is another way to
display a string in the PowerShell console:

PS>”AdventureWorks2008R2”

PowerShell automatically recognizes this is a simple string and displays it.

A string can be easily displayed to the console, but what else can you do with a string
object? In the .NET Framework, a string is really a System.String object. The .NET
Framework provides a lot of functionality that can be used to deal with strings. Now let’s
consider another example:

PS>” AdventureWorks2008R2”|Get-Member

 Download from www.wowebook.com

ptg

490

From the preceding command, more information is displayed now, including
TypeName:System.String, which confirms that this is a System.String object. One partic-
ular feature that Get-Member indicates is that there is a ToLower method supported by this
particular object:

PS>”AdventureWorks2008R2”.ToLower()

In this example, the ToLower method of the System.String object is used to change the
string into all lowercase letters.

PowerShell Scripting Basics
The following sections cover some of the basics of scripting with PowerShell. We hope this
information will help you understand how you can use PowerShell in various situations to
automate various tasks.

A Few Basic Cmdlets

Following is a list of a few basic cmdlets and how they can be used, with a brief example:

. Get-ChildItem (aka dir, gci)—Cmdlet used to list child items in a provider. Mostly
used to list things such as files and directories in a file system. Example: Get-
ChildItem *.ps1

. Select-Object—Cmdlet used to retrieve only specific properties. See Get-Help
Select-Object –Examples for examples.

. Group-Object—Cmdlet used to group objects based on their properties. See Get-Help
Group-Object –Examples for examples.

. Sort-Object—Cmdlet used to sort objects based on their properties. See Get-Help
Sort-Object –Examples for examples.

. Read-Host—Cmdlet used to read input from the screen, usually from a user, before
continuing. Example: Read-Host “Enter a database name”.

. Measure-Command—Cmdlet used to measure how much time a particular scriptblock
took to run. Example: Measure-Command {Get-Command}.

. Write-Host—Cmdlet used to basically display output to the console. This cmdlet
was covered earlier.

. New-Object—Cmdlet used to create an instance of a .NET (or COM) object. Examples
are provided later.

. Get-Alias—Cmdlet used to get a listing of the aliases on the system. Get-Alias,
with no arguments, lists all the aliases configured on the local system.

. Get-Content—Cmdlet used to read the contents of a file. Typically, only text-based
files are supported. Example: Get-Content my_script.ps1.

CHAPTER 17 Administering SQL Server 2008 with PowerShell

 Download from www.wowebook.com

ptg

491PowerShell Scripting Basics
1

7

. Add-Content—Cmdlet used to add or append content to a file. Example: Add-
Content my_file.txt “testing”.

. Set-Content—Cmdlet used to set the contents of a file (it overwrites any existing
content). Example: Set-Content my_file.txt “testing 123”.

. Start-Transcript—Cmdlet used also with Stop-Transcript to record everything in
the console to a specific text file. Example: Start-Transcript.

Creating a PowerShell Script

Creating a PowerShell script is as simple as placing a few commands into a .ps1 script and
then invoking that script. Here’s a simple example of putting the Write-Host cmdlet into
a script and then running it.

PS> add-content c:\temp\test.ps1 “Write-Host `testing`”

PS>c:\temp\test.ps1

testing

PS>

In the preceding example, a Write-Host cmdlet was placed in a file named test.ps1, and
then the file was invoked. The output resulted in the string ”testing” being output to the
script. Notepad or any other simple text editor could also be used to create more compli-
cated scripts.

Sample PowerShell scripts that directly apply to SQL Server administration are provided
later in this chapter. Refer to the ”The Step-By-Step Examples” section.

Adding Comments

Adding comments to a PowerShell script is as simple as adding the # character at the
beginning of the line. To comment out entire blocks of code, you must use a # on each
line.

NOTE

Another way to comment out blocks of code is to use something called a here string.
This technique is not covered in this book.

Variables

Strings and objects were discussed earlier in this chapter. A very useful feature of
PowerShell, and thus of SQL-PowerShell, is the ability to place objects into a variable. This
allows you to run any kind of command and place any objects produced into a variable
for later use.

Examples of using variables are presented later in this chapter. For now, a string can be
easily saved as a variable:

PS>$var=”AdventureWorks2008R2”

 Download from www.wowebook.com

ptg

492

PS>$var

AdventureWorks2008R2

In the preceding example, the string is saved as the variable $var and then output to the
script when the variable is simply invoked:

PS>$database=read-host “Enter a database name”

Enter a database name:AdventureWorks2008R2

PS>$database

AdventureWorks2008R2

The Read-Host cmdlet was introduced briefly already. In this example, the Read-Host
cmdlet is used to read input from the console, and the information input is passed to the
$database variable.

NOTE

When you perform certain actions in a script, a function, and even from the command
line, the scope assigned to the variable or function determines how this variable will be
seen by other scripts, functions, and so on. The details of scoping are not discussed
any further, but it is still an important concept to remember as you use PowerShell
more and more.

NOTE

You can issue the Get-Help about_shell_variable and Get-Help about_scope
commands in Powershell for more information and examples about shell variables.

An example provided later in this chapter demonstrates that objects much more compli-
cated than simple strings can be saved to a variable for later use.

Escaping Characters

Often a special character may be used—for example, in DOS commands—but PowerShell
tries to interpret it differently. Let’s consider the dollar sign character ($). PowerShell
normally tries to interpret it as a variable:

PS C:\> $var=”$5 discount”

PS C:\> $var

discount

PS C:\> $var=”`$5 discount”

PS C:\> $var

$5 discount

PS C:\>

The preceding example shows how the escape character, which is the backtick (`), is used
to escape the dollar sign, so that PowerShell doesn’t try to interpret the character literally
as the beginning of a variable.

CHAPTER 17 Administering SQL Server 2008 with PowerShell

 Download from www.wowebook.com

ptg

493PowerShell Scripting Basics
1

7

NOTE

You can execute the Get-Help about_escape_character command in PowerShell for
more information and examples.

Special Variable $_

In PowerShell, $_ is a special variable that represents the current object in the pipeline.
When several cmdlets are piped together, this special variable may be used often. Several
examples of using this special variable are shown later in this chapter.

NOTE

A special variable named $input also represents objects passed along the pipeline,
but we do not look at this variable in any further detail in this chapter.

NOTE

See Get-Help about_automatic_variables for more information and examples.

Joining Variables and Strings

The concept of objects was already introduced briefly. When you are dealing with simple
strings, you can easily concatenate them together using the plus (+) sign to create a new
string:

PS>$last_name=”Doe”

PS>$first_name=”John”

PS>$full_name=$last_name+”, “+$first_name

PS>$full_name

Doe, John

PS>

In this example, two variables containing simple strings are defined, and they are simply
concatenated together to create a third variable, which is then displayed to the console.

NOTE

This kind of concatenation works when both variables are strings. An error may be
returned if the variable is of another data type.

An example is provided later with the AdventureWorks2008R2 database where string vari-
ables from two different columns in the same table will be joined together using this
feature.

 Download from www.wowebook.com

ptg

494

Passing Arguments

PowerShell has a special reserved variable named $args. It can be used with scripts and
functions, and represents any arguments passed to the script or function when it is
invoked, as shown here:

PS>add-content c:\temp\parameter.ps1 “`$args.count”

PS>add-content c:\temp\parameter.ps1 “`$args[0]”

PS>c:\temp\parameter.ps1 1 2 3

3

1

PS>

In the preceding example, a two-line script is created, and then it is invoked while passing
some arguments to it. $args.count displays the number of arguments passed to the script,
whereas $args[0] displays the value of the first argument only.

Later, an example of a PowerShell script that can do a database backup is provided. The
example is extended to show how a script could be used to accept an argument that
would be the name of the database the script will back up.

Using Param

A special construct, param, can be used to force the way arguments are passed to a script or
function:

PS>function test_param {

>> param([string]$arg1)

>> write-host “Argument 1 is $arg1”

>> }

>>PS>test_param “testing”

Argument 1 is testing

PS>test_param -arg1 “testing”

Argument 1 is testing

PS>

In this example, param is used to specify that a parameter passed to this script will be a
string object and will be contained in the variable $arg1 for later use in the script.

NOTE

The biggest difference between using param or $args with arguments occurs when the
number of arguments is known versus unknown. The param keyword should not be
used when the number of arguments passed is not known.

CHAPTER 17 Administering SQL Server 2008 with PowerShell

 Download from www.wowebook.com

ptg

495PowerShell Scripting Basics
1

7

NOTE

[string] is a shortcut in PowerShell where you specify that the argument, as in the
preceding example, will be a string, and not something else such as a number or inte-
ger. A dozen or so of these shortcuts are available in PowerShell, and they are typically
known as type accelerators.

Arrays

To PowerShell, arrays are simply a listing of data. They can be used for various tasks and
can be created easily, as you can see here:

PS>$var=”foo”,”bar”

PS>$var

foo

bar

PS>

In this example, an array is created with two values, and then it is simply invoked, which
simply results in outputting each element of the array, one per line. When an array is
created, a reference can be made to a particular element of the array using a special “[]”
syntax, like this:

PS>$var[0]

foo

PS>

NOTE

The first element of an array is the element zero; therefore, the first record in an array
is retrieved by referencing the element id [0].

The count property is also useful as a property of array objects (remember that everything
n PowerShell is a .NET object:

PS>$var.count

2

PS>

The count property is used to iterate through each element of an array.

 Download from www.wowebook.com

ptg

496

NOTE

Arrays can also be defined in at least two other ways: with a type accelerator
([array]$var is an example) or using a notation like this:

$var=@(“foo”,”bar”).

Several other type accelerators are used in PowerShell, but they are not described in
this chapter.

NOTE

You can execute the Get-Help about_array command for more information and
examples on using arrays in PowerShell.

In a later example, this feature of retrieving a particular element of an array is used with
the AdventureWorks2008R2 database.

Operators

A task commonly performed both from the console and also in scripts is to compare two
strings against each other. The most common operators are as follows:

. Arithmetic—When comparing numbers or integers, for example:

5 -gt 4

. Comparison—When comparing strings, for example:

”user” -eq “user”

In both of these cases, a Boolean value is returned (True or False).

NOTE

Execute the Get-Help about_operator command for more information and examples.

Conditional Statements

Often in scripting, some kind of decision must be made by comparing values before a
script or set of commands continues.

Operators can provide a simple example of how conditional statements work, as shown
here:

PS>if(“userA” -eq “userA”)

>> {

>> Write-Host “Equal”

CHAPTER 17 Administering SQL Server 2008 with PowerShell

 Download from www.wowebook.com

ptg

497PowerShell Scripting Basics
1

7

>> }

>> else

>> {

>> Write-Host “Not equal”

>> }

>>Equal

PS>$user=”userB”

PS>if(“userA” -eq “$user”)

>> {

>> Write-Host “Equal”

>> }

>> else

>> {

>> Write-Host “Not equal”

>> }

>>Not equal

PS>

The preceding code provides a simple example and shows how interactive the PowerShell
console can be. The >> character is simply PowerShell informing the user that the
commands entered are basically not complete, and more input is required.

A later example using the AdventureWorks2008R2 database uses a conditional statement to
make a particular decision based on the results from evaluating a particular expression.

Functions

Quite often, as the usage of SQL-PowerShell increases, some efficiencies are gained by
using functions. Functions are especially useful when you are creating things that are
done on a regular basis either directly in the console or in a script.

For example, a long script may have been developed that contains several checks for the
existence of a file, such as a long database filename, as in the following:

PS>Function test {

>> param($user1,$user2)

>> if(“$user1” -eq “$user2”)

>> {

>> Write-Host “Equals”

>> }

>> else

>> {

>> Write-Host “Not equal”

>> }

>> }

>>PS>test “userA” “userB”

Not equal

PS>test “userA” “userA”

 Download from www.wowebook.com

ptg

498

Equals

PS>

Using the earlier example of comparing two strings, this example writes a function
named test, so if future comparisons are required, the typing requirements will be
greatly reduced.

NOTE

Execute the Get-Help about_function command in PowerShell for more information
and examples.

In a later example, a function is used to create a quick reference for sending out an email
via PowerShell.

Looping Statements

Often a script needs to loop through items and act on each. PowerShell supports several
looping constructs. Examples of the for and foreach constructs are demonstrated here.
Others, such as while, also exist but are not covered in this chapter.

PS>for($i=0;$i -lt 5;$i+=2){

>> $i

>> }

>>0

2

4

PS>

The preceding example shows a for loop. The method to jump or way to use a step is
shown. A jump or step is indicated by the last part of the preceding for loop, where $i+=2
is used. If this example had used $i++ instead, the output would be each number from 0
to 5.

Here’s an example of using foreach:

PS C:\book>dir

Directory: Microsoft.PowerShell.Core\FileSystem::C:\book

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 8/4/2008 11:29 PM directory

-a--- 8/5/2008 12:01 AM 53 database.csv

-a--- 8/4/2008 11:27 PM 0 file.ps1

-a--- 8/4/2008 11:27 PM 0 file.txt

-a--- 8/4/2008 11:47 PM 1813 list.csv

PS C:\book>$contents=dir

PS C:\book>$contents

CHAPTER 17 Administering SQL Server 2008 with PowerShell

 Download from www.wowebook.com

ptg

499PowerShell Scripting Basics
1

7

Directory: Microsoft.PowerShell.Core\FileSystem::C:\book

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 8/4/2008 11:29 PM directory

-a--- 8/5/2008 12:01 AM 53 database.csv

-a--- 8/4/2008 11:27 PM 0 file.ps1

-a--- 8/4/2008 11:27 PM 0 file.txt

-a--- 8/4/2008 11:47 PM 1813 list.csv

PS C:\book>foreach($each in $contents){

>> $each.name

>> }

>>directory

database.csv

file.ps1

file.txt

list.csv

PS C:\book>

In this example, within the foreach scriptblock, any number of commands could have
been added, and they would have acted on each object.

NOTE

Use the Get-Help about_for, Get-Help about_foreach, and Get-Help
about_while commands for more information and examples.

NOTE

Another feature that can also be useful in scripting is keywords, such as break,
continue, and return. They can be used in various circumstances to basically end the
execution of conditional statements and also looping statements. See Get-Help
about_break and Get-Help about_continue for more information and examples.

Filtering Cmdlets

PowerShell also has a few useful filtering cmdlets:

. Where-Object (alias where and ?)—Participates in a pipeline by helping to narrow
down the objects passed along the pipeline based on some specific criteria.

. ForEach-Object (alias foreach and %)—Participates in a pipeline by applying a
scriptblock to every object passed along the pipeline.

By looking at a few files and a directory contained within a test directly, we can easily
demonstrate the use of both cmdlets:

PS C:\book> dir

 Download from www.wowebook.com

ptg

500

Directory: Microsoft.PowerShell.Core\FileSystem::C:\book

Mode LastWriteTime Length Name

---- -------------- ------ ----

d---- 8/4/2008 11:29 PM directory

-a--- 8/4/2008 11:27 PM 0 file.ps1

-a--- 8/4/2008 11:27 PM 0 file.txt

PS C:\book> dir|ForEach-Object{$_.Name.ToUpper()}

DIRECTORY

FILE.PS1

FILE.TXT

PS C:\book> dir|Where-Object{$_.PsIsContainer}

Directory: Microsoft.PowerShell.Core\FileSystem::C:\book

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 8/4/2008 11:29 PM directory

PS C:\book>

In this example, first the ForEach-Object cmdlet is demonstrated, where each object
passed along from the dir command is acted on, and the name of the object (filename or
directory name) is changed to uppercase.

Next, the Where-Object cmdlet is demonstrated, where each object passed along is evalu-
ated this time to determine whether it is a file or directory. If it is a directory (the script-
block {$_.PsIsContainer} returns as True), the object continues along the pipeline, but in
this case, the pipeline has ended.

NOTE

There is a ForEach-Object cmdlet and a foreach keyword, and they are not the
same. Something useful to remember is that ForEach-Object would be used as part
of a pipeline.

Formatting Cmdlets

Several formatting cmdlets are very useful:

. Format-Table (alias ft)—Cmdlet that prints out properties in a table-based format.

. Format-List (alias fl)—Cmdlet that prints out properties in a list-style format.

Some simple examples of Format-Table can be easily demonstrated, as you can see here:

PS C:\book\test> Get-Process powershell

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s)

CHAPTER 17 Administering SQL Server 2008 with PowerShell

 Download from www.wowebook.com

ptg

501PowerShell Scripting Basics
1

7

Id ProcessName

------- ------ ----- ----- ----- ------

-- ----------

548 13 54316 13192 164 25.55

2600 powershell

PS C:\book\test> Get-Process powershell| `

>> Format-Table -autosize handles,id

>>

Handles Id

------- --

561 2600

PS C:\book\test>

In this example, you use the Get-Process cmdlet to list the properties of the
powershell.exe process. By default, the PowerShell formatting subsystem determines what
properties to display. Using Format-Table, you modify the properties displayed. The
–autosize parameter is used to shorten and align all the columns neatly.

NOTE

There are also Format-Custom and Format-Wide cmdlets. See the built-in help for
each cmdlet for more information and examples.

Dealing with CSV Files

PowerShell provides two cmdlets that help greatly when you are dealing with files in the
comma-separated value (CSV) format:

. Import-Csv—This cmdlet reads in a CSV file and creates objects from its contents.

. Export-Csv—This cmdlet takes an object (or objects) as input and create sa CSV
file, as shown here:

PS>dir | Export-Csv c:\temp\file.csv

This simple example shows how to output the contents of the current directory to a CSV-
formatted file. Looking at the contents of this file displays information about the objects,
though, instead of just plain strings such as filenames.

The following example creates a simple CSV-formatted file and then is read in using the
Import-Csv cmdlet. The Select-Object cmdlet is used to display only the database column:

PS C:\> cd c:\temp

PS C:\temp> Add-Content database.csv “server,database”

PS C:\temp> Add-Content database.csv “server1,database1”

PS C:\temp> Add-Content database.csv “server2,database2”

PS C:\temp> Get-Content database.csv

 Download from www.wowebook.com

ptg

502

server,database

server1,database1

server2,database2

PS C:\temp> Import-Csv database.csv|Format-Table -AutoSize

server database

------ --------

server1 database1

server2 database2

PS C:\temp> Import-Csv database.csv|Select-Object database

database

database1

database2

PS C:\temp>

NOTE

The Format-Table cmdlet is used in the preceding example simply to format the data
in a more appropriate format for this book.

Dealing with Dates and Times

Being able to do date/time calculations is very useful. Fortunately PowerShell provides all
kinds of quick date/time calculations. Some of the more common tricks are shown in the
following example:

PS>[DateTime]::Now

Tuesday, August 05, 2008 2:01:22 PM

PS>([DateTime]::Now).AddDays(-1)

Monday, August 04, 2008 2:01:44 PM

PS>

Here, a .NET method is used to get a new value from the original object. This is done in a
“single step,” in contrast to saving the object to a variable and then using the method on
the variable. The use of a minus sign indicates that a value is being requested from the past.

Other common date/time methods include

. AddHours—Add/subtract based on a number of hours.

. AddMilliseconds—Add/subtract based on a number of milliseconds.

. AddMinutes—Add/subtract based on a number of minutes.

CHAPTER 17 Administering SQL Server 2008 with PowerShell

 Download from www.wowebook.com

ptg

503PowerShell in SQL Server 2008
1

7

. AddMonths—Add/subtract based on a number of months.

. AddSeconds—Add/subtract based on a number of seconds.

. AddYears—Add/subtract based on a number of years.

-WhatIf/-Confirm Parameters

Several of the core PowerShell cmdlets support –whatif and/or –confirm parameters. The
cmdlets that support these parameters could actually make system changes that cannot be
reserved, such as deleting a file.

Consider the following example using these parameters:

PS>New-Item -Type File -Path file.tmp

Directory: Microsoft.PowerShell.Core\FileSystem::C:\book

Mode LastWriteTime Length Name

---- -------------- ------ ----

-a--- 8/4/2008 10:33 PM 0 file.tmp

PS>Remove-Item -Path file.tmp -WhatIf

What if: Performing operation “Remove File” on Target

“C:\book\file.tmp”.

PS>

Two new cmdlets are demonstrated in the preceding example: New-Item, used to create
things such as files, and Remove-Item, used to delete or remove things such as files.

PowerShell in SQL Server 2008
This section covers what has been specifically added to SQL Server 2008 to provide
support for PowerShell.

Adding PowerShell Support

NOTE

This discussion is based on SQL Server 2008 Enterprise Edition. SQL Server 2008
Express doesn’t provide all the same features. For example, the Express version does-
n’t provide the SQL Server Agent functionality briefly discussed later.

 Download from www.wowebook.com

ptg

504

Either during the initial installation of SQL 2008 or afterward while changing the installed
features, you are able to add the SQL Server–specific PowerShell features by using the setup
utility. The Management Tools-Basic feature must be added, as shown in Figure 17.3.

CHAPTER 17 Administering SQL Server 2008 with PowerShell

The Management Studio add-on is also required to get the PowerShell-specific features
installed. This specific feature adds the following:

. Management Studio—The graphical user interface for managing SQL Server 2008

. SQLCMD—The utility that SQL scripters should already be familiar with

. SQL Server PowerShell provider—The PowerShell-specific extra functionality

NOTE

An added bonus is that you can install Management Studio by itself on either the serv-
er or another remote system, and be able to administer your SQL Server database
remotely. Consideration should be given to whether the SQL Server is set up for remote
connections, and the appropriate firewall changes have been made to the network and
on the database server, if applicable.

FIGURE 17.3 Installing the PowerShell features.

 Download from www.wowebook.com

ptg

505PowerShell in SQL Server 2008
1

7

Accessing PowerShell

Now that you have added the SQL Server–specific PowerShell features, you can access a
SQL Server PowerShell session.

NOTE

From this point on, we make the distinction between PowerShell and SQL Server
PowerShell. The details are discussed shortly, but for now PowerShell is the basic or
default PowerShell console, and SQL Server PowerShell is a more restricted version of
PowerShell that has all the SQL Server–specific PowerShell features packaged within it.

SQL Server PowerShell can be accessed in either of two ways:

. You can open SQL Server PowerShell via the SQL Server Management Studio by
right-clicking on a particular object in the Object Explorer and selecting Start
PowerShell, as shown in Figure 17.4. This way is handy because it provides a prompt
in the SQL provider (which is discussed shortly) in the location of the object that
was right-clicked.

. You also can open SQL Server PowerShell directly from regular DOS or a regular
PowerShell console by simply navigating to the appropriate location, as shown in
Figure 17.5.

FIGURE 17.4 Accessing PowerShell via SSMS.

 Download from www.wowebook.com

ptg

506 CHAPTER 17 Administering SQL Server 2008 with PowerShell

NOTE

When you first open the shell, some errors may appear on the screen, which simply
indicates that PowerShell execution policy should be set. This topic was covered near
the beginning of the chapter. The execution policy for SQL Server PowerShell should
also be RemoteSigned, at least.

SQL Server PowerShell

When you first get into SQL Server PowerShell, you might notice that this is a restricted
version of the default PowerShell console. In other words, several of the core cmdlets are
not available in SQL Server PowerShell, and others might not work exactly the same
way. For example, invoking the Get-Command cmdlet alone with no other arguments
does not list all the available commands.

NOTE

Running Get-Command in SQL Server PowerShell without any parameters might gener-
ate the following message:

Get-Command : Object reference not set to an instance of an object.

FIGURE 17.5 Accessing PowerShell using sqlps.exe.

 Download from www.wowebook.com

ptg

507PowerShell in SQL Server 2008
1

7

However, other invocations of this command work fine (such as the other examples of
Get-Command in this section). Microsoft has identified this issue but as of this writing
has not released a fix for it. Because the error occurs only within the SQL provider, the
current workaround is to switch from the SQL Server provider to a different drive (such
as C:\) before running Get-Command:

PS SQLSERVER:\> cd c:\

PS C:\> Get-Command

<output deleted>

PS C:\> cd SQLSERVER:

PS SQLSERVER:\>

NOTE

Profiles were discussed earlier in this chapter. The SQL Server PowerShell minishell
also has its own profile, and you can manage it by simply typing notepad $profile in
SQL Server PowerShell. A prompt may come up that the file cannot be found and ask-
ing whether it should be created.

SQL Provider

Earlier in this chapter, the term provider was briefly introduced. The SQL team decided to
implement a SQL Server provider. What this provides is a layout of the SQL object struc-
ture, which resembles that of a regular file system.

You use the SQL provider when accessing SQL Server PowerShell via SQL Server
Management Studio: depending on what object you right-click to access SQL Server
PowerShell, a prompt opens in the context of that particular object. Basically, the way
certain commands work is also affected by the current location within the SQL Server
provider. Here are two different examples of being placed in different locations within the
SQL Server provider. In the first example, the AdventureWorks2008R2 database was right-
clicked within SSMS, as shown in Figure 17.6. In the second example, a specific table
(Person.Address) within the AdventureWorks2008R2 database was right-clicked, as shown
in Figure 17.7.

When you start the SQL Server PowerShell minishell by simply invoking sqlps.exe as
seen earlier, a prompt opens at the root of the SQL Server provider.

NOTE

Some of the core cmdlets like Get-Item, Remove-Item, and New-Item are typically
used within providers to retrieve, remove, and create items, respectively. Within the
SQL Server provider, creating items using the New-Item cmdlet is currently not support-
ed. Other methods are required to actually create items.

 Download from www.wowebook.com

ptg

508 CHAPTER 17 Administering SQL Server 2008 with PowerShell

FIGURE 17.6 SQL Server provider at the database level.

FIGURE 17.7 SQL Server provider at the table level.

NOTE

Four SQL-based providers are actually available in SQL Server 2008 and six in SQL
Server 2008 R2. We look only at the SQL provider that provides functionality for the
database engine itself in any detail in this chapter. Refer to the SQL Server Books
Online documentation for more information on the other providers (SQLPolicy,
SQLRegistration, DataCollection, Utility, and DAC). The Utility and DAC providers are
available only in SQL Server 2008 R2.

SQL Cmdlets

A number of cmdlets available in SQL Server PowerShell are part of the basic PowerShell
functionality. However, within SQL Server PowerShell, five additional cmdlets are available
only after the minishell is started (or if the snap-in is loaded manually, which is not
covered in any detail here):

. Invoke-PolicyEvaluation—A cmdlet that evaluates a SQL Server Policy-Based
Management policy (or policies) against a target server.

. Invoke-SqlCmd—A cmdlet that runs any regular T-SQL command and any
languages and commands supported by the sqlcmd utility, which may be more
familiar to most users.

 Download from www.wowebook.com

ptg

509Step-By-Step Examples
1

7

. Encode-SqlName—A cmdlet that helps to encode SQL Server identifiers into a
format that PowerShell can use.

. Decode-SqlName—A cmdlet that helps to return the original SQL Server identifiers
from a value previously given by the Encode-SqlName cmdlet.

. Convert-UrnToPath—A cmdlet that converts the SMO Uniform Resource Name to
a SQL Server provider path.

Later, examples of using the core cmdlets are provided, as well as the first two cmdlets
introduced in the preceding list.

NOTE

For more details on the three other cmdlets not discussed here, see the built-in help
for more information and examples.

NOTE

The intent is to ship more cmdlets as part of SQL-PowerShell in the future after more
database users become more familiar with SQL Server PowerShell.

SQL Server Agent Support

PowerShell has been integrated into the SQL Server Agent subsystem. In other words, you
can create jobs that call PowerShell-specific commands to run.

Consult SQL Server Books Online for more details on incorporating PowerShell into your
SQL Server Agent job steps.

Step-By-Step Examples
The following sections provide examples of using PowerShell both for general tasks and
for SQL Server 2008–specific tasks. We expand on some of the basic concepts introduced
earlier with SQL Server 2008–specific examples.

General Tasks

Often you might be required to send out emails containing particular reports and/or
output from commands run.

To do so, you use features from the .NET Framework via PowerShell to send out emails, as
shown in here:

Function Send-Mail {

param([string]$To,[string]$From,[string]$Subject, `

 Download from www.wowebook.com

ptg

510 CHAPTER 17 Administering SQL Server 2008 with PowerShell

[string]$Body,[string]$File,[string]$SmtpServer)

If($SmtpServer -eq ““){

$SmtpServer = “FQDN of your SMTP server here”

}

$Smtp = New-Object System.Net.Mail.SMTPclient($SmtpServer)

$Message = New-Object

System.Net.Mail.MailMessage($From,$To,$Subject,$Body)

If ($File -ne ““) {

$Attach = New-Object System.Net.Mail.Attachment $File

$Message.Attachments.Add($Attach)

}

$smtp.Send($message)

}

You can enter the preceding code into a script or directly to the console. If you type the
code in the console, you must press the Enter key twice (once to close the function and
another time on an empty line) before the PowerShell prompt returns.

In the preceding code listing, functionality from the .NET Framework is used to get SMTP
functionality. A function is used so that this code could be easily copied as required into
new scripts, and so on. Calling the function is then easy, and passing the command-line
arguments is shown here (the PowerShell prompt can vary depending on whether the
default PowerShell is used or the new SQL minishell):

PS>Send-Mail -To “end_user@user.com “ -From “user@user.com” –Subject

“Automated Email” -Body “Testing” -File “C:\reports\report.txt”

NOTE

You might need to configure some antivirus programs to allow the PowerShell.exe
process (or sqlps.exe) to “talk” over the SMTP protocol port (TCP 25).

Scheduling Scripts

From time to time, it may be useful to have a method to schedule PowerShell scripts to
run automatically based on a particular schedule (when the SQL Server Agent isn’t avail-
able locally, for example).

You can easily view the method to call PowerShell scripts by simply typing
powershell.exe /? from a PowerShell session, as shown here:

PS>powershell.exe /?

...

PowerShell -Command “& {Get-EventLog -LogName security}”

...

 Download from www.wowebook.com

ptg

511Step-By-Step Examples
1

7

Only a very small section of the text displayed is shown in this example. The
powershell.exe can be used for scheduling regular PowerShell scripts. sqlps.exe works
similarly, and you can also access its help by passing a slash and question mark (/?) to the
command:

PS SQLSERVER:\> sqlps.exe /?

sqlps [[[-NoLogo] [-NoExit] [-NoProfile]

[-OutputFormat {Text | XML}] [-InputFormat {Text | XML}]

]

[-Command { -

| <string> [<command_parameters>]

| <script_block> [-args <argument_array>]

}

]

]

[-Help | -?]

-NoLogo

Do not display the copyright banner on startup.

-NoExit

Keep running after completing all startup commands.

-NoProfile

Do not load a user profile.

-OutputFormat

Format the output of all objects as either text strings (Text) or in a

serialized CLIXML format (XML).

-InputFormat

The input from stdin is formatted as either text strings (Text) or in a

serialized CLIXML format (XML).

-Command

sqlps runs the commands specified and then exits, unless -NoExit is also

specified. Do not specify other characters after the -Command switch,

they will be read as command arguments.

-

Read input commands from the keyboard by using stdin.

<string> [<command_parameters>]

Specifies a string containing the PowerShell commands to be run. Use

the format “&{<command>}”. The quotation marks identify a string and

the invocation operator (&) causes sqlps to run the command.

<script_block> [-args <argument_array>]

Specifies a block of PowerShell commands to be run. Use the format

{<script_block>}.

-Help | -?

Show the syntax summary help.

 Download from www.wowebook.com

ptg

512 CHAPTER 17 Administering SQL Server 2008 with PowerShell

NOTE

How do you know whether to use powershell.exe or sqlps.exe when scheduling
jobs? If you’re using anything relating to SMO and/or the SQL cmdlets in the script,
sqlps.exe would seem to be easier to use because all the prerequisites to using SMO
and the SQL cmdlets are already loaded, which can save several lines in a script. As a
reminder, the SQL minishell is limited in its functionality, so powershell.exe may be
required in particular if you need to load some PowerShell functionality from another
application, such as Exchange.

As discussed briefly earlier, SQL Server Agent can also be used to run scheduled PowerShell
commands.

Common OS-Related Tasks

Now let’s look at some more OS-related tasks, while keeping our focus on SQL
Server–related tasks.

Let’s check the status of the SQL Server service using the Get-Service cmdlet in the
regular PowerShell console:

PS>Get-Service “mssqlserver”

Status Name DisplayName

------ ---- ------------

Stopped MSSQLSERVER SQL Server (MSSQLSERVER)

PS>

NOTE

When multiple instances are in use, the service name is something like
MSSQL$INSTANCE01. To start such an instance from PowerShell or even the SQL min-
ishell, you would have to use the following syntax for the service name:
MSSQL`$INSTANCE01. The dollar sign ($) character is escaped so that PowerShell does-
n’t try to interpret this as the beginning of a variable when the string is parsed.

The service is stopped. When you use the pipeline feature of PowerShell, the service is
started:

PS>Get-Service “mssqlserver”|Start-Service

WARNING: Waiting for service ‘SQL Server (SQLSERVER)

 Download from www.wowebook.com

ptg

513Step-By-Step Examples
1

7

(MSSQLSERVER)’ to finish starting...

WARNING: Waiting for service ‘SQL Server (SQLSERVER)

(MSSQLSERVER)’ to finish starting...

PS>

This example demonstrates using the pipeline to chain commands together. Alternatively,
you could use Start-Service directly:

PS>Start-Service “mssqlserver”

The difference between the two methods demonstrates some of the power in PowerShell.
When you use Get-Service, a service object is retrieved. When you use the pipeline, this
object is passed to Start-Service. Start-Service is built to basically accept input from
the pipeline and autofills its parameters based on what was input; thus, it knows to start
the SQL Server service.

NOTE

You could use SQL Server PowerShell, but because SQL Server wasn’t started,
Management Studio would not have been able to connect, and you could not open
SQL Server PowerShell by right-clicking. You could use PowerShell to start sqlps.exe,
though, and then you could use the Get-Service and Start-Service cmdlets to
start SQL Server. If you use SQL Server PowerShell by calling sqlps.exe directly from
within a default PowerShell console, the SQL Server could still be started, but a con-
nection wouldn’t be automatically made to the default instance of the database.

Most administrators have probably already used the Windows Task Manager to look at the
SQL Server processes. Perhaps it was to determine whether SQL seemed to be using too
much memory or some other issue. PowerShell provides the Get-Process cmdlet, shown
here, to look at running processes:

PS>Get-Process sqlservr

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s)

Id ProcessName

------- ------ ----- ----- ----- ------

-- ------------

318 45 64156 44288 1554 2.03

572 sqlservr

PS>

Another common OS-related task is to look for events in the Windows application event
log:

PS>Get-EventLog Application -New 10

PS>Get-EventLog Application -New 10| `

 Download from www.wowebook.com

ptg

514 CHAPTER 17 Administering SQL Server 2008 with PowerShell

Where {$_.EntryType -eq “Error”}

PS>Get-EventLog Application -New 10| `

Where {$_.EntryType -eq “Error”}|Select-Object TimeWritten

The preceding example demonstrates another useful feature of the PowerShell pipeline
where you can join several commands together to get specific results. First, only the 10
newest entries are retrieved; then a pipe is used to get only the entries classified as an
error, and finally, only the TimeWritten property is displayed.

We mentioned WMI earlier in this chapter as a method for remote control and adminis-
tration of servers. WMI is packed full of features that are useful for system administration.
A few examples of using PowerShell’s built-in WMI features are shown here.

. Getting a listing of all the fixed local logical drives:

PS>Get-WmiObject -query “select * from Win32_LogicalDisk where

DriveType=’3’”

. Getting a listing of all the fixed remote logical drives:

PS>Get-WmiObject -computerName server -query

“select * from Win32_LogicalDisk where DriveType=’3’”

. Getting a listing of all the local patches/hotfixes installed (the –computerName para-
meter could be used with a value to retrieve this information from a remote system):

PS>Get-WmiObject Win32_QuickFixEngineering

NOTE

Remote WMI connections may require that appropriate firewall rules be open in the
network and also with a client firewall on the remote system. In addition, remote
WMI queries must also be authenticated. By default, WMI queries use the current
user’s authentication credentials. In some scenarios WMI authentication can be more
complicated.

The preceding examples show only the beginning of all the things WMI can provide quick
access to. Another common task is trying to find files or folders. You can use the Get-
ChildItem cmdlet to recursively search through a directory structure. The following
example shows how to search for the location of the powershell.exe executable:

PS>Get-ChildItem c:\ -recurse powershell.exe

SQL Server–Specific Tasks

Before jumping into more hardcore SQL Server PowerShell features, let’s briefly look at the
SQL Server event log. Fortunately, the log simply contains text-based files, which
PowerShell can read. You could use the Get-Content cmdlet to view the entire log, but

 Download from www.wowebook.com

ptg

515Step-By-Step Examples
1

7

instead you can use the Select-String cmdlet to look for a specific string or pattern in
the error log file. First, you change the current location to the SQL Server log directory:

PS>Set-Location “C:\Program Files\Microsoft SQL Server”

PS>Set-Location (join-path $pwd “MSSQL10_50.MSSQLSERVER\MSSQL\Log”)

PS>Select-String “error” ERRORLOG

The PowerShell prompt in the preceding example is simply a generic one because the
preceding commands would work both in the default PowerShell console and in the SQL
Server PowerShell minishell.

An example of taking this further would be to retrieve all the errors in the ERRORLOG file.
When you use Get-Member and Format-List to look at the object output by Select-
String, the date is hidden inside a string in the Line property:

PS >

Select-String “error” ERRORLOG|foreach{$_.line}|where{$_ -match “^20*”}|

foreach{$date,$time=$_.split()[0],$_.split()[1];[datetime]$($date+” “+$time) }

PS >

The preceding example demonstrates how to look for the string ”error” in the current
SQL Server ERRORLOG file. For all the lines that match, the Line property is passed along
the pipeline. Next, based on some testing, it appears that you want to search only lines
that start with ”20*-”. From that object, two values are retrieved: $_.split()[0] and
$_.split[1]. These values are placed in the $date and $time variables, respectively. From
there, they are recombined, and a type accelerator is used to indicate that this is a
date/time object, so any calculations against this value will be simplified. What is finally
output is the time stamp showing when the error occurred.

Using the Provider

Using the SQL Server provider can be very handy in navigating the system. Starting
PowerShell from SSMS, DBAs can easily find their way through different objects as if
working with files and directories.

When the SSMS is used to start PowerShell at the server level, the databases are down one
level, and from there tables and users, for example, can also be easily accessed.

In the session shown in Figure 17.8, we navigated to a particular database and entered a
dir Tables command. The output from the last command would scroll beyond the
current screen, so only the first part of the output is displayed.

Creating a Database Table

Creating a database and a table are common tasks that a DBA may undertake. You can
use T-SQL with the Invoke-SqlCmd cmdlet to do this, but a demonstration on how to do
this with the SQL Server PowerShell minishell using SMO is presented here to help you
better understand the new functionality that is available:

 Download from www.wowebook.com

ptg

516 CHAPTER 17 Administering SQL Server 2008 with PowerShell

FIGURE 17.8 Navigating the SQL Server provider.

cd databases

$my_db=New-Object Microsoft.SqlServer.Management.Smo.Database

$my_db.Name=”my_database”

$my_db.Parent=(Get-Item ..)

$my_db.Create()

cd my_database

cd tables

$my_tbl=New-Object Microsoft.SqlServer.Management.Smo.Table

$my_tbl.Name=”my_table”

$my_tbl.Parent=(Get-Item ..)

$my_col=New-Object Microsoft.SqlServer.Management.Smo.Column

$my_col.Name=”my_column”

$my_col.Parent=$my_tbl

$my_col.DataType= ([Microsoft.SqlServer.Management.Smo.DataType]::Int)

$my_tbl.Columns.Add($my_col)

$my_tbl.Create()

In the preceding example, some new objects are created, some of their properties are set,
and some methods are called. You can search for the particular SMO classes used in this
example to gain further information.

In the future, there may be something like New-Database and New-Table cmdlets that help
to create a database and table, which would likely reduce the preceding code to fewer than
five lines.

Performing a Database Backup

Another example that may be useful is performing a database backup using SMO. Using
the AdventureWorks2008R2 database, you can back up the database using just a few lines:

$server=New-Object Microsoft.SqlServer.Management.Smo.Server

 Download from www.wowebook.com

ptg

517Step-By-Step Examples
1

7

$backup=new-object Microsoft.SqlServer.Management.Smo.Backup

$file=new-object Microsoft.SqlServer.Management.Smo.BackupDeviceItem

$file.Name=”C:\backup\AW_DB.bak”

$backup.Devices.Add($file)

$backup.Database=”AdventureWorks2008R2”

$backup.SqlBackup($server)

The preceding code could be copied into a .ps1 file (for this example, assume it’s copied
to c:\temp\backup.ps1), and it could be changed to accept two arguments. The preceding
code could be modified to the following code snippet so that it accepts parameters from
the command line:

param([string]$device=$(throw Write-Host “Device required”), [string]

$database=$(throw Write-Host “Database required”))

Write-Host “backup of $database to $device starting...”

$server=New-Object Microsoft.SqlServer.Management.Smo.Server

$backup=new-object Microsoft.SqlServer.Management.Smo.Backup

$file=new-object Microsoft.SqlServer.Management.Smo.BackupDeviceItem

$file.Name=$device

$backup.Devices.Add($file)

$backup.Database=$database

$backup.SqlBackup($server)

Write-Host “backup complete”

Get-Item $device

The changes in the preceding example introduce a new keyword, throw. Without it, error
messages would be thrown to the console, but this might not help the end user to under-
stand why it failed. For the purpose of printing feedback to the console, the Write-Host
and Get-Item cmdlets were also added to provide a limited amount of feedback and to
finally provide the details of the final backup file.

Then to invoke the script, as shown in the following example, you simply need to pass
two parameters to the script: the names of the file to back up to and the database to actu-
ally back up.

PS>$backup_to=”C:\backup\AdventureWorks2008R2.bak”

PS>$db=”AdventureWorks2008R2”

PS> c:\temp\backup.ps1 $backup_to $db

As an example of using a conditional statement in the preceding script, perhaps a check
could be done to see whether a backup has already been completed within the past seven
days. To accomplish this, you would add this particular section of code just before the line
Write-Host “backup of $database to $device starting...”:

If((Test-Path $device) -and (Get-Item $device).LastWriteTime `

-gt (Get-Date).AddDays(-7)){

“Backup has been performed in last 7 days” Break

}

 Download from www.wowebook.com

ptg

518 CHAPTER 17 Administering SQL Server 2008 with PowerShell

In the preceding code, a conditional statement is added to accomplish the check. The
AddDays() method is passed a negative number which subtracts days from the current
date..

NOTE

When you use the param keyword, this section of code must be on the first noncom-
mented line in all scripts. Otherwise, the PowerShell parser returns an error.

Again, using SMO isn’t necessarily for beginners, but the good thing is that scripts can
easily be created and passed around. The preceding example shows the bare minimum
required to do a database backup; several other options are available, and the preceding
code would actually overwrite the backup each time it is run. There also isn’t any error
checking of any sort, which isn’t the best way to develop scripts.

Along with the New-Database and New-Table cmdlets that may come in the future, maybe
a Start-DbBackup will be another good cmdlet to have available.

Checking Server Settings

From the SSMS, by right-clicking on the SQL Server node and then starting a SQL Server
PowerShell session, you can open a console directly in the root of the default SQL Server
in the example.

From here, you can easily obtain information on the SQL Server. First, the location is set to
the instance that is to be queried, and then an object representing the SQL Server is saved
to a variable (this demonstrates the advanced features mentioned earlier where objects can
be saved to variables). The properties of that variable can then be accessed as follows:

PS>Set-Location SQLSERVER:\SQL\<servername>\<instance_name>

PS>$sql_server=get-item .

PS>$sql_server.Information.VersionString

Using the Get-Member cmdlet discussed earlier, you can easily discover other members of
the object contained in $sql_server, but this is left as an exercise for you to perform on
your own.

NOTE

This example demonstrates an important feature of the SQL Server provider: context
sensitivity. In the preceding example, the current location was in the root of the SQL
Server provider or database, and the command Get-Item. was used. The dot in this
command basically indicates that you want an object that represents the current loca-
tion in the provider. If the dot were moved to a different location, this command would
no longer work the same way.

 Download from www.wowebook.com

ptg

519Step-By-Step Examples
1

7

Checking the Database Usage

Using the object retrieved in the $sql_server variable, you can create a quick report of
database usage using the databases property of that object, as shown here:

PS SQLSERVER:\SQL\<servername>\<instancename>>

$sql_server.databases| Format-Table -autosize Name,@{

Label= “% Used”

Expression={[math]::round((($_.spaceavailable/1kb)/$_.size),2)}

}Name % Used

---- ------

AdventureWorks2008R2 0.02

AdventureWorksDW2008R2 0

AdventureWorksLT2008R2 0.02

bigpubs2008 0.18

Customer 0.74

master 0.24

model 0.39

msdb 0.02

my_database 0.38

tempdb 0.8

Using the Format-Table cmdlet, you can easily and quickly create all kinds of reports. Some
capabilities we haven’t discussed yet were used to create this report:

. Calculated properties—The values displayed by Format-Table can be calculated
using scriptblocks. That allows the logic to be highly customized. These scriptblocks
are laid out as follows:

@{Label=”some text value”

Expression={the scriptblock to evaluate here}

}

. Direct access to the .NET Framework—The following line is directly from the
.NET Framework:

”[math]::round(value,decimal)”

.NET functionality is being used to round out the numbers to the second decimal
point.

PowerShell has special meaning for 1kb, 1mb, 1gb and 1tb, which all present the
value of the counterpart in number of bytes—for example, 1kb=1024. The values can
also be uppercase.

 Download from www.wowebook.com

ptg

520 CHAPTER 17 Administering SQL Server 2008 with PowerShell

Getting Table Properties

Another common task is to get a row count of the tables in a particular database:

PS SQLSERVER:\SQL\<servername>\<instancename>\Databases\

AdventureWorks2008R2\Tables> Get-ChildItem .| Sort-Object -descending|Select-

Object -First 10| Format-Table -autosize Name,RowCountNote

NOTE

An easy-to-remember alias for Get-ChildItem is basically dir.

In the preceding example using the AdventureWorks2008R2 database, the top 10 tables
with the highest row count value are returned.

NOTE

The preceding example shows how many features are packaged within PowerShell,
which applies not only to SQL tables, but also to all .NET objects. Simply using Get-
Item on a particular table returns only the default properties of Schema, Name, and
Created. Piping something like Get-Item [table_name] to either Format-Table * or
Get-Member exposes all the properties available for a particular object.

Cmdlet Example: Invoke-SqlCmd

The Invoke-SqlCmd cmdlet was mentioned earlier. It will likely be the most commonly
used cmdlet currently provided. Here is a simple example using this cmdlet:

Invoke-sqlcmd -query “exec sp_help”

Using Invoke-SqlCmd, you can simply pass any T-SQL–based query as a value to the
cmdlet. The preceding basic example is provided by running a basic built-in stored proce-
dure: sp_help.

This example demonstrates several important issues, especially how powerful the provider
can be. Based on the location in the SQL provider, some of the values passed to the
cmdlet are automatically provided to the cmdlet by the provider itself: the server and
database to query aren’t required in the command line.

Let’s consider this example a bit further and do a few extra things with it.

First, this cmdlet can accept input from the pipeline:

”exec sp_help”|ForEach-Object{Invoke-SqlCmd $_}

The preceding line demonstrates a few more issues that have already been discussed: the
ForEach-Object cmdlet, the special variable $_, and also the way parameters can automat-

 Download from www.wowebook.com

ptg

521Step-By-Step Examples
1

7

ically match values to parameters even when the parameter name isn’t explicitly added to
the command entered.

The sp_help stored procedure provides a lot of information. What if only the extended
stored procedures were required?

When Get-Member is used, the members from this particular query are inspected, and it is
determined that the Object_type property is the value that indicates what kind of stored
procedure is being dealt with.

The query to get only extended stored procedures is now the following:

”exec sp_help”|ForEach-Object{Invoke-SqlCmd $_}| `

Where{$_.Object_type -eq “extended stored proc”}|Select Name

Finally, the output consists only of extended stored procedures.

Cmdlet Example: Invoke-PolicyEvaluation

Another one of the provided cmdlets is Invoke-PolicyEvaluation. This cmdlet is used to
specify a SQL Server Policy-Based Management policy (or policies) that will be evaluated
against the target server. You can easily cycle through all the available policies and evalu-
ate each one, or simply provide a list of policies to evaluate separated by a comma.
Consider this example:

sl “C:\Program Files\Microsoft SQL Server\100\Tools\Policies\DatabaseEngine\1033”

Invoke-PolicyEvaluation -Policy “Database Auto Shrink.xml” -TargetServerName

“MSSQLSERVER”

The preceding command returns the output to the console of the result of the policy eval-
uation. By default, the particular policy passed to the cmdlet is only checked. In other
words, by default, properties are actually changed so that they are now compliant with the
policy.

Joining Columns

Quite often, databases provide a table for users. Frequently, these users have their last
name and first name in separate columns. Because these are typically simple strings, a
feature, already discussed, allows two strings to be easily joined together.

The following code snippet shows how two columns from the AdventureWorks2008R2
database are easily joined together from within the SQL minishell:

PS SQLSERVER:\SQL\D830\DEFAULT\databases\adventureworks2008r2> Invoke-SqlCmd

“Select * from Person.Person”| `

>> Select-Object -First 10|ForEach-Object{$_.LastName + “, “ + $_.FirstName}

Sánchez, Ken

Duffy, Terri

Tamburello, Roberto

Walters, Rob

 Download from www.wowebook.com

ptg

522 CHAPTER 17 Administering SQL Server 2008 with PowerShell

Erickson, Gail

Goldberg, Jossef

Miller, Dylan

Margheim, Diane

Matthew, Gigi

Raheem, Michael

Here, the first 10 records are selected, and then the LastName and FirstName values are
combined together.

Retrieving an Entry

On occasion, you might need to get a particular entry from a table. When the following
code snippet is run, an array is automatically returned:

PS SQLSERVER:\SQL\D830\DEFAULT\databases\adventureworks2008r2> Invoke-SqlCmd

“Select * from Person.Person”

PowerShell provides a simple way to look at particular elements within an array. In the
following example, entry 100 is returned and then entries 95 to 105:

PS SQLSERVER:\SQL\D830\DEFAULT\databases\adventureworks2008r2> (Invoke-SqlCmd

“Select * from Person.Person”)[100]

PS SQLSERVER:\SQL\D830\DEFAULT\databases\adventureworks2008r2> (Invoke-SqlCmd

“Select * from Person.Person”)[95..105]

NOTE

The first element of an array is the element zero; therefore, the first record in an array
is retrieved by referencing the element id [0].

Summary
This chapter provides an overview of PowerShell and how it has been specifically imple-
mented in SQL Server 2008. Microsoft is putting a lot of effort into integrating PowerShell
into all its server-based products, including SQL Server. Support for PowerShell in SQL
Server 2008 still has a way to go before it could ever be considered the main scripting
language, but the functionality available now is worth looking at.

The next chapter delves into high availability and the options available in SQL Server 2008.

 Download from www.wowebook.com

ptg

CHAPTER 18

SQL Server High
Availability

IN THIS CHAPTER

. What’s New in High
Availability144

. What Is High Availability?145

. The Fundamentals of HA147

. Building Solutions with One or
More HA Options150

. Other HA Techniques That Yield
Great Results159

. High Availability from the
Windows Server Family Side162

With SQL Server 2008, Microsoft continues to push the
high availability (HA) bar higher and higher. Extensive
high-availability options, coupled with a variety of
Windows server family enhancements, provide almost
everyone with a chance at achieving the mythical “five-
nines” (that is, 99.999% uptime).

Understanding your high-availability requirements is only
the first step in implementing a successful high-availability
application. Knowing what technical options exist is
equally as important. Then, by following a few basic design
guidelines, you can match your requirements to the best
high-availability technical solution.

This chapter introduces a variety of fundamental HA
options—such as redundant hardware configurations, RAID,
and MSCS clustering—as well as more high-level options—
such as SQL clustering, data replication, and database
mirroring—that should lead you to a solid high-availability
foundation. Microsoft has slowly been moving in the direc-
tion of trying to make SQL Server (and the Windows oper-
ating systems) as continuously available as possible for as
many of its options as possible. Remember that Microsoft is
competing with the UNIX/Linux-based worlds that have
offered (and achieved) much higher uptime levels for years.
The SQL Server RDBMS engine itself and the surrounding
services, such as Analysis Services, Integration Services,
Notification Services, and Reporting Services, have all taken
big steps toward higher availability.

 Download from www.wowebook.com

ptg

524 CHAPTER 18 SQL Server High Availability

What’s New in High Availability
In general, a couple of Microsoft SQL Server 2008 configuration options offer a very strong
database engine foundation that can be highly available (7 days a week, 365 days a year).
Microsoft’s sights are set on being able to achieve five-nines reliability with almost every-
thing it builds. An internal breakthrough introduced with SQL Server 2005 called “copy-
on-write” technology, has enabled Microsoft to greatly enhance several of its database
high availability options.

Here are a few of the most significant enhancements and new features that have direct or
indirect effects on increasing high availability for a SQL Server 2008–based implementation:

. Increased number of nodes in a SQL cluster—You can create a SQL cluster of up
to 64 nodes on Windows Server Data Center 2008.

. Enhancements to do unattended cluster setup—Instead of having to use wizards
to set up SQL clustering, you can use the Unattended Cluster Setup mode. This is
very useful for fast re-creation or remote creation of SQL clustering configurations.

. All SQL Server 2008 services as cluster managed resources—All SQL Server
2008 services are now cluster aware.

. SQL Server 2008 database mirroring—Database mirroring creates an automatic
failover capability to a “hot” standby server. (Chapter 20, “Database Mirroring,”
covers this topic in detail.)

. SQL Server 2008 peer-to-peer replication—This option of data replication uses a
publisher-to-publisher model (hence peer-to-peer).

. SQL Server 2008 automatic corruption recovery from mirror—This enhance-
ment in database mirroring recognizes and corrects corrupt pages during mirroring.

. SQL Server 2008 mirroring transaction record compression—This feature
allows for compression of the transaction log records used in database mirroring to
increase the speed of transmission to the mirror.

. SQL Server 2008 fast recovery—Administrators can reconnect to a recovering
database after the transaction log has been rolled forward (and before the rollback
processing has finished).

. Online restore—Database administrators can perform a restore operation while the
database is still online.

. Online indexing—The online index option allows concurrent modifications
(updates, deletes, and inserts) to the underlying table or clustered index data and
any associated indexes during index creation time.

. Database snapshot—SQL Server 2008 allows for the generation and use of a read-
only, stable view of a database. The database snapshot is created without the
overhead of creating a complete copy of the database or having completely redun-
dant storage.

 Download from www.wowebook.com

ptg

525What Is High Availability?

. Hot additions—This feature allows for hot additions to memory and CPU.

. Addition of a snapshot isolation level—A new snapshot isolation (SI) level is
being provided at the database level. With SI, users can access the last committed
row, using a transactionally consistent view of the database.

. Dedicated administrator connection—SQL Server 2008 supports a dedicated
administrator connection that administrators can use to access a running server even
if the server is locked or otherwise unavailable. This capability enables administra-
tors to troubleshoot problems on a server by executing diagnostic functions or
Transact-SQL statements without having to take down the server.

At the operating system (OS) level, Virtual Server 2005 has firmly established virtualization
for both development and production environments and allows entire application and
database stacks to run on a completely virtual operating system footprint that will never
bring down the physical server.

NOTE

Microsoft has announced that log shipping will be deprecated soon. Although it has been
functionally replaced with database mirroring, log shipping remains available in SQL
Server 2008. However, you should plan to move off log shipping as soon as you can.

Keep in mind that Microsoft already has an extensive capability in support of high avail-
ability. The new HA features add significant gains to the already feature-rich offering.

What Is High Availability?
The availability continuum depicted in Figure 18.1 shows a general classification of avail-
ability based on the amount of downtime an application can tolerate without impacting
the business. You would write your service-level agreements (SLAs) to support and try to
achieve one of these continuum categories.

Topping the chart is the category extreme availability, so named to indicate that this is the
least tolerant category and is essentially a zero (or near zero) downtime requirement (that
is, sustained 99.5% to 100% availability). The mythical five-nines falls at the high end of
this category. Next is the high availability category, which has a minimal tolerance for
downtime (that is, sustained 95% to 99.4% availability). Most “critical” applications
would fit into this category of availability need. Then comes the standard availability cate-
gory, with a more normal type of operation (that is, sustained 83% to 94% availability).
The acceptable availability category is for applications that are deemed noncritical to a
company’s business, such as online employee benefit package self-service applications.
These applications can tolerate much lower availability ranges (sustained 70% to 82%
availability) than the more critical services. Finally, the marginal availability category is for
nonproduction custom applications, such as marketing mailing label applications that can
tolerate significant downtime (that is, sustained 0% to 69% availability). Again, remember
that availability is measured by the planned operation times of the application.

1
8

 Download from www.wowebook.com

ptg

526 CHAPTER 18 SQL Server High Availability

Extreme Availability

Characteristic

Availability Continuum

Availability Range

Near zero downtime!

Availability Range describes the percentage of time relative to the “planned” hours of operations

8,760 hours/year | 168 hours/week | 24 hours/day

525,600 minutes/year | 7,200 minutes/week | 1,440 minutes/day

(99.5%-100%)
1.8 days/yr–5.26 min/yr

High Availability Minimal downtime
(95%-99.4%)

18 days/yr–2.0 days/yr

Standard Availability With some downtime
tolerance (83%-94%)

Acceptable Availability Non-critical Applications (70%-82%)

Marginal Availability Non-production Applications (up to 69%)

FIGURE 18.1 Availability continuum.

NOTE

Another featured book from Sams Publishing, called Microsoft SQL Server High
Availability, can take you to the depths of high availability from every angle. This land-
mark offering provides a complete guide to high availability, beginning with ways to
gather and understand your HA requirements, assess your HA needs, and completely
build out high-availability implementations for the most common business scenarios in
the industry. Pick up this book if you are serious about achieving five-nines of reliability.

Achieving the mythical five-nines (that is, a sustained 99.999% availability) falls into the
extreme availability category (which tolerates between 5.26 minutes and 1.8 days of down
time per year). In general, the computer industry calls this high availability, but we push
this type of near-zero downtime requirement into its own extreme category, all by itself.
Most applications can only dream about this level of availability because of the costs
involved, the high level of operational support required, the specialized hardware that
must be in place, and many other extreme factors.

The Fundamentals of HA
Every minute of downtime you have today translates into losses that you cannot well
afford. You must fully understand how the hardware and software components work
together and how, if one component fails, the others will be affected. High availability of

 Download from www.wowebook.com

ptg

527The Fundamentals of HA

an application is a function of all the components together, not just one by itself.
Therefore, the best approach for moving into supporting high availability is to work on
shoring up the basic foundation components of hardware, backup/recovery, operating
system upgrading, ample vendor agreements, sufficient training, extensive quality assur-
ance/testing, rigorous standards and procedures, and some overall risk-mitigating strate-
gies, such as spreading out critical applications over multiple servers. By addressing these
first, you add a significant amount of stability and high-availability capability across your
hardware/system stack. In other words, you are moving up to a necessary level before you
completely jump into a particular high-availability solution. If you do nothing further
from this point, you have already achieved a portion of your high-availability goals.

Hardware Factors

You need to start by addressing your basic hardware issues for high availability and fault
tolerance. This includes redundant power supplies, UPS systems, redundant network
connections, and ECC memory (error correcting). Also available are “hot-swappable”
components, such as disks, CPUs, and memory. In addition, most servers are now using
multiple CPUs, fault-tolerant disk systems such as RAID, mirrored disks, storage area
networks (SANs), Network Attached Storage (NAS), redundant fans, and so on.

Cost may drive the full extent of what you choose to build out. However, you should start
with the following:

. Redundant power supplies (and UPSs)

. Redundant fan systems

. Fault-tolerant disks, such as RAID (1 through 10), preferably “hot swappable”

. ECC memory

. Redundant Ethernet connections

Backup Considerations

After you consider hardware, you need to look at the basic techniques and frequency of
your disk backups and database backups. For many companies, the backup plan isn’t what
it needs to be to guarantee recoverability and even the basic level of high availability. At
many sites, database backups are not being run, are corrupted, or aren’t even considered
necessary. You would be shocked by the list of Fortune 1000 companies where this occurs.

Operating System Upgrades

You need to make sure that all upgrades to your OS are applied and also that the configu-
ration of all options is correct. This includes making sure you have antivirus software
installed (if applicable), along with the appropriate firewalls for external-facing systems.

1
8

 Download from www.wowebook.com

ptg

528 CHAPTER 18 SQL Server High Availability

Vendor Agreements Followed

Vendor agreements come in the form of software licenses, software support agreements,
hardware service agreements, and both hardware and software service-level agreements.
Essentially, you are trying to make sure you can get all software upgrades and patches for
your OS and for your application software at any time, as well as get software support,
hardware support agreements, and both software and hardware SLAs in place to guarantee
a level of service within a defined period of time.

Training Kept Up to Date

Training is multifaceted in that it can be for software developers to guarantee that the
code they write is optimal, for system administrators who need to administer applications,
and even for end users themselves to make sure they use the system correctly. All these
types of training play into the ultimate goal of achieving high availability.

Quality Assurance Done Well

Testing as much as possible—and doing it in a very formal way—is a great way to guaran-
tee a system’s availability. Dozens of studies over the years have clearly shown that the
more thoroughly you test (and the more formal your QA procedures), the fewer software
problems you will have. Many companies foolishly skimp on testing, which has a huge
impact on system reliability and availability.

Standards/Procedures Followed

Standards and procedures are interlaced tightly with training and QA. Coding standards,
code walkthroughs, naming standards, formal system development life cycles, protection
of tables from being dropped, use of governors, and so on all contribute to more stable
and potentially more highly available systems.

Server Instance Isolation

By design, you may want to isolate applications (such as SQL Server’s applications and
their databases) away from each other to mitigate the risk of such an application causing
another to fail.

Plain and simple, you should never put applications in each other’s way if you don’t have
to. The only things that might force you to load up a single server with all your applica-
tions would be expensive licensing costs for each server’s software and perhaps hardware
scarcity (strict limitations to the number of servers available for all applications). A classic
example occurs when a company loads up a single SQL Server instance with between two
and eight applications and their associated databases. The problem is that the applications
are sharing memory, CPUs, and internal work areas, such as tempdb. Figure18.2 shows an
overloaded SQL Server instance that is being asked to service seven major applications
(Appl 1 DB through Appl 7 DB).

The single SQL Server instance in Figure 18.2 is sharing memory (cache) and critical inter-
nal working areas, such as tempdb, with all seven major applications. Everything runs fine

 Download from www.wowebook.com

ptg

529The Fundamentals of HA

N
et

w
or

k

Windows 2003

SQL Server 2008

High Risk: Single SQL Server Instance

P
ro

ce
ss

or
s

-
4

W
eb

 S
er

vi
ce

s

M
em

or
y/

C
ac

he
 8

G
B

R
A

ID
 D

is
k

A
rr

ay

OS/SQL
BinariesC:

SCSI

D:

E:

F:

Master DB
MSDB DB
Temp DB
Appl 1 DB
Appl 2 DB
Appl 3 DB
Appl 4 DB
Appl 5 DB
Appl 6 DB
Appl 7 DB

FIGURE 18.2 High risk: Many applications sharing a single SQL Server 2008 instance.

until one of these applications submits a runaway query, and all other applications being
serviced by that SQL Server instance come to a grinding halt. Most of this built-in risk
could be avoided by simply putting each application (or perhaps two applications) onto
their own SQL Server instance, as shown in Figure 18.3. This fundamental design
approach greatly reduces the risk of one application affecting another.

1
8

N
et

w
or

k

Windows 2003

SQL Server 2008

P
ro

ce
ss

or
s

-
4

W
eb

 S
er

vi
ce

s

M
em

or
y/

C
ac

he
 8

G
B

R
A

ID
 D

is
k

A
rr

ay

Master DB
TempDB

C:

SCSI

D:

E:

F:
Appl 1 DB
Appl 5 DB

N
et

w
or

k

Windows 2003

SQL Server 2008

P
ro

ce
ss

or
s

-
4

W
eb

 S
er

vi
ce

s

M
em

or
y/

C
ac

he
 8

G
B

R
A

ID
 D

is
k

A
rr

ay

Master DB
TempDB

C:

SCSI

D:

E:

F:
Appl 2 DB
Appl 3 DB

N
et

w
or

k

Windows 2003

SQL Server 2008

P
ro

ce
ss

or
s

-
4

W
eb

 S
er

vi
ce

s

M
em

or
y/

C
ac

he
 8

G
B

R
A

ID
 D

is
k

A
rr

ay

Master DB
TempDB

C:

SCSI

D:

E:

F:
Appl 4 DB
Appl 6 DB
Appl 7 DB

FIGURE 18.3 Mitigated risk: Isolating critical applications away from each other.

 Download from www.wowebook.com

ptg

530

Many companies make this fundamental error. The trouble is that they keep adding new
applications to their existing server instance without a full understanding of the shared
resources that underpin the environment. It is often too late when they finally realize that
they are hurting themselves “by design.” You have now been given proper warning of the
risks. If other factors, such as cost or hardware availability, dictate otherwise, then at least
it is a calculated risk that is entered into knowingly (and is properly documented as well).

Building Solutions with One or More HA Options
When you have the fundamental foundation in place, as described in the preceding
section, you can move on to building a tailored software-driven high-availability solution.
Which HA option(s) you should be using really depends on your HA requirements. The
following high-availability options are used both individually and, very often, together to
achieve different levels of HA:

. Microsoft Cluster Services (non–SQL Server based)

. SQL clustering

. Data replication (including peer-to-peer configurations)

. Log shipping

. Database mirroring

All these options are readily available “out of the box” from Microsoft, from the Windows
Server family of products and from Microsoft SQL Server 2008.

It is important to understand that some of these options can be used together, but not all
go together. For example, you might use Microsoft Cluster Services (MSCS) along with
Microsoft SQL Server 2008’s SQL Clustering to implement the SQL clustering database
configuration, whereas, you wouldn’t necessarily need to use MSCS with database mirror-
ing.

Microsoft Cluster Services (MSCS)

MSCS could actually be considered a part of the basic HA foundation components
described earlier, except that it’s possible to build a high-availability system without it (for
example, a system that uses numerous redundant hardware components and disk mirror-
ing or RAID for its disk subsystem). Microsoft has made MSCS the cornerstone of its clus-
tering capabilities, and MSCS is utilized by applications that are cluster enabled. A prime
example of a cluster-enabled technology is Microsoft SQL Server 2008.

MSCS is the advanced Windows operating system configuration that defines and manages
between 2 and 16 servers as “nodes” in a cluster. These nodes are aware of each other and
can be set up to take over cluster-aware applications from any node that fails (for example,
a failed server). This cluster configuration also shares and controls one or more disk
subsystems as part of its high-availability capability. Figure 18.4 illustrates a basic two-
node MSCS configuration.

CHAPTER 18 SQL Server High Availability

 Download from www.wowebook.com

ptg

531Building Solutions with One or More HA Options
1

8

Windows 2008 R2
Enterprise EditionNode B

Windows 2008 R2
Enterprise EditionNode A

Local
BinariesC:

Local
BinariesC:

SCSI

D:

Shared
Disk

FIGURE 18.4 Basic two-node MSCS configuration.

MSCS is available only with Microsoft Windows Enterprise Edition and Data Center oper-
ating system products. Don’t be alarmed, though. If you are looking at a high-availability
system to begin with, there is a great probability that your applications are already
running with these enterprise-level OS versions.

MSCS can be set up in an active/passive or active/active mode. Essentially, in an
active/passive mode, one server sits idle (that is, is passive) while the other is doing the
work (that is, is active). If the active server fails, the passive one takes over the shared disk
and the cluster-aware applications instantaneously.

SQL Clustering

If you want a SQL Server instance to be clustered for high availability, you are essentially
asking that this SQL Server instance (and the database) be completely resilient to a server
failure and completely available to the application without the end user ever even notic-
ing that there was a failure (or at least with minimal interruption). Microsoft provides this
capability through the SQL Clustering option. SQL Clustering is built on top of MSCS for
its underlying detection of a failed server and for its availability of the databases on the
shared disk (which is controlled by MSCS). SQL Server is said to be a “cluster-
aware/enabled” technology.

A SQL Server instance that is clustered can be created by actually creating a virtual SQL
Server instance that is known to the application (the constant in the equation) and then

 Download from www.wowebook.com

ptg

532

Windows 2008
Enterprise Edition

SQL
Connections

SQL Server 2008 (physical)
SQL A

SQL B

Windows 2008
Enterprise Edition

SQL Server 2008 (physical)

SQL Server 2008
 (Virtual SQL Server)

Local
Binaries

C:

Local
Binaries

C:

SCSI

D:

Master DB
Temp DB
Appl 1 DB

FIGURE 18.5 Basic SQL Clustering two-node configuration (active/passive).

two physical SQL Server instances that share one set of databases. In an active/passive
configuration, only one SQL Server instance is active at a time and just goes along and
does its work. If that active server fails (and with it, the physical SQL Server instance), the
passive server (and the physical SQL Server instance on that server) simply takes over
instantaneously. This is possible because MSCS also controls the shared disk where the
databases are. The end user and application never really know which physical SQL Server
instance they are on or whether one failed. Figure 18.5 illustrates a typical SQL Clustering
configuration built on top of MSCS.

CHAPTER 18 SQL Server High Availability

Setup and management of this type of configuration are much easier than you might
think. More and more often, SQL Clustering is the method chosen for most high-availabil-
ity solutions. Later in this chapter, you see that other methods may also be viable for
achieving high availability (based on the application’s HA requirements). Chapter 21,
“SQL Server Clustering,” covers this topic in more detail.

Extending the clustering model to include Network Load Balancing (NLB) pushes this
particular solution even further into higher availability—from client traffic high avail-
ability to back-end SQL Server high availability. Figure 18.6 shows a four-host NLB
cluster architecture acting as a virtual server to handle the network traffic coupled with a
two-node SQL cluster on the back end. This setup is resilient from top to bottom.

 Download from www.wowebook.com

ptg

533Building Solutions with One or More HA Options
1

8

The four NLB hosts work together, distributing the work efficiently. NLB automatically
detects the failure of a server and repartitions client traffic among the remaining servers.

The following apply to SQL Clustering in SQL Server 2008:

. Full SQL Server 2008 Services as cluster-managed resources—All SQL Server
2008 services, including the following, are cluster aware:

. SQL Server DBMS engine

. SQL Server Agent

. SQL Server Full-Text Search

. Analysis Services

. Integration Services

. Notification Services

. Reporting Services

. Service Broker

Front-End LAN

Back-End LAN

SQL Cluster (virtual)

(IP 100.122134.32)

Instance data

SQL A
Local Binaries

CL Node A
(IP 100.122.134.33)

SQL B
Local Binaries

scsiscsi

CL Node B
(IP 100.122.134.34)

FIGURE 18.6 An NLB host cluster with a two-node server cluster.

 Download from www.wowebook.com

ptg

534 CHAPTER 18 SQL Server High Availability

Now, you can extend this fault-tolerant solution to embrace more SQL Server instances
and all of SQL Server’s related services. This is a big deal because things like Analysis
Services previously had to be handled with separate techniques to achieve near high avail-
ability. Not anymore; each SQL Server service is now cluster aware.

Data Replication

The next technology option that can be utilized to achieve high availability is data repli-
cation. Originally, data replication was created to offload processing from a very busy
server (such as an OLTP application that must also support a big reporting workload) or to
geographically distribute data for different, very distinct user bases (such as worldwide
product ordering applications). As data replication (transactional replication) became more
stable and reliable, it started to be used to create “warm” (almost “hot”) standby SQL
Servers that could also be used to fulfill basic reporting needs. If the primary server ever
failed, the reporting users would still be able to work (hence a higher degree of availability
achieved for them), and the replicated reporting database could be used as a substitute for
the primary server, if needed (hence a warm-standby SQL Server). When doing transac-
tional replication in the “instantaneous replication” mode, all data changes were repli-
cated to the replicate servers extremely quickly. With SQL Server 2000, updating
subscribers allowed for even greater distribution of the workload and, overall, increased
the availability of the primary data and distributed the update load across the replication
topology. There are plenty of issues and complications involved in using the updating
subscribers approach (for example, conflict handlers, queues).

With SQL Server 2005, Microsoft introduced peer-to-peer replication, which is not a
publisher/subscription model, but a publisher-to-publisher model (hence peer-to-peer). It
is a lot easier to configure and manage than other replication topologies, but it still has its
nuances to deal with. This peer-to-peer model allows excellent availability for this data
and great distribution of workload along geographic (or other) lines. This may fit some
companies’ availability requirements and also fulfill their distributed reporting require-
ments as well.

The top of Figure 18.7 shows a typical SQL data replication configuration of a central
publisher/subscriber using continuous transactional replication. This can serve as a basis
for high availability and also fulfills a reporting server requirement at the same time. The
bottom of Figure 18.7 shows a typical peer-to-peer continuous transactional replication
model that is also viable.

The downside of peer-to-peer replication comes into play if ever the subscriber (or the
other peer) needs to become the primary server (that is, take over the work from the origi-
nal server). This takes a bit of administration that is not transparent to the end user.
Connection strings have to be changed, ODBC data sources need to be updated, and so
on. But this process may take minutes as opposed to hours of database recovery time, and
it may well be tolerable to end users. Peer-to-peer configurations handle recovery a bit
better in that much of the workload is already distributed to either of the nodes. So, at
most, only part of the user base will be affected if one node goes down. Those users can
easily be redirected to the other node (peer), with the same type of connection changes
described earlier.

 Download from www.wowebook.com

ptg

535Building Solutions with One or More HA Options
1

8

SQL
Server
2008

Publication
Server

Adventure
Works DB

translog

SQL
Server
2008

Publication
Server

Adventure
Works DB

translog

SQL Server 2008

Distribution Server

“continuous” transactional
replication

Peer-to-Peer

Central Publisher/
Subscriber

SQL Server 2008

Hot Spare
(Fail-over)

AW DB

SQL Server 2008

distribution

Adventure
Works

translog

MSDB DB

FIGURE 18.7 Basic data replication configurations for HA.

With either the publisher/subscriber or peer-to-peer replication approach, there is a risk of
not having all the transactions from the publishing server. However, often, a company is
willing to live with this small risk in favor of availability. Remember that a replicated data-
base is an approximate image of the primary database (up to the point of the last update
that was successfully distributed), which makes it very attractive as a warm standby. For
publishing databases that are primarily read-only, using a warm standby is a great way to
distribute the load and mitigate the risk of any one server failing. Chapter 19,
“Replication,” covers data replication and all the various implementation scenarios that
you might ever need to use.

Log Shipping

Another, more direct, method of creating a completely redundant database image is to
utilize log shipping. Microsoft “certifies” log shipping as a method of creating an “almost
hot” spare. Some folks even use log shipping as an alternative to data replication (it has
been referred to as “the poor man’s data replication”). There’s just one problem:
Microsoft has formally announced that log shipping (as we know and love it) will be
deprecated in the near future. The reasons are many, but the primary one is that it is
being replaced by database mirroring (referred to as real-time log shipping, when it was first
being conceived). If you still want to use log shipping, it is perfectly viable—for now.

Log shipping does three primary things:

. Makes an exact image copy of a database on one server from a database dump

. Creates a copy of that database on one or more other servers from that dump

 Download from www.wowebook.com

ptg

536 CHAPTER 18 SQL Server High Availability

FIGURE 18.8 Log shipping in support of high availability.

. Continuously applies transaction log dumps from the original database to the copy

In other words, log shipping effectively replicates the data of one server to one or more
other servers via transaction log dumps. Figure 18.8 shows a source/destination SQL Server
pair that has been configured for log shipping.

Log shipping is a great solution when you have to create one or more failover servers. It
turns out that, to some degree, log shipping fits the requirement of creating a read-only
subscriber as well. The following are the gating factors for using log shipping as a method
of creating and maintaining a redundant database image:

. Data latency lag is the time that exists between the transaction log dumps on the
source database and when these dumps are applied to the destination databases.

. Sources and destinations must be the same SQL Server version.

. Data is read-only on the destination SQL Server until the log shipping pairing is bro-
ken (as it should be to guarantee that the transaction logs can be applied to the des-
tination SQL Server).

The data latency restriction might quickly disqualify log shipping as an instantaneous
high-availability solution (if you need rapid availability of the failover server). However,
log shipping might be adequate for certain situations. If a failure ever occurs on the
primary SQL Server, a destination SQL Server that was created and maintained via log
shipping can be swapped into use fairly quickly. The destination SQL Server would
contain exactly what was on the source SQL Server (right down to every user ID, table,
index, and file allocation map, except for any changes to the source database that

 Download from www.wowebook.com

ptg

537Building Solutions with One or More HA Options
1

8

occurred after the last log dump was applied). This directly achieves a level of high avail-
ability. It is still not completely transparent, though, because the SQL Server instance
names are different, and the end user may be required to log in again to the new server
instance.

NOTE

Log shipping is not covered further in this book because of its limited life going for-
ward. The SQL Server 2000 Unleashed version of this book covers log shipping in
extensive detail. Remember that log shipping is not data replication and uses a com-
pletely different technology than data replication.

Database Mirroring

Another failover option with SQL Server is database mirroring. Database mirroring essen-
tially extends the old log shipping feature of SQL Server and creates an automatic failover
capability to a “hot” standby server. Database mirroring is being billed as creating a fault-
tolerant database that is an “instant” standby (ready for use in less than three seconds).

At the heart of database mirroring is the “copy-on-write” technology. Copy-on-write
means that transactional changes are shipped to another server as the logs are written. All
logged changes to the database instance become immediately available for copying to
another location. As you can see in Figure 18.9, database mirroring utilizes a witness
server as well as client components to insulate the client applications from any knowledge
of a server failure.

SQL Server 2008

Principal
Server

Adventure
Works DB

translog

SQL Server xyz

Witness
Server MSDB DB

SQL Server 2008
Mirror Server

Adventure
Works DB

translog

Client Client ClientClient

Network

FIGURE 18.9 SQL Server 2008 database mirroring high-availability configuration.

 Download from www.wowebook.com

ptg

538 CHAPTER 18 SQL Server High Availability

Chapter 20 dives much more deeply into database mirroring setup, configuration, and
architecture. It is sufficient to say here that with database mirroring, an application can
possibly be failed over to the mirrored database in 3 seconds or less, with nearly complete
client transparency. You can also leverage this mirrored database for offloading reporting
by creating a snapshot from it. Again, this topic is covered in Chapter 20.

Combining Failover with Scale-Out Options

SQL Server 2008 pushes combinations of options to achieve higher availability levels. A
prime example would be combining data replication with database mirroring to provide
maximum availability of data, scalability to users, and fault tolerance via failover, poten-
tially at each node in the replication topology. By starting with the publisher and perhaps
the distributor, you make them both database mirror failover configurations.

Building up a combination of both options together is essentially the best of both worlds:
the super-low latency of database mirroring for fault tolerance and high availability (and
scalability) of data through replication. Check out Chapter 20 for more details on this
creative configuration.

Other HA Techniques That Yield Great Results
Microsoft has been revisiting (and architecting) several operations that previously required
a table or whole database to be offline. For several critical database operations (such as
recovery operations, restores, indexing, and others), Microsoft has either made the data in
the database available earlier in the execution of the operation or made the data in the
database completely available simultaneously with the operation. The following primary
areas are now addressed:

. Fast recovery—This faster recovery option directly improves the availability of SQL
Server databases. Administrators can reconnect to a recovering database after the
transaction log has been rolled forward (and before the rollback processing has
finished). Figure 18.10 illustrates how Microsoft makes a SQL Server 2008 database
available earlier than would SQL Server 2000.

In particular, a database in SQL Server 2008 becomes available when committed
transaction log entries are rolled forward (termed redo) and no longer have to wait
for the “in flight” transactions to be rolled back (termed undo).

. Online restore—Database administrators can perform a restore operation while the
database is still online. Online restore improves the availability of SQL Server
because only the data being restored is unavailable; the rest of the database remains
online and available to users. In addition, the granularity of the restore has changed
to be at the filegroup level and even at the page level, if needed. The remainder of
the database remains available.

. Online indexing—Concurrent modifications (updates, deletes, and inserts) to the
underlying table or clustered index data and any associated indexes can now be
done during index creation time. For example, while a clustered index is being

 Download from www.wowebook.com

ptg

539Other HA Techniques That Yield Great Results
1

8

SQL Server 2008

SQL
Server

Restart
Stage

ti
m

e

R
es

ta
rt

co
m

pl
et

e
T

ra
ns

ac
tio

ns
R

ol
le

d
B

ac
k

T
ra

ns
ac

tio
ns

R
ol

le
d

F
or

w
ar

d

SQL Server 2000

SQL
Server

SQL Server 2000
database is

available

SQL Server 2005
and 2008

database is
available

FIGURE 18.10 SQL Server 2008 databases become available earlier than databases with
SQL Server 2000 database recovery (fast recovery).

rebuilt, you can continue to make updates to the underlying data and perform
queries against the data.

. Database snapshots—You can now create a read-only, stable view of a database. A
database snapshot is created without the overhead of creating a complete copy of
the database or having completely redundant storage. A database snapshot is simply
a reference point of the pages used in the database (that is defined in the system
catalog). When pages are updated, a new page chain is started that contains the data
pages changed since the database snapshot was taken, as illustrated in Figure 18.11.

As the original database diverges from the snapshot, the snapshot gets its own copy
of original pages when they are modified. The snapshot can even be used to recover
an accidental change to a database by simply reapplying the pages from the snap-
shot back to the original database.

The copy-on-write technology used for database mirroring also enables database
snapshots. When a database snapshot is created on a database, all writes check the
system catalog of “changed pages” first; if not there, the original page is copied
(using the copy-on-write technique) and is put in a place for reference by the data-
base snapshot (because this snapshot must be kept intact). In this way, the database
snapshot and the original database share the data pages that have not changed.

. Data partitioning improvements—Data partitioning has been enhanced with
native table and index partitioning. It essentially allows you to manage large tables
and indexes at a lower level of granularity. In other words, a table can be defined to
identify distinct partitions (such as by date or by a range of key values). This
approach effectively defines a group of data rows that are unique to a partition.

 Download from www.wowebook.com

ptg

540 CHAPTER 18 SQL Server High Availability

SQL Server 2008

SQL
Server

Source Data
Pages

Adventure
Works DB

Snapshot
AdventureWorks

DB

System Catalog
of changed pages

Sparse File
Pages

Snapshot
Users

SELECT…data……
FROM AdventureWorks
 SNAPSHOT

FIGURE 18.11 Database snapshots and the original database share pages and are managed
within the system catalog of SQL Server 2008.

These partitions can be taken offline, restored, or loaded independently while the
rest of the table is available.

. Addition of a snapshot isolation level—This snapshot isolation (SI) level is a
database-level capability that allows users to access the last committed row, using a
transactionally consistent view of the database. This capability provides improved
scalability and availability by not blocking data access of this previously unavailable
data state. This new isolation level essentially allows data reading requests to see the
last committed version of data rows, even if they are currently being updated as part
of a transaction (for example, they see the rows as they were at the start of the trans-
action without being blocked by the writers, and the writers are not blocked by
readers because the readers do not lock the data). This isolation level is probably best
used for databases that are read-mostly (with few writes/updates) due to the poten-
tial overhead in maintaining this isolation level.

. Dedicated administrator connection—This feature introduces a dedicated admin-
istrator connection that administrators can use to access a running server even if the
server is locked or otherwise unavailable. This capability enables administrators to
troubleshoot problems on a server by executing diagnostic functions or Transact-SQL
statements without having to take down the server.

High Availability from the Windows Server Family Side
To enhance system uptimes, numerous system architecture enhancements that directly
reduce unplanned downtime, such as improved memory management and driver verifica-
tion, were made in Windows 2000, 2003, and 2008 R2. New file protection capabilities

 Download from www.wowebook.com

ptg

541High Availability from the Windows Server Family Side
1

8

prevent new software installations from replacing essential system files and causing fail-
ures. In addition, device driver signatures identify drivers that may destabilize a system.
And, perhaps another major step toward stabilization is the use of virtual servers.

Microsoft Virtual Server 2005

Virtual Server 2005 is a much more cost-effective virtual machine solution designed on
top of Windows Server 2008 to increase operational efficiency in software testing and
development, application migration, and server consolidation scenarios. Virtual Server
2005 is designed to increase hardware efficiency and help boost administrator productiv-
ity, and it is a key Microsoft deliverable toward the Dynamic Systems Initiative (eliminat-
ing reboots of servers, which directly affects downtime!). As shown in Figure 18.12, the
host operating system—Windows Server 2008 in this case—manages the host system (at
the bottom of the stack).

Virtual Server 2005 provides a Virtual Machine Monitor (VMM) virtualization layer that
manages virtual machines and provides the software infrastructure for hardware emula-
tion. As you move up the stack, each virtual machine consists of a set of virtualized
devices, the virtual hardware for each virtual machine.

A guest operating system and applications run in the virtual machine—unaware, for
example, that the network adapter they interact with through Virtual Server is only a soft-
ware simulation of a physical Ethernet device. When a guest operating system is running,
the special-purpose VMM kernel takes mediated control over the CPU and hardware
during virtual machine operations, creating an isolated environment in which the guest

Virtual Machine
Operating System and Applications

Virtual Machine
Operating System and Applications

Virtual Hardware Virtual Hardware

Virtual Server 2005

Windows Server 2008

Any x86/x64 (32/64 bit) Server

FIGURE 18.12 Microsoft Virtual Server 2005 server architecture.

 Download from www.wowebook.com

ptg

542 CHAPTER 18 SQL Server High Availability

operating system and applications run close to the hardware at the highest possible
performance.

Virtual Server 2005 is a multithreaded application that runs as a system service, with each
virtual machine running in its own thread of execution; I/O occurs in child threads.
Virtual Server derives two core functions from the host operating system: the underlying
host operating system kernel schedules CPU resources, and the device drivers of the host
operating system provide access to system devices. The Virtual Server VMM provides the
software infrastructure to create virtual machines, manage instances, and interact with
guest operating systems. An often-discussed example of leveraging Virtual Server 2005
capabilities would be to use it in conjunction with a disaster recovery implementation.

Virtual Server 2005 and Disaster Recovery

Virtual Server 2005 enables a form of server consolidation for disaster recovery. Rather
than maintaining redundancy with costly physical servers, customers can use Virtual
Server 2005 to back up their mission-critical functionality in a cost-effective way by means
of virtual machines. The Virtual Machine Monitor (VMM) and Virtual Hard Disk (VHD)
technologies in Virtual Server 2005, coupled with the comprehensive COM API, can be
used to create similar failover functionality as standard, hardware-driven disaster recovery
solutions. Customers can then use the Virtual Server COM API to script periodic duplica-
tion of physical hard disks containing vital business applications to virtual machine
VHDs. Additional scripts can switch to the virtual machine backup in the event of cata-
strophic failure. In this way, a failing device can be taken offline to troubleshoot, or the
application or database can be moved to another physical or virtual machine. Moreover,
because VHDs are a core Virtual Server technology, they can be used as a disaster recovery
agent, wherein business functionality and data can be easily archived, duplicated, or
moved to other physical machines.

Summary
As you come to completely understand and assess your application’s high-availability
requirements, you can create a matching high-availability solution that will serve you well
for years to come. The crux of high availability is laying a fundamentally sound founda-
tion that you can count on when failures occur and then, when failures do occur, deter-
mining how much data loss you can tolerate, how much downtime is possible, and what
the downtime is costing you.

The overall future seems to be improving greatly in all the basic areas of your Microsoft
platform footprint, including

. Cheaper and more reliable hardware components that are highly swappable

. The advent of virtual server capabilities (with Windows Virtual Server 2005) to insu-
late software failures from affecting hardware

. Enhancements that Microsoft is making to SQL Server 2008 that address availability

 Download from www.wowebook.com

ptg

543Summary
1

8

The critical enhancements to the cornerstone availability capabilities of SQL Clustering
will help this fault-tolerant architecture grow more reliable for years to come. The big
bonuses come with the features of database mirroring as another fault-tolerant solution at
the database level and the database snapshots feature to make data more available to more
users more quickly than the older method of log shipping.

To top it all off, Microsoft is making great strides in the areas of online maintenance oper-
ations (online restores, online index creates, and so on) and leaping into the realm of one
or more virtual server machines (with Virtual Server 2005) that will not bring down a
physical server that houses them (which is very UNIX-like).

Chapter 19 delves into the complexities of the major data replication options available
with SQL Server 2008.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 19

Replication

IN THIS CHAPTER

. What’s New in Data Replication

. What Is Replication?

. The Publisher, Distributor, and
Subscriber “Magazine”
Metaphor

. Replication Scenarios

. Subscriptions

. Replication Agents

. Planning for SQL Server Data
Replication

. SQL Server Replication Types

. Basing the Replication Design
on User Requirements

. Setting Up Replication

. Scripting Replication

. Monitoring Replication

There is no such thing as a typical configuration or appli-
cation anymore. Companies now have to support numerous
hardware and software configurations in multitiered,
distributed environments. These diverse configurations and
applications (and users of the applications) come in all sizes
and shapes. And, of course, you need a way to deal with
varied data access requirements for these different physical
locations; these remote or mobile users over a local area
network, wide area network, wireless connections, and dial-
up connections; and any needs over the Internet.
Microsoft’s data replication facility allows for a great
breadth of capability to deal with many of these demands.
However, to build a proper data replication implementation
that meets many of these user requirements, you must have
a thorough understanding of the business requirements and
technical capabilities of data replication. Data replication is
a set of technologies for storing and forwarding data and
database objects from one database to another and then
synchronizing this data between databases to maintain
consistency. With SQL Server 2008, the data replication
feature set offers numerous improvements in manageability,
availability, programmability, mobility, scalability, and
performance.

This chapter does the following:

. Helps you understand what data replication is

. Shows you how to understand and analyze user
requirements of data

. Allows you to choose which replication configuration
best meets these requirements (if any)

 Download from www.wowebook.com

ptg

546 CHAPTER 19 Replication

. Demonstrates how to implement a replication configuration

. Describes how to administer and monitor a data replication implementation

What’s New in Data Replication
Much of what’s new for Microsoft SQL Server data replication revolves around simplifying
setup, administration, and monitoring of a data replication topology. This is the result of
years of practical experience and thousands of production replication implementations
around the globe. The overall data replication approach that Microsoft has developed
(since replication’s inception back in SQL Server 6.5 days) has been so solid that competi-
tors, such as Oracle (with its Oracle Streams technology), have tried to mimic this architec-
tural approach.

Among many others, the following are some of the new replications features and
enhancements that make SQL Server 2008 data replication one of the best data distribu-
tions tools on the market:

. Highly available replication node additions—SQL Server 2008 offers the capa-
bility to add nodes to a replication topology without quiescing the topology.

. Topology Viewer—Enhancements have been made to the Peer-to-Peer Topology
Wizard so that you can now visually see what the peer-to-peer topology looks like
with the Topology Viewer.

. Capability to centrally monitor all agents and jobs at the Publisher—You are
able to view information about all the agents and jobs associated with publications
at the selected Publisher.

. Minor Replication Monitor enhancements—Replication Monitor has undergone
slight tweaks to make it easier to monitor your full replication topologies. It allows
you to monitor the overall health of a replication topology and provides detailed
information about the status and performance of publications and subscriptions.

. Capability to replicate switch partition ALTER—Enhanced Transactional
Replication Support for Partitioned Tables is now available, including the capability
to replicate the switch partition ALTER for Tables.

. Scripting integrated into wizards—You can almost completely script your replica-
tion setup or breakdown during or after wizard executions.

. Conflict Viewer—This feature helps you view and resolve any conflicts that
occurred during the synchronization of a merge subscription or queued updating
subscription.

. Peer-to-peer transactional replication—Further enhancements have been intro-
duced to the peer-to-peer replication model. They allow replication between identi-
cal participants in the topology (a master/master or symmetric publisher concept).

. Peer-to-peer conflict detection—The capability to detect conflicts during synchro-
nization in a peer-to-peer replication topology has been added.

 Download from www.wowebook.com

ptg

547What Is Replication?

Insert “A”
(Store)

Distribute “A”
(Forward)

A

A

A

A

FIGURE 19.1 The store-and-forward data distribution model.

. More replication mobility—Merge replication provides the capability to replicate
data over HTTPS with the web synchronization option, which is useful for synchro-
nizing data from mobile users over the Internet or synchronizing data between
Microsoft SQL Server databases across a corporate firewall.

. Microsoft Sync Framework—This comprehensive synchronization platform
enables collaboration and offline access for applications, services, and devices. It fea-
tures technologies and tools that enable roaming, sharing, and taking data offline.
By using Sync Framework, developers can build sync ecosystems that integrate any
application with any data from any store that uses any protocol over any network.
We mention it here because of its replication-like behavior for “occasionally con-
nected” applications.

Many of these terms and references might be new or foreign to you now, but they are all
explained in this chapter. At the end of this chapter, when you review these new features,
you’ll be able to appreciate much more readily their significance.

What Is Replication?
Long before you ever start setting up and using SQL Server data replication, you need to
have a solid grasp of what data replication is and how it can be used to meet your
company’s needs. In its classic definition, data replication is based on the “store-and-
forward” data distribution model, as shown in Figure 19.1. In other words, data that is
inserted, updated, or deleted in one location (stored) is automatically distributed
(forwarded) to one or more locations.

1
9

Of course, the data distribution model addresses all the other complexities of updates,
deletes, data latency, autonomy, and so on. It is this data distribution model that
Microsoft’s data replication facility serves to implement. It has come a long way since the
early days of Microsoft SQL Server replication (earlier than 6.5) and is now easily catego-
rized as “production worthy.” Numerous worldwide data replication scenarios have been
implemented for some of the biggest companies in the world without a hitch. These
scenarios fall into five major types:

 Download from www.wowebook.com

ptg

548

SQL Server 2008

Primary
OLTP

Reporting/ODS

OLTP DB

SQL Server 2008

Reporting
Server

Rpt DB

SQL Server 2008

North America
Region

Regionalization

(multiple owners)
xyz DB

SQL Server 2008

Europe
Region

xyz DB

SQL Server 2008

Primary
Failover

xyz DB

SQL Server 2008

Hot Spare
(Fail-over)

xyz DB

SQL Server 2008

USA
(Headquarters)

Enabling/Partitioning

xyz DB

SQL Server 2008

Europe
Server

xyz DB

SQL Server 2008

Asia
Server

xyz DB

FIGURE 19.2 Data replication scenarios.

. Offloading—You might need to deliver data to different locations to eliminate
network traffic and unnecessary load on a single server (for example, when you need
to isolate reporting activity away from your online transaction processing). The
industry trend is to create an operational data store (ODS) data architecture that
replicates core transactional data to a separate platform in real-time and delivers the
data to the reporting systems, web services, and other data consumers without
impacting the transactional systems in any way.

. Enabling—You might need to enable a group of users with a copy of data or a
subset of data (vertically or horizontally) for their private use.

. Partitioning—You might need to move data off a single server onto several other
servers to provide for high availability and decentralization of data (or partitioning
of data). This might be the basis of serving customer call centers around the globe
that must service “active” support calls (partitioned on active versus closed service
requests).

. Regionalization—You might have regional ownership of data (for example,
regional customers and their orders). In this case, it is possible to set up data replica-
tion to replicate data bidirectionally from two or more publishers of the same data.

. Failover—You could be replicating all data on a server to another server (that is, a
failover server) so that if the primary server crashes, users can switch to the failover
server quickly and continue to work with little downtime or data loss.

Figure 19.2 illustrates the topology of some of these replication variations.

CHAPTER 19 Replication

 Download from www.wowebook.com

ptg

549The Publisher, Distributor, and Subscriber Magazine Metaphor
1

9

As you may notice, you can use data replication for many reasons. Many of these reasons
are discussed later in this chapter. First, however, you need to understand some of the
common terms and metaphors Microsoft uses in relationship to data replication. They
started with the “magazine” concept as the basis of the metaphor. A magazine is created
by a publisher, distributed via the mail, and delivered to only those who have a subscrip-
tion to the magazine. The frequency of the magazine publication can vary, as can the
frequency of the subscription (depending on how often the subscriber wants to receive a
new magazine). The publication (magazine) consists of one or more articles. One or more
articles can be subscribed to.

The Publisher, Distributor, and Subscriber Magazine
Metaphor
Any SQL Server can play up to three distinct roles in a data replication environment:

. Publication server—The publication server (or publisher) contains the database or
databases that will be published (the magazine!). This is the source of the data that is
to be replicated to other servers. In Figure 19.3, the Customer table (an article in the
magazine) in the AdventureWorks2008 database is the data to be published. To
publish data, the database that contains the data that will be published must first be
enabled for publishing. Full publishing configuration requirements are discussed
later in this chapter, in the section “Setting Up Replication.”

Customer (Sales)

CustomerID

TerritoryID

AccountNumber

CustomerType

rowguid

ModifiedDate

SQL Server
2008

Publisher

“Magazine” metaphor

Adventure
Works

translog

SQL Server
2008

Distributor

distribution

Customer (Sales)

CustomerID

TerritoryID

AccountNumber

CustomerType

rowguid

ModifiedDate

SQL Server
2008

AdventureWorks

Customer (Sales)

Customer ID

Territory ID

AccountNumber

Customer Type

rowguid

ModifiedDate

SQL Server

AdventureWorks

Subscriber(s)

FIGURE 19.3 The publisher, distributor, and one or more subscribers.

 Download from www.wowebook.com

ptg

550

. Distribution server—The distribution server (or distributor) can either be on the
same server as the publication server or on a different server (in which case it is a
remote distribution server). This server contains the distribution database. This data-
base, also called the store-and-forward database, holds all the data changes that are
to be forwarded from the published database to any subscription servers that
subscribe to the data. A single distribution server can support several publication
servers. The distribution server is truly the workhorse of data replication; it is essen-
tially the mail system that picks up the magazine and delivers it to the subscription
holder.

. Subscription server—The subscription server (or subscriber) contains a copy of the
database or portions of the database being published (for example, the Customer
table in the AdventureWorks2008 database). The distribution server sends any
changes made to this table (in the published database) to the subscription server’s
copy of the Customer table. This is known as store-and-forward. Some data replication
configurations send the data to the subscription server, and then the data is read-
only. It is also possible for subscribers (known as updating subscribers) to make
updates, which are sent back to the publisher. More on this in the Updating
Subscribers Replication Model section.

There are now new variations of this update subscriber option called peer-to-peer replication.
Peer-to-peer allows for more than one publisher of the same data (table) at the same time!
Essentially, each publisher is also a subscriber at the same time (hence, peer-to-peer). This
chapter provides more information on updating subscribers and peer-to-peer configura-
tions in the “The Updating Subscribers Replication Model” section, later.

Along with enabling distinct server roles (publisher, distributor, and subscriber), Microsoft
utilizes a few more magazine metaphors, including publications and articles. A publication
is a group of one or more articles and is the basic unit of data replication. An article is
simply a pointer to a single table, or a subset of rows or columns out of a table, that will
be made available for replication.

Publications and Articles

A single database can contain more than one publication. You can publish data from
tables, from database objects, from the execution of stored procedures, and even from
schema objects, such as referential integrity constraints, clustered indexes, nonclustered
indexes, user triggers, extended properties, and collation. Regardless of what you plan to
replicate, all articles in a publication are synchronized at the same time. Figure 19.4 shows
an example of a publication (named Cust_Orders publication) with three articles (three
tables from the AdventureWorks2008 database). You can also choose to replicate whole
tables or just parts of tables via filtering.

Filtering Articles

You can create articles within a publication in several different ways. The basic way to
create an article is to publish all the columns and rows contained in a table. Although this
is the easiest way to create articles, your business needs might require that you publish
only specific columns or certain rows of a table. This is referred to as filtering vertically or

CHAPTER 19 Replication

 Download from www.wowebook.com

ptg

551

SQL Server
2008

Publisher

Publication

Adventure
Works

translog

Customer (Sales)

CustomerID

TerritoryID

AccountNumber

CustomerType

rowguid

ModifiedDate

SalesOrderHeader (Sales)

SalesOrderID

RevisionNumber

OrderDate

DueDate

ShipDate

Status

OnlineOrderFlag

SalesOrderNumber

PurchaseOrderNumber

AccountNumber

CustomerID

ContactID

SalesPersonID

TerritoryID

BillToAddressID

ShipToAddressID

ShipMethodID

CreditCardID

CreditCardApprovalCode

CurrencyRateID

SubTotal

TaxAmt

Freight

TotalDue

Comment

rowguid

ModifiedDate

Cust_Orders

Cust_Orders

SalesOrderHeader (Article)

SalesOrderDetail (Article)

SalesOrderDetail (Sales)

SalesOrderID

SalesOrderDetailID

CarrierTrackingNumber

OrderQty

ProductID

SpecialOfferID

UnitPrice

UnitPriceDiscount

LineTotal

rowguid

ModifiedDate

FIGURE 19.4 The Cust_Orders publication (in the AdventureWorks2008 database).

The Publisher, Distributor, and Subscriber Magazine Metaphor
1

9

horizontally. When you filter vertically, you filter only specific columns, whereas with hori-
zontal filtering, you filter only specific rows. In addition, SQL Server 2008 provides the
added functionality of join filters and dynamic filters.

As Figure 19.5 shows, you might need to replicate only a customer’s CustomerID,
TerritoryID, and CustomerType to various subscribing servers around your company. In
your company, the other data, such as AccountNumber, may be restricted information that
should not be replicated for general use. For that reason, you simply create an article for
data replication that contains a subset of the Customer table that will be replicated to these
other locations and excludes AccountNumber (and rowguid and ModifiedDate as well).

As another example, you might need to publish only the Customer table data for a specific
customer type, such as “individual” customers ((CustomerType = ‘I’) or customers that
are “stores” (CustomerType = ‘S’). This process, as shown in Figure 19.6, is known as
horizontal filtering.

It is possible to combine horizontal and vertical filtering, as shown in Figure 19.7. This
way, you can weed out unneeded columns and rows that aren’t required for replication
(that is, are not needed by the subscribers). For example, you might need only the
customers that are stores and need only CustomerID, TerritoryID, and CustomerType data
to be published.

 Download from www.wowebook.com

ptg

552 CHAPTER 19 Replication

SQL Server
2008

Publisher

Publication

Adventure
Works

translog

Customer (Sales)

CustomerID

TerritoryID

AccountNumber

CustomerType

rowguid

ModifiedDate

AW_Vertical

CustomerV (Article)

1345

1356

2354

3346

7643

7901

8921

1

2

1

2

3

5

4

AW1345

AW1356

AW2354

AW3346

AW7643

AW7901

AW8921

CustomerID

1345

1356

2354

3346

7643

7901

8921

ModifiedDate

I

I

S

I

S

I

I

CustomerTypeTerritoryID

X69G9..

W211G..

7SQ78K..

W12DV..

WZ8R4..

S2345X..

RT66Y..

rowguidAccountNumber

1345

1356

2354

3346

7643

7901

8921

1

2

1

2

3

5

4

CustomerID TerritoryID

I

I

S

I

S

I

I

CustomerType

FIGURE 19.5 Vertical filtering creates a subset of columns from a table to be replicated to
subscribers.

SQL Server
2008

Publisher

Publication

Only these Rows!

Adventure
Works

translog

Customer (Sales)

CustomerID

TerritoryID

AccountNumber

CustomerType

rowguid

ModifiedDate

AW_Horizontal

CustomerH (Article)

1345

1356

2354

3346

7643

7901

8921

1

2

1

2

3

5

4

AW1345

AW1356

AW2354

AW3346

AW7643

AW7901

AW8921

CustomerID

120203

051605

106705

022305

122205

041506

0321206

ModifiedDate

I

I

S

I

S

I

I

CustomerTypeTerritoryID

X69G9..

W211G..

7SQ78K..

W12DV..

WZ8R4..

S2345X..

RT66Y..

rowguidAccountNumber

2354

7643

1

3

CustomerID TerritoryID

AW2354

AW7643

106705

122205

ModifiedDate

S

S

CustomerType

7SQ78K..

WZ8R4..

rowguidAccountNumber

FIGURE 19.6 Horizontal filtering creates a subset of rows from a table to be replicated to
subscribers.

 Download from www.wowebook.com

ptg

553The Publisher, Distributor, and Subscriber Magazine Metaphor
1

9

SQL Server
2008

Publisher

Publication

Only these
Columns and
these Rows!

Adventure
Works

translog

Customer (Sales)

CustomerID

TerritoryID

AccountNumber

CustomerType

rowguid

ModifiedDate

AW_H_and_V

CustomerHV (Article)

1345

1356

2354

3346

7643

7901

8921

1

2

1

2

3

5

4

AW1345

AW1356

AW2354

AW3346

AW7643

AW7901

AW8921

CustomerID

120203

051605

106705

022305

122205

041506

0321206

ModifiedDate

I

I

S

I

S

I

I

CustomerTypeTerritoryID

X69G9..

W211G..

7SQ78K..

W12DV..

WZ8R4..

S2345X..

RT66Y..

rowguidAccountNumber

2354

7643

1

3

CustomerID TerritoryID

S

S

CustomerType

FIGURE 19.7 Combining horizontal and vertical filtering allows you to pare down the informa-
tion in an article to only the important information needed by the subscribers.

As mentioned earlier, it is now possible to use join filters. Join filters enable you to use the
values of one article (that is, values from a table) to determine what gets replicated from
another article (that is, what values can be associated with another table) via a join. In
other words, if you are publishing the Customer table data based on the customers that are
stores, you can extend filtering (that is, a join filter) to replicate only those orders for
these types of customers (as shown in Figure 19.8). This way, you replicate only orders for
customers that are stores to a subscriber that needs to see only this filtered data. This type
of replication can be efficient if it is done well.

You also can publish stored procedure executions, along with their parameters, as articles.
This can be either a standard procedure execution article or a serializable procedure execu-
tion article. The difference is that the latter is executed as a serializable transaction; the
serializable option is recommended because it replicates the procedure execution only if
the procedure is executed within the context of a serializable transaction. If that same
stored procedure is executed from outside a serializable transaction, changes to data in
published tables are replicated as a series of DML statements. In general, replicating stored
procedure executions gives you a major reduction in the number of SQL statements being
replicated across the network versus standard DML statements.

 Download from www.wowebook.com

ptg

554

Customer (Sales)

CustomerID

TerritoryID

AccountNumber

CustomerType

rowguid

ModifiedDate

1345

1356

2354

3346

7643

7901

8921

1

2

1

2

3

5

4

AW1345

AW1356

AW2354

AW3346

AW7643

AW7901

AW8921

CustomerID

120203

051605

106705

022305

122205

041506

0321206

ModifiedDate

I

I

S

I

S

I

I

CustomerTypeTerritoryID

X69G9..

W211G..

7SQ78K..

W12DV..

WZ8R4..

S2345X..

RT66Y..

rowguidAccountNumber

43661

43663

7/1/2001

7/1/2001

2354

7643

CustomerID

1345

1356

2354

3346

7643

7901

8921

43659

43660

43661

43662

43663

43664

43665

1

1

1

2

1

1

1

7/1/2001

7/1/2001

7/1/2001

7/1/2001

7/1/2001

7/1/2001

7/1/2001

SalesOrderID CustomerID

7/13/2001

7/13/2001

7/13/2001

7/13/2001

7/13/2001

7/13/2001

7/13/2001

DueDateRevisionNumber

5

5

5

5

5

5

5

StatusOrderDate

2354

7643

SalesOrderHeader (Sales)

Only the
orders for
customer
type “S”

join

SalesOrderID

RevisionNumber

OrderDate

DueDate

ShipDate

Status

OnlineOrderFlag

SalesOrderNumber

PurchaseOrderNumber

AccountNumber

CustomerID

ContactID

SalesPersonID

TerritoryID

BillToAddressID

ShipToAddressID

AW_H_and_J (Publication)

CustomerH (Article)

OrdersHJ (Article)

SalesOrderID OrderDate CustomerID

FIGURE 19.8 Horizontal and Join publication: Joining customers that are stores (type “S”) to
corresponding SalesOrderHeader rows.

For instance, if you wanted to update the Customer table for every customer via an UPDATE
SQL statement, the resulting Customer table updates would be replicated as a large multi-
step transaction involving at least 5,000 separate UPDATE statements at a minimum. This
number of statements would significantly bog down your network. However, with stored
procedure execution articles, only the execution of the stored procedure is replicated to
the subscription server, and the stored procedure—not the numerous update statements—
is executed on that subscription server. Figure 19.9 illustrates the difference in execution
described earlier. Some subtleties when utilizing this type of data replication processing
can’t be overlooked, such as making sure the published stored procedure behaves the same
on the subscribing server side.

Many more data replication terms are presented in this chapter, but it is essential that
you first learn about the different types of replication scenarios that can be built and the
reasons any of them would be desired over the others. It is also worth noting that
Microsoft SQL Server 2008 supports replication to and from many different “heteroge-
neous” data sources. In other words, OLE DB and ODBC data sources can subscribe to
SQL Server publications, and they can receive data replicated from a number of data
sources, including Microsoft Exchange, Microsoft Access, Oracle, and DB2.

CHAPTER 19 Replication

 Download from www.wowebook.com

ptg

555

SQL Server
2008

Publisher

Adventure
Works

translog

SQL Server
2008

Subscriber

Adventure
Works

translog

Customer (Sales)

CustomerID

TerritoryID

AccountNumber

CustomerType

rowguid

ModifiedDate

AdventureWorks (Publication)

UPDATE Customers
 set AccountNumber=null
where CustomerID >=1
 and CustomerID <=5000

UPDATE customers set AccountNumber=null where customerID=1
UPDATE customers set AccountNumber=null where customerID=1
…

UPDATE customers set AccountNumber=null where customerID=1

Exec PRC_Cust_Updt 1,5000 Exec PRC_Cust_Updt 1,5000
(on subscription server)

is replicated as:

PRC_Cust_Updt (Article)

Customers (Article)

distribution

Distributor

FIGURE 19.9 Comparison of stored procedure execution and standard SQL statement replica-
tion.

Replication Scenarios
1

9

Replication Scenarios
In general, depending on your business requirements and hardware or network
constraints, one of several different data replication models can be implemented, includ-
ing the following:

. Central publisher

. Central publisher with a remote distributor

. Publishing subscriber

. Central subscriber

. Multiple publishers with multiple subscribers

. Updating subscribers

. Peer-to-peer

The Central Publisher Replication Model

The central publisher replication model, shown in Figure 19.10, is Microsoft’s default
scenario and a common model used if your primary server has plenty of spare CPU cycles
and you want a simple replication model. In this scenario, one SQL Server performs the
function of both publisher and distributor. The publisher/distributor can have any number

 Download from www.wowebook.com

ptg

556 CHAPTER 19 Replication

SQL Server
2008

Subscription
Server

Adventure
Works

translog

SQL Server
2005

Subscription
Server

Adventure
Works

translog

Oracle

Subscription
Server

Adventure
Works

SQL Server
2000

Subscription
Server

Adventure
Works

translog

Central Publisher
(default option)

distribution

SQL Server
2008

Adventure
Works

translog

Publication
Server

Distribution
Server

FIGURE 19.10 The central publisher scenario is fairly simple and is a replication model used
often.

The central publisher scenario can be used in the following situations:

. Creation of a copy of a database for ad hoc queries and report generation (classic use)

. Publication of master lists to remote locations, such as master customer lists or
master price lists

. Maintenance of a remote copy of an online transaction processing (OLTP) database
that could be used by the remote sites during communication outages

. Maintenance of a spare copy of an OLTP database that could be used as a “hot
spare” in case of server failure

However, it’s important to consider the following for this replication model:

. If your OLTP server’s activity is substantial and affects greater than 10% of your total
data per day, this scenario is not for you. Other scenarios or configurations will
better fit your needs.

. If your OLTP server is maximized on CPU, memory, and disk utilization, you should
also consider another data replication scenario because this one is not for you either.

of subscribers. These subscribers can come in many different varieties, such as SQL Server
2008, SQL Server 2005, SQL Server 2000, SQL Server 7.0, and Oracle.

 Download from www.wowebook.com

ptg

557Replication Scenarios
1

9

SQL Server
2008

Subscription
Server

Adventure
Works

translog

SQL Server
2005

Subscription
Server

Adventure
Works

translog

Oracle

Subscription
Server

Adventure
Works

SQL Server
2000

Subscription
Server

Adventure
Works

translog

SQL Server
2008

Adventure
Works

translog

Publication
Server

distribution

SQL Server
2008

Remote Distribution
Server

Central Publisher
RemoteRemote Distributor

FIGURE 19.11 You use the central publisher with remote distributor scenario when you need
to offload the distribution work to another server (to minimize the impact to the publishing
server).

The Central Publisher with Remote Distributor Replication Model

The central publisher with remote distributor scenario, as shown in Figure 19.11, is similar
to the central publisher scenario and would be used in the same general situations. The
major difference between the two is that in the central publisher with remote distributor
scenario, a second server is used to perform the role of distributor. This is highly desirable
when you need to free the publishing server from having to perform the distribution task
from a CPU, disk, and memory point of view. This is also the best scenario from which to
expand the number of publishers and subscribers. Remember that a single distribution
server can distribute changes for several publishers. The publisher and distributor must be
connected to each other via a reliable, high-speed data link. This remote distributor
scenario is proving to be one of the best data replication configurations due to its minimal
impact on the publication server and maximum distribution capability to any number of
subscribers.

As mentioned previously, the central publisher/remote distributor approach can be used
for all the same purposes as the central publisher scenario, and it also provides the added
benefit of having minimal resource impact on the publication servers. If your OLTP
server’s activity affects more than 10% of your total data per day, this scenario can usually
handle it without much issue. If your OLTP server has overburdened CPU, memory, and
disk utilization, implementing this model easily solves these issues as well. The central

 Download from www.wowebook.com

ptg

558 CHAPTER 19 Replication

SQL Server
2008

S
er

ve
r

S
er

ve
r

P
u

b
lic

at
io

n
D

is
tr

ib
u

ti
o

n

distribution

Adventure
Works

translog

SQL Server
2008

S
er

ve
r

S
er

ve
r

S
er

ve
r

S
u

b
sc

ri
p

ti
o

n
P

u
b

lic
at

io
n

D
is

tr
ib

u
ti

o
n

distribution

Adventure
Works

translog

SQL Server
2008

Subscription
Server

Adventure
Works

translog

SQL Server
2005

Subscription
Server

Adventure
Works

translog

Oracle

Subscription
Server

Adventure
Works

SQL Server
2000

Subscription
Server

Adventure
Works

translog

Publishing Subscriber

FIGURE 19.12 The publishing subscriber scenario works well when you have to deal with
slow, unpredictable, or expensive network links in diverse geographic situations.

publisher/remote distribution model is useful for the vast majority of all the data replica-
tion configurations due to its optimal characteristics. Nine out of ten replication scenarios
that this author has implemented used the remote distributor replication model.

The Publishing Subscriber Replication Model

In the publishing subscriber scenario, as shown in Figure 19.12, the publication server
also has to act as a distribution server to one subscriber. This subscriber, in turn, immedi-
ately publishes the data to any number of other subscribers. The configuration depicted
here does not use a remote distribution configuration option but serves the same distribu-
tion model purpose. This scenario is best used when a slow or expensive network link
exists between the original publishing server and all the other potential subscribers. This
allows the initial (critical) publication of the data to be distributed from the original
publishing server to that single subscriber across the slow, unpredictable, or expensive
network line. Then, each of the many other subscribers can subscribe to the data, using
faster, more predictable, “local” network lines than they would have with the publishing
subscriber server.

A classic example of this model is a company whose main office is in San Francisco and
has several branch offices in Europe. Instead of replicating changes to all the branch
offices in Europe, it replicates the updates to a single publishing subscriber server in Paris.
This publishing subscriber server in Paris then replicates the updates to all other subscriber
servers around Europe.

 Download from www.wowebook.com

ptg

559Replication Scenarios
1

9

SQL Server
2008

S
er

ve
r

S
er

ve
r

P
u

b
lic

at
io

n
D

is
tr

ib
u

ti
o

n

distribution

Adventure
Works

translog

SQL Server
2008

S
er

ve
r

S
er

ve
r

P
u

b
lic

at
io

n
D

is
tr

ib
u

ti
o

n

distribution

Adventure
Works

translog

SQL Server
2008

S
er

ve
r

S
er

ve
r

P
u

b
lic

at
io

n
D

is
tr

ib
u

ti
o

n

distribution

Adventure
Works

translog

Subscription
Server

SQL Server 2008

Adventure
Works

Central
Subscriber

SQL Server
2008

S
er

ve
r

S
er

ve
r

P
u

b
lic

at
io

n
D

is
tr

ib
u

ti
o

n

distribution

Adventure
Works

translog

FIGURE 19.13 With the central subscriber scenario, several publishers send data to a single,
central subscriber.

The Central Subscriber Replication Model

In the central subscriber scenario, as shown in Figure 19.13, several publishers replicate
data to a single, central subscriber. Basically, this supports the concept of consolidating
data at a central site. An example of this might be consolidating all new orders from
regional sales offices to company headquarters. In such a situation, you now have several
publishers of the Orders table, and you need to take some form of precaution, such as
filtering by region. This would guarantee that no one publisher could update another
region’s orders.

The Multiple Publishers with Multiple Subscribers Replication Model

In the multiple publishers with multiple subscribers scenario, as shown in Figure 19.14, a
common table (such as the Customer table) is maintained on every server participating in
the scenario. Each server publishes a particular set of rows (for example, the customer
rows in a customer’s own territory) that pertain to it—usually via filtering on something
that identifies that site to the data rows it owns—and subscribes to the rows that all the
other servers are publishing. The result is that each server has all the data at all times and
can make changes to its data only. You must be careful when implementing this scenario
to ensure that all sites remain synchronized. The most frequently used applications of this
system are regional order processing systems and reservation tracking systems. When
setting up this type of system, you need to make sure that only local users update local

 Download from www.wowebook.com

ptg

560 CHAPTER 19 Replication

SQL Server
2008

S
er

ve
r

S
er

ve
r

S
er

ve
r

S
u

b
sc

ri
p

ti
o

n
P

u
b

lic
at

io
n

D
is

tr
ib

u
ti

o
n

Multiple Publishers
of a Single Table

Customers Table

Territory 1 Territory 2

distribution

Adventure
Works

translog

SQL Server
2008

S
er

ve
r

S
er

ve
r

S
er

ve
r

S
u

b
sc

ri
p

ti
o

n
P

u
b

lic
at

io
n

D
is

tr
ib

u
ti

o
n

distribution

Adventure
Works

translog

1345

1356

2354

3346

7643

7901

8921

1

2

1

2

2

2

1

AW1345

AW1356

AW2354

AW3346

AW7643

AW7901

AW8921

CustomerID

120203

051605

106705

022305

122205

041506

031206

ModifiedDate

I

I

S

I

S

I

I

CustomerTypeTerritoryID

X69G9..

W211G..

7SQ78K..

W12DV..

WZ8R4..

S2345X..

RT66Y..

rowguidAccountNumber

FIGURE 19.14 In the multiple publishers of a single table scenario, every server in the
scenario maintains a common table.

data. This check can be implemented through the use of stored procedures, restrictive
views, or a check constraint.

The Updating Subscribers Replication Model

SQL Server 2008 has built-in functionality that allows the subscriber to update data in a
table to which it subscribes and have those updates automatically made back to the
publisher through either immediate or queued updates. This model, called the updating
subscribers model, utilizes a two-phase commit process to update the publishing server as
the changes are made on the subscribing server. These updates are then replicated to any
other subscribers, but not to the subscriber that made the update.

Immediate updating allows subscribers to update data only if the publisher will accept
these updates immediately. If the changes are accepted at the publisher, they are propa-
gated to the other subscribers. The subscribers must be continuously and reliably
connected to the publisher to make changes at the subscriber.

Queued updating allows subscribers to update data and then store those updates in a
queue while disconnected from the publisher. When the subscriber reconnects to the
publisher, the updates are propagated to the publisher. This functionality utilizes SQL
Server 2008 queues and the queue reader agent or Microsoft Message Queuing (MSMQ).

A combination of immediate updating with queued updating allows the subscriber to use
immediate updating but switch to queued updating if a connection cannot be maintained

 Download from www.wowebook.com

ptg

561Replication Scenarios
1

9

SQL Server
2008

S
er

ve
r

S
er

ve
r

P
u

b
lic

at
io

n
D

is
tr

ib
u

ti
o

n

distribution

Adventure
Works

translog

Subscription
Server

SQL Server
2008

Updating
Subscriber

SQL Server Queue
(Queue Reader Agent)

Update Customers
 set AccountNumber=null
where CustomerID=12345

Adventure
Works

translog

Subscription
Server

SQL Server
2008

Adventure
Works

translog

FIGURE 19.15 An updating subscriber updating its copy of a customer table and queuing the
changes back to the publisher.

between the publisher and subscribers. After switching to queued updating, reconnecting
to the publisher, and emptying the queue, the subscriber can switch back to immediate
updating mode. An updating subscriber is shown in Figure 19.15.

The Peer-to-Peer Replication Model

In SQL Server 2008, the peer-to-peer replication model can provide a simpler way for all
nodes to have the same data and also gives them the capability to update this data inde-
pendently. Peer-to-peer replication is different from subscriber updating in that there is no
publisher/subscriber hierarchical relationship. Each peer is equal in level. They establish
peer originator IDs so that each can keep track of where updates are coming from and can
be utilized if conflicts arise. Peers do not subscribe to each other’s data; they share each
other’s data. There are several limitations with peer-to-peer replication, most of which are
to protect this peer-to-peer relationship from being corrupted or from having major data
conflicts arise. There are no queues or immediate updating mechanisms involved, thus
making this approach very useful when you need to have the same data in more than one
place and need to update your local data to your heart’s content. If your peers typically do
not update the same rows (as in regional data peer-to-peers), this replication model can be
very reliable with minimal issues. This type of replication model also allows for any
number of peers and provides a separate, very graphic wizard to configure each node in
the topology.

NOTE

New peer nodes can also be added to the topology without having to quiesce the topol-
ogy, thus increasing the availability of the entire replication model.

 Download from www.wowebook.com

ptg

562 CHAPTER 19 Replication

SQL Server
2008

Publication
Server

Peer-to-Peer

Customers Table

North American
Server

Peer Originator id: 1

Asia
Server

Peer Originator id: 2

Adventure
Works

translog

SQL Server
2008

Publication
Server

Adventure
Works

translog

distribution

1345

1356

2354

3346

7643

7901

8921

1

2

1

2

3

5

4

AW1345

AW1356

AW2354

AW3346

AW7643

AW7901

AW8921

CustomerID

120203

051605

106705

022305

122205

041506

031206

ModifiedDate

I

I

S

I

S

I

I

CustomerTypeTerritoryID

X69G9..

W211G..

7SQ78K..

W12DV..

WZ8R4..

S2345X..

RT66Y..

rowguidAccountNumber

SQL Server
2008

Distribution Server

FIGURE 19.16 Peer-to-peer replication.

Figure 19.16 illustrates a typical peer-to-peer configuration with each peer using a remote
distribution server. Also note that with peer-to-peer replication, you might decide to
prohibit updates to the other nodes’ data by putting into place some type of stored proce-
dure or view restrictions that allow the local node to update only its own local data. The
example in Figure 19.16 shows that North American users can update customers with
customer IDs between 1 and 3000, whereas Asian users can update customers with
customer IDs between 3001 and 9000.

Subscriptions
A subscription is essentially a formal request and registration of that request for data that is
being published. By definition, you subscribe to all articles of a publication.

When a subscription is being set up, you have the option of either having the data
“pushed” to the subscriber server or “pulling” the data to the subscription server when it
is needed. This is referred to as either a push subscription or pull subscription.

As shown in Figure 19.17, a pull subscription is set up and managed by the subscription
server. The biggest advantage here is that pull subscriptions allow the system administra-
tors of the subscription servers to choose what publications they will receive and when
they receive them. With pull subscriptions, publishing and subscribing are separate acts
and are not necessarily performed by the same user. In general, pull subscriptions are best

 Download from www.wowebook.com

ptg

563Subscriptions
1

9

SQL Server
2008

S
er

ve
r

S
er

ve
r

P
u

b
lic

at
io

n
D

is
tr

ib
u

ti
o

n

distribution

Adventure
Works

translog

Subscription
Server

SQL Server
2008

SubscriberPublisher

PUSH: initiated by Publisher
(agent will be on the Publisher if local distribution,

or on the Distributor if remote distribution)

PULL: initiated by Subscriber
(agent will be on the subscriber)

Adventure
Works

translog

AW (Publication)

Customers (Article)

PULL

PUSH

FIGURE 19.17 Push or pull subscriptions.

when the publication does not require high security or if subscribing is done intermittently
when the subscriber’s data needs to be periodically brought up to date.

As you can also see in Figure 19.17, a push subscription is created and managed by the
publication and distribution server. In effect, the distribution server and all the agents that
do the work are pushing the publication to the subscription server. The advantage of using
push subscriptions is that all the administration takes place in a central location (on the
publication/distribution server side). In addition, publishing and subscribing happen at
the same time, and many subscribers can be set up at once. This type of subscription is
also recommended when dealing with heterogeneous subscribers because of the lack of
pull capability on the subscription server side.

Anonymous Subscriptions (Pull Subscriptions)

It is possible to have “anonymous” subscriptions. An anonymous subscription is a special
type of pull subscription that can be used in the following circumstances:

. When you are publishing data to the Internet

. When you have a huge number of subscribers

. When you don’t want the overhead of maintaining extra information at the
publisher or distributor

. When all the rules of your pull subscriptions apply to all your anonymous subscribers

Normally, information about all the subscribers, including performance data, is stored on
the distribution server. Therefore, if you have a large number of subscribers or you do not
want to track detailed information about the subscribers, you might want to allow anony-
mous subscriptions to a publication. Then little is kept at the distribution server, but it
then becomes the responsibility of the subscriber to initiate the subscription and to keep
synchronized.

 Download from www.wowebook.com

ptg

564 CHAPTER 19 Replication

SQL Server
2008

Adventure
Works

translog

Publisher

Publication
Server

Distributor

SQL Server
2008

distribution

Remote Distribution
Server

SQL Server
2008

Adventure
Works

translog

Subscriber

Publication
Server

FIGURE 19.18 Tables of the distribution database and the distribution agents.

The Distribution Database

The distribution database is a special type of database installed on the distribution server.
This database, which is as a store-and-forward database, holds all transactions waiting to
be distributed to any subscribers. This database receives transactions from any published
databases that have designated it as their distributor. The transactions are held here until
they are sent to the subscribers successfully. After a period of time, these transactions are
purged from the distribution database. In some special situations, the transactions might
not be purged for a longer period, enabling anonymous subscribers ample time to
synchronize. The distribution database is the heart of the data replication facility. As you
can see in Figure 19.18, the distribution database has several MS tables, such as MSarticles.
These tables contain all the necessary information for the distribution server to fulfill the
distribution role. Following are some of these tables:

. All the different publishers who will use this distribution server—Stored in
the MSpublisher_databases and MSpublication_access tables.

. The publications and articles that will be distributed—Stored in the
MSpublications and MSarticles tables.

. The complete information for all the distribution agents to perform their
tasks—Stored in the MSdistribution_agents table.

. The complete information of the executions of these agents—Stored in the
MSdistribution_history table.

 Download from www.wowebook.com

ptg

565Replication Agents
1

9

FIGURE 19.19 Replication agent jobs. Replication job category entries are prefixed with
REPL-.

. The subscribers—Stored in MSsubscriber_info, MSsubscriptions, and other
related tables.

. Any errors that occur during replication and synchronization states—Stored
in MSrepl_errors, MSsync_state, and related tables.

. The actual commands and transactions that are to be replicated—Stored in
the MSrepl_commands and MSrepl_transactions tables.

. Heterogeneous (non-SQL Server) publishers’ or subscribers’ information—
Kept in the tables whose names begin with IH, such as IHpublishers, that will con-
tain one row for each non-SQL Server publisher for which this distribution server
distributes information.

Replication Agents
SQL Server utilizes replication agents to do different tasks during the replication process.
These agents are constantly waking up at some frequency and fulfilling specific jobs. As you
can see in Figure 19.19, several replication agent categories are listed under the Job Activity
Monitor when you expand the SQL Server Agents branch (SQL Server Agent, Jobs, Job
Activity Monitor branch).

Here are the main replication agent categories:

. Snapshot Agent

. Log Reader Agent

. Distribution Agent

. Merge Agent (for updating subscribers)

. History Cleanup Agent

. Distribution Cleanup Agent

. Expired Subscription Cleanup Agent

 Download from www.wowebook.com

ptg

566 CHAPTER 19 Replication

. Reinitialize Subscriptions Having Data Validation Failures Agent

. Replication Monitoring Refresher for Distribution Agent

. Replication Agent Cleanup Agent

The Snapshot Agent

The snapshot agent is responsible for preparing the schema and initial data files of
published tables and stored procedures, storing the snapshot on the distribution server,
and recording information about the synchronization status in the distribution database.
Each publication has its own snapshot agent that runs on the distribution server. It takes
on the name of the publication within the publishing database within the machine on
which it executes (that is, [Machine][Publishing database][Publication Name]).

Figure 19.19 shows what this snapshot agent looks like under the SQL Server Agent, Job
Activity Monitor branch in SQL Server Management Studio (SSMS). The snapshot agent
(REPL-Snapshot category name) is named DBARCH-LT2\SQL08DE01-AdventureWorks2008-
PUBLISH AdventureWorks2008 – Tra-1. In addition, these agents can be referenced from
the Replication Monitor option (when you launch the Replication Monitor by right-click-
ing from the Replication branch in SQL Server Management Studio). Most often you are
likely to use the SQL Server Agent path to these agents though.

It’s worth noting that the snapshot agent might not even be used if the initialization of
the subscriber’s schema and data is done manually.

The Snapshot Agent Synchronization
The snapshot agent is the process that ensures both databases start on an even playing
field. This process is known as synchronization. The synchronization process is performed
whenever a publication has a new subscriber. Synchronization happens only one time for
each new subscriber. It ensures that database schema and data are exact replicas on both
servers. After the initial synchronization, all updates are made via replication.

When a new server subscribes to a publication, synchronization is performed. When
synchronization begins, a copy of the table schema is copied to a file with the .sch exten-
sion. This file contains all the information necessary to create the table and any indexes
on the tables, if they are requested. Next, a copy is made of the data in the table to be
synchronized and written to a file (or several files) with the .bcp extension. The data file
is a BCP, or bulk copy file. Both files are stored in the temporary working directory on the
distribution server.

After the synchronization process has started and the data files have been created, any
inserts, updates, and deletes are stored in the distribution database. These changes are not
replicated to the subscription database until the synchronization process is complete.

When the synchronization process starts, only new subscribers are affected. Any subscriber
that has been synchronized already and has been receiving modifications is unaffected.
The synchronization set is applied to all servers waiting for initial synchronization. After
the schema and data have been re-created, all transactions that have been stored in the
distribution server are sent to the subscriber.

 Download from www.wowebook.com

ptg

567Replication Agents
1

9

FIGURE 19.20 Snapshot agent execution job history.

When you set up a subscription, it is possible to manually load the initial snapshot onto
the server. This is known as manual synchronization. For extremely large databases, it is
frequently easier to dump the database and then reload the database on the subscription
server. If you load the snapshot this way, SQL Server assumes that the databases are
already synchronized and automatically begins sending data modifications.

Snapshot Agent Processing
Figure 19.20 shows the details of the snapshot agent execution for a typical push subscrip-
tion. You can see the execution history by simply right-clicking the snapshot job and
choosing View History.

The following sequence of tasks occurs with the snapshot agent:

1. The snapshot agent is initialized. This initialization can be immediate or at a desig-
nated time in the company’s nightly processing window.

2. The agent connects to the publisher.

3. The agent generates schema files with the .sch file extension for each article in the
publication. These schema files are written to a temporary working directory on the
distribution server. These are the create table statements and such that will be used
to create all objects needed on the subscription server side. They exist only for the
duration of the snapshot processing.

4. All the tables in the publication are locked (held). The lock is required to ensure that
no data modifications are made during the snapshot process.

5. The agent extracts a copy of the data in the publication and writes it to the tempo-
rary working directory on the distribution server. If all the subscribers are SQL Server
machines, the data is written using a SQL Server native format, with the .bcp file
extension. If you are replicating to databases other than SQL Server, the data is
stored in standard text files with the .txt file extension. The .sch file and .txt

 Download from www.wowebook.com

ptg

568 CHAPTER 19 Replication

FIGURE 19.21 Snapshot agent delivering the snapshot to the subscriber (most recent opera-
tion on the top).

files/.bmp files are known as a synchronization set. Every table or article has a synchro-
nization set.

CAUTION

It’s important to make sure you have enough disk space on the drive that contains the
temporary working directory. The snapshot data files will potentially be huge, and this
size is the most common reason for snapshot failure.

6. As you can see in Figure 19.21, the agent executes the object creations and bulk copy
processing at the subscription server side in the order in which they were generated
(or it skips the object creation part if the objects have already been created on the
subscription server side and you have indicated this during setup). This process takes
awhile, so it is best to do this in an off time so as not to impact the normal process-
ing day. Network connectivity is critical here. Snapshots often fail at this point.

7. The snapshot agent posts the fact that a snapshot has occurred and what
articles/publications were part of the snapshot to the distribution database. This is
the only information sent to the distribution database.

8. When all the synchronization sets are finished being executed, the agent releases the
locks on all the tables of this publication. The snapshot is now considered finished.

 Download from www.wowebook.com

ptg

569Replication Agents
1

9

The Log Reader Agent

The log reader agent is responsible for moving transactions marked for replication from
the transaction log of the published database to the distribution database. Each database
published using transactional replication has its own log reader agent that runs on the
distribution server. It is easy to find because it takes on the name of the publishing data-
base whose transaction log it is reading ([Machine name][Publishing DB name]) and the
REPL-LogReader category. Figure 19.19 shows the log reader agent (REPL-LogReader cate-
gory name) for the AdventureWorks2008 database. It is named DBARCH-LT2\SQL08DE01-
AdventureWorks2008-4.

After initial synchronization has taken place, the log reader agent begins to move transac-
tions from the publication server to the distribution server. All actions that modify data in
a database are logged to the transaction log in that database. This log is used not only in
the automatic recovery process, but also in the replication process. When an article is
created for publication and the subscription is activated, all entries about that article are
marked in the transaction log. For each publication in a database, a log reader agent reads
the transaction log and looks for any marked transactions. When the log reader agent
finds a change in the log, it reads the changes and converts them to SQL statements that
correspond to the action taken in the article. The SQL statements are then stored in a
table on the distribution server, waiting to be distributed to subscribers.

Because replication is based on the transaction log, several changes are made in the way
the transaction log works. During normal processing, any transaction that has either been
successfully completed or rolled back is marked inactive. When you are performing repli-
cation, completed transactions are not marked inactive until the log reader process has
read them and sent them to the distribution server.

Truncating and fast bulk-copying into a table are nonlogged processes. In tables marked
for publication, you cannot perform nonlogged operations unless you temporarily turn off
replication.

NOTE

One of the major changes in the transaction log comes when you have the Truncate
Log on Checkpoint option turned on. When this option is on, SQL Server truncates the
transaction log every time a checkpoint is performed, which can be as often as every
several seconds. With replication, the inactive portion of the log is not truncated until
the log reader process has read the transaction.

The Distribution Agent

A distribution agent moves transactions and snapshot jobs held in the distribution data-
base out to the subscribers. This agent isn’t created until a push subscription is defined for
a subscriber. The distribution agent takes on the name of the publication database along
with the subscriber information ([Machine name][Publication DB name][Subscriber
machine name]). If you look back at Figure 19.19, you see a distribution agent (the REPL-
Distribution category name) for the AdventureWorks2008 database to a subscriber. It is

 Download from www.wowebook.com

ptg

570 CHAPTER 19 Replication

FIGURE 19.22 Distribution agent job history.

named DBARCH-LT2\SQL08DE01--AdventureWorks2008 - PUBLISH AdventureWork -
DBARCH-LT2\SQL08DE03-9, where SQL08DE01 is the publisher and SQL08DE03 is the
subscriber.

Those not set up for immediate synchronization share a distribution agent that runs on
the distribution server. Pull subscriptions, to either snapshot or transactional publications,
have a distribution agent that runs on the subscriber. Merge publications do not have a
distribution agent at all. Rather, they rely on the merge agent, discussed next.

In transactional replication, the transactions have been moved into the distribution data-
base, and the distribution agent either pushes out the changes to the subscribers or pulls
them from the distributor, depending on how the servers are set up. All actions that
change data on the publishing server are applied to the subscribing servers in the same
order they were incurred. Figure 19.22 shows the latest history of the distribution agent
and the total duration of the current subscription (11:20:56:4830000 hours, minutes,
seconds, milliseconds in this example).

The Merge Agent

When you are dealing with merge publications, the merge agent moves and reconciles
incremental data changes that occur after the initial snapshot was created. Each merge
publication has a merge agent that connects to the publishing server and the subscribing
server and updates both as changes are made. In a full merge scenario, the agent first
uploads all changes from the subscriber where the generation is 0 or greater than the last

 Download from www.wowebook.com

ptg

571Replication Agents
1

9

generation sent to the publisher. The agent gathers the rows in which changes were made,
and the rows without conflicts are applied to the publishing database.

A conflict can arise when changes are made at both the publishing server and subscription
server to a particular row(s) of data. A conflict resolver handles these conflicts. Conflict
resolvers are associated with an article in the publication definition. These conflict
resolvers are sets of rules or custom scripts that can handle any complex conflict situation
that might occur. The agent then reverses the process by downloading any changes from
the publisher to the subscriber. Push subscriptions have merge agents that run on the
publication server, whereas pull subscriptions have merge agents that run on the subscrip-
tion server. Snapshot and transactional publications do not use merge agents.

Other Specialized Agents

In Figure 19.19, you can see that several other agents have been set up to do house clean-
ing around the replication configuration:

. Agent history clean up: Distribution—This agent clears out agent history from
the distribution database every 10 minutes (by default). Depending on the size of
the distribution, you might want to vary the frequency of this agent.

. Distribution clean up: Distribution—This agent clears out replicated transactions
from the distribution database every 72 hours by default. This agent is used for snap-
shot and transactional publications only. If the volume of transactions is high, the
frequency of this agent should be adjusted downward so you don’t have too large of
a distribution database. However, the frequency of synchronization with subscribers
drives this frequency adjustment.

. Expired subscription clean up—This agent detects and removes expired subscrip-
tions from the published databases. As part of the subscription setup, an expiration
date is set. This agent usually runs once per day by default. You don’t need to
change this frequency.

. Reinitialize subscriptions having data validation failures—This agent is manu-
ally invoked. It is not on a schedule, but it could be. It automatically detects the
subscriptions that failed data validation and marks them for re-initialization. This
can then potentially lead to a new snapshot being applied to a subscriber that had
data validation failures.

. Replication monitoring refresher for distribution—Microsoft SQL Server
Replication Monitor is designed to efficiently monitor a large number of computers.
The queries that Replication Monitor uses to perform calculations and gather data
are cached and refreshed on a periodic basis. Caching reduces the number of queries
and calculations required as you view different pages in Replication Monitor and
allows monitoring to scale well for multiple users. Cache refresh is handled by the
Replication monitoring refresher for distribution agent. This job runs continuously,

 Download from www.wowebook.com

ptg

572 CHAPTER 19 Replication

but the cache refresh schedule is based on waiting a certain amount of time after the
previous refresh:

If there were agent history changes since the cache was last created, the wait time is
a minimum of 4 seconds or the amount of time taken to create the previous cache.

If there were no agent history changes since the cache was last created, the wait time
is a maximum of 30 seconds or the amount of time taken to create the previous
cache. You don’t need to change this frequency.

. Replication agents checkup—This agent detects replication agents that are not
actively logging history. This checkup is critical because debugging replication errors
is often dependent on an agent’s history that has been logged.

Planning for SQL Server Data Replication
You must consider many factors when choosing a method to distribute data. Your business
requirements determine which is the right method for you. In general, you need to under-
stand the timing and latency of your data, its independence at each site, and your specific
need to filter or partition the data.

Autonomy, Timing, and Latency of Data

Distributed data implementations can be accomplished using a few different facilities in
Microsoft: Integration Services (IS), Distributed Transaction Coordinator (DTC), and Data
Replication. The trick is to match the right facility to the type of data distribution you
need to get done.

In some applications, such as online transaction processing and inventory control systems,
data must be synchronized at all times. This requirement, called immediate transactional
consistency, was known as tight consistency in previous versions of SQL Server.

SQL Server implements immediate transactional consistency data distribution in the form
of two-phase commit processing. A two-phase commit, sometimes known as 2PC, ensures
that transactions are committed on all servers, or the transaction is rolled back on all
servers. This ensures that all data on all servers is 100% in sync at all times. One of the
main drawbacks of immediate transactional consistency is that it requires a high-speed
LAN to work. This type of solution might not be feasible for large environments with
many servers because occasional network outages can occur. These types of implementa-
tions can be built with DTC and IS.

In other applications, such as decision support and report generation systems, 100% data
synchronization all the time is not terribly important. This requirement, called latent trans-
actional consistency, was known as loose consistency in previous versions of SQL Server.

Latent transactional consistency is implemented in SQL Server via data replication.
Replication allows data to be updated on all servers, but the process is not a simultaneous
one. The result is “real-enough-time” data. This is known as latent transactional consis-
tency because a lag exists between the data updated on the main server and the replicated

 Download from www.wowebook.com

ptg

573Planning for SQL Server Data Replication
1

9

data. In this scenario, if you could stop all data modifications from occurring on all
servers, all the servers would eventually have the same data. Unlike the two-phase consis-
tency model, replication works over both LANs and WANs, as well as slow or fast links.

When planning a distributed application, you must consider the effect of one site’s opera-
tion on another. This is known as site autonomy. A site with complete autonomy can
continue to function without being connected to any other site. A site with no auton-
omy cannot function without being connected to all other sites. For example, applica-
tions that utilize two-phase commits rely on all other sites being able to immediately
accept changes sent to them. In the event that any one site is unavailable, no transac-
tions on any server can be committed. In contrast, sites using merge replication can be
completely disconnected from all other sites and continue to work effectively, not guar-
anteeing data consistency. Luckily, some solutions combine both high data consistency
and site autonomy.

Methods of Data Distribution

After you have determined the amount of transactional latency and site autonomy
needed, based on your business requirements, you need to select the data distribution
method that corresponds. Each different type of data distribution has a different amount
of site autonomy and latency. With these distributed data systems, you can choose from
several methods:

. Distributed transactions—Distributed transactions ensure that all sites have the
same data at all times. You pay a certain amount of overhead cost to maintain this
consistency. (We do not discuss this nondata replication method here.)

. Transactional replication with updating subscribers—Users can change data at
the local location, and those changes are applied to the source database at the same
time. The changes are then eventually replicated to other sites. This type of data
distribution combines replication and distributed transactions because data is
changed at both the local site and source database.

. Peer-to-peer replication—A variation on the Transactional replication with updat-
ing subscribers theme is peer-to-peer replication, which is essentially full transac-
tional replication between two (or more) sites, but is publisher-to-publisher (not
update subscriber). There is no hierarchy—publisher (parent) and subscriber (child).

. Transactional replication—With transactional replication, data is changed only at
the source location and is sent out to the subscribers. Because data is changed at
only a single location, conflicts cannot occur.

. Snapshot replication with updating subscribers—This method is much like
transactional replication with updating subscribers; users can change data at the
local location, and those changes are applied to the source database at the same
time. The entire changed publication is then replicated to all subscribers. This type
of replication provides higher autonomy than transactional replication.

 Download from www.wowebook.com

ptg

574 CHAPTER 19 Replication

. Snapshot replication—A complete copy of the publication is sent out to all
subscribers. This includes both changed and unchanged data.

. Merge replication—All sites make changes to local data independently and then
update the publisher. It is possible for conflicts to occur, but they can be resolved.

SQL Server Replication Types
Microsoft has narrowed the field to three major types of data replication approaches within
SQL Server: snapshot, transactional, and merge. Each replication type applies to only a
single publication. However, it is possible to have multiple replication types per database.

Snapshot Replication

Snapshot replication makes an image of all the tables in a publication at a single moment
in time and then moves that entire image to the subscribers. Little overhead on the server
is incurred because snapshot replication does not track data modifications as the other
forms of replication do. It is possible, however, for snapshot replication to require large
amounts of network bandwidth, especially if the articles being replicated are large.
Snapshot replication is the easiest form of replication to set up and is used primarily with
smaller tables for which subscribers do not have to perform updates. An example of this
might be a phone list that is to be replicated to many subscribers. This phone list is not
considered to be critical data, and the frequency of it being refreshed is more than enough
to satisfy all its users.

The primary agents used for snapshot replication are the snapshot agent and distribu-
tion agent.

. The snapshot agent creates files that contain the schema of the publication and the
data. The files are temporarily stored in the snapshot folder of the distribution
server, and then the distribution jobs are recorded in the distribution database.

. The distribution agent is responsible for moving the schema and data from the dis-
tributor to the subscribers.

A few other agents are also used; they deal with other needed tasks for replication, such as
cleanup of files and history. In snapshot replication, after the snapshot has been delivered
to all the subscribers, these agents delete the associated .bcp and .sch files from the
distributor’s working directory.

Transactional Replication

Transactional replication is the process of capturing transactions from the transaction log
of the published database and applying them to the subscription databases. With SQL
Server transactional replication, you can publish all or part of a table, views, or one or
more stored procedures as an article. All data updates are then stored in the distribution
database and sent and applied to any number of subscribing servers. Obtaining these
updates from the publishing database’s transaction log is extremely efficient. No direct
reading of tables is required except during initial snapshot, and only the minimal amount

 Download from www.wowebook.com

ptg

575SQL Server Replication Types
1

9

of traffic is generated over the network. This has made transactional replication the most
often used method.

As data changes are made, they are propagated to the other sites at nearly real-time; you
determine the frequency of this propagation. Because changes are usually made only at
the publishing server, data conflicts are avoided for the most part. As an example, push
subscribers usually receive updates from the publisher in a minute or less, depending on
the speed and availability of the network. Subscribers also can be set up for pull subscrip-
tions. This capability is useful for disconnected users who are not connected to the
network at all times.

The primary agents used for transactional replication are the snapshot agent, log agent,
and distribution agent:

. The snapshot agent creates files that contain the schema of the publication and the
data. The files are stored in the snapshot folder of the distribution server, and the
distribution jobs are recorded in the distribution database.

. The log reader agent monitors the transaction log of the database that it is set up to
service. Each database published has its own log reader agent set up for replication,
and it will copy the transactions from the transaction log of that published database
into the distribution database.

. The distribution agent is responsible for moving the schema and data from the dis-
tributor to the subscribers for the initial synchronization and then moving all the
subsequent transactions from the published database to each subscriber as they
come in. These transactions are stored in the distribution database for a certain
length of time and are eventually purged.

A few other agents deal with the other housekeeping issues surrounding data replication,
such as schema files cleanup, history cleanup, and transaction cleanup.

Merge Replication

Merge replication involves getting the publisher and all subscribers initialized and then
allowing data to be changed at all sites involved in the merge replication at the publisher
and at all subscribers. All these changes to the data are subsequently merged at certain
intervals so that, again, all copies of the database have identical data.

Occasionally, data conflicts have to be resolved. The publisher does not always win in a
conflict resolution. Instead, the winner is determined by whatever criteria you establish.

The primary agents used for merge replication are the snapshot agent and merge agent:

. The snapshot agent creates files that contain the schema of the publication and the
data. The files are stored in the snapshot folder of the distribution server, and the
distribution jobs are recorded in the distribution database. This is essentially the
same behavior as with all other types of replication methods.

 Download from www.wowebook.com

ptg

576 CHAPTER 19 Replication

. The merge agent takes the initial snapshot and applies it to all the subscribers. It
then reconciles all changes made on all the servers, based on the rules you configure.

Preparing for Merge Replication
When you set up a table for merge replication, SQL Server performs three schema changes
to the database. First, it must either identify or create a unique column for each row that
will be replicated. This column is used to identify the different rows across all the differ-
ent copies of the table. If the table already contains a column with the ROWGUIDCOL prop-
erty, SQL Server automatically uses that column for the row identifier. If not, SQL Server
adds a column called rowguid to the table. SQL Server also places an index on this
rowguid column.

Next, SQL Server adds triggers to the table to track changes that occur to the data in the
table and record them in the merge system tables. The triggers can track changes at either
the row or column level, depending on how you set it up. SQL Server supports multiple
triggers of the same type on a table, so merge triggers do not interfere with user-defined
triggers on the table.

Finally, SQL Server adds new system tables to the database that contains the replicated
tables. The MSMerge_contents and MSMerge_tombstone tables track the updates, inserts,
and deletes. These tables rely on rowguid to track which rows have actually been changed.

The merge agent is responsible for moving changed data from the site where it was
changed to all other sites in the replication scenario. When a row is updated, the triggers
added by SQL Server fire off and update the new system tables, setting the generation
column equal to 0 for the corresponding rowguid. When the merge agent runs, it collects
the data from the rows where the generation column is 0 and then resets the generation
values to values higher than the previous generation numbers. This allows the merge
agent to look for data that has already been shared with other sites without having to look
through all the data. The merge agent then sends the changed data to the other sites.

When the data reaches the other sites, the data is merged with existing data according to
rules you have defined. These rules are flexible and highly extensible. The merge agent
evaluates existing and new data and resolves conflicts based on priorities or which data was
changed first. Another available option is that you can create custom resolution strategies
using the Component Object Model (COM) and custom stored procedures. After conflicts
have been handled, synchronization occurs to ensure that all sites have the same data.

The merge agent identifies conflicts using the MSMerge_contents table. In this table, a
column called lineage is used to track the history of changes to a row. The agent updates
the lineage value whenever a user makes changes to the data in a row. The entry into this
column is a combination of a site identifier and the last version of the row created at the
site. As the merge agent is merging all the changes that have occurred, it examines each
site’s information to see whether a conflict has occurred. If a conflict has occurred, the
agent initiates conflict resolution based on the criteria mentioned earlier.

 Download from www.wowebook.com

ptg

577Basing the Replication Design on User Requirements
1

9

Basing the Replication Design on User
Requirements
As mentioned earlier, business requirements drive your replication configuration and
method. In addition, nailing down all the details of the business requirements is the
hardest part of a data replication design process. After you have completed the
requirements gathering, the replication design usually just falls into place from it easily.
The requirements gathering is highly recommended to get a prototype up and running as
quickly as possible to measure the effectiveness of one approach over the other. You must
understand several key aspects to make the right design decisions, including the following:

. What is the number of sites, and what is the site autonomy in the scope (location)?

. Which sites have the master data (data ownership)?

. What is the data latency requirement (by site)?

. What types of data accesses are being made (by site)?

. Reads

. Writes

. Updates

. Deletes

This information needs to include exactly what data and data subsets that drive
filtering are needed for the data accesses (by site).

. What is the volume of activity/transactions, including the number of users (by site)?

. How many machines do you have to work with (by site)?

. What are the available processing power (CPU and memory) and disk space on each
of these machines (by site)?

. What are the stability, speed, and saturation level of the network connections
between machines (by site)?

. What is the dial-in, Internet, or other access mechanism requirement for the data?

. What potential subscriber or publisher database engines are involved?

Figure 19.23 shows the factors that contribute to replication designs and the possible data
replication configuration that would best be used. It is only a partial table because of the
numerous factors and many replication configuration options available. However, it gives
a good idea of the general design approach described here. Perhaps 95% of user require-
ments can be classified fairly easily. The other 5% might take some imagination in deter-
mining the best overall solution. Depending on the requirements that need to be

 Download from www.wowebook.com

ptg

578 CHAPTER 19 Replication

FIGURE 19.23 Replication design factors.

supported, you might even end up with a solution using something like database mirror-
ing or other distribution techniques.

Data Characteristics

You need to analyze the underlying data types and characteristics thoroughly. Issues such
as collation or character set and data sorting come into play. You must be aware of what
they are set to on all nodes of your replication configuration. SQL Server 2008 does not
convert the replicated data and might even mistranslate the data as it is replicated because
it is impossible to map all characters between character sets. It is best to look up the char-
acter set “mapping chart” for SQL Server replication to all other data target environments.
Most are covered well, but problems arise with certain data types, such as image,
timestamp, and identity. Sometimes, using the Unicode data types at all sites is best for
consistency. Following is a general list of issues to watch out for in this regard:

. Collation consistency across all nodes of replication.

. Time stamp column data in replication. It might not be what you think.

. identity, uniqueidentifier, and guid column behavior with data replication.

. text or image data types to heterogeneous subscribers.

. Missing or unsupported data types because of prior versions of SQL Server or hetero-
geneous subscribers as part of the replication configuration.

 Download from www.wowebook.com

ptg

579Setting Up Replication
1

9

FIGURE 19.24 SQL Server 2008 replication object limitations.

. Maximum row size limitations between merge replication and transactional replica-
tion.

Figure 19.24 lists further SQL Server 2008 replication object limitations.

NOTE

If you have triggers on your tables and you want them to be replicated along with your
table, you might want to add the line of code NOT FOR REPLICATION so that the trigger
code isn’t executed redundantly on the subscriber side.

Setting Up Replication
In general, SQL Server 2008 data replication is exceptionally easy to set up via SQL Server
Management Studio wizards. However, if you use the wizards, you need to be sure to
generate SQL scripts for every phase of replication configuration. In a production environ-
ment, you are likely to rely heavily on scripts and not have the luxury of having much
time to set up and break down production replication configurations via wizards.
Generating SQL scripts also eases the setup/breakdown process in development, test, and
user acceptance environments.

You always have to define any data replication configuration in the following order:

1. Create or enable a distributor to enable publishing.

2. Enable publishing. (A distributor must be designated for a publisher.)

3. Create a publication and define articles within the publication.

4. Define subscribers and subscribe to a publication.

Figure 19.25 shows SQL Server Management Studio Object Explorer with three separate
server connections. These three servers represent a possible replication topology.

 Download from www.wowebook.com

ptg

580 CHAPTER 19 Replication

FIGURE 19.25 Three servers to be used in the replication topology (central publisher, remote
distributor, and subscriber).

The following section takes you through the process of building up a typical central
publisher/remote distribution data replication configuration. The following SQL Server
named instances are used for different purposes (as shown in Figure 19.25):

. Publisher—A SQL08DE01 named instance

. Distributor—A SQL08DE02 named instance (REMOTE distributor)

. Subscriber—A SQL08DE03 named instance

The following section highlights the different areas in SQL Server Management Studio that
are needed to create this replication configuration.

Creating a Distributor and Enabling Publishing

Before setting up a publisher, you have to designate a distribution server to be used by
that publisher. As discussed earlier, you can either configure the local server as the distrib-
ution server or choose a remote server as the distributor (not on the same machine as the

 Download from www.wowebook.com

ptg

581Setting Up Replication
1

9

FIGURE 19.26 Configuring a separate distributor (REMOTE) wizard.

publication server). You can configure the server as a distributor and publisher at the
same time, or you can configure the server as a dedicated distributor on the remote server
separately. In the sample topology described here, you start by creating a remote distribu-
tor separately so you can orient yourself to what is happening on each server in the
topology as it is being built up. You are also able to enable a specific SQL Server instance
as the publisher that will use this distributor (all in one wizard sequence). This method is
very efficient.

Before you can configure replication, you must be a member of the sysadmin server role,
so you should ensure that now. Then you use the following steps to configure a server as a
distributor (remote distributor):

1. In SQL Server Management Studio, locate the Replication node under the server
that will be the distributor (under the SQL08DE02 named instance node). Right-click
the Replication node and choose Configure Distribution. This starts you through
the wizard, which provides three options:

. Configure this server to be a distributor.

. Configure this server to be both a publisher and distributor.

. Configure this server to be a publisher that uses another server as its distributor.

2. When the wizard starts, click past the initial Configure Distribution Wizard splash
page. Then choose the first radio button, which should say ’DBARCH-
LT2\SQL08DE02’ Will Act as Its Own Distributor (as shown in Figure 19.26). This
designates this server as a distributor for one or more publishers. The distribution
database and log are created here as well (and not on the publication server).

 Download from www.wowebook.com

ptg

582 CHAPTER 19 Replication

FIGURE 19.27 Specification of the distribution database name and location.

3. You are then asked how you want the replication agents to be started. Select the
agents to be started automatically (the Yes option).

4. Next comes the location for the snapshot folder. Give it the proper network full
pathname. Remember that potentially a large amount of data will be coming here,
and it should be on a drive that can support the snapshot concept without filling
up the drive.

5. When you are asked to configure the distribution database, select the default settings.
Figure 19.27 shows all the distribution database name and location information.

6. Identify the publisher if you know which SQL Server instance will be publishing the
data that this distributor will distribute for. To do this, click the Add button at the
bottom-left corner of the Publishers page to enable servers to use this distributor
when they become publishers. You are prompted for the server name and authenti-
cation method for the distributor to reach this publisher. Specify DBARCH-
LT2\SQL08DE01 as a publisher that will use this distributor. The end result, as shown
in Figure 19.28, is DBARCH-LT2\SQL08DE01 designated (checked) as a publisher that
will use this distribution database (distributor). Remember to uncheck the SQL Server
named instance of the distribution server if you don’t want to publish from that
server (the SQL08DE02 named instance).

7. Specify a distributor password. This is the password that will be used by publishers to
connect to the distributor. You will be able to administer this password through SQL
Server Management Studio directly. The wizard then summarizes what actions you
want to take place, such as configure the distribution server or generate a script file
with steps to configure distribution. Choose both. It’s always good to have the
scripts created now so you can start script-based configurations immediately. A

 Download from www.wowebook.com

ptg

583Setting Up Replication
1

9

FIGURE 19.28 Designate the publisher that will use this remote distributor.

FIGURE 19.29 Completing the configuration of the distributor and enabling the publisher.

Complete the Wizard page is displayed, describing all the tasks that are about to hap-
pen, along with their configuration specifications. Figure19.29 show this summary.

When you click Finish, several things begin to occur. First, a configuring dialog page
comes up and spins its wheels through each step you have requested (as shown in Figure
19.30). A summary of steps, errors, and warnings is displayed on this page. When it
completes, you can explore any issues (errors or warnings) by drilling down in the Report

 Download from www.wowebook.com

ptg

584 CHAPTER 19 Replication

FIGURE 19.30 Configuring the distributor and enabling a publisher in progress.

option (lower-right side of this dialog). Make sure you see Success after each step of this
configuration.

Now is probably a good time to locate that distributor setup and enabling publication
script and drop it into your replication administrator folder that you keep in a safe place.
Figure 19.31 shows what this script looks like. Notice that the password is not displayed.
The details of these scripts are described later in this chapter, in the “Scripting
Replication” section.

When the distributor is configured and the distribution database is created, a series of
replication agents (managed by SQL Server Agent) are created, with various duties, as
described earlier in this chapter. Figure 19.32 shows the initial set of agents created on the
distribution server (as seen from the Job Activity Monitor under the SQL Server Agent). No
agents exist yet that actually publish data or distribute data. Those agents are created later,
as you start publishing and subscribing.

Creating a Publication

When the distribution database has been created and publishing has been enabled on the
server, you can create and configure a publication. In SQL Server Management Studio, you
start by locating the Replication node under the publication server from which you want
to publish data (the DBARCH-LT2\SQL08DE01 named instance in this example). Figure 19.33
shows the program item option when you right-click the Replication node under what
will be the publication server. As you can see, there are three options; one to create a new
publication, one to create a new Oracle publication, and one to create a new subscription.

 Download from www.wowebook.com

ptg

585Setting Up Replication
1

9

FIGURE 19.31 The script generated for creating the distributor and enabling a publisher.

FIGURE 19.32 Initial replication agents on the distributor.

 Download from www.wowebook.com

ptg

586 CHAPTER 19 Replication

FIGURE 19.33 The New Publication item option on the server that will be the publisher.

You should choose to create a new publication (the first option). When you do, the New
Publication Wizard is launched.

Here’s how you create a new publication:

1. The first New Publication Wizard page outlines the two things that can be done with
this wizard. The options are “Select the data and database objects you want to repli-
cate” and “Filter the published data so that subscribers receive only the data they
need.” After this splash page, you need to specify how you want to distribute the
data for this new publication. As you can see in Figure 19.34, you should use a
remote distributor (the DBARCH-LT2\SQL08DE02 named instance) to distribute data for
this new publication you are defining.

2. When you are asked to provide a password that will be used to establish the admin-
istrative link to the distributor, supply it. It should be the same one you specified
earlier when setting up the distribution server.

3. Identify the database on which you are going to set up a publication (see Figure
19.35). For this example, choose to create a publication on the
AdventureWorks2008 database.

4. Choose the type of replication method for this publication: Snapshot Publication,
Transactional Publication, Transactional Publication with Updateable Subscriptions,
or Merge Publication Method of Replication. For this example, select Transactional
Publication.

 Download from www.wowebook.com

ptg

587Setting Up Replication
1

9

FIGURE 19.34 Specifying the remote distribution server for the new publication.

FIGURE 19.35 Choosing the database that contains the data or objects you want to publish.

5. Next, you are presented with the place where you specify what tables and other
objects to publish. These will become your articles. You can specify filtering of any
selected articles, where appropriate. To keep this simple, just choose the primary
stored procedures, views, indexed views, user-defined functions, and tables of the
AdventureWorks2008 database for this publication. (You do not select any filtering at
this time.) Figure 19.36 shows the Articles specification page. Also in Figure 19.36,
you can view the article properties that dictate how all article objects should be
handled by replication (via the Article Properties button in the upper-right corner of
this wizard screen). An example of this is specifying the delete delivery format
behavior for this publication (for all tables) to be Do Not Replication Delete
Statements or Use Stored Procedures to Do the Deletes and not individual delete
statements.

 Download from www.wowebook.com

ptg

588 CHAPTER 19 Replication

FIGURE 19.36 Choosing the tables and other objects that determine the articles to publish.

The next wizard screen carefully analyzes what you are asking to become articles and
highlights any dependencies that must be considered as part of replication. A good
example of an article issueis that indexed views require the tables to which they are
bound to be part of the replication.

6. When the Snapshot Agent wizard configuration screen prompts you to either create a
snapshot immediately or at some scheduled time and to keep the snapshot available
to initialize subscriptions, select to create a snapshot immediately and keep it avail-
able to initialize the subscription. As part of this snapshot agent creation, you have to
specify under what security credentials you want the agent security to run. In addi-
tion, you can specify if you want the log reader agent to use the same security settings
as the snapshot agent. The rule of thumb here is to keep it simple and let these agents
use the same security settings (as shown in Figure 19.37).

7. The wizard now has enough information to create the publication. When the wizard
actions are summarized for you, choose to create the publication and generate a
script file with all the steps to create the publication in it. Again, this script genera-
tion part is highly recommended. You certainly don’t want to have to go through
this wizard over and over. Once is enough.

8. When the summary of all choices made in the creation of a new publication is listed
in the Complete the Wizard screen, name the publication appropriately. Your publi-
cation names should contain the type of publication method being used (for exam-
ple, Snapshot, Transactional, Merge) and any other identifying qualifier that seems
appropriate (usually reflecting the scope of the publication). Figure 19.38 shows this
summary of actions and the publication name PUBLISH AdventureWorks2008 -
Transactional.

 Download from www.wowebook.com

ptg

589Setting Up Replication
1

9

FIGURE 19.37 Agent security for snapshot agent and log reader agent.

FIGURE 19.38 Publication action summary and naming the publication before it is created.

 Download from www.wowebook.com

ptg

590 CHAPTER 19 Replication

FIGURE 19.39 The publication steps and status, along with the report generated during this
process.

The actual creation of the publication is next. An action progress screen appears, showing
each step (action) and indicating any errors or warnings occurring in the publication
creation process. To view any errors or warnings, you simply click the Report button in
the lower-right side after the processing completes. As you can see in Figure 19.39, this
report lists, by name, all articles created and that the snapshot agent is starting. This is
where all the initial action takes place.

As part of this process, several new agents (jobs) are added; they implement this publica-
tion using the designated distributor. There are no subscribers yet; they come later. Figure
19.40 shows the new jobs (agents) and publication entries. You are now ready to create
subscriptions against this publication.

As you can see in Figure 19.41, if you launch Replication Monitor (from the Replication
node under the publication server), you can see the newly created publication and its
status, and you have access to any servers subscribing to it (none yet), along with the
common replication jobs that are servicing this publication.

Because you chose to execute the snapshot immediately, the snapshot executes and
utilizes the snapshot folder to generate the schema files (.sch files), data snapshot files

 Download from www.wowebook.com

ptg

591Setting Up Replication
1

9

FIGURE 19.40 SQL Server Management Studio and the new publication agents (snapshot
agent, distribution agent, and so on) and the new local publication.

FIGURE 19.41 Replication Monitor, viewing the status of the newly created publication (from
the publisher).

 Download from www.wowebook.com

ptg

592 CHAPTER 19 Replication

FIGURE 19.42 Contents of the snapshot folder produced for the publication.

(.bcp), and so on to fully enable a subscription when one is created. Figure 19.42 shows
the contents of the snapshot folder being used for the publication of the
AdventureWorks2008 publication. Remember that this folder must be located in a place
that is big enough to contain all the data that will be extracted and used for the snapshot;
plan ahead.

Horizontal and Vertical Filtering

During the publication creation process, you could have done some filtering of the data,
either horizontally or vertically (or both at the same time). The concept of filtering was
covered earlier in this chapter. Figure 19.43 illustrates all you need to do to vertically filter
(in terms of limiting what gets published to a subset of columns of a table). As you can
see, you uncheck the AccountNumber column for the Customer table so that it isn’t
included in the article for that object in this publication. This might be done because
account number information needs to be more tightly controlled within your company
and shouldn’t be part of what is viewed by any subscribing systems.

In addition, you can specify horizontal filters by using the Filter Rows option on a publi-
cation (publication properties). This allows you to specify horizontal filtering on any
table you publish. Figure 19.44 shows a typical row filter on the Customer table that
results in publishing North East Territory customers only (that is, those with TerritoryID
values of 1 or 2).

 Download from www.wowebook.com

ptg

593Setting Up Replication
1

9

FIGURE 19.43 Specifying a vertical filter on the Customer table (limiting the columns to be
published).

FIGURE 19.44 Specifying a horizontal filter on the Customer table (limiting the rows to be
published).

 Download from www.wowebook.com

ptg

594 CHAPTER 19 Replication

FIGURE 19.45 Specifying a join filter on the SalesOrderHeader table (limiting the sales
rows that will be published by joining for the North East customers only).

Join filtering allows you to limit the rows you will publish, via join criteria, to another table.
Figure 19.45 shows a complex join that filters SalesOrderHeader rows that correspond to
North East Territory customers only (that is, those with TerritoryID values of 1 or 2).

Creating Subscriptions

Now that you have installed and configured the distributor, enabled publishing, and
created a publication, you can create subscriptions.

Remember that two types of subscriptions can be created: push or pull. Pull subscriptions
allow remote sites to subscribe to any publication that they are allowed to, but for this to
work, you must be confident that the administrators at the other sites have properly
configured the subscriptions at their sites. Push subscriptions are easier to create because
all the subscription processes are performed and administered from the publication/distrib-
utor point of view. This also makes using them the most common approach.

For this example, we use the New Subscription Wizard to create a push subscription:

1. In SQL Server Management Studio, locate the Replication node under the publica-
tion server (the DBARCH-LT2\SQL08DE01 named instance in this example) or the
Replication node under the subscription server (the DBARCH-LT2\SQL08DE03 named
instance in this example). You can create a push subscription from either (but we use
the subscription server here). Open the Replication node, navigate to the Local
Subscription branch, right-click, and choose the New Subscriptions option. As you
can see in Figure 19.46, choosing this option launches the New Subscription Wizard,
where you can create one or more subscriptions to a publication and specify where
and when to run the agents that synchronize the subscription.

 Download from www.wowebook.com

ptg

595Setting Up Replication
1

9

FIGURE 19.46 Launching the New Subscription Wizard from SQL Server Management Studio.

FIGURE 19.47 Identifying the publication from which to subscribe.

2. You first need to identify the publisher and publication from which you want to
create one or more subscriptions. As you can see in Figure 19.47, we have specified
the publisher (DBARCH-LT2\SQL08DE01) and the publication that has been created for
the AdventureWorks2008 database.

 Download from www.wowebook.com

ptg

596 CHAPTER 19 Replication

FIGURE 19.48 Run all agents at the Distributor (push subscriptions).

3. When you are presented with the option of where the replication agents will be run
for the subscription, choose the first option—having the agents run at the distributor.
This makes it a push subscription, which is much easier to control and manage
centrally than a pull subscription (as shown in Figure 19.48).

4. Next, the New Database dialog appears, asking you to identify the database target for
the subscription and the physical database files for its allocation (assuming that you
want to create this from scratch using this wizard process). Figure 19.49 shows this
New Database dialog, with the target database named AdventureWorks2008ODS.
Essentially, we have decided to create a subscription that will continuously flow data
from the publisher to the subscriber for all tables in the publication. This continuous
replication at the transactional level effectively creates a mirror image of the data for
operational usage. That’s why we have used the suffix ODS, for Operational Data
Store, for the new database. This is a typical industry usage of replication that takes
all read-only access to OLTP data and offloads it to the ODS copy of the same data
(which is as close to up-to-date as the last transaction that was replicated to it).

5. In the Subscribers screen, with the new entry for the target subscriber server (the
DBARCH-LT2\SQL08DE03 named instance in this example), check the box for the
target subscription server. Figure 19.50 shows this subscriber server and the subscrip-
tion database target.

6. Specify the process account and connection options for the distribution agent (to
connect to the subscription server). Typically, you choose the option to use a domain
account or choose to impersonate the process account (shown in Figure 19.51).

7. Specify the synchronization schedule for each agent. You want the distribution agent
to run continuously, but you also have the options to run on a schedule and on
demand (as shown in Figure 19.51).

 Download from www.wowebook.com

ptg

597Setting Up Replication
1

9

FIGURE 19.49 The New Database dialog specifying the target database
(AdventureWorks2008ODS).

FIGURE 19.50 Specifying the subscription server target database.

 Download from www.wowebook.com

ptg

598 CHAPTER 19 Replication

FIGURE 19.51 Distribution Agent Security and Synchronization Schedule for the subscription
(Run Continuously).

8. Specify the initialization of the subscription. You want the subscription to be initial-
ized immediately, but, depending on the size of the database, this might be accom-
plished manually with a database backup of the publication database.

9. On the next screen, which lists the New Subscription Wizard actions, choose to
create the subscription and generate a script file with all the steps to create the
subscription for use later.

10. On the next wizard dialog, identify the location of the script to be generated. As
shown in Figure 19.52, you are presented with the final wizard summary screen.
Click Finish to create your subscription, initialize the subscription database, and
enjoy a full transactional replication implementation.

After you click Finish, the create subscription process starts and goes through each
step. Remember to check for errors or warnings if any errors occur. When this
process completes, you wait for the agents to initialize the target database and start
replication to the subscriber. If you have specified that the schema and data be
created immediately, things start happening quickly. The distribution agent finishes
the job. As you can see in Figure 19.53, the distribution agent applies the schemas to
the subscriber (as viewed from the Replication Monitor’s Distributor to Subscriber
History tab). The bulk copying of the data into the tables on the subscriber side
follows accordingly. After this bulk copying is done, the initialization step is
completed, and active replication begins.

 Download from www.wowebook.com

ptg

599Setting Up Replication
1

9

FIGURE 19.52 The New Subscription Wizard summary.

FIGURE 19.53 Delivering schemas and data to the subscriber.

 Download from www.wowebook.com

ptg

600 CHAPTER 19 Replication

FIGURE 19.54 Transactions replicating to the subscriber (pushed).

The complete replication buildup is finished, and you should be fully functional for repli-
cating transactions to the subscriber.

Figure 19.54 shows what the replication buildup looks like from the Replication Monitor
as transactions flow through the replication topology. This screenshot shows the transac-
tion counts and commands being delivered on the last leg in the journey (from the
distributor to a subscriber). Figure 19.55 shows the full replication topology that was built
(Publisher, Distributor and Subscriber).

Your replication topology is now completely functional and will replicate flawlessly for as
long as you require.

Scripting Replication
Earlier, it was strongly suggested that you generate SQL scripts for all that you do because
going through wizards every time you have to configure replication is a difficult way to
run a production environment. In the example in the preceding section, you always chose
to generate these scripts as you built up the replication configuration. This was only half
the scripts needed, however. You must also generate the breakdown scripts (that is, those
that drop and remove replication components) to remove each component of the replica-
tion topology in case you need to start from scratch or, as an example, rebuild a subscriber
that is completely nonfunctional. As you can see in Figure 19.56, SQL Server Management
Studio has a great feature that allows the complete generation of all aspects of replication
topology (including disabling and removing replication).

 Download from www.wowebook.com

ptg

601Scripting Replication
1

9

FIGURE 19.55 Full replication topology that was built (Publisher, Distributor, Subscriber).

FIGURE 19.56 A script-generation feature for all replication topology components.

NOTE

Remember that working from scripts minimizes the errors you make while supporting
your data replication environments (especially at 3:00 a.m.).

 Download from www.wowebook.com

ptg

602 CHAPTER 19 Replication

The following example shows the SQL scripts needed to generate the part of the data repli-
cation configuration you just built with the wizard:

-- From distribution Server --

/****** Scripting replication configuration. Script Date: 6/30/2009 10:49:03 AM

******/

/****** Please Note: For security reasons, all password parameters were scripted

with either NULL or an empty string. ******/

/****** Begin: Script to be run at Distributor ******/

/****** Installing the server as a Distributor. Script Date: 6/30/2009 10:49:03 AM

******/

use master

exec sp_adddistributor @distributor = N’DBARCH-LT2\SQL08DE02’, @password = N’’

GO

-- Adding the agent profiles

-- Updating the agent profile defaults

exec sp_MSupdate_agenttype_default @profile_id = 1

GO

exec sp_MSupdate_agenttype_default @profile_id = 2

GO

exec sp_MSupdate_agenttype_default @profile_id = 4

GO

exec sp_MSupdate_agenttype_default @profile_id = 6

GO

exec sp_MSupdate_agenttype_default @profile_id = 11

GO

-- Adding the distribution databases

use master

exec sp_adddistributiondb @database = N’distribution’, @data_folder = N’C:\

Program Files\Microsoft SQL Server\MSSQL10.SQL08DE02\MSSQL\Data’, @data_file =

N’distribution.MDF’, @data_file_size = 6, @log_folder = N’C:\Program Files\

Microsoft SQL Server\MSSQL10.SQL08DE02\MSSQL\Data’, @log_file =

N’distribution.LDF’, @log_file_size = 3, @min_distretention = 0,

@max_distretention = 72, @history_retention = 48, @security_mode = 1

GO

-- Adding the distribution publishers

exec sp_adddistpublisher @publisher = N’DBARCH-LT2\SQL08DE01’, @distribution_db =

N’distribution’, @security_mode = 1, @working_directory = N’C:\Program

Files\Microsoft SQL Server\MSSQL10.SQL08DE02\MSSQL\ReplData’, @trusted = N’false’,

 Download from www.wowebook.com

ptg

603Monitoring Replication
1

9

@thirdparty_flag = 0, @publisher_type = N’MSSQLSERVER’

GO

/****** End: Script to be run at Distributor ******/

use master

GO

The complete set of buildup and breakdown scripts for the example used here are available
on this book’s CD. They are labeled CreatingXXX.sql for the buildup scripts and
RemoveXXX.sql for the breakdown scripts.

Monitoring Replication
After replication is up and running, it is important for you to monitor it and see how
things are running. You can do this in several ways, including using SQL statements, SQL
Server Management Studio, and Windows Performance Monitor. You are interested in the
agent’s successes and failures, the speed at which replication is done, and the synchroniza-
tion state of tables involved in replication. Other issues to watch for are the sizes of the
distribution database, growth of the subscriber databases, and available space on the distri-
bution server’s snapshot working directory.

Replication Monitoring SQL Statements

One way to look at the replication configuration and validate row counts, for example, is
to use various replication stored procedures, including the following:

. sp_helppublication—Information on the publication server

. sp_helparticle—Article definition information

. sp_helpdistributor—Distributor information

. sp_helpsubscriberinfo—Subscriber server information

. sp_helpsubscription—Subscription information

These stored procedures are all extremely useful for verifying exactly how the replication
configuration is really configured. If you execute these stored procedures (from the publi-
cation database), you get a great documentation of your complete replication topology
that can be included in run books or other system documentation. Here’s what you might
do to see how the current replication configuration has been built out:

use AdventureWorks2008

go

exec sp_helppublication

exec sp_helparticle @publication=’PUBLISH AdventureWorks2008 - Transactional’

exec sp_helpdistributor

exec sp_helpsubscriberinfo

exec sp_helpsubscription

go

 Download from www.wowebook.com

ptg

604 CHAPTER 19 Replication

It yields this result:

1 PUBLISH AdventureWorks2008 - Transactional 0 1 1 0

--

1 Address [Person].[Address] Address

2 AddressType [Person].[AddressType] AddressType

3 AWBuildVersion [dbo].[AWBuildVersion] AWBuildVersion

4 BillOfMaterials [Production].[BillOfMaterials] BillOfMaterials

5 Contact [Person].[Contact] Contact

6 ContactCreditCard [Sales].[ContactCreditCard] ContactCreditCard

7 ContactType [Person].[ContactType] ContactType

...

In addition, sp_replcounters shows the activity of this replication session. You can see
the volume of traffic and the throughput here:

exec sp_replcounters

go

It yields this result:

database repl_trans rate trans/sec latency (sec) etc.

AdventureWorks2008 0 1562.5 1.243

For actual row count validation, you can use sp_publication_validation, which goes
through and checks the row counts of the publication and subscribers:

exec sp_publication_validation @publication

= ‘PUBLISH AdventureWorks2008 - Transactional’

go

It yields this result:

Generated expected rowcount value of 19614 for Address.

Generated expected rowcount value of 6 for AddressType.

Generated expected rowcount value of 1 for AWBuildVersion.

Generated expected rowcount value of 2679 for BillOfMaterials.

Generated expected rowcount value of 19972 for Contact.

Generated expected rowcount value of 19118 for ContactCreditCard.

Generated expected rowcount value of 20 for ContactType.

Generated expected rowcount value of 238 for CountryRegion.

Generated expected rowcount value of 109 for CountryRegionCurrency.

Generated expected rowcount value of 19118 for CreditCard.

Generated expected rowcount value of 8 for Culture.

 Download from www.wowebook.com

ptg

605Monitoring Replication
1

9

Another way to monitor replication is to look at the actual data being replicated. To do
this, you first run the SELECT count (*) FROM tblname statement against the table where
data is being replicated. Then you verify directly whether the most current data available
is in the database. If you make a change to the data in the published table, do the changes
show up in the replicated tables? If not, you might need to investigate how replication
was configured on the server.

If you are allowing updatable subscriptions, the replication queue comes into play. You
need to learn all about the queueread command prompt utility. This utility configures and
begins the queue reader agent, which reads messages stored in the SQL Server queue or a
Microsoft message queue and applies those messages to the publisher.

To help you visualize how replication works, and to help you monitor replication, the
following sample stored procedure, called REPL_ROWS_GENERATOR, takes one parameter (the
number of rows [new customers in the Customer table] you want to have inserted at a
time) and generates new rows in the Customer table that can reflect different data activity
that will be published (this stored procedure has been included on the CDROM for this
book. Pull it off the CDROM and create it quickly within the AdventureWorks2008
Database.):

Use AdventureWorks2008

Go

--

-- generate 500 new customers for replication testing --

--

exec REPL_ROWS_GENERATOR 500

go

This example shows how to execute this stored procedure to insert 500 new customers. If
you don’t supply any parameter, the default is 100 new customers. Try it out.

The following messages appear after you execute the REPL_ROWS_GENERATOR stored procedure:

INSERTING ROW: 1

INSERTING ROW: 2

INSERTING ROW: 3

INSERTING ROW: 4

INSERTING ROW: 5

INSERTING ROW: 6

INSERTING ROW: 7

INSERTING ROW: 8

INSERTING ROW: 9

INSERTING ROW: 10

...

INSERTING ROW: 500

 Download from www.wowebook.com

ptg

606 CHAPTER 19 Replication

FIGURE 19.57 The executing REPL_ROWS_GENERATOR stored procedure for testing data
replication.

Figure 19.57 shows this stored procedure, which is included on the CD for this book.

Monitoring Replication within SQL Server Management Studio

As you can imagine, SQL Server Management Studio provides considerable information
about the status of replication. Most of this information is available via Replication
Monitor. In Replication Monitor, you can see the activity for publishers, distributors, and
subscribers; you can see all agent details; and you can configure alerts.

Through Replication Monitor, you also can invoke validation subscriptions processing to
see if replication is in sync. You just navigate to the publication whose subscription you
want to validate, right-click, and choose Validate Subscription option. This allows you to
verify that the subscriber has the same number of rows of replicated data as the
publisher. You can validate all subscriptions or just a particular one. Validation options
are extensive and include using fast row count methods, actual row count methods, and
even checksum comparisons of row data. This is a huge feature for SQL Server 2008.
Figure 19.58 shows the results of running a complete subscription validation.

Another great feature to help monitor replication is tracer tokens. Essentially, you create a
marker (called a token) that flows through the full replication topology (from publisher to
distributor to subscriber). It does not affect data tables! This flow is monitored and
measured, down to the millisecond, and is for a specific publisher-to-subscriber path.
Figure 19.59 shows the Tracer Tokens tab of the Replication Monitor and the Insert Tracer

 Download from www.wowebook.com

ptg

607Monitoring Replication
1

9

FIGURE 19.58 Validation of subscriptions via Replication Monitor.

FIGURE 19.59 Tracer tokens for monitoring data replication throughput.

button that you can click to fire off the token through the topology. You can click this
button to quickly see where bottlenecks exist (for example, from publisher to distributor,
from distributor to subscriber) and the latency of the data flow along the way. In this
example, it took the tracer token 2 seconds in total to traverse from the publisher to the
distributor and to the subscriber.

 Download from www.wowebook.com

ptg

608 CHAPTER 19 Replication

Troubleshooting Replication Failures

Configuring replication and monitoring for successful replication is relatively easy. The
fun begins when failures start arising. Replication Monitor pays for itself quickly. Red flags
begin appearing to indicate agent failures. Depending on how you have the alerts defined,
you probably also get numerous emails or pages.

The following are the most common issues you find with data replication:

. Data row count inconsistencies, as discussed in the preceding section

. Subscriber/publisher schema change failures

. Connection failures

. Agent failures

For the conventional replication situations, if the problem is with the validation of
subscriptions processing, it is usually best to resynchronize the subscription by dropping it
and resubscribing or by reinitializing the subscription.

Another common issue is that the SQL Server Agent service doesn’t start. Manually
attempting to restart this service usually shakes things loose. Sometimes an object on the
subscriber becomes messed up. The solution is usually to create that object again and
reload its data via BCP or IS. Then you can resynchronize the subscription. In such a case,
the subscription included this object originally, but it has become invalid in some way.
With a heterogeneous subscriber, you often see connection errors due to invalid login IDs
used in the ODBC connection. The quick fix is usually to just redefine the ODBC data
source connection information.

A much more complex failure can arise when the replication queue is stopped due to
some type of SQL language failure in the command being replicated. This situation is
extremely serious because it stops all replication from continuing, and the distribution
database starts growing rapidly. Replication keeps trying to execute, but it fails each time.
This situation is essentially a permanent roadblock. The solution is to locate the exact
transaction in the distribution database and delete it physically from the transaction
queue. This action is highly unusual, but it is necessary when the circumstance presents
itself. First, by looking at the error detail information in the distribution agent history,
you can isolate the SQL statement on which it is choking. Then you have to find it in the
distribution database. You start by executing the sp_browsereplcmds stored procedure
from the distribution database. This gives you all the replication transactions (that is, each
xact_seqno) along with the associated SQL command. You have to pump this to a text file
for searching. You then search this data for the matching SQL command. When you
locate it, you look for its associated transaction number (xact_seqno). You use this
xact_seqno value to delete it from the Msrepl_commands table in the distribution database.
This frees up the roadblock. You see this type of issue only about once every six months, if
at all (it is hoped).

 Download from www.wowebook.com

ptg

609Monitoring Replication
1

9

FIGURE 19.60 Peer-to-peer wizard launch.

New and Improved Peer-to-Peer Replication

For data distribution requirements that must have updates in multiple nodes, peer-to-peer
replication is ideal. You must worry about conflicts, but typically they are rare and very
easily handled by a simple conflict handler. Peer-to-peer replication is transactional replica-
tion based, and can have any number of peers. A separate wizard is used to set up peer-to-
peer replication because of its unique characteristics. Remember, there are essentially no
subscribers, just publishers. All peers are handled by one or more distributors and are
assigned a unique peer originator ID value to help in transactional consistency and conflict
resolution. If you have been doing replication since the SQL Server 6.5 days, the peer-to-
peer configuration topology viewer is much like that old user interface. Figure 19.60 shows
the special invocation of peer-to-peer creation from SQL Server Management Studio.

You basically create publications that become shared in the peer-to-peer topology. You
add “nodes” on an equal hierarchical level that participate in the publication equally. You
can add any number of peers (nodes), and new in SQL Server 2008, this can be done
without interrupting the existing replication topology. Figure 19.61 shows the setup of a
publication for a database named REPLTEST_PEER2PEER and the addition of two nodes to
the topology.

 Download from www.wowebook.com

ptg

610 CHAPTER 19 Replication

FIGURE 19.61 Setup of the publication and two nodes in a peer-to-peer topology (1 thru 4).

Peers are typically initialized manually for consistency purposes. Figure 19.62 shows the
Configure Peer-to-Peer Topology Wizard summary and the successful creation of the full
(two-node) topology. Note that each node is assigned a unique originator ID, and conflict
detection has been enabled. Notice also that it really doesn’t matter which node is listed
first in the wizard topology because they are equal (no hierarchy exists) and the arrow is
bidirectional.

The Performance Monitor

You can use Windows Performance Monitor to monitor the health of your replication
scenario. When you install SQL Server, you get several new objects and counters in
Performance Monitor:

. SQLServer:Replication Agents—This object contains counters used to
monitor the status of all replication agents, including the total number running.

. SQLServer:Replication Dist—This object contains counters used to monitor
the status of the distribution agents, including the latency and number of transac-
tions transferred per second.

. SQLServer:Replication Logreader—This object contains counters used to
monitor the status of the log reader agent, including the latency and number of
transactions transferred per second.

 Download from www.wowebook.com

ptg

611Monitoring Replication
1

9

FIGURE 19.62 Configure Peer-to-Peer Topology Wizard summary and complete topology.

. SQLServer:Replication Merge—This object contains counters used to monitor
the status of the merge agents, including the number of transactions and number of
conflicts per second.

. SQLServer:Replication Snapshot—This object contains counters used to
monitor the status of the snapshot agents, including the number of transactions per
second.

As you can see in Figure 19.63, we chose to monitor the typical things critical for replica-
tion: the LogReader counters, the distribution server counters, some default processor
times, and disk queue lengths to keep an eye on load at the publisher. Figure 19.63 shows
some spikes during log reader activity as big transactions hit the publisher. However, they
drop off quickly, easily handling the large transaction volumes.

Replication in Heterogeneous Environments

SQL Server 2008 allows for transactional and snapshot replication of data into and out of
environments other than SQL Server. This is termed heterogeneous replication. The easiest
way to set up this replication is to use ODBC or OLE DB and create a push subscription
to the subscriber. This is much easier to make work than you might imagine. SQL Server
can publish to the following database types:

. Microsoft Access

. Oracle

. Sybase

 Download from www.wowebook.com

ptg

612 CHAPTER 19 Replication

FIGURE 19.63 Performance Monitor counters for replication monitoring.

. IBM DB2/AS400

. IBM DB2/MVS

SQL Server can replicate data to any other type of database, provided that the following
are true:

. The driver must be ODBC Level 1 compliant.

. The driver must be 32-bit, thread safe, and designed for the processor architecture on
which the distribution process runs.

. The driver must support transactions.

. The driver and underlying database must support Data Definition Language (DDL).

. The underlying database cannot be read-only.

Backup and Recovery in a Replication Configuration

A replication-oriented backup strategy will reap major benefits for you after you have
implemented a data replication configuration. You must realize that the scope of data and
what you must back up together have changed. In addition, you must be aware of the
recovery time frame and plan your backup/recovery strategy accordingly. You might not
have multiple hours available to you to recover an entire replication topology. You now
have databases that are conceptually joined, and you might need to back them up
together in one synchronized backup. Figure 19.64 shows overall backup strategies for the
most common recovery needs.

 Download from www.wowebook.com

ptg

613Monitoring Replication
1

9

Recovery
Need

Backup
Strategy

100% data,
All sites,

Small Recovery Window

100% data,
All sites,

Medium Recovery Window

100% data,
All sites

Big Recovery Window

Coordinated DB backups at all sites involved in the
replication configuration (publisher, distributor and all
subscribers). Somewhat complex to do.

Backup Publication DB and Distribution DB together.
Replication can be recovered from this point very
easily without reconfiguring anything. Just have to
re-initialize the subscribers. This is the most common
approach being used.

Backup of Publication DB only. Can then reconfigure
replication via scrips and reinitialize distribution,
and all subscribers fairly easily.

FIGURE 19.64 Common backup strategies for different recovery needs.

When backing up environments, you need to back up the following at each site:

. Publisher (published database, msdb, and master)

. Distributor (distribution database, msdb, and master)

. Subscribers (subscriber database, optionally msdb, and master when pull subscrip-
tions are being done)

You should always make copies of your replication scripts and keep them handy. At a
minimum, you need to keep copies at the publisher and distributor and one more loca-
tion, such as at one of your subscribers. You will use them for recovery someday.

You shouldn’t forget to back up master and msdb when any new replication object is
created, updated, or deleted.

If you have allowed updating of subscribers using queued updates, you need to expand
your backup capability to include these queues.

In general, you will find that even when you walk up and pull the plug on your distribu-
tion server, publication server, or any subscribers, automatic recovery works well to get
you back online and replicating quickly, without human intervention.

Some Thoughts on Performance

From a performance point of view, the replication configuration defaults err on the side of
optimal throughput. That’s the good news. The bad news is that everybody is different in
some way, so you have to consider a bit of tuning of your replication configuration. In
general, you can get your replication configuration working well by doing the following:

. Keeping the amount of data to be replicated at any one point small by running
agents continuously, instead of at long, scheduled intervals.

 Download from www.wowebook.com

ptg

614 CHAPTER 19 Replication

. Setting a minimum amount of memory allocated to SQL Server by using the Min
Server Memory option to guarantee ample memory across the board.

. Using good disk drive physical separation rules, such as keeping the transaction log
on a separate disk drive from the data portion. Your transaction log is much more
heavily used when you opt for transactional replication.

. Putting your snapshot working directory on a separate disk drive to minimize disk
drive arm contention. You should use a separate snapshot folder for each publication.

. Publishing only what you need. By selectively publishing only the minimum
amount of data required, you implement a much more efficient replication configu-
ration, which is faster overall.

. Trying to run snapshots in nonpeak times so your network and production environ-
ments aren’t bogged down.

. Minimizing transformation of data involved with replication.

Log Shipping

If you have a small need to create a read-only (ad hoc query/reporting) database environ-
ment that can tolerate a high degree of data latency, you might be a candidate for using
log shipping. Log shipping is still a feature for SQL Server 2008, but it will be deprecated
by the next release. In other words, it might be easy to use and easy to manage, but it is
being phased out as a feature of SQL Server. For this reason, we do not describe it in this
book (it is described in detail in SQL Server 2000 Unleashed, though). For those who have
current log shipping configurations, it is time to move to database mirroring. This transi-
tion will be easy because the two capabilities are so much alike. (Actually, many aspects of
database mirroring came from log shipping.)

Data Replication and Database Mirroring for Fault Tolerance and
High Availability

SQL Server 2008 allows you to use combinations of options to achieve higher availability
levels. A prime example is combining data replication with database mirroring to provide
maximum availability of data, scalability to users, and fault tolerance via failover at poten-
tially each node in the replication topology. You can start with the publisher and distribu-
tor, making them both database mirror failover configurations. Building up a combination
of both options together is the best of both worlds: the super low latency of database
mirroring for fault tolerance and the high availability (and scalability) of data through
replication. (For more information, see Chapter 20, “Database Mirroring.”)

 Download from www.wowebook.com

ptg

615Summary
1

9

Summary
Replication is a powerful feature of SQL Server that can be used in many business situa-
tions. Companies can use replication for anything from roll-up reporting to relieving the
main server from ad hoc queries and reporting. It is critical to let your company’s require-
ments drive the type of replication technique to use. Determining the replication option
and configuration to use is difficult, but actually setting it up is reasonably easy. Microsoft
has come a long way in this regard. Peer-to-peer replication seems to have the most
promise of delivering master-master symmetric replication in a production environment.
Microsoft’s overall architectural approach and implementation is the model for the indus-
try. You should not be afraid to use this facility. It is more than production-worthy, and
the flexibility it offers and the overall performance are just short of incredible, incredible,
incredible (replication humor for you).

In Chapter 20 we delve into the capability to make an image of a database (a mirror) for
failover purposes using the database mirroring mechanism available within SQL Server
2008. This is a landmark addition for SQL Server.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 20

Database Mirroring

IN THIS CHAPTER

. What’s New in Database
Mirroring

. What Is Database Mirroring?

. Roles of the Database
Mirroring Configuration

. Setting Up and Configuring
Database Mirroring

. Testing Failover from the
Principal to the Mirror

. Client Setup and Configuration
for Database Mirroring

. Migrate to Database Mirroring
2008 as Fast as You Can

. Using Replication and
Database Mirroring Together

. Using Database Snapshots
from a Mirror for Reporting

Database mirroring is such a huge technology jump in
capabilities that even the smallest company can now
provide near-real-time database failover without the fancy,
expensive hardware required with more complex configura-
tions, such as with SQL Server Clustering (that is built on
Microsoft Cluster Services [MSCS]). MSCS requires shared
resources, separate network connections for internal heart-
beat communication, and so on. In addition, multiple
layers of software are involved (MSCS plus SQL Server).
With database mirroring, you can set up a near-real-time
database failover environment using all conventional, low-
cost machines, without any complex hardware compatibil-
ity requirements, and database mirroring can fail over in as
little as 3 seconds!

Database mirroring effectively allows anyone to immedi-
ately step up to nearly 99.9% (at least three nines) availabil-
ity at the database layer at a very low cost, and it is easily
configured and managed.

What’s New in Database Mirroring
Performance, performance, and more performance! This is
the key improvement for database mirroring in SQL Server
2008. This performance improvement was brought about by
Microsoft’s efforts to isolate and resolve the bottleneck in
database mirroring that existed with SQL Server 2005. That
bottleneck centered around the bulky transmission of full-
size log records from one SQL Server to another.
Improvements in SQL Server 2008 are centered around the
data compression used on the log records sent from one
server to the other. Later in this chapter we show you some

 Download from www.wowebook.com

ptg

618 CHAPTER 20 Database Mirroring

results of a benchmark involving SQL Server 2005 and SQL Server 2008 that show the
major impact of this enhancement. In addition, as records are being written to the mirror,
automatic page repair can occur if SQL Server finds any page that is not intact, adding
more reliability and stability to the overall SQL Server platform. A few more interesting
performance counters and new dynamic management views that provide visibility into
the health of your mirroring implementation round out the new features.

Microsoft SQL Server 2008 is shifting very strongly to a goal of providing a Database
Engine foundation that can be highly available 7 days a week, 365 days a year. With data-
base mirroring, Microsoft is providing the masses with the opportunity to achieve that
dream much more quickly. Database mirroring was first introduced in SQL Server 2005. It
was earlier known as Real-time Log Shipping (RTLS) and then had another name for a
while, and it finally ended up being called database mirroring—which is what it really is.

The key breakthrough that allowed Microsoft to offer database mirroring was something
called “copy-on-write” technology. We describe it in more detail in a bit. Suffice it to say
that with copy-on-write technology, a transaction can be distributed (that is, written) to
another completely separate SQL Server database immediately, and that other database can,
in turn, be used as a failover (that is, it can be used to fail over to in less than 3 seconds).

NOTE

The examples in this chapter are based on the SQL Server 2005 version of the
AdventureWorks database rather than the newer AdventureWorks2008 or
AdventureWorks2008R2 sample databases used for many of the examples in the
other chapters in this book. The reason for this is because Database Mirroring cannot
be implemented on a database that is also configured for FILESTREAM storage. The
2008 and 2008R2 versions of the AdventureWorks database make use of
FILESTREAM storage.

Fortunately, the 2005 version of the AdventureWorks database can be installed using
the same installer that installs the AdventureWorks2008 or AdventureWorks2008R2
database. If you didn’t install AdventureWorks when you installed either of these
sample databases, simply relaunch the installer and choose to install the
AdventureWorks OLTP database.

For more information on downloading and installing the AdventureWorks sample data-
bases, see the Introduction chapter.

What Is Database Mirroring?
When you mirror a database, you are essentially asking for a complete copy of a database
to be created and maintained, with as much up-to-the-second completeness as possible;
you are asking for a mirror image. Database mirroring is a database-level feature. This
means that there is no support for filtering, subsetting, or any form of partitioning. You

 Download from www.wowebook.com

ptg

619What Is Database Mirroring?

mirror a complete database or nothing at all. This limitation actually keeps database
mirroring simple and clean to implement. It also certainly provides some drawbacks, such
as burning up twice the amount of disk storage, but what you get in return is well worth
the cost in storage.

Database mirroring works through the transaction log of the principal database (of the
database that is to be mirrored). You can mirror only a database that uses the full database
recovery model. Otherwise, it would not be possible to forward transaction log entries to
another server. Through the use of copy-on-write technology, a change to data in a
primary server’s database (as reflected in active transaction log entries) is first “copied” to
the target server, and then it is “written” (that is, applied or restored) to the target database
server (that is, to the mirror server) transaction log. That is why it’s called copy-on-write.

Database mirroring is very different from data replication. With replication, database
changes are at the logical level (insert, update, delete statements; stored procedure execu-
tions; and so on), whereas database mirroring uses the actual physical log entries on both
the primary database server side and the mirror database server side. Effectively, the physi-
cal “active” log records from the transaction log of the principal database are copied and
written directly to the transaction log of the mirror database. These physical log record-
level transactions can be applied extremely quickly. As these physical log records are being
applied to the mirror database, even the data cache reflects the forward application of the
log records. This makes the entire database and data cache ready for the principal to take
over extremely quickly. And, now with SQL Server 2008, the log records are compressed
on the principal side before transmission, which allows more records per transmission to
be sent to the mirror server, thus speeding up the whole topology quite a bit.

Figure 20.1 shows a typical database mirroring configuration that has three components:

. Principal database server—This is the source of the mirroring. You can mirror one
or more databases on a single SQL Server instance to another SQL Server instance.
You cannot mirror a database on one SQL Server instance to itself (that is, the same
SQL Server instance). Remember, you mirror a database, not a subset of the database
or a single table. It’s all or nothing.

. Mirror database server—The mirror server is the recipient of the mirroring from
the principal database server. This mirrored database is kept in hot standby mode
and cannot be used directly in any way. In fact, after you configure database mirror-
ing, this database shows its status as being in continuous “restore” mode. The reason
is that the physical transaction records are continuously applied to this mirror data-
base. This database is essentially a hot standby database and is not available for
direct database usage of any kind. The reason is that it is used in case the principal
fails and must not be tainted in any way (it must be the exact mirror image of the
principal. The one exception to this nonusage scenario is creating database snap-
shots from the mirror database (creating database snapshots with a database mirror
is described in more detail later in this chapter and in Chapter 32 “Database
Snapshots”).

2
0

 Download from www.wowebook.com

ptg

620 CHAPTER 20 Database Mirroring

SQL Server 2008

Principal
Server

Adventure
Works DB

translog

SQL Server 2008

Witness
Server MSDB DB

D

SQL Server 2008
Mirror Server

Adventure
Works DB

translog

D

A

B

C

Client Client ClientClient

Network

FIGURE 20.1 A basic database mirroring configuration with principal, mirror, and witness
servers.

. Witness database server—You use the witness database server, which is optional,
when you want to be continually checking to see if any failures have occurred to the
primary database server and to help make the decision to fail over to the mirror
database server. Using a witness server is a sound way to configure database mirror-
ing. If you do not identify a witness server, the principal and mirror are left on their
own to decide whether to fail over. With the witness server, a quorum is formed
(that is, two out of three servers), and it takes the quorum to make a failover deci-
sion. A typical scenario is that the principal server fails for some reason, the witness
sees this failure, the mirror also sees the failure, and together they agree that the
principal is lost and that the mirror must take over the principal role. If the witness
still sees that the principal is alive and well, but the communication between the
mirror and principal has been broken, the witness does not agree to fail over to the
mirror (even though the mirror thinks it must do this because it lost connection to
the principal). Witness servers are usually put on separate physical servers.

Copy-on-Write Technology

The copy-on-write technology is at the core of the database mirroring capability. Look
back at Figure 20.1, and notice what happens in a High Safety with Automatic Failover
mode (synchronous mode):

 Download from www.wowebook.com

ptg

621Roles of the Database Mirroring Configuration

1. A transaction from a client connection to the principal server (A) is written to the
AdventureWorks database (D).

2. When the transaction is written to the principal server’s transaction log, it is imme-
diately copied (B) and written to the mirror server (D).

3. When this physical log record is written to the mirror server, it sends back an
acknowledgment (C) to the principal of its write success.

This is the copy-on-write technology. The end result is that the mirror server is in exactly
the same state as the principal server (if the physical log record has been successfully
written on the mirror side). If failure occurs now, the mirror server can pick up all process-
ing from the clients extremely quickly and without data loss.

NOTE

Database mirroring cannot be used for any of SQL Server’s internal databases—
tempdb, masterdb, msdb, or modeldb. Database mirroring is fully supported in SQL
Server Standard Edition, Developer Edition, and Enterprise Edition, but it is not support-
ed in SQL Server Workgroup Edition or Express Edition. However, machines running
these server editions could be used as witness servers.

When to Use Database Mirroring

As mentioned earlier in this chapter, database mirroring elevates the availability level of a
SQL Server–based application to a very high level without any special hardware and extra
administration staff skills. However, when you should use database mirroring varies
depending on your true needs.

Basically, if you need to increase the availability of the database layer, have automatic data
protection (that is, redundant storage of data), or decrease the downtime that would
normally be required to do upgrades, you should use database mirroring. An ever more
popular scenario for database mirroring is when you need to offload reporting that is
easily satisfied with periodic database snapshots. This usage provides great relief from
heavily burdened transactional servers also used for reporting. Finally, if you need data
distribution, high availability, and high data resiliency, using data replication with data-
base mirroring is also a good idea. We discuss these latter two ideas later in this chapter.

Roles of the Database Mirroring Configuration
As you have seen, a typical database mirroring configuration has a principal server, mirror
server, and witness server. Each of these servers plays a role at some point. The principal
and mirror switch roles, so it is important to understand what these roles are and when a
server is playing a particular role.

2
0

 Download from www.wowebook.com

ptg

622 CHAPTER 20 Database Mirroring

Playing Roles and Switching Roles

A role corresponds to what a server is doing at a particular point in time. There are three
possible roles:

. Witness role—If a server is playing a witness role, it is essentially standing along-
side both partners of a database mirror configuration and is used to settle all argu-
ments. It is getting together with any one of the other servers and forming a
quorum to come up with decisions. The decision that it will participate in is whether
to fail over. That is it. As mentioned before, the witness server can be any edition of
a SQL Server (even SQL Server Express, the free version).

. Principal role—If a server is playing a principal role, it is the server that the appli-
cation will be connected to and that is generating the transactions. One of the part-
ners in the database mirror must start out as the principal. After a failure, the mirror
server takes over the principal role, and the roles reverse.

. Mirror role—If a server is playing a mirror role, it is the server that is having trans-
actions written to it. It is in a constant recovery state (that is, the database state
needed to be able to accept physical log records). One of the partners in the database
mirroring configuration must start out in the mirror role. Then, if a failure occurs,
the mirror server changes to the principal role.

Database Mirroring Operating Modes

With database mirroring, you have the option of deploying in one of three modes: high
safety with automatic failover mode (high availability with a witness server), high safety
without automatic failover mode (high protection without a witness server), and high-
performance mode. Each mode has different failure and protection characteristics and uses
the database mirroring configurations slightly differently. As you might expect, the high-
performance mode offers the least amount of protection; you must sacrifice levels of
protection for performance.

Database mirroring runs with either asynchronous or synchronous operations:

. Synchronous operations—With synchronous operations, a committed transaction
is committed (that is, written) on both partners of the database mirroring pair. This
obviously adds some latency cost to a complete transaction because it is across two
servers. High-safety modes use synchronous operations.

. Asynchronous operations—With asynchronous operations, transactions commit
without waiting for the mirror server to write the log to disk. This can speed up per-
formance significantly. High-performance mode uses asynchronous operations.

Whether the operations are asynchronous or synchronous depends on the transaction
safety setting. You control this setting through the SAFETY option when configuring
with Transact-SQL (T-SQL) commands. The default for SAFETY is FULL (which provides

 Download from www.wowebook.com

ptg

623Setting Up and Configuring Database Mirroring

synchronous operations). You set it to OFF for asynchronous operations. If you are using
the mirroring wizard, this option is set for you automatically.

Of the three modes, only the high safety with automatic failover mode (high-availability
mode) requires the witness server. The others can operate fine without this third server in
their configuration. Remember that the witness server is looking at both the principal and
mirror server and will be utilized (in a quorum) for automatic failover.

Role switching is the act of transferring the principal role to the mirror server. It is the
mirror server that acts as the failover partner for the principal server. When a failure
occurs, the principal role is switched to the mirror server, and its database is brought
online as the principal database.

Failover variations are

. Automatic failover—Automatic failover is enabled with a three-server configura-
tion involving a principal, mirror, and witness server. Synchronous operations are
required, and the mirror database must already be synchronized (that is, in sync
with the transactions as they are being written to the principal). Role switching is
done automatically. This is for high-availability mode.

. Manual failover—Manual failover is needed when there is no witness server and
you are using synchronous operations. The principal and mirror are connected to
each other, and the mirror database is synchronized. Role switching is done manu-
ally. This is for high safety without automatic failover mode (high-protection mode).
You are making the decision to start using the mirror server as the principal (no data
loss).

. Forced service—In the case of a mirror server being available but possibly not syn-
chronized, the mirror server can be forced to take over when the principal server has
failed. This possibly means data loss because the transactions were not synchronized.
This is for either high safety without automatic failover mode (high-protection
mode) or high-performance mode.

Setting Up and Configuring Database Mirroring
Microsoft uses a few other concepts and technologies in database mirroring. You have
already learned about the copy-on-write technology. Microsoft also uses endpoints, which
are assigned to each server in a database mirroring configuration. In addition, establishing
connections to each server is much more tightly controlled and requires service accounts
or integrated (domain-level) authentication. Within SQL Server, grants must also be given
to the accounts that will be executing database mirroring.

You can completely set up database mirroring by using T-SQL scripts, or you can use the
Database Mirroring Wizard within SQL Server Management Studio (SSMS). We always

2
0

 Download from www.wowebook.com

ptg

624 CHAPTER 20 Database Mirroring

FIGURE 20.2 Trying to mirror a database that is not using the full database recovery model.

advise that you use something that is repeatable, such as SQL scripts, and you can easily
generate SQL scripts by using the new wizard. It’s not fun to have to re-create or manage a
database mirroring configuration in the middle of the night. Having this whole process in
a script reduces almost all errors.

Getting Ready to Mirror a Database

Before you start setting up and configuring a database mirroring environment, it is always
best to run through a simple checklist of basic requirements:

1. Verify that all server instances are at the same service pack level. In addition, the
SQL Server edition you have must support database mirroring.

2. Verify that you have as much or more disk space available on the mirror server as on
the principal server. You also need the same room for growth on both.

3. Verify that you have connectivity to each server from the others. You can most
easily do this by trying to register each SQL Server instance in SSMS. If you can regis-
ter the server, the server can be used for database mirroring. Do this for the princi-
pal, mirror, and witness servers.

4. Verify that the principal server database that is to be mirrored is using the full data-
base recovery model. Right-click on the database you intend to mirror, choose Tasks,
and then Mirroring. This brings you to the database mirroring properties dialog
where you can configure mirroring. If you try to start configuring database mirroring
and the database recovery model is not full for the principal database, you get a
nasty message to that effect (see Figure 20.2). Because database mirroring is transac-
tion log based, it makes sense to be using the full database recovery model: all trans-
actions are written to the transaction log and are not truncated, as with other
database recovery models.

Before you go any further, you must establish the endpoints for each of the servers that
will be a part of the database mirroring configuration. You can use the Configure Security
option of the wizard to do this, but getting into the practice of using SQL scripts is really
the best approach. Using SQL scripts is very easy, as you will soon see.

 Download from www.wowebook.com

ptg

625Setting Up and Configuring Database Mirroring

FIGURE 20.3 The Database Properties Mirroring page: mirroring network addressing and
mirroring status.

2
0

Endpoints utilize TCP/IP addressing and listening ports for all communication between
the servers. Within a server, the endpoint is given a specific name (that is, an endpoint
name) for easy reference and to establish the partner roles that this server (endpoint) will
possibly play. In addition, a connection GRANT is needed for access to be allowed from
each server to the other, and a service account should be used for this. This service
account is usually a particular login that is known to the domain and is to be used for all
connections in the database mirroring topology. Figure 20.3 shows the mirroring database
properties of the AdventureWorks database on a SQL Server instance named SQL08DE01. As
you can see, no server network addresses are set up for database mirroring of any kind,
and the mirroring status says “This Database Has Not Been Configured for Mirroring.”

Next, we look at how to set up high safety with automatic failover mode (high-availabil-
ity mode) database mirroring with principal, mirror, and witness servers. For this, you
can mirror the old reliable AdventureWorks database that Microsoft provides with SQL
Server 2008.

Figure 20.4 illustrates the database mirroring configuration to set up.

 Download from www.wowebook.com

ptg

626 CHAPTER 20 Database Mirroring

The initial principal server is the SQL Server instance named SQL08DE01, the initial mirror
server is the SQL Server instance named SQL08DE02, and the witness server is the SQL
Server instance named SQL08DE03.

You need to establish a local endpoint named EndPoint4DBMirroring9xxx on each of these
SQL Server instances and identify the TCP listening port that will be used for all database
mirroring communication. We also like to embed the port number as part of the endpoint
name, such as EndPoint4DBMirroring1430 for the endpoint that will be listening on port
1430. In our configuration, the principal server will be listening on Port 1430, the mirror
server on Port 1440, and the witness server on Port 1450. These port numbers must be
unique within a single server machine, and the machine name and port combination
must be unique within the network. An example of the fully qualified network address
name of this server and the listing port is TCP://REM1237433.ads.autodesk.com:1430,
where REM1237433.ads.autodesk.com is the machine name within the domain, and 1430
is the listening port created with the endpoint. In addition, each server’s initial role needs
to be specified. The SQL08DE01 instance can play any partner role (that is, a mirror and/or
principal), the SQL08DE02 instance can play any partner role as well, and the SQL08DE03
instance should play the witness role only.

We have included three SQL script templates with this book (in the Chapter 20 code direc-
tory on the CD) that have working examples of creating the endpoints, granting connec-
tion permissions to a login for the endpoints, verifying that the endpoints were created,

SQL Server 2008

Principal
Server

Adventure
Works DB

translog

SQL Server 2008

Witness
Server MSDB DB

SQL Server 2008
Mirror Server

Adventure
Works DB

translog

Instance: SQL08DE01
Endpoint name: “EndPoint4DBMirroring1430”
Role: PARTNER

Instance: SQL08DE03
Endpoint name: “EndPoint4DBMirroring1450”
Role: WITNESS

TCP: Listener_Port:1430 TCP: Listener_Port:1440

TCP: Listener_Port:1450

Instance: SQL08DE02
Endpoint name: “EndPoint4DBMirroring1440”
Role: PARTNER

FIGURE 20.4 A high-availability database mirroring configuration with the AdventureWorks
database.

 Download from www.wowebook.com

ptg

627Setting Up and Configuring Database Mirroring
2

0

altering the endpoints, backing up and restoring databases, and backing up and restoring
transaction logs.

The first ones to look at are 2008 Create EndPoint Partner1.SQL, 2008 Create EndPoint
Partner2.SQL, and 2008 Create EndPoint Witness.SQL. You can leverage these templates
to start the setup process if you are not using the Configure Security Wizard.

Now that we’ve verified all aspects of our planned mirroring topology, let’s configure full
database mirroring!

Creating the Endpoints

Each server instance in the database mirroring configuration must have an endpoint
defined so that the other servers can communicate with it. This is sort of like a private
phone line to your friends. Let’s use the scripts provided as opposed to using the
Configure Security Wizard. The first endpoint script is in the file 2008 Create EndPoint
Partner1.SQL.

From SSMS, you need to open a new query connection to your principal database by
selecting File, New and in the New Query dialog, selecting Query with Current
Connection. Open the SQL file for the first endpoint.

The following CREATE ENDPOINT T-SQL creates the endpoint named
EndPoint4DBMirroring1430, with the listener_port value of 1430, and the database
mirroring role Partner:

-- create endpoint for principal server --

CREATE ENDPOINT [EndPoint4DBMirroring1430]

STATE=STARTED

AS TCP (LISTENER_PORT = 1430, LISTENER_IP = ALL)

FOR DATA_MIRRORING (ROLE = PARTNER, AUTHENTICATION = WINDOWS NEGOTIATE

, ENCRYPTION = REQUIRED ALGORITHM RC4)

After this T-SQL runs, you should quickly run the following SELECT statements to verify
that the endpoint has been correctly created:

select name,type_desc,port,ip_address from sys.tcp_endpoints;

SELECT db.name, m.mirroring_role_desc

FROM sys.database_mirroring m

JOIN sys.databases db

ON db.database_id = m.database_id

WHERE db.name = N’AdventureWorks’;

select name,role_desc,state_desc from sys.database_mirroring_endpoints;

Figure 20.5 shows the desired result set from these queries.

 Download from www.wowebook.com

ptg

628 CHAPTER 20 Database Mirroring

If you also look at the database properties for the AdventureWorks database on the princi-
pal server (SQL08DE01, in this example), you see the server network address for the princi-
pal server automatically appear now when you look at the Database Properties Mirroring
page (see Figure 20.6).

Starting with the sample SQL scripts 2008 Create EndPoint Partner2.SQL and 2008
Create EndPoint Witness.SQL, you need to repeat the endpoint creation process for the
mirror server (using a listener_port value of 1440) and the witness server (using a
listener_port value of 1450) by opening a query connection to each one of these servers
and running the following CREATE ENDPOINT commands:

-- create endpoint for mirror server --

CREATE ENDPOINT [EndPoint4DBMirroring1440]

STATE=STARTED

AS TCP (LISTENER_PORT = 1440, LISTENER_IP = ALL)

FOR DATA_MIRRORING (ROLE = PARTNER, AUTHENTICATION = WINDOWS NEGOTIATE

, ENCRYPTION = REQUIRED ALGORITHM RC4)

For the witness server (notice that the role is now Witness), you run the following:

FIGURE 20.5 Verifying that an endpoint is created for database mirroring.

 Download from www.wowebook.com

ptg

629Setting Up and Configuring Database Mirroring
2

0

FIGURE 20.6 The Mirroring page of the AdventureWorks database on the principal server.

-- create endpoint for witness server --

CREATE ENDPOINT [EndPoint4DBMirroring1450]

STATE=STARTED

AS TCP (LISTENER_PORT = 1450, LISTENER_IP = ALL)

FOR DATA_MIRRORING (ROLE = WITNESS, AUTHENTICATION = WINDOWS NEGOTIATE

, ENCRYPTION = REQUIRED ALGORITHM RC4)

Granting Permissions

It is possible to have an AUTHORIZATION [login] statement in the CREATE ENDPOINT
command that establishes the permissions for a login account to the endpoint being
defined. However, separating this out into a GRANT greatly stresses the point of allowing
this connection permission. From each SQL query connection, you run a GRANT to allow a
specific login account to connect on the ENDPOINT for database mirroring. If you don’t
have a specific login account to use, default it to [NT AUTHORITY\SYSTEM].

First, from the principal server instance (SQL08DE01), you run the following GRANT (substi-
tuting [DBARCHLT\Paul Bertucci] with your specific login account to be used by database
mirroring):

GRANT CONNECT ON ENDPOINT::EndPoint4DBMirroring1430 TO [DBARCHLT\Paul Bertucci];

Then, from the mirror server instance (SQL08DE02), you run the following GRANT:

 Download from www.wowebook.com

ptg

630 CHAPTER 20 Database Mirroring

GRANT CONNECT ON ENDPOINT:: EndPoint4DBMirroring1440 TO [DBARCHLT\Paul Bertucci];

Then, from the witness server instance (SQL08DE03), you run the following GRANT:

GRANT CONNECT ON ENDPOINT:: EndPoint4DBMirroring1450 TO [DBARCHLT\Paul Bertucci];

Creating the Database on the Mirror Server

When the endpoints are configured and roles are established, you can create the database
on the mirror server and get it to the point of being able to mirror. You must first make a
backup copy of the principal database (AdventureWorks, in this example). This backup
will be used to create the database on the mirror server. You can use SSMS tasks or use
SQL scripts to do this. The SQL scripts (DBBackupAW2008.sql), which are easily repeatable,
are used here.

On the principal server, you make a complete backup as follows:

BACKUP DATABASE [AdventureWorks]

TO DISK = N’C:\Program Files\Microsoft SQL

Server\MSSQL.2\MSSQL\Backup\AdventureWorks4Mirror.bak’

WITH FORMAT

GO

Next, you copy this backup file to a place where the mirror server can reach it on the
network. When that is complete, you can issue the following database RESTORE
command to create the AdventureWorks database on the mirror server (using the WITH
NORECOVERY option):

-- use this restore database(with NoRecovery option)

to create the mirrored version of this DB --

RESTORE FILELISTONLY

FROM DISK = ‘C:\Program Files\Microsoft SQL

Server\MSSQL.2\MSSQL\Backup\AdventureWorks4Mirror.bak’

go

RESTORE DATABASE AdventureWorks

FROM DISK = ‘C:\Program Files\Microsoft SQL

Server\MSSQL.2\MSSQL\Backup\AdventureWorks4Mirror.bak’

WITH NORECOVERY,

MOVE ‘AdventureWorks_Data’ TO ‘C:\Program Files\Microsoft SQL

Server\MSSQL.4\MSSQL\Data\AdventureWorks_Data.mdf’,

MOVE ‘AdventureWorks_Log’ TO ‘C:\Program Files\Microsoft SQL

Server\MSSQL.4\MSSQL\Data\AdventureWorks_Log.ldf’

GO

Because you don’t necessarily have the same directory structure on the mirror server,
you use the MOVE option as part of this restore to place the database files in the location
you desire.

 Download from www.wowebook.com

ptg

631Setting Up and Configuring Database Mirroring
2

0

The restore process should yield something that looks like the following result set when
restoring the AdventureWorks database that is shipped with SQL Server 2008:

-- Processed 21200 pages for database ‘AdventureWorks’,

file ‘AdventureWorks_Data’ on file 1.

-- Processed 2 pages for database ‘AdventureWorks’,

file ‘AdventureWorks_Log’ on file 1.

-- RESTORE DATABASE successfully processed 21202 pages

in 14.677 seconds (11.833 MB/sec).

Basically, this result set says you are not ready to get into the mirroring business yet. You
must now apply at least one transaction log dump to the mirror database. This brings the
mirror database to a point of synchronization with the principal and leaves the mirror
database in the Restoring state. At this database recovery point, you can run through the
mirroring wizard and start mirroring for high availability.

From the principal server, you dump (that is, back up) a transaction log as follows:

BACKUP LOG [AdventureWorks] TO

DISK = N’C:\Program Files\Microsoft SQL

Server\MSSQL.2\MSSQL\Backup\AdventureWorksLog.bak’

Go

Processed 8 pages for database ‘AdventureWorks’, file ‘AdventureWorks_Log’ on file 2.

Then you move this backup to a place where it can be reached by the mirror server. When
that is done, you restore the log to the mirror database. From the mirror server, you
restore the transaction log as follows. Note the following WITH FILE = statement; the file
number must match the value in the backup log results (see the on file 2 reference in
the previous code):

RESTORE LOG [AdventureWorks]

FROM DISK = N’C:\Program Files\Microsoft SQL

Server\MSSQL.4\MSSQL\Backup\AdventureWorksLog.bak’

WITH FILE = 2, NORECOVERY

GO

The restore log process should yield something that looks like the following result set:

RESTORE LOG successfully processed 8 pages

in 0.034 seconds (9.396 MB/sec).

NOTE

You might need to update the FILE = x entry in the RESTORE LOG command to corre-
spond to the “on file” value given during the log backup.

You are now ready to mirror the database in high-availability mode.

 Download from www.wowebook.com

ptg

632 CHAPTER 20 Database Mirroring

Identifying the Other Endpoints for Database Mirroring

To get each node in the topology to see each other, you have to identify the endpoints
and listener port values to the databases involved in the database mirroring configuration
(the principal and mirror). This also activates database mirroring. This process requires
altering the database by using either the SET PARTNER or SET WITNESS statements within
the ALTER DATABASE command. The Database Mirroring Wizard can also do this step for
you, but doing it manually is easy.

We identify the unique endpoint listening port values for each endpoint that are unique
within the server. They are port values 1430, 1440, and 1450 in our example.

Remember, you will be doing this after you create the AdventureWorks database on the
mirror server side. After creating that database, you can run the following ALTER DATABASE
command on the mirror server to identify the principal for the mirror to partner with:

-- From the Mirror Server Database: identify the principal server endpoint --

ALTER DATABASE AdventureWorks

SET PARTNER = ‘ TCP://REM1237433.ads.autodesk.com:1430’

GO

Now, you are ready for the final step. From the principal server, you identify the mirror
and witness. After you complete these step, the database mirroring topology tries to
synchronize itself and begin database mirroring. The following statements identify the
mirror server endpoint and witness server endpoint to the principal server’s database:

-- From the Principal Server Database: identify the mirror server endpoint --

ALTER DATABASE AdventureWorks

SET PARTNER = ‘TCP://REM1237433.ads.autodesk.com:1440’

GO

-- From the Principal Server Database: identify the witness server endpoint --

ALTER DATABASE AdventureWorks

SET WITNESS = ‘TCP://REM1237433.ads.autodesk.com:1450’

GO

You do not have to alter any database from the witness server.

When this process completes successfully, you are mirroring! Yes, in fact, with this config-
uration, you are in automatic failover mode.

If you have issues or just want to start over, you can drop an endpoint or alter an endpoint
quite easily. To drop and existing endpoint, you use the DROP ENDPOINT command. In this
example, the following command would drop the endpoint you just created:

-- To DROP an existing endpoint --

DROP ENDPOINT EndPoint4DBMirroring1430;

Altering an endpoint (for example, to change the listener_port value) is just as easy as
dropping one. The following example shows how to alter the currently defined endpoint
to a new listener_port value of 1435 because of a conflict at the network level. (However,

 Download from www.wowebook.com

ptg

633Setting Up and Configuring Database Mirroring
2

0

FIGURE 20.7 The Mirror option for the principal database server (AdventureWorks).

because we use the port in the endpoint name, it might have been best to just drop and
create a new endpoint to fit the naming convention. Either way, you can easily manipu-
late these endpoints to fit your networking needs.)

-- To ALTER an existing endpoint --

ALTER ENDPOINT EndPoint4DBMirroring1430

STATE = STARTED

AS TCP(LISTENER_PORT = 1435)

FOR DATABASE_MIRRORING (ROLE = PARTNER)

Configuring Database Mirroring by Using the Wizard

After you have the endpoints created, the roles established, the connections to the
endpoints granted, and the mirror database restored on the mirror server, you could easily
run through the final short steps in the Database Mirroring Wizard to enable and start
mirroring. Figure 20.7 shows the Mirror option from the AdventureWorks database
(reached by right-clicking the database name) from what will be the principal server.
Because this database is not enabled for mirroring yet, you must run through the
Configure Security option on the top portion of the Mirroring page (refer to Figure 20.6).
At this point, you can probably see only the network server address of the principal server.
Don’t worry; the rest (mirror and witness network server addresses) will be established and
identified during the Configure Database Mirroring Security Wizard steps.

 Download from www.wowebook.com

ptg

634 CHAPTER 20 Database Mirroring

FIGURE 20.9 Including the witness server instance in the mirroring configuration.

You need to click the Configure Security button on the Mirroring page. This immediately
launches the Configure Database Mirroring Security Wizard for the database you have
selected (AdventureWorks, in this example). Figure 20.8 shows this initial wizard splash page.

You must configure all three server instances (principal, mirror, and witness servers) for
the high-availability mode. The first option that must be indicated is whether you plan to
include a witness server instance in your mirroring configuration. You are configuring a
high-availability database mirroring configuration (synchronous mode with automatic
failover), so you should select Yes on the wizard dialog shown in Figure 20.9; you do so
because you want to create a full high-availability mode for automated failover.

FIGURE 20.8 The Configure Database Mirroring Security Wizard for the AdventureWorks
database.

 Download from www.wowebook.com

ptg

635Setting Up and Configuring Database Mirroring
2

0

FIGURE 20.10 The Principal Server Instance screen of the Configure Database Mirroring
Security Wizard.

The next page in the wizard prompts you to decide where to save the security configura-
tions for database mirroring. You have no choice for the principal and mirror server
instances; their security configuration information must be stored with them. You must
also choose the default location for the witness server instance. The wizard then takes you
through each server instance in the database mirroring configuration to establish all
needed connection information to implement database mirroring. As you can see in
Figure 20.10, this starts with the principal server instance. The wizard should find the
endpoint and listener_port values you set up earlier (listener_port value 1430 and
endpoint name EndPoint4DBMirroring1430, in this example).

Next comes the specification of the listener and endpoint entry for the mirror server
instance (where the mirror copy of the database will be located). Initially, this page lists all
server instances available on your network (that is, possible mirror server instances) and
does not have a listener port or endpoint name specified yet. You need to identify which
server you want to use as the mirror server instance (REM12374333\SQL08DE02, in this
example) and click the Connect button to establish a valid (authorized) connection to the
mirror server instance. Because you already set up the endpoint on this server (and
granted connection permission, using a specific login ID), when you complete the connec-
tion dialog, the endpoint (EndPoint4DBMirroring1440, in this example) and
listener_port value (1440, in this example) should be enabled, as shown in Figure 20.11.

Finally, you need to specify the witness server instance. Again, this dialog page lists all
server instances available on the network (that is, possible witness server instances) and
does not have a listener port or an endpoint name specified yet. You need to identify
which server you want to use as the witness server instance (REM12374333\SQL08DE03, in
this example) and click the Connect button to establish a valid (authorized) connection to
the witness server instance. Because you already set up the endpoint on this server (and

 Download from www.wowebook.com

ptg

636 CHAPTER 20 Database Mirroring

FIGURE 20.12 The Witness Server Instance screen of the Configure Database Mirroring
Security Wizard.

FIGURE 20.11 The Mirror Server Instance screen of the Configure Database Mirroring
Security Wizard.

granted connection permission, using a specific login ID), when you complete the connec-
tion dialog, the endpoint (EndPoint4DBMirroring1450, in our example) and
listener_port value (1450, in this example) should be enabled, as shown in Figure 20.12.

The last step in the Configure Database Mirroring Security Wizard is to identify any service
accounts that you want to use for the server instances in this database mirroring configu-

 Download from www.wowebook.com

ptg

637Setting Up and Configuring Database Mirroring
2

0

FIGURE 20.13 Summary of actions to be performed for the database mirroring configuration.

ration. You are already using a single domain login ID for this purpose and explicitly
granted connect permissions on each endpoint. Therefore, nothing more needs to be done
here. If the server instances use different accounts in the same or a trusted domain as their
service accounts for SQL Server, you can enter these accounts here. It is best to do this via
scripts (as you saw earlier, when you created the endpoints on each server instance).

As you can see in Figure 20.13, the Configure Database Mirroring Security Wizard now
presents a summary list of all the actions on each server instance that it will perform. You
click Finish to execute them.

A report is generated, telling the total number of actions taken (three, in this case) and the
status of each action. If any errors or warnings result, you can drill down into the Report
button option in the bottom-right corner of this summary of actions page to determine
what has occurred. If each status shows success, a Database Properties dialog, as shown in
Figure 20.14, appears when you close this report page. This dialog gives you the option to
start mirroring immediately or not start mirroring (because you will start mirroring at
some other time). For this example, you want to start mirroring right away, so click the
Start Mirroring button.

 Download from www.wowebook.com

ptg

638 CHAPTER 20 Database Mirroring

FIGURE 20.15 Fully configured properties and active mirroring for database mirroring.

Figure 20.15 shows the full Database Properties screen for the AdventureWorks database, all
server network addresses, and the operating mode for mirroring.

If you look at the SQL Server log file (that is, the current log), you can see log entries indi-
cating that database mirroring is active:

2/21/2009 22:33:33,spid21s,Unknown,Database mirroring is

active with database ‘AdventureWorks’ as the

principal copy. This is an informational message

only. No user action is required.

2/21/2009 22:33:09,spid17s,Unknown,Starting up database ‘AdventureWorks’.

FIGURE 20.14 Specifying to start database mirroring for high safety with automatic failover.

 Download from www.wowebook.com

ptg

639Setting Up and Configuring Database Mirroring
2

0

FIGURE 20.16 Launching Database Mirroring Monitor from SSMS.

2/21/2009 22:33:07,Server,Unknown,SQL Server is now

ready for client connections. This is an

informational message; no user action is required.

2/21/2009 22:33:00,spid12s,Unknown,The Database

Mirroring protocol transport is now listening for connections.

2/21/2009 22:33:00,spid12s,Unknown,Server is

listening on [‘any’ <ipv4> 1430].

Congratulations. You are now mirroring a database!

Monitoring a Mirrored Database Environment

After active mirroring has started, you can monitor the complete mirrored topology in a
few ways. You can start by registering the database being mirrored to a new facility within
SSMS called Database Mirroring Monitor. Database Mirroring Monitor allows you to
monitor roles of the mirroring partnership (that is, principal, mirror, and witness), see the
history of transactions flowing to the mirror server, see the status and speed of this trans-
action flow, and set thresholds to alert you if failures or other issues occur. In addition, you
can administer the logins/service accounts being used in the mirrored database topology.

Figure 20.16 shows how you launch the Database Mirroring Monitor from SSMS: you
right-click the principal database being mirrored, choose Tasks, and then choose Launch
Database Mirroring Monitor.

 Download from www.wowebook.com

ptg

640 CHAPTER 20 Database Mirroring

FIGURE 20.17 Registering the mirrored database within the Database Mirroring Monitor.

FIGURE 20.18 The registered database and status of each mirroring partner.

You must register the database being mirrored. To do so, you select the principal or mirror
server instance and set the Register check box for the database. Database Mirroring
Monitor registers the database and both partner server instances, as shown in Figure 20.17.

After the database is registered, all partners and the witness server instances show up in
the Database Mirroring Monitor, as shown in Figure 20.18.

At a glance, you can see which server is playing what role (principal or mirror) and
whether each partner has defined and is connecting to a witness server. In addition, you
can see the unsent log (in size), the un-restored log (in size), when the oldest unsent trans-
action occurred, the amount of time it took to send the transaction to the mirror server
instance, the send rate (KB/second), the current rate at which the transactions get restored

 Download from www.wowebook.com

ptg

641Setting Up and Configuring Database Mirroring
2

0

FIGURE 20.19 Transaction history of mirroring partners.

(KB/second), the mirror commit overhead (in milliseconds), the listener port of the
witness server instance, and the operating mode of the mirroring (in this case, high safety
with automatic failover—synchronous).

Figure 20.19 shows the detailed transaction history for a particular part of the mirroring
flow (either the send out of the principal part or the restore to the mirror part). You can
click the appropriate partner to see all transaction history details of the mirrored copy and
restore process.

If you click the Warnings tab of the Database Mirroring Monitor, you can set various
thresholds within the monitor to alert you when they have been reached (see Figure
20.20). Basically, you want to set thresholds that monitor the effectiveness of the mirror-
ing operation.

If these key thresholds are ever exceeded, you want to be notified that something is very
wrong and that failover may be in jeopardy. When a threshold is exceeded, an event is
logged to the Application event log. You can configure an alert on this event by using
SSMS or Microsoft Management Operations Manager (MOM). The threshold levels depend
on your own failover tolerance. Our advice is to monitor the transaction and transfer rates
for a peak period and then set the thresholds to be 100% higher than that. For example, if
you see a peak mirror commit overhead value of 750 milliseconds, you should set the
threshold to 1,500 milliseconds. This should be within the tolerance for commit overhead
in your organization.

Figure 20.21 shows how easy it is to administer the service accounts/login IDs being used
for database mirroring. You simply click an Edit button to change or set the login account
you want to use for database mirroring at each instance in the mirroring topology.

 Download from www.wowebook.com

ptg

642 CHAPTER 20 Database Mirroring

FIGURE 20.21 Setting service accounts/login IDs within the mirroring topology.

FIGURE 20.20 Setting thresholds to monitor mirroring effectiveness.

From the Database Properties Mirroring page, you can easily pause (and resume) database
mirroring if you suspect that there are issues related to the mirroring operation. In addi-
tion, you can easily see what role each server instance is playing.

 Download from www.wowebook.com

ptg

643Setting Up and Configuring Database Mirroring
2

0

FIGURE 20.22 Removing database mirroring.

Removing Mirroring

Very likely, you will have to remove all traces of database mirroring from each server
instance of a database mirroring configuration at some point. Doing so is actually pretty
easy. Basically, you have to disable mirroring of the principal, drop the mirror server’s
database, and remove all endpoints from each server instance. You can simply start from
the Database Properties page and the Mirroring option and do the whole thing.
Alternatively, you can do this through SQL scripts. Let’s first use the Mirroring options.
Looking at the options on Figure 20.22, you simply choose to remove mirroring (from the
principal server instance). This is just a bit too easy to do—almost dangerous!

The mirroring process is immediately disabled. When mirroring is disabled, you can drop
the database on the mirror server instance, remove the endpoints on each server instance
(that is, principal, mirror, and witness instances), and be done—all through SSMS. This
approach is straightforward.

If you’re removing mirroring with SQL scripts, however, you need to break the mirroring
from the principal, remove the principal’s endpoint, drop the mirror database and remove
the mirror’s endpoint, and then drop the witness server’s endpoint. At this point, all
mirroring is removed. Follow along as we remove the database mirroring configuration we
just set up.

 Download from www.wowebook.com

ptg

644 CHAPTER 20 Database Mirroring

The ALTER DATABASE and DROP ENDPOINT SQL commands break mirroring on the principal
and remove the endpoint:

ALTER DATABASE AdventureWorks set partner off

go

DROP ENDPOINT EndPoint4DBMirroring1430

go

From the mirror server instance (not the principal!), you run the DROP DATABASE and DROP
ENDPOINT SQL commands, as follows:

DROP DATABASE AdventureWorks

go

DROP ENDPOINT EndPoint4DBMirroring1440

go

From the witness server instance, you remove the endpoint as follows:

DROP ENDPOINT EndPoint4DBMirroring1450

go

To verify that you have removed these endpoints from each server instance, you simply
run the following SELECT statements:

select name,type_desc,port,ip_address from sys.tcp_endpoints

select name,role_desc,state_desc from sys.database_mirroring_endpoints

All references to the endpoints and roles are removed.

You can also take a peek at the SQL Server log entries being made as you remove data-
base mirroring:

02/05/2009 13:06:42,spid55,Unknown,The Database

Mirroring protocol transport is disabled or not configured.

02/05/2009 13:06:40,spid55,Unknown,The Database Mirroring

protocol transport has stopped listening for connections.

02/05/2009 12:52:55,spid19s,Unknown,Database mirroring

connection error 4 ‘An error occurred while receiving

data: ‘64(The specified network name is no longer

available.)’.’ for ‘TCP:// REM1233..:1440’.

02/05/2009 12:52:55,spid19s,Unknown,Error: 1474

<c/> Severity: 16<c/> State: 1.

02/05/2009 12:52:55,spid19s,Unknown,Database mirroring

connection error 4 ‘An error occurred while

receiving data: ‘64(The specified network name is

no longer available.)’.’ for ‘TCP://REM1233..:1450’.

02/05/2009 12:52:55,spid19s,Unknown,Error: 1474

 Download from www.wowebook.com

ptg

645Testing Failover from the Principal to the Mirror
2

0

FIGURE 20.23 Testing failover of a mirrored database.

FIGURE 20.24 The failover message for database mirroring.

<c/> Severity: 16<c/> State: 1.

02/05/2009 12:51:14,spid21s,Unknown,Database mirroring

has been terminated for database ‘AdventureWorks’.

These are all informational messages only. No user action is required. As you can see from
these messages, you are now in a state of no database mirroring. You have to completely
build up database mirroring again if you want to mirror the database again.

Testing Failover from the Principal to the Mirror
From the SSMS, you can easily fail over from the principal to the mirror server instance
(and back again) by using the Failover button on the Database Properties Mirroring page,
as shown in Figure 20.23.

You must test this failover at some point to guarantee that it works. When you click the
Failover button for this database mirroring configuration, you are prompted to continue
with the failover by clicking Yes or No, as in the dialog shown in Figure 20.24.

 Download from www.wowebook.com

ptg

646 CHAPTER 20 Database Mirroring

FIGURE 20.25 Server instances switch roles following a failover.

Remember that clicking Yes closes all connections to the principal server instance that are
currently connected to this database. Later, we show you how to make your clients aware
of both the principal and mirror server instances so that they can just pick up and run
against either server instance, by design.

Now, if you look at the Database Properties Mirroring page (see Figure 20.25), you see that
the principal and mirror listener port values have switched: the principal instance is now
port value 1440, and the mirror instance is port value 1430. The server instances have
completely switched their roles. You must now go to the server instance playing the princi-
pal role to fail over back to the original operating mode. If you try to open the current
mirror server instance database, you get an error stating that you cannot access this database
because it is in restore mode.

You can also manually run an ALTER DATABASE command to force failover to the mirrored
server as follows:

ALTER DATABASE AdventureWorks set partner FAILOVER;

This command has the same effect as using SSMS or even shutting down the principal
SQL Server instance service.

One last note with mirroring a database is that you cannot bring the principal offline as
you would be able to do in an unmirrored configuration.

 Download from www.wowebook.com

ptg

647Client Setup and Configuration for Database Mirroring
2

0

FIGURE 20.26 A client connection string configuration identifying the failover partner.

Client Setup and Configuration for Database Mirroring
Microsoft has enhanced the client connection capabilities to become mirroring aware. In
other words, a client application is now able to connect to either partner in a mirrored
configuration. The client would, of course, be connecting only to the server instance that
is the current principal. With the help of an extension to the client connection configura-
tion file, all .NET applications can easily add both partners to their connection string
information, and when a principal fails, they can automatically establish a connection to
the new principal (in a mirrored configuration). Figure 20.26 shows the added connection
string information that you provide in the configuration file (app.config) for your appli-
cation. This enhancement uses the Failover Partner= addition that identifies the proper
failover server instance for this mirrored configuration.

As a bonus, we have provided a small .NET C# client application that you can easily use to
test client connections in a database mirroring configuration. This C# solution file, SQL
Client DB Mirroring Test.zip, is included in the Chapter 20 code samples on the CD
supplied with this book. When you expand this file, it builds a complete .NET solution
directory with all code needed for this test application. With Visual Studio, you just open
the WindowsApplication4.sln file (solution file), and the entire application comes up in
Visual Studio. Figure 20.27 shows this simple application in Visual Studio.

This simple test program displays data from the Product table in the AdventureWorks data-
base (which you are mirroring), along with the exact date and time of the data retrieval,
the name of the server instance the data came from, and the SQL process ID (SPID) of the
current server instance. This way, you can easily see which physical server the data is
coming from. If you are trying to use this program, all you have to do is update the
app.config file connection string entry with your two partner server instance names
(REM12374333\SQL08DE01 and REM12374333\SQL08DE02, in this example):

ConnectionString=

“Server= REM12374333\SQL08DE01;

Failover Partner= REM12374333\SQL08DE02;

Database=AdventureWorks;....”

Then you execute the test application. This application automatically connects to the
current principal database (AdventureWorks on the REM12374333\SQL08DE01 server
instance, in this example), as you can see in Figure 20.28.

 Download from www.wowebook.com

ptg

648 CHAPTER 20 Database Mirroring

FIGURE 20.28 A SQL client test against the current principal server instance.

FIGURE 20.27 A SQL client test program for database mirroring in Visual Studio.

Next, you can fail over the principal to the mirror server, using the Database Properties
Mirroring page’s Failover button (refer to Figure 20.22). After you have failed this server
over to its mirror (that is, switched roles), you simply click the Retrieve button at the
bottom of the client test program to access the data in the AdventureWorks database again.
Figure 20.29 shows this subsequent data retrieval. The test application shows the same
data rows, along with the date and time of this data retrieval and the name of the server
instance from which it got its data.

In this case, the data came from the other partner server instance (AdventureWorks on the
REM12374333\SQL08DE02 server instance, in this example). The test application simply uses
the added connection information to reestablish its connection to the failed-over server
instance (that is, the mirror server), completely transparently to the application.

 Download from www.wowebook.com

ptg

649Migrate to Database Mirroring 2008 as Fast as You Can
2

0

FIGURE 20.29 A SQL client test against the current principal server instance (formerly the
mirror server) after failover.

Migrate to Database Mirroring 2008 as Fast as
You Can
During our ramp-up on SQL Server 2008, we decided to conduct a benchmark that pitted
SQL Server 2005 database mirroring against the exact same configuration with SQL Server
2008 database mirroring. Microsoft had described some performance improvements and
other added features that sounded like viable reasons to upgrade to SQL Server 2008. At
the heart of our benchmark we would be seeing how much performance improvement
was possible with the changes that Microsoft has made to compression of the transaction
log records on the principal side, their transmission to the mirror, and the restore to the
mirror. Using identical servers, we conducted a fully loaded test with heavy transaction
rates—first on SQL Server 2005 and then the exact same database mirroring configuration
and transaction load on SQL Server 2008 database mirroring. The results may astound
you! First, we ran a transaction sequence of 100,000 iterations of complex update and
insert processing against the SQL Server 2005 database mirroring configuration that we
built up in this chapter. Figure 20.30 shows the overall load and elapsed time that execu-
tion took on SQL Server 2005.

As you can see from Figure 20.30, the load was heavy, and it took 6 hours and 5 minutes
to complete the 100,000 transactions on the SQL Server 2005 database mirroring configu-
ration. We then upgraded the exact same machines to SQL Server 2008 and ran the same
transaction load. No other changes of any kind were made. Figure 20.31 shows the overall
load and elapsed time of that identical transaction load (100,000 transactions) on SQL
Server 2008.

As you can see, the exact same transaction load took 3 hours and 34 minutes to complete.
This result is nearly 50% faster and is completely transparent from the database and trans-
action point of view. Truly remarkable. This translates into being roughly 50% faster in
high availability and failover. We think this example provides more than enough justifica-
tion to upgrade to SQL Server 2008 as fast as you can.

 Download from www.wowebook.com

ptg

650 CHAPTER 20 Database Mirroring

FIGURE 20.31 Transaction benchmark against SQL Server 2008 database mirroring.

FIGURE 20.30 Transaction benchmark against SQL Server 2005 database mirroring.

Summarizing, the benchmark results are as follows:

. Overall send rate 41% faster (2008 versus 2005)

. Overall restore rate 52% faster (2008 versus 2005)

. Overall availability topology inherits the restore rate yielding ~50% more availability.

We would like to thank the Peace Health database team of John Martin and Jason
Riedberger for flawless benchmarking on both of these topologies.

 Download from www.wowebook.com

ptg

651Using Replication and Database Mirroring Together
2

0

SQL Server 2008

Publisher

Principal
Server

SQL Server 2008

Mirror
Server

SQL Server 2008

Distributor

Principal
Server

SQL Server 2008

Witness
Server

SQL Server 2008

Subscriber

SQL Server 2008

Subscriber

SQL Server 2008

Mirror
Server

FIGURE 20.32 Rolling out database mirroring failover within data replication for scalability,
availability, and fault tolerance.

Using Replication and Database Mirroring Together
SQL Server 2008 allows you to use combinations of options to achieve higher availability
levels. A prime example would be to combine data replication with database mirroring to
provide maximum availability of data, scalability to users, and fault tolerance via failover,
potentially at each node in a replication topology. By starting with the publisher and
perhaps the distributor, you make them both database mirror failover configurations.
Figure 20.32 shows a possible data replication and database mirroring configuration (data-
base mirroring of the publisher and database mirroring of the distributor). For further
explanation of a transactional replication topology, see Chapter 19, “Replication.”

Using database mirroring and replication together is essentially the best of both worlds:
you get the super-low latency of database mirroring for fault tolerance, and you get high

 Download from www.wowebook.com

ptg

652 CHAPTER 20 Database Mirroring

SQL Server 2008

SQL
Server

Copy of original
pages for snapshot

only when a page is changed

System Catalog
of changed pages

Data
Pages

Adventure
Works DB

Snapshot
AdventureWorks

DB

FIGURE 20.33 Database snapshots and the original database share pages and are managed
within the system catalog of SQL Server 2008.

availability (and scalability) of data through replication. The downside of this type of
combined capability is that it requires additional servers (for mirroring of the databases).
The upside is the increased scalability and resilience of your applications.

Using Database Snapshots from a Mirror for Reporting
A powerful configuration to help offload reporting workload is to use database snapshots
with database mirroring. A database snapshot is a highly efficient feature of SQL Server
2008 that allows for the generation and use of a read-only, stable view of a database at a
moment in time (hence, it’s called a snapshot). The database snapshot is also created
without the overhead of creating a complete copy of the database or having completely
redundant storage. A database snapshot is simply a reference point of the pages used in
the database (that is defined in the system catalog). When pages are updated, a new page
chain is started that contains the data pages changed since the database snapshot was
taken, as illustrated in Figure 20.33.

 Download from www.wowebook.com

ptg

653Using Database Snapshots from a Mirror for Reporting
2

0

SQL Server 2008

Principal
Server

Adventure
Works DB

translog

SQL Server 2008

Witness
Server MSDB DB

SQL Server 2008
Mirror Server

Adventure
Works DB

translog

Netw
ork

Rep
orti

ng U
se

rs

Rep
orti

ng U
se

rs

Rep
ort

ing
 U

se
rs

Database Snapshot

FIGURE 20.34 A database snapshot defined from a mirror server for reporting use.

As the original database diverges from a snapshot, the snapshot gets its own copy of origi-
nal pages when they are modified. The copy-on-write technology used for database
mirroring also enables a database snapshot. When a database snapshot is created on a
database (a mirror database, in this case), all writes check the system catalog of changed
pages first; if the snapshot is not there, the original page is copied (using copy-on-write)
and is put in a place for reference by the database snapshot (because the snapshot must be
kept intact). In this way, a database snapshot and the original database share the data
pages that have not changed.

Unlike a mirror database, a database snapshot can be accessed by a reporting client in
read-only mode, as shown in Figure 20.34. As long as the mirror server is communicating
to the principal, reporting clients can access the snapshot database.

If the principal fails over to the mirror server, the connections to the snapshot database
are disconnected during the database restart process (which makes the mirror server the
new principal server). It is possible to reconnect the reporting clients to the database snap-
shot after a failover is completed, but you must remember that now both the transactional
clients and reporting clients are connected to a single SQL Server instance. This may not
be acceptable from a performance point of view. Also, it is always a good idea to keep the
number of snapshots to a minimum when creating them against a database mirror.

Chapter 32, “Database Snapshots,” covers how to create database snapshots.

 Download from www.wowebook.com

ptg

654 CHAPTER 20 Database Mirroring

Summary
Database mirroring is one of the most significant SQL Server features to come along in a
long time. This feature has provided a way for users to get to a minimum level of high
availability for their databases and applications without having to use complex hard-
ware and software configurations (as are needed with MSCS and SQL Server Clustering
configurations).

To mirror a database, you essentially ask for a complete copy of a database to be created
and maintained up to the last committed transaction. The ease and simplicity of creating
and monitoring database mirroring will quickly make it a configuration that many people
use. Adding variations to this configuration, such as enhancing data replication or offload-
ing reporting users, adds even more availability, resilience, and scalability possible than
ever existed before. And, as you have seen, it is very easy to have your applications take
advantage of database mirroring transparently. In addition, Microsoft has now improved
on its overall performance and stability, coupled with three more years’ worth of produc-
tion implementations by companies around the globe. Moving to SQL Server 2008 data-
base mirroring is now more than a rock solid path.

Chapter 21, “SQL Server Clustering,” delves into the complexities and significant benefits
of building high-availability solutions by using SQL Server Clustering.

 Download from www.wowebook.com

ptg

CHAPTER 21

SQL Server Clustering

IN THIS CHAPTER

. What’s New in SQL Server
Clustering

. How Microsoft SQL Server
Clustering Works

. Installing SQL Server Clustering

Enterprise computing requires that the entire set of tech-
nologies you use to develop, deploy, and manage mission-
critical business applications be highly reliable, scalable,
and resilient. These technologies include the network,
entire technology stack, operating systems on the servers,
applications you deploy, database management systems,
and everything in between.

An enterprise must now be able to provide a complete solu-
tion in regards to the following:

. Scalability—As organizations grow, so does the need
for more computing power. The systems in place must
enable an organization to leverage existing hardware
and to quickly and easily add computing power as
needs demand.

. Availability—As organizations rely more on informa-
tion, it is critical that the information be available at
all times and under all circumstances. Downtime is
not acceptable. Moving to five-nines reliability (which
means 99.999% uptime) is a must, not a dream.

. Interoperability—As organizations grow and evolve,
so do their information systems. It is impractical to
think that an organization will not have many hetero-
geneous sources of information. It is becoming
increasingly important for applications to get to all
the information, regardless of its location.

. Reliability—An organization is only as good as its
data and information. It is critical that the systems
providing that information be bulletproof.

 Download from www.wowebook.com

ptg

656 CHAPTER 21 SQL Server Clustering

It is assumed that you will provide a certain level of foundational capabilities in regard to
network, hardware, and operating system resilience. The good news is that you can
achieve many of your enterprise’s demands easily and inexpensively by using Microsoft
Cluster Services (MSCS), Network Load Balancing (NLB), and SQL Server Clustering (or
combinations of them).

What’s New in SQL Server Clustering
Much of what’s new for MSCS and SQL Server Clustering has to do with the expanded
number of nodes that can be managed together and several ease-of-use enhancements in
MSCS, including the following:

. Setup changes for SQL Server failover clustering—One option forces you to run
the Setup program on each node of the failover cluster. To add a node to an existing
SQL Server failover cluster, you must run SQL Server Setup on the node that is to be
added to the SQL Server failover cluster instance. Another option creates an enter-
prise push to nodes from the active node.

. Cluster nodes residing on different subnets—With Windows 2008, cluster nodes
can now reside on different network subnets across network routers. You no longer
have to stretch virtual local area networks to connect geographically separated
cluster nodes. This opens the door to clustered disaster recovery options.

. Instances per cluster—SQL Server 2008 Enterprise Edition supports up to 25 SQL
Server instances per cluster (up to 50 for a nonclustered server).

. More cluster-aware applications—Many of the MS SQL Server 2008 products are
cluster aware, such as Analysis Services, Full Text Search, Integration Services,
Reporting Services, FILESTREAM, and others, making these applications more highly
available and resilient.

. Isolation of the quorum disk in MSCS—A shared disk partition that is not on the
same physical drive/LUN as the quorum drive must be available in an attempt to
reduce failure dependencies.

. Number of nodes in a cluster—With Windows 2003 Enterprise Edition (or
Datacenter), you can now create up to 8 nodes in a single cluster, and with Windows
2008 Enterprise Edition (or Datacenter), you can create up to 16 nodes.

These new features and enhancements combine to make setting up SQL Server Clustering
an easy high-availability proposition. They take much of the implementation risk out of
the equation and make this type of installation available to a broader installation base.

How Microsoft SQL Server Clustering Works
Put simply, SQL Server 2008 allows failover and failback to or from another node in a
cluster. This is an immensely powerful tool for achieving higher availability virtually trans-
parently. There are two approaches to implementing SQL Server Clustering: active/passive
or active/active modes.

 Download from www.wowebook.com

ptg

657How Microsoft SQL Server Clustering Works

In an active/passive configuration, an instance of SQL Server actively services database
requests from one of the nodes in a SQL Server cluster (that is, the active node). Another
node is idle until, for whatever reason, a failover occurs (to the passive node). With a
failover situation, the secondary node (the passive node) takes over all SQL Server
resources (for example, databases and the Microsoft Distributed Transaction Coordinator
[MSDTC]) without the end user ever knowing that a failover has occurred. The end user
might experience a brief transactional interruption because SQL Server Failover Clustering
cannot take over in-flight transactions. However, the end user still just looks at a single
(virtual) SQL Server and truly doesn’t care which node is fulfilling requests.

Figure 21.1 shows a typical two-node SQL Server Clustering configuration using
active/passive mode, in which Node 2 is idle (that is, passive).

2
1

In an active/active configuration, SQL Server runs multiple servers simultaneously with
different databases. This gives organizations with more constrained hardware requirements
a chance to use a clustering configuration that can fail over to or from any node, without
having to set aside idle hardware.

As previously mentioned, SQL Server Clustering is actually created within (on top of)
MSCS. MSCS, not SQL Server, is capable of detecting hardware or software failures and
automatically shifting control of the managed resources to a healthy node. SQL Server
2008 implements failover clustering based on the clustering features of the Microsoft
Clustering Service. In other words, SQL Server is a fully cluster-aware application and

Basic Two–Node SQL Cluster

Active/Passive
Configuration

MSCS

Cluster Group
Resources

MSCS

Windows 2003 EE

Windows 2003 EE

2
P

ro
ce

ss
or

s
(X

eo
n)

M
em

or
y/

C
ac

he
 4

 G
B

2
P

ro
ce

ss
or

s
(X

eo
n)

M
em

or
y/

C
ac

he
 4

 G
B

N
et

w
or

k

Public Networks

H
ea

rt
be

at

Quorum
Disk

NODE 2 (Passive)

NODE 1 (Active)

MS DTC

SCSI

SCSI

SCSI

Local
storage

Local
storage

Shared
Disk

C:

C:

SQL
Agent

FIGURE 21.1 A typical two-node active/passive SQL Server Clustering configuration.

 Download from www.wowebook.com

ptg

658

becomes a set of resources managed by MSCS. The failover cluster shares a common set of
cluster resources (or cluster groups), such as clustered (that is, shared) disk drives.

NOTE

You can install SQL Server on as many servers as you want; the number is limited only
by the operating system license and SQL Server edition you have purchased. However,
MSCS (for Windows 2008) can manage only up to 16 instances of Microsoft SQL
Server Standard Edition at a time and up to 25 instances of Microsoft SQL Server
Enterprise Edition at a time.

Understanding MSCS

A server cluster is a group of two or more physically separate servers running MSCS and
working collectively as a single system. The server cluster, in turn, provides high availabil-
ity, scalability, and manageability for resources and applications. In other words, a group
of servers is physically connected via communication hardware (network), shares storage
(via SCSI or Fibre Channel connectors), and uses MSCS software to tie them all together
into managed resources.

Server clusters can preserve client access to applications and resources during failures and
planned outages. If one of the servers in a cluster is unavailable due to failure or mainte-
nance, resources and applications move to another available cluster node.

NOTE

You cannot do clustering with Windows 2000 Professional or older server versions.
Clustering is available only on servers running Windows 2000 Advanced Server (which
supports two-node clusters), Windows 2000 Datacenter Server (which supports up to
four-node clusters), Windows 2003 Enterprise Edition and Datacenter Server, and
Windows 2008 Enterprise Edition and Datacenter Server.

Clusters use an algorithm to detect a failure, and they use failover policies to determine
how to handle the work from a failed server. These policies also specify how a server is to
be restored to the cluster when it becomes available again.

Although clustering doesn’t guarantee continuous operation, it does provide availability
sufficient for most mission-critical applications and is the building block of numerous
high-availability solutions. MSCS can monitor applications and resources, automatically
recognizing and recovering from many failure conditions. This capability provides great
flexibility in managing the workload within a cluster, and it improves the overall availabil-
ity of the system. Technologies that are “cluster aware”—such as SQL Server, Microsoft
Message Queuing (MSMQ), Microsoft Distributed Transaction Coordinator (MSDTC), and
file shares—have already been programmed to work within (under the control of) MSCS.

CHAPTER 21 SQL Server Clustering

 Download from www.wowebook.com

ptg

659How Microsoft SQL Server Clustering Works
2

1

TIP

In previous versions of MSCS, the COMCLUST.EXE utility had to be run on each node to
cluster the MSDTC. It is now possible to configure MSDTC as a resource type, assign it
to a resource group, and then have it automatically configured on all cluster nodes.

MSCS is relatively sensitive to the hardware and network equipment you put in place. For
this reason, it is imperative that you verify your own hardware’s compatibility before you
go any further in deploying MSCS (check the hardware compatibility list at http://msdn.
microsoft.com/en-us/library/ms189910.aspx). In addition, SQL Server failover cluster
instances are not supported where the cluster nodes are also domain controllers.

Let’s look a little closer at a two-node active/passive cluster configuration. As you can see
in Figure 21.2, the heartbeat (named ClusterInternal in this figure) is a private network
set up between the nodes of the cluster that checks whether a server is up and running
(“is alive”). This occurs at regular intervals, known as time slices. If the heartbeat is not
functioning, a failover is initiated, and another node in the cluster takes over for the failed
node. In addition to the heartbeat private network, at least one public network (named
ClusterPublic in this figure) must be enabled so that external connections can be made
to the cluster. Each physical server (node) uses separate network adapters for each type of
communication (public and internal heartbeat).

Active/Passive
Configuration

CLUSTER 1
(NODE 1)

CLUSTER 2
(NODE 2)

Windows 2003 EE

Windows 2003 EE

2
P

ro
ce

ss
or

s
(X

eo
n)

M
em

or
y/

C
ac

he
 4

 G
B

2
P

ro
ce

ss
or

s
(X

eo
n)

M
em

or
y/

C
ac

he
 4

 G
B

N
et

w
or

k

ClusterPublic

C
lu

st
er

In
te

rn
al

M
S

C
S

SCSI

SCSI

SCSI

Local
storage

Local
storage

S: Shared
Disk

Q: Quorum
Disk

C:

C:

FIGURE 21.2 A two-node active/passive MSCS cluster configuration.

 Download from www.wowebook.com

http://msdn.microsoft.com/en-us/library/ms189910.aspx
http://msdn.microsoft.com/en-us/library/ms189910.aspx

ptg

660

The shared disk array is a collection of physical disks (SCSI RAID or Fibre
Channel–connected disks) that the cluster accesses and controls as resources. MSCS
supports shared nothing disk arrays, in which only one node can own a given resource at
any given moment. All other nodes are denied access until they own the resource. This
protects the data from being overwritten when two computers have access to the same
drives concurrently.

The quorum drive is a logical drive designated on the shared disk array for MSCS. This
continuously updated drive contains information about the state of the cluster. If this drive
becomes corrupt or damaged, the cluster installation also becomes corrupt or damaged.

NOTE

In general (and as part of a high-availability disk configuration), the quorum drive
should be isolated to a drive all by itself and be mirrored to guarantee that it is avail-
able to the cluster at all times. Without it, the cluster doesn’t come up at all, and you
cannot access your SQL databases.

The MSCS architecture requires there to be a single quorum resource in the cluster that is
used as the tie-breaker to avoid split-brain scenarios. A split-brain scenario happens when
all the network communication links between two or more cluster nodes fail. In these
cases, the cluster may be split into two or more partitions that cannot communicate with
each other. MSCS guarantees that even in these cases, a resource is brought online on only
one node. If the different partitions of the cluster each brought a given resource online,
this would violate what a cluster guarantees and potentially cause data corruption. When
the cluster is partitioned, the quorum resource is used as an arbiter. The partition that
owns the quorum resource is allowed to continue. The other partitions of the cluster are
said to have “lost quorum,” and MSCS and any resources hosted on nodes that are not
part of the partition that has quorum are terminated.

The quorum resource is a storage-class resource and, in addition to being the arbiter in a
split-brain scenario, is used to store the definitive version of the cluster configuration. To
ensure that the cluster always has an up-to-date copy of the latest configuration informa-
tion, you should deploy the quorum resource on a highly available disk configuration
(using mirroring, triple-mirroring, or RAID 10, at the very least).

Starting with Windows 2003, a more durable approach of managing the quorum disks
with clustering was created, called majority node set. It all but eliminates the single-point-
of-failure weakness in the traditional quorum disk configuration that existed with
Windows 2000 servers. However, even this approach isn’t always the best option for many
clustered scenarios.

The notion of quorum as a single shared disk resource means that the storage subsystem
has to interact with the cluster infrastructure to provide the illusion of a single storage
device with very strict semantics. Although the quorum disk itself can be made highly
available via RAID or mirroring, the controller port may be a single point of failure. In
addition, if an application inadvertently corrupts the quorum disk or an operator takes
down the quorum disk, the cluster becomes unavailable.

CHAPTER 21 SQL Server Clustering

 Download from www.wowebook.com

ptg

661How Microsoft SQL Server Clustering Works
2

1

This situation can be resolved by using a majority node set option as a single quorum
resource from an MSCS perspective. In this set, the cluster log and configuration informa-
tion are stored on multiple disks across the cluster. A new majority node set resource
ensures that the cluster configuration data stored on the majority node set is kept consis-
tent across the different disks.

The disks that make up the majority node set could, in principle, be local disks physically
attached to the nodes themselves or disks on a shared storage fabric (that is, a collection of
centralized shared storage area network [SAN] devices connected over a switched-fabric or
Fibre Channel–arbitrated loop SAN). In the majority node set implementation that is
provided as part of MSCS in Windows Server 2003 and 2008, every node in the cluster uses
a directory on its own local system disk to store the quorum data, as shown in Figure 21.3.

If the configuration of the cluster changes, that change is reflected across the different
disks. The change is considered to have been committed (that is, made persistent) only if
that change is made to a majority of the nodes (that is, [Number of nodes configured in
the cluster]/2) + 1). In this way, a majority of the nodes have an up-to-date copy of the
data. MSCS itself starts up only if a majority of the nodes currently configured as part of
the cluster are up and running as part of MSCS.

If there are fewer nodes, the cluster is said not to have quorum, and therefore MSCS waits
(trying to restart) until more nodes try to join. Only when a majority (or quorum) of
nodes are available does MSCS start up and bring the resources online. This way, because
the up-to-date configuration is written to a majority of the nodes, regardless of node fail-
ures, the cluster always guarantees that it starts up with the most up-to-date configuration.

With Windows 2008, a few more quorum drive configurations are possible that address
various voting strategies and also support geographically separated cluster nodes.

The “majority node set” resource uses the
private network cluster connection between
nodes to transfer data to the shares

Majority Node Set - Quorum disk option

Heartbeat (private network)

quorum

Node A

quorum

Node B

quorum

Node C

quorum

Node D

FIGURE 21.3 A majority node set.

 Download from www.wowebook.com

ptg

662 CHAPTER 21 SQL Server Clustering

In Windows Server 2008 failover clustering, you have four choices on how to implement
the quorum:

. One option is to use Node majority; a vote is given to each node of the cluster, and
the cluster continues to run as long as a majority of nodes are up and running.

. A second option is to use both the nodes and the standard quorum disk, a common
option for two-node clusters. Each node gets a vote, and the quorum, now called a
witness disk, also gets a vote. As long as two of the three are running, the cluster
continues. The cluster can actually lose the witness disk and still run.

. A third option is to use the classic/legacy model and assign a vote to the witness disk
only. This type of quorum equates to the well-known, tried-and-true model that has
been used for years.

. A fourth option is, of course, to use the majority node set (MNS) model with a file
share witness.

We describe only the standard majority node set approach here.

TIP

A quick check to see whether your hardware (server, controllers, and storage devices)
is listed on Microsoft’s Hardware Compatibility List will save you headaches later. See
the hardware pre-installation checklist at http://msdn.microsoft.com/en-us/library/
ms189910.aspx.

Extending MSCS with NLB

You can also use a critical technology called Network Load Balancing (NLB) to ensure that
a server is always available to handle requests. NLB works by spreading incoming client
requests among a number of servers linked together to support a particular application. A
typical example is to use NLB to process incoming visitors to your website. As more visi-
tors come to your site, you can incrementally increase capacity by adding servers. This
type of expansion is often referred to as software scaling, or scaling out. Figure 21.4 illus-
trates this extended clustering architecture with NLB.

By using both MSCS and NLB clustering technologies together, you can create an n-tier
infrastructure. For instance, you can create an n-tiered e-commerce application by deploy-
ing NLB across a front-end web server farm and use MSCS clustering on the back end for
your line-of-business applications, such as clustering your SQL Server databases. This
approach gives you the benefits of near-linear scalability without server- or application-
based single points of failure. This, combined with industry-standard best practices for
designing high-availability networking infrastructures, can ensure that your Windows-
based, Internet-enabled business will be online all the time and can quickly scale to meet

 Download from www.wowebook.com

http://msdn.microsoft.com/en-us/library/ms189910.aspx
http://msdn.microsoft.com/en-us/library/ms189910.aspx

ptg

663How Microsoft SQL Server Clustering Works
2

1

MSCS with Network Load Balancing

Network Load
Balancing Servers

(NLB)

MSCS
Cluster

n

Clients

•
•
•

2

1

FIGURE 21.4 An NLB configuration.

demand. Other tiers could be added to the topology, such as an application-center tier
that uses component load balancing. This further extends the clustering and scalability
reach for candidate applications that can benefit from this type of architecture.

How MSCS Sets the Stage for SQL Server Clustering

Figure 21.5 shows an Excel spreadsheet that documents all the needed Internet Protocol
(IP) addresses, network names, domain definitions, and SQL Server references to set up a
two-node SQL Server Clustering configuration (configured in an active/passive mode).
CLUSTER1 is the first node, CLUSTER2 is the second node, and the cluster group name is
CLUSTER >GROUP (simple naming is used here to better illustrate the point). The public
network name is ClusterPublic, and the internal heartbeat network name is
ClusterInternal. This spreadsheet has also been included in the download files on the
CD for this book. It’s a good idea to fill out this spreadsheet before you start installing and
configuring your servers.

 Download from www.wowebook.com

ptg

664 CHAPTER 21 SQL Server Clustering

FIGURE 21.5 An Excel spreadsheet for a two-node active/passive SQL Cluster configuration.

The cluster controls the following resources:

. Physical disks (Q: is for the quorum disk, S: is for the shared disks, and so on.)

. The cluster IP address

. The cluster name (network name)

. The Distributed Transaction Coordinator (MSDTC)

. The SQL Server virtual IP address

. The SQL Server virtual name (network name)

. SQL Server

. SQL Server Agent

. The SQL Server Full-Text Search service instance (if installed)

After you successfully install, configure, and test your cluster (MSCS), you are ready to add
the SQL Server components as resources to be managed by MSCS. This is where the magic

 Download from www.wowebook.com

ptg

665Installing SQL Server Clustering
2

1

happens. Figure 21.6 shows how the Cluster Administrator should look after you
install/configure MSCS. It doesn’t have SQL Server 2008 installed yet.

Installing SQL Server Clustering
When you install SQL Server in a clustered server configuration, you create it as a virtual
SQL Server. A virtual SQL Server is not tied to a specific physical server; it is associated with
a virtualized SQL Server name that is assigned a separate IP address (not the IP address or
name of the physical servers on which it runs). Handling matters this way allows for your
applications to be completely abstracted away from the physical server level.

Failover clustering has a new workflow for all Setup scenarios in SQL Server 2008. The two
options for installation are

. Integrated installation—This option creates and configures a single-node SQL
Server failover cluster instance. Additional nodes are added by using the Add Node
functionality in Setup. For example, for Integrated installation, you run Setup to
create a single-node failover cluster. Then you run Setup again for each node you
want to add to the cluster.

. Advanced/Enterprise installation—This option consists of two steps; the prepare
step prepares all nodes of the failover cluster to be operational. Nodes are defined
and prepared during this initial step. After you prepare the nodes, the Complete step
is run on the active node—the node that owns the shared disk—to complete the
failover cluster instance and make it operational.

Figure 21.7 shows the same two-node cluster configuration as Figure 21.1, with all the SQL
Server components identified. This virtual SQL Server is the only thing the end user will
ever see. As you can also see in Figure 21.7, the virtual server name is VSQLSERVER2008,
and the SQL Server instance name defaults to blank (you can, of course, give your
instance a name). Figure 21.7 also shows the other cluster group resources that will be part
of the SQL Server Clustering configuration: MSDTC, SQL Agent, SQL Server Full-Text
Search, and the shared disk where the databases will live.

FIGURE 21.6 Windows 2003 Cluster Administrator, showing managed resources prior to
installing SQL Server.

 Download from www.wowebook.com

ptg

666 CHAPTER 21 SQL Server Clustering

SQL
Connections

SQL Clustering basic configuration

CLUSTER 1

CLUSTER GROUP
Resources

CLUSTER 2

Windows 2003 EE

SQL Server 2008 (physical)

Windows 2003 EE

MS DTC

SQL Agent

SQL Full Text
Search

Q:
Quorum

Disk

SQL Server 2008 (physical)

SQL Server 2008
(Virtual SQL Server)

ClusterPublic

C
lu

st
er

In
te

rn
al

Local
Binaries

Local
Binaries

C:

C:

Master DB
TempDB
Appl 1 DB

VSQLSERVER2008

SSS
hhh

aaarr
reee

ddd
S

h
ar

ed

FIGURE 21.7 A basic SQL Server Clustering configuration.

SQL Server Agent will be installed as part of the SQL Server installation process, and it is
associated with the SQL Server instance it is installed for. The same is true for SQL Server
Full-Text Search; it is associated with the particular SQL Server instance that it is installed
to work with. The SQL Server installation process completely installs all software on all
nodes you designate.

Configuring SQL Server Database Disks

Before we go too much further, we need to talk about how you should lay out a SQL
Server implementation on the shared disks managed by the cluster. The overall usage
intent of a particular SQL Server instance dictates how you might choose to configure
your shared disk and how it might be best configured for scalability and availability.

In general, RAID 0 is great for storage that doesn’t need fault tolerance; RAID 1 or RAID 10
is great for storage that needs fault tolerance but doesn’t have to sacrifice too much perfor-
mance (as with most online transaction processing [OLTP] systems); and RAID 5 is great
for storage that needs fault tolerance but whose data doesn’t change that much (that is,
low data volatility, as in many decision support systems [DSSs]/read-only systems).

All this means that there is a time and place to use each of the different fault-tolerant disk
configurations. Table 21.1 provides a good rule of thumb to follow for deciding which
SQL Server database file types should be placed on which RAID level disk configuration.
(This would be true regardless of whether or not the RAID disk array was a part of a SQL
Server cluster.)

 Download from www.wowebook.com

ptg

667Installing SQL Server Clustering
2

1

TIP

A good practice is to balance database files across disk arrays (that is, controllers). In
other words, if you have two (or more) separate shared disk arrays (both RAID 10) avail-
able within a cluster group’s resources, you should put the data file of Database 1 on
the first cluster group disk resource (for example, DiskRAID10-A) and its transaction
log on the second cluster group disk resource (for example, DiskRaid10-B). Then you
should put the data file of Database 2 on the second cluster group disk resource of
DiskRAID10-B and its transaction log on the first cluster group disk resource of
DiskRAID10-A. In this way, you can stagger these allocations and in general balance
the overall RAID controller usage, minimizing any potential bottlenecks that might occur
on one disk controller. In addition, FILESTREAM filegroups must be put on a shared
disk, and FILESTREAM must be enabled on each node in the cluster that will host the
FILESTREAM instance. You can also use geographically dispersed cluster nodes, but
additional items such as network latency and shared disk support must be verified
before you get started. Check the Geographic Cluster hardware Compatibility List
(http://msdn.microsoft.com/en-us/library/ms189910.aspx). On Windows 2008, most
hardware and ISCSI supported hardware can be used, without the need to use “certi-
fied hardware.” When you are creating a cluster on Windows 2008, you can use the
cluster validation tool to validate the Windows cluster; it also blocks SQL Server Setup
when problems are detected with the Windows 2008 cluster.

TABLE 21.1 SQL Server Clustering Disk Fault-Tolerance Recommendations

Device Description Fault Tolerance

Quorum drive The quorum drive used with MSCS should
be isolated to a drive by itself (often
mirrored as well, for maximum availability).

RAID 1 or RAID 10

OLTP SQL Server database files For OLTP systems, the database
data/index files should be placed on a
RAID 10 disk system.

RAID 10

DSS SQL Server database files For DSSs that are primarily read-only, the
database data/index files should be
placed on a RAID 5 disk system.

RAID 5

tempdb This is a highly volatile form of disk I/O
(when not able to do all its work in the
cache).

RAID 10

SQL Server transaction log files The SQL Server transaction log files should
be on their own mirrored volume for both
performance and database protection. (For
DSSs, this could be RAID 5 also.)

RAID 10 or RAID 1

 Download from www.wowebook.com

http://msdn.microsoft.com/en-us/library/ms189910.aspx

ptg

668 CHAPTER 21 SQL Server Clustering

Installing Network Interfaces

You might want to take a final glance at Cluster Administrator so that you can verify that
both CLUSTER1 and CLUSTER2 nodes and their private and public network interfaces are
completely specified and their state (status) is up. If you like, you should also double-
check the IP addresses and network names against the Excel spreadsheet created for this
cluster specification.

Installing MSCS

As you can see in Figure 21.8, the MSCS “service” is running and has been started by the
ClusterAdmin login account for the GOTHAM domain.

NOTE

If MSCS is not started and won’t start, you cannot install SQL Server Clustering. You have
to remove and then reinstall MSCS from scratch. You should browse the Event Viewer to
familiarize yourself with the types of warnings and errors that can appear with MSCS.

Installing SQL Server

For SQL Clustering, you must install a new SQL Server instance within a minimum two-
node cluster. You should not move a SQL Server instance from a nonclustered configura-
tion to a clustered configuration. If you already have SQL Server installed in a
nonclustered environment, you need to make all the necessary backups (or detach data-
bases) first, and then you need to uninstall the nonclustered SQL Server instance. Some

FIGURE 21.8 You need to make sure MSCS is running and started by the cluster account for
the domain.

 Download from www.wowebook.com

ptg

669Installing SQL Server Clustering
2

1

upgrade paths and migration paths are possible from prior versions of SQL Server and
Windows server. You are also limited to a maximum of 25 instances of SQL Server per
failover cluster. There is no uninstall SQL Server failover cluster option; you must run
Setup from the node that is to be removed. You must specify the same product key on all
the nodes that you are preparing for the same failover cluster. You also should make sure
you use the same SQL Server instance ID for all the nodes that are prepared for the
failover cluster.

With all MSCS resources running and in the online state, you run the SQL Server Setup
program from the node that is online (for example, CLUSTER1). You are asked to install all
software components required prior to installing SQL Server (.NET Framework 3.0 or 3.5,
Microsoft SQL Native Client, and the Microsoft SQL Server 2008 Setup support files).

SQL Server integrated failover cluster installation consists of the following steps:

1. Create and configure a single-node SQL Server failover cluster instance. When you
configure the node successfully, you have a fully functional failover cluster instance.
At this point, it does not have high availability because there is only one node in the
failover cluster.

2. On each node to be added to the SQL Server failover cluster, run Setup with Add
Node functionality to add that node.

Alternatively, you can use the following SQL Server Advanced/Enterprise failover cluster
installation:

1. On each node that will be an owner of the new SQL Server failover cluster, follow
the Prepare Failover Cluster setup steps listed in the Prepare section. After you run
the Prepare Failover Cluster on one node, Setup creates the Configuration.ini file,
which lists all the settings you specified. On the additional nodes to be prepared,
instead of following these steps, you can supply the Configuration.ini file from
first node as an input to the Setup command line. This step prepares the nodes
ready to be clustered, but there is no operational instance of SQL Server at the end
of this step.

2. After the nodes are prepared for clustering, run Setup on one of the prepared nodes,
preferably on the node that owns the shared disk that has the Complete Failover
Cluster functionality. This step configures and finishes the failover cluster instance.
After completing this step, you have an operational SQL Server failover cluster
instance. and all the nodes prepared previously for that instance are the possible
owners of the newly created SQL Server failover cluster.

After you take these steps, the standard Welcome to SQL Server Installation Center Wizard
begins. It starts with a System Configuration check of the node in the cluster (CLUSTER1).
Figure 21.9 shows the SQL Server Installation Center launch dialog and the results of a
successful system check for CLUSTER1.

 Download from www.wowebook.com

ptg

670 CHAPTER 21 SQL Server Clustering

NOTE

SQL Server Clustering is available with SQL Server 2008 Standard Edition, Enterprise
Edition, and Developer Edition. However, Standard Edition supports only a two-node
cluster. If you want to configure a cluster with more than two nodes, you need to
upgrade to SQL Server 2008 Enterprise Edition.

If this check fails (warnings are acceptable), you must resolve them before you continue. If
the check is successful, you are then prompted for the checklist of features you want to
install. Figure 21.10 shows the Feature Selection to install dialog.

You then see the Instance Configuration dialog, as shown in Figure 21.11, where you
specify the network name for the new SQL Server failover cluster (the Virtual Server name,
VSQLSERVER2008 in this example) and then either can use the default SQL Server instance
name (no name) or specify a unique SQL Server instance name (we chose to use the
default instance name of MSSQLSERVER).

This virtual SQL Server name is the name the client applications will see (and to which
they will connect). When an application attempts to connect to an instance of SQL Server
2008 that is running on a failover cluster, the application must specify both the virtual
server name and instance name (if an instance name was used), such as
VSQLSERVER2008\VSQLSRV1 (virtual server name\SQL Server instance name) or
VSQLSERVER2008 (just the virtual server name without the default SQL Server instance

FIGURE 21.9 A Microsoft SQL Server Setup Support Rules check.

 Download from www.wowebook.com

ptg

671Installing SQL Server Clustering
2

1

FIGURE 21.10 The SQL Server Setup Feature Selection dialog for a SQL Server Failover
Cluster.

FIGURE 21.11 Specifying the virtual server name (VSQLSERVER2008) and default instance.

 Download from www.wowebook.com

ptg

672 CHAPTER 21 SQL Server Clustering

name). The virtual server name must be unique on the network. You also specify the local
directory locations (root) for the installation.

NOTE

A good naming convention to follow is to preface all virtual SQL Server names and vir-
tual SQL Server instance names with a V. This way, you can easily identify which SQL
Server machines on your network are clustered. For example, you could use
VSQLSERVER2008 as a virtual SQL Server name and VSQLSRV1 as an instance name.

Next comes the disk space requirements dialog, followed by the Cluster Resource Group
specification. This is where the SQL Server resources are placed within MSCS. Here, you
use the existing resource cluster group (named Cluster Group). Immediately following the
resource group assignment comes the identification of which clustered disks are to be used
via the Cluster Disk Selection dialog, shown in Figure 21.12. It contains an S: drive
(which you want SQL Server to use) and Q: and R: drive being used for the quorum files
(do not select this drive!). You simply select the available drive(s) where you want to put
your SQL database files (the S: drive in this example). As you can also see, the only “quali-
fied” disk is the S: drive. If the quorum resource is in the cluster group you have selected,
a warning message is issued, informing you of this fact. A general rule of thumb is to
isolate the quorum resource to a separate cluster group.

FIGURE 21.12 Cluster resource group specification and Cluster Disk Selection.

 Download from www.wowebook.com

ptg

673Installing SQL Server Clustering
2

1

The next thing you need to do for this new virtual server specification is to identify an IP
address and which network it should use. As you can see in the Cluster Network
Configuration dialog, shown in Figure 21.13, you simply type in the IP address (for
example, 192.168.3.110) that is to be the IP address for this virtual SQL Server for the
available networks known to this cluster configuration (in this example, it is for the
ClusterPublic network). If the IP address being specified is already in use, an error occurs.

NOTE

Keep in mind that you are using a separate IP address for the virtual SQL Server that
is completely different from the cluster IP addresses. In a nonclustered installation of
SQL Server, the server can be referenced using the machine’s IP address. In a clus-
tered configuration, you do not use the IP addresses of the servers themselves;
instead, you use this separately assigned IP address for the “virtual” SQL Server.

Figure 21.14 shows the next step in identifying the Cluster Security Policy for each SQL
Server component (Database Engine, SQL Server Agent, and Analysis Services). Here, you
use the domain Admin group. Figure 21.14 also shows the Server Configuration “service
accounts” to use for all the services within this SQL Server install. You use a ClusterAdmin
account set up for this purpose. Remember, this account must have administrator rights
within the domain and on each server (that is, it must be a member of the Administrators
local group on any node in the cluster). This is followed by the Database Engine
Configuration dialog, where you set what type of authentication mode to use, the data

FIGURE 21.13 Specifying the virtual SQL Server IP address and which network to use.

 Download from www.wowebook.com

ptg

674 CHAPTER 21 SQL Server Clustering

directories for the root and subfolders, and the FILESTREAM options. Needless to say, the
Data root directory is on the S: drive.

You then are prompted through the Analysis Services Configuration and Reporting
Services Configuration dialogs. Your Analysis Services Data directories are within a
subfolder of S:\OLAP\.

At this point, you have worked your way down to the Cluster Installation Rules check to
determine if everything specified to this point is correct. Figure 21.15 shows this rules
check “passing” status, a summary of what is about to be done, and the location of the
configuration file (and path) that can be used later if you are doing command-line
installs of new nodes in the cluster. A box appears around this configuration file path
location at the bottom right of the Ready to Install dialog to show you where it is being
created (if needed).

The next step is to click on the Install button.

The setup process installs SQL Server binaries locally on each node in the cluster (that is,
in C:\Program Files\Microsoft SQL Server). The database files for the master, model,
tempdb, and msdb databases are placed on the S: drive in this example. This is the shared
disk location that must be available to all nodes in the SQL Server cluster.

When the process is complete, you can pop over into the Cluster Administrator and see all
the resources just installed within the failover cluster. This is not highly available yet
because you have completed only one node of the two-node failover cluster. But, as you

FIGURE 21.14 Specifying Cluster Security Policy, Server Config and Database Engine Config.

 Download from www.wowebook.com

ptg

675Installing SQL Server Clustering
2

1

FIGURE 21.15 Cluster Installation Rules check and Ready to Install dialog.

can see in Figure 21.16, the SQL Server components have been successfully installed and
are usable within the cluster.

Adding the next node (and any more subsequent nodes) to the cluster will make this
configuration highly available because you will have other nodes to fail over to. To install
the second node, you must now start back over that the Setup process (using SQL Server
Installation Center). But this time, you can choose the Add Node to a SQL Server Failover
Cluster option, as shown in Figure 21.17. Just as before, the Setup Support Rules check
occurs for the next cluster node (CLUSTER2, in this example). As you can also see, adding a
node is much simpler (many fewer steps) than creating a completely new SQL Server
failover cluster installation.

If all items have passed on the new node, you come to the Cluster Node Configuration
dialog, as shown in Figure 21.18. Here, you can see that the name of this node (CLUSTER2)
is being associated with(added to) the original cluster node (CLUSTER1). This is truly where
the magic occurs. You are then prompted to specify the service accounts and collation
configuration of this second node. Again, you should specify the domain account that was
specified in the first cluster configuration setup (ClusterAdmin in this example).

Now you are ready to verify that the rules for adding this node are being followed. If any
check doesn’t pass, you must correct it before the node can be added. Figure 21.19 shows
this Add Node Rules check along with the summary of all the features to be installed as
part of the add node operation.

Again, click the Install button to install the SQL Server features and add this node to
the cluster.

 Download from www.wowebook.com

ptg

676 CHAPTER 21 SQL Server Clustering

FIGURE 21.16 SQL Server Failover Cluster Node 1 install complete and within the Cluster
Administrator.

FIGURE 21.17 Adding a node to a SQL Server failover cluster and doing a Setup Support
Rules check for the new cluster node.

 Download from www.wowebook.com

ptg

677Installing SQL Server Clustering
2

1

FIGURE 21.18 Specifying the cluster node configuration and the service accounts for the
second node.

FIGURE 21.19 Cluster Installation Rules check and Ready to Install second node.

 Download from www.wowebook.com

ptg

678 CHAPTER 21 SQL Server Clustering

You must specify what type of authentication mode you want for SQL Server access:
Windows Authentication (only) or mixed mode (Windows Authentication and SQL Server
Authentication). For this example, you should choose the mixed mode option and
provide a password for the sa SQL Server administration login.

Finally, you must specify the collation settings used for sorting order and compatibility
with previous versions of SQL Server.

The SQL Setup program now has enough information to do the complete installation of
the new node in the SQL Server cluster. Figure 21.20 shows the installation of the new
SQL Server Failover Cluster node is complete. In particular, binaries are being installed
locally, additional services are being created on the second node for SQL Server, and SQL
resources are being associated to both cluster nodes.

As you can also see in Figure 21.20, Cluster Administrator shows the online resources
within the cluster group and that both clusters are up and all resources are online (but
controlled by CLUSTER1 now).

Following are the SQL Server resource entries:

. The SQL Server virtual IP address

. The SQL Server network name

. SQL Server (MSSQLSERVER)

FIGURE 21.20 Second node installed (Complete) and the Cluster Administrator showing both
nodes up.

 Download from www.wowebook.com

ptg

679Installing SQL Server Clustering
2

1

. SQL Server Agent (for the instance)

. Analysis Services

. Disk S: (physical disks where the DBs reside)

. MSDTC

Each resource entry should say Online in the State column and be owned by the same
node (CLUSTER1 in this example).

In the Cluster Administrator, you can easily view the properties of each of the new SQL
Server resources by right-clicking a resource and selecting Properties. Figure 21.21 shows
the properties of the Networks and Network Interface IP Address resources.

When you right-click a resource entry in the Cluster Administrator, you have an option to
take the resource offline or to initiate a failure. You sometimes need to do this when
you’re trying to fix or test a SQL Server Clustering configuration. However, when you’re
initiating full SQL Server failover to another node (for example, from CLUSTER1 to
CLUSTER2), you typically use the Move Group cluster group technique because you want
all the resources for the cluster group to fail over—not just one specific resource. Figure
21.22 shows that you simply right-click the Cluster Group item entry and select Move
Group. All resources then fail over to CLUSTER2.

Failure of a Node

As you can see in Figure 21.23, one of the nodes in the SQL Server cluster (CLUSTER1) has
failed, and MSCS is in the middle of failing over to the other node in the cluster
(CLUSTER2). As you can also see, the CLUSTER2 node item group has an hourglass on it,
indicating that an MSCS operation is under way. The states of the resources on CLUSTER2

FIGURE 21.21 Properties of the Networks and Network Interfaces.

 Download from www.wowebook.com

ptg

680 CHAPTER 21 SQL Server Clustering

FIGURE 21.22 Using Move Group to fail over to another node in a cluster.

are mostly Online Pending. In other words, these resources are in the middle of failing
over to this node. As they come up successfully, Online Pending turns to Online.

In addition, the failure of a node (for any reason) is also written to the System event log.

This example showed an intentional failure of the SQL Server instance via the Cluster
Administrator. SQL Server Failover Clustering does the right thing by failing over to the

FIGURE 21.23 Failing over from CLUSTER1 to CLUSTER2, Online Pending state.

 Download from www.wowebook.com

ptg

681Installing SQL Server Clustering
2

1

other node. This serves to verify that SQL Server Clustering is working properly. The next
section illustrates what this effect has on a typical client application point of view, using a
custom client test program called Connection Test Program.

Congratulations! You are now up and running, with your SQL Server Failover Cluster
intact and should now be able to start achieving significantly higher availability for your
end users. You ca easily register this new virtual SQL Server (VSQLSERVER2008) within SQL
Server Management Studio (SSMS) and completely manage it as you would any other SQL
Server instance.

The Connection Test Program for a SQL Server Cluster

To help in visualizing exactly what effect a SQL Server failure and subsequent failover may
have on an end-user application, we have created a small test program using Visual Studio
2008. This small C# test program accesses the AdventureWorks2008 database available for
SQL Server 2008 (see the Introduction chapter for information on how to download and
install the AdventureWorks2008 sample database), and it was created in about 10 minutes.
It displays a few columns of data, along with a couple system variables that show connec-
tion information, including the following:

. ProductID, Name, and ProductNumber—This is a simple three-column display of
data from the Product table in the AdventureWorks2008 database.

. SHOWDATETIME—This shows the date and time (to the millisecond) of the data
access being executed.

. SERVERNAME—This is the SQL Server name that the client is connected to.

. SPID—This is the SQL Server process ID (SPID) that reflects the connection ID to
SQL Server itself by the client application.

This type of small program is useful because it always connects to the virtual SQL Server.
This enables you to see what effect a failover would have with your client applications.

To populate this display grid, you execute the following SQL statement:

SELECT ProductID, Name, ProductNumber,

CONVERT (varchar(32), GETDATE(), 9) AS SHOWDATETIME,

@@SERVERNAME AS SERVERNAME,

@@SPID AS SPID

FROM Production.Product WHERE (ProductID LIKE ‘32%’)

You use Visual Studio 2008 to set up a simple Windows form like the one shown in Figure
21.24. You build a simple button that will retrieve the data from the SQL Server database
on the virtual server and also show the date, time, server name, and SPID information for
each access invocation.

 Download from www.wowebook.com

ptg

682 CHAPTER 21 SQL Server Clustering

The Visual Studio 2008 project files for the Connection Test Program are available on the
CD included with this book. The program, called WindowsApplication4.sln
SQLClientTest4 Visual Studio 2008 project, is zipped up in a file named SQL Client SQL
Clustering test program .zip. If you want to install this program, you just unzip the
SQLClientTest.zip file and locate the WindowsApplication4.sln solution file. You open
this from your Visual Studio 2008 start page. Then you rebuild and deploy it after you
have modified the connection string of the dataset adapter.

After deploying this simple test program, you simply execute it from anywhere on your
network. As you can see in the App.config XML file for this application, shown here, the
connection string references the VSQLSERVER2008 virtual server name only:

<?xml version=”1.0” encoding=”utf-8” ?>

<configuration>

<configSections>

</configSections>

<connectionStrings>

<add name=”WindowsApplication4.Properties.Settings.

AdventureWorksConnectionString”

connectionString=”Data Source=VSQLSERVER2008;Initial

Catalog=AdventureWorks2008;

Integrated Security=True”

providerName=”System.Data.SqlClient” />

</connectionStrings>

</configuration>

FIGURE 21.24 Visual Studio 2008 Windows form and data adapters needed for the test
client C# program.

 Download from www.wowebook.com

ptg

683Installing SQL Server Clustering
2

1

Figure 21.25 shows the first execution of the Connection Test Program. If you click the
Retrieve button, the program updates the data grid with a new data access to the virtual
SQL Server machine, shows the name of the server that the client program is connecting
to (SERVERNAME), shows the date and time information of the data access (in the
SHOWDATETIME column), and displays the SQL SPID that it is using for the data access (in
the SPID column). You are now executing a typical C# program against the virtual SQL
Server. Note that the SPID value is 55; this represents the SQL connection to the virtual
SQL Server machine servicing the data request.

Now let’s look at how this high-availability approach works from the client application
point of view. To simulate the failure of the active node, you simply turn off the machine
(CLUSTER1 in this case). This is the best (and most severe) test case of all. Or, if you like,
you can use the Cluster Administrator Move group approach shown earlier.

After you simulate this failure, you click the Retrieve button in the Connection Test
Program again, and an unhandled exception occurs (see Figure 21.26). You can view the
details of the error message, choose to quit the application, or choose to continue. You
should click Continue for now.

FIGURE 21.25 Executing the Connection Test Program with current connection information.

FIGURE 21.26 An unhandled exception has occurred; it is a transport-level error (that is, a
TCP provider error).

 Download from www.wowebook.com

ptg

684 CHAPTER 21 SQL Server Clustering

What has happened is that the application can no longer connect to the failed SQL Server
(because you turned off CLUSTER1), and it is still in the middle of failing over to CLUSTER2
in the two-node cluster.

A failover occurs in a short amount of time; the actual amount of time varies, depending
on the power and speed of the servers implemented and the number of in-flight transac-
tions that need to be rolled back or forward at the time of the failure. (A complete SQL
failover often occurs in about 15 to 45 seconds. This is very minor and well within most
service-level agreements and high-availability goals.) You then simply click the Retrieve
button again in the Connection Test Program, and you are talking to SQL Server again,
but now to CLUSTER2.

As you can see in Figure 21.27, the data connection has returned the customer data,
SHOWDATETIME has been updated, and SERVERNAME still shows the same virtual SQL Server
name that the application needs to connect to, but the SPID has changed from 55 to 52.
This is due to the new connection of the Connection Test Program to the newly owned
(failed-over) SQL Server machine. The Connection Test Program has simply connected to
the newly started SQL Server instance on CLUSTER2. The unhandled exception (error) goes
away, and the end user never knows a complete failover occurred; the user simply keeps
processing as usual.

NOTE

You could program better error handling that would not show the “unhandled excep-
tion” error. You might want to display a simple error message, such as “database
momentarily unavailable—please try again,” which would be much more user friendly.

Potential Problems to Watch Out for with SQL Server Clustering

Many potential problems can arise during setup and configuration of SQL Server
Clustering. Following are some items you should watch out for:

. SQL Server service accounts and passwords should be kept the same on all nodes, or
a node will not be able to restart a SQL Server service. You can use administrator or

FIGURE 21.27 Executing the Connection Test Program again against the failed-over cluster
node.

 Download from www.wowebook.com

ptg

685Summary
2

1

a designated account (for example, Cluster or ClusterAdmin) that has administrator
rights within the domain and on each server.

. Drive letters for the cluster disks must be the same on all nodes (servers). Otherwise,
you might not be able to access a clustered disk.

. You might have to create an alternative method to connect to SQL Server if the
network name is offline and you cannot connect using TCP/IP. You can use named
pipes, specified as \\.\pipe\$$\SQLA\sql\query.

. It is likely that you will run into trouble getting MSCS to install due to hardware
incompatibility. Be sure to check Microsoft’s Hardware Compatibility List before you
venture into this installation.

Summary
Building out your company’s infrastructure with clustering technology at the heart is a
huge step toward achieving five-nines reliability. If you do this, every application, system
component, or database you deploy on this architecture has that added element of
resilience. And, in many cases, the application or system component changes needed to
take advantage of these clustering technologies are completely transparent. Utilizing a
combination of NLB and MSCS allows you not only to fail over applications but to scale
for increasing network capacity.

The two-node, active/passive node is one of the most common SQL Server Clustering config-
urations used. As you become more familiar with SQL Server Clustering and your high-avail-
ability requirements get closer to five-nines), you might need to put in place other, more
advanced configurations, such as four-node SQL Server clusters and/or datacenter-class clus-
ters (of up to eight-node SQL Server clusters and active/active variations). If you follow the
basic guidelines of disk configurations and database allocations across these disk configura-
tions, as described in this chapter, you can guarantee a certain level of stability, performance,
and scalability. SQL Server Clustering is one of the best, most cost-effective solutions, and it is
literally “out of the box” with SQL Server and the Windows family of servers.

Remember that SQL Server 2008 supports other concepts related to high availability, such as
data replication, log shipping (soon to be deprecated), and database mirroring. You might
use these solutions rather than SQL Server Clustering, depending on your requirements.

Clustering is a very complex subject. The information contained in this chapter is suffi-
cient to start you in this area, but for a much more complete and thorough understanding
of how to assess your high-availability needs, to evaluate what you should build for high
availability, and to implement a high-availability platform that uses MSCS and SQL Server
Clustering, you should find a copy of Microsoft SQL Server High Availability by Paul Bertucci
(Sams Publishing). This book is loaded with full explanations, a formal approach to
achieving five-nines reliability, and numerous live examples.

Chapter 22, “Administering Policy-Based Management,” explains how to affectively
administer servers using the Declarative Management Framework.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 22

Administering Policy-
Based Management

IN THIS CHAPTER

. Introduction to Policy-Based
Management

. Policy-Based Management
Concepts

. Implementing Policy-Based
Management

. Sample Templates and Real-
World Examples

. Policy-Based Management Best
Practices

Policy-Based Management is one of the new management
features introduced in SQL Server 2008. Policy-Based
Management enables an organization to define policies to
manage one or more SQL Server instances, databases, or
objects within the enterprise. In addition, policies can be
evaluated against target systems to ensure that the standard
configuration settings are not out of compliance. Policy-
Based Management was developed in response to the
following industry trends:

. Increasing amounts of data being stored

. Data center consolidation and virtualization

. Growing product capabilities

. Proliferation of SQL Server systems within the
enterprise

. Need for a way to manage SQL Server settings from a
holistic perspective

. Regulatory compliance demanding secure and stan-
dardized settings

Introduction to Policy-Based
Management
A data explosion has been occurring over the past several
years. In a 2006 study, International Data Corporation (IDC;
http://www.idc.com) reported that 5 exabytes of digital
media (5 billion gigabytes) were stored in 2003, and in 2006
this had ballooned to 161 exabytes. Not only is more data

 Download from www.wowebook.com

http://www.idc.com

ptg

688 CHAPTER 22 Administering Policy-Based Management

being stored, but users are accessing more data than before. Part of this data growth is a
result of the need for business intelligence (BI) systems to deliver actionable insights
becoming more critical in the enterprise. Obtaining these insights requires large data
volumes for trending and forecasting. As a result, data warehouses are becoming more crit-
ical in every enterprise.

This data explosion frequently results in a proliferation of SQL Servers.

Essentially, DBAs are being required to do more, frequently with less. In addition, the
increasing complexities of the SQL Server product set are forcing DBAs to focus on effi-
cient, scalable management and standardization. Due to the large numbers of SQL Servers
involved, management by automation becomes critical as well to lessen the administrative
burden. Monitoring also becomes more important to provide proactive support.

A well-managed SQL Server enterprise that follows best practices offers the following
advantages:

. Standardization—Every SQL Server will have a common disk layout and settings,
as well as consistent naming standards. As a result, DBAs moving from one SQL
Server to another will not be surprised by different disk layouts or unusual settings
that could account for a performance problem.

. Best practices—Microsoft internal studies have shown that 80% of the support calls
to their Customer Service and Support (CSS) could have been avoided if the
customer had been following best practices. Best practices not only offer perfor-
mance advantages but also lead to fewer failure events caused by poorly configured
SQL Servers, and security breaches due to SQL Servers that have not been hardened
(security holes not locked down).

. Ease of deployment—A well-managed data center will have automated procedures
for building SQL Servers (that is, unattended installations using configuration files)
that require less time to build and minimal administrative interaction, resulting in
fewer mistakes in a build and a reduction in administrative tasks.

. Regulatory compliance—By maintaining controlled and standardized settings,
organizations can easily adhere to the demanding requirements of regulations such
as Sarbanes-Oxley, the Health Insurance Portability and Accountability Act (HIPAA),
and Payment Card Industry (PCI) standards.

The intent of Policy-Based Management is to provide a management framework that
allows DBAs to automate management in their enterprise according to their own set of
predefined standards. By implementing Policy-Based Management within a SQL Server
infrastructure, organizations can reap the following benefits: total cost of ownership asso-
ciated with managing SQL Server systems will be reduced, configuration changes to the
SQL Server system can be monitored, unwanted system configuration changes can be
prevented, and policies will ensure compliance.

The stated goals of Policy-Based Management fall into three categories:

. Management by intent—Allows DBAs to enforce standards and best practices from
the start rather than in response to a performance problem or failure event

 Download from www.wowebook.com

ptg

689Policy-Based Management Concepts

. Intelligent monitoring—Allows DBAs to detect changes that have been made to
their SQL Server environments that deviate from the desired configuration

. Virtualized management—Provides a scalable framework that allows for manage-
ment across the enterprise

Microsoft SQL Server 2008 and SQL Server 2008 R2 also ship with several predefined poli-
cies. These policies are not automatically imported into a default installation of SQL Server
2008. However, you can manually import them into SQL Server and use them as is or as a
foundation for defining your own similar policies. These sample policies can be found in
C:\Program Files\Microsoft SQL Server\100\Tools\Policies\DatabaseEngine\1033.
Note that there are also policies for Reporting Services and Analysis Services, which can be
found in the ReportingServices and AnalysisServices subdirectories of the Policies
directory. Also note that Policy-Based Management can be used to manage SQL 2005 and
2000 servers.

NOTE

Microsoft has a blog focusing on Policy-Based Management (http://blogs.msdn.com/
sqlpbm/) where it publishes scripts that can be used to enforce Microsoft best prac-
tices for SQL Server, as well as tips, tricks, and tutorials for using Policy-Based
Management.

Policy-Based Management Concepts
Before we start learning about enforcing Policy-Based Management, there are a few key
concepts DBAs must understand. These concepts include

. Facets

. Conditions

. Policies

. Categories

. Targets

. Execution mode

. Central Management Servers

Facets

A facet is a logical grouping of predefined SQL Server 2008 configuration settings. When a
facet is coupled with a condition, a policy is formed and can be applied to one or more
SQL Server instances and systems. Common facets include Surface Area Configuration,
Server Audit, Database File, and Databases. Table 22.1 illustrates the complete list of prede-
fined facets that can be selected, along with an indication of how each facet can be auto-
mated. Check On Schedule uses a SQL Server Agent job to evaluate a policy. Check On

2
2

 Download from www.wowebook.com

http://blogs.msdn.com/sqlpbm/
http://blogs.msdn.com/sqlpbm/

ptg

690 CHAPTER 22 Administering Policy-Based Management

TABLE 22.1 Facets for Policy-Based Management

Facet Name

Check on
Change:
Prevent

Check on
Change: Log

Check on
Schedule

Application Role X X X

Asymmetric Key X X X

Audit X

Backup Device X

Broker Priority X

Broker Service X

Certificate X

Credential X

Cryptographic Provider X

Data File X

Database X

Database Audit Specification X

Database DDL Trigger X

Database Maintenance X

Database Option X X

Database Performance X

Database Role X X X

Database Security X

Default X

Endpoint X X X

File Group X

Full Text Catalog X

Full Text Index X

Full Text Stop List X

Index X

Change uses event notification to evaluate based on when changes occur. Facets are
included with SQL Server 2008 and cannot be modified.

 Download from www.wowebook.com

ptg

691Policy-Based Management Concepts

TABLE 22.1 Facets for Policy-Based Management

Facet Name

Check on
Change:
Prevent

Check on
Change: Log

Check on
Schedule

Linked Server X

Log File X

Login X

Login Options X X X

Message Type X

Multipart Name X X X

Name X

Partition Function X

Partition Scheme X

Plan Guide X

Remote Service Binding X

Resource Governor X

Resource Pool X X X

Rule X

Schema X X X

Server X

Server Audit X

Server Audit Specification X

Server Configuration X X

Server DDL Trigger X

Server Information X

Server Performance X

Server Security X

Server Settings X

Server Setup X

Service Contract X

Service Queue X

2
2

 Download from www.wowebook.com

ptg

692 CHAPTER 22 Administering Policy-Based Management

TABLE 22.1 Facets for Policy-Based Management

Facet Name

Check on
Change:
Prevent

Check on
Change: Log

Check on
Schedule

Service Route X

Statistic X

Stored Procedure X X X

Surface Area X X

Surface Area for AS

Surface Area for RS

Symmetric Key X

Synonym X

Table X

Table Options X X X

Trigger X

User X

User Defined Aggregate X

User Defined Data Type X

User Defined Function X X X

User Defined Table Type X

User Defined Type X

User Options X X X

View X

View Options X X X

Workload Group X X X

Xml Schema Collection X

The complete list of facets can be viewed in SQL Server 2008 Management Studio by
expanding the Management folder, the Policy-Based Management node, and then the
Facets folder. Alternatively, to view facets applied to a specific database, you can right-
click the database and select Facets.

 Download from www.wowebook.com

ptg

693Policy-Based Management Concepts
2

2

NOTE

Currently, there are 74 facets available for use. Going forward, Microsoft will undoubt-
edly create more facets, which will be included with upcoming service packs.

Conditions

A condition is a Boolean expression that dictates an outcome or desired state of a specific
management condition, also known as a facet. Condition settings are based on properties,
comparative operators, and values such as String, equal, not equal, LIKE, NOT LIKE, IN, or
NOT IN. For example, a check condition could verify that data and log files reside on sepa-
rate drives, that the state of the database recovery model is set to Full Recovery, that data-
base file sizes are not larger than a predefined value, and that database mail is disabled.

Policies

A policy is a standard for a single setting of an object. It ultimately acts as a verification
mechanism of one or more conditions of the required state of SQL Server targets. Typical
scenarios for creating policies include imposing Surface Area Configuration settings,
enforcing naming conventions on database objects, enforcing database and transaction
log placement, and controlling recovery models. As mentioned earlier, a tremendous
number of policies can be created against SQL Server 2008 systems. Surface Area
Configurations are a very common policy, especially because the SQL Server 2005 Surface
Area Configuration tool has been deprecated in SQL Server 2008.

NOTE

A policy can contain only one condition and can be either enabled or disabled.

Categories

Microsoft recognized that although you may want to implement a set of rigid standards
for your internal SQL Server development or deployments, your enterprise may have to
host third-party software that does not follow your standards. Although your internally
developed user databases will subscribe to your own policies, the third-party user applica-
tions will subscribe to their own categories. To provide flexibility, you can select which
policies you want a table, database, or server to subscribe to and group them into groups
called categories, and then have a database subscribe to a category and unsubscribe from a
group of other policies if necessary. A policy can belong to only one policy category.

Targets

A target is one or more SQL Server instances, databases, or database objects that you want
to apply your categories or policies to. Targets can be only SQL Server 2008 R2, 2008,
2005, or 2000 systems. All targets in a server instance form a target hierarchy. A target set
is the set of targets that results from applying a set of target filters to the target hierar-
chy—for example, all the tables in a database contained in a specific schema.

 Download from www.wowebook.com

ptg

694 CHAPTER 22 Administering Policy-Based Management

Execution Modes

When you are implementing policies, there are three types of execution modes. The On
Change mode has two variations:

. On Demand—The On Demand policy ensures that a target or targets are in compli-
ance. This task is invoked manually by right-clicking on the policy in the
Management folder, Policy Management folder, Policy folder, and selecting Evaluate.
The policy is not enforced and is only verified against all targets that have been
subscribed to that policy. You can evaluate a policy also by right-clicking on the
database and selecting Policies and Evaluate.

. On Schedule—Policies can be evaluated on a schedule. For example, a policy can be
scheduled to check all SQL Server 2008 systems once a day. If any anomalies arise,
these out-of-compliance policies are logged to a file. This file should be reviewed on
a periodic basis. In addition, whenever a policy fails, the complete tree in SQL Server
Management Studio displays a downward-pointing arrow next to the policy, as
shown in Figure 22.1.

. On Change Prevent—The On Change Prevent execution mode prevents changes to
server, server object, database, or database objects that would make them out of

FIGURE 22.1 SQL Server management tree illustrating failed policies for table name.

 Download from www.wowebook.com

ptg

695Policy-Based Management Concepts
2

2

compliance. For example, if you select a policy that restricts table names to only
those that begin with the prefix tbl, and you attempt to create a table called
MyTable, you get the following error message, and your table is not be created:

Policy ‘table name’ has been violated by

‘/Server/(local)/Database/iFTS/Table/dbo.mytable’.

This transaction will be rolled back.

Policy description: ‘’

Additional help: ‘’ : ‘’.

Msg 3609, Level 16, State 1, Procedure sp_syspolicy_

dispatch_event, Line 50

The transaction ended in the trigger.

The batch has been aborted.

. On Change Log Only—If you select On Change Log Only, a policy condition that
is evaluated as failed is logged in the SQL Server Error log. The change does not pre-
vent out-of-compliance changes.

Central Management Servers

In large enterprises, organizations most likely have more than one SQL Server system they
want to effectively manage from a Policy-Based Management perspective. Therefore, if
DBAs want to implement policies to multiple servers, they have two options. The first
option includes exporting the policy and then importing it into different SQL Server
systems. After the policy is imported, it must be configured to be evaluated on demand,
on schedule, or on change.

The second option includes creating one or more Central Management Servers in SQL
Server 2008. Basically, by registering one or more SQL Servers with a Central Management
Server, a DBA can deploy multiserver policies and administration from a central system.

For example, you could create two Central Management Servers, one called OLAP and
another called OLTP, and then register servers into each Central Management Server,
import the different policies into each Central Management Server, and then evaluate the
polices on each different Central Management Server. So, on your OLTP Central
Management Server, the servers OLTP1, OLTP2, OLTP3, which are registered in the OLTP
Central Management Server, would have the OLTP policies evaluated on them.

Creating a Central Management Server
Follow these steps to register a Central Management Server:

1. In SQL Server Management Studio, open the View menu and click Registered Servers.

2. In Registered Servers, expand the Database Engine node, right-click Central
Management Servers, and then select Register Central Management Server.

 Download from www.wowebook.com

ptg

696 CHAPTER 22 Administering Policy-Based Management

3. In the New Server Registration dialog, specify the name of the desired Central
Management Server.

4. If necessary, specify additional connection properties on the Connection Properties
tab or click Save.

Registering SQL Server Instances in a Central Management Server
The next task registers SQL Server instances to be associated with a Central Management
Server. The following steps outline this task:

1. Right-click on the Central Management Server with which you want to associate
your SQL Server instance.

2. Select New Server Registration.

3. In the New Server Registration dialog, specify the name of the SQL Server Instance
and the proper connection information and click Save

4. Repeat steps 1-3 for all SQL Server instances that you want to register with this
Central Management Server.

Figure 22.2 illustrates a Central Management Server with one Server Group and two SQL
Server instances registered.

Importing and Evaluating Polices to the Central Management Server
After the Central Management Server is established, the Server Group is created, and the
desired SQL Server instances are registered, it is time to import and evaluate policies. You
can import policies for multiple instances by right-clicking the Central Management Server
or Server Group and selecting Import Policies. After the policies are imported, the next
step is to evaluate the policies by right-clicking the Central Management Server or Server

FIGURE 22.2 Central Management Server with Registered SQL Server instances.

 Download from www.wowebook.com

ptg

697Implementing Policy-Based Management
2

2

Group and selecting Evaluate. The output indicates the status of policies associated with all
the SQL Server instances associated with the Central Management Server or Server Group.

NOTE

Importing, exporting, and evaluating policies are covered throughout the rest of the
chapter.

Implementing Policy-Based Management
Now that you understand the basic purpose and concepts behind Policy Based
Management, let’s look at how to administer Policy-Based Management, then how to
apply it to a server, and then a group of servers.

There are essentially six steps to implementing and administering Policy-Based
Management:

. Creating a condition based on a facet

. Creating a policy based on that condition

. Creating a category

. Creating a Central Management Server

. Subscribing to a category

. Exporting or importing a policy

Let’s look at each of these steps in turn. The upcoming sections explain each step in its
entirety.

Creating a Condition Based on a Facet

When you are creating conditions, the general principle includes three elements: selecting
a property, an operator, and then a value. The following example walks through the steps
to create a condition based on a facet which will enforce a naming standard on a table:

1. To create a condition, connect to a SQL Server 2008 instance on which you want to
create a policy.

2. Launch SQL Server Management Studio (SSMS). In Object Explorer, expand the
Management folder, expand the Policy Management folder, and then expand the
Facets folder.

3. Within the Facets folder, browse to the desired facet on which you want to create
the policy (in this case, the Table facet).

 Download from www.wowebook.com

ptg

698 CHAPTER 22 Administering Policy-Based Management

4. To invoke the Create New Condition window, right-click the facet and select New
Condition.

5. In the Create New Condition dialog, type a name for the condition (for example,
Table Name Convention) and ensure that the facet selected is correct.

6. In the Expression section, perform the following tasks:

a. Select the property on which you want to create your condition. For this
example, use the @Name property.

b. In the Operator drop-down box, select the NOT LIKE operator.

c. In the value text box, enter ’tbl%’.

7. Repeat step 6 for any additional expressions. For this example, the following expres-
sions were entered, as displayed in Figure 22.3.

AndOr Field Operator Value

@Name NOT LIKE ’tbl%’

AND Len(@Name) <= 50

AND @Name NOT LIKE ’%s’

FIGURE 22.3 Creating a condition based on a facet.

8. Click OK to finalize the creation of the condition. You may have to click on the
Field text box again for the OK button to be enabled.

 Download from www.wowebook.com

ptg

699Implementing Policy-Based Management
2

2

NOTE

You can create conditions that query Windows Management Instrumentation (WMI)
(using the ExecuteWSQL function) or SQL Server (using the ExecuteSQL function). For
example, you can create conditions to check on available disk space or number of
processors on the server. WMI allows you to issue SQL-like queries against manage-
ment objects, which can return information on the physical machine hosting SQL Server
and configuration and performance information, which is not accessible from within
SQL Server itself.

Creating a Policy

After creating the condition or conditions, you need to create the policy. The policy is a
standard that can be enforced on one or more SQL Server instances, systems, server
objects, databases, or database objects. Follow these steps to create a policy with SQL
Server Management Studio:

1. In Object Explorer, expand the Management folder, expand the Policy Management
folder, and then click on Policies.

2. Right-click on the Policies folder and select New Policy.

3. On the General tab of the Create New Policy dialog, enter a name for the new
policy, such as Check Table Naming Conventions.

4. In the Check Condition drop-down box, select a condition, such as the one created
in the previous example, or select New to generate a new condition from scratch.

5. The Against Targets section indicates which objects the policy should be evaluated
against. For example, you could create a new condition that applies to a specific
database, all databases, a specific table, all tables, or to databases created after a
specific date. In the Action Targets section, indicate which targets this condition
should apply to.

6. Specify the Evaluation Mode by selecting one of the options in the drop-down
menu. The options include On Demand, On Schedule, On Change Log Only, and
On Change Prevent.

NOTE

If On Schedule is selected for the Evaluation Mode, specify a schedule from the prede-
fined list or enter a new schedule.

 Download from www.wowebook.com

ptg

700 CHAPTER 22 Administering Policy-Based Management

7. The final drop-down box is Server Restriction. You can restrict which servers you do
not want the policy to be evaluated against or enforced on by creating a server condi-
tion. Create a server restriction or leave the default setting None. An example of the
policy settings for checking table name conventions is displayed in Figure 22.4.

8. Before you close the Create New Policy dialog, ensure that the policy is enabled (the
Enabled check box is selected) and then click on the Description page. The
Description page allows you to categorize your policy, but it also allows you to
display a custom text message when a policy is violated and a hyperlink where the
DBA/developer can go for more information about the policy.

9. Click OK to finalize the creation of the new policy.

An Alternative to Creating Policies
As you can imagine, for complex policies you might need to create many conditions. In
some cases it may be easier to create a table, database, or server configured to conform to
the policy you want to create and then right-click on the specific object and select Facets.
This brings up the View Facets page. Click on the Export Current State as Policy button.
This exports a policy and a single condition to which the existing object will conform.

Figure 22.5 illustrates the dialog that prompts you for a name for your policy and condi-
tion as well as where you want to store the policy. You can store it in the file system and
then import it to a Central Management Server or other servers where you want the policy

FIGURE 22.4 The Create New Policy dialog.

 Download from www.wowebook.com

ptg

701Implementing Policy-Based Management
2

2

to be evaluated, or you can import it directly to a server. Note that this policy will contain
conditions specific to the object you use as a template; for example, if you use the
AdventureWorks2008 database, the policy will test for the condition where the database
name is equal to AdventureWorks2008. For this feature to be useful, you likely need to edit
the conditions to ensure that they are generic and evaluate exceptions correctly.

Creating a Category

After you create a policy, it should be categorized. Categorization allows you to group poli-
cies into administrative or logical units and then allow database objects to subscribe to
specific categories. It is worth mentioning that server objects can’t subscribe to policies.

To create a category, click on the Description page in the Create New Policy dialog.
Policies can be placed in the default category or a specific category, or you can create a
new category. Specifying a category is illustrated in Figure 22.6.

You can also create categories by right-clicking on Policy Management and selecting
Manage Categories.

If you choose to create a new category, click on the New button. This presents a dialog
that allows you to name the category. By default, this policy is parked in the new category.

You can also select which category you want policies to belong to by selecting a specific
category in the drop-down box. After you categorize your policies, you can select which
categories you want your database to subscribe to. Right-click on the Policy Management
folder and select Manage Categories. The Manage Policy Categories dialog (illustrated in
Figure 22.7) appears. Check the categories to which you want all databases on your server
to subscribe and deselect the ones that you do not want your server database to be
subscribed to by default.

Other than the default category, DBAs can select which category (and policies belonging to
that category) they want their databases to subscribe to. For example, if you have third-
party software that does not follow your naming standards, you should ensure that the
policies that enforce your naming standards are not in the default category. Then selec-
tively have each of your user databases on your server subscribe to these databases.

FIGURE 22.5 Exporting a policy based on an existing object.

 Download from www.wowebook.com

ptg

702 CHAPTER 22 Administering Policy-Based Management

FIGURE 22.6 The category selection dialog.

FIGURE 22.7 The Manage Policy Categories dialog.

Evaluating Policies

After you create an organization’s policies and categories, you need to evaluate them to
determine which of your servers and databases are out of compliance. There are three
management points that can be leveraged to evaluate policies:

 Download from www.wowebook.com

ptg

703Implementing Policy-Based Management
2

2

. For the first alternative, right-click on a server, server object, database, or database
object in SQL Server Management Studio 2008 and select Policies and then Evaluate.

. For the second alternative, expand the Management folder, expand Policy
Management, right-click on Policies, and select Evaluate. In the Evaluate Policies page
displayed, check the policy or policies you want to evaluate and click the Evaluate
button. It is also possible to select an individual policy. To do so, in the Policy
folder, right-click on it and select Evaluate.

. Finally, the preferred way to evaluate all your servers, or a group of your servers, is to
connect to display the Registered Servers list in SSMS. Expand the Central
Management Servers node and right-click on the name of a Central Management
Server and select Evaluate Policies. The policies you select to evaluate are evaluated
on all SQL Servers defined on that Central Management Server—for example, all
member servers in all Server Groups. If you select a Server Group, all member servers
in that Server Group are evaluated. To evaluate the policies, you need to right-click
on the Central Management Server, Server Group, or even Member Server and select
Evaluate Policies.

When you right-click on the Central Management Server or Server Group and select
Evaluate Polices, you are presented with a dialog that prompts you for a source, with a
Choose Source prompt. For Select Source, enter the server name into which you have
imported your policies or browse to a file share. Then highlight all the policies you want
to import and click on the Close button to close the dialog.

After the policies are imported, you can select the individual policies you want to run and
click Evaluate. The policies are then evaluated on the member servers, and the results are
displayed in the Evaluation Results pane, as illustrated in Figure 22.8.

The Evaluation Results pane displays servers where a policy has failed. In the Target Details
section, there is a View hyperlink, which allows you to browse to get more details on why
the individual target server and policy target failed compliance to the policy you evaluated.

Importing and Exporting Policies

In some situations a DBA might want to export one or many policies with their condi-
tions from one or many SQL Server systems and import them to another SQL Server
instance or system. Fortunately, you can perform this task easily with an export and
import wizard that generates or reads the policy definitions as XML files.

Follow these steps to export a policy with SQL Server Management Studio:

1. In Object Explorer, expand the Management folder, expand the Policy Management
node, and then expand the Policies folder.

2. Within the Policies folder, right-click a desired policy to export and then select
Export Policy.

3. In the Export Policy dialog, specify a name and path for the policy and click Save.

 Download from www.wowebook.com

ptg

704 CHAPTER 22 Administering Policy-Based Management

FIGURE 22.8 The Evaluation Results pane.

Importing a policy from an XML file is just as simple. Follow these steps to import a
policy with SQL Server Management Studio:

1. In Object Explorer, expand the Management folder, expand the Policy Management
node, and then select Policies.

2. Right-click on the Policies folder and select Import.

3. The import screen has three options you need to be aware of:

a. First, provide the path of the file to import.

b. Second, enable the option Replace Duplicate Items When Imported.

c. Finally, in the Policy State drop-down box, specify the state of the policy being
imported. The options include Preserve Policy State on Import, Enable All
Policies on Import, and Disable All Policies on Import.

Sample Templates and Real-World Examples
The following sections illustrate the sample policy templates included with SQL Server
2008 and real-world examples for using Policy-Based Management.

Sample Policy Templates

SQL Server 2008 includes a plethora of predefined sample policies, which can be leveraged
by importing them into a SQL Server 2008 system. The policies available for import are
located in the default installation drive at C:\Program Files\Microsoft SQL

 Download from www.wowebook.com

ptg

705Sample Templates and Real-World Examples
2

2

Server\100\Tools\Policies. As mentioned earlier, you can import the desired policies by
right-clicking the Policies node and selecting Import. The sample templates are categorized
by SQL Server feature such as Database Engine, Reporting Services, and Analysis Services.

Evaluating Recovery Models

Recovery models determine how SQL Server uses the transaction log. On OLTP systems,
the most appropriate recovery model is generally the Full Recovery model. For OLAP
systems, the most appropriate recovery model is generally the simple recovery model. For
most development environments, the most appropriate recovery model is also the simple
recovery model.

For mission-critical databases, or databases where point-in-time recovery is important,
having a transaction log backed up every five minutes may be required. Policy-Based
Management can be used to determine whether the appropriate recovery model is in place
for each user database for each server type. Central Management Servers could be created
for each server type and a policy can be created to ensure that the appropriate recovery
model is in place across all servers managed within a management server.

Implementing Surface Area Configuration Checks

SQL Server 2005 shipped with the SQL Server Surface Area Configuration (SAC) tool. This
tool allowed you to enable or disable various components and services on individual SQL
2005 Servers. This feature was deprecated in SQL Server 2008 because the Microsoft team
felt that the better way to handle these configuration tasks was through Policy-Based
Management.

If you want to implement the Surface Area Configuration feature in SQL Server 2008 to
configure components and services, import the following policies:

. Surface Area Configuration for Database Engine 2005 and 2000 Features.xml

. Surface Area Configuration for Database Engine 2008 Features.xml

. Surface Area Configuration for Service Broker Endpoints.xml

. Surface Area Configuration for SOAP Endpoints.xml

SQL Server Health Checks

One of the SQL Server Support Engineers has posted blog entries on how to perform
server health checks using Policy-Based Management. You can access his blog using this
URL: http://blogs.msdn.com/bartd/archive/2008/09/11/defining-complex-server-health-
policies-in-sql-2008.aspx.

The main part of the SQL Server health check revolves around ensuring the disk response
times are less than 100ms. The Policy uses ExecuteSQL to query the dynamic management
view sys.dm_io_virtual_file_stats to ensure that the disk response time is within this
limit. You can extend this policy to query other DMVs for other health checks—for
example, the use of excessive parallelism or checking to ensure that cumulative wait stats
have not exceeded desired boundaries.

 Download from www.wowebook.com

http://blogs.msdn.com/bartd/archive/2008/09/11/defining-complex-server-health-policies-in-sql-2008.aspx
http://blogs.msdn.com/bartd/archive/2008/09/11/defining-complex-server-health-policies-in-sql-2008.aspx

ptg

706 CHAPTER 22 Administering Policy-Based Management

Ensuring Object Naming Conventions

Your company may have standards for naming objects. For example, stored procedures
must start with the prefix usp, tables must start with the prefix tbl, and functions must
start with the prefix ufn. Policy-Based Management can be used to ensure that all objects
are compliant with this policy. This policy can be implemented to execute as On Change
Prevent, which prevents the creation of such noncompliant objects.

Checking Best Practices Compliance

You can implement policies that check for SQL Server best practices. For example, data-
bases can be configured with the autoclose and autoshrink options. Although these
options have their place on some systems, they are not recommended to be enabled in
production environments because the autoclose option causes a time delay while the data-
base is opened by a connection trying to access it. This can lead to timeouts. The
autoshrink option can lead to fragmentation and is in general not recommended. A policy
can check for these settings and other settings to ensure that all your databases are follow-
ing best practices.

Policy-Based Management Best Practices
Following are some best practices to consider when implementing Policy-Based
Management in SQL Server 2008:

. When deploying Policy-Based Management in your environment, you should be
very careful about using On Change Prevent. For example, a policy that prevents
stored procedure creation with the sp_ prefix prevents the enabling of replication on
a SQL Server.

. When you create a policy that you want enforced on all user databases, you should
place this policy in the default category so that it is subscribed to all databases.
Otherwise, you need to manually subscribe all databases to the categories that
contain the policies you want enforced.

. You should make use of multiple Configuration Servers or Server Groups to group your
SQL Servers according to logical groupings on which you want to group your policies.

. Importing policies into centralized SQL Server 2008 servers makes it easier to deploy
groups of policies against groups of servers using Central Management Servers—for
example, to store data warehouse policies on Server A. You should use this server as
a source when selecting policies to evaluate against your data warehouse servers
registered in the Data Warehousing Central Management Server.

. You might find that your environment contains third-party user applications/data-
bases that are not in compliance with the policies you have created for your enter-
prise. Policy-Based Management uses the opt-in metaphor such that all policies are
enforced by default. For databases on which you do not want the policy to be
enforced, you need to tag the database, perhaps with an extended property or a

 Download from www.wowebook.com

ptg

707Summary
2

2

specially named table that the server exception category or target will detect and
exempt that server or database from the policy.

. You should use the ExecuteWSQL task to issue WMI queries to extend conditions and
policies beyond the SQL Server environment—for example, to check what other ser-
vices may be running on a server hosting SQL Server.

Summary
Policy-Based Management is a new component in SQL Server 2008 that allows you to
manage your SQL 2000, 2005, and 2008 servers by creating policies that can be used to
enforce compliance to best practices or to report on out-of-compliance servers. It provides
a highly granular, flexible, and extensible toolset that allows you to manage all aspects of
your SQL Server. Properly used, it is a great tool to enforce standardization in your envi-
ronment and to ease the management burden.

The next part of this book, Part IV, “Database Administration,” explores the tasks involved
in creating and managing databases and database objects, just the sorts of things you want
to apply many of your best practices and policies against.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 23

Creating and Managing
Databases

IN THIS CHAPTER

. What’s New in Creating and
Managing Databases

. Data Storage in SQL Server

. Database Files

. Creating Databases

. Setting Database Options

. Managing DatabasesA database is a collection of tables and related objects that
help protect and organize data. It must exist before you can
create all database objects, including tables, indexes, and
stored procedures. This chapter focuses on how to create a
sound database that can house database objects and how to
manage the database after the objects are created. The
creation and management of the various database objects is
discussed in the remaining chapters in Part IV, “Database
Administration.”

NOTE

It is important to remember that SQL Server actually
uses its own set of databases that are installed by
default when SQL Server is installed. These databases
are referred to as system databases. The databases
that users create are aptly named user databases. The
system databases include master, model, msdb,
tempdb, and resource. Each of these databases per-
forms a key function in the operation of SQL Server.
For example, the master database contains an entry
for every user database created and contains server-
wide information critical to the operation of SQL
Server. The model database is basically a template
database for any newly created databases. Each sys-
tem database is based on a structure similar to user
databases and contain database objects like those
contained in user databases. The system databases
are discussed in detail in Chapter 7, “SQL Server
System and Database Administration.”

 Download from www.wowebook.com

ptg

710 CHAPTER 23 Creating and Managing Databases

What’s New in Creating and Managing Databases
SQL Server 2008 offers several new features that provide improved security and manage-
ability. The primary security enhancement is the capability to encrypt an entire database
using Transparent Data Encryption (TDE). This transparent data encryption applies to the
data files and log files that make up a database. It allows for an entire database to be
secure via encryption without the need to change existing applications or the individual
database objects. Transparent Data Encription is covered in Chapter 12, “Data Encryption.”

The manageability improvements in SQL Server 2008 are centered around data compres-
sion and enhanced database mirroring. The data compression improvements help reduce
the amount of space that your database files occupy. The enhancements in database
mirroring include automatic page repair, improved performance, and enhanced supporta-
bility via additional performance counters and new dynamic management views. Database
mirroring is discussed in more detail in Chapter 20, “Database Mirroring.”

Data Storage in SQL Server
A database is a storage structure for database objects. It is made up of at least two files.
One file, referred to as a data file, stores the database objects, such as tables and indexes.
The second file, referred to as the transaction log file, records changes to the data. A data
file or log file can belong to only one database.

SQL Server stores data on the data file in 8KB blocks, known as pages. A page is the small-
est unit of input/output (I/O) that SQL Server uses to transfer data to and from disk. An
8KB page is equal to 1024 bytes × 8, or 8192 bytes. There is some overhead associated with
each data page, so the maximum number of bytes of data that can be stored on a page is
8060 bytes. The overhead on a data page includes a 96-byte page header that contains
system information about the page. This system information includes the page number,
page type, and amount of free space on the page.

Generally, a row of data in a SQL Server database is limited to the 8060-byte maximum.
With SQL Server 2008, there are some exceptions to this 8060-byte limit if the table
contains columns that have the data types text/image, varchar, nvarchar, varbinary, or
sql variant. With these data types, SQL Server can store the data in a separate data struc-
ture when the size of the row exceeds the 8060-byte limit. When the 8060-byte limit is
exceeded, SQL Server stores a pointer to the separate data structure so that the information
in these columns can be accessed.

In an effort to reduce internal operations and increase I/O efficiency, SQL Server, when
allocating space to a table or an index, allocates space in extents. An extent is eight contigu-
ous pages, or 64KB of storage. There are actually two types of extents. Every table or index
is initially allocated space in a mixed extent. As the name implies, mixed extents store pages
from more than one object. When an index or a table is first created, it is assigned an
index allocation map (IAM), which is used to track space usage for the object, and at least
one data page. The IAM and data page are assigned to a mixed extent in an effort to save

 Download from www.wowebook.com

ptg

711Database Files

space because dedicating an extent to a table with a few small rows would be wasteful. Up
to eight initial pages are assigned this way. When an object requires more than eight pages
of storage, all further space is allocated from uniform extents. A uniform extent stores pages
for only a single index or table. This allows SQL Server to optimize read and write opera-
tions and reduce fragmentation because the data is stored in units of 64KB (that is, eight
pages) as opposed to individual 8KB pages being scattered throughout the data file.

For more detailed information on the internal storage structures and how to manage them
in SQL Server databases, see Chapter 38, “Database Design and Performance.”

Database Files
SQL Server maps a database over a set of operating system files visible to the SQL Server
machine. Microsoft recommends that the files be located on a storage area network (SAN),
on an iSCSI-based network, or on a locally attached disk. These three storage options
provide the best performance and reliability for a SQL Server database. You have an option
of storing database files on a network, but this option is turned off by default. You can use
the trace flag 1807 to enable network-based database files, but it is generally not recom-
mended that you do so.

Each database can contain a maximum of 32,767 files. Each database file serves a different
purpose for the database engine. These files have a standard layout that allows SQL Server
to organize and read the data within the files. SQL Server needs to keep track of the allo-
cated space in each data file; it does so by allocating special pages in the first extent of
each file. Because the data stored on these pages is dense and the files are accessed often,
they are usually found in memory; therefore, they can be retrieved quickly.

The first page (page 0) in every file is the file header page. This page contains information
about the file, such as the database to which the file belongs, the filegroup it is in, the
minimum size, and its growth increment.

The second page (page 1) in each file is the page free space (PFS) page. The PFS page keeps
track of the other pages in the database file. The PFS uses 1 byte for each page. This byte
keeps track of whether the page is allocated, whether it is empty, and, if it is not empty,
how full the page is. A single PFS page can keep track of 8,000 contiguous pages.
Additional PFS pages are created as needed.

The third page (page 2) in each file is the global allocation map (GAM) page. This page
tracks allocated extents. Each GAM page tracks 64,000 extents, and additional GAM pages
are allocated as needed. The GAM page contains 1 bit for each extent, which is set to 0 if
the extent is allocated to an object and to 1 if it is free.

The fourth page (page 3) is the secondary GAM (SGAM) page. The SGAM page tracks allo-
cated mixed extents. Each SGAM page tracks 64,000 mixed extents, and additional SGAM
pages are allocated as needed. A bit set to 1 for an extent indicates a mixed extent with
pages available.

2
3

 Download from www.wowebook.com

ptg

712 CHAPTER 23 Creating and Managing Databases

Primary Files

The primary data file is the data file that keeps track of all the other data files used by the
database. It is an operating system file that typically has the file extension .mdf. SQL
Server does not require that it have this .mdf extension, but it is recommended for consis-
tency. The primary data file is the first file created for a database. Each database must have
only one primary file. This file stores data for any database objects mapped to it, and it
contains references to any other database files created.

In many cases, the primary data file is the only data file. There is no requirement to have
more than one data file, and often, a database contains only one primary data file (for
example, C:\mssql\mydb.mdf) and only one log file (for example, C:\mssql\mydb_log.ldf).

Secondary Files

You can create zero or more secondary data files in a database. These files, by default, are
identified with the .ndf extension, but the extension can be different. Secondary data files
provide an opportunity to spread the data that SQL Server stores over more than one phys-
ical file. This capability can be particularly useful for larger databases and can help with
performance and management of database files. Consider, for example, a situation in
which a database server has four physical drives available for the data file(s). Each drive is
1GB in size, but the database you are creating is 2GB. In this example, the database will not
fit on one drive. A solution to this problem is to create a primary data file on one of the
drives and a secondary data file on each of the three remaining drives. SQL Server automat-
ically spreads the 2GB database across the four data files located on four separate drives.

Secondary files also provide some added flexibility for backing up or copying databases.
This is most apparent with large databases. For example, let’s say you have a 100GB data-
base, and it contains only a primary data file. If you want to move this database to
another environment, you must have a drive that is at least 100GB to store the primary
data file. If you want to copy the database to a server that has 10 50GB drives, you cannot
do it. You have the space across all 10 drives, but you do not have a single drive that can
hold the primary data file. If, however, you create the database with several secondary
files, you have the option of placing each of the secondary files on a separate drive.

TIP

You can use the sys.master_files catalog view to list the database files for all the
databases. For example, SELECT db_name(database_id),* from
sys.master_files order by 1 returns all the database files, ordered by the name
of the database they belong to. You can change the sort order for the SELECT state-
ment and order it by physical_name to quickly locate a database file and find which
database is using that file.

 Download from www.wowebook.com

ptg

713Database Files

Using Filegroups

Filegroups allow you to align certain database objects with specific data files. Tables,
indexes, and large object (LOB) data can be assigned to a filegroup. A filegroup can be
associated with one or more data files. The alignment of data and indexes to filegroups
can provide performance benefits and improve manageability. Each database has at least
one filegroup, called the primary filegroup. This filegroup, by default, contains the primary
data file and any other secondary data files that have not been specifically aligned with
another filegroup. Any database object that you create without specifying a filegroup is
created in the primary filegroup.

Additional filegroups can be created and aligned with secondary data files. There is no
requirement to have more than one filegroup, but additional filegroups give you added flex-
ibility. Filegroups can be aligned with data files that can be stored on separate disk drives to
improve data access. This improvement is facilitated by concurrent disk access across the
disk drives assigned to the filegroups.

TIP

If too many outstanding I/Os are causing bottlenecks in the disk I/O subsystem, you
might want to consider spreading the files across more disk drives. Performance
Monitor can identify I/O bottlenecks by monitoring the PhysicalDisk object and Disk
Queue Length counter. You should consider spreading the files across multiple disk
drives if the Disk Queue Length counter is greater than two times the number of spin-
dles on the disk. For more information on monitoring SQL Server performance, see
Chapter 39, “Monitoring SQL Server Performance.”

For example, you could create a filegroup called UserData_FG, consisting of three files
spread over three physical drives. You could create another filegroup named Index_FG,
with a single file, on a fourth drive. Then, when you create the tables, you can create
them on the UserData_FG filegroup. You can create indexes on the Index_FG filegroup.
This reduces contention between tables because the data is spread over three disks and can
be accessed independently of the indexes. If more storage is required in the future, you
can easily add additional files to the index or data filegroup, as appropriate.

You can create filegroups at the time the database is created, or you can add them after
the database is created. When you create filegroups along with the database, the definition
for the filegroup is contained in the CREATE DATABASE statement. Following is an example
of a CREATE DATABASE statement with filegroup definitions:

CREATE DATABASE [mydb] ON PRIMARY

(NAME = N’mydb’,

FILENAME = N’C:\mssql2008\data\mydb.mdf’ ,

SIZE = 2048KB , FILEGROWTH = 1024KB),

FILEGROUP [Index_FG]

2
3

 Download from www.wowebook.com

ptg

714 CHAPTER 23 Creating and Managing Databases

(NAME = N’mydb_index1’,

FILENAME = N’I:\mssql2008\data\mydb_index1.ndf’ ,

SIZE = 2048KB , FILEGROWTH = 1024KB),

FILEGROUP [UserData_FG]

(NAME = N’mydb_userdata1’,

FILENAME = N’D:\mssql2008\data\mydb_userdata1.ndf’ ,

SIZE = 2048KB , FILEGROWTH = 1024KB),

(NAME = N’mydb_userdata2’,

FILENAME = N’E:\mssql2008\data\mydb_userdata2.ndf’ ,

SIZE = 2048KB , FILEGROWTH = 1024KB),

(NAME = N’mydb_userdata3’,

FILENAME = N’F:\mssql2008\data\mydb_userdata3.ndf’ ,

SIZE = 2048KB , FILEGROWTH = 1024KB)

LOG ON

(NAME = N’mydb_log’,

FILENAME = N’L:\mssql2008\log\mydb_log.ldf’ ,

SIZE = 1024KB , FILEGROWTH = 10%)

This example creates a database named mydb that has three filegroups. The first filegroup,
PRIMARY, contains the .mdf file. Index_FG contains one file: I:\mssql2008\data\mydb_
index1.ndf. The third filegroup, UserData_FG, contains three data files located on the D:,
E:, and F: drives. This example demonstrates the relationship between databases, file-
groups, and the underlying operating system files. (The T-SQL for creating a database is
discussed in detail later in this chapter.)

After you create a database with multiple filegroups, you can then create a database object
on a specific filegroup. In the preceding example, you could use the filegroup named
UserData_FG to hold user-defined tables, and you could use the filegroup named Index_FG
for the database indexes. You assign database objects at the time you create the object. The
following example demonstrates the creation of a user-defined table on the UserData_FG
filegroup and the creation of an index for that table on the Index_FG filegroup:

CREATE TABLE dbo.Table1

(TableId int NULL,

TableDesc varchar(50) NULL)

ON [UserData_FG]

CREATE CLUSTERED INDEX [CI_Table1_TableID] ON [dbo].[Table1]

([TableId] ASC)

ON [Index_FG]

Any objects not explicitly created on a filegroup are created on the default filegroup. The
PRIMARY filegroup is the default filegroup when a database is created. You can change the
default filegroup, if necessary. If you want to change the default group to another group,
you can use the ALTER DATABASE command. For example, the following command changes
the default filegroup for the mydb database:

ALTER DATABASE [mydb] MODIFY FILEGROUP [UserData_FG] DEFAULT

 Download from www.wowebook.com

ptg

715Database Files

You can also change the default filegroup by right-clicking the database in the Object
Explorer, choosing Properties, and selecting the Filegroups page. Then you select the
check box labeled Default to make the given filegroup the default. Figure 23.1 shows the
filegroups for the AdventureWorks2008 database, with the primary filegroup selected as
the default.

2
3

When creating filegroups, you should keep in mind the following restrictions:

. You can’t move a data file to another filegroup after it has been added to the database.

. Filegroups apply only to data files and not to log files.

. A data file can be part of only one filegroup and cannot be spread across multiple
filegroups.

. You can have a maximum of 32,767 filegroups for each database.

NOTE

Using SANs and RAID arrays for the database disk subsystem diminishes the need for
filegroups. SAN and RAID systems typically have many disks mapped to a single data
drive. This inherently allows for concurrent disk access without requiring the creation of
a filegroup with multiple data files.

FIGURE 23.1 Setting the default filegroup in SQL Server Management Studio (SSMS).

 Download from www.wowebook.com

ptg

716

Using Partitions

Partitioning in SQL Server 2008 allows for a single table or index to be aligned to more
than one filegroup. This capability was introduced in SQL Server 2005. Prior to SQL
Server 2005, you could use filegroups to isolate a table or an index to a single filegroup,
but the table or index could not be spread across multiple filegroups or data files. The
ability to spread a table or an index across multiple filegroups is particularly useful for
large tables. You can partition a table across multiple filegroups and have data files live on
separate disk drives to improve performance. Table partitioning is discussed in more detail
in Chapter 24, “Creating and Managing Tables.”

Transaction Log Files

A transaction is a mechanism for grouping a series of database changes into one logical
operation. SQL Server keeps track of each transaction in a file called the transaction log.
This log file usually has the extension .ldf, but it can have a different extension.
Typically, there is only one log file. You can specify multiple log files, but these files are
accessed sequentially. If multiple files are used, SQL Server fills one file before moving to
the next. You realize no performance benefit by using multiple files, but you can use them
to extend the size of the log.

NOTE

The transaction log file is not a text file that can be read by opening the file in a text
editor. The file is proprietary, and you cannot easily view the transactions or changes
within it. However, you can use the undocumented DBCC LOG (database name) com-
mand to list the log contents. The output is relatively cryptic, but it can give you some
idea of the type of information that is stored in the log file.

Because the transaction log file keeps track of all changes applied to a database, it is very
important for database recovery. The transaction log is your friend: it can prevent signifi-
cant data loss and provide recovery that is not possible without it. Consider, for example,
a case in which a database is put in simple recovery mode. In short, this causes transac-
tion detail to be automatically removed from the transaction log. This option is often
selected because the transaction log is seen as taking too much disk space. The problem
with simple mode is that it limits your ability to recover transactions. If a catastrophic
failure occurs, you can restore your last database backup, but that may be it. If that backup
was taken the night before, all the database work done that day is lost.

If your database is not in simple mode (Full or Bulk-Logged), and the transaction log is
intact, you have much better recovery options. For example, if you back up your transac-
tion log periodically (for example, every hour) and a catastrophic error occurs, your data
loss is limited. You still need to restore your last database backup, but you have the option
of applying all the database changes stored in your transaction log. With hourly backups,
you should lose no more than an hour’s worth of work. This topic is covered in detail in
Chapter 14, “Database Backup and Restore.”

CHAPTER 23 Creating and Managing Databases

 Download from www.wowebook.com

ptg

717Creating Databases
2

3

How the Transaction Log Works
SQL Server utilizes a write-ahead log. As changes are made to data through transactions,
those changes are written immediately to the transaction log when the transaction is
complete. The write-ahead log guarantees that all data modifications are written to the log
prior to being written to disk. By writing each change to the transaction log before it is
written to the database, SQL Server can increase I/O efficiency to the data files and ensure
data integrity in case of system failure.

To fully understand the write-ahead log, you must first understand the role of SQL Server’s
cache or memory as it relates to database updates. SQL Server does not write updates
directly to the data page on disk. Instead, SQL Server writes a change to a copy of the data
page that has been placed in memory. Pages changed in memory and not yet written to
disk are called dirty pages. The same basic approach is used for transaction log updates. The
update to the log is performed in the log cache first, and it is written to disk at a later
time. The time when the updates are actually written from cache to disk is called a
checkpoint. The checkpoint occurs periodically, and SQL Server ensures that dirty pages are
not written to disk before the corresponding log entry is written to disk.

The write-ahead log was designed for performance reasons, and it is critical for the recov-
ery process after a system failure. If the system fails, an automatic recovery process is initi-
ated when SQL Server restarts. This recovery process can use the checkpoint marker in the
log file as a starting point for recovery. SQL Server examines all transactions after the
checkpoint. If they are committed transactions, they are rolled forward; if they are incom-
plete transactions, they are rolled back, or undone.

NOTE

Changes were made in SQL Server 2005 that improve the availability of the database
during the recovery process. These changes have been carried forward to SQL Server
2008. In versions prior to SQL Server 2005, the database was not available until it
was completely recovered and the roll-forward and roll-back processes were complete.
In versions following SQL Server 2005, the database is made available right after the
roll-forward process. The roll-back or undo process can occur while users are in the
database. This feature, known as Fast Recovery, is available only with the Enterprise
Edition of SQL Server 2008.

For more detailed information on this topic, see Chapter 31, “Transaction Management
and the Transaction Log.”

Creating Databases
Database creation is a relatively straightforward operation that you can perform by using
T-SQL statements or SSMS. Because the data and log files are created at the time the data-
base is created, the time it takes for the database to be created depends on the size and
number of files you specify when you create the database. If there is not enough disk
space to create any of the files specified, SQL Server returns an error, and none of the files
are created.

 Download from www.wowebook.com

ptg

718

FIGURE 23.2 Creating a database by using SSMS.

NOTE

Enhancements that were added in SQL Server 2005 and still exist in SQL Server 2008
have reduced the amount of time it takes to create a database. The reduction in cre-
ation time is attributed to a change in the way the database files are initialized. The ini-
tialization of the file with binary zeros is now deferred until the file is accessed via SQL
queries. This results in much faster database creation and expansion. For example, we
created a database with a 1GB data file on a machine running SQL Server 2008. The
database was created in approximately 1 second. The same database was then creat-
ed in SQL Server 2000, running on the same machine. The creation of the database
on SQL Server 2000 took approximately 36 seconds. This new feature will make a lot
of folks who create and support large databases very happy.

Using SSMS to Create a Database

The Object Explorer in SSMS makes creating a database simple. You right-click the
Databases node and select New Database. The New Database dialog appears, as shown in
Figure 23.2. The General page is selected by default. It allows you to select the essential
information needed to create a database, including the database name, database owner,
and location of the database files.

CHAPTER 23 Creating and Managing Databases

Some related information is populated when you enter the database name. For example,
the logical name of the database files is populated using the database name. The data file

 Download from www.wowebook.com

ptg

719Creating Databases
2

3

(which is identified with the file type Data) is named the same as the database. The log file
(file type Log) has a database name with the suffix _log. The logical filename can be
changed, but it must be unique within the database.

The location of the database files is an important decision. The location for each file is
entered in the Path column in the Database Files grid. This column, located on the right
side of the Database Files grid, includes an ellipsis that can help you navigate the directory
structure on your server. When you select the location of these files, you should keep in
mind the following:

. Disk space—Databases, by nature, grow over time. You need to make sure the loca-
tion where you place your database files has sufficient space for growth.

. Performance—The location of your database files can affect performance.
Generally, the data and log files should be placed on separate disk drives (with sepa-
rate controllers) to maximize performance.

. Organization—Choosing a common location or directory for your database files
can help keep things organized. For example, you could choose to place your data
files in directories named \mssql\data\ and \mssql\log instead of using the long
pathname that SQL Server uses by default.

There are several restrictions related to the database files specified. Each filename must be
unique and cannot be used by another database. The files specified for a database must be
located on a local drive of the machine where SQL Server is installed, a SAN drive, or an
iSCSI-based network drive. Finally, you need to make sure the path specified exists on the
drive prior to creating the database.

NOTE

The default path for the database files is populated based on database settings val-
ues specified in the Server Properties dialog. To open this dialog, you right-click the
server in the Object Explorer and choose Properties. When the Server Properties dia-
log appears, you choose the Database Settings page, where you see the database
default locations. If the database default locations for the log and data files are not
specified, the paths to the master database files are used. You can determine the
paths to the master database files by looking at the startup parameters for the SQL
Server instance. You can view these startup parameters within the SQL Server
Configuration Manager. After you open this application, you right-click the SQL Server
service and select Properties. On the Advanced tab of the Properties dialog that
appears, you find the setting named Startup Parameters. The –d parameter identifies
the location of the data file for the master database. The –l parameter identifies the
location of the log file for the master database.

The remaining pages in the New Database dialog allow you to set database options, utilize
filegroups, and set extended properties. The Options page contains many settings
discussed in the “Setting Database Options” section later in this chapter. Three settings at
the top of the Options page deserve special attention: Collation, Recovery Model, and
Compatibility Level. Figure 23.3 shows the Options page.

 Download from www.wowebook.com

ptg

720 CHAPTER 23 Creating and Managing Databases

FIGURE 23.3 The Options page for creating a database.

Collation specifies how strings are sorted and compared. The selection of collation is
language dependent and addresses differences in the way characters are ordered. The
default collation for a database is based on the server default, which is set during the
installation of SQL Server. The server default for many U.S.-based installations is
SQL_Latin1_General_CP1_CI_AS. The collation name provides some insight into how the
collation will work. For example, CI is an acronym for Case Insensitive, and AS indicates
that the collation will be Accent Sensitive. The following SELECT statement can be used to
list all the available collations and relates details about how the collation behaves:

SELECT * from ::fn_helpcollations()

The Recovery Model setting is critical in determining how much data can be recovered in
the event of a media failure. The default is Full, which provides the greatest level of recov-
ery. With Full recovery, all changes to the database (inserts, updates, and deletions) are
written to the transaction log, and so are any changes that may have occurred using BCP or
BULK INSERT. If a failure occurs on one of the database files, you can restore the database
by using the last full backup. All the changes captured in the transaction log since the last
full backup can be reapplied to the database as well.

The Bulk-Logged recovery setting is similar to Full recovery but has some differences in
the way that operations (BCP or BULK INSERT) are logged. With Bulk-Logged recovery, you
can still restore all the transaction log backups to recover your database to a point in time.

 Download from www.wowebook.com

ptg

721Creating Databases
2

3

NOTE

When either Full recovery or Bulk-Logged settings is selected, it is important to set up
a job or maintenance plan that performs periodic backups of the transaction log. A
backup of the transaction log removes data from the log and keeps the size of the
transaction log manageable. If regular backups of the transaction log are not made, the
transaction log will continue to grow as every change in the database is written to it.

Simple recovery mode offers the simplest backup/recovery model but the greatest possibil-
ity of losing changes to the database. This is based on the fact that changes recorded in
the transaction log are automatically truncated when the database is placed in Simple
recovery mode. Recovery with Simple mode is limited to using full or differential database
backups that have been taken. Simple recovery mode is a good option for read-only data-
bases and for development databases that can afford the loss of changes since the last
database backup. All the recovery models are discussed in detail in Chapter 14.

The last setting on the Options page that deserves special attention is Compatibility Level.
The Compatibility Level determines the level of backward compatibility the database
engine uses. For many newly created databases in SQL Server 2008, the default of SQL
Server 2008 (100) will suffice. With this setting, all the new features available with SQL
Server 2008 are utilized. In some situations, however, you might want a SQL Server 2008
database to behave as though it were a SQL Server 2005 database or SQL Server 2000 data-
base. You can accomplish this by setting Compatibility Level to SQL Server 2005 (90) or
SQL Server 2000 (80). Generally, you select older compatibility levels to allow code that
was developed for prior versions of SQL Server to work as it did with those versions.

NOTE

The Compatibility Level setting is intended to allow a database to behave as if it were
running in a previous version of SQL Server by providing similar query behavior or by
allowing deprecated features to still work as they did in the previous version. However,
setting the Compatibility Level to a prior version does not prevent new SQL Server
2008 features from being implemented in the database. The intent of this functionality
is to provide a means for moving a database and application developed for a previous
release of SQL Server to SQL Server 2008 and allow it to work as it did while enabling
you to start taking advantage of new features and capabilities as you migrate the sys-
tem to SQL Server 2008.

Using T-SQL to Create Databases

Instead of using SSMS, you can use T-SQL to create a database. The T-SQL command to do
this is CREATE DATABASE. The CREATE DATABASE syntax is extensive and is best illustrated
with an example. Listing 23.1 shows a sample script to create a database called mydb. This
script was generated using the Script option available on the New Database screen.

 Download from www.wowebook.com

ptg

722 CHAPTER 23 Creating and Managing Databases

LISTING 23.1 Using T-SQL to Create a Database

CREATE DATABASE [mydb] ON PRIMARY

(NAME = N’mydb’, FILENAME = N’C:\mssql2008\data\mydb.mdf’ ,

SIZE = 2048KB , FILEGROWTH = 1024KB)

LOG ON

(NAME = N’mydb_log’, FILENAME = N’C:\mssql2008\log\mydb_log.ldf’,

SIZE = 1024KB , FILEGROWTH = 10%)

GO

The database created in Listing 23.1 is relatively simple. It is named mydb and contains one
data file and one log file. The data file is created on the PRIMARY filegroup; it is named
mydb.mdf and is created in the C:\mssql2008\data folder. The mydb.mdf file is initially
created with a size of 2048KB, or 2MB. If the database utilizes the entire 2MB, the file can
be expanded by the amount specified in the FILEGROWTH parameter. In this case, the file
can grow in 1MB increments. (Managing file growth is discussed in the section “Managing
Databases,” later in this chapter.)

The log file is defined using the LOG ON clause in the CREATE DATABASE command. The
mydb database created in Listing 23.1 has a log file named mydb_log.ldf that is also
created in the C:\mssql2008\data folder. The initial size of the file is 1MB, and it can
expand by 10% of the current log file size. You need to use caution with large databases
when using a percentage to define FILEGROWTH. For example, you may have problems if
you have a large database that has a 30GB log file and a FILEGROWTH of 10%. If the data-
base file is set to autogrow, and the 30GB log file is full, it attempts to expand the log file
by 3GB. An expansion of this size could be detrimental to performance, and the disk drive
where the log file is located might not have that much disk space remaining.

You can specify many of the other options that define a database after the database is
created by using the ALTER DATABASE statement. The T-SQL scripting option available on
the CREATE DATABASE screen generates the basic CREATE DATABASE syntax shown in Listing
23.1, and then it generates a series of ALTER DATABASE commands that further define the
database. These options are discussed in the next section.

Setting Database Options
You can use an abundance of database options to refine the behavior of a database. These
options fall into the following categories, which are part of the option specification:

Auto Options

Cursor Options

Database Availability Options

Date Correlation Optimization Options

External Access Options

Parameterization Options

 Download from www.wowebook.com

ptg

723Setting Database Options
2

3

Recovery Options

Service Broker Options

Snapshot Isolation Options

SQL Options

For each category, you can set one or more options. You can find a full list of options for
each category in the section “Setting Database Options” in SQL Server Books Online.
Some of the options are discussed in further detail in the chapters of this book that relate
to the database options. For example, the recovery options are discussed in detail in
Chapter 14, the Service Broker options are discussed in Chapter 49, “SQL Server Service
Broker” (on the CD), and database mirroring options are discussed in Chapter 20,
“Database Mirroring.”

The following section focuses on the database options displayed on the Options page
in SSMS.

The Database Options

You can access many of the most common database options via the Options page of the
Database Properties dialog. To get to this dialog, you right-click a database in the SSMS
Object Explorer and select Properties. When the dialog appears, you select the Options page
from the list on the left side of the Database Properties dialog. Figure 23.4 shows the
Options page for the AdventureWorks2008 database. The options listed under Other
Options can be listed alphabetically or by category. The default display mode is by category.

The default settings for these options suffice for most installations. However, some options
deserve special attention. The options listed under the Automatic category are among
these options. The Auto Close option could cause problems in prior versions of SQL
Server. This option is intended for desktop implementations in which the database does
not need to be online all the time. When users are not accessing the database and this
option is selected, the database files are closed. When the first user accesses the database,
the database is brought back online. The problem in prior versions was that the synchro-
nous operation of opening and closing the database files caused performance problems.
This issue has been addressed in SQL Server 2008 because the operations are now
performed asynchronously. The Auto Close option defaults to true only for SQL Server
2008 Express Edition and should generally be left set to false for all other versions.

The Auto Create Statistics and Auto Update Statistics options also deserve special attention
in situations in which the creation or updating of statistics is affecting performance.
Generally, the creation or updating of statistics improves performance. These statistics
enable the Query Optimizer to make the best decisions when determining the access path
to the data. In some rare circumstances, there may be performance problems at the time
statistics are created or updated automatically. When these situations arise, you can turn off
the Auto Statistics options and schedule the statistics operations to occur during off-hours.

Enabling the Auto Shrink option is a good idea for keeping a nonproduction database as
small as possible. This option automatically performs a database shrink operation against
the database files when more than 25% of a file contains unused space. The default setting

 Download from www.wowebook.com

ptg

724 CHAPTER 23 Creating and Managing Databases

FIGURE 23.4 Database options in SSMS.

is false because this option can cause performance problems (related to the timing of the
shrink operation) in a production database. Because the operation is automatic, it can run
at any time, including times when there may be heavy production load.

The Page Verify option in the Recovery category was enhanced in SQL Server 2005. That
enhancement came in the form of a new CHECKSUM option. This CHECKSUM option is the
default; it causes a checksum calculation to occur across the entire database page. Prior to
the availability of the CHECKSUM option, page verification was done with
TORN_PAGE_DETECTION. Both of these options help detect damaged database pages, but
CHECKSUM is the method that Microsoft recommends. The CHECKSUM calculation can be
complicated but it basically tells SQL Server to calculate a number based on the contents of
each data / index page. The CHECKSUM value is stored in the page header when it is written to
disk. When the page is read from the disk, the checksum is computed again and compared
to the value in page header to help ensure that the contents of each page are valid.

Database Read-Only and Restrict Access are two other commonly used options in the State
category. You can set Database Read-Only to true to prevent updates from occurring in
the database. Databases used for reference and not updated are perfect candidates for this
option. The Restrict Access options are handy when you’re executing system maintenance
or mass updates in which you want to restrict users from accessing the database. Single
User allows only one user to access the database. The Restricted option allows only
members of db_owner, dbcreator, and sysadmin to access the database. With the

 Download from www.wowebook.com

ptg

725Setting Database Options
2

3

Restricted option, there is no limit on the number of users in these groups that can access
the database.

You can easily set up the options reviewed in this section as well as the other options
mentioned by using the Database Properties dialog. The current value for each option is
shown in the right-hand column. To set an option to another value, you click the current
value, and a drop-down arrow appears. When you click the drop-down arrow, you can
select from the list of valid values for the option. After making all your option changes,
you can click OK for the changes to take effect immediately, or you can click the Script
button to generate the T-SQL code to change the options. The T-SQL code used to change
the options is discussed in the next section.

Using T-SQL to Set Database Options

If you prefer to use T-SQL, or if the option you need to set doesn’t appear in the
Database Properties dialog, you can use the ALTER DATABASE command to set options. For
example, the following command sets AUTO_UPDATE STATISTICS to OFF in the
AdventureWorks2008 database:

ALTER DATABASE [AdventureWorks2008] SET AUTO_UPDATE_STATISTICS OFF WITH NO_WAIT

You can also change some of the options by using the system stored procedure
sp_dboption. This feature is scheduled to be removed in a future release of SQL Server but
is still available in this release. You might still be using this procedure based on prior
releases, and old habits are hard to break. Following is an example of one of the
sp_dboption commands many people have been using for years:

EXEC sp_dboption ‘AdventureWorks2008’, ‘single user’, ‘TRUE’

This command sets the AdventureWorks2008 database to single-user mode. Setting a data-
base to single-user mode is useful when you’re performing certain database operations. For
example, you might use sp_dboption to set a database to single-user mode prior to renam-
ing the database with the sp_renamedb system procedure. It is important to break old
habits and move on to using the ALTER DATABASE command. The single-user option and
database name change have both been integrated into the ALTER DATABASE syntax. The
following example shows how to set the single-user mode option and change the database
name by using ALTER DATABASE:

ALTER DATABASE [AdventureWorks2008] SET SINGLE_USER WITH NO_WAIT

GO

ALTER DATABASE [AdventureWorks2008] MODIFY NAME = [AdventureWorks2008_New]

GO

As you can see, using ALTER DATABASE is fairly straightforward and offers a consistent
approach for modifying a database and its options.

 Download from www.wowebook.com

ptg

726 CHAPTER 23 Creating and Managing Databases

TIP

Databases can be brought offline in SQL Server 2008 using SSMS or the T-SQL ALTER
DATABASE command. When databases are offline no one can access them and the
related database files can be moved. For example, you use the following T-SQL
command to take the AdventureWorks2008 database offline:

ALTER DATABASE [AdventureWorks2008] SET OFFLINE WITH NO_WAIT

You can also specify an option with the ALTER DATABASE command that sets the data-
base into an emergency state. This state marks the database as read-only, logging is
disabled, and access to the database is limited to members of the sysadmin fixed
server role. This option quickly prevents normal users from getting at the database but
leaves the database available for inquiry for administrators. This is particularly useful
when a database had been marked as suspect and is inaccessible. An example of
setting a database to the emergency state follows:

ALTER DATABASE [AdventureWorks2008] SET emergency WITH NO_WAIT.

The offline option and emergency options can be invaluable when you want to quickly
prevent or limit access to you database.

Retrieving Option Information

You can retrieve database settings by using several different methods. You can use the
Database Properties dialog in SSMS (as described in the preceding section) to display
commonly accessed options. You can also use the DATABASEPROPERTYEX function or the
sp_dboption system stored procedure to display individual database options. As
mentioned previously, sp_dboption is slated for removal in a future release, so the
DATABASEPROPERTYEX function is preferred. This function accepts input values for the data-
base name and the option for which you want to retrieve the value. The following is an
example of a SELECT statement you can use to retrieve the Auto Shrink option for the
AdventureWorks2008 database:

SELECT DATABASEPROPERTYEX (‘AdventureWorks2008’, ‘IsAutoShrink’)

This function returns a value of 1 or 0 for Boolean values—with 1 being “on” or “true”—
and returns the actual value for non-Booleans. Table 23.1 lists the valid properties for the
DATABASEPROPERTYEX function.

TABLE 23.1 DATABASEPROPERTYEX Properties

Property Explanation

Collation This is the default collation name for the database.

ComparisonStyle This is the Windows comparison style of the
collation.

 Download from www.wowebook.com

ptg

727Setting Database Options
2

3

TABLE 23.1 DATABASEPROPERTYEX Properties

Property Explanation

IsAnsiNullDefault The database follows SQL-92 rules for allowing null
values.

IsAnsiNullsEnabled All comparisons to a null evaluate to unknown.

IsAnsiPaddingEnabled Strings are padded to the same length before
comparison or insertion.

IsAnsiWarningsEnabled Error or warning messages are issued when stan-
dard error conditions occur.

IsArithmeticAbortEnabled Queries are ended when an overflow or divide-by-
zero error occurs during query execution.

IsAutoClose The database shuts down cleanly and frees
resources after the last user exits.

IsAutoCreateStatistics Existing statistics are automatically updated when
the statistics become out-of-date because the data
in the tables has changed.

IsAutoShrink Database files are candidates for automatic peri-
odic shrinking.

IsAutoUpdateStatistics The AUTO_UPDATE_STATISTICS database option is
enabled.

IsCloseCursorsOnCommitEnabled Cursors that are open when a transaction is
committed are closed.

IsFulltextEnabled The database is full-text enabled.

IsInStandBy The database is online as read-only, with the
restore log allowed.

IsLocalCursorsDefault Cursor declarations default to LOCAL.

IsMergePublished The tables in a database can be published for
merge replication, if replication is installed.

IsNullConcat The null concatenation operand yields NULL.

IsNumericRoundAbortEnabled Errors are generated when loss of precision occurs
in expressions.

IsParameterizationForced The PARAMETERIZATION database SET option is
FORCED.

 Download from www.wowebook.com

ptg

728 CHAPTER 23 Creating and Managing Databases

If you would like to retrieve all the options set for a database, you have a couple of
choices. The option that has been around for a while is sp_helpdb. You can pass to this
system stored procedure the database name, and it returns several pieces of information
about the database, including the options set. The database options are returned in the
first result set from sp_helpdb in a column named Status. The database options are
displayed in a comma-delimited format in the Status column. All Boolean options that are
set to ON are returned in the Status column, and all non-Boolean values are returned with
the value to which they are set.

TABLE 23.1 DATABASEPROPERTYEX Properties

Property Explanation

IsPublished The tables of the database can be published for
snapshot or transactional replication, if replication
is installed.

IsQuotedIdentifiersEnabled Double quotation marks can be used on identifiers.

IsRecursiveTriggersEnabled Recursive firing of triggers is enabled.

IsSubscribed The database is subscribed to a publication.

IsSyncWithBackup The database is either a published database or a
distribution database and can be restored without
disrupting transactional replication.

IsTornPageDetectionEnabled The SQL Server database engine detects incom-
plete I/O operations caused by power failures or
other system outages.

LCID This is the Windows locale ID (LCID) for the
collation.

Recovery This is the recovery model for the database.

SQLSortOrder This indicates the SQL Server sort order ID
supported in earlier versions of SQL Server.

Status This is the database status.

Updateability This indicates whether data can be modified.

UserAccess This indicates which users can access the
database.

Version This is the internal version number of the SQL
Server code with which the database was created.
It is for internal use only by SQL Server tools and in
upgrade processing.

 Download from www.wowebook.com

ptg

729Managing Databases
2

3

The syntax for sp_helpdb is as follows:

sp_helpdb database_name

The sys.databases catalog view is another good resource for displaying all the database
options. This catalog view has a separate column for each of the database options and is
much easier to read than the sp_helpdb output. The view also has the added flexibility of
allowing you to choose a set of options to return. The following example shows a SELECT
statement that uses the sys.databases catalog view to return a common set of options:

select name, is_auto_close_on, is_auto_shrink_on,

is_auto_create_stats_on, is_auto_update_stats_on

from sys.databases

where name = ‘AdventureWorks2008’

The results from this SELECT statement return Boolean values in each column, indicating
whether the option is set to on or off. The number of columns available for selection is
extensive and similar to those options available with the DATABASEPROPERTYEX function.

TIP

Selecting the column you want from the sys.databases catalog view is easier when
you use the Object Explorer. To set it, you go to the master database and expand the
Views node, followed by the System Views node. When you see the sys.databases
view listed under System Views, you expand the columns for the sys.databases view
to see a list of all the available columns. You can then drag the options you want to
view into a database query window for use in a SELECT statement.

You can also use the new IntelliSense feature available in the SQL Server 2008 query
window. When creating a SELECT statement that retrieves from the sys.databases cat-
alog view (or any other catalog view), you are given a drop-down list of available
columns when you reference the view in the select list. See chapter 4 for a more in-
depth discussion of the object explorer and IntelliSense.

Managing Databases
After you create a database, you have the ongoing task of managing it. At the database
level, this task generally involves manipulating the file structure and setting options
appropriate for the usage of the database.

Managing File Growth

As discussed earlier in this chapter, SQL Server manages file growth by automatically
growing files by preset intervals when a need for additional space arises. However, this is a
very loose definition of the word manages. What actually happens is that when the data-
base runs out of space, it suspends all update activity, checks whether it is allowed addi-
tional space, and if space is available, it increases the file size by the value defined by
FILEGROWTH. When the database fills up again, the whole process starts over.

 Download from www.wowebook.com

ptg

730 CHAPTER 23 Creating and Managing Databases

When all the files in a filegroup are full and are configured to autogrow, SQL Server auto-
matically expands one file at a time in a round-robin fashion to accommodate more data.
For example, if a filegroup consists of multiple files, and no free space is available in any
file in the filegroup, the first file is expanded by the specified file-growth setting. When
the first file is full again, and there is no more free space elsewhere in the filegroup, the
second file is expanded. When the second file is full, and there is no more free space else-
where in the filegroup, the third file is expanded, and so on.

Because FILEGROWTH can be defined as small as 64KB, automatically increasing the file size
can be detrimental to performance if it happens too frequently. When you think of
managing file growth, you can think of the database administrator proactively monitoring
the size of files and increasing the size before SQL Server runs out of space when allocat-
ing new extents. That’s not to say automatic file growth is a bad thing; it is, in fact, a great
“safety valve” to accommodate unpredictable data growth or a lack of attention on the
part of the administrator.

Expanding Databases

As previously discussed, databases can be expanded automatically, or you can intervene
and expand them manually. The manual expansion can be accomplished by adding more
files to the database or by increasing the size of the existing files. The database expansions
can be accomplished with either SSMS or T-SQL.

To expand the size of the data files using SSMS, you right-click the database in the Object
Explorer and select Properties. When the Database Properties dialog appears, you select the
Files page to list all the files associated with the database. The Initial Size (MB) column
displays the current disk allocation for each file. You can enter the new size directly into
the column or use the up arrow to increase the size. After establishing the new size, you
can simply click OK to expand the database file, or you can script the change by using the
Script button at the top of the Database Properties window.

You can also use the Files page of the Database Properties dialog in SSMS to add files to a
database. You do this by clicking the Add button, which adds a new file entry row into the
Database Files grid. You must supply a logical name for the new file, which typically
contains the database name. In addition, you must supply the other data values in the row,
including the file type, filegroup, initial size, autogrowth parameters, and path to the file.

The T-SQL ALTER DATABASE command is another option you can use for expanding a data-
base. Listing 23.2 shows an ALTER DATABASE example that increases the size of a data file
in the AdventureWorks2008 database to 200MB.

LISTING 23.2 Using T-SQL to Increase the Size of a Database File

ALTER DATABASE [AdventureWorks2008]

MODIFY FILE (NAME = N’AdventureWorks2008_Data’, SIZE = 200MB)

GO

 Download from www.wowebook.com

ptg

731Managing Databases
2

3

You can also use the ALTER DATABASE command to add a new file to a database. Listing
23.3 shows an example that adds a new data file to the AdventureWorks2008 database.

LISTING 23.3 Using T-SQL to Add a New Database File

ALTER DATABASE [AdventureWorks2008]

ADD FILE (NAME = N’AdventureWorks2008_Data2’,

FILENAME = N’C:\Program Files\Microsoft SQL

Server\MSSQL.1\MSSQL\DATA\AdventureWorks2008_Data2.ndf’,

SIZE = 2048KB , FILEGROWTH = 1024KB) TO FILEGROUP [PRIMARY]

GO

Shrinking Databases

Shrinking database files is a bit more involved than expanding them. Generally, you do
database shrink operations manually, using DBCC commands. SQL Server does have the
AUTOSHRINK database option, but it is usually reserved for development databases and
should not be used in production. The reason it is not recommended for production is
that the AUTOSHRINK operation can run at peak usage time and affect performance.
AUTOSHRINK is executed when more than 25% of a file contains unused space. This event
can occur, for example, after a large deletion.

If you want to shrink a database manually, you can do so by using DBCC SHRINKDATABASE,
DBCC SHRINKDATAFILE, or SSMS. The following sections describe these three methods.

NOTE

Generally, you should avoid shrinking database files if you believe that the files are
going to grow to the same larger size again. The continual expansion of a database
can affect performance while the expansion is occurring. Also, if a database file is
repeatedly shrunk and expanded, the database file itself can become fragmented with-
in the file system, which can degrade I/O performance for the file.

Using DBCC SHRINKDATABASE to Shrink Databases
The DBCC SHRINKDATABASE statement attempts to shrink all the files in a database and leave
a specified target percentage of free space. The following is an example of the DBCC SHRINK-
DATABASE syntax and running the command against the AdventureWorks2008 database:

DBCC SHRINKDATABASE

(’database_name’ | database_id | 0

[,target_percent]

[, { NOTRUNCATE | TRUNCATEONLY }]

)

[WITH NO_INFOMSGS]

--Shrink Example

DBCC SHRINKDATABASE (AdventureWorks2008, 25)

 Download from www.wowebook.com

ptg

732 CHAPTER 23 Creating and Managing Databases

The first parameter of the DBCC SHRINKDATABASE command is the database_name or
database_id, and the second parameter is the desired percentage that will be left free. In
the preceding example, an attempt will be made to shrink the database file and leave 25%
free space in the files. This operation is done one data file at a time, and the log files are
treated as one unit and shrunk together.

There are quite a few things to consider when you use the DBCC SHRINKDATABASE
command. The following are some of the most important considerations:

. DBCC SHRINKDATABASE does not shrink a file smaller than its minimal size. The
minimal size is the size of the file when it was initially created or the size of the file
after it was explicitly resized. Explicit resizing can be accomplished with the DBCC
SHRINKFILE command.

. The TRUNCATEONLY option frees any unused space at the end of a file but does not
attempt any page movement within the file. The target percentage is ignored when
this option is specified.

. The NOTRUNCATE option attempts to move pages in the files to push all free space to
the end of the file. This option does not actually return the space to the operating
system, and the physical file does not end up smaller when this option is used.

. If neither the NOTRUNCATE nor TRUNCATEONLY options are specified, this is equivalent
to running DBCC SHRINKDATABASE WITH NOTRUNCATE followed by DBCC SHRINKDATA-
BASE WITH TRUNCATEONLY. The first part attempts to push all the free space to the
end of the file; then the free space is released to the operating system, and the file
ends up smaller.

. The database files can never be shrunk to a size smaller than the data contained
within them.

For smaller databases, the DBCC SHRINKFILE command is often considered to be a good
choice because it is all inclusive and applies to all the database files. For larger databases or
situations in which you need more control, you should consider using the DBCC SHRINK-
FILE command, which is discussed in the next section.

Using DBCC SHRINKFILE to Shrink Databases
The DBCC SHRINKFILE command operates on individual database files. For databases that
contain many database files, you must execute multiple commands to shrink the entire
database. This task requires some extra work, but the increased control is often worth the
effort. This, combined with the fact that you can shrink a file below its minimum speci-
fied size, makes it a very good option.

The following example shows the syntax for the DBCC SHRINKFILE command and a simple
example for the AdventureWorks2008 database:

DBCC SHRINKFILE

(

{ ‘ file_name ‘ | file_id }

 Download from www.wowebook.com

ptg

733Managing Databases
2

3

{ [, EMPTYFILE]

| [[, target_size] [, { NOTRUNCATE | TRUNCATEONLY }]]

}

)

[WITH NO_INFOMSGS]

-- sample shrink command

USE [AdventureWorks2008]

GO

DBCC SHRINKFILE (N’AdventureWorks2008_Data’ , 180)

GO

DBCC SHRINKFILE (N’AdventureWorks2008_Log’ , 10)

GO

Note that with this option, a filename or an ID is supplied, rather than the database
name. DBCC SHRINKFILE must be run in the database that the file belongs to. You specify
TARGET_SIZE in megabytes; this is the desired size for the file after the shrink completes. If
TARGET_SIZE is not specified or the target size is too small, the command tries to shrink
the file as much as possible. The EMPTYFILE option migrates all data in the file to other
files in the same filegroup. No further data can be placed on the file. The file can subse-
quently be dropped from the database. This capability can be useful when you want to
migrate a data file to a new disk. The NOTRUNCATE and TRUNCATEONLY options for DBCC
SHRINKDATAFILE work the same way as with DBCC SHRINKDATABASE. Refer to the previous
section for details.

TIP

If you would like to shrink every database file by using the DBCC SHRINKFILE
command, you can generate the commands by using a SELECT statement. The follow-
ing SELECT is an example of this:

SELECT ‘PRINT ‘’LOGICAL NAME: ‘ + rtrim(name) +

‘ FILENAME: ‘ + rtrim(filename) + ‘’’’ + char(10) +

‘go’ + char(10) +

‘ DBCC SHRINKFILE (‘ + convert(varchar(8),fileid) + ‘,1)’ +

char(10) + ‘go’ + char(10)

from sysfiles order by fileid

The results from this SELECT produce the DBCC SHRINKFILE commands for all the
files in the database that it is run against. You can then paste the results into another
query window and execute them. This particular example uses a fixed target size of
1MB, but you can adjust this size in the SELECT statement. You could also modify this
SELECT statement so that it uses the sys.master_files catalog view instead of
using sysfiles.

 Download from www.wowebook.com

ptg

734 CHAPTER 23 Creating and Managing Databases

Shrinking the Log File
The data file most likely to grow beyond a normal size and require periodic shrinking is
the transaction log file. If a user process issues a large update transaction, the log file
grows to the size needed to hold the records generated by the transaction. This could be
significantly larger than the normal growth of the transaction log.

As with data files, shrinking of the log file in SQL Server 2008 can take place only from
the end of the log file. However, you must first back up or truncate the log to remove the
inactive log records and reduce the size of the logical log. You can then run the DBCC
SHRINKFILE or DBCC SHRINKDATABASE command to release the unused space in the log file.

Transaction log files are divided logically into segments, called virtual log files. The
Database Engine chooses the size of the virtual log files dynamically while it is creating or
extending log files. Transaction log files can only be shrunk to a virtual log file boundary.
It is therefore not possible to shrink a log file to a size smaller than the size of a virtual log
file, even if the space is not being used. The size of the virtual log files in a transaction log
increase as the size of the log file increases. For example, a database defined with a log file
of 1GB may have virtual log files 128MB in size. Therefore, the log can be shrunk to only
about 128MB.

Because of the overhead incurred when the autoshrink process attempts to shrink database
files, it is not recommended that you enable this option for the transaction log because it
could be triggered numerous times during the course of a business day. It is better to
schedule the shrinking of the log file to be performed during normal daily maintenance,
when production system activity is at a minimum.

Using SSMS to Shrink Databases
In addition to shrinking a database by using T-SQL, you can do so through SSMS. In the
Object Explorer, you right-click the database you want to shrink, and then you choose
Tasks, followed by Shrink. You can then select either Database or Files. Selecting the
Database option displays the Shrink Database dialog (see Figure 23.5). The currently allo-
cated size and free space for the database are shown. You have the option of selecting the
Shrink Action and checking the Reorganize Files Before Releasing Unused Space check box.

You can click the Script button to generate the T-SQL that will be used to perform the
database shrink operation. When you do, a DBCC SHRINKDATABASE command is generated.

If you want to shrink database files, you choose the Files option instead of Database.
Figure 23.6 shows the Shrink File dialog displayed when you select Files. You can shrink
one database file at a time using this window. If you choose the shrink option Release
Unused Space, SMSS uses the DBCC SHRINKFILE command with the TRUNCATEONLY option.
If you choose the Reorganize Pages Before Releasing Unused Space option, SMSS uses the
DBCC SHRINKFILE command without the TRUNCATEONLY or NOTRUNCATE option. As
mentioned earlier, this causes page movement to free as much space as possible. A
TRUNCATE operation then releases the free space back to the operating system.

 Download from www.wowebook.com

ptg

735Managing Databases
2

3

FIGURE 23.5 Shrinking an entire database using SSMS.

FIGURE 23.6 Shrinking database files in SSMS.

 Download from www.wowebook.com

ptg

736 CHAPTER 23 Creating and Managing Databases

Moving Databases

Sometimes you need to move a database or database file. There are several ways to accom-
plish this task:

. Make a database backup and then restore it to a new location.

. Alter the database, specifying a new location for the database file.

. Detach the database and then reattach the database, specifying an alternate location.

Restoring a Database Backup to a New Location

The database backup option is fairly straightforward. You make a backup of the database
and then write it to a file or files. The file is restored, and any changes to the location of
the database files are made at that time. Backup and restoration are discussed in detail in
Chapter 14.

You can easily detach a database by right-clicking the database in the Object Explorer and
choosing Tasks and then Detach. When the database is detached, you can move the file(s)
to the desired location. You can then right-click on the database’s node and select Attach.
The Attach Databases screen that appears allows you to select the .mdf file and change the
file location for any of the related database files. The steps involved in detaching and
attaching a database are discussed in detail in the later section “Detaching and Attaching
Databases.”

Using ALTER DATABASE

The ALTER DATABASE option for moving user database files was added in SQL Server 2005.
This option involves the following steps:

1. Take the database offline.

2. Manually move the file(s) to the new location.

3. Run the ALTER DATABASE command to set the FILENAME property to the new file
location.

4. Bring the database online.

The following example uses the ALTER DATABASE command to move the log file for the
AdventureWorks2008 database to the root of the C: drive.

ALTER DATABASE AdventureWorks2008

MODIFY FILE (NAME = AdventureWorks2008_Log,

FILENAME = ‘C:\AdventureWorks2008_log.ldf’)

 Download from www.wowebook.com

ptg

737Managing Databases
2

3

CAUTION

Use caution when specifying the FILENAME parameter to move a database log file. If
the FILENAME setting specified in the ALTER DATABASE command is incorrect and the
file does not exist, the command still completes successfully. When the database is
brought back online, a message stating that the file can’t be found appears, and a new
log file is created for you. This invalidates the old log file.

Detaching and Attaching Databases

A convenient way to move or copy database files is to detach and attach databases.
Detaching database files removes the database from an instance of SQL Server but leaves
the database files intact. After the database is detached, the files associated with the data-
base (that is, .mdf, .ndf, and .ldf files) can be copied or moved to an alternate location.
You can then reattach the relocated files by using the CREATE DATABASE command with
the FOR ATTACH option.

TIP

The process of detaching and attaching a database is extremely fast. It is therefore a
good alternative to BACKUP and RESTORE when you’re copying a database to another
location. The catch with detaching a database is that all users must be disconnected
from the database, and the database is unavailable during the detach and copy of the
database files.

To detach a database, you right-click the database in Object Explorer and select Tasks and
then Detach. Figure 23.7 shows an example of the Detach Database dialog box for detach-
ing the AdventureWorks2008 database. You can specify several options, including a handy
option (called Drop Connections) to kill any user processes (SPIDs) that may still be
connected to the database when the detach operation is running. If you do not select the
Drop Connections option, and users are still connected to the database, the detach opera-
tion fails.

Other options available during the detach operation are also useful. The Update Statistics
option updates out-of-date statistics for all the database tables before you detach the data-
base. The statistics update can take some time on larger databases, so this slows down the
overall detach operation. The other option, Keep Full Text Catalogs, is new to SQL Server
2008. It allows you to detach any full-text catalogs associated with the database. These
detached full-text catalogs are then reattached along with the database when the files are
attached. See chapter 56 for a more in-depth discussion of full-text catalogs.

The attach operation is simple to execute through SMSS. In Object Explorer, you simply
right-click the database’s node and select the Attach option. The Attach Databases dialog
box appears, allowing you to specify the database file(s) you want to attach. You need to
click the Add button to be able to select a database file for restoration. When you select
the main .mdf file associated with the database, the associated file information for the
other related database files is populated as well.

 Download from www.wowebook.com

ptg

738 CHAPTER 23 Creating and Managing Databases

FIGURE 23.7 Detaching a database by using SSMS.

23.8 shows the Attach Databases dialog box for the AdventureWorks2008 database. The top
portion of the dialog box lists the main (.mdf) database file selected for the
AdventureWorks2008 database. The bottom portion lists the related files. You have an
option to attach the database with a different name by changing the Attach As name
located at the top of the screen. You can also edit the database details at the bottom of
the screen and enter the location of the database files that will be attached. The Current
File Path column displays the original file locations determined from the .mdf file. If the
files were moved to a new location, this is the place to change the current file path to the
new location.

You can also accomplish the detach and attach operations by using T-SQL. You perform
the detach operation with the sp_detach_db system stored procedure. You perform the
attach operation with the CREATE DATABASE command, using the FOR ATTACH option. The
following is an example of T-SQL commands for detaching and attaching the
AdventureWorks2008 database:

--Detach the database

EXEC master.dbo.sp_detach_db

@dbname = N’AdventureWorks2008’, @keepfulltextindexfile=N’false’

GO

--Attach the database

CREATE DATABASE [AdventureWorks2008] ON

(FILENAME = ‘C:\Program Files\Microsoft SQL

 Download from www.wowebook.com

ptg

739Managing Databases
2

3

FIGURE 23.8 Attaching a database by using SSMS.

NOTE

You can use the sp_attach_db procedure to attach a database, but Microsoft recom-
mends that you use the CREATE DATABASE ... FOR ATTACH command instead. The
sp_attach_db procedure has been deprecated and is slated for removal in a future
release of SQL Server.

SQL Server 2008 has the capability to attach a database without all the log files. You do
this by using the ATTACH_REBUILD_LOG clause when creating the database. When you use
this clause, SQL Server rebuilds the log files for you. This capability is useful on large data-
bases that may have large logs that are not needed in the environment where the database
files are attached. For example, a READ_ONLY database would not need the log files that
may be associated with its production counterpart. The following example uses the
ATTACH_REBUILD_LOG clause to create a copy of the AdventureWorks2008 database:

CREATE DATABASE [AdventureWorks2008Temp] ON

(FILENAME = ‘C:\Temp\AdventureWorks2008_Data.mdf’)

Server\MSSQL.1\MSSQL\Data\AdventureWorks2008_Data.mdf’),

(FILENAME = ‘C:\Program Files\Microsoft SQL

Server\MSSQL.1\MSSQL\Data\AdventureWorks2008_log.LDF’)

FOR ATTACH

 Download from www.wowebook.com

ptg

740 CHAPTER 23 Creating and Managing Databases

FOR ATTACH_REBUILD_LOG

Summary
The steps involved in creating and managing databases are by no means limited to the
topics in this chapter. A database consists of many database objects and has a myriad of
other features discussed throughout this book. The next chapter, “Creating and Managing
Tables,” delves into one of the most basic elements of a database: the table.

 Download from www.wowebook.com

ptg

CHAPTER 24

Creating and Managing
Tables

IN THIS CHAPTER

. What’s New in SQL
Server 2008

. Creating Tables

. Defining Columns

. Defining Table Location

. Defining Table Constraints

. Modifying Tables

. Dropping Tables

. Using Partitioned Tables

. Creating Temporary Tables

Tables are logical constructs used for the storage and
manipulation of data in databases. Tables contain columns,
which describe data, and rows, which are instances of table
data. Basic relational database design determines the table
and column names as well as the distribution of columns
within tables.

This chapter gives you the administrative knowledge you
need to create tables and manage them within your enter-
prise. It focuses on the basic constructs for tables and the
table-level features that can make your tables robust and
efficient objects to house your data.

What’s New in SQL Server 2008
Most of the new table-oriented features available with SQL
Server 2008 are related to the columns that define a table.
Columns can now be defined with several new data types
that further expand the type of data that SQL Server can
store and manage. Some of these new types, such as the
FILESTREAM storage and the geometry and geography data
types take SQL Server beyond the typical relational model.
FILESTREAM storage provides a reference point to a flat file
in the operating system where the data actually resides, and
the geometry and geography data types bring you into the
world of spatial data storage.

The hierarchyid data type is system-provided. You use
hierarchyid as a data type to create tables with a hierarchi-
cal structure or to reference the hierarchical structure of

 Download from www.wowebook.com

ptg

742 CHAPTER 24 Creating and Managing Tables

data in another location. You use hierarchyid functions to query and perform work with
hierarchical data by using Transact-SQL (T-SQL).

There have also been additions to more traditional relational data types. For example, SQL
Server 2008 now offers separate data types for date and time. The new date data type
contains only the date, whereas the new time data type contains only the time portion. In
the past, the datetime or smalldatetime data types combined the date and time compo-
nents into a single data type. Other date and time data type enhancements are discussed
later in the chapter.

SQL Server 2008 also introduces new ways to organize or access columns. Sparse columns
and column sets are example of this. A sparse column is a column where the majority of
the column’s values contain null values. A sparse column is an ordinary column but is
given the SPARSE keyword when it is added to a table so that the SQL Server Database
Engine can optimize the storage of these types of columns. The related column set is
another type of column that is XML-typed and identifies all the sparse columns added to
a table. These data types and all the new data types are discussed later in this chapter.

The good news is that the management of tables and their related columns has remained
relatively unchanged in SQL Server 2008. You will find that the facilities available in the
SQL Server Management Studio are as familiar and as easy to use as they were in SQL
Server 2005.

NOTE

This chapter uses examples from Bigpubs2008 database and the Adventureworks2008
database. Instructions for installing the BigPubs2008 database are located in the
Introduction chapter at the beginning of this book.

Creating Tables
SQL Server 2008 supports the creation of tables using T-SQL, the SQL Server Management
Studio (SSMS) Object Explorer and the SSMS Database Diagram Editor. Regardless of the
tool you choose, creating a table involves naming the table, defining the columns, and
assigning properties to the columns. The visual tools (such as Object Explorer and data-
base diagrams) are usually the best starting point for creating tables. These tools offer
drop-down boxes that allow you to choose the data types for your columns and check
boxes that allow you to define their nullability.

This chapter first looks at the visual tools and then delves into the specific parameters
related to the underlying T-SQL statements that ultimately create a table.

Using Object Explorer to Create Tables

The Object Explorer in SSMS has a Tables node under each database listed. You can add
tables via the Object Explorer by right-clicking this Tables node. Figure 24.1 shows the
New Table option displayed after you right-click the Tables node in Object Explorer. The

 Download from www.wowebook.com

ptg

743Creating Tables

FIGURE 24.1 Using Object Explorer to create a table.

top-right side of the screen shown in Figure 24.1 is the table creation screen that allows
you to enter the column name and data type and to set the Allow Nulls option.

2
4

The data entry area under Column Name is a free-form area where you can define a
column name. You can select the data type from the Data Type drop-down, which displays
the data types available with SQL Server. The Allow Nulls option is Boolean in nature and is
either checked or not checked. For each column selected, a Column Properties section is
displayed in SSMS, providing a myriad of additional properties that you can assign to each
column. These properties are discussed in more detail in the “Defining Columns” section,
later in this chapter.

Using Database Diagrams to Create Tables

You can use the database diagrams for a more robust visual representation of your tables.
You view them from within SSMS, and they give you the distinct advantage of being able
to display multiple tables and the relationships between these tables. The Database
Diagram Editor behaves similarly to other data modeling tools that allow you to move
related tables around in the diagram and group them accordingly.

Figure 24.2 shows several screens related to database diagrams. The left side of Figure 24.2
shows the Object Explorer and the resulting New Database Diagram option that is
displayed if you right-click the Database Diagrams node. The right side of the screen
shows the diagram design window. In this example, the existing Department table from

 Download from www.wowebook.com

ptg

744

FIGURE 24.2 Using database diagrams to create a table.

the AdventureWorks2008 database was added to the diagram, and a new Printer table was
added as well. The printer table was added by right-clicking in the diagram design window
and selecting the New Table option.

CHAPTER 24 Creating and Managing Tables

The column names and related attributes for the new Printer table in Figure 24.2 were
added using the table entry fields. The data entry screen for the table is similar to the one
provided with the Object Explorer. You enter column names, along with their associated
data types and nullability option.

The advantage of database diagrams is that you can define relationships and show them
with a visual representation. This visual view provides a much easier way to view the table
structures in a database. In the example shown in Figure 24.2, the line drawn between the
Department and Printer tables represents a relationship between these two tables. You
define such a foreign key relationship in the database diagram by dragging the related
column from one table to the other related table. Table relationships and constraints are
discussed later in this chapter, in the section “Defining Table Constraints.”

Using T-SQL to Create Tables

Ultimately, all the tables created with the visual tools can also be created by using T-SQL.
As with many of the SSMS tools, database objects can be resolved or scripted into T-SQL
statements. Let’s examine the T-SQL syntax to better understand some of the table
creation options; then we can discuss the definition of the columns in each table.

 Download from www.wowebook.com

ptg

745Creating Tables
2

4

The full T-SQL CREATE TABLE syntax is extensive. It includes options to define table
constraints, indexes, and index options. SQL Server Books Online shows the full syntax
and describes each of these options in detail. Listing 24.1 shows the basic T-SQL syntax;
the first part of the syntax is listed in Books Online. This syntax is enough to enable you
to create a table with its associated column definitions.

LISTING 24.1 Basic T-SQL CREATE TABLE Syntax

CREATE TABLE

[database_name . [schema_name] . | schema_name .] table_name

({ <column_definition> | <computed_column_definition> }

[<table_constraint>] [,...n])

[ON { partition_scheme_name (partition_column_name) | filegroup

| “default” }]

[{ TEXTIMAGE_ON { filegroup | “default” }]

[;]

<column_definition> ::=

column_name <data_type>

[COLLATE collation_name]

[NULL | NOT NULL]

[

[CONSTRAINT constraint_name] DEFAULT constant_expression]

| [IDENTITY [(seed ,increment)] [NOT FOR REPLICATION]

]

[ROWGUIDCOL] [<column_constraint> [...n]]

<data type> ::=

[type_schema_name .] type_name

[(precision [, scale] | max |

[{ CONTENT | DOCUMENT }] xml_schema_collection)]

The number of options in this basic syntax can be daunting, but the reality is that you
can exclude many of the options and execute a relatively simple statement. Listing 24.2 is
an example of a simple statement you can use to create a table. This listing shows a
CREATE TABLE statement that you can use to create the Printers table that was shown in
Figure 24.2.

LISTING 24.2 A Basic T-SQL CREATE TABLE Example

CREATE TABLE Printer

(

PrinterID int NOT NULL,

DepartmentID smallint NOT NULL,

PrinterName varchar(50) NOT NULL,

 Download from www.wowebook.com

ptg

746 CHAPTER 24 Creating and Managing Tables

Manufacturer varchar(50) NOT NULL,

PrinterDescription varchar(250) NULL

)

The CREATE TABLE statement in Listing 24.2 specifies the table to create, followed by an
ordered list of columns to add to the table. The following section describes the specifics
related to defining the columns.

TIP

SSMS provides several methods for generating the T-SQL code to create tables.
Therefore, you rarely need to type the CREATE TABLE statements from scratch. Instead,
you can use the friendly graphical user interface (GUI) screens that enable you to
define the table, and then you can generate the T-SQL script. For example, you can
right-click a new table in the database diagram and select Generate Change Script to
generate the associated T-SQL for the table.

One of the important considerations during table creation is schema assignment. Schemas
allow you to logically group objects (including tables) and define ownership, independent
of the individual users in the database. Schema enhancements introduced in SQL Server
2005 are still available in SQL Server 2008 and can play a significant role in the definition
of tables in a database. Consider, for example, the AdventureWorks2008 database that ships
with SQL Server 2008. The tables in this database have been assigned to schemas that
group the tables according to their functional areas. The schemas in the
AdventureWorks2008 database include Sales, Purchasing, Person, Production,
HumanResources, and dbo. Some sample tables in the Person schema include the Person
and Address tables. The Purchasing schema includes tables that relate to purchasing,
including the PurchaseOrderHeader and Vendor tables.

The designation of a schema in the CREATE TABLE statement is relatively simple. Listing
24.3 includes a three-part table name for the creation of a Printer table in the
HumanResources schema. The database name (AdventureWorks2008) is the first part of the
name, followed by a schema name (HumanResources). The last part of Listing 24.3 shows
a sample SELECT statement against the Printer table that is owned by the
HumanResources schema. The schema name must precede the table, when referenced. The
only exception to this rule is tables that belong to the default schema assigned to the
user executing the query.

LISTING 24.3 Using T-SQL CREATE TABLE in a Schema

CREATE TABLE AdventureWorks2008.HumanResources.Printer

(

PrinterID int NOT NULL,

DepartmentID smallint NOT NULL,

PrinterName varchar(50) NOT NULL,

 Download from www.wowebook.com

ptg

747Defining Columns
2

4

Manufacturer varchar(50) NOT NULL,

PrinterDescription varchar(250) NULL

)

go

select * from HumanResources.Printer

The creation of schemas and assignment of tables to schemas requires some forethought.
This task, which is permission oriented, is discussed in more detail in Chapter 11,
“Security and User Administration.”

Defining Columns
A table is defined as a collection of columns. Each column represents an attribute of the
database table and has characteristics that define its scope and the type of data it can
contain. In defining a column, you must assign a name and a data type. For consistency
and readability, the column names should adhere to a naming convention that you define
for your environment. Naming conventions often use a set of standard suffixes that indi-
cate the type of data the column will contain. For example, you can add the Date suffix to
a column name (for example, OrderDate) to identify it as a column that contains
date/time data, or you can add the suffix ID (for example, PrinterID) to indicate that the
column contains a unique identifier.

When creating and naming columns, you need to keep the following restrictions in mind:

. You can define up to 1,024 columns (nonsparse + computed) for each table. This
number is increased to 30,000 columns if the table has a defined column set using
sparse columns.

. Column names must be unique within a table.

. A row can hold a maximum of 8,060 bytes. Some data types can be stored off the
8KB data page to allow a row to exceed this limit.

. A data type must be assigned to each column.

These restrictions provide a framework for a column definition. The next consideration in
defining a column is the data type. The following section discusses the various data types.

Data Types

SQL Server 2008 has an extensive list of data types to choose from, including some that
are new to SQL Server 2008. New data types include date, time, datetime2,
datetimeoffset, filestream, and geometry. Each data type is geared toward a specific
type of data that will be stored in the column. Table 24.1 provides a complete list of the
data types available in SQL Server 2008.

 Download from www.wowebook.com

ptg

748 CHAPTER 24 Creating and Managing Tables

TABLE 24.1 Table Data Types

Data Type Range/Description Storage

bigint –263

(–9,223,372,036,854,775,808)
to 263-1

(9,223,372,036,854,775,807)

8 bytes

binary (n) Binary data with a length of
n bytes The number of bytes
defined by n, up to 8,000

bit An integer data type that can
take a value of 1, 0, or NULL

1 byte for every eight
columns that are defined as
bits on the table

char Up to 8,000 characters 1 byte per character

date 0001-01-01 through
9999-12-31

3 bytes

datetime through 8 bytes; accurate to
December 31, 9999

January 1, 1753, 3.33
milliseconds

datetime2 through 8 bytes; accurate to
December 31, 9999

January 1, 0001, 100
nanoseconds

datetimeoffset through 10 bytes December 31, a time
zone offset

January 1, 0001, 9999;
includes

decimal Based on the precision –1038+1 to 1038-1

float –1.79E + 38 to –2.23E – 38, 0
and 2.23E – 38 to 1.79E + 38

4 or 8 bytes, depending on
the allocation mantissa

geography representing round-earth data such as GPS
latitude and longitude coordi-
nates

.NET CLR data type

geometry CLR data type repre-
senting

data in a Euclidean (flat) coordi-
nate system

.NET

hierarchyid levels Up to 892 bytes User defined nodes and

image Variable-length binary data Up to 231-1 (2,147,483,647)
bytes

int –231 (–2,147,483,648) to 231-1

(2,147,483,647)
4 bytes

 Download from www.wowebook.com

ptg

749Defining Columns
2

4

TABLE 24.1 Table Data Types

Data Type Range/Description Storage

money –922,337,203,685,477.5808
to 922,337,203,685,477.5807

8 bytes

nchar Up to 4,000 Unicode characters Two times the number of
characters entered

ntext Up to 230-1 (1,073,741,823)
characters

Two times the number of
characters entered

numeric (p,s) 1038-1 Based on the precision –1038+1 through

nvarchar(n) Up to 4,000 Unicode charac-
ters Two times the number of
characters entered

nvarchar(max) Unicode characters up to the
maximum storage capacity of

Two times the number plus 2
bytes, up to 230-1

real –1.18E – 38, 0 and 1.18E – 38
to 3.40E + 38

4 bytes

smalldatetime January 1, 1900, through
June 6, 2079 4 bytes; accu-
rate to 1 minute

smallint to 215-1 (32,767) 2 bytes –215 (–32,768)

smallmoney 214,748.3647 4 bytes –214,748.3648 to

sql_variant values of Up to 8,016 bytes various SQL
Server 2008–supported data
types, except text, ntext, image,
timestamp, and sql_variant

A data type that stores

text Up to 231-1 2,147,483,647) characters
Up to 2,147,483,647 bytes

time 00:00:00.0000000 to
23:59:59.9999999

5 bytes

timestamp/rowversion gener-
ated, unique binary

numbers within a database;
generally used for version
stamping rows

Automatically 8 bytes

 Download from www.wowebook.com

ptg

750

The data type you select is important because it provides scope for the column. For
example, if you define a column as type int, you can be assured that only integer data
will be stored in the column and that character data will not be allowed. The advantages
of data typing are fairly obvious but sometimes overlooked.

You should avoid defining most of your columns with a single data type, such as varchar.
As mentioned earlier in this chapter, the visual tools provide a great way for you to select
a data type: you simply select a data type from a drop-down selection box that lists the
available data types.

TIP

The Object Explorer has a categorized list of all the system data types. To get to it, you
open the Programmability node under your database and then expand the Types
node. You then see a node named System Data Types that lists all the data type cat-
egories, including Exact Numbers, Approximate Numbers, and Date and Time. The
data types for each category are listed under each category node. If you mouse over
the particular data type, you see a brief description, including the valid range of values.

Several data types in SQL Server 2008 deserve special attention. Some of these data types
are new to SQL Server 2008 and some of them were introduced in SQL Server 2005. The
following sections discuss these data types.

CHAPTER 24 Creating and Managing Tables

TABLE 24.1 Table Data Types

Data Type Range/Description Storage

tinyint 0 to 255 1 byte

uniqueidentifier unique
identifier

16 bytes (GUID) A 16-byte globally

varbinary(n) Binary data with a length of
n bytes The number of bytes
defined by n, up to 8,000

varbinary(max) Binary data up to the maximum
storage capacity

Two times the number of
characters entered plus 2
bytes, up to 230-1

varchar (n) 1 byte per character Up to 8,000 characters

varchar (max) Non-Unicode characters up to
the maximum storage capacity

1 byte per character;
maximum 231-1 bytes

xml XML instances or a variable of
XML type

2GB

 Download from www.wowebook.com

ptg

751Defining Columns
2

4

New Date/Time Data Types
Several new date/time data types were added in SQL Server 2008. These data types were
added to enhance SQL Server’s date/time capabilities. The date and time data types were
added to separate these two date/time components. The date data type contains only the
month, day, and year components, whereas the time data type contains only the time
components. The separation of date and time was planned for SQL Server 2005 but never
made it to the final release.

The precision and scale of date/time data types has been expanded in SQL Server 2008 as
well. The datetime2 data type is similar to the datetime data type, but it has a larger range
of dates (January 1, 0001, through December 31, 9999), and the time portion of this data
type contains fractional seconds with seven digits of precision. The datetime data type is
accurate only to within 3 milliseconds, whereas the new datetime2 data type is accurate
to 100 nanoseconds.

Finally, SQL Server introduces time zone support in a new data type named
datetimeoffset. This data type has precision in fractional seconds (like datetime2), but it
also contains an extra date/time component that defines the time zone offset for the date.
The time zone offset is two digits that represent the offset hours and two digits that repre-
sent the offset minutes. The offset is used against the UTC date. The following example
shows how this new data type can be used:

select CAST(‘2009-07-08 11:33:22.1234567-04:00’ AS datetimeoffset(7))

The xml Data Type
The xml data type (introduced in SQL Server 2005) enables you to store XML documents
and XML fragments in a SQL Server database. (An XML fragment is an XML instance that
is missing a single top-level element.) Use of the xml data type is discussed in more detail
in Chapter 47, “Using XML in SQL Server 2008.”

The hierarchyid Data Type
The hierarchyid data type is new in SQL Server 2008. The hierarchyid data type is a vari-
able-length system data type used to represent a position in a tree hierarchy. A column of
type hierarchyid does not automatically represent a tree. It is up to the application to
generate and assign hierarchyid values in such a way that the desired relationship
between rows is reflected in the values. For more information and examples for using the
hierarchyid data type, see Chapter 42, “What’s New for Transact-SQL in SQL Server 2008.”

Spatial Data Types
SQL Server 2008 introduces support for storing geographical data with the inclusion of
new spatial data types. Spatial data types provide a comprehensive, high-performance, and
extensible data storage solution for spatial data, enabling organizations of any scale to
integrate geospatial features into their applications and services.

Spatial data types can be used to store and manipulate location-based information and
come in the form of two new data types: geography and geometry. The geography data
type is a .NET CLR data type that provides a storage structure for geodetic data, sometimes

 Download from www.wowebook.com

ptg

752

referred to as round earth data because it assumes a roughly spherical model of the world.
It provides a storage structure for spatial data that is defined by latitude and longitude
coordinates using an industry standard ellipsoid such as WGS84, the projection method
used by Global Positioning System (GPS) applications. The geometry data type is a .NET
CLR data type that supports the planar model/data, which assumes a flat projection and is
therefore sometimes called flat earth. geometry data is represented as points, lines, and
polygons on a flat surface, such as maps and interior floor plans where the curvature of
the earth does not need to be taken into account.

For more information on and examples using spatial data types, see Chapter 42.

Large-Value Data Types
Three large-value data types added in SQL Server 2005 allow you to store a significant
amount of data in a single column. They allow you to store up to 231 bytes of non-
Unicode data and 230 bytes of Unicode data. All these data types have the (max) designa-
tor: varchar(max), nvarchar(max), and varbinary(max). The varchar, nvarchar, and
varbinary data types were available prior to SQL Server 2005, but the max parameter gave
these types additional scope.

The great thing about these data types is that they are much easier to work with than
large object (LOB) data types. LOB data types (which include text, ntext, and image)
require special programming when retrieving and storing data. The large-value data types
do not have these restrictions. They can be used much like their smaller counterparts
varchar(n), nvarchar(n), and varbinary(n) that are defined without the max keyword. So
if you want to select data from a varchar(max) column, you can simply execute a SELECT
statement against it, regardless of the amount of data stored in it. Consider, for example,
the following SELECT statement, executed against a varchar(max) column named
DocumentSummary in the AdventureWorks2008.Production.Document table:

select Title, substring(DocumentSummary,1,30) ‘DocumentSummary’

from production.document

where LEFT(DocumentSummary,30) like ‘Reflector%’

/* results from previous select statement

Title DocumentSummary

-- ------------------------------

Front Reflector Bracket Installation Reflectors are vital safety co

*/

This works fine with the varchar(max) column, but the LEFT function used in the WHERE
clause would cause an error if the column were a text column instead.

The large-value data types can be stored in the data row or in a separate data page, based
on the setting of the sp_tableoption ‘large value types out of row’ option. If the
option is set to OFF, up to 8,000 characters can be stored in this column in the actual data
row. If the option is set to ON, data for this column is stored in a separate data page if its
length would result in the data row exceeding 8,060 bytes. The actual location of the
column data is transparent to any user accessing the table.

CHAPTER 24 Creating and Managing Tables

 Download from www.wowebook.com

ptg

753Defining Columns
2

4

Large Row Support
In SQL Server 2000, there was a strict limit of 8,060 bytes that could be stored in a single
row. If the total amount of data exceeded this limit, the update or insert would fail.
Enhancements were made in SQL Server 2005 to dynamically manage rows that exceed
the 8,060-byte limit. This dynamic behavior is designed for columns that are defined as
varchar, nvarchar, varbinary, or sql_variant. If the values in these columns cause the
total size of the row to go beyond the 8,060-byte limit, SQL Server moves one or more of
the variable-length columns to pages in the ROW_OVERFLOW_DATA allocation unit. A pointer
to this separate storage location, rather than the actual data, is kept in the data row. If the
data row shrinks below the 8,060-byte limit at a later time, SQL Server dynamically moves
the data from the ROW_OVERFLOW_DATA allocation unit back into the data page.

The following example creates a table that has columns that could exceed the 8,060-byte
limit, with a total of 9,000 characters:

CREATE TABLE t1

(col1 varchar(4000), col2 varchar(5000))

insert t1

select replicate(‘x’, 4000),replicate(‘x’, 5000)

If you execute the CREATE TABLE statement, you do not get any warning message related
to the 8,060-byte limit. After the table is created, you can execute an insert into the table
that exceeds the 8,060-byte limit. The insert succeeds, and the dynamic allocation previ-
ously described is handled automatically.

User-Defined Data Types
User-defined data types allow you to create custom data types that are based on the exist-
ing system data types. These data types are also called alias data types in SQL Server 2008.
You create a user-defined data type and give it a unique name that you can then use in
the definitions of tables. For example, you can create a user-defined data type named
ShortDescription, defined as varchar(20), and assign it to any column. This promotes
data type consistency across your tables.

You can create user-defined data types by using T-SQL in a couple of different ways. Using
the sp_addtype system stored procedure and using the new CREATE TYPE command are two
possibilities. The sp_addtype system stored procedure is slated to be removed in a future
version of SQL Server, so using the CREATE TYPE command is preferred. The following
example shows how to create the ShortDescription user-defined data type:

CREATE TYPE [dbo].[ShortDescription] FROM [varchar](20) NOT NULL

After a user-defined data type is created, you can use it in the definition of tables. The
following is an example of a table created with the new ShortDescription user-defined
data type:

CREATE TABLE [dbo].CodeTable

(TableId int identity,

TableDesc ShortDescription)

 Download from www.wowebook.com

ptg

754

When you look at the definition of the CodeTable table in Object Explorer, you see the
TableDesc column displayed with the ShortDescription data type as well as the underly-
ing data type varchar(20).

You can use the Object Explorer to create user-defined data types as well. To do so, you
right-click the User-Defined Data Types node, then select Programmability, and then
select Types. Then you choose the New User-Defined Data Type option, and you can
create a new user-defined data type through a friendly GUI screen. If you create a user-
defined data type in the model database, this user-defined data type is created in any
newly created database.

CLR User-Defined Types
SQL Server 2008 continues support for user-defined types (UDTs) implemented with the
Microsoft .NET Framework common language runtime (CLR). CLR UDTs enable you to
extend the type system of the database and also enable you to define complex struc-
tured types.

A UDT may be simple or structured and of any degree of complexity. A UDT can encapsu-
late complex, user-defined behaviors. You can use CLR UDTs in all contexts where you can
use a system type in SQL Server, including in columns in tables, in variables in batches, in
functions or stored procedures, as arguments of functions or stored procedures, or as
return values from functions.

A UDT must first be implemented as a managed class or structure in any one of the CLR
languages and compiled into a .NET Framework assembly. You can then register it with
SQL Server by using the CREATE ASSEMBLY command, as in the following example:

CREATE ASSEMBLY latlong FROM ‘c:\samplepath\latlong.dll’

After registering the assembly, you can create the CLR UDTs by using a variation of the
CREATE TYPE command shown previously:

CREATE TYPE latitude EXTERNAL NAME latlong.latitude

CREATE TYPE longitude EXTERNAL NAME latlong.longitude

When a CLR UDT is created, you can use it in the definition of tables. The following
example shows a table created with the new latitude and longitude UDTs:

CREATE TABLE [dbo].StoreLocation

(StoreID int NOT NULL,

StoreLatitude latitude,

StoreLongitude longitude)

For more details on programming and defining CLR UDTs, see Chapter 45, “SQL Server
and the .NET Framework.”

CHAPTER 24 Creating and Managing Tables

 Download from www.wowebook.com

ptg

755Defining Columns
2

4

Column Properties

Name and data type are the most basic properties of a column, but many other properties
can be defined for a column. You do not have to specify these properties to be able to
create the columns, but you can use them to further refine the type of data that can be
stored within a column. Note that many of the available column properties relate to
indexes and constraints that are beyond the scope of this section. The following sections
describe some of the column properties you are most likely to encounter.

The NULL and NOT NULL Keywords
When you are defining tables, it is always good idea to explicitly state whether a column
should or should not contain nulls. You do this by specifying the NULL or NOT NULL
keywords after the column data type. If the nullability option is not specified, the SQL
Server default is to allow nulls unless the ANSI_NULL_DFLT_OFF option is enabled for the
session or no setting is specified for the session, and the ANSI_NULL_DEFAULT option for the
database is set to OFF. Because of this uncertainty, it is best to always explicitly specify the
desired nullability option for each column. Listing 24.4 creates a new table named
PrinterCartridge that has the NULL or NOT NULL property specified for each column.

LISTING 24.4 Defining Column NULL Properties by Using CREATE TABLE

CREATE TABLE dbo.PrinterCartridge

(

CartridgeId int NOT NULL,

PrinterID int NOT NULL,

CartridgeName varchar(50) NOT NULL,

CartridgeColor varchar(50) NOT NULL,

CartrideDescription varchar(255) NULL,

InstallDate datetime NOT NULL

)

GO

NOTE

It is beyond the scope of this section to debate whether columns should ever allow
nulls. In some organizations, nulls are heavily used, and in others they are not allowed.
There is no right answer, but it is important for a development team to be aware of the
existence of nulls so that it can create appropriate code to handle them.

Identity Columns
A property commonly specified when creating tables is IDENTITY. This property automati-
cally generates a unique sequential value when it is assigned to a column. It can be
assigned only to columns that are of the following types:

 Download from www.wowebook.com

ptg

756

. decimal

. int

. numeric

. smallint

. bigint

. tinyint

Only one identity column can exist for each table, and that column cannot allow nulls.

When implementing the IDENTITY property, you supply a seed and an increment. The
seed is the starting value for the numeric count, and the increment is the amount by which
it grows. A seed of 10 and an increment of 10 would produce values of 10, 20, 30, 40, and
so on. If not specified, the default seed value is 1, and the increment is 1. Listing 24.5
adds an IDENTITY value to the PrinterCartridge table used in the previous example.

LISTING 24.5 Defining an Identity Column by Using CREATE TABLE

IF EXISTS (SELECT * FROM dbo.sysobjects

WHERE id = OBJECT_ID(N’dbo.PrinterCartridge’)

AND OBJECTPROPERTY(id, N’IsUserTable’) = 1)

DROP TABLE dbo.PrinterCartridge

CREATE TABLE dbo.PrinterCartridge

(

CartridgeId int IDENTITY (1000, 1) NOT NULL,

PrinterID int NOT NULL,

CartridgeName varchar(50) NOT NULL,

CartridgeColor varchar(50) NOT NULL,

CartrideDescription varchar(255) NULL,

InstallDate datetime NOT NULL

)

GO

insert PrinterCartridge

(PrinterID, CartridgeName, CartridgeColor, CartrideDescription, InstallDate)

values (1, ‘inkjet’, ‘black’,’laser printer cartridge’, ‘8/1/09’)

select CartridgeId, PrinterID, CartridgeName

from PrinterCartridge

/* results from previous SELECT statement

CartridgeId PrinterID CartridgeName

----------- ----------- --

1000 1 inkjet

*/

CHAPTER 24 Creating and Managing Tables

 Download from www.wowebook.com

ptg

757Defining Columns
2

4

In this listing, the seed value has been set to 1000, and the increment has been set to 1.
An insert into the PrinterCartridge table and a subsequent SELECT from that table
follows the CREATE TABLE statement in the listing. Notice that the results of the SELECT
show a value of 1000 for the identity column CartridgeID. This is the seed or starting
point that is defined.

ROWGUIDCOL Columns
An alternative to an identity column is a column defined with the ROWGUIDCOL property.
Like the IDENTITY property, the ROWGUIDCOL property is autogenerating and unique. The
difference is that the ROWGUIDCOL option generates column values that will be unique on
any networked database anywhere in the world. The identity column generates values that
are unique only within the table that contains the column.

You can have only one ROWGUIDCOL column per table. You must create this ROWGUIDCOL
column with the uniqueidentifier data type, and you must assign a default of NEWID()to
the column to generate the unique value. Keep in mind that users can manually insert
values directly into columns defined as ROWGUIDCOL. These manual inserts could cause
duplicates in the column, so a UNIQUE constraint should be added to the column as well to
ensure uniqueness.

Listing 24.6 shows the creation of a table with a ROWGUIDCOL column. Several rows are
inserted into the newly created table, and those rows are selected at the end of the listing.

LISTING 24.6 Defining a ROWGUIDCOL Column

CREATE TABLE SomeUniqueTable

(UniqueID UNIQUEIDENTIFIER DEFAULT NEWID(),

EffectiveDate datetime)

GO

INSERT INTO SomeUniqueTable (EffectiveDate) VALUES (‘7/1/09’)

INSERT INTO SomeUniqueTable (EffectiveDate) VALUES (‘8/1/09’)

GO

select * from SomeUniqueTable

/* Results from previous select statement

UniqueID EffectiveDate

------------------------------------ -----------------------

614181BC-D7B9-4108-B2BD-C2F39E999424 2009-07-01 00:00:00.000

62368A2D-3557-4727-9DD3-FBCA38705B1B 2009-08-01 00:00:00.000

*/

You can see that the ROWGUIDCOL values are fairly large. They are 16-byte binary values
that are significantly larger than most of the data types used for identity columns. For
example, an identity column defined as data type int occupies only 4 bytes. You need to
consider the storage requirements for ROWGUIDCOL when you select this data type.

 Download from www.wowebook.com

ptg

758

Computed Columns
A computed column is a column whose value is calculated based on other columns.
Generally speaking, the column is a virtual column because it is calculated on the fly,
and no value is stored in the database table. With SQL Server 2008, you have an option
of actually storing the calculated value in the database. You do so by marking the
column as persisted. If the computed column is persisted, you can create an index on
this column as well.

Listing 24.7 includes several statements that relate to the creation of a computed column.
It starts with an ALTER TABLE statement that adds a new computed column named
SetRate to the Sales.CurrencyRate table in the AdventureWorks2008 database. The new
rate column is based on an average of two other rate columns in the table. A SELECT state-
ment is executed after that; it returns several columns, including the new SetRate
computed column. The results are shown after the SELECT. Finally, an ALTER TABLE state-
ment is used to change the newly added column so that its values are stored in the data-
base. This is accomplished with the ADD PERSISTED option.

LISTING 24.7 Defining a Computed Column

--Add a computed column to the Sales.CurrencyRate Table named SetRate

ALTER TABLE Sales.CurrencyRate

ADD SetRate AS ((AverageRate + EndOfDayRate) / 2)

go

--Select several columns including the new computed column

select top 5 AverageRate, EndOfDayRate , SetRate

from sales.currencyrate

/*Results from previous SELECT statement

AverageRate EndOfDayRate SetRate

--------------------- --------------------- ---------------------

1.00 1.0002 1.0001

1.5491 1.55 1.5495

1.9379 1.9419 1.9399

1.4641 1.4683 1.4662

8.2781 8.2784 8.2782

*/

--Alter the computed SetRate column to be PERSISTED

ALTER TABLE Sales.CurrencyRate

alter column SetRate ADD PERSISTED

CHAPTER 24 Creating and Managing Tables

 Download from www.wowebook.com

ptg

759Defining Columns
2

4

NOTE

You can use the sp_spaceused stored procedure to check the space allocated to the
Sales.CurrencyRate table. You need to check the size before the column is persist-
ed, and then you need to check the space allocated to the table after the column is
persisted. As you would expect, the space allocated to the table is increased only after
the column is persisted.

FILESTREAM Storage
SQL Server 2008 introduces FILESTREAM storage for storing unstructured data, such as
documents, images, and videos. In previous versions of SQL Server, there were two ways of
storing unstructured data. One method was to store it in the database as a binary large
object (BLOB) in an image or varbinary(max) column. The other method was to store the
data outside the database, separate from the structured relational data, storing a reference
or pathname to the unstructured data in a varchar column in a table. Neither of these
methods is ideal for unstructured data.

FILESTREAM storage helps to solve the issues with using unstructured data by integrating
the SQL Server Database Engine with the NTFS file system for storing the unstructured
data, such as documents and images, on the file system with the database storing a pointer
to the data. Although the actual data resides outside the database in the NTFS file system,
you can still use T-SQL statements to insert, update, query, and back up FILESTREAM data,
while maintaining transactional consistency between the unstructured data and corre-
sponding structured data with same level of security.

To specify that a column should store data on the file system when creating or altering a
table, you specify the FILESTREAM attribute on a varbinary(max) column. This causes the
Database Engine to store all data for that column on the file system, but not in the data-
base file. After you complete these tasks, you can use Transact-SQL and Win32 to manage
the FILESTREAM data.

NOTE

To use FILESTREAM storage, you must first enable FILESTREAM storage at the Windows
level as well as at the SQL Server Instance level. You can enable FILESTREAM at the
Windows level during installation of SQL Server 2008 or at any time using SQL Server
Configuration Manager. After you enable FILESTREAM at the Windows level, you next
need to enable FILESTREAM for the SQL Server Instance. You can do this either
through SQL Server Management Studio or via T-SQL. For more information on enabling
and using FILESTREAM storage, see Chapter 42.

Sparse Columns and Column Sets
SQL Server 2008 provides a new space-saving storage option referred to as sparse columns.
Sparse columns are ordinary columns that provide optimized storage for null values. If the
value of a column defined as a sparse column is NULL, it doesn’t consume any space at all.

 Download from www.wowebook.com

ptg

760

You can define a column as a sparse column by specifying the SPARSE keyword after the
data type in the CREATE TABLE or ALTER TABLE statement, as shown in Listing 24.8.

LISTING 24.8 Specifying a Sparse Column in a Create Table Statement

CREATE TABLE DBO.SPARSE_TABLE

(ID INT IDENTITY(1,1),

FIRST_NAME VARCHAR (50),

MIDDLE_NAME VARCHAR (50) SPARSE NULL,

LASTNAME VARCHAR (50)

)

The space savings of sparse columns come with a trade-off, however, requiring extra
space for storing non-null values in the sparse column. Fixed-length and precision data
types require 4 extra bytes, and variable-length data types require 2 extra bytes. For this
reason, you should consider using sparse columns only when the space saved is at least
20% to 40%.

SQL Server stores sparse columns in a single XML column that appears to external applica-
tions and end users as a normal column. Storing the sparse columns in a single XML
column allows up to 30,000 sparse columns in a single table, exceeding the limitation of
1,024 columns if sparse columns are not used. In addition, because sparse columns have
many null-valued rows, they are good candidates for filtered indexes. A filtered index on a
sparse column can index only the rows that have non-null values stored in the column.
This creates smaller and more efficient indexes. (For more information on filtered indexes,
see Chapters 25, “Creating and Managing Indexes,” and 34, “Data Structures, Indexes, and
Performance.”)

Sparse columns can be of any SQL Server data type and behave like any other column
with the following restrictions:

. A sparse column must be nullable and cannot have the ROWGUIDCOL or IDENTITY
properties. A sparse column cannot be of the following data types—text, ntext,
image, timestamp, user-defined data type, geometry, or geography—or have the
FILESTREAM attribute.

. A sparse column cannot have a default value.

. A sparse column cannot be bound to a rule.

. A computed column cannot be marked as sparse.

. A sparse column cannot be part of a clustered index or a unique primary key index.

When the number of sparse columns in a table is large, and operating on them individu-
ally is cumbersome, you may want to define a column set. A column set is an untyped
XML representation that combines all the sparse columns of a table into a structured set.
A column set is like a calculated column in that the column set is not physically stored in
the table, but the column set is directly updatable. Applications may see some perfor-

CHAPTER 24 Creating and Managing Tables

 Download from www.wowebook.com

ptg

761Defining Table Location
2

4

mance improvement when they select and insert data by using column sets on tables that
have lots of columns.

To define a column set, use the <column_set_name> FOR ALL_SPARSE_COLUMNS keywords in
the CREATE TABLE or ALTER TABLE statements, as shown in Listing 24.9.

LISTING 24.9 Defining a Column Set

CREATE TABLE emp_info

(ID INT IDENTITY(1,1),

FIRST_NAME VARCHAR (50),

MIDDLE_NAME VARCHAR (50) SPARSE NULL ,

LASTNAME VARCHAR (50),

HOMEPHONE VARCHAR(10) SPARSE NULL,

BUSPHONE VARCHAR(10) SPARSE NULL,

CELLPHONE VARCHAR(10) SPARSE NULL,

FAX VARCHAR(10) SPARSE NULL,

EMAIL VARCHAR(30) SPARSE NULL,

WEBSITE VARCHAR(30) SPARSE NULL,

CSet XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

)

A column set is created as an untyped XML column and is treated as any other XML column
with a maximum XML data size limit of 2GB. Only one column set per table is allowed. You
cannot add a column set to a table if the table already contains sparse columns.

To specify a column as a sparse column using SQL Server Management Studio (SSMS), set
the Is Sparse property to Yes in the column properties for the selected column (see
Figure 24.3). Similarly, if a column needs to be declared as column set, set the Is
Columnset property to Yes in the column properties.

For more information on using and working with sparse columns and column sets, see
Chapter 42.

Defining Table Location
As databases scale in size, the physical location of database objects, particularly tables and
indexes, becomes crucial. Consider two tables, Authors and Titles, that are always
queried together. If they are located on the same physical disk, contention for hardware
resources may slow performance. SQL Server addresses this issue by enabling you to
specify where a table (or an index) is stored.

The mechanism for specifying the physical table location is the filegroup. Filegroups are
aligned to physical data files. By default, each database has a primary filegroup and a data
file that matches the name of the database. You can create additional filegroups and align
them to other data files. When these filegroups are created, SQL Server enables you to
create your database tables on a specific filegroup.

 Download from www.wowebook.com

ptg

762

FIGURE 24.3 Setting a column as a sparse column.

NOTE

Using partitioned tables is a way to specify table location. This SQL Server 2008 fea-
ture allows you to divide a table into partitions and align those partitions with file-
groups. This concept is discussed in detail in the “Using Partitioned Tables” section,
later in this chapter.

The placement of tables on separate filegroups has some distinct advantages, including
performance benefits. You can achieve performance improvements by storing filegroups
on different disks. You can also achieve some manageability improvements by using file-
groups because you can back up and manipulate filegroups separately. This capability is
particularly important for large tables.

You specify the location of a table by using the ON clause during table creation. Listing
24.10 shows an example of creating two filegroups in the BigPubs2008 database, followed
by the creation of two new tables on those filegroups. Note that the filegroups must exist
before the tables are created. For more information on filegroups, see Chapter 23,
“Creating and Managing Databases.”

LISTING 24.10 An Example of Creating Tables on Specific Filegroups

--Add the filegroups

ALTER DATABASE BigPubs2008 ADD FILEGROUP FG1

ALTER DATABASE BigPubs2008 ADD FILEGROUP FG2

GO

--Add files to the filegroups

ALTER DATABASE BigPubs2008 ADD FILE

CHAPTER 24 Creating and Managing Tables

 Download from www.wowebook.com

ptg

763Defining Table Constraints
2

4

(NAME = FG1_File,

FILENAME = ‘c:\BigPubs2008FG1.ndf’,

SIZE = 2MB) TO FILEGROUP FG1

go

ALTER DATABASE BigPubs2008 ADD FILE

(NAME = FG2_File,

FILENAME = ‘c:\BigPubs2008FG2.ndf’,

SIZE = 2MB) TO FILEGROUP FG2

go

CREATE TABLE [dbo].[authors_NEW](

[au_id] [dbo].[id] NOT NULL,

[au_lname] [varchar](40) ,

[au_fname] [varchar](20) ,

[phone] [char](12),

[address] [varchar](40) NULL,

[city] [varchar](20) NULL,

[state] [char](2) NULL,

[zip] [char](5) NULL,

[contract] [bit] NOT NULL,

) ON FG1

go

CREATE TABLE [dbo].[titles_NEW](

[title_id] [dbo].[tid] NOT NULL,

[title] [varchar](80) NOT NULL,

[type] [char](12) NOT NULL,

[pub_id] [char](4) NULL,

[price] [money] NULL,

[advance] [money] NULL,

[royalty] [int] NULL,

[ytd_sales] [int] NULL,

[notes] [varchar](400) NULL,

[pubdate] [datetime] NOT NULL,

) ON FG2

Defining Table Constraints
Constraints provide a means to enforce data integrity. In addition to NULL/NOT NULL,
discussed earlier in this chapter, SQL Server provides five constraint types: PRIMARY KEY,
FOREIGN KEY, UNIQUE, CHECK, and DEFAULT. These constraints help further define the type
of data you can store in tables.

 Download from www.wowebook.com

ptg

764

Constraints are covered in detail in Chapter 26, “Implementing Data Integrity.” This
chapter introduces the basic means for adding constraints to a table. You can add
constraints at the time of table creation, or you can add them after a table has been
created, by using the ALTER TABLE statement.

Listing 24.11 shows a CREATE TABLE statement that has an example of each one of the five
constraint types listed. The PRIMARY KEY constraint is created at the bottom of the script
and is named PK_TitleHistory. The FOREIGN KEY constraint is created on the title_id
column and is named FK_titles_titleHistory. The UNIQUE constraint is part of the
primary key and can be identified with the UNIQUE keyword. The CHECK constraint is
created on the price column; it checks to make sure the price is greater than zero. Finally,
a DEFAULT constraint is created on the modify_user column; it sets the user to the value of
system if no explicit value is specified.

LISTING 24.11 Example of Creating Constraints with CREATE TABLE

CREATE TABLE dbo.TitleHistory(

title_id dbo.tid

CONSTRAINT FK_titles_titleHistory

REFERENCES titles (title_id)NOT NULL ,

change_date datetime NOT NULL,

title varchar(80) NOT NULL,

type char(12) NOT NULL,

price money NULL

CONSTRAINT CK_TitleHistory_Price CHECK (Price>0),

modify_user nchar(10) NOT NULL

CONSTRAINT DF_TitleHistory_modify_user DEFAULT (N’system’),

CONSTRAINT PK_TitleHistory UNIQUE CLUSTERED

(title_id ASC,

change_date ASC))

You can create the same constraints as in Listing 24.11 by using the ALTER TABLE state-
ment. This means you can first create the table (without the constraints) and then add the
constraints afterward. Listing 24.12 shows the creation of the same titleHistory table,
with the constraints added later via the ALTER TABLE statement.

LISTING 24.12 Example of Creating Constraints with ALTER TABLE

IF EXISTS (SELECT * FROM dbo.sysobjects

WHERE id = OBJECT_ID(N’[dbo].[TitleHistory]’)

AND OBJECTPROPERTY(id, N’IsUserTable’) = 1)

DROP TABLE [dbo].[TitleHistory]

CREATE TABLE dbo.TitleHistory(

title_id dbo.tid NOT NULL,

CHAPTER 24 Creating and Managing Tables

 Download from www.wowebook.com

ptg

765Modifying Tables
2

4

change_date datetime NOT NULL,

title varchar(80) NOT NULL,

type char(12) NOT NULL,

price money NULL,

modify_user nchar(10) NOT NULL)

GO

--PRIMARY KEY/UNIQUE CONSTRAINT

ALTER TABLE dbo.TitleHistory

ADD CONSTRAINT PK_TitleHistory UNIQUE CLUSTERED

(

title_id ASC,

change_date ASC

)WITH (SORT_IN_TEMPDB = OFF, ONLINE = OFF)

go

--FOREIGN KEY CONSTRAINT

ALTER TABLE dbo.TitleHistory WITH CHECK

ADD CONSTRAINT FK_titles_titleHistory FOREIGN KEY(title_id)

REFERENCES dbo.titles (title_id)

GO

--CHECK CONSTRAINT

ALTER TABLE dbo.TitleHistory WITH CHECK

ADD CONSTRAINT CK_TitleHistory_Price CHECK ((Price>(0)))

GO

--DEFAULT CONSTRAINT

ALTER TABLE dbo.TitleHistory

ADD CONSTRAINT DF_TitleHistory_modify_user

DEFAULT (N’system’) FOR modify_user

Modifying Tables
You often need to modify database tables after you create them. Fortunately, you can use
several tools to accomplish this task. These tools are the same set of tools you can use to
add, modify, and delete tables: the SSMS Object Explorer, Table Designer, Database
Diagram Editor, and T-SQL. The following sections touch on each of these tools but focus
most heavily on the use of T-SQL.

Regardless of the method you use, you must always exercise caution when modifying
tables, particularly in a production environment. Table relationships and the impact to
data that may already exist in a table are key considerations in modifying a table. A visual
tool such as a database diagram can assist you in determining the impact to related tables

 Download from www.wowebook.com

ptg

766

and can be used to generate the T-SQL script. The following section looks at the underly-
ing T-SQL that can be used to modify a table, and then we delve into the visual tools that
can simplify your life and generate some of the T-SQL for you.

Using T-SQL to Modify Tables

You can modify tables in many different ways, including making changes to the columns,
constraints, and indexes associated with a table. Some of the changes have a bigger impact
on the database than others. Some modifications require that the modified table be
dropped and re-created to effect the change. Fortunately, you can use the T-SQL ALTER
TABLE statement to mitigate the database impact and help streamline many of the most
common modifications. You can make the following types of changes by using the ALTER
TABLE statement:

. Change a column property, such as a data type or NULL property.

. Add new columns or drop existing columns.

. Add or drop constraints.

. Enable or disable CHECK and FOREIGN KEY constraints.

. Enable or disable triggers.

. Reassign partitions.

. Alter an index associated with a constraint.

The following sections discuss a few examples of these types of changes to familiarize you
with the ALTER TABLE command. The full syntax for the ALTER TABLE command is exten-
sive, and you can find it in SQL Server Books Online.

Changing a Column Property
You can use the ALTER COLUMN clause of the ALTER TABLE command to modify column
properties, including the NULL property or the data type of a column. Listing 24.13 shows
an example of changing the data type of a column.

LISTING 24.13 Changing the Data Type of a Column by Using ALTER TABLE

alter table titles

alter column notes varchar(400) null

You must be aware of several restrictions when you modify the data type of a column. The
following rules apply when altering columns:

. You cannot modify a text, image, ntext, or timestamp column.

. The column cannot be the ROWGUIDCOL for the table.

. The column cannot be a computed column or be referenced by a computed column.

CHAPTER 24 Creating and Managing Tables

 Download from www.wowebook.com

ptg

767Modifying Tables
2

4

. The column cannot be a replicated column.

. If the column is used in an index, the column length can only be increased in size.
In addition, it must be of varchar, nvarchar, or varbinary data type, and the data
type cannot change.

. If statistics have been generated using CREATE STATISTICS, the statistics must first be
dropped before the column can be altered.

. The column cannot have a PRIMARY KEY or FOREIGN KEY constraint or be used in a
CHECK or UNIQUE constraint. The exception is that a column with a CHECK or UNIQUE
constraint, if defined as variable length, can have the length altered.

. A column with a default defined for it can have only the length, nullability, or preci-
sion and scale altered.

. If a column has a schema-bound view defined on it, the same rules that apply to
columns with indexes apply.

TIP

Changing some data types can result in changing the data. For example, changing from
nchar to char could result in any extended characters being converted. Similarly,
changing precision and scale could result in data truncation. Other modifications, such
as changing from char to int, might fail if the data doesn’t match the restrictions of
the new data type. Before you change data types, you should always validate that the
data conforms to the desired new data type.

Adding and Dropping Columns
You add columns to a table by using the ADD COLUMN clause. Listing 24.14 illustrates the
addition of a new column named ISBN to the titles table.

LISTING 24.14 Adding a Column by Using ALTER TABLE

ALTER TABLE titles

add ISBN int null

When you use the ALTER TABLE statement to add a column, the new column is added at
the end of the table. In most cases, this location is acceptable. The location of the column
in the table generally has no bearing on the use of the table. There are, however, situa-
tions in which it is desired to have the new column added in the middle of the table. The
ALTER TABLE statement does not work for this situation. To add a column in the middle of
the table, you need to create a new version of the table with a different name and the
columns in the desired order, copy the data from the old table, drop the old table, and

 Download from www.wowebook.com

ptg

768

rename the new table with the old table name. Alternatively, you can also accomplish this
by using SSMS, as described in the following section.

There are also some issues you need to consider with regard to the null option specified
for a new column. In the case of a column that allows nulls, there is no real issue: SQL
Server adds the column and allows a NULL value for all rows. If NOT NULL is specified,
however, the column must be an identity column or have a default specified. Note that
even if a default is specified, if the column allows nulls, the column is not populated with
the default if no value is provided for the column. You use the WITH VALUES clause as part
of the default specification to override this and populate the column with the default.

With some restrictions, columns can also be dropped from a table. Listing 24.15 shows the
syntax for dropping a column. You can specify to drop multiple columns, separated by
commas.

LISTING 24.15 Dropping a Column by Using ALTER TABLE

alter table titles

drop column ISBN

The following columns cannot be dropped:

. A column in a schema-bound view

. An indexed column

. A replicated column

. A column used in a CHECK, FOREIGN KEY, UNIQUE, or PRIMARY KEY constraints

. A column associated with a default or bound to a default object

. A column bound to a rule

NOTE

Be careful when using ALTER TABLE to modify columns that hold existing data. When
you add, drop, or modify columns, SQL Server places a schema lock on the table, pre-
venting any other access until the operation completes. Changes to columns in tables
that have many rows can take a long time to complete and generate a large amount of
log activity.

As mentioned earlier, the ALTER TABLE statement is not the only T-SQL statement you can
use to modify tables. You accomplish some table changes by using T-SQL that drops and
re-creates the tables that are being modified. The following sections look at some exam-
ples of these types of changes.

CHAPTER 24 Creating and Managing Tables

 Download from www.wowebook.com

ptg

769

FIGURE 24.4 The Table Designer.

Modifying Tables
2

4

Using Object Explorer and the Table Designer to Modify Tables

The Object Explorer in SSMS is your window into the various tables available for modifica-
tion in a database. You expand the Tables node in the Object Explorer tree and right-click
the table you would like to modify. Then you select the Design option, and a Table
Designer window appears, showing all the table columns. In addition, a Table Designer
menu option appears at the top of the SSMS window. The Table Designer menu includes
many options, including Insert Columns, Delete Columns, and Remove Primary Key. The
full list of available options is shown in Figure 24.4. A Table Designer window for the
BigPubs2008.Authors table is shown as the active tab on the right side of Figure 24.4.

To illustrate the power of the Table Designer, let’s add a new column to the authors table.
You can add the column to the middle of the table, just prior to the address column. You
do this by highlighting the entire address row in the Table Designer grid and then select-
ing Table Designer, Insert Column. A new data entry row is added to the Table Designer
grid, where you can specify the name of the new column, the data type, and a null
option. For this example, you can name the new column Gender, with a data type of
char(1) and the setting ALLOW NULLS. Figure 24.5 shows the Table Designer grid with the
newly added Gender column highlighted. In addition, the figure shows the Table Designer
menu options with the newly enabled Generate Change Script option selected.

 Download from www.wowebook.com

ptg

770 CHAPTER 24 Creating and Managing Tables

FIGURE 24.5 Inserting a column in Table Designer.

You do not need to use the Generate Change Script option for changes you make in the
Table Designer. You can close the Table Designer tab where you made your changes, and
the Table Designer makes the changes for you behind the scenes. Sometimes, though, you
might want to script the changes and see exactly what is going to happen to the database.
Clicking the Script button is also the preferred method for deploying changes to other
environments. You can save a script in a change repository and execute it in your target
environments. This approach ensures that you have a repeatable, well-documented means
for making table changes.

Listing 24.16 shows the contents of a script that would be generated based on the new
Gender column you added to the authors table. For the sake of space, some of the initial
script options and the triggers associated with the authors table have been removed from
the script. The important point to note is how extensive this script is. A new temporary
authors table is created, and it includes the new column; the data from the authors table
is copied into the temporary table; and then the table is renamed. In addition, the script
must manage the constraints, indexes, and other objects associated with the authors
table. The good news is that Table Designer does most of the work for you.

LISTING 24.16 Changing Script Generated from the Table Designer

ALTER TABLE dbo.authors

DROP CONSTRAINT DF__authors__phone__04C4C0F4

GO

 Download from www.wowebook.com

ptg

771Modifying Tables
2

4

CREATE TABLE dbo.Tmp_authors

(

au_id dbo.id NOT NULL,

au_lname varchar(40) NOT NULL,

au_fname varchar(20) NOT NULL,

phone char(12) NOT NULL,

Gender char(1) NULL,

address varchar(40) NULL,

city varchar(20) NULL,

state char(2) NULL,

zip char(5) NULL,

contract bit NOT NULL

) ON [PRIMARY]

GO

ALTER TABLE dbo.Tmp_authors ADD CONSTRAINT

DF__authors__phone__04C4C0F4 DEFAULT (‘UNKNOWN’) FOR phone

GO

IF EXISTS(SELECT * FROM dbo.authors)

EXEC(‘INSERT INTO dbo.Tmp_authors (au_id, au_lname,

au_fname, phone, address, city, state, zip, contract)

SELECT au_id, au_lname, au_fname, phone, address,

city, state, zip, contract

FROM dbo.authors WITH (HOLDLOCK TABLOCKX)’)

GO

ALTER TABLE dbo.titleauthor

DROP CONSTRAINT FK__titleauth__au_id__14070484

GO

DROP TABLE dbo.authors

GO

EXECUTE sp_rename N’dbo.Tmp_authors’, N’authors’, ‘OBJECT’

GO

ALTER TABLE dbo.authors ADD CONSTRAINT

UPKCL_auidind PRIMARY KEY CLUSTERED

(

au_id

) WITH(STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

GO

CREATE NONCLUSTERED INDEX aunmind ON dbo.authors

(

au_lname,

au_fname

) WITH(STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = OFF) ON [PRIMARY]

GO

ALTER TABLE dbo.authors WITH NOCHECK ADD CONSTRAINT

 Download from www.wowebook.com

ptg

772 CHAPTER 24 Creating and Managing Tables

CK__authors__au_id__03D09CBB

CHECK (([au_id] like

‘[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]’))

GO

ALTER TABLE dbo.authors WITH NOCHECK ADD CONSTRAINT

CK__authors__zip__05B8E52D

CHECK (([zip] like ‘[0-9][0-9][0-9][0-9][0-9]’))

GO

You will find that you can make most of the changes you want to make by using the
Table Designer. To make other changes, you can use the same approach you just used to
add a column. This approach involves making the changes via the Table Designer menu
options and then using the option to script the change. This is a great way to evaluate the
impact of your changes and to save those changes for later execution.

Using Database Diagrams to Modify Tables

Database diagrams offer an excellent visual view of your database tables that you can also
use to modify tables. You do this by adding the table you want to modify to a new or
existing database diagram. Oftentimes, it is best to also add all the related tables to the
diagram as well. You can easily do this by right-clicking the table and choosing the Add
Related Tables option.

With a database diagram, you have the same options that you have with the Table
Designer, plus you have diagramming options. Both the Table Designer and Database
Diagrams menus are shown when a database diagram is in focus. These menus disappear if
you change the tabbed window to a Database Engine query window, so remember that
you must select the diagram window to be able to display the menu options.

Figure 24.6 shows a database diagram for the HumanResouces.Department table, along with
its related table. The Table Designer menu is selected to show that it is available when you
work with a database diagram. You must have one of the tables selected to enable all the
menu options. In Figure 24.6, the Department table has been highlighted, and a new
ModifiedUser column has been added to the end of the table. Figure 24.6 also shows that
the Database Diagram menu is available for selection. This menu includes options to add
tables to the diagram and manipulate the tables within the diagram.

The same scripting options are available with a database diagram as are available in the
Table Designer. You can make your changes from within the diagram and then choose the
Generate Change Script menu option. Listing 24.17 shows the change script generated
based on the addition of the ModifiedUser column to the end of the Department table. As
expected, this change is accomplished with an ALTER TABLE statement.

LISTING 24.17 The Change Script Generated from a Database Diagram

ALTER TABLE HumanResources.Department ADD

ModifiedUser varchar(20) NULL

GO

 Download from www.wowebook.com

ptg

773Dropping Tables
2

4

FIGURE 24.6 Modifying tables by using a database diagram.

The use of the ALTER TABLE statement in this listing brings us full circle, back to our initial
method for making table modifications. Using all the tools discussed in this section
together will usually give you the best results.

Dropping Tables
There are several different methods for dropping (or deleting) a table. You can right-click
the table in the SSMS Object Explorer and select Delete, you can right-click a table in a
database diagram and choose Delete Tables from Database, or you can use the old-fash-
ioned method of utilizing T-SQL. Here’s an example of the T-SQL DROP TABLE statement:

DROP TABLE [HumanResources].[Department]

You can reference multiple tables in a single DROP TABLE command by separating the table
names with commas. Any triggers and constraints associated with the table are also
dropped when the table is dropped.

A big consideration when dropping a table is the table’s relationship to other tables. If a
foreign key references the table that you want to drop, the referencing table or foreign key
constraint must be dropped first. In a database that has many related tables, dropping
elements can get complicated. Fortunately, a few tools can help you through this. The
system stored procedure sp_helpconstraint is one of these tools. This procedure lists all

 Download from www.wowebook.com

ptg

774 CHAPTER 24 Creating and Managing Tables

the foreign key constraints that reference a table. Listing 24.18 shows an execution of this
stored procedure for the Sales.Store table in the AdventureWorks2008 database. The
procedure results include information about all the constraints on the table. The results to
focus on are those that follow the heading Table Is Referenced by Foreign Key. The partial
results shown in Listing 24.18 for the Sales.Store table indicate that
FK_StoreContact_Store_CustomerID must be dropped first before you can drop the
Sales.Store table.

LISTING 24.18 Using sp_helpconstraint to Find Foreign Key References

sp_helpconstraint [Sales.Store]

/*partial results of sp_helpconstraint execution

Table is referenced by foreign key

AdventureWorks2008.Sales.StoreContact: FK_StoreContact_Store_CustomerID

*/

Two other approaches are useful for identifying foreign key references prior to dropping a
table. The first is using a database diagram. You can create a new database diagram and
add the table that you are considering for deletion. After the table is added, you right-click
the table in Object Explorer and select Add Related Tables. The related tables, including
those that have foreign key references, are then added. You can then right-click the rela-
tionship line connecting two tables and select Delete Relationships from Database. When
you have deleted all the foreign key relationships from the diagram, you can right-click
the table you want to delete and select Generate Change Script to create a script that can
be used to remove the foreign key relationship(s).

The other approach is to right-click the table in Object Explorer and choose View
Dependencies. The dialog that appears gives you the option of viewing the objects that
depend on the table or viewing the objects on which the table depends. If you choose the
option to view the objects that depend on the table, all the dependent objects are
displayed, but you can focus on the objects that are tables.

Using Partitioned Tables
In SQL Server 2008, tables are stored in one or more partitions. Partitions are organiza-
tional units that allow you to divide data into logical groups. By default, a table has only a
single partition that contains all the data. The power of partitions comes into play when
you define multiple partitions for a table that is segmented based on a key column. This
column allows the data rows to be horizontally split. For example, a date/time column can
be used to divide each month’s data into a separate partition. These partitions can also be
aligned to different filegroups for added flexibility, ease of maintenance, and improved
performance.

 Download from www.wowebook.com

ptg

775Using Partitioned Tables
2

4

The important point to remember is that you access tables with multiple partitions (which
are called partitioned tables) the same way you access tables with a single partition. Data
Manipulation Language (DML) operations such as INSERT and SELECT statements reference
the table the same way, regardless of partitioning. The difference between these types of
tables has to do with the back-end storage and the organization of the data.

Generally, partitioning is most useful for large tables. Large is a relative term, but these
tables typically contain millions of rows and take up gigabytes of space. Often, the tables
targeted for partitioning are large tables experiencing performance problems because of
their size. Partitioning has several different applications, including the following:

. Archival—Table partitions can be moved from a production table to another
archive table that has the same structure. When done properly, this partition move-
ment is very fast and allows you to keep a limited amount of recent data in the
production table while keeping the bulk of the older data in the archive table.

. Maintenance—Table partitions that have been assigned to different filegroups can
be backed up and maintained independently of each other. With very large tables,
maintenance activities on the entire table (such as backups) can take a prohibitively
long time. With partitioned tables, these maintenance activities can be performed at
the partition level. Consider, for example, a table that is partitioned by month: all
the new activity (updates and insertions) occurs in the partition that contains the
current month’s data. In this scenario, the current month’s partition would be the
focus of the maintenance, thus limiting the amount of data you need to process.

. Query performance—Partitioned tables joined on partitioned columns can experi-
ence improved performance because the Query Optimizer can join to the table based
on the partitioned column. The caveat is that joins across partitioned tables not
joining on the partitioned column may actually experience some performance degra-
dation. Queries can also be parallelized along the partitions.

Now that we have discussed some of the reasons to use partitioned tables, let’s look at
how to set up partitions. There are three basic steps:

1. Create a partition function that maps the rows in the table to partitions based on
the value of a specified column.

2. Create a partition scheme that outlines the placement of the partitions in the parti-
tion function to filegroups.

3. Create a table that utilizes the partition scheme.

These steps are predicated on a good partitioning design, based on an evaluation of the
data within the table and the selection of a column that will effectively split the data. If
multiple filegroups are used, those filegroups must also exist before you execute the three
steps in partitioning. The following sections look at the syntax related to each step, using
simple examples. These examples utilize the BigPubs2008 database.

 Download from www.wowebook.com

ptg

776 CHAPTER 24 Creating and Managing Tables

Creating a Partition Function

A partition function identifies values within a table that will be compared to the column
on which you partition the table. As mentioned previously, it is important that you know
the distribution of the data and the specific range of values in the partitioning column
before you create the partition function. The following query provides an example of
determining the distribution of data values in the sales_big table by year:

--Select the distinct yearly values

SELECT year(ord_date) as ‘year’, count(*) ‘rows’

FROM sales_big

GROUP BY year(ord_date)

ORDER BY 1

go

year rows

----------- -----------

2005 30

2006 613560

2007 616450

2008 457210

You can see from the results of the SELECT statement that there are four years’ worth of
data in the sales_big table. Because the values specified in the CREATE PARTITION FUNC-
TION statement are used to establish data ranges, at a minimum, you would need to
specify at least three data values when defining the partition function, as shown in the
following example:

--Create partition function with the yearly values to partition the data

CREATE PARTITION FUNCTION SalesBigPF1 (datetime)

AS RANGE RIGHT FOR VALUES

(‘01/01/2006’, ‘01/01/2007’,

‘01/01/2008’)

GO

In this example, four ranges, or partitions, would be established by the three RANGE RIGHT
values specified in the statement:

. values < 01/01/2006—This partition includes any rows prior to 2006.

. values >= 01/01/2006 AND values < 01/01/2007—This partition includes
all rows for 2006.

. values >= 01/01/2007 AND values < 01/01/2008—This partition includes
all rows for 2007.

. values > 01/01/2008—This includes any rows for 2008 or later.

This method of partitioning would be more than adequate for a static table that is not
going to be receiving any additional data rows for different years than already exist in the

 Download from www.wowebook.com

ptg

777Using Partitioned Tables
2

4

table. However, if the table is going to be populated with additional data rows after it has
been partitioned, it is good practice to add additional range values at the beginning and
end of the ranges to allow for the insertion of data values less than or greater than the
existing range values in the table. To create these additional upper and lower ranges, you
would want to specify five values in the VALUES clause of the CREATE PARTITION FUNCTION,
as shown in Listing 24.19. The advantages of having these additional partitions are
demonstrated later in this section.

LISTING 24.19 Creating a Partition Function

if exists (select 1 from sys.partition_functions where name = ‘SalesBigPF1’)

drop partition function SalesBigPF1

go

--Create partition function with the yearly values to partition the data

Create PARTITION FUNCTION SalesBigPF1 (datetime)

AS RANGE RIGHT FOR VALUES

(‘01/01/2005’, ‘01/01/2006’, ‘01/01/2007’,

‘01/01/2008’, ‘01/01/2009’)

GO

In this example, six ranges, or partitions, are established by the five range values specified in
the statement:

. values < 01/01/2005—This partition includes any rows prior to 2005.

. values >= 01/01/2005 AND values < 01/01/2006—This partition includes
all rows for 2005.

. values >= 01/01/2006 AND values < 01/01/2007—This partition includes
all rows for 2006.

. values >= 01/01/2007 AND values < 01/01/2008—This partition includes
all rows for 2007.

. values >= 01/01/2008 AND values < 01/01/2009—This partition includes
all rows for 2008.

. values >= 01/01/2009—This partition includes any rows for 2009 or later.

An alternative to the RIGHT clause in the CREATE PARTITION FUNCTION statement is the
LEFT clause. The LEFT clause is similar to RIGHT, but it changes the ranges such that the <
operands are changed to <=, and the >= operands are changed to >.

TIP

Using RANGE RIGHT partitions for datetime values is usually best because this
approach makes it easier to specify the limits of the ranges. The datetime data type
can store values only with accuracy to 3.33 milliseconds. The largest value it can store
is 0.997 milliseconds. A value of 0.998 milliseconds rounds down to 0.997, and a
value of 0.999 milliseconds rounds up to the next second.

 Download from www.wowebook.com

ptg

778 CHAPTER 24 Creating and Managing Tables

If you used a RANGE LEFT partition, the maximum time value you could include with the
year to get all values for that year would be 23:59:59.997. For example, if you speci-
fied 12/31/2006 23:59:59.999 as the boundary for a RANGE LEFT partition, it would
be rounded up so that it would also include rows with datetime values less than or
equal to 01/01/2007 00:00:00.000, which is probably not what you would want. You
would redefine the example shown in Listing 24.19 as a RANGE LEFT partition function
as follows:

CREATE PARTITION FUNCTION SalesBigPF1 (datetime)

AS RANGE LEFT FOR VALUES

(‘12/31/2004 23:59:59.997’, ‘12/31/2005 23:59:59.997’,

‘12/31/2006 23:59: 59.997’, ‘12/31/2007 23:59:59.997’,

‘12/31/2008 23:59:59.997’)

As you can see, it’s a bit more straightforward and probably less confusing to use
RANGE RIGHT partition functions when dealing with datetime values or any other con-
tinuous-value data types, such as float or numeric.

Creating a Partition Scheme

After you create a partition function, the next step is to associate a partition scheme with
the partition function. A partition scheme can be associated with only one partition func-
tion, but a partition function can be shared across multiple partition schemes.

The core function of a partition scheme is to map the values defined in the partition func-
tion to filegroups. When creating the statement for a partition scheme, you need to keep
in mind the following:

. A single filegroup can be used for all partitions, or a separate filegroup can be used
for each individual partition.

. Any filegroup referenced in the partition scheme must exist before the partition
scheme is created.

. There must be enough filegroups referenced in the partition scheme to accommo-
date all the partitions. The number of partitions is one more than the number of
values specified in the partition function.

. The number of partitions is limited to 1,000.

. The filegroups listed in the partition scheme are assigned to the partitions defined in
the function based on the order in which the filegroups are listed.

Listing 24.20 creates a partition schema that references the partition function created in
Listing 24.19. This example assumes that the referenced filegroups have been created for
each of the partitions. (For more information on creating filegroups and secondary files,
see Chapter 23.)

 Download from www.wowebook.com

ptg

779Using Partitioned Tables
2

4

NOTE

If you would like to create the same filegroups and files used by the examples in this
section, check out the script file called Create_Filegroups_and_Files_for_
Partitioning.sql on the included CD in the code listings directory for this chapter. If
you run this script, it creates all the necessary file groups and files referenced in the
examples. Note that you need to edit the script to change the FILENAME value if you
need the files to be created in a directory other than C:\MSSQL2008\DATA.

LISTING 24.20 Creating a Partition Scheme

--Create a partition scheme that is aligned with the partition function

CREATE PARTITION SCHEME SalesBigPS1

AS PARTITION SalesBigPF1

TO ([Older_data], [2005_data], [2006_data],

[2007_data], [2008_data], [2009_data])

GO

Alternatively, if all partitions are going to be on the same filegroup, such as the PRIMARY
filegroup, you could use the following:

Create PARTITION SCHEME SalesBigPS1

as PARTITION SalesBigPF1

ALL to ([PRIMARY])

go

Notice that SalesBigPF1 is referenced as the partition function in Listing 24.20. This ties
together the partition scheme and partition function. Figure 24.7 shows how the parti-
tions defined in the function would be mapped to the filegroup(s). At this point, you have
made no changes to any table, and you have not even specified the column in the table
that you will partition. The next section discusses those details.

Creating a Partitioned Table

Tables are partitioned only when they are created. This is an important point to keep in
mind when you are considering adding partitions to a table that already exists.
Sometimes, performance issues or other factors may lead you to determine that a table
you have already created and populated may benefit from being partitioned.

The re-creation of large tables in a production environment requires some forethought
and planning. The data in the table must be retained in another location for you to re-
create the table. Bulk copying the data to a flat file and renaming the table are two possi-
ble solutions for retaining the data. After you determine the data retention method, you
can re-create the table, with the new partition scheme. For simplicity’s sake, the example
in Listing 24.21 creates a new table named sales_big_Partitioned instead of using the

 Download from www.wowebook.com

ptg

780 CHAPTER 24 Creating and Managing Tables

1996_data
Filegroup
1996_data
Filegroup

Older_data
Filegroup

1992_data
Filegroup

1993_data
Filegroup

1994_data
Filegroup

1995_data
Filegroup

Boundary
1

Boundary
2

Boundary
3

Partition Scheme

Boundary
4

Boundary
5

1992-01-01 1993-01-01 1994-01-01 1995-01-01 1996-01-01

1

Partition #

2 3 4 5 6

1991 and
Earlier Data

1992 Data 1993 Data 1994 Data 1995 Data 1996 Data
Later Data

FIGURE 24.7 Mapping of partitions to filegroups, using a RANGE RIGHT partition function.

original sales_big table. The second part of Listing 24.21 copies the data from the
sales_big table into the sales_big_Partitioned table.

LISTING 24.21 Creating a Partitioned Table

CREATE TABLE dbo.sales_big_Partitioned(

sales_id int IDENTITY(1,1) NOT NULL,

stor_id char(4) NOT NULL,

ord_num varchar(20) NOT NULL,

ord_date datetime NOT NULL,

qty smallint NOT NULL,

payterms varchar(12) NOT NULL,

title_id dbo.tid NOT NULL

) ON SalesBigPS1 (ord_date) --this statement is key to Partitioning the table

GO

GO

--Insert data from the sales_big table into the new sales_big_partitioned table

SET IDENTITY_INSERT sales_big_Partitioned ON

GO

INSERT sales_big_Partitioned with (TABLOCKX)

(sales_id, stor_id, ord_num, ord_date, qty, payterms, title_id)

SELECT sales_id, stor_id, ord_num, ord_date, qty, payterms, title_id

FROM sales_big

 Download from www.wowebook.com

ptg

781Using Partitioned Tables
2

4

go

SET IDENTITY_INSERT sales_big_Partitioned OFF

GO

The key clause to take note of in this listing is ON SalesBigPS1 (ord_date). This clause
identifies the partition scheme on which to create the table (SalesBigPS1) and the column
within the table to use for partitioning (ord_date).

After you create the table, you might wonder whether the table was partitioned correctly.
Fortunately, there are some catalog views related to partitions that you can query for this
kind of information. Listing 24.22 shows a sample SELECT statement that utilizes the
sys.partitions view. The results of the statement execution are shown immediately after
the SELECT statement. Notice that there are six numbered partitions and that the esti-
mated number of rows for each partition corresponds to the number of rows you saw
when you selected the data from the unpartitioned SalesBig table.

LISTING 24.22 Viewing Partitioned Table Information

select convert(varchar(16), ps.name) as partition_scheme,

p.partition_number,

convert(varchar(10), ds2.name) as filegroup,

convert(varchar(19), isnull(v.value, ‘’), 120) as range_boundary,

str(p.rows, 9) as rows

from sys.indexes i

join sys.partition_schemes ps on i.data_space_id = ps.data_space_id

join sys.destination_data_spaces dds

on ps.data_space_id = dds.partition_scheme_id

join sys.data_spaces ds2 on dds.data_space_id = ds2.data_space_id

join sys.partitions p on dds.destination_id = p.partition_number

and p.object_id = i.object_id and p.index_id = i.index_id

join sys.partition_functions pf on ps.function_id = pf.function_id

LEFT JOIN sys.Partition_Range_values v on pf.function_id = v.function_id

and v.boundary_id = p.partition_number - pf.boundary_value_on_right

WHERE i.object_id = object_id(‘sales_big_partitioned’)

and i.index_id in (0, 1)

order by p.partition_number

/* Results from the previous SELECT statement

partition_scheme partition_number filegroup range_boundary rows

---------------- ---------------- ---------- ------------------- ---------

SalesBigPS1 1 Older_Data 0

SalesBigPS1 2 2005_Data 2005-01-01 00:00:00 30

SalesBigPS1 3 2006_Data 2006-01-01 00:00:00 613560

SalesBigPS1 4 2007_Data 2007-01-01 00:00:00 616450

SalesBigPS1 5 2008_Data 2008-01-01 00:00:00 457210

SalesBigPS1 6 2009_Data 2009-01-01 00:00:00 0

*/

 Download from www.wowebook.com

ptg

782 CHAPTER 24 Creating and Managing Tables

Adding and Dropping Table Partitions

One of the most useful features of partitioned tables is that you can add and drop entire
partitions of table data in bulk. If the table partitions are set up properly, these commands
can take place in seconds, without the expensive input/output (I/O) costs of physically
copying or moving the data. You can add and drop table partitions by using the SPLIT
RANGE and MERGE RANGE options of the ALTER PARTITION FUNCTION command:

ALTER PARTITION FUNCTION partition_function_name()

{ SPLIT RANGE (boundary_value) | MERGE RANGE (boundary_value) }

Adding a Table Partition
The SPLIT RANGE option adds a new boundary point to an existing partition function and
affects all objects that use this partition function. When this command is run, one of the
function partitions is split in two. The new partition is the one that contains the new
boundary point. The new partition is created to the right of the boundary value if the
partition is defined as a RANGE RIGHT partition function or to the left of the boundary if it
is a RANGE LEFT partition function. If the partition is empty, the split is instantaneous.

If the partition being split contains data, any data on the new side of the boundary is
physically deleted from the old partition and inserted into the new partition. In addition
to being I/O intensive, a split is also log intensive, generating log records that are four
times the size of the data being moved. In addition, an exclusive table lock is held for the
duration of the split. If you want to avoid this costly overhead when adding a new parti-
tion to the end of the partition range, it is recommended that you always keep an empty
partition available at the end and split it before it is populated with data. If the partition
is empty, SQL Server does not need to scan the partition to see whether there is any data
to be moved.

NOTE

Avoiding the overhead associated with splitting a partition is the reason the code in
Listing 24.19 defined the SalesBigPF1 partition function with a partition for 2009,
even though there is no 2009 data in the sales_big_partitioned table. As long as
you split the partition before any 2009 data is inserted into the table and the 2009
partition is empty, no data needs to be moved, so the split is instantaneous.

Before you split a partition, a filegroup must be marked to be the NEXT USED partition by
the partition scheme that uses the partition function. You initially allocate filegroups to
partitions by using a CREATE PARTITION SCHEME statement. If a CREATE PARTITION SCHEME
statement allocates more filegroups than there are partitions defined in the CREATE PARTI-
TION FUNCTION statement, one of the unassigned filegroups is automatically marked as
NEXT USED by the partition scheme, and it will hold the new partition.

 Download from www.wowebook.com

ptg

783Using Partitioned Tables
2

4

If there are no filegroups currently marked NEXT USED by the partition scheme, you must
use ALTER PARTITION SCHEME to either add a filegroup or designate an existing filegroup to
hold the new partition. This can be a filegroup that already holds existing partitions. Also,
if a partition function is used by more than one partition scheme, all the partition schemes
that use the partition function to which you are adding partitions must have a NEXT USED
filegroup. If one or more do not have a NEXT USED filegroup assigned, the ALTER PARTITION
FUNCTION statement fails, and the error message displays the partition scheme or schemes
that lack a NEXT USED filegroup.

The following SQL statement adds a NEXT USED filegroup to the SalesBigPS1 partition
scheme. Note that in this example, the filegroup specified is a new filegroup, 2010_DATA:

ALTER PARTITION SCHEME SalesBigPS1 NEXT USED ‘2010_Data’

Now that you have specified a NEXT USED filegroup for the partition scheme, you can go
ahead and add the new range for 2010 and later data rows to the partition function, as in
the following example:

--Alter partition function with the yearly values to partition the data

ALTER PARTITION FUNCTION SalesBigPF1 () SPLIT RANGE (‘01/01/2010’)

GO

Figure 24.8 shows the effects of splitting the 2009 table partition.

You can also see the effects of splitting the partition on the system catalogs by running
the same query as shown earlier, in Listing 24.22:

Boundary
6

Added
1997-01-01

Boundary
1

Boundary
2

Boundary
3

Boundary
4

Boundary
5

1992-01-01 1993-01-01 1994-01-01 1995-01-01 1996-01-01

1 2 3 4 5 76

1991 and
Earlier Data

1992 Data 1993 Data 1994 Data 1995 Data 1996 Data 1997 and
Later Data

Any 1997 and later
data will be moved

FIGURE 24.8 The effects of splitting a RANGE RIGHT table partition.

 Download from www.wowebook.com

ptg

784 CHAPTER 24 Creating and Managing Tables

/* New results from the SELECT statement in Listing 24.22

partition_scheme partition_number filegroup range_boundary rows

---------------- ---------------- ---------- ------------------- ---------

SalesBigPS1 1 Older_Data 0

SalesBigPS1 2 2005_Data 2005-01-01 00:00:00 30

SalesBigPS1 3 2006_Data 2006-01-01 00:00:00 613560

SalesBigPS1 4 2007_Data 2007-01-01 00:00:00 616450

SalesBigPS1 5 2008_Data 2008-01-01 00:00:00 457210

SalesBigPS1 6 2009_Data 2009-01-01 00:00:00 0

SalesBigPS1 7 2010_Data 2010-01-01 00:00:00 0

*/

Dropping a Table Partition
You can drop a table partition by using the ALTER PARTITION FUNCTION ... MERGE RANGE
command. This command essentially removes a boundary point from a partition function
as the partitions on each side of the boundary are merged into one. The partition that held
the boundary value is removed. The filegroup that originally held the boundary value is
removed from the partition scheme unless it is used by a remaining partition or is marked
with the NEXT USED property.

Any data that was in the removed partition is moved to the remaining neighboring parti-
tion. If a RANGE RIGHT partition boundary was removed, the data that was in that bound-
ary’s partition is moved to the partition to the left of boundary. If it was a RANGE LEFT
partition, the data is moved to the partition to the right of the boundary.

The following command merges the 2005 partition into the Old_Data partition for the
sales_big_partitioned table:

ALTER PARTITION FUNCTION SalesBigPF1 () MERGE RANGE (‘01/01/2005’)

Figure 24.9 demonstrates how the 2005 RANGE RIGHT partition boundary is removed and
the data is merged to the left, into the Old_Data partition.

CAUTION

Splitting or merging partitions for a partition function affects all objects using that parti-
tion function.

You can also see the effects of merging the partition on the system catalogs by running
the same query as shown in Listing 24.22:

/* New results from the SELECT statement in Listing 24.20

partition_scheme partition_number filegroup range_boundary rows

---------------- ---------------- ---------- ------------------- ---------

SalesBigPS1 1 Older_Data 30

SalesBigPS1 3 2006_Data 2006-01-01 00:00:00 613560

 Download from www.wowebook.com

ptg

785Using Partitioned Tables
2

4

Boundary
6

Boundary
1

Removed

Boundary
2

Boundary
3

Boundary
4

Boundary
5

1992-01-01 1993-01-01 1994-01-01 1995-01-01 1996-01-01 1996-07-01

1 2 3 4 5 76

1991 and
Earlier Data

1992 Data 1993 Data 1994 Data 1995 Data 1996 Data 1997 and
Later Data

1992 Data
Moved

FIGURE 24.9 The effects of merging a RANGE RIGHT table partition.

Like the split operation, the merge operation occurs instantaneously if the partition being
merged is empty. The process can be very I/O intensive if the partition has a large
amount of data in it. Any rows in the removed partition are physically moved into the
remaining partition. This operation is also very log intensive, requiring log space approxi-
mately four times the size of data being moved. An exclusive table lock is held for the
duration of the merge.

If you no longer want to keep the data in the table for a partition you are merging, you
can move the data in the partition to another empty table or empty table partition by
using the SWITCH PARTITION option of the ALTER TABLE command. This option is
discussed in more detail in the following section.

Switching Table Partitions

One of the great features of table partitions is that they enable you to instantly swap the
contents of one partition to an empty table, the contents from a partition on one table to
a partition in another table, or an entire table’s contents into another table’s empty parti-
tion. This operation performs changes only to metadata in the system catalogs for the
affected tables/partitions, with no actual physical movement of data.

SalesBigPS1 4 2007_Data 2007-01-01 00:00:00 616450

SalesBigPS1 5 2008_Data 2008-01-01 00:00:00 457210

SalesBigPS1 6 2009_Data 2009-01-01 00:00:00 0

SalesBigPS1 7 2010_Data 2010-01-01 00:00:00 0

*/

 Download from www.wowebook.com

ptg

786 CHAPTER 24 Creating and Managing Tables

For you to switch data from a partition to a table or from a table into a partition, the
following criteria must be met:

. The source table and target table must both have the same structure (that is, the
same columns in the same order, with the same names, data types, lengths, preci-
sions, scales, nullabilities, and collations). The tables must also have the same
primary key constraints and settings for ANSI_NULLS and QUOTED_IDENTIFIER.

. The source and target of the ALTER TABLE...SWITCH statement must reside in the
same filegroup.

. If you are switching a partition to a single, nonpartitioned table, the table receiving
the partition must already be created, and it must be empty.

. If you are adding a table as a partition to an already existing partitioned table or
moving a partition from one partitioned table to another, the receiving partition
must exist, and it must be empty.

. If you are switching a partition from one partitioned table to another, both tables
must be partitioned on the same column.

. The source must have all the same indexes as the target, and the indexes must also
be in the same filegroup.

. If you are switching a nonpartitioned table to a partition of an already existing parti-
tioned table, the nonpartitioned table must have a constraint defined on the column
corresponding to the partition key of the target table to ensure that the range of
values fits within the boundary values of the target partition.

. If the target table has any FOREIGN KEY constraints, the source table must have the
same foreign keys defined on the corresponding columns, and those foreign keys
must reference the same primary keys that the target table references.

If you are switching a partition of a partitioned table to another partitioned table, the
boundary values of the source partition must fit within those of the target partition. If the
boundary values do not fit, a constraint must be defined on the partition key of the
source table to make sure all the data in the table fits into the boundary values of the
target partition.

CAUTION

If the tables have IDENTITY columns, partition switching can result in the introduction
of duplicate values in IDENTITY columns of the target table and gaps in the values of
IDENTITY columns in the source table. You can use DBCC_CHECKIDENT to check the
identity values of tables and correct them if necessary.

When you switch a partition, data is not physically moved. Only the metadata informa-
tion in the system catalogs indicating where the data is stored is changed. In addition, all
associated indexes are automatically switched, along with the table or partition.

 Download from www.wowebook.com

ptg

787Using Partitioned Tables
2

4

To switch table partitions, you use the ALTER TABLE command:

ALTER TABLE table_name SWITCH [PARTITION source_partition_number_expression]

TO target_table [PARTITION target_partition_number_expression]

You can use the ALTER TABLE...SWITCH command to switch an unpartitioned table into a
table partition, switch a table partition into an empty unpartitioned table, or switch a
table partition into another table’s empty table partition. The code shown in Listing 24.23
creates a table to hold the data from the 2006 partition and then switches the 2006 parti-
tion from the sales_big_partitioned table to the new table.

LISTING 24.23 Switching a Partition to an Empty Table

CREATE TABLE dbo.sales_big_2006(

sales_id int IDENTITY(1,1) NOT NULL,

stor_id char(4) NOT NULL,

ord_num varchar(20) NOT NULL,

ord_date datetime NOT NULL,

qty smallint NOT NULL,

payterms varchar(12) NOT NULL,

title_id dbo.tid NOT NULL

) ON ‘2006_data’ -- required in order to switch the partition to this table

go

alter table sales_big_partitioned

switch partition $PARTITION.SalesBigPF1 (‘1/1/2006’)

to sales_big_2006

go

Note that Listing 24.23 uses the $PARTITION function. You can use this function with any
partition function name to return the partition number that corresponds with the speci-
fied partitioning column value. This prevents you from having to query the system cata-
logs to determine the specific partition number for the specified partition value.

You can run the query from Listing 24.22 to show that the 2006 partition is now empty:

partition_scheme partition_number filegroup range_boundary rows

---------------- ---------------- ---------- ------------------- ---------

SalesBigPS1 1 Older_Data 30

SalesBigPS1 2 2006_Data 2006-01-01 00:00:00 0

SalesBigPS1 3 2007_Data 2007-01-01 00:00:00 616450

SalesBigPS1 4 2008_Data 2008-01-01 00:00:00 457210

SalesBigPS1 5 2009_Data 2009-01-01 00:00:00 0

SalesBigPS1 6 2010_Data 2010-01-01 00:00:00 0

 Download from www.wowebook.com

ptg

788 CHAPTER 24 Creating and Managing Tables

Now that the 2006 data partition is empty, you can merge the partition without incurring
the I/O cost of moving the data to the Older_data partition:

ALTER PARTITION FUNCTION SalesBigPF1 () merge RANGE (‘1/1/2006’)

Rerunning the query in Listing 24.22 now returns the following result set:

partition_scheme partition_number filegroup range_boundary rows

---------------- ---------------- ---------- ------------------- ---------

SalesBigPS1 1 Older_Data 30

SalesBigPS1 2 2007_Data 2007-01-01 00:00:00 616450

SalesBigPS1 3 2008_Data 2008-01-01 00:00:00 457210

SalesBigPS1 4 2009_Data 2009-01-01 00:00:00 0

SalesBigPS1 5 2010_Data 2010-01-01 00:00:00 0

To demonstrate switching a table into a partition, you can update the date for all the rows
in the sales_big_2006 table to 2009 and switch it into the 2009 partition of the
sales_big_partitioned table. Note that before you can do this, you need to copy the data
to a table in the 2009_data filegroup and also put a check constraint on the ord_date
column to make sure all rows in the table are limited to values that are valid for the
2009_data partition. Listing 24.24 shows the commands you use to create the new table
and switch it into the 2009 partition of the sales_big_partitioned table.

LISTING 24.24 Switching a Table to an Empty Partition

CREATE TABLE dbo.sales_big_2009(

sales_id int IDENTITY(1,1) NOT NULL,

stor_id char(4) NOT NULL,

ord_num varchar(20) NOT NULL,

ord_date datetime NOT NULL

constraint CK_sales_big_2009_ord_date

check (ord_date >= ‘1/1/2009’ and ord_date < ‘1/1/2010’),

qty smallint NOT NULL,

payterms varchar(12) NOT NULL,

title_id dbo.tid NOT NULL

) ON ‘2009_data’ -- required to switch the table to the 2009 partition

go

set identity_insert sales_big_2009 on

go

insert sales_big_2009 (sales_id, stor_id, ord_num,

ord_date, qty, payterms, title_id)

select sales_id, stor_id, ord_num,

dateadd(yy, 3, ord_date),

qty, payterms, title_id

from sales_big_2006

go

set identity_insert sales_big_2009 off

 Download from www.wowebook.com

ptg

789Creating Temporary Tables
2

4

go

alter table sales_big_2009

switch to sales_big_partitioned

partition $PARTITION.SalesBigPF1 (‘1/1/2009’)

go

Rerunning the query from Listing 24.22 now returns the following result:

partition_scheme partition_number filegroup range_boundary rows

---------------- ---------------- ---------- ------------------- ---------

SalesBigPS1 1 Older_Data 30

SalesBigPS1 2 2007_Data 2007-01-01 00:00:00 616450

SalesBigPS1 3 2008_Data 2008-01-01 00:00:00 457210

SalesBigPS1 4 2009_Data 2009-01-01 00:00:00 613560

SalesBigPS1 5 2010_Data 2010-01-01 00:00:00 0

TIP

Switching data into or out of partitions provides a very efficient mechanism for archiv-
ing old data from a production table, importing new data into a production table, or
migrating data to an archive table. You can use SWITCH to empty or fill partitions very
quickly. As you’ve seen in this section, split and merge operations occur instantaneous-
ly if the partitions being split or merged are empty first. If you must split or merge par-
titions that contain a lot of data, you should empty them first by using SWITCH before
you perform the split or merge.

Creating Temporary Tables
A temporary table is a special type of table that is automatically deleted when it is no
longer used. Temporary tables have many of the same characteristics as permanent tables
and are typically used as work tables that contain intermediate results.

You designate a table as temporary in SQL Server by prefacing the table name with a single
pound sign (#) or two pound signs (##). Temporary tables are created in tempdb; if a
temporary table is not explicitly dropped, it is dropped when the session that created it
ends or the stored procedure it was created in finishes execution.

If a table name is prefaced with a single pound sign (for example, #table1), it is a private
temporary table, available only to the session that created it.

A table name prefixed with a double pound sign (for example, ##table2) indicates that it is
a global temporary table, which means it is accessible by all database connections. A global
temporary table exists until the session that created it terminates. If the creating session
terminates while other sessions are accessing the table, the temporary table is available to
those sessions until the last session’s query ends, at which time the table is dropped.

 Download from www.wowebook.com

ptg

790 CHAPTER 24 Creating and Managing Tables

A common way of creating a temporary table is to use the SELECT INTO method as shown
in the following example:

SELECT* INTO #Employee2 FROM Employee

This method creates a temporary table with a structure like the table that is being selected
from. It also copies the data from the original table and inserts it into this new temporary
table. All of this is done with this one simple command.

NOTE

Table variables are a good alternative to temporary tables. These variables are also
temporary in nature and have some advantages over temporary tables. Table variables
are easy to create, are automatically deleted, cause fewer recompilations, and use fewer
locking and logging resources. Generally speaking, you should consider using table vari-
ables instead of temporary tables when the temporary results are relatively small.
Parallel query plans are not generated with table variables, and this can impede overall
performance when you are accessing a table variable that has a large number of rows.

For more information on using temporary tables and table variables, see Chapter 43,
“Transact-SQL Programming Guidelines, Tips, and Tricks,” that is found on the bonus CD.

Tables created without the # prefix but explicitly created in tempdb are also considered
temporary, but they are a more permanent form of a temporary table. They are not
dropped automatically until SQL Server is restarted and tempdb is reinitialized.

Summary
Tables are the key to a relational database system. When you create tables, you need to
pay careful attention to choosing the proper data types to ensure efficient storage of data,
adding appropriate constraints to maintain data integrity, and scripting the creation and
modification of tables to ensure that they can be re-created, if necessary.

Good table design includes the creation of indexes on a table. Tables without indexes are
generally inefficient and cause excessive use of resources on your database server. Chapter
25, “Creating and Managing Indexes,” covers indexes and their critical role in effective
table design.

 Download from www.wowebook.com

ptg

CHAPTER 25

Creating and Managing
Indexes

IN THIS CHAPTER

. What’s New in Creating and
Managing Indexes

. Types of Indexes

. Creating Indexes

. Managing Indexes

. Dropping Indexes

. Online Indexing Operations

. Indexes on Views

Just like the index in this book, an index on a table or
view allows you to efficiently find the information you are
looking for in a database. SQL Server does not require
indexes to be able to retrieve data from tables because it can
perform a full table scan to retrieve a result set. However,
doing a table scan is analogous to scanning every page in
this book to find a word or reference you are looking for.

This chapter introduces the different types of indexes avail-
able in SQL Server 2008 to keep your database access effi-
cient. It focuses on creating and managing indexes by using
the tools Microsoft SQL Server 2008 provides. For a more
in-depth discussion of the internal structures of indexes and
designing and managing indexes for optimal performance,
see Chapter 34, “Data Structures, Indexes, and
Performance.”

What’s New in Creating and
Managing Indexes
The creation and management of indexes are among the
most important performance activities in SQL Server. You
will find that indexes and the tools to manage them in SQL
Server 2008 are very similar to those in SQL Server 2005.
New to SQL Server 2008 is the capability to compress
indexes and tables to reduce the amount of storage needed
for these objects. This new data compression feature is
discussed in detail in Chapter 34.

Also new to SQL Server 2008 are filtered indexes. Filtered
indexes utilize a WHERE clause that filters or limits the number
of rows included in the index. The smaller filtered index

 Download from www.wowebook.com

ptg

792 CHAPTER 25 Creating and Managing Indexes

allows queries that are run against rows in the index to run faster. These can also save on
the disk space used by the index.

Spatial indexes also are new to SQL Server 2008. These indexes are used against spatial
data defined by coordinates of latitude and longitude. The spatial data is essential for effi-
cient global navigation. The Spatial indexes are grid based and help optimize the perfor-
mance of searches against the Spatial data. Spatial indexes are also discussed in more detail
in Chapter 34.

Types of Indexes
SQL Server has two main types of indexes: clustered and nonclustered. They both help the
query engine get at data faster, but they have different effects on the storage of the under-
lying data. The following sections describe these two main types of indexes and provide
some insight into when to use each type.

Clustered Indexes

Clustered indexes sort and store the data rows for a table, based on the columns defined
in the index. For example, if you were to create a clustered index on the LastName and
FirstName columns in a table, the data rows for that table would be organized or sorted
according to these two columns. This has some obvious advantages for data retrieval.
Queries that search for data based on the clustered index keys have a sequential path to
the underlying data, which helps reduce I/O.

A clustered index is analogous to a filing cabinet where each drawer contains a set of file
folders stored in alphabetical order, and each file folder stores the files in alphabetical
order. Each file drawer contains a label that indicates which folders it contains (for
example, folders A–D). To locate a specific file, you first locate the drawer containing the
appropriate file folders, then locate the appropriate file folder within the drawer, and then
scan the files in that folder in sequence until you find the one you need.

A clustered index is structured as a balanced tree (B-tree). Figure 25.1 shows a simplified
diagram of a clustered index defined on a last name column.

The top, or root, node is a single page where searches via the clustered index are started.
The bottom level of the index is the leaf nodes. With a clustered index, the leaf nodes of
the index are also the data pages of the table. Any levels of the index between the root
and leaf nodes are referred to as intermediate nodes. All index key values are stored in the
clustered index levels in sorted order. To locate a data row via a clustered index, SQL
Server starts at the root node and navigates through the appropriate index pages in the
intermediate levels of the index until it reaches the data page that should contain the
desired data row(s). It then scans the rows on the data page until it locates the desired
value.

There can be only one clustered index per table. This restriction is driven by the fact that
the underlying data rows can be sorted and stored in only one way. With very few excep-
tions, every table in a database should have a clustered index. The selection of columns

 Download from www.wowebook.com

ptg

793Types of Indexes

Houston

Exeter

Brown

Albert

Loon

Klein

Jude

Jones

Paul

Parker

Neenan

Mason

Alexis, Amy, ...

Intermediate Page

Data Page

Amundsen, Fred, ...

Baker, Joe, ...

Best, Elizabeth, ...

Albert, John, ...

Masonelli, Irving, ...

Narin, Mabelle, ...

Naselle, Juan, ...

Neat, Juanita

Mason, Emma, ...

...

...

...

Quincy

Mason

Jones

Albert

Root Page

FIGURE 25.1 A simplified diagram of a clustered index.

for a clustered index is very important and should be driven by the way the data is most
commonly accessed in the table. You should consider using the following types of
columns in a clustered index:

. Those that are often accessed sequentially

. Those that contain a large number of distinct values

. Those that are used in range queries that use operators such as BETWEEN, >, >=, <, or
<= in the WHERE clause

. Those that are frequently used by queries to join or group the result set

When you are using these criteria, it is important to focus on the most critical data access:
the queries that are run most often or that must have the best performance. This approach
can be challenging but ultimately reduces the number of data pages and related I/O for
the queries that matter.

Nonclustered Indexes

A nonclustered index is a separate index structure, independent of the physical sort order
of the data rows in the table. You are therefore not restricted to creating only 1 nonclus-
tered index per table; in fact, in SQL Server 2008 you can create up to 999 nonclustered
indexes per table. This is an increase from SQL Server 2005, which was limited to 249.

A nonclustered index is analogous to an index in the back of a book. To find the pages on
which a specific subject is discussed, you look up the subject in the index and then go to
the pages referenced in the index. With nonclustered indexes, you may have to jump
around to many different nonsequential pages to find all the references.

2
5

 Download from www.wowebook.com

ptg

794 CHAPTER 25 Creating and Managing Indexes

Dave

Bob

Amy

Zelda

Elizabeth

Elizabeth

George
George

Amy

...

...

...

...

...

...

Sam

Sam

Alexis, Amy, ...Root Page

Intermediate
Page

Data Page

Amundsen, Fred, ...

Baker, Joe, ...

Best, Elizabeth, ...

Albert, John, ...

Masonelli, Irving, ...

Narin, Anabelle, ...

Naselle, Amy, ...

Neat, Juanita

Mason, Emma, ...

Zelda

...

...

...

Amy

Amy

...

...

Emma

...

Leaf Page

Anabelle

...

FIGURE 25.2 A simplified diagram of a nonclustered index.

A nonclustered index is also structured as a B-tree. Figure 25.2 shows a simplified diagram
of a nonclustered index defined on a first name column.

As with a clustered index, in a nonclustered index, all index key values are stored in the
nonclustered index levels in sorted order, based on the index key(s). This sort order is typi-
cally different from the sort order of the table itself. The main difference between a
nonclustered index and clustered index is that the leaf row of a nonclustered index is
independent of the data rows in the table. The leaf level of a nonclustered index contains
a row for every data row in the table, along with a pointer to locate the data row. This
pointer is either the clustered index key for the data row, if the table has a clustered index
on it, or the data page ID and row ID of the data row if the table is stored as a heap struc-
ture (that is, if the table has no clustered index defined on it).

To locate a data row via a nonclustered index, SQL Server starts at the root node and navi-
gates through the appropriate index pages in the intermediate levels of the index until it
reaches the leaf page, which should contain the index key for the desired data row. It then
scans the keys on the leaf page until it locates the desired index key value. SQL Server
then uses the pointer to the data row stored with the index key to retrieve the correspond-
ing data row.

 Download from www.wowebook.com

ptg

795Creating Indexes
2

5

NOTE

For a more detailed discussion of clustered tables versus heap tables (that is, tables
with no clustered indexes) and more detailed descriptions of clustered and nonclus-
tered index key structures and index key rows, as well as how SQL Server internally
maintains indexes, see Chapter 34.

The efficiency of the index lookup and the types of lookups should drive the selection of
nonclustered indexes. In the book index example, a single page reference is a very simple
lookup for the book reader and requires little work. If, however, many pages are referenced
in the index, and those pages are spread throughout the book, the lookup is no longer
simple, and much more work is required to get all the information.

You should choose your nonclustered indexes with the book index example in mind. You
should consider using nonclustered indexes for the following:

. Queries that do not return large result sets

. Columns that are frequently used in the WHERE clause that return exact matches

. Columns that have many distinct values (that is, high cardinality)

. All columns referenced in a critical query (a special nonclustered index called a
covering index that eliminates the need to go to the underlying data pages)

Having a good understanding of your data access is essential to creating nonclustered
indexes. Fortunately, SQL Server comes with tools such as the SQL Server Profiler and
Database Engine Tuning Advisor that can help you evaluate your data access paths and
determine which columns are the best candidates. SQL Profiler is discussed in more detail
in Chapter 6, “SQL Server Profiler.” In addition, Chapter 34 discusses the use of the SQL
Server Profiler and Database Engine Tuning Advisor to assist in developing an optimal
indexing strategy.

Creating Indexes
The following sections examine the most common means for creating indexes in SQL
Server. Microsoft provides several different methods for creating indexes, each of which
has advantages. The method used is often a matter of personal preference, but there are
situations in which a given method has distinct advantages.

Creating Indexes with T-SQL

Transact-SQL (T-SQL) is the most fundamental means for creating an index. This method
was available in all previous versions of SQL Server. It is a very powerful option for creat-
ing indexes because the T-SQL statements that create indexes can be stored in a file and

 Download from www.wowebook.com

ptg

796

TABLE 25.1 Arguments for CREATE INDEX

Argument Explanation

UNIQUE Indicates that no two rows in the index can have
the same index key values. Inserts into a table
with a UNIQUE index will fail if a row with the
same value already exists in the table.

CLUSTERED | NON-CLUSTERED Defines the index as clustered or nonclustered.
NON-CLUSTERED is the default. Only one clus-
tered index is allowed per table.

index_name Specifies the name of the index to be created.

object Specifies the name of the table or view to be
indexed.

column_name Specifies the column or columns that are to be
indexed.

ASC | DESC Specifies the sort direction for the particular
index column. ASC creates an ascending sort
order and is the default. The DESC option
causes the index to be created in descending
order.

INCLUDE (column [,... n]) Allows a column to be added to the leaf level of
an index without being part of the index key.
This is a new argument.

run as part of a database installation or upgrade. In addition, T-SQL scripts that were used
in prior SQL Server versions to create indexes can be reused with very little change.

You can create indexes by using the T-SQL CREATE INDEX command. Listing 25.1 shows
the basic CREATE INDEX syntax. Refer to SQL Server 2008 Books Online for the full syntax.

LISTING 25.1 CREATE INDEX Syntax

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name

ON <object> (column [ASC | DESC] [,...n])

[INCLUDE (column_name [,...n])]

[WHERE <filter_predicate>]

[WITH (<relational_index_option> [,...n])]

Table 25.1 lists the CREATE INDEX arguments.

CHAPTER 25 Creating and Managing Indexes

 Download from www.wowebook.com

ptg

797

TABLE 25.1 Arguments for CREATE INDEX

Argument Explanation

WHERE <filter_predicate> This argument, new to SQL Server 2008, is
used to create a filtered index. The
filter_predicate contains a WHERE clause
that limits the number of rows in the table that
are included in the index.

relational_index_option Specifies the index option to use when creating
the index.

Creating Indexes
2

5

Following is a simple example using the basic syntax of the CREATE INDEX command:

CREATE NONCLUSTERED INDEX [NC_Person_LastName]

ON [Person].[Person]

(

[LastName] ASC

)

This example creates a nonclustered index on the person.person table, based on the
LastName column. The NONCLUSTERED and ASC keywords are not necessary because they
are the defaults. Because the UNIQUE keyword is not specified, duplicates are allowed in the
index (that is, multiple rows in the table can have the same LastName).

Unique indexes are more involved because they serve two roles: they provide fast access to
the data via the index’s columns, but they also serve as a constraint by allowing only one
row to exist on a table for the combination of column values in the index. They can be
clustered or nonclustered. Unique indexes are also defined on a table whenever you define
a unique or primary key constraint on a table. The following example shows the creation
of a nonclustered unique index:

CREATE UNIQUE NONCLUSTERED INDEX [AK_CreditCard_CardNumber]

ON [Sales].[CreditCard]

(

[CardNumber] ASC

)

This example creates a nonclustered index named AK_CreditCard_CardNumber on the
Sales.CreditCard table. This index is based on a single column in the table. When it is
created, this index prevents credit card rows with the same credit card number from being
inserted into the CreditCard table.

 Download from www.wowebook.com

ptg

798

TABLE 25.2 Relational Index Options for CREATE INDEX

Argument Explanation

PAD_INDEX = {ON | OFF} Determines whether free space is allocated to the
non-leaf-level pages of an index. The percentage of
free space is determined by FILLFACTOR.

FILLFACTOR = fillfactor Determines the amount of free space left in the
leaf level of each index page. The fillfactor
values represent a percentage, from 0 to 100. The
default value is 0. If fillfactor is 0 or 100, the
index leaf-level pages are filled to capacity, leaving
only enough space for at least one more row to be
inserted.

SORT_IN_TEMPDB = {ON | OFF} Specifies whether intermediate sort results that
are used to create the index are stored in tempdb.
Using them can speed up the creation of the index
(if tempdb is on a separate disk), but it requires
more disk space.

IGNORE_DUP_KEY = {ON | OFF} Determines whether multirow inserts will fail when
duplicate rows in the insert violate a unique index.
When this option is set to ON, duplicate key values
are ignored, and the rest of the multirow insert
succeeds. When it is OFF (the default), the entire
multirow insertfails if a duplicate is encountered.

STATISTICS_NO_RECOMPUTE = {ON | OFF} Determines whether distribution statistics used by
the Query Optimizer are recomputed. When ON, the
statistics are not automatically recomputed.

DROP_EXISTING = {ON | OFF} Determines whether an index with the same name
is dropped prior to re-creation. This can provide
some performance benefits over dropping the exist-
ing index first and then creating. Clustered indexes
see the most benefit.

ONLINE = {ON | OFF} Determines whether the index is built such that the
underlying table is still available for queries and
data modification during the index creation. This
new feature is discussed in more detail in the
“Online Indexing Operations” section, later in this
chapter.

The relational index options listed in Table 25.2 allow you to define more sophisticated
indexes or specify how an index is to be created.

CHAPTER 25 Creating and Managing Indexes

 Download from www.wowebook.com

ptg

799

TABLE 25.2 Relational Index Options for CREATE INDEX

Argument Explanation

ALLOW_ROW_LOCKS = {ON | OFF} Determines whether row locks are allowed when
accessing the index. The default for this new
feature is ON.

ALLOW_PAGE_LOCKS = {ON | OFF} Determines whether page locks are allowed when
accessing the index. The default for this new
feature is ON.

MAXDOP = number of processors Determines the number of processors that can be
used during index operations. The default for this
new feature is 0, which causes an index operation
to use the actual number of processors or fewer,
depending on the workload on the system. This
can be a useful option for index operations on
large tables that may impact performance during
the operation. For example, if you have four proces-
sors, you can specify MAXDOP = 2 to limit the index
operation to use only two of the four processors.

DATA_COMPRESSION = { NONE | ROW |
PAGE} [ON PARTITIONS ({ <parti-

tion_number_expression> | <range> }
[, ...n])

Determines whether data compression is used on
the specified index. The compression can be done
on the row or page level and specific index parti-
tions can be compressed if the index uses parti-
tioning.

Creating Indexes
2

5

The following example creates a more complex index that utilizes several of the index
options described in Table 25.2:

CREATE NONCLUSTERED INDEX [

IX_Person_LastName_FirstName_MiddleName] ON [Person].[Person]

(

[LastName] ASC,

[FirstName] ASC,

[MiddleName] ASC

)WITH (SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, FILLFAC-

TOR=80)

This example creates a nonclustered composite index on the person’s last name
(LastName), first name (FirstName), and middle name (MiddleName). It utilizes some of the
commonly used options and demonstrates how multiple options can be used in a single
CREATE statement.

 Download from www.wowebook.com

ptg

800

TIP

SQL Server Management Studio (SSMS) has several methods for generating the T-SQL
code that creates indexes. You therefore rarely need to type index CREATE statements
from scratch. Instead, you can use the friendly GUI screens that enable you to specify
the common index options, and then you can generate the T-SQL script that can be
executed to create the index.

Additional syntax options (not listed here) relate to backward compatibility and the
creation of indexes on XML columns. Refer to Chapter 47, “Using XML in SQL Server
2008,” and the SQL Server Books Online documentation for further details.

Creating Indexes with SSMS

SQL Server 2008 has many options for creating indexes within SSMS. You can create
indexes within SSMS via the Database Engine Tuning Advisor, database diagrams, the
Table Designer, and several places within the Object Explorer. The means available from
the Object Explorer are the simplest to use and are the focus of this section. The other
options are discussed in more detail in related chapters of this book.

Index creation in the Object Explorer is facilitated by the New Index screen. You can
launch this screen from SMSS by expanding the database tree in the Object Explorer and
navigating to the Indexes node of the table that you want to add the index to. Then you
right-click the Indexes node and select New Index. A screen like the one shown in Figure
25.3 is displayed.

The name and options that are populated in Figure 25.3 are based on the person index
created in the previous T-SQL section. The LastName, FirstName, and MiddleName columns
were selected and added as part of this new index by clicking the Add button, which
displays a screen with all the columns in the table that are available for the index. You
simply select the column(s) you want to include on the index. This populates the Index
Key Columns grid on the default General page.

You can select other options for an index by changing the Select a Page options available
on the top-left side of the New Index screen. The Options, Included Columns, Storage,
Spatial, and Filter pages each provide a series of options that relate to the corresponding
category and are utilized when creating the index.

Of particular interest is the Included Columns page. This page allows you to select
columns that you want to include in the leaf-level pages of the index but don’t need as
part of the index key. For example, you could consider using included columns if you
have a critical query that often selects last name, first name, and address from a table but
uses only the last name and first name as search arguments in the WHERE clause. This may
be a situation in which you would want to consider the use of a covering index that places
all the referenced columns from the query into a nonclustered index. In the case of our
critical query, the address column can be added to the index as an included column. It is
not included in the index key, but it is available in the leaf-level pages of the index so that
the additional overhead of going to the data pages to retrieve the address is not needed.

CHAPTER 25 Creating and Managing Indexes

 Download from www.wowebook.com

ptg

801

FIGURE 25.3 Using Object Explorer to create indexes.

Creating Indexes
2

5

The Spatial and Filter option pages are new to SQL Server 2008. The Spatial page can be
used to create spatial indexes on a column that is defined as a spatial data type; that is
either type geometry or geography. If your table contains a column of this data type, you
can use the Index Type drop-down to change the index type to Spatial. After this is done,
you can add a column that is defined as a spatial data type to the index. Finally, you can
select the Spatial option page, as shown in Figure 25.4, that allows you to fully define a
spatial index. The meaning of the parameters on this page are beyond the scope of this
chapter and are discussed in more detail in Chapter 34.

The Filter option page allows you to define a filtering criterion to limit the rows that are
included in the index. The page, shown in Figure 25.5, is relatively simple with a single
input area that contains your filtering criterion. This criterion is basically the contents of a
WHERE clause that is similar to what you would use in a query window to filter the rows in
your result. The filter expression shown in Figure 25.5 was defined for an index on the
PersonType column, which is found in the Person.Person table of the
AdventureWorks2008 sample database. Many of the rows in this table have a PersonType
value equal to ’IN’ so a filtered index that does not include rows with this value will
dramatically reduce the size of the index and make searches on values other than ’IN’
relatively fast.

After selecting all the options you want for your index via the New Index screen, you have
several options for actually creating the index. You can script the index, schedule the
index creation for a later time, or simply click OK to allow the New Index screen to add
the index immediately. As mentioned earlier, it is a good idea to use this New Index

 Download from www.wowebook.com

ptg

802 CHAPTER 25 Creating and Managing Indexes

FIGURE 25.4 Spatial Index options page.

FIGURE 25.5 Filter Index options page.

 Download from www.wowebook.com

ptg

803Managing Indexes

screen to specify the index options, and then you can click the Script button to generate
all the T-SQL statements needed to create the index. You can then save this script to a file
to be used for generating a database build script or for maintaining a record of the indexes
defined in a database.

Managing Indexes
There are two different aspects to index management. The first aspect is the management
of indexes by the SQL Server database engine. Fortunately, the engine does a good job of
managing the indexes internally so that limited manual intervention is required. This is
predicated on a well-designed database system and the use of SQL Server features, such as
automatic updates to distribution statistics.

The other aspect of index management typically comes into play when performance issues
arise. Index adjustments and maintenance of these indexes make up the bulk of this effort.

Managing Indexes with T-SQL

One of the T-SQL features available with SQL Server 2008 is the ALTER INDEX statement.
This statement simplifies many of the tasks associated with managing indexes. Index oper-
ations such as index rebuilds and changes to fill factor that were previously handled with
DBCC commands are now available via the ALTER INDEX statement. The basic syntax for
ALTER INDEX is as follows:

ALTER INDEX {index_name | ALL}

ON [{database_name.[schema_name]. | schema_name.}]

{table_or_view_name}

{ REBUILD [WITH(<rebuild_index_option>[,...n])]

| REORGANIZE [WITH(LOB_COMPACTION = {ON | OFF})]

| DISABLE

| SET (<set_index_option>[,...n]) }

Let’s look at a few examples that demonstrate the power of the ALTER INDEX statement.
The first example simply rebuilds the primary key index on the Production.Product table:

ALTER INDEX [PK_Product_ProductID] ON [Production].[Product] REBUILD

This offline operation is equivalent to the DBCC DBREINDEX command. The specified index
is dropped and re-created, removing all fragmentation from the index pages. This is done
dynamically, without the need to drop and re-create constraints that reference any of the
affected indexes. If it is run on a clustered index, the data pages of the table are defrag-
mented as well. If you specify the ALL option for the ALTER INDEX command, all indexes
as well as the data pages of the table (if the table has a clustered index) are defragmented.

2
5

 Download from www.wowebook.com

ptg

804 CHAPTER 25 Creating and Managing Indexes

NOTE

If the REBUILD option is run on a heap table (that is, a table with no clustered index),
the rebuild operation does not affect the underlying table. Only the specified nonclus-
tered indexes are rebuilt.

For added flexibility, you can also specify index options as part of the REBUILD operation.
The options available with the REBUILD command are the same options available when
you are creating indexes. The only exception is that the DROP EXISTING option is not
available with the REBUILD operation. (Table 25.2, earlier in this chapter, provides detailed
descriptions of the options.) The following example rebuilds the clustered index on the
Production.Product table and specifies several of the available REBUILD options:

ALTER INDEX [PK_Product_ProductID]

ON [

Production].[Product] REBUILD WITH (PAD_INDEX = OFF,

STATISTICS_NORECOMPUTE = OFF,

ALLOW_ROW_LOCKS = ON,

ALLOW_PAGE_LOCKS = ON, ONLINE = OFF, SORT_IN_TEMPDB = OFF,

DATA_COMPRESSION = NONE)

An alternative to the REBUILD operation is the REORGANIZE operation. The REORGANIZE
operation is equivalent to the DBCC INDEX DEFRAG command. During the REORGANIZE oper-
ation, the leaf-level pages of the index are physically reordered to match the logical order
of the index keys. The indexes are not dropped. The REORGANIZE operation is always an
online operation and does not require long-term table locks to complete.

TIP

The REORGANIZE operation can generate a large number of transactions during its exe-
cution. You need to be sure to carefully evaluate the amount of space available in the
transaction log and monitor the free space during this operation. If the transaction log
is set to AUTOGROW, you need to make sure you have adequate free space on the drive
where your transaction log lives. This is especially true for very large tables. Several
options are available for mitigating the growth of the log during these operations, such
as setting the recovery model on the database to BULK-LOGGED.

The REORGANIZE operation has just one option: LOB_COMPACTION. When the
LOB_COMPACTION option is set to ON, the data for columns with large object (LOB) data
types is compacted. This consolidates the data and frees disk space. LOB data types include
image, text, ntext, varchar(max), nvarchar(max), varbinary(max), and xml. The follow-
ing example performs a REORGANIZE operation on the clustered index of the
Production.Product table with the LOB_COMPACTION option set to OFF:

ALTER INDEX [PK_Product_ProductID] ON [Production].[Product]

 Download from www.wowebook.com

ptg

805Managing Indexes
2

5

REORGANIZE WITH (LOB_COMPACTION = ON)

Disabling an index is another capability introduced with SQL Server 2005 that can be
accomplished with the ALTER INDEX statement. When the DISABLE option is used on an
index, the index is no longer available for retrieving data from a table. If a clustered index
is disabled, the entire table is made unavailable. The data remains in the table, but no
Data Manipulation Language (DML) operations can be performed on the table until the
index is dropped or rebuilt. Unlike dropping an index, when an index is disabled, SQL
Server retains the index definition in metadata so it can easily be re-enabled; index statis-
tics are still maintained for nonclustered indexes that have been disabled.

After an index is disabled, you can re-enable it only by re-creating the index. You can accom-
plish this using the ALTER INDEX REBUILD command or CREATE INDEX WITH DROP_EXISTING
command.

Disabling indexes can be particularly useful for testing purposes. Let’s say you have a
nonclustered index on a table that you believe is used very little. You can disable the
index initially before removing it to evaluate the change. The definition of the index is
still contained in the database. If you ultimately determine that the index is still needed,
you can rebuild the index to make it available again.

TIP

Another reason for disabling a nonclustered index is to reduce the space requirements
when rebuilding the index. If an index to be rebuilt is not disabled, SQL Server
requires enough temporary disk space in the database to store both the old and new
versions of the index. However, if the index is disabled first, SQL Server can reuse the
space required for the disabled index to rebuild it. No additional disk space is neces-
sary except for temporary space required for sorting, which is only about 20% of the
index size.

The following example disables a nonclustered index on the Production.Product table:

ALTER INDEX [AK_Product_Name] ON [Production].[Product] DISABLE

One point to keep in mind when an index is disabled is that it is not readily apparent in
SSMS that the index has been disabled. The index still appears in the Object Explorer tree
under the Indexes node, and there are no indicators on the index display to alert you to
the fact that it has been disabled. You can, however, use other methods to determine if the
index has been disabled. The sys.indexes catalog view is one of these methods. Refer to
the is_disabled column returned with this view. A value of 1 in the is_disabled column
indicates that it has been disabled, and a value of 0 indicates that it is enabled. The follow-
ing SELECT statement shows an example of how to use the sys.indexes catalog view:

select is_disabled,* from sys.indexes

where object_name(object_id) = ‘Product’

 Download from www.wowebook.com

ptg

806 CHAPTER 25 Creating and Managing Indexes

FIGURE 25.6 Using Object Explorer to manage indexes.

You can also easily change options on an index with the ALTER INDEX statement. The
following example sets several of the available options for a nonclustered index on the
authors table:

ALTER INDEX [AK_Product_ProductNumber] ON [Production].[Product]

SET (

ALLOW_PAGE_LOCKS = ON,

ALLOW_ROW_LOCKS = OFF,

IGNORE_DUP_KEY = ON,

STATISTICS_NORECOMPUTE = ON

)

Other options exist for managing indexes with T-SQL, but the ALTER INDEX statement
provides the bulk of what you need. Many of the other T-SQL options that you may have
used for managing indexes in SQL Server 2000 and earlier, such as DBCC DBREINDEX, are
still available in SQL Server 2008 for backward compatibility.

For more information and guidelines on managing indexes for performance, such as why
and when to rebuild an index, see Chapter 34.

Managing Indexes with SSMS

Several tools are available in SSMS for managing indexes. You can use tools such as the
Database Engine Tuning Advisor, database diagrams, and the Table Designer to view
indexes and make modifications. These tools have many features that are geared toward
specific tasks, but again, in most cases the Object Explorer provides the simplest means for
managing indexes.

Figure 25.6 shows the index options available by right-clicking an index in the Object
Explorer. Many of these options are geared toward index management, including the
options Rebuild, Reorganize, and Disable.

 Download from www.wowebook.com

ptg

807Online Indexing Operations
2

5

Similar options are also available from the Indexes node of the Object Explorer that
enable you to rebuild, reorganize, or disable all the indexes for the table.

TIP

You can right-click an index in the Object Explorer and choose Properties to display the
index columns and other relevant information. This option was not available with the
SQL Server 2000 Object Explorer. You can also run the SP_HELPINDEX command on
any table in a database to list all the indexes on the table and their related columns.
This command must be run in a database engine query window. For example,
sp_helpindex [Production.Product] returns all the indexes for the Product table
in the AdventureWorks database. Make sure to enclose the table name with brackets
when including the schema name.

Dropping Indexes
You can drop indexes by using T-SQL or via tools in the SSMS. To drop indexes with T-
SQL, you use the DROP INDEX command, a simple example of which follows:

DROP INDEX [IX_WorkOrder_ScrapReasonID] ON [Production].[WorkOrder]

This command drops the index named IX_WorkOrder_ScrapReasonID on the
Production.WorkOrder table.

Using the Object Explorer in SSMS is the simplest alternative for dropping indexes. In the
Object Explorer, you simply right-click the index you want to drop and then select Delete.
The same execution options available for adding and modifying indexes are also available
after you select Delete. This includes the option to script the T-SQL statements like that
shown in the preceding DROP INDEX example.

NOTE

If you drop a clustered index on a table, SQL Server needs to rebuild all the remaining
nonclustered indexes on the table. The reason is that when a clustered index exists on
a table, the nonclustered indexes include the clustered index key in the nonclustered
index rows as a pointer to the corresponding data rows. When the clustered index is
dropped, the clustered index key needs to be replaced with page and row pointers. If a
large number of nonclustered indexes exist on the table, the operation to rebuild the
nonclustered indexes can be very time consuming and I/O intensive. For more informa-
tion on the internal structures of clustered and nonclustered indexes, see Chapter 34.

Online Indexing Operations
One of the great features available with SQL Server 2008 is online indexing. This feature,
available only with the Enterprise or Developer Edition, allows you to create, rebuild, or
drop indexes without having exclusive access to the index or table. This means that users

 Download from www.wowebook.com

ptg

808 CHAPTER 25 Creating and Managing Indexes

can have concurrent access to the underlying tables and indexes while the index opera-
tion is in progress. This bodes well for high-availability applications and databases that
have limited downtime available for offline operations.

Following is an example of the T-SQL syntax for an online index operation:

ALTER INDEX [PK_Product_ProductID] ON [Production].[Product]

REBUILD WITH (ONLINE = ON)

The ONLINE = ON parameter is the key to making the index operation an online operation.

To accomplish online indexing, SQL Server must maintain the old and new versions of the
affected indexes during the operation. The old version (referred to as the source) includes
any table or indexes that are affected by the index operation. For example, if a clustered
index is part of the online operation, the clustered index and all the nonclustered indexes
that reference the clustered index are maintained as part of the source. The new version
(referred to as the target) is the new index or indexes that are being created or rebuilt. In
the case of a table without a clustered index, a structure known as a heap is used as the
source and target.

During online index operations, the following three phases occur:

. Preparation—Concurrent activity is temporarily suspended while a snapshot of the
source index structure is taken and written as an empty structure to the target.

. Building—The source index structures are scanned, sorted, merged, and inserted
into the target. User SELECT statements are satisfied via the source. Insertions,
updates, and deletions to the affected table are written to both the source and target.

. Final—Concurrent activity is temporarily suspended while the source is replaced by
the newly created structures (target).

When the final phase is complete, all the query and update plans that were using the old
structures are invalidated. Future queries utilize the newly created index structures after
this point.

When considering online indexing, you need to account for the following:

. Disk space—Generally, the disk space requirements for online operations are the
same as those for offline operations. The exception to this is online index operations
on clustered indexes. These operations use a temporary mapping index that requires
additional disk space. The temporary mapping index contains one row for each
record in the table.

. Performance—Online index operations are generally slower and take more system
resources than offline operations. Primarily, the reason is that the old and new index
structures are maintained during the index operation. Heavy updates to the tables
involved in the index operation can cause an overall decrease in performance and a
spike in CPU utilization and I/O as the two index structures are maintained.

. Transaction log—Online index operations are fully logged. You may therefore
encounter a heavy burden on your transaction log during online index operations

 Download from www.wowebook.com

ptg

809Indexes on Views
2

5

for large tables. This can cause your transaction log to fill quickly. The transaction
log can be backed up, but it cannot be truncated during online index operations.
You need to make sure you have enough space for your log to grow; otherwise, the
online index operation could fail.

Indexes on Views
SQL Server 2008 supports the creation of indexes on views. Like indexes on tables, indexes
on views can dramatically improve the performance of the queries that reference the
views. By nature, a view is a virtual table and does not have a separate data structure as
does a table, even though it can be referenced like a table. After an index is created on a
view, the result set of the view is stored in the database, just as it would be for a table. The
indexed view is no longer virtual because it requires maintenance as rows are added to,
deleted from, or modified in the tables referenced by the view. Refer to Chapter 27,
“Creating and Managing Views in SQL Server,” for a more detailed discussion of views.

The first index created on a view must be a unique clustered index. After that is created,
other nonclustered indexes can be built on the view for additional performance gains.

The most difficult part of the index creation process is identifying a view that is valid for
index creation. Many requirements must be met for a view to qualify. Refer to the SQL
Server Books Online documentation for a complete list of all the restrictions. The follow-
ing is a partial list of the most common requirements:

. All the tables in the view must be in the same database as the view and have the
same owner as the view.

. The view must not reference any other views.

. The view must be created with SCHEMABINDING, and any function referenced in the
view must also be created with SCHEMABINDING.

. A two-part name with the schema prefix must be used for every table or user-defined
function referenced in the view.

. Many SET options, including ANSI_NULLS, ANSI_PADDING, ANSI_WARNINGS,
CONCAT_NULL_YIELDS_NULL, and QUOTED_IDENTIFIER must be set to ON.

. Any functions referenced in the view must be deterministic. (See Chapter 29,
“Creating and Managing User-Defined Functions,” for more information on deter-
ministic functions.)

. Views with aggregate functions must also include COUNT_BIG(*).

The following example shows the creation of a view that can have an index created on it:

CREATE VIEW titleview

WITH SCHEMABINDING AS

select title, au_ord, au_lname, price, ytd_sales, pub_id

from dbo.authors, dbo.titles, dbo.titleauthor

 Download from www.wowebook.com

ptg

810 CHAPTER 25 Creating and Managing Indexes

where authors.au_id = titleauthor.au_id

AND titles.title_id = titleauthor.title_id

The SCHEMABINDING clause and database schema qualifier (dbo) for each table are necessary
in the view definition to be able to make the view valid for index creation. The following
example creates an index on the titleview view:

CREATE UNIQUE CLUSTERED INDEX [AK_vw_Employee] ON [dbo].[vw_Employee]

([JobTitle] ASC, [LoginID] ASC)

After the index is created, you can manage it in much the same way that you manage the
indexes on tables. You can use both T-SQL and SSMS to manage these indexes.

For more information and guidelines on creating and using indexed views, see Chapter 27.

Summary
Index creation is an important part of managing a database. Creating useful indexes can
vastly improve query performance and should not be overlooked. Fortunately, SQL Server
2008 makes the creation and management of indexes quite easy.

In Chapter 26, “Implementing Data Integrity,” you see how you can use indexes and other
methods to enforce data integrity. Subsequent chapters cover the internal working of
indexes and give you more insight into their role in performance.

 Download from www.wowebook.com

ptg

CHAPTER 26

Implementing Data
Integrity

IN THIS CHAPTER

. What’s New in Data Integrity

. Types of Data Integrity

. Enforcing Data Integrity

. Using Constraints

. Rules

. Defaults

The value of your data is determined by its integrity. You
may have heard the phrase “garbage in, garbage out.” In the
database world, “garbage in” refers to data that has been
loaded into a database without validation or without data
integrity. This “garbage” data can then be retrieved (“garbage
out”), and erroneous decisions can result because of it.

Implementing good data integrity measures is your best
defense against the “garbage in, garbage out” scenario. This
involves identifying valid values for tables and columns and
deciding how to enforce the integrity of those values. This
chapter covers the different types of data integrity and the
methods for enforcing them.

What’s New in Data Integrity
Much of the functionality related to data integrity has
remained the same in SQL Server 2008. Several features that
were added in SQL Server 2005, such as cascading integrity
constraints, are still supported in SQL Server 2008. The lack
of change in this area is generally a blessing. The tools
available to enforce data integrity were comprehensive in
2005 and remain so in 2008.

Keep in mind that bound defaults, which were deprecated
in SQL Server 2005, are still available in SQL Server 2008.
For now, you can still use this statement to create a default
that is bound to one or more columns. Microsoft
recommends using the DEFAULT keyword with ALTER TABLE
or CREATE TABLE instead.

 Download from www.wowebook.com

ptg

812 CHAPTER 26 Implementing Data Integrity

Types of Data Integrity
How integrity is enforced depends on the type of integrity being enforced. As described in
the following sections, the types of data integrity are domain, entity, and referential
integrity.

Domain Integrity

Domain integrity controls the validation of values for a column. You can use domain
integrity to enforce the type, format, and possible values of data stored in a column. SQL
Server provides several mechanisms to enforce domain integrity:

. You can control the type of data stored in a column by assigning a data type to
the column.

. You can use CHECK constraints and rules to control the format of the data.

. You can control the range of values stored in a column by using FOREIGN KEY con-
straints, CHECK constraints, default definitions, nullability, and rules.

Entity Integrity

Entity integrity requires that all rows in a table be unique. You can enforce entity integrity
in SQL Server by using PRIMARY KEY constraints, UNIQUE constraints, and IDENTITY proper-
ties.

Referential Integrity

Referential integrity preserves the defined relationships between tables. You can define such
a relationship in SQL Server by relating foreign key columns on one table to the primary
key or unique key of another table. When it is defined, referential integrity ensures that
values inserted in the foreign key columns have corresponding values in the primary
table. It also controls changes to the primary key table and ensures that related foreign key
rows are not left orphaned.

Enforcing Data Integrity
You can enforce data integrity by using declarative or procedural methods. Implementing
declarative data integrity requires little or no coding. Implementing procedural data
integrity is more flexible but requires more custom coding.

Implementing Declarative Data Integrity

Declarative integrity is enforced within the database, using constraints, rules, and defaults.
This is the preferred method of enforcing integrity because it has low overhead and
requires little or no custom programming. It can be centrally managed in the database,
and it provides a consistent approach for ensuring the integrity of data.

 Download from www.wowebook.com

ptg

813Using Constraints
2

6

Implementing Procedural Data Integrity

Procedural integrity can be implemented with stored procedures, triggers, and application
code. It requires custom programming that defines and enforces the integrity of the data.
The biggest benefits of implementing procedural data integrity are flexibility and control.
You can implement the custom code in many different ways to enforce the integrity of
your data. The custom code can also be a detriment; the lack of consistency and potential
inefficiencies in the way the data integrity is performed can be a real problem.

In general, declarative data integrity should be used as the primary means for control.
Procedural data integrity can be used to augment declarative data integrity, if needed.

Using Constraints
Constraints—including PRIMARY KEY, FOREIGN KEY, UNIQUE, CHECK, and DEFAULT—are the
primary method used to enforce data integrity. You can implement defaults as constraints
or as objects in a database; for more information, see the “Defaults” section, later in this
chapter.

The PRIMARY KEY Constraint

The PRIMARY KEY constraint is one of the key methods for ensuring entity integrity. When
this constraint is defined on a table, it ensures that every row can be uniquely identified
with the primary key value(s). The primary key can have one or more columns as part of
its definition. None of the columns in the primary key definition can allow nulls. When
multiple columns are used in the definition of the primary key, the combination of the
values in all the primary key columns must be unique. Duplication can exist in a single
column that is part of a multicolumn primary key.

There can be only one primary key defined for each table. When a primary key is defined
on a table, a unique index is automatically created as well. This index contains all the
columns in the primary key and ensures that the rows in this index are unique. Generally,
every table in a database should have a primary key. The primary key and its associated
unique index provide fast access to a database table.

Figure 26.1 shows the Adventureworks2008 database Employee table, which is an example
of a table that has a primary key defined. The primary key in this table is EmployeeID, and
it is denoted in the dialog shown in Figure 26.1 with a key symbol in the leftmost
column.

The existing primary key on the Employee table in the Adventureworks2008 database was
generated as a T-SQL script, as shown in the following example:

ALTER TABLE [HumanResources].[Employee]

ADD CONSTRAINT [PK_Employee_BusinessEntityID] PRIMARY KEY CLUSTERED

(BusinessEntityID ASC)

In general, you try to choose a primary key that is relatively short. BusinessEntityID, for
example, is a good choice because it is an integer column and takes only 4 bytes of

 Download from www.wowebook.com

ptg

814 CHAPTER 26 Implementing Data Integrity

FIGURE 26.1 A primary key example.

storage. This is particularly important when the primary key is CLUSTERED, as in the case of
PK_Employee_BusinessEntityID. The key values from the clustered index are used by all
nonclustered indexes as lookup keys. If the clustered key is large, this consumes more
space and affects performance.

Surrogate keys are often good choices for primary keys. The BusinessEnityID column in
the Person.BusinessEntity table is an example of a surrogate key. Surrogate keys consist
of a single column that automatically increments and is inherently unique, as in the case
of an identity column. Surrogate keys are good candidates for primary keys because they
are implicitly unique and relatively short in length. You should avoid using large, multi-
column indexes as primary keys. They can impede performance because fewer index rows
can be stored on each index page. The performance implications related to primary key
indexes and other indexes are discussed in more detail in Chapter 34, “Data Structures,
Indexes, and Performance.”

NOTE

Over the years, there has been much debate over the use of surrogate keys for primary
keys. One school of thought is to avoid surrogate keys because insertions always occur
at the end of the primary key index and are not distributed. This can lead to “hot
spots” in the index because the insert activity is always on the last page of the index.
In addition, surrogate keys have no real meaning and are less intuitive than primary
keys that have meaning, such as lastname and firstname.

 Download from www.wowebook.com

ptg

815Using Constraints
2

6

The other school of thought, in favor of using surrogate keys for primary keys, empha-
sizes the importance of defining primary keys that are not based on meaningful
columns. If meaningful columns are used and the definitions of those columns change,
this can have a significant impact on the table that contains the primary key and any
tables related to it. Those in favor of using surrogate keys as primary keys also focus
on the relatively small key size, which is good for performance and reduces pages
splits because the values are always inserted into the index sequentially.

The UNIQUE Constraint

The UNIQUE constraint is functionally similar to PRIMARY KEY. It also uses a unique index
to enforce uniqueness, but unlike PRIMARY KEY, it allows nulls in the columns that partici-
pate in the UNIQUE constraint. The definition of a UNIQUE constraint with columns that are
nulls is generally impractical. The value of NULL is considered a unique value, so you are
limited to the number of rows that can be inserted with NULL values. For example, only
one row with a NULL value in the constraint column can be inserted if the UNIQUE
constraint is based on a single column. UNIQUE constraints with multiple nullable columns
can have more than one row with null values in the constraint keys, but the number of
rows is limited to the combination of unique values across all the columns.

An alternate unique key on the SalesTaxRate table is a good example of a unique constraint
in the AdventureWorks2008 database. The AK_SalesTaxRate_StateProvinceID_TaxType
index contain the StateProvinceId and TaxType columns. Each of these columns is
defined as NOT NULL. In simple terms this means that TaxTypes must be unique within
each state or province. If, however, the StateProvinceID was nullable then you could have
one row for a given TaxType that is null then all other rows for that tax type must have
the StateProvinceID to make the combination of StateProvinceId and Tax Type unique.

You generally use a UNIQUE constraint when a column other than the primary key must be
guaranteed to be unique. For example, consider the Employee table example used in the
previous section. The primary key on the identity column EmployeeID ensures that a
unique value will be assigned to each employee row, but it does not prevent duplication
in any of the other columns. For example, every row in the Employee table could have the
same LoginID setting if no other UNIQUE constraints were found on this table. Generally,
each employee should have his or her own unique LoginID. You can enforce this policy by
adding a UNIQUE constraint on the LoginID column. The following example demonstrates
the creation of a UNIQUE constraint on the EmployeeID column:

ALTER TABLE [HumanResources].[Employee]

ADD CONSTRAINT AK_Employee_LoginID

UNIQUE NONCLUSTERED (LoginID ASC)

As with PRIMARY KEY constraints, a unique index is created whenever a UNIQUE constraint
is created. If you drop the UNIQUE constraint, you drop the unique index as well.

 Download from www.wowebook.com

ptg

816 CHAPTER 26 Implementing Data Integrity

Conversely, if you drop the unique index, you indirectly drop the UNIQUE constraint, too.
You can implement a UNIQUE constraint as a constraint or an index. To illustrate this, the
following example shows the creation of the same UNIQUE constraint on Employee_LoginID
as before, this time using an index:

CREATE UNIQUE NONCLUSTERED INDEX [AK_Employee_LoginID]

ON [HumanResources].[Employee]

(LoginID ASC)

NOTE

Although UNIQUE constraints and unique indexes achieve the same goal, they must be
managed based on how they were created. In other words, if you create a UNIQUE con-
straint on a table, you cannot directly drop the associated unique index. If you try to
drop the unique index directly, you get a message stating that an explicit DROP INDEX is
not allowed and that it is being used for unique key constraint enforcement. To drop the
UNIQUE constraint, you must use the DROP CONSTRAINT syntax associated with the
ALTER TABLE statement. Similarly, if you create a unique index, you cannot drop that
index by using a DROP CONSTRAINT statement; you must use DROP INDEX instead.

You can have more than one unique constraint per table. When creating unique
constraints, you have all the standard index-creation options available. These options
include how the underlying index is clustered, the fill factor, and a myriad of other index
options.

The FOREIGN KEY Referential Integrity Constraint

The basic premise of a relational database is that tables are related. These relationships are
maintained and enforced via referential integrity. FOREIGN KEY constraints are the declara-
tive means for enforcing referential integrity in SQL Server. You implement FOREIGN KEY
constraints by relating one or more columns in a table to the columns in a primary key or
unique index. The columns in the referencing table can be referred to as foreign key
columns. The table with the primary key or unique index can be referred to as the primary
table. Figure 26.2 shows a relationship between the BusinessEntityAddress table and
BusinessEntityAddress table. The foreign key in this example is AddressTypeID on the
BusinessEntityAddress table. AddressTypeID on this table is related to the primary key
on the AddressTypeID table. The foreign key relationship in this diagram is denoted by
the line between these two tables.

 Download from www.wowebook.com

ptg

817

FIGURE 26.2 A foreign key constraint on the BusinessEntityAddress table.

Using Constraints
2

6

Once defined, a foreign key, by default, enforces the relationship between the tables in the
following ways:

. Values in the foreign key columns must have a corresponding value in the primary
table. If the new values in the foreign key columns do not exist in the primary table,
the insert or update operation fails.

. Values in the primary key or unique index that are referenced by the foreign key
table cannot be deleted. If an attempt is made to delete a referenced value in the
primary table, the delete fails.

. Values in the primary key or unique index that are referenced by the foreign key
table cannot be modified. If an attempt is made to change a referenced value in the
primary table, the update fails.

In the case of the AddressType/BusinessEntityAddress relationship shown in Figure 26.2,
any AddressTypeID used in the BusinessEntityAddress table must have a corresponding
value in the AddressType table. Listing 26.1 shows an INSERT statement in the
BusinessEntityAddress table that does not have a valid AddressTypeID entry in the
AddressType table. The statement fails, and the resulting message is shown after the
INSERT statement. A similar error message is displayed if an attempt is made to delete or
update values in the primary key or unique index that does not satisfy the foreign key
contraint.

LISTING 26.1 A Foreign Key Conflict with INSERT

INSERT Person.BusinessEntityAddress

(BusinessEntityID,AddressID, AddressTypeID, rowguid, ModifiedDate)

VALUES (1,249, 9, NEWID(), GETDATE())

/* RESULTS OF INSERT FOLLOW

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the FOREIGN KEY

constraint "FK_BusinessEntityAddress_AddressType_AddressTypeID".

The conflict occurred in database "AdventureWorks2008",

table "Person.AddressType", column 'AddressTypeID'.

The statement has been terminated.*/

 Download from www.wowebook.com

ptg

818 CHAPTER 26 Implementing Data Integrity

The following example shows the T-SQL needed to create the foreign key relationship
between the AddressType and BusinessEntityAddress tables:

ALTER TABLE [Person].[BusinessEntityAddress]

ADD CONSTRAINT [FK_BusinessEntityAddress_AddressType_AddressTypeID]

FOREIGN KEY([AddressTypeID])

REFERENCES [Person].[AddressType]

([AddressTypeID])

When you create a FOREIGN KEY constraint, the related primary key or unique index must
exist first. In the case of the AddressType/BusinessEntityAddress relationship, the
AddressType table and primary key on AddressTypeID must exist before you can create the
FK_BusinessEntityAddress_AddressType_AddressTypeID foreign key. In addition, the data
types of the related columns must be the same. The related columns in the two tables can
actually have different names, but in practice the columns are usually named the same.
Naming the columns the same makes your database much more intuitive.

NOTE

In addition to relating two different tables with a foreign key, you can also relate a table
to itself. These self-referencing relationships are often found in organization tables or
employee tables. For example, you could have an Employee table with a primary key of
EmployeeID . This table could also have a ManagerID column. In this case, ManagerID
on the Employee table has a relationship to the primary key index on EmployeeID. The
manager is an employee, so it makes sense that they should have a valid EmployeeID.
A foreign key on the Employee table will enforce this relationship and ensure that any
ManagerID points to a different row in the table with a valid EmployeeID.

Cascading Referential Integrity
Cascading referential integrity has been around for some time and was introduced with
SQL Server 2000. This type of integrity allows for updates and deletions on the primary
table to be cascaded to the referencing foreign key tables. By default, a FOREIGN KEY
constraint prevents updates and deletions to any primary key or unique index values refer-
enced by a foreign key. With cascading referential integrity, you can bypass this restriction
and are able to define the type of action you want to occur when the updates and deletions
happen.

You define the cascading actions on the FOREIGN KEY constraint, using the ON DELETE and
ON UPDATE clauses. The ON DELETE clause defines the cascading action for deletions to the
primary table, and the ON UPDATE clause defines the actions for updates. These clauses are
used with the CREATE TABLE or ALTER TABLE statements and are part of the REFERENCES
clause of these statements.

You can specify the same cascading actions for updates and deletions:

. NO ACTION—This action, the default, causes deletions and updates to the primary
table to fail if the rows are referenced by a foreign key.

 Download from www.wowebook.com

ptg

819Using Constraints
2

6

. CASCADE—This option causes updates and deletions to cascade to any foreign key
records that refer to the affected rows in the primary table. If the CASCADE option is
used with the ON DELETE clause, any records in the foreign key table that refer to the
deleted rows in the primary table are also deleted. When CASCADE is used with the ON
UPDATE clause, any updates to the primary table records are also made in the related
rows of the foreign key table.

. SET NULL—This option was new in SQL Server 2005. It is similar to the CASCADE
option except that the affected rows in the foreign key table are set to NULL when
deletions or updates are performed on the related primary table. The value of NULL is
assigned to every column that is defined as part of the foreign key and requires that
each column in the foreign key allow null values.

. SET DEFAULT—This option also was new in SQL Server 2005. It is similar to the
CASCADE option except that the affected rows in the foreign key table are set to the
default values defined on the columns when deletions or updates are performed on
the related primary table. If you want to set this option, each column in the foreign
key must have a default definition assigned to it, or it must be defined as nullable. If
no default definition is assigned to the column, NULL is used as the default value. It
is imperative that the primary table have related records for the default or null
entries that can result from the cascading action. For example, if you have a two-col-
umn foreign key, and each column has a default of 1, a corresponding record with
the key values of 1 and 1 needs to exist in the primary table, or the cascade action
fails. The integrity of the relationship must be maintained.

To illustrate the power of cascading actions, consider the AddressType/BusinessEntity
Address relationship used in previous examples. Let’s say you want to remove the associ-
ated BusinessEntityAddress records when an AddressType record is deleted. The addition
of the ON DELETE CASCADE clause at the bottom of the following foreign key definition
achieves this result:

ALTER TABLE [Person].[BusinessEntityAddress]

ADD CONSTRAINT [FK_BusinessEntityAddress_AddressType_AddressTypeID]

FOREIGN KEY([AddressTypeID])

REFERENCES [Person].[AddressType]

([AddressTypeID])

ON DELETE CASCADE

Keep in mind that other factors affect the successful execution of a cascading deletion. If
other foreign keys exist on the table, and they do not have ON DELETE CASCADE specified,
the cascading actions do not succeed if a foreign key violation occurs on these tables. In
addition, you need to consider the existence of triggers that may prevent deletions from
occurring. Also, you need to consider that a series of cascading actions can be initiated by
a single DELETE statement. This happens when you have many related tables, each of
which has cascading actions defined. This approach works fine as long as there are no
circular references that cause one of the tables in the cascading tree to be affected by a
table lower in the tree.

 Download from www.wowebook.com

ptg

820 CHAPTER 26 Implementing Data Integrity

If you want to specify the cascading action for updates, you can add an additional ON
UPDATE clause, along with the ON DELETE clause. For example, you can change the foreign
key in the previous example so that BusinessEntityAddress records are set to NULL when
an update is made to the related key on the primary table. This can be accomplished with
the following foreign key definition:

ALTER TABLE [Person].[BusinessEntityAddress]

ADD CONSTRAINT [FK_BusinessEntityAddress_AddressType_AddressTypeID]

FOREIGN KEY([AddressTypeID])

REFERENCES [Person].[AddressType]

([AddressTypeID])

ON DELETE CASCADE

ON UPDATE SET NULL

You can see that cascading referential integrity is a powerful tool. However, it must be
used with caution. Consider the fact that foreign keys without cascading actions may
prevent erroneous actions. For example, if a DELETE statement is mistakenly executed
against the entire AddressType table, the deletion would fail before the records could be
deleted because foreign key tables are referencing the AddressType table. This failure
would be a good thing. If, however, the ON DELETE CASCADE clause were used in the
foreign key definitions, the erroneous deletion would succeed, and all the foreign key
records would be deleted as well.

The CHECK Constraint

You can use the CHECK constraint to enforce domain integrity and to provide a means for
restricting the values that can be entered in a column. A CHECK constraint is implemented
as a Boolean expression, and it must not be FALSE if the insertion or update is to proceed.
The Boolean expression can reference other columns in the same table, but it cannot refer-
ence other tables. Foreign keys and triggers can be used to reference columns in other
tables, if needed. The expression can also include functions that do not return results. A
CHECK constraint that is defined on a specific column can reference only the values in the
column.

CHECK constraints are good for ensuring the format of data inserted in a column and for
defining a list of acceptable values. Columns with phone numbers or Social Security
numbers are good candidates for CHECK constraints that enforce formatting restrictions.
Columns that have the data types money or integer can use CHECK constraints to ensure
that the values are always greater than or equal to zero. A column that has a small fixed
number of valid values is also a good candidate for a CHECK constraint. A fixed number of
values can be defined in the CHECK constraint, and no additional table lookup or coding is
necessary to ensure that the valid values are inserted. The following example shows a
CHECK constraint on the Employee table that checks the values for the Gender column:

ALTER TABLE [HumanResources].[Employee] WITH CHECK

ADD CONSTRAINT [CK_Employee_Gender]

CHECK ((upper([Gender])=’F’ OR upper([Gender])=’M’))

 Download from www.wowebook.com

ptg

821Using Constraints
2

6

The CHECK constraint in this example ensures that only F or M is inserted in this column.
These types of CHECK constraints are relatively fast and are preferred over FOREIGN KEY
constraints when the values are fixed.

NOTE

Be careful with CHECK constraint expressions that can evaluate to NULL. CHECK con-
straints allow insertions and updates to the table to proceed when the CHECK con-
straint expression does not evaluate to FALSE. A NULL value is considered to be
unknown and does not evaluate to FALSE, so the insertion or update succeeds. For
example, if you have a nullable column that has a constraint specifying that the value
must be greater than or equal to zero, this constraint does not prevent a NULL value
from being inserted into the column.

Keep in mind that the creation of a CHECK constraint on a table that already has data in it
may fail. This is due to a validation performed when the constraint is created. If existing
data violates the constraint, the constraint is not created. The only exception is to create
the constraint by using the NOCHECK option. When this option is used, the existing data is
not checked, but any future updates or insertions are. The following example shows the
creation of a CHECK constraint on the Employee table:

ALTER TABLE [HumanResources].[Employee] WITH NOCHECK

ADD CONSTRAINT [CK_Employee_Gender_F]

CHECK ((upper([Gender])=’F’))

The constraint is on the Gender column that already has a check constraint on it, which
ensures that the data values are only F or M. The new constraint on the Gender column
specifies that the value must be F. The existing data has values of F and M, but the NOCHECK
option allows you to add the constraint anyway.

Any new rows added to the Employee table after the new CK_Employee_Gender_F CHECK
constraint has been added are then checked. With multiple CHECK constraints defined on a
column, the constraints are evaluated in the order in which they were added to the table.
In the preceding example, the CK_Employee_Gender constraint is evaluated first, and then
the new CK_Employee_Gender_F constraint is evaluated. If a Gender value of F is entered,
both constraints evaluate to TRUE, and the change is accepted. If a value of M is inserted in
the Gender column, the CK_Employee_Gender constraint succeeds, but the
CK_Employee_Gender_F constraint fails, and the change is rejected.

Creating Constraints

You can define constraints on a single column or on multiple columns. Single-column
constraints are referred to as column-level constraints. You can define this type of
constraint when you create the column on the table. Constraints that reference multiple
columns must be defined on the table and are considered table-level constraints. Table-
level constraints must be defined after all the referenced columns in the table are created.

 Download from www.wowebook.com

ptg

822 CHAPTER 26 Implementing Data Integrity

Using T-SQL to Create Constraints
You can create constraints with T-SQL by using the CREATE TABLE or ALTER TABLE state-
ment. When you create a column-level constraint by using the CREATE TABLE statement,
the CONSTRAINT keyword and constraint definition are included immediately after the
column definition. Table-level constraints defined with the CREATE TABLE statement are
specified after the column list in the table definition.

The Customer table in the Adventureworks2008 database is a good example of a table that
has several different types of constraints. Listing 26.2 shows the CREATE TABLE command,
along with the constraint definitions for a table named Customer2 that is modeled after
the Customer table. All the constraints in this example have been included in the CREATE
TABLE statement. The constraints on this table include PRIMARY KEY, FOREIGN KEY, and
CHECK constraints. You can find all the constraints in the CREATE TABLE statement by
looking for the CONSTRAINT keyword.

LISTING 26.2 Creating Constraints by Using a CREATE TABLE Statement

CREATE TABLE [Sales].[Customer2](

[CustomerID] [int] IDENTITY(1,1) NOT FOR REPLICATION NOT NULL,

[TerritoryID] [int] NULL,

[AccountNumber] AS

(isnull(‘AW’+[dbo].[ufnLeadingZeros]([CustomerID]),’’)),

[CustomerType] [nchar](1) NOT NULL

CONSTRAINT CK_Customer_CustomerType2 CHECK

((upper([CustomerType])=’I’ OR upper([CustomerType])=’S’)),

[rowguid] [uniqueidentifier] ROWGUIDCOL NOT NULL

CONSTRAINT [DF_Customer_rowguid2] DEFAULT (newid()),

[ModifiedDate] [datetime] NOT NULL

CONSTRAINT [DF_Customer_ModifiedDate2] DEFAULT (getdate()),

CONSTRAINT [PK_Customer_CustomerID2] PRIMARY KEY CLUSTERED

([CustomerID] ASC),

CONSTRAINT FK_Customer_SalesTerritory_TerritoryID2 FOREIGN KEY

([TerritoryID])

REFERENCES [Sales].[SalesTerritory] ([TerritoryID])

)

GO

Generally, it is easier to manage constraints by using the ALTER TABLE statement than by
integrating them into the CREATE TABLE statement. One of the biggest reasons is that the
scripting capability in SQL Server Management Studio (SSMS) generates ALTER TABLE state-
ments for many of the constraints. You can easily script a table and its constraints by
using SSMS, and you will find that SSMS uses the ALTER TABLE statement extensively.
Listing 26.3 includes a statement to remove the Customer2 table and a subsequent set of
statements that re-creates the Customer2 table and utilizes the ALTER TABLE statement to
create several of the constraints. The statements to re-create the Customer2 table were

 Download from www.wowebook.com

ptg

823Using Constraints
2

6

generated using the Object Explorer in SSMS. Some of the constraints are created within
the initial CREATE TABLE statement, and some are created with the ALTER TABLE statement.

LISTING 26.3 Creating Constraints by Using ALTER TABLE

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id

= OBJECT_ID(N’[Sales].[Customer2]’) AND OBJECTPROPERTY(id, N’IsUserTable’) = 1)

DROP TABLE [Sales].[Customer2]

go

CREATE TABLE [Sales].[Customer2](

[CustomerID] [int] IDENTITY(1,1) NOT FOR REPLICATION NOT NULL,

[TerritoryID] [int] NULL,

[AccountNumber] AS (isnull(‘AW’+[dbo].[ufnLeadingZeros]([CustomerID]),’’)),

[CustomerType] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,

[rowguid] [uniqueidentifier] ROWGUIDCOL NOT NULL

CONSTRAINT [DF_Customer_rowguid2] DEFAULT (newid()),

[ModifiedDate] [datetime] NOT NULL

CONSTRAINT [DF_Customer_ModifiedDate2] DEFAULT (getdate()),

CONSTRAINT [PK_Customer_CustomerID2] PRIMARY KEY CLUSTERED

(

[CustomerID] ASC

) ON [PRIMARY]

) ON [PRIMARY]

GO

ALTER TABLE [Sales].[Customer2] WITH CHECK

ADD CONSTRAINT [FK_Customer_SalesTerritory_TerritoryID2]

FOREIGN KEY([TerritoryID])

REFERENCES [Sales].[SalesTerritory] ([TerritoryID])

GO

ALTER TABLE [Sales].[Customer2] WITH CHECK

ADD CONSTRAINT [CK_Customer_CustomerType2]

CHECK ((upper([CustomerType])=’I’ OR upper([CustomerType])=’S’))

Using SSMS to Create Constraints
Most of the examples used so far in this chapter use T-SQL to demonstrate constraints.
SSMS simplifies the administration of constraints by providing a user-friendly interface
that allows you to view and manage constraints. The visual tools available for managing
constraints in SSMS include the Object Explorer, Database Diagram Editor, and Table
Designer.

Figure 26.3 shows the Object Explorer with the Constraints node expanded for the
Employee table and the New Constraint option selected. The Constraints node contains
the CHECK and DEFAULT constraints for the table. Notice in the Object Explorer that some

 Download from www.wowebook.com

ptg

824

FIGURE 26.3 Constraints in Object Explorer.

FIGURE 26.4 A new CHECK constraint in Object Explorer.

CHAPTER 26 Implementing Data Integrity

of the constraints (PRIMARY KEY, UNIQUE, and FOREIGN KEY) are actually contained under
the Keys node.

When you select the New Constraint option from the Object Explorer, the Check
Constraints dialog, shown in Figure 26.4, appears. This dialog gives you the option to
define a new CHECK constraint on the table selected. You simply fill in a valid expression
for the constraint, give it a unique name, and select the options you want.

 Download from www.wowebook.com

ptg

825Using Constraints
2

6

FIGURE 26.5 A new FOREIGN KEY constraint in Object Explorer.

Similarly, you can right-click the Keys node and select New Foreign Key to add a new
FOREIGN KEY constraint. Figure 26.5 shows the Foreign Key Relationships dialog displayed
after you select New Foreign Key. You click the ellipsis to the right of Tables and Columns
Specification, and you can select the primary key table you want the foreign key to relate
to. Finally, you select the desired options, and you are ready to add your new FOREIGN KEY
constraint.

TIP

When you use the Object Explorer to add or modify constraints, two windows are impor-
tant to this process. The first window is the Constraint window, which allows you to
input the constraint information. The Table Designer window that displays the column
properties for the table is the other window that is important to the change process. It
is launched in the background, and you can view it on the tabbed display of SSMS.
When you make changes using the Constraint window, those changes are not applied
via SSMS until the Table Designer window is closed. This may cause some confusion
because even though you close your Constraint window with your changes, those
changes may not be reflected in the database. You must close the Table Designer win-
dow to be able to actually make the changes to the table. When you close the Table
Designer window, a prompt appears, asking whether you want to save the changes to
the table. If you click Yes, your constraint changes are applied to the database. If you
click No, none of the constraint changes you have made are applied. You can also use
the Table Designer menu to script out the related changes and apply them manually via
a database engine query window.

The Database Diagram Editor is another great visual tool for adding constraints. This tool
is particularly useful for viewing and adding foreign key relationships to tables. Consider,
for example, the database diagram shown in Figure 26.6. This diagram shows the
AddressType and BusinessEntityAddress tables and the relationships that exist between

 Download from www.wowebook.com

ptg

826 CHAPTER 26 Implementing Data Integrity

FIGURE 26.6 Adding constraints by using a database diagram.

them. To add a new relationship, you right-click the table you want to add the foreign key
to and select the Relationships option. After you fill in the appropriate information for the
relationship, you can generate a change script by using the Table Designer menu, or you
can simply close the database diagram window and respond to the prompt to save
changes. You can also see options to add other constraints, such as CHECK constraints, by
right-clicking the table in the database diagram and selecting the desired option.

You can also launch windows for adding constraints from the Table Designer menu. To
enable the Table Designer menu, you right-click the table in Object Explorer that you
want to add constraints to and select the Design option. The table and column properties
are displayed, and the Table Designer menu is enabled. The Table Designer menu includes
options to manage relationships, indexes/keys, and CHECK constraints.

TIP

It is a good idea to generate a script to implement changes made using SSMS visual
tools. You can review the script for accuracy, run it at a later time, and save it in a file
to keep track of the changes. You can also apply the saved script to other environ-
ments, if needed.

 Download from www.wowebook.com

ptg

827Using Constraints
2

6

FIGURE 26.7 Executing sp_helpconstraint on the Customer table.

Managing Constraints

Managing constraints consists of gathering information about constraints, disabling and
re-enabling constraints, and dropping constraints. These actions are discussed in the
following sections.

Gathering Constraint Information
You can obtain information about constraints by using the visual tools, system stored
procedures, and information_schema views. The visual tools (including the Object
Explorer, Table Designer, and database diagrams) were introduced in the previous section.
These tools offer a simple, user-friendly means for obtaining information related to
constraints. These tools allow you to view a table’s constraints and display the relative
information.

The sp_help and sp_helpconstraint system stored procedures are another good source of
information about constraints. Like the visual tools, these procedures allow you to gather
constraint information about a specific table. The sp_helpconstraint procedure provides
the most concise information related to constraints. Figure 26.7 shows the
sp_helpconstraint output for the Sales.Customer table. You need to make sure to enclose
the table name in brackets, as shown here, when the schema name is included. The output
from sp_helpconstraint includes all the constraints for the table, and it supplies a list of
tables that have foreign key references to the table.

 Download from www.wowebook.com

ptg

828 CHAPTER 26 Implementing Data Integrity

Catalog views offer a flexible alternative for returning information about constraints. SQL
Server Books Online recommends using the sys.key_constraints,
sys.check_constraints, and sys.default_constraints catalog views. These catalog views
allow you to obtain constraint information for more than one table at a time. They are
very flexible and allow you to customize the type of data you want to return simply by
adjusting the selection criterion.

Listing 26.4 shows a sample SELECT statement for each of the catalog views related to
constraints and the resulting output. The SELECT statements in this example have a WHERE
clause in them that limits the results to the SalesTax table, but you can remove this
clause to retrieve constraints for all the tables.

LISTING 26.4 Using Catalog Views to Display Constraint Information

select LEFT(name,30) NAME, type from sys.key_constraints

where object_name(parent_object_id) = 'SalesTaxRate'

order by 1

select LEFT(name,30) NAME, type from sys.check_constraints

where object_name(parent_object_id) = 'SalesTaxRate'

order by 1

select LEFT(name,30) NAME, type from sys.default_constraints

where object_name(parent_object_id) = 'SalesTaxRate'

order by 1

/* Results of the previous SELECT statements

NAME type

------------------------------ ----

PK_SalesTaxRate_SalesTaxRateID PK

(1 row(s) affected)

NAME type

------------------------------ ----

CK_SalesTaxRate_TaxType C

(1 row(s) affected)

NAME type

------------------------------ ----

DF_SalesTaxRate_ModifiedDate D

DF_SalesTaxRate_rowguid D

DF_SalesTaxRate_TaxRate D

 Download from www.wowebook.com

ptg

829Using Constraints
2

6

(3 row(s) affected)

*/

Dropping Constraints
You can drop constraints by using the visual tools or by using T-SQL. You can right-click a
constraint in the Object Explorer and select the Delete option to drop that constraint. The
Object Explorer also offers a script option that generates the T-SQL statements used to
drop the constraint. The ALTER TABLE command is the T-SQL command you use to make
the change. For example, to drop the CK_Employee_Gender constraint on the Employee
table, you can use the following command:

ALTER TABLE [HumanResources].[Employee]

DROP CONSTRAINT [CK_Employee_Gender]

You should use caution when dropping constraints because some constraints affect other
tables. For example, if you drop the PRIMARY KEY constraint on a table and that table is
referenced by foreign keys, the drop statement fails.

Disabling Constraints
You can disable CHECK and FOREIGN KEY constraints by using the NOCHECK clause. This
capability allows you to stop the constraints from being checked without removing the
constraints from your database. The following ALTER TABLE command allows you to
disable the FK_Customer_SalesTerritory_TerritoryID foreign key constraint on the
Customer table:

ALTER TABLE Sales.Customer

NOCHECK CONSTRAINT FK_Customer_SalesTerritory_TerritoryID

When the constraint is disabled, it no longer performs validation. You should disable
constraints with caution because the integrity of your data can be compromised. In the
previous example, disabling the FOREIGN KEY constraint would allow an invalid
TerritoryID to be inserted in the Customer table.

Why would you disable constraints? One possible reason would be to disable the
constraints during large data loads. The execution of constraints can slow the load
process. To facilitate the fastest load speed, you can disable constraints and then re-enable
them when the data load is complete. To re-enable a constraint, you use the CHECK
keyword in the ALTER TABLE statement. The following example re-enables the FOREIGN
KEY constraint for the Customer table:

ALTER TABLE Sales.Customer

CHECK CONSTRAINT FK_Customer_SalesTerritory_TerritoryID

 Download from www.wowebook.com

ptg

830 CHAPTER 26 Implementing Data Integrity

Keep in mind that enabling a constraint does not necessarily mean the underlying data is
being validated against the constraint. In fact, the default behavior when enabling a
constraint in SQL Server 2008 is not to check the data against the constraint when a
constraint in enabled. The default behavior when a constraint is added is to validate the
data. You can force the data in the table to be validated using the WITH CHECK option. The
following WITH CHECK option could be used to force the validation of the underlying data
when a constraint is enabled:

ALTER TABLE Sales.Customer

WITH CHECK CHECK CONSTRAINT FK_Customer_SalesTerritory_TerritoryID

Rules
You can use rules as another method to enforce domain integrity. Rules are similar to
CHECK constraints but have some limitations. The biggest advantage when using a rule is
that one rule can be bound to multiple columns or user-defined data types. This capability
can be useful for columns that contain the same type of data and are found in multiple
tables in a database. The syntax for creating a rule is as follows:

CREATE RULE [schema_name .] rule_name

AS condition_expression

[;]

condition_expression can include any statement that can be placed in a WHERE clause. It
includes one variable that is preceded with the @ symbol. This variable contains the value
of the bound column that is supplied with the INSERT or UPDATE statement. The name of
the variable is not important, but the conditions and formatting within the expression
are. Only one variable can be referenced per rule. The following example illustrates the
creation of a rule that could be used to enforce the format of data inserted in phone
number columns:

CREATE RULE phone_rule AS

@phone LIKE ‘([0-9][0-9][0-9]) [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]’

The variable in the condition expression is @phone, and it contains the inserted or updated
value for any column that the rule is bound to. The following example binds the
phone_rule rule to the PhoneNumber column in the person.PersonPhone table:

sp_bindrule phone_rule, 'Person.PersonPhone.PhoneNumber’

When a rule is bound to a column, any future insertions or updates to data in the bound
column are constrained by the rule. Existing data is not affected at the time the rule is
bound to the column. For example, many different phone number formats in the
person.PersonPhone table do not conform to phone_rule, but phone_rule can be bound
to this table successfully. To illustrate this point, the following UPDATE statement can be

 Download from www.wowebook.com

ptg

831Defaults
2

6

run against the person.PersonPhone table after the phone_rule rule is bound to the
PhoneNumber column:

update person.contact

set phone = phone

The preceding update sets the PhoneNumber value to itself, but this causes phone_rule to
execute. The following error message is displayed after the update is run because the exist-
ing data in the person.contact table violates the phone_rule rule:

Msg 513, Level 16, State 0, Line 2

A column insert or update conflicts with a rule imposed

by a previous CREATE RULE statement.

The statement was terminated.

The conflict occurred in database ‘Adventureworks2008’,

table ‘PersonPhone’, column ‘PhoneNumber’.

The statement has been terminated.

Although rules are powerful objects, Microsoft has slated them for removal in a future
version of SQL Server. Microsoft recommends using CHECK constraints on each column
instead of rules. CHECK constraints provide more flexibility and a consistent approach, and
multiple CHECK constraints can be applied to a single column.

Defaults
A default provides a value for a column when a value is not supplied. Defaults can be
anything that evaluates to a constant, such as a constant, built-in function, or mathemati-
cal expression. Defaults are of two types: declarative and bound. The two types are func-
tionally the same; the difference is in how they are implemented.

Declarative Defaults

A declarative default is a constraint defined as part of the table definition. Using declara-
tive defaults is the preferred method for assigning default values to columns. You can use
the CREATE TABLE or ALTER TABLE statement to create a default and assign it to a column.
Declarative defaults are assigned to a single column and cannot be reused for other
columns in the database. The following example shows the creation of a new column
namedCustomerType in the SalesCustomer table followed by the creation of a new default
on that column:

ALTER TABLE Sales.Customer

ADD CustomerType CHAR(1)

ALTER TABLE Sales.Customer ADD CONSTRAINT

 Download from www.wowebook.com

ptg

832 CHAPTER 26 Implementing Data Integrity

DF_Customer_CustomerType DEFAULT ‘I’ FOR CustomerType

It is important to remember that a default constraint stores the default value only when a
value is not provided during the insertion of a row into the table. The creation of a default
constraint does not affect the existing data in the table. UPDATE statements do not utilize
the values specified in the default constraint, either, unless the DEFAULT keyword is explic-
itly referenced; this issue is discussed later in this chapter, in the section “When a Default
Is Applied.” Generally, the only time a default comes into play is when the row is initially
inserted. The following example shows an INSERT statement that causes the default value
defined in the DF_Customer_CustomerType constraint to be used:

INSERT Sales.Customer

(TerritoryID)

SELECT TOP 1 TerritoryID from Sales.SalesTerritory

select CustomerID, CustomerType from Sales.Customer

where CustomerID = @@identity

/*Results from previous select statement

CustomerID CustomerType

—————- ——————

30119 I

*/

The Sales.Customer table in the Adventureworks2008 database is an interesting table
because most of the columns have defaults defined, are identity columns, or are nullable.
This table has eight columns, but only one value is supplied in the previous example. The
rest of the columns, including the CustomerType column, have default definitions that
automatically populate the values upon insertion or default to null.

One common misconception with defaults is that a default value is stored when a NULL
value is supplied for a column on insertion. However, NULL is considered a value, so the
default value is not used in this situation. This is demonstrated in the following example,
where the CustomerType column is altered to accept NULL values and then a NULL value is
specified for the CustomerType column in the INSERT statement:

ALTER TABLE Sales.Customer

ALTER COLUMN CustomerType nchar(1) null

INSERT Sales.Customer

(TerritoryID, CustomerType)

SELECT TOP 1 TerritoryID, null

from Sales.SalesTerritory

The insertion in this example succeeds, and the Null value is stored in the CustomerType
column that has a default defined on it.

 Download from www.wowebook.com

ptg

833Defaults
2

6

To remove a declarative default constraint, you use ALTER TABLE with the DROP
CONSTRAINT clause. The following example removes the DF_Customer_CustomerType
constraint from the Sales.Customer table:

ALTER TABLE Sales.Customer DROP CONSTRAINT DF_Customer_CustomerType

Bound Defaults

Bound defaults are similar to rules in that you first create a bound default and then bind it
to a column or set of columns. Bound defaults are also similar to rules in that they are
slated for removal in a future version of SQL Server. This section covers the basics of
bound defaults, but you should keep in mind that Microsoft recommends you avoid using
them for new development work.

You use the CREATE DEFAULT command to establish a default that can be bound to a
column at a later time. The CREATE DEFAULT syntax is as follows:

CREATE DEFAULT [schema_name .] default_name

AS constant_expression [;]

constant_expression can include any constant, built-in function, or mathematical
expression. It cannot include user-defined functions. Character and data values that are
part of the expression should be enclosed in single quotation marks. Monetary, integer,
and floating-point constants do not require the single quotation marks.

The following example creates a default named password_df that can be used to supply a
default password for any password-oriented columns:

CREATE DEFAULT password_df AS ‘defaultpw’

After you create a default, you can bind it to a column. The following example binds the
password_df default to the passwordSalt column on the person.password table:

sp_bindefault password_df, ‘person.password.PasswordSalt’

As you can see, a bound default appears to require an extra step, but after it is created, it
offers an advantage: you can bind it to other columns. This capability provides some
consistency across all the columns that the default is bound to and reduces the overall
number of database objects.

When a Default Is Applied

Defaults are applied only when no value is specified for a column during an insertion.
They can also be applied during insertions and updates when the DEFAULT keyword is
used. To demonstrate the application of defaults, consider the following examples:

CREATE TABLE test_default

(id int IDENTITY NOT NULL,

 Download from www.wowebook.com

ptg

834 CHAPTER 26 Implementing Data Integrity

tmstmp timestamp NOT NULL,

password char(13) NOT NULL DEFAULT ‘defaultpw’,

Shortdesc VARCHAR(50) NULL)

The table in this example has a unique characteristic: each column has some sort of
default value associated with it. One column has a default of NULL because it is nullable.
The IDENTITY and TIMESTAMP columns automatically generate values because of their data
type, and the password column has an explicit default definition. In this scenario, you can
supply the keywords DEFAULT VALUES in the INSERT statement to insert a row of data, as
shown in the following example:

INSERT test_default DEFAULT VALUES

select * from test_default

/* results from previous select statement

id tmstmp password Shortdesc

—————- ————————— ——————- ————————————-

1 0x00000000000007D1 defaultpw NULL

*/

You can see from the results of the SELECT statement in this example that a row was
inserted in the new table, and this row includes default values for all the columns. If you
want to supply values for some of the columns and allow the defaults to be used for other
columns, you can simply exclude the columns with defaults from the column listing in
the INSERT statement. The following example demonstrates how to do this:

INSERT test_default (ShortDesc)

VALUES(‘test default insertion’)

SELECT * FROM test_default

where ShortDesc = ‘test default insertion’

/* results from previous select statement

id tmstmp password Shortdesc

—- ————————— ————— ———————————-

2 0x00000000000007D2 defaultpw test default insertion

*/

The DEFAULT keyword can also be listed explicitly in the VALUE listing of the INSERT state-
ment, as shown in the following example:

INSERT test_default (tmstmp, password, ShortDesc)

VALUES(DEFAULT, DEFAULT, DEFAULT)

SELECT * FROM test_default where id = @@identity

/*

(1 row(s) affected)

id tmstmp password Shortdesc

—- ————————— ——————- —————

3 0x00000000000007D5 defaultpw NULL

*/

 Download from www.wowebook.com

ptg

835Defaults
2

6

All the examples so far have dealt with INSERT statements, but there is one scenario in
which a default value can be applied with an UPDATE statement. This scenario is similar to
the preceding example and requires the use of the DEFAULT keyword. The following
example demonstrates the use of the DEFAULT keyword in an UPDATE statement:

UPDATE top (1) test_default

SET PASSWORD = DEFAULT

GO

SELECT top 1 * from test_default

/*

id tmstmp password Shortdesc

—————- ————————— ——————- —————-

1 0x00000000000007DE defaultpw NULL

*/

Keep in mind that default values are not used for updates unless the DEFAULT keyword is
explicitly referenced in the SET clause of the UPDATE statement.

Restrictions on Defaults

When creating defaults, you need to keep in mind the following restrictions:

. A default cannot be created on columns that have been defined with TIMESTAMP,
IDENTITY, or ROWGUIDCOL properties.

. Only one default can be assigned to a given column. This restriction applies to both
declarative and bound defaults.

. Only one default can exist per column.

. The default value must be compatible with the data type of the column.

. A default that is bound cannot be dropped if the default is currently bound to a
column. The default must be unbound from the column first.

. The expression in a default cannot include the names of any columns or other data-
base objects.

There are also some considerations related to the interaction of rules, defaults, and
constraints:

. If a column has both a rule and default, the default is not inserted if it violates the
rules.

. If a default value violates a CHECK constraint, the default is not inserted. Ultimately,
all the rules, defaults, and constraints that are active are validated. If the change to
the data violates any of them, it is rejected.

 Download from www.wowebook.com

ptg

836 CHAPTER 26 Implementing Data Integrity

Summary
This chapter covers the basic tools you can use to ensure the integrity of the data in a
database. The integrity of data is directly related to its value; remember the concept of
“garbage in, garbage out.” If you take the time to implement the constraints and other
methods discussed in this chapter, you provide a solid foundation for the storage of data
and avoid the headaches related to dealing with “garbage” data.

Chapter 27, “Creating and Managing Views in SQL Server,” discusses a means for virtu-
ally accessing the data in tables. Virtual tables, or views, allow you to selectively choose
the data elements on one or more tables that you want to present as a single window
into your data.

 Download from www.wowebook.com

ptg

CHAPTER 27

Creating and Managing
Views in SQL Server

IN THIS CHAPTER

. What’s New in Creating and
Managing Views

. Definition of Views

. Using Views

. Creating Views

. Managing Views

. Data Modifications and Views

. Partitioned Views

. Indexed Views

Views offer a window into your data that does not require
physical storage. They are essentially virtual tables that are
defined by a SELECT statement. This chapter describes the
benefits and advantages of these powerful database objects.

What’s New in Creating and
Managing Views
Much of the core functionality associated with standard
views has remained unchanged in SQL Server 2008.
However, some storage enhancements have been added to
SQL Server 2008 that can be used with views. These storage
enhancements include disk storage compression in both
row and page format. It is available on indexed views and
can be used on tables and indexes as well. This data
compression is not covered in this chapter but is covered in
detail in Chapter 34, “Data Structures, Indexes, and
Performance.”

Definition of Views
Views are a logical way of viewing data in the underlying
physical tables. They are tied to a SELECT statement that
retrieves data from one or more tables or views in the same
database or a different database. In most cases, there is no
physical storage of data associated with the view, and the
SELECT that is associated with the view is run dynamically
whenever the view is referenced.

 Download from www.wowebook.com

ptg

838 CHAPTER 27 Creating and Managing Views in SQL Server

The following T-SQL statement can be used to create a simple view in the
Adventureworks2008 database:

CREATE VIEW [dbo].[vw_CustomerAddress]

AS

SELECT Sales.Customer.CustomerID, Sales.Customer.AccountNumber,

Person.Address.AddressLine1,

Person.Address.StateProvinceID, Person.Address.City,

Person.Address.PostalCode

FROM Sales.Customer

INNER JOIN Person.Person

ON Sales.Customer.PersonID = Person.Person.BusinessEntityID

INNER JOIN Person.BusinessEntityAddress

ON Person.Person.BusinessEntityID = Person.BusinessEntityAddress.BusinessEntityID

INNER JOIN Person.Address ON Person.BusinessEntityAddress.AddressID =

Person.Address.AddressID

The vw_CustomerAddress view in this example selects from four different tables in the
Adventureworks2008 database: Sales.Customer, Person.Person, Person.Business
EntityAddress, and Person.Address. After the view is created, it can be used in the FROM
clause of another SELECT statement. The following data retrieval example uses the newly
created view:

select c.AccountNumber, s.OrderDate, c.city , c.StateProvinceId

from vw_CustomerAddress c

INNER JOIN Sales.SalesOrderHeader s

ON c.CustomerID = s.CustomerID

WHERE StateProvinceId = 14

AND s.OrderDate = ‘9/21/01’

ORDER BY c.city

AccountNumber OrderDate city StateProvinceId

AW00020060 2001-09-21 00:00:00.000 Runcorn 14

AW00011333 2001-09-21 00:00:00.000 Newcastle upon Tyne 14

You can see from the sample SELECT that the view is treated much like a table that is refer-
enced in a SELECT statement. The view can be joined to other tables, individual columns
from the view can be selected, and those columns can be included in the ORDER BY clause.
All the retrieval is done dynamically when the view is referenced, and the underlying
tables that are part of the view definition are implicitly accessed, without the need to
know the underlying structure of the view.

 Download from www.wowebook.com

ptg

839Using Views
2

7

Using Views
Views are useful in many scenarios. Some of the most common scenarios include the
following:

. Simplifying data manipulation

. Focusing on specific data

. Abstracting data

. Controlling access to data

Simplifying Data Manipulation

Views can be used to simplify data access. Common queries that utilize complex joins,
UNION queries, and more involved SQL can be defined as views. This minimizes the
amount of complex code that must be written or rewritten and provides a simple way of
organizing your common data access.

SQL Server 2008 comes with a set of system views that demonstrate the views’ capability
to mask complex queries and simplify data manipulation. These system views include
catalog views, information schema views, and compatibility views. In many cases, the
definition of these views is hidden, but some of them can be analyzed using the
sp_helptext system procedure. For example, sys.triggers, a catalog view defined in SQL
Server 2008, has the following definition associated with it:

CREATE VIEW sys.triggers AS

SELECT o.name,

object_id = o.id,

parent_class = o.pclass,

parent_class_desc = pc.name,

parent_id = o.pid,

type = o.type,

type_desc = n.name,

create_date = o.created,

modify_date = o.modified,

is_ms_shipped = sysconv(bit, o.status & 1), — OBJALL_MSSHIPPED

is_disabled = sysconv(bit, o.status & 256), — OBJTRG_DISABLED

is_not_for_replication = sysconv(bit, o.status & 512), — OBJTRG_NOTFORREPL

is_instead_of_trigger = sysconv(bit, o.status & 1024) — OBJTRG_INSTEADOF

FROM sys.sysschobjs o

LEFT JOIN sys.syspalnames n ON n.class = ‘OBTY’ AND n.value = o.type

LEFT JOIN sys.syspalvalues pc ON pc.class = ‘UNCL’ AND pc.value = o.pclass

WHERE o.type IN (‘TA’,’TR’) AND o.pclass <> 100

AND has_access(‘TR’, o.id, o.pid, o.nsclass) = 1

To select the relevant data from the sys.triggers view, you need only reference the
columns in the view that are of interest, and the complexity of the view is hidden. The

 Download from www.wowebook.com

ptg

840 CHAPTER 27 Creating and Managing Views in SQL Server

following query demonstrates the simplicity of a SELECT statement against the
sys.triggers view:

select name, type, create_date

from sys.triggers

where name like ‘i%’

You can see from the sys.triggers example why the folks at Microsoft are big proponents
of views. Complex queries such as the sys.triggers view can be written and tested once,
and subsequent data retrieval can be accomplished by selecting from the view.

Focusing on Specific Data

Views allow users or developers to focus on the specific data elements they need to work
with. Tables that contain hundreds of columns or columns that have limited value for the
end user can be filtered with a view such that only the relevant data elements are
returned.

The HumanResources.vEmployee view in the Adventureworks2008 database is a good
example of a view that focuses on specific data and simplifies data access. The view defini-
tion follows:

ALTER VIEW [vEmployee]

AS

SELECT

e.[BusinessEntityID]

,p.[Title]

,p.[FirstName]

,p.[MiddleName]

,p.[LastName]

,p.[Suffix]

,e.[JobTitle]

,pp.[PhoneNumber]

,pnt.[Name] AS [PhoneNumberType]

,ea.[EmailAddress]

,p.[EmailPromotion]

,a.[AddressLine1]

,a.[AddressLine2]

,a.[City]

,sp.[Name] AS [StateProvinceName]

,a.[PostalCode]

,cr.[Name] AS [CountryRegionName]

,p.[AdditionalContactInfo]

FROM [HumanResources].[Employee] e

INNER JOIN [Person].[Person] p

ON p.[BusinessEntityID] = e.[BusinessEntityID]

INNER JOIN [Person].[BusinessEntityAddress] bea

 Download from www.wowebook.com

ptg

841Using Views
2

7

ON bea.[BusinessEntityID] = e.[BusinessEntityID]

INNER JOIN [Person].[Address] a

ON a.[AddressID] = bea.[AddressID]

INNER JOIN [Person].[StateProvince] sp

ON sp.[StateProvinceID] = a.[StateProvinceID]

INNER JOIN [Person].[CountryRegion] cr

ON cr.[CountryRegionCode] = sp.[CountryRegionCode]

LEFT OUTER JOIN [Person].[PersonPhone] pp

ON pp.BusinessEntityID = p.[BusinessEntityID]

LEFT OUTER JOIN [Person].[PhoneNumberType] pnt

ON pp.[PhoneNumberTypeID] = pnt.[PhoneNumberTypeID]

LEFT OUTER JOIN [Person].[EmailAddress] ea ON p.[BusinessEntityID] =

ea.[BusinessEntityID]

The HumanResources.vEmployee view filters out much of the data that is sensitive or super-
fluous when gathering the basic information about an employee.

Abstracting Data

Data abstraction, in its simplest form, isolates the client code from changes to the under-
lying structure. A view can be used to implement data abstraction within your database
schema. If, for example, you have client code that will retrieve data from a database table
that is likely to change, you can implement a view that retrieves data from the underlying
table. The client code will then reference the view and never access the underlying table
directly. If the underlying tables change or the source of the data for the view changes,
these changes can be isolated from the referencing client code.

To demonstrate this scenario, let’s look at the following SELECT statement, which retrieves
data directly from the Sales.SalesOrderHeader table:

select TerritoryID, sum(TotalDue)

from Sales.SalesOrderHeader

group by TerritoryID

order by TerritoryID

The client code could certainly utilize this kind of query to retrieve the territory data. You
may find, however, that the data retrieval would be better placed within a view if the
summarized territory data were slated to be rolled up into an aggregate table at a later
time. In this scenario, a view like the following could be created initially:

CREATE VIEW vw_TerritoryOrders AS

select TerritoryID, sum(TotalDue) ‘TotalSales’

from Sales.SalesOrderHeader

group by TerritoryID

The client code that needs the territory data would then reference the
vw_TerritoryOrders view. If the source of the territory data changes and it is rolled up in
an aggregate table, the view can be changed to reflect the new source for the data, but the

 Download from www.wowebook.com

ptg

842 CHAPTER 27 Creating and Managing Views in SQL Server

client code remains unchanged. The following example alters the vw_TerritoryOrders
view such that the source of the data is changed:

ALTER VIEW vw_TerritoryOrders AS

select TerritoryID, SalesYTD ‘TotalSales’

from Sales.SalesTerritory

Changing a single view in these types of scenarios can be much easier than changing the
client code that has direct references to the table. This type of abstraction also applies to
partitioned views, which are discussed later in this chapter.

Controlling Access to Data

Views can be used as a security mechanism to limit a user’s access to specific data. This
type of view security can be used to limit the columns that a user has access to or the
rows that the user has access to. A view that limits the accessible columns can be referred
to as vertical security, or column-level security. A view that restricts the rows that are
returned is referred to as horizontal security, or row-level security.

With vertical security, a view is created that contains only the data elements or columns
that you want to make visible. Columns that are sensitive in nature (for example,
payroll data) can be excluded from a view so that they are not seen when the user
selects from the view.

After the view is created, security can be granted on the view. If the owner of the objects
referenced in the view is the same as the owner of the view itself, the user who is granted
permission to the view does not need to have permission granted to the underlying
objects. Listing 27.1 gives an example of this scenario.

LISTING 27.1 Security with Views

USE adventureworks2008

go

CREATE LOGIN OwnerLogin WITH PASSWORD = ‘pw’

CREATE USER OwnerLogin FOR LOGIN OwnerLogin

EXEC sp_addrolemember N’db_owner’, N’OwnerLogin’

CREATE LOGIN NonOwnerLogin WITH PASSWORD = ‘pw’

CREATE USER NonOwnerLogin FOR LOGIN NonOwnerLogin

—Connect as the OwnerLogin at this point

Go

CREATE VIEW OwnerView as

select LoginID, JobTitle, BirthDate, Gender, HireDate, SalariedFlag

from HumanResources.Employee go

GRANT SELECT ON [dbo].[OwnerView] TO [NonOwnerLogin]

 Download from www.wowebook.com

ptg

843Using Views
2

7

—Connect as the NonOwnerLogin at this point

—The following select succeeds because the owner of the

—view that was granted permission is the same as the underlying

—table in the view

select * from OwnerView

—The following SELECT against the underlying table fails

—because the NonOwnerLogin does not have permission to

—select from the table. He can only select through the view

select * from HumanResources.Employee

Listing 27.1 outlines a scenario where one login creates a view that selects specific
columns from the HumanResources.Employee table. The Employee table is part of the
HumanResources schema, and it is owned by DBO. The view that is created is also owned by
DBO because the login (OwnerLogin) that created the view is a member of the db_owner
role. Ultimately, NonOwnerLogin is granted permission to the view. When the
NonOwnerLogin user connects to the database, that user can select rows from the view and
will see only the columns in the Employee table that have been selected in the view. If that
user tries to select rows directly from the underlying HumanResources.Employee table, a
permission-related error fires. Ownership chaining is the key to making this scenario work.

With ownership chaining, SQL Server automatically authorizes a user to access the under-
lying tables, views, or functions referenced in the view. This happens only if the view has
the same owner as the underlying objects and the user has been granted permission to the
view. If, however, you have various owners of the underlying objects that a view refer-
ences, permissions must be checked at each level. If access is denied at any level, access to
the view is denied. Ownership chaining was available in prior versions and is still avail-
able in SQL Server 2008 for backward compatibility.

Horizontal security can also be implemented with a view. With horizontal security, a WHERE
clause is included in the view’s SELECT statement to restrict the rows that are returned. The
following example demonstrates a simple view that utilizes horizontal security:

CREATE VIEW EmpViewHorizontal

as

select EmployeeID, BirthDate, Gender, HireDate, SalariedFlag

from HumanResources.Employee

where HireDate > ‘3/1/03’

—Sample SELECT results from the view:

LoginID BirthDate Gender HireDate SalariedFlag

adventure-works\syed0 1965-02-11 M 2003-04-15 1

adventure-works\lynn0 1961-04-18 F 2003-07-01 1

 Download from www.wowebook.com

ptg

844 CHAPTER 27 Creating and Managing Views in SQL Server

adventure-works\rachel0 1965-08-09 F 2003-07-01 1

Only the rows in the Employee table with a HireDate value greater than March 1, 2003,
are returned when you select everything from the view. Separate views can be created
based on geography, demographics, or any other data element that requires a different set
of security.

Keep in mind that additional conditions can be applied when selecting from a view. You
can utilize another WHERE clause in the SELECT statement that uses a view. This is demon-
strated in the following example:

select * from EmpViewHorizontal

where HireDate >= ‘7/1/03’

and BirthDate > ‘1/1/65’

LoginID BirthDate Gender HireDate SalariedFlag

adventure-works\rachel0 1965-08-09 F 2003-07-01 1

As you can see, a view with horizontal security restricts your initial result set but does not
prevent you from applying additional conditions to obtain the desired result.

Creating Views
You can create several different types of views in SQL Server 2008, including standard
views, indexed views, and partitioned views. Standard views are like those that have been
discussed thus far in this chapter; they let you achieve most of the benefits associated with
views. An indexed view has a unique clustered index defined on it that causes the view to
be materialized. In other words, the creation of the index causes physical storage of the
data related to the view’s index. Partitioned views join horizontally partitioned data from
a set of distinct tables. They can be locally partitioned, meaning that the tables are on the
same server; or they can be distributed, meaning that some of the tables exist on other
servers. Partitioned views and indexed views are discussed in detail later in this chapter.

All types of views share a common set of restrictions:

. Every column (including derived columns) must have a name.

. The SELECT statement used in the view cannot include the COMPUTE BY clause or the
INTO keyword.

. The SELECT statement used in the view cannot include the ORDER BY clause.

. The SELECT statement used in the view cannot contain temporary tables.

. You cannot associate AFTER triggers with views, but you can associate INSTEAD OF
triggers.

. You cannot associate rules or default definitions with a view.

. You cannot define a full-text index on a view.

 Download from www.wowebook.com

ptg

845Creating Views
2

7

A view can have a maximum of 1,024 columns. You can select all the columns for a view
by using a SELECT * statement, but you need to use some caution when doing so. In
particular, you must keep in mind that the view will not display columns that have been
added to the view’s underlying tables after the view has been created. The fact that the
new columns are not displayed can be a good thing but is sometimes overlooked. You can
prevent changes to the underlying objects (for example, tables) by creating the view with
SCHEMABINDING. SCHEMABINDING is discussed in the next section.

If you want the changes to the underlying objects to be reflected in the views, you can use
the sp_refreshview stored procedure. This stored procedure updates the metadata for the
specified non-schema-bound view.

TIP

SQL Server Books Online lists a handy script that can be used to update any view that
has a dependency on an object. The script is shown in the sp_refreshview examples.
The script, listed here, is coded such that it will generate output that can be run to
generate the sp_refreshview statements for the Person.Person table in the
Adventureworks2008 database:

SELECT DISTINCT ‘EXEC sp_refreshview ‘’’ + name + ‘’’’

FROM sys.objects so INNER JOIN sys.sql_dependencies sd

ON so.object_id = sd.object_id

WHERE type = ‘V’

AND sd.referenced_major_id = object_id(‘Person.Person’)

To generate the executions for another object, you simply change the name of the
object (that is, Person.Person) found at the end of the script to the name of the
object you want to investigate.

With these guidelines in mind, you are now ready to create your view. Views can be
created in SQL Server 2008 using T-SQL or SQL Server Management Studio (SSMS).

Creating Views Using T-SQL

The CREATE VIEW statement is used to create views with T-SQL. The syntax for the CREATE
VIEW statement follows:

CREATE VIEW [schema_name .] view_name [(column [,...n])]

[WITH <view_attribute> [,...n]]

AS select_statement [;]

[WITH CHECK OPTION]

 Download from www.wowebook.com

ptg

846 CHAPTER 27 Creating and Managing Views in SQL Server

<view_attribute> ::=

{

[ENCRYPTION]

[SCHEMABINDING]

[VIEW_METADATA] }

This statement and the related options are essentially the same in SQL Server 2008 as they
were in SQL Server 2005 and SQL Server 2000. We first look at a simple example for creat-
ing a view with T-SQL and then delve into several other examples that utilize the view
attributes. Listing 27.2 shows a sample T-SQL statement for creating a simple view.

LISTING 27.2 Creating a Simple View with T-SQL

CREATE VIEW Sales.vw_OrderSummary as

select datepart(yy, orderdate) as ‘OrderYear’,

datepart(mm, orderdate) as ‘OrderMonth’,

sum(TotalDue) as ‘OrderTotal’

from Sales.SalesOrderHeader

group by datepart(yy, orderdate), datepart(mm, orderdate)

There are several important aspects to notice in the example in Listing 27.2. First, all the
columns in the SELECT statement are derived columns and do not simply reference a
column in a table. You do not need to have a derived column in your view, but if you do,
the derived column(s) must have a name or an alias assigned to it to be able to create the
view. The column name allows you to reference the derived column when selecting from
the view. If the derived columns in the SELECT statement are not named, the CREATE VIEW
statement will fail.

Another notable characteristic of the simple view example is that an aggregate is used in
the SELECT statement. Aggregates are allowed in views and are common implementations
of views. Views with aggregates can be used instead of summary tables that denormalize
data and use additional disk space. Keep in mind that the results of any view (including
those with aggregates) are not returned in any particular order. Views cannot be created
with the ORDER BY clause, but the ORDER BY clause can be utilized in a SELECT statement
that references the view. The following example shows the first five rows of the
vw_OrderSummary view created in Listing 27.2:

select top 5 * from Sales.vw_OrderSummary

OrderYear OrderMonth OrderTotal

—————- —————- ——————————-

2003 5 4449886.2315

2001 11 3690018.6652

 Download from www.wowebook.com

ptg

847Creating Views
2

7

2003 8 6775857.0745

2002 7 3781879.0708

2003 11 5961182.6761

You can see from the results of the SELECT that the summarized order information is not
returned in any particular order. If you want to sort the results, you can treat the view like
a table in a SELECT statement and use the ORDER BY clause to produce the desired results.
The following example shows a SELECT statement from the vw_OrderSummary view and the
ordered results:

select top 5 *

from Sales.vw_OrderSummary

where OrderYear >= 2004

order by OrderYear, OrderMonth

OrderYear OrderMonth OrderTotal

—————- —————- ——————————-

2004 1 3691013.2227

2004 2 5207182.5122

2004 3 5272786.8106

2004 4 4722890.7352

2004 5 6518825.2262

TIP

In many cases, it is best to create views that include the primary key columns from the
underlying tables. This allows the views to be joined to other tables. Consider, for
example, a view created on the Employee table in the Adventureworks2008 database.
If you want to join that view to another table (such as EmployeeAddress), you need the
primary key of the table (that is, Employee.EmployeeID) in the view.

Views can also be created with the following special view attributes: ENCRYPTION,
SCHEMABINDING, and VIEW_METADATA. Each of these attributes and some other specialized
views are discussed in the following sections.

ENCRYPTION

The ENCRYPTION attribute causes the view definition to be stored as encrypted text in
sys.syscomments. This feature is also available for stored procedures and other database
code that you may want to protect. One issue to consider when you create a view using
the ENCRYPTION option is that this option prevents the view from being published as part
of SQL Server replication.

 Download from www.wowebook.com

ptg

848 CHAPTER 27 Creating and Managing Views in SQL Server

The following example shows the creation of one of the prior views with the
ENCRYPTION attribute:

IF EXISTS (SELECT * FROM sys.views WHERE

object_id = OBJECT_ID(N’[Sales].[vw_OrderSummary]’))

DROP VIEW [Sales].[vw_OrderSummary]

GO

CREATE VIEW Sales.vw_OrderSummary

WITH ENCRYPTION AS

select datepart(yy, orderdate) as ‘OrderYear’,

datepart(mm, orderdate) as ‘OrderMonth’,

sum(TotalDue) as ‘OrderTotal’

from Sales.SalesOrderHeader

group by datepart(yy, orderdate), datepart(mm, orderdate)

go

The following SELECT statement from sys.syscomments retrieves the text related to the
encrypted view and shows that the view definition is not visible in the Text column:

SELECT id, OBJECT_NAME(ID) ‘ViewName’, text

FROM SYS.sysCOMMENTS

WHERE OBJECT_NAME(ID) LIKE ‘%vw_OrderSummary%’

id ViewName text

—————— ——————————— ———————————

919674324 vw_OrderSummary NULL

SCHEMABINDING

The SCHEMABINDING attribute binds a view to the schema of the underlying table(s) refer-
enced in the view’s SELECT statement. This binding action prevents any changes to the
underlying tables that would affect the view definition. For example, if you have a view
that includes the Employee.Title column, this column cannot be altered or dropped in
the Employee table. If schema changes are attempted on the underlying tables, an error
message is returned, and the change is not allowed. The only way to make the change is
to drop the view or alter the view to remove the SCHEMABINDING attribute.

TIP

Views created with SCHEMABINDING have been used in the past to simply prevent
changes to the underlying schema. Any table for which you wanted to prevent schema
changes was included in a view, and this essentially locked the definition of the table.
This approach is no longer needed because you can accomplish the same thing using
DDL triggers, which can react to schema changes and prevent them if desired.

 Download from www.wowebook.com

ptg

849Creating Views
2

7

VIEW_METADATA

When the VIEW_METADATA option is specified, SQL Server returns information about the
view, as opposed to the base tables. This happens when browse-mode metadata is
requested for a query that references the view via a database API. Browse-mode metadata
is additional information returned by SQL Server to client-side DBLIB, ODBC, and OLE DB
APIs, which allows them to implement client-side updatable cursors.

WITH CHECK OPTION

WITH CHECK OPTION forces all data modifications made through a view to adhere to the
conditions in the view. The example shown in Listing 27.3 shows a view created using
WITH CHECK OPTION.

LISTING 27.3 View using a WITH CHECK OPTION

CREATE VIEW HumanResources.vw_MaleEmployees

AS

SELECT LoginID, Gender

FROM HumanResources.Employee

WHERE Gender = 'M'

WITH CHECK OPTION

The following UPDATE statement fails when executed against the view created in Listing
27.3 because the Gender change would cause it to no longer be seen by the view:

UPDATE HumanResources.vw_MaleEmployees

SET Gender = ‘F’

WHERE LoginId = ‘adventure-works\taylor0’

Updates and other modifications made though a view are discussed further in the “Data
Modifications and Views” section, later in this chapter.

Creating Views Using the View Designer

SQL Server 2008 provides a graphical tool, called the View Designer, you can use to create
views. This tool can be an invaluable aid when you are creating or modifying a view. The
View Designer is equipped with four panes that provide the information relative to the
view. Figure 27.1 shows the View Designer display for the Person.
vStateProvinceCountryRegion view installed in the Adventureworks2008 database. To
view an existing view in the View Designer, right-click on the view listed in the Object
Explorer and select Design. To create a new view via the View Designer, right-click the
Views node in the Object Explorer and select New View. An empty View Designer is
displayed.

 Download from www.wowebook.com

ptg

850 CHAPTER 27 Creating and Managing Views in SQL Server

The View Designer has these four panes:

. Diagram pane—Gives a graphical view of the tables that are part of the view. This
includes the columns in the tables and relationships between the tables contained
in the view.

. Criteria pane—Displays all the columns selected in the view and allows for sorting,
filtering, and other related column-oriented criteria.

. SQL pane—Renders the T-SQL associated with the view.

. Results pane—Shows the results of that view’s SELECT statement.

The panes in the View Designer are dependent on each other. If you add a WHERE clause in
the SQL pane, the corresponding Filter value is added in the Criteria pane. Similarly, if
you right-click in the Diagram pane and add a table to the view, the Criteria and SQL
panes are updated to reflect this change.

TIP

One of the most amazing features of the View Designer is the capability to render a
SQL statement into its graphical form. You can copy T-SQL into the SQL pane, and the
View Designer reverse-engineers the tables into the Diagram pane, giving you a graphi-
cal display of the query. Some complex SQL statements cannot be rendered, but many
of them can. Give it a try; you will be impressed.

FIGURE 27.1 The View Designer window.

 Download from www.wowebook.com

ptg

851Creating Views
2

7

FIGURE 27.2 The view’s Properties window.

You can control the View Designer via the Query Designer menu option as well. Adding a
new table, verifying the T-SQL, and changing the panes displayed are just some of the
options available on this menu.

NOTE

The View Designer does not allow you to set every attribute of a view. It is a great
starting point for creating a view, but you need to set some attributes using T-SQL after
creating the view. For example, you cannot specify WITH CHECK OPTION in the View
Designer, but you can set it by altering the view after it has been created.

There is also no option to script a view from the View Designer. You must close the
View Designer first, and then you are asked whether you want to save the view. If you
click Yes, a prompt allows you to specify a name.

The Properties window displays information about the view and also allows you to enter
additional view properties. If this window is not visible, you can select the Properties
window from the View menu or simply press F4. The properties you can set on the view
include (but are not limited to) a description, the schema that owns the view, and
whether to bind the view to the schema. Figure 27.2 shows the Properties window for the
Person.vStateProvinceCountryRegion view that we looked at earlier.

After defining a view using the panes in the View Designer and setting its properties, you
can choose to save the view. You are prompted to give it a name. After you save the view,
it appears in the Object Explorer tree.

 Download from www.wowebook.com

ptg

852 CHAPTER 27 Creating and Managing Views in SQL Server

Managing Views
After creating your view, you can manage the view via T-SQL or the View Designer. The T-
SQL commands for managing views are the ALTER VIEW and DROP VIEW statements. The
ALTER VIEW statement is used to modify the properties or definition of the view, and the
DROP VIEW statement is used to remove the view from the database.

Altering Views with T-SQL

The ALTER VIEW syntax follows:

ALTER VIEW [schema_name .] view_name [(column [,...n])]

[WITH <view_attribute> [,...n]]

AS select_statement [;]

[WITH CHECK OPTION]

<view_attribute> ::=

{

[ENCRYPTION]

[SCHEMABINDING]

[VIEW_METADATA]

}

The ALTER VIEW statement utilizes the same set of options and parameters as the CREATE
VIEW statement. You should consider using the ALTER VIEW statement when making
changes to your view instead of dropping and re-creating the view. Altered views retain
their associated permissions and do not affect dependent stored procedures or triggers.

An example of the ALTER VIEW statement follows:

ALTER VIEW [dbo].[vw_employee]

with SCHEMABINDING

AS

SELECT TITLE, GENDER

FROM HumanResources.Employee

WITH CHECK OPTION

The entire definition of the view, including any attributes or options, must be listed in the
ALTER VIEW statement. This behavior is similar to that of the ALTER PROCEDURE statement
and some of the other ALTER statements. You can generate the ALTER VIEW statement from
the Object Explorer by right-clicking the view and selecting Script View As and then
choosing Alter To. This allows you to script the ALTER statement to a new query editor
window, a file, or the Clipboard.

 Download from www.wowebook.com

ptg

853Data Modifications and Views
2

7

Dropping Views with T-SQL

You can drop views from a database by using the DROP VIEW statement. The syntax for
DROP VIEW follows:

DROP VIEW [schema_name .] view_name [...,n] [;]

You can drop more than one view by using one DROP VIEW statement and listing all the
targeted views, separated by commas. You should consider running the sp_depends stored
procedure against the targeted views before dropping them. This procedure lists the
objects dependent on the view you are dropping.

TIP

You can also drop more than one view via SSMS. Simply select the Views node in
Object Explorer and then activate the Object Explorer Details window. The Object
Explorer Details window displays all the views and allows you to select multiple views
that are displayed. After selecting the views you want to delete, you can right-click a
selection and choose Delete to remove all the views selected.

Managing Views with SSMS

You can use the Object Explorer in SQL Server Management Studio to alter or drop views
as well. To do so, you right-click a view in the Object Explorer and choose Design to
launch the View Designer. The View Designer allows you to modify a view in an easy-to-
use graphical interface. Refer to the “Creating Views Using the View Designer” section,
earlier in this chapter, for a detailed review of the View Designer.

To drop a view, you right-click the view in the Object Explorer and choose Delete. You can
drop the view by clicking OK on the Delete Object screen, or you can script the drop state-
ment for later execution.

Data Modifications and Views
Data modifications are allowed through a view under certain circumstances. Views that
meet these criteria are sometimes called updatable views. Updatable views can be refer-
enced in an INSERT, UPDATE, or DELETE statement, and these statements ultimately affect
the underlying table(s) in the view.

The following example contains a SQL statement to create an updatable view, followed by
an UPDATE statement that performs a data modification using the view:

CREATE VIEW vw_CreditCard

AS

SELECT CreditCardID, CardType, CardNumber, ExpMonth, ExpYear

 Download from www.wowebook.com

ptg

854 CHAPTER 27 Creating and Managing Views in SQL Server

FROM Sales.CreditCard

UPDATE vw_CreditCard

SET ExpYear = ExpYear + 1

WHERE ExpYear < 2006

In general, updatable views are similar to the previous example. The following specific
conditions allow a view to be updatable:

. Any data modification via a view must reference columns from a single base table.
This does not restrict a view to only one table, but the columns referenced in the
data modification can be for only one of the tables defined in the view.

. The columns affected by the data modification must directly reference the underly-
ing tables. They cannot be derived through an aggregate function (for example, AVG,
COUNT, SUM) and cannot contain computations from an expression that utilizes
columns from another table.

. The TOP clause cannot be part of the SELECT statement that defines the view when
the WITH CHECK OPTION clause is used.

. The columns affected by the data modification cannot be affected by GROUP BY,
HAVING, or DISTINCT clauses in the view definition.

You can overcome these restrictions by using INSTEAD OF triggers to perform the data
modifications. You can create INSTEAD OF triggers on a view, and the logic within the trig-
gers performs the actual database updates. INSTEAD OF triggers are discussed in detail in
Chapter 30, “Creating and Managing Triggers.”

Partitioned views are another means for performing data modifications via a view.
Partitioned views can be updatable and are not subject to all the restrictions listed for
conventional views. However, some additional restrictions apply to partitioned views.
These additional restrictions and other details about partitioned views are discussed in the
next section.

Partitioned Views
Partitioned views are used to access data that has been horizontally split, or partitioned,
across multiple tables. These tables can be in the same or different databases—or even
spread across multiple servers. Partitioning of tables is done to spread the I/O and process-
ing load of large tables across multiple disks or servers.

You combine the tables in a partitioned view by using a UNION ALL statement that causes
the data from the separate tables to appear as if they were one table. These separate tables
are referred to as member tables or base tables. The member tables in a SELECT statement of
the view must all be structured in the same way, and the view must adhere to the follow-
ing restrictions:

. All the columns from the member tables should be included in the view definition.

 Download from www.wowebook.com

ptg

855Partitioned Views
2

7

. Columns with the same ordinal position in the SELECT list should have the same
data type.

. The same column cannot be used multiple times in the SELECT list.

. A partitioning column that segments the data must be identified and needs to have
the same ordinal position across all the member table SELECT statements.

. The partitioning column cannot be a computed column, an identity, a default, or a
time stamp.

. The data values in the partitioning column cannot overlap in the underlying tables.

. The partitioning column must be part of the primary key of the member table.

. The member tables in the partitioned view need a CHECK constraint on the partition-
ing column.

. A table can appear only once as part of the UNION ALL statement.

. The member tables cannot have indexes created on computed columns in the table.

. The number of columns in the member table primary key constraints should be the
same.

. All member tables should have the same ANSI PADDING setting when created.

The list of restrictions for creating partitioned views is extensive, but the creation of a
partitioned view is relatively straightforward and intuitive. Consider, for example, the
Sales.SalesOrderHeader table in the Adventureworks2008 database. This table is relatively
small, but it is the type of table that could have a large number of rows and experience
heavy utilization. To balance the workload against this table, you could use a partitioned
view that utilizes base tables that each contain a separate year’s data. Listing 27.4 shows
the CREATE TABLE statements to create the base tables for each year. The yearly tables are
intended to hold summarized daily numbers, and each contains only a subset of the
columns in the Sales.SalesOrderHeader table.

LISTING 27.4 Creating the Base Tables for a Partitioned View

CREATE TABLE Sales.Sales_2001

(

OrderDay datetime NOT NULL

CHECK (OrderDay BETWEEN ‘20010101’ AND ‘20011231’),

SubTotal money NOT NULL ,

TaxAmt money not null,

Freight money not null,

CONSTRAINT PK_Sales_2001_OrderDay PRIMARY KEY CLUSTERED (OrderDay ASC)

)

CREATE TABLE Sales.Sales_2002

(

 Download from www.wowebook.com

ptg

856 CHAPTER 27 Creating and Managing Views in SQL Server

OrderDay datetime NOT NULL,

CHECK (OrderDay BETWEEN ‘20020101’ AND ‘20021231’),

SubTotal money NOT NULL ,

TaxAmt money not null,

Freight money not null,

CONSTRAINT PK_Sales_2002_OrderDay PRIMARY KEY CLUSTERED (OrderDay ASC)

)

CREATE TABLE Sales.Sales_2003

(

OrderDay datetime NOT NULL

CHECK (OrderDay BETWEEN ‘20030101’ AND ‘20031231’),

SubTotal money NOT NULL ,

TaxAmt money not null,

Freight money not null,

CONSTRAINT PK_Sales_2003_OrderDay PRIMARY KEY CLUSTERED (OrderDay ASC)

)

CREATE TABLE Sales.Sales_2004

(

OrderDay datetime NOT NULL

CHECK (OrderDay BETWEEN ‘20040101’ AND ‘20041231’),

SubTotal money NOT NULL ,

TaxAmt money not null,

Freight money not null,

CONSTRAINT PK_Sales_2004_OrderDay PRIMARY KEY CLUSTERED (OrderDay ASC)

)

Notice that each table has a primary key on OrderDay, the partitioning column. Also
notice that a CHECK constraint is defined for each table; it ensures that only orders for the
given year can be stored in the table.

To demonstrate the power of a partitioned view, it is best to populate the base tables that
will be used by the view. Listing 27.5 contains a series of INSERT statements that select
from the Sales.SalesOrderHeader table and populate the base tables. The SELECT state-
ments summarize several key columns by day and contain a WHERE clause that limits the
result to orders for the respective years.

LISTING 27.5 Populating the Base Tables for a Partitioned View

INSERT Sales.Sales_2001

SELECT CONVERT(VARCHAR(8),OrderDate,112),

SUM(SubTotal), SUM(TaxAmt), SUM(Freight)

FROM Sales.SalesOrderHeader

WHERE OrderDate between ‘20010101’ AND ‘20011231’

GROUP BY CONVERT(VARCHAR(8),OrderDate,112)

 Download from www.wowebook.com

ptg

857Partitioned Views
2

7

INSERT Sales.Sales_2002

SELECT CONVERT(VARCHAR(8),OrderDate,112),

SUM(SubTotal), SUM(TaxAmt), SUM(Freight)

FROM Sales.SalesOrderHeader

WHERE OrderDate between ‘20020102’ AND ‘20021231’

GROUP BY CONVERT(VARCHAR(8),OrderDate,112)

INSERT Sales.Sales_2003

SELECT CONVERT(VARCHAR(8),OrderDate,112),

SUM(SubTotal), SUM(TaxAmt), SUM(Freight)

FROM Sales.SalesOrderHeader

WHERE OrderDate between ‘20030101’ AND ‘20031231’

GROUP BY CONVERT(VARCHAR(8),OrderDate,112)

INSERT Sales.Sales_2004

SELECT CONVERT(VARCHAR(8),OrderDate,112),

SUM(SubTotal), SUM(TaxAmt), SUM(Freight)

FROM Sales.SalesOrderHeader

WHERE OrderDate between ‘20040102’ AND ‘20041231’

GROUP BY CONVERT(VARCHAR(8),OrderDate,112)

Now that you have the populated base table, you can create a partitioned view and ensure
that the view is selecting only from the base tables that it needs.

Two types of partitioned views are discussed in this chapter: local and distributed. A local
partitioned view utilizes base tables found on the same server. A distributed partitioned
view contains at least one base table that resides on a different (remote) server. The focus
in the section is on local partitioned views; distributed partitioned views are discussed
later in this chapter. The T-SQL for creating a local partitioned view named
Sales.vw_Sales_Daily is shown in Listing 27.6.

LISTING 27.6 Creating a Local Partitioned View

Create View Sales.vw_Sales_Daily

as

SELECT * FROM Sales.Sales_2001

UNION ALL

SELECT * FROM Sales.Sales_2002

UNION ALL

SELECT * FROM Sales.Sales_2003

UNION ALL

SELECT * FROM Sales.Sales_2004

 Download from www.wowebook.com

ptg

858 CHAPTER 27 Creating and Managing Views in SQL Server

The best way to validate that a partitioned view is working properly is to run a conditional
SELECT against the view and display the execution plan. If the partitioned view is func-
tioning properly, it should be accessing only the base tables it needs to satisfy the SELECT
and should not access all the tables in the view unless it needs to. The following example
shows a sample SELECT against the new partitioned view:

SELECT * FROM Sales.vw_Sales_Daily

WHERE OrderDay > ‘20040701’

and SubTotal > 2000

If you execute this statement and review the actual execution plan, you see that an index
seek is performed against the Sales.Sales_2004 table. This is the correct result, given that
the SELECT statement is targeting order data from 2004.

NOTE

SQL Server Books Online states that the recommended method for partitioning data on
a local server in SQL Server 2008 is through the use of partitioned tables and index-
es. Partitioned tables and indexes are discussed in Chapter 24, “Creating and
Managing Tables.”

Modifying Data Through a Partitioned View

You can modify data via a partitioned view if the SQL statement performing the modifica-
tion meets certain conditions, as described here:

. All columns in the partitioned view must be specified in the INSERT statement.
Columns that include a DEFAULT constraint or allow nulls are also subject to this
requirement.

. The DEFAULT keyword cannot be used on inserts to partitioned views or on updates
to partitioned views.

. UPDATE statements cannot modify PRIMARY KEY columns if the member tables have
text, ntext, or image columns.

. Inserts and updates to a partitioned view are not allowed if the view contains a
time stamp.

. Identity columns in a partitioned view cannot be modified by an INSERT or UPDATE
statement.

. INSERT, UPDATE, and DELETE statements are not allowed against a partitioned view if
there is a self-join with the same view or with any of the member tables in the
statement.

NOTE

Data can be modified through partitioned views only in the Enterprise and Developer
Editions of SQL Server 2008.

 Download from www.wowebook.com

ptg

859Partitioned Views
2

7

In addition to the conditions shown in this list, you must also satisfy any restrictions that
apply to the member tables. Check constraints, foreign key constraints, and any other
table-level restrictions must be accounted for in the modification statement. The user
executing the modification against the partitioned view must have the appropriate
INSERT, UPDATE, or DELETE permissions on the member tables for the update to succeed.

Distributed Partitioned Views

Microsoft provides distributed partitioned views (DPVs) as a primary means to scale out a
database server. Scalability allows an application or a database to utilize additional
resources, which allows it to perform more work. There are two kinds of scalability:
scaleup and scaleout. A scaleup solution focuses on a single server scaled to provide more
processing power than its predecessor. An example of scaleup would be migrating from a
server with a single dual-core processor to a machine with 4-quad-core processor. Scaleout
solutions include the addition of servers to augment the overall processing power.

DPVs are similar to local partitioned views, but they utilize one or more tables located on
a remote server. The placement of partitioned data on remote servers allows the processing
power of more than one server to be utilized. The partitioning is intended to be transpar-
ent to the application and allow for additional partitions and servers as the application’s
needs scale.

The following list outlines the basic requirements for creating a DPV:

. A linked server definition is added to each member server that will contain the parti-
tioned data. The linked server contains the connection information required to run
distributed queries on another member server.

. The lazy schema validation option is set to true on each of the member servers,
using sp_serveroption. This option is set for performance reasons and allows the
query processor to skip schema checking of remote tables if the query can be satis-
fied on a single member server.

. A DPV is created on each member server. This DPV references the local tables in
addition to the tables found on the other member servers.

Listing 27.7 shows SQL commands that can be used to satisfy the requirements in the
preceding list. The DPV created in the last portion of the script is similar to the local parti-
tioned view created in the previous section. The key difference in this DPV example is the
inclusion of a distributed query that retrieves records for Sales.Sales_2002 from a remote
server. The remote server in this example is named DbSvrXP.

LISTING 27.7 Creating a Distributed Partitioned View

Exec sp_addlinkedserver @server=’dbsvrxp’,

@srvproduct=’’,

@provider=’MSDASQL’,

@provstr=’DRIVER={SQL Server};

SERVER=dbsvrxp;UID=linklogin;PWD=pw;Initial Catalog=Adventureworks2008’

 Download from www.wowebook.com

ptg

860 CHAPTER 27 Creating and Managing Views in SQL Server

—Set the server option for improved DPV performance

exec sp_serveroption dbsvrxp, ‘lazy schema validation’, true

Create View Sales.vw_Sales_Daily

as

SELECT * FROM Sales.Sales_2001

UNION ALL

SELECT * FROM dbsvrxp.Adventureworks2008.Sales.Sales_2002

UNION ALL

SELECT * FROM Sales.Sales_2003

UNION ALL

SELECT * FROM Sales.Sales_2004

The DPV created in Listing 27.7 contains only one remote table. The example could be
further expanded to have each table in the UNION clause on a different remote server.
Keep in mind that the DPV CREATE statement needs to be adjusted when run on the
remote server(s). The tables that are local on one server are now remote on the other
server, and those that are remote can now be local.

If the DPVs are properly defined, SQL Server 2008 attempts to optimize their performance
by minimizing the amount of data transferred between member servers. The query proces-
sor retrieves the CHECK constraint definitions from each member table. This allows the
query processor to map the specified search arguments to the appropriate table(s). The
query execution plan then accesses only the necessary tables and retrieves only the remote
rows needed to complete the SQL statement.

Data can be modified through a DPV as well. Updatable DPVs, which were introduced in
SQL Server 2000, are still available in SQL Server 2008. Data modifications are performed
against a view, allowing true transparency. The view is accessed as if it were a base table,
and the user or application is unaware of the actual location of the data. If it is configured
properly, SQL Server determines via the WHERE clause specified in the update query which
partition defined in the view must be updated rather than updating all tables in the join.

NOTE

Data can be modified through distributed partitioned views only in the Enterprise and
Developer Editions of SQL Server 2008.

Indexed Views
You establish indexed views by creating a unique clustered index on the view itself, inde-
pendent of the member tables that it references. The creation of this unique index trans-
forms a view from an object that is virtual in nature to one that has physical storage
associated with it. Like all other indexes, the index on a view takes up physical storage,

 Download from www.wowebook.com

ptg

861Indexed Views
2

7

requires maintenance, and, most importantly, can provide performance benefits that
justify its creation.

Creating Indexed Views

Indexed views were first available for creation in SQL Server 2000 and continue to be a
viable means for improving query performance in SQL Server 2008. An index can be
created on a view in all versions of SQL Server 2008, but there are limitations on some of
the versions. The Developer and Enterprise Editions of SQL Server 2008 are the only
editions that support the use of indexed views for queries that don’t specifically reference
the views. Other editions of SQL Server must reference the view by name in the SQL state-
ments and must also use the NOEXPAND keyword in the query. The details of NOEXPAND are
discussed in the section “To Expand or Not to Expand,” later in this chapter.

Regardless of the edition of SQL Server you are running, some basic requirements must be
satisfied for you to create an indexed view. These requirements, which follow, are detailed
in SQL Server 2008 Books Online:

. The ANSI_NULLS and QUOTED_IDENTIFIER options must be set to ON when the CREATE
VIEW statement is executed.

. The ANSI_NULLS option must be set to ON for the execution of all CREATE TABLE state-
ments that create tables referenced by the view.

. The view must not reference any other views, only base tables.

. All base tables referenced by the view must be in the same database as the view and
have the same owner as the view.

. The view must be created with the SCHEMABINDING option. Schema binding binds the
view to the schema of the underlying base tables.

. User-defined functions referenced in the view must be created with the
SCHEMABINDING option.

. Tables and user-defined functions must be referenced via two-part names in the
view. One-part, three-part, and four-part names are not allowed.

. All functions referenced by expressions in the view must be deterministic.

. If the view definition uses an aggregate function, the SELECT list must also include
COUNT_BIG (*).

. The DATA ACCESS property of a user-defined function must be NO SQL, and the
EXTERNAL ACCESS property must be NO.

. CLR functions can appear only in the SELECT list of the view and can reference only
fields that are not part of the clustered index key. They cannot appear in the WHERE
clause of the view or the ON clause of a JOIN operation in the view.

. CLR functions and methods of CLR user-defined types used in the view definition
must have the properties set as DETERMINISTIC = TRUE, PRECISE = TRUE, DATA
ACCESS = NO SQL, and EXTERNAL ACCESS = NO.

 Download from www.wowebook.com

ptg

862 CHAPTER 27 Creating and Managing Views in SQL Server

. If GROUP BY is specified, the view SELECT list must contain a COUNT_BIG(*) expres-
sion, and the view definition cannot specify HAVING, CUBE, or ROLLUP.

. The view cannot contain any of the T-SQL elements shown in the following list:

You can see from this list that the number of requirements is extensive. It can therefore be
difficult to determine whether all the requirements have been met for a particular view. To
simplify this determination, you can query the IsIndexable property, using the
OBJECTPROPERTY function. The following example demonstrates the use of the
IsIndexable property against the sys.views catalog view:

SELECT name AS ViewName

,SCHEMA_NAME(schema_id) AS SchemaName

,OBJECTPROPERTYEX(object_id,’IsIndexed’) AS IsIndexed

,OBJECTPROPERTYEX(object_id,’IsIndexable’) AS IsIndexable

,create_date

,modify_date

FROM sys.views;

The IsIndexable property returns a 1 (or TRUE) if an index can be created on the view
and a 0 if it is not indexable. Most of the views in the Adventureworks2008 database are
not indexable, but the database does contain a couple of examples of views that have
been indexed. The following example shows the CREATE statement for an index on the
vProductAndDescription view. The SET options required when creating the index are
included in the example as well:

SET ARITHABORT ON — for 80 compatibility or earlier

GO

SET CONCAT_NULL_YIELDS_NULL ON

GO

* or tablename.* An expression on a column found in
the GROUP BY clause

A derived table

A common table expression
(CTE)

A rowset function The UNION, EXCEPT, or
INTERSECT operators

Subqueries Outer joins or self-joins The TOP clause

The ORDER BY clause The DISTINCT keyword COUNT (COUNT_BIG is
allowed)

AVG, MAX, MIN, STDEV,
STDEVP, VAR, or VARP

A SUM function that references a
nullable expression

A CLR user-defined aggre-
gate function

The full text predicate COMPUTE or COMPUTE BY CONTAINS
or FREETEXT

CROSS APPLY or OUTER
APPLY operators

Table hints Join hints

 Download from www.wowebook.com

ptg

863Indexed Views
2

7

SET QUOTED_IDENTIFIER ON

GO

SET ANSI_NULLS ON

GO

SET ANSI_PADDING ON

GO

SET ANSI_WARNINGS ON

GO

SET NUMERIC_ROUNDABORT OFF

GO

CREATE UNIQUE CLUSTERED INDEX [IX_vProductAndDescription]

ON [Production].[vProductAndDescription]

(

[CultureID] ASC,

[ProductID] ASC

)

The following example shows the Production.vProductAndDescript view that the index
was created on:

CREATE VIEW [Production].[vProductAndDescription]

WITH SCHEMABINDING

AS

View (indexed or standard) to display products

—and product descriptions by language.

SELECT

p.[ProductID]

,p.[Name]

,pm.[Name] AS [ProductModel]

,pmx.[CultureID]

,pd.[Description]

FROM [Production].[Product] p

INNER JOIN [Production].[ProductModel] pm

ON p.[ProductModelID] = pm.[ProductModelID]

INNER JOIN [Production].[ProductModelProductDescriptionCulture] pmx

ON pm.[ProductModelID] = pmx.[ProductModelID]

INNER JOIN [Production].[ProductDescription] pd

ON pmx.[ProductDescriptionID] = pd.[ProductDescriptionID];

Indexed Views and Performance

Adding indexes to tables is a generally accepted means for improving database perfor-
mance. Indexes provide a keyed lookup to rows of data that can improve database access
and avoid the performance nightmare of a table scan where the entire contents of a table

 Download from www.wowebook.com

ptg

864 CHAPTER 27 Creating and Managing Views in SQL Server

are searched. The same basic principles apply to indexes on views, but indexed views are
best utilized to increase performance in the following scenarios:

. Aggregations such as SUM or AVG can be precomputed and stored in the index to
minimize the potentially expensive computations during query execution.

. Large table joins can be persisted to eliminate the need to write a join when retriev-
ing the data.

. A combination of aggregations and large table joins can be stored.

The performance improvements from the aforementioned scenarios can be significant and
can justify the use of an index. The Query Optimizer can use the precomputed results
stored in the view’s index and avoid the cost of aggregating or joining the underlying
tables. Keep in mind that the Query Optimizer may still use the indexes found on the
member tables of the view instead of the index on the view. The Query Optimizer uses the
following conditions in determining whether the index on the view can be utilized:

. The tables in the query FROM clause must be a superset of the tables in the indexed
view’s FROM clause. In other words, the query must contain all the tables in the view.
The query can contain additional tables not contained in the view.

. The join conditions in the query must be a superset of the view’s join conditions.

. The aggregate columns in the query must be derivable from a subset of the aggregate
columns in the view.

. All expressions in the query SELECT list must be derivable from the view SELECT list
or from the tables not included in the view definition.

. All columns in the query search condition predicates that belong to tables in the
view definition must appear in the GROUP BY list, the SELECT list if there is no GROUP
BY, or the same or equivalent predicate in the view definition.

NOTE

Predicting the Query Optimizer’s use of an indexed view can be complicated and
depends on the complexity of the view that is indexed and the complexity of the query
that may utilize the view. A detailed discussion of these scenarios is beyond the scope
of this chapter, but the Microsoft TechNet article “Improving Performance with SQL
Server 2005 Indexed Views” provides that detail. This article includes more than 20
examples that illustrate the use of indexed views and the conditions the Query
Optimizer uses in selecting an indexed view. As you can see from the title, this article
was written for SQL Server 2005, but the content is still relative for SQL Server 2008.

The flip side of performance with indexes (including those on views) is that there is a cost
in maintaining an index. This cost can adversely affect the performance of data modifica-
tions against objects that have these indexes. Generally speaking, indexes should not be
placed on views that have underlying data sets that are frequently updated. Caution must

 Download from www.wowebook.com

ptg

865Indexed Views
2

7

be exercised when placing indexes on views that support online transaction processing
(OLTP) applications. A balance must be struck between improving the performance of
database modification and improving the performance of database inquiry. Indexed views
improve database inquiry. Databases used for data warehousing and decision support are
usually the best candidates for indexed views.

The impact of data modifications on indexed views is exacerbated by the fact that the
complete result set of a view is stored in the database. When the clustered index is created
on a view, you specify the clustered index key(s) in the CREATE UNIQUE CLUSTERED INDEX
statement, but more than the columns in the key are stored in the database. As in a clus-
tered index on a base table, the B-tree structure of the clustered index contains only the
key columns, but the data rows contain all the columns in the view’s result set.

The increased space utilized by the index view is demonstrated in the following examples.
This first example creates a view and an associated index view similar to the
Adventureworks2008 Production.vProductAndDescription view used in a prior example:

result setCREATE VIEW [Production].[vProductAndDescription_2]

WITH SCHEMABINDING

AS

View (indexed or standard) to display products and

— product descriptions by language.

SELECT

p.[ProductID]

,pmx.[CultureID]

FROM [Production].[Product] p

INNER JOIN [Production].[ProductModel] pm

ON p.[ProductModelID] = pm.[ProductModelID]

INNER JOIN [Production].[ProductModelProductDescriptionCulture] pmx

ON pm.[ProductModelID] = pmx.[ProductModelID]

INNER JOIN [Production].[ProductDescription] pd

ON pmx.[ProductDescriptionID] = pd.[ProductDescriptionID];

go

CREATE UNIQUE CLUSTERED INDEX [IX_vProductAndDescription_2]

ON [Production].[vProductAndDescription_2]

(

[CultureID] ASC,

[ProductID] ASC

)

The difference with this new view is that the result set returns only the two columns in
the clustered index; there are no additional columns in the result set.

When the new view and associated index are created, you can compare the amount of
physical storage occupied by each. The following example shows the sp_spaceused
commands for each view and the associated results:

exec sp_spaceused ‘Production.vProductAndDescription’

 Download from www.wowebook.com

ptg

866 CHAPTER 27 Creating and Managing Views in SQL Server

/* results

name rows reserved data index_size unused

——————————— —— ———— ——— ————— ———

vProductAndDescription 1764 592 KB 560 KB 16 KB 16 KB

*/

exec sp_spaceused ‘Production.vProductAndDescription_2’

/* results

name rows reserved data index_size unused

——————————— —— ———— ——— ————— ———

vProductAndDescription_2 1764 64 KB 48 KB 16 KB 0 KB

*/

Take note of the reserved space and data results for each view. The view that was created
with only two result columns takes much less space than the view that has an index with
five result columns. You need to consider the overhead of storing these additional result
columns along with the index when creating the view and related index. Changes made
to any of the columns in the base tables that are part of the view results must also be
maintained for the index view as well.

Nonclustered indexes can be created on a view, and they can also provide added query
performance benefits when used properly. Typically, columns that are not part of the clus-
tered index on a view are added to the nonclustered index. Like nonclustered indexes on
tables, the nonclustered indexes on the view provide additional options for the Query
Optimizer when it is choosing the best query path. Common search arguments and
foreign key columns that may be joined in the view are common targets for nonclustered
indexes.

To Expand or Not to Expand

The expansion of a view to its base tables is a key consideration when evaluating the use
of indexes on views. The SQL Server Query Optimizer can expand a view to its base tables
or decide to utilize indexes that are found on the view itself. The selection of an index on
a view is directly related to the edition of SQL Server 2008 you are running and the expan-
sion options selected for a related query.

As mentioned earlier, the Enterprise and Developer Editions are the only editions that
allow the Query Optimizer to use an indexed view to solve queries that structurally match
the view, even if they don’t refer to the view by name. For other editions of SQL Server
2008, the view must be referenced in the query, and the NOEXPAND hint must be used as
well for the Query Optimizer to consider the index on the view. The following example
demonstrates the use of the NOEXPAND hint:

SELECT *

FROM Production.vProductAndDescription (NOEXPAND)

WHERE cultureid = ‘he’

 Download from www.wowebook.com

ptg

867Summary
2

7

When this example is run against the Adventureworks2008 database, the execution plan
indicates that a clustered index seek will be performed, using the index on the view. If the
NOEXPAND hint is removed from the query, the execution plan will ignore the index on the
view and return the results from the base table(s). The only exception to this is when the
Enterprise or Developer Edition is used. These editions can always consider indexed views
but may or may not choose to use them.

SQL Server also has options to force the Query Optimizer to use the expanded base tables
and ignore indexed views. The (EXPAND VIEWS) query hint ensures that SQL Server will
process a query by accessing data directly from the base tables. This option might seem
counterproductive, but it can be useful in situations in which contention exists on an
indexed view. It is also handy for testing indexed views and determining overall perfor-
mance with and without the use of indexed views.

The following example, which utilizes the same view as the previous example, demon-
strates the use of the (EXPAND VIEWS) query hint:

SELECT *

FROM Production.vProductAndDescription

WHERE cultureid = ‘he’

OPTION (EXPAND VIEWS)

The query plan in this example shows the use of the base tables, and the index on the
view is ignored. For more information on query optimization and indexes, see Chapter 34.

Summary
Views provide a broad spectrum of functionality, ranging from simple organization to
improved overall query performance. They can simplify life for developers and users by
filtering the complexity of a database. They can help organize data access and provide a
security mechanism that helps keep a database safe. Finally, they can provide performance
improvements via the use of partitioned views and indexed views that help keep your
database fast.

Some of the same benefits, including performance and security benefits, can also be
achieved through the use of stored procedures. Chapter 28, “Creating and Managing
Stored Procedures,” delves into these useful and powerful database objects.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 28

Creating and Managing
Stored Procedures

IN THIS CHAPTER

. What’s New in Creating and
Managing Stored Procedures

. Advantages of Stored
Procedures

. Creating Stored Procedures

. Executing Stored Procedures

. Deferred Name Resolution

. Viewing Stored Procedures

. Modifying Stored Procedures

. Using Input Parameters

. Using Output Parameters

. Returning Procedure Status

. Debugging Stored Procedures
Using SQL Server
Management Studio

. Using System Stored
Procedures

. Startup Procedures

A stored procedure is one or more SQL commands stored in
a database as an executable object. Stored procedures can be
called interactively, from within client application code,
from within other stored procedures, and from within trig-
gers. Parameters can be passed to and returned from stored
procedures to increase their usefulness and flexibility. A
stored procedure can also return a number of result sets and
a status code.

What’s New in Creating and
Managing Stored Procedures
Unlike SQL Server 2005 with its addition of .NET CLR
stored procedures, SQL Server 2008 doesn’t introduce any
significant changes to the creation and functionality of
stored procedures. However, one of the most welcome
enhancements is the return of the Transact-SQL (T-SQL)
debugger to SQL Server Management Studio (SSMS). System
administrators can now debug stored procedures without
having to install Visual Studio (VS). An introduction to
debugging stored procedures is provided later in this
chapter in the section “Debugging Stored Procedures Using
SQL Server Management Studio.”

One small enhancement to the functionality of stored
procedures in SQL Server 2008 is the capability to use table-
valued parameters. Table-valued parameters allow you to
pass table variables as input parameters to stored procedures
so that the contents may be accessed from within the
stored procedure. In previous versions of SQL Server, it was
not possible to access the contents of table variables outside

 Download from www.wowebook.com

ptg

870 CHAPTER 28 Creating and Managing Stored Procedures

the scope in which they were declared. The “Using Table-Valued Parameters” section in
this chapter provides a description and examples on how to make use of this new feature.

One other enhancement in SQL Server 2008 is that there is no longer a maximum size for
your stored procedure source code.

Advantages of Stored Procedures
Using stored procedures provides many advantages over executing large and complex
SQL batches from client applications. Following are some of them:

. Modular programming—Subroutines and functions are often used in ordinary
3GL and 4GL languages (such as C, C++, and Microsoft Visual Basic) to break code
into smaller, more manageable pieces. The same advantages are achieved when using
stored procedures, with the difference that the stored procedure is stored in SQL
Server and can be called by any client application.

. Restricted, function-based access to tables—A user can have permission to
execute a stored procedure without having permissions to operate directly on the
underlying tables.

. Reduced network traffic—Stored procedures can consist of many individual SQL
statements but can be executed with a single statement. This allows you to reduce
the number and size of calls from the client to the server.

. Faster execution—Stored procedures’ query plans are kept in memory after the first
execution. The code doesn’t have to be reparsed and reoptimized on subsequent
executions.

. Enforced consistency—If users modify data only through stored procedures, prob-
lems that often result from ad hoc modifications (such as omitting a crucial WHERE
clause) are eliminated.

. Reduced operator and programmer errors—Because less information is being
passed, complex tasks can be executed more easily, with less likelihood of SQL errors.

. Automating complex or sensitive transactions—If all modifications of certain
tables take place in stored procedures, you can guarantee the data integrity on those
tables.

Some of the disadvantages of using stored procedures (depending on the environment) are
as follows:

. Increase in server processing requirements—Using stored procedures can
increase the amount of processing that takes place on the server. In a large user envi-
ronment with considerable activity in the server, it may be more desirable to offload
some of the processing to the client workstation.

. Less cross-DBMS portability—Although the ANSI-99 SQL standard provides a
standard for stored procedures in database management systems (DBMSs), the for-
mat and structure are different from those of SQL Server stored procedures. These

 Download from www.wowebook.com

ptg

871Creating Stored Procedures

procedures would all have to be rewritten to be compatible with another DBMS
environment.

Should you use stored procedures? The answer is (as it often is), it depends.

If you are working in a two-tier environment, using stored procedures is often advanta-
geous. The trend is shifting to three- (or more) tier environments. In such environments,
business logic is often handled in some middle tier (possibly ActiveX objects managed by
Microsoft Transaction Server). If you operate in that type of environment, you might want
to restrict the stored procedures to performing basic data-related tasks, such as retrievals,
insertions, updates, and deletions.

NOTE

You can use stored procedures to make a database sort of a “black box” as far as the
developers and the application code are concerned. If all database access is managed
through stored procedures, the applications are shielded from possible changes to the
underlying database structures.

For example, one organization found the need to split one table across multiple data-
bases. By simply modifying the existing stored procedures to handle the multiple tables
and by using distributed partitioned views, the company was able to make this change
without requiring any changes to the front-end application code.

Creating Stored Procedures
To create a stored procedure, you need to give the procedure a unique name within the
schema and then write the sequence of SQL statements to be executed within the proce-
dure. Following is the basic syntax for creating stored procedures:

CREATE { PROC | PROCEDURE } [schema_name.]procedure_name [; number]

[{ @parameter [schema_name.]data_type }

[VARYING] [= default] [OUT | OUTPUT] [READONLY]

] [,...n]

[WITH { [ENCRYPTION]

, [RECOMPILE]

, [EXECUTE_AS_Clause]

[,...n]]

[FOR REPLICATION]

AS

[BEGIN]

SQL_Statements

[RETURN scalar_expression]

[END]

It is good programming practice to always end a procedure with the RETURN statement and
to specify a return status other than 0 when an error condition occurs. Listing 28.1 shows

2
8

 Download from www.wowebook.com

ptg

872 CHAPTER 28 Creating and Managing Stored Procedures

a simple stored procedure that returns book titles and the names of the authors who wrote
them.

LISTING 28.1 A Sample Stored Procedure

use bigpubs2008

go

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’title_authors’)

DROP PROCEDURE dbo.title_authors

GO

CREATE PROCEDURE title_authors

AS

BEGIN

SELECT a.au_lname, a.au_fname, t.title

FROM titles t INNER JOIN

titleauthor ta ON t.title_id = ta.title_id RIGHT OUTER JOIN

authors a ON ta.au_id = a.au_id

RETURN 0

END

NOTE

Unless stated otherwise, all examples in this chapter run in the context of the
bigpubs2008 database.

Creating Procedures in SSMS

To create a stored procedure in SSMS, open the object tree for the database in which you
want to create the procedure, open the Programmability folder, right-click the Stored
Procedures folder, and from the context menu, choose New Stored Procedure. SSMS opens
a new query window, populated with code that is based on a default template for stored
procedures. Listing 28.2 shows an example of the default template code for a stored proce-
dure that would be opened into a new query window.

LISTING 28.2 An Example of a New Stored Procedure Creation Script Generated by SSMS

-- ==

-- Template generated from Template Explorer using:

-- Create Procedure (New Menu).SQL

--

-- Use the Specify Values for Template Parameters

-- command (Ctrl-Shift-M) to fill in the parameter

-- values below.

 Download from www.wowebook.com

ptg

873Creating Stored Procedures

--

-- This block of comments will not be included in

-- the definition of the procedure.

-- ==

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Author: <Author,,Name>

-- Create date: <Create Date,,>

-- Description: <Description,,>

-- ===

CREATE PROCEDURE <Procedure_Name, sysname, ProcedureName>

- Add the parameters for the stored procedure here

<@Param1, sysname, @p1> <Datatype_For_Param1, , int> =

<Default_Value_For_Param1, , 0>,

<@Param2, sysname, @p2> <Datatype_For_Param2, , int> =

<Default_Value_For_Param2, , 0>

AS

BEGIN

- SET NOCOUNT ON added to prevent extra result sets from

- interfering with SELECT statements.

SET NOCOUNT ON;

-- Insert statements for procedure here

SELECT <@Param1, sysname, @p1>, <@Param2, sysname, @p2>

END

GO

You can modify the template code as necessary to set the procedure name and to specify
the parameters, return value, and procedure body. When you are finished, you can
execute the contents of the query window to create the procedure. After you have created
the procedure successfully, it is recommended that you save the source code to a file by
choosing the Save or Save As option from the File menu. This way, you can re-create the
stored procedure from the file if it is accidentally dropped from the database.

TIP

When you create a new stored procedure in SSMS, the procedure does not show up in
the Stored Procedures folder in the Object Browser unless you right-click the Stored
Procedures folder and choose the Refresh option.

2
8

 Download from www.wowebook.com

ptg

874 CHAPTER 28 Creating and Managing Stored Procedures

FIGURE 28.1 Using the Specify Values for Template Parameters dialog in SSMS.

One thing you might notice about the stored procedure template is that it contains
template parameters for parameter names, procedure name, author name, create date, and
so on. These template parameters are in the format <parameter, type, value>:

. parameter_name is the name of the template parameter in the script.

. data_type is the optional data type of the template parameter.

. value is the default value to be used to replace every occurrence of the template
parameter in the script

You can auto substitute values for template parameters by selecting Query, Specify Values
for Template Parameters or by pressing Ctrl+Shift+M. This brings up the dialog shown in
Figure 28.1.

You enter the values for the template parameters in the Value column and then click OK.
SSMS then substitutes any values you specified wherever the template parameter is used
within the template.

An alternative way to create a stored procedure from a template is to use the Template
Explorer in SSMS. You can open the Template Explorer by selecting View, Template
Explorer in SSMS or by pressing Ctrl+Alt+T. The Template Explorer window appears in
SSMS, as shown in Figure 28.2.

You can double-click the name of the stored procedure template you want to use or right-
click the desired template and then select Open. SSMS opens a new query window, popu-
lated with the template code.

 Download from www.wowebook.com

ptg

875Creating Stored Procedures

FIGURE 28.2 Using the Template Explorer for creating stored procedures in SSMS.

2
8

NOTE

It is also possible to edit the provided stored procedure templates available in the
Template Explorer by right-clicking them and selecting the Edit option. You can then cus-
tomize the templates to include code fragments, comments, or structure that is more
to your preference and save the changes to the template file. However, it is generally
recommended that you not modify the provided templates and instead create your own
custom templates.

Creating Custom Stored Procedure Templates
To create a custom stored procedure template, right-click the Stored Procedure folder in
the Template Explorer and select New. SSMS then creates an entry in the Template
Explorer, and you can specify the name for the template.

To begin adding code to the template, right-click the template and select Edit. This opens
a query window in which you can start entering the new template code. Probably the best
way to get started is to copy the template code from one of the templates provided with
SQL Server 2008 and then modify it as you desire. You then select File, Save to save the
template code to the file.

Listing 28.3 shows an example of a new stored procedure template.

 Download from www.wowebook.com

ptg

876 CHAPTER 28 Creating and Managing Stored Procedures

LISTING 28.3 An Example of Custom Stored Procedure Template

-- ===

-- Create basic stored procedure template

-- ===

-- Drop stored procedure if it already exists

IF EXISTS (

SELECT *

FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’<Proc_Name, sysname, myproc>’

)

DROP PROCEDURE <Schema_Name, sysname, dbo>.<Proc_Name, sysname, myproc>

GO

-- ===

-- Author: <Author,,Name>

-- Create date: <Create Date,,>

-- Description: <Description,,>

-- ===

CREATE PROCEDURE <Schema_Name, sysname, dbo>.<Proc_Name, sysname, myproc>

— Add the parameters for the stored procedure here

<@param1, sysname, @p1> <param1_type, , int> = <param1_default, , 0>,

<@param2, sysname, @p2> <param2_type, , int> = <param2_default, , 0>,

<@param3, sysname, @p3> <param3_type, , int> OUTPUT

AS

BEGIN

-- SET NOCOUNT ON added to prevent extra result sets from

-- interfering with SELECT statements.

SET NOCOUNT ON;

DECLARE @trancnt int

SELECT @trancnt = @@TRANCOUNT

if @trancnt = 0

BEGIN TRAN <Proc_Name, sysname, myproc>

else

SAVE TRAN <Proc_Name, sysname, myproc>

/* Insert processing code here */

if (@@error != 0) -- check for error condition

begin

-- rollback to savepoint, or begin tran

rollback tran <Proc_Name, sysname, myproc>

-- return error code indicating rollback

 Download from www.wowebook.com

ptg

877Creating Stored Procedures
2

8

return -101

end

/* Insert more processing here if required */

-- set value of output parameter

set <@param3,sysname, @p3> = <@param1,sysname, @p1> + <@param2,sysname, @p2>

if @trancnt = 0 -- this proc issued begin tran

-- commit tran, decrement @@trancount to 0

commit tran <Proc_Name, sysname, myproc>

-- commit not required with save tran

return 0 /* successful return */

END

GO

— ===

— Example to execute the stored procedure

— ===

DECLARE <@output_variable, sysname, @p3_output> <output_datatype, , int>

EXECUTE <Schema_name, sysname, dbo>.<Proc_name, sysname, myproc>

<@param1, sysname, @p1> = <param1_value, , 1>,

<@param2, sysname, @p2> = <param2_value, , 1>,

<@param3, sysname, @p3> = <@output_variable, sysname, @p3_output> OUTPUT

SELECT <@output_variable, sysname, @p3_output>

GO

After you define a custom stored procedure template, you can use it as you would use the
built-in templates. You can double-click it or right-click and select Open, and SSMS opens
a new query window with a new stored procedure creation script based on the custom
template. If you use the default values for the template parameters, after the parameter
substitution, the CREATE PROCEDURE script looks like the one in Listing 28.4.

LISTING 28.4 An Example of a CREATE PROCEDURE Script Generated from the Custom
Stored Procedure Template

-- ===

-- Create basic stored procedure template

-- ===

 Download from www.wowebook.com

ptg

878 CHAPTER 28 Creating and Managing Stored Procedures

-- Drop stored procedure if it already exists

IF EXISTS (

SELECT *

FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’myproc’

)

DROP PROCEDURE dbo.myproc

GO

-- ===

-- Author: Name

-- Create date:

-- Description:

-- ===

CREATE PROCEDURE dbo.myproc

— Add the parameters for the stored procedure here

@p1 int = 0,

@p2 int = 0,

@p3 int OUTPUT

AS

BEGIN

-- SET NOCOUNT ON added to prevent extra result sets from

-- interfering with SELECT statements.

SET NOCOUNT ON;

DECLARE @trancnt int

SELECT @trancnt = @@TRANCOUNT

if @trancnt = 0

BEGIN TRAN myproc

else

SAVE TRAN myproc

/* Insert processing code here */

if (@@error != 0) -- check for error condition

begin

-- rollback to savepoint, or begin tran

rollback tran myproc

-- return error code indicating rollback

return -101

end

/* Insert more processing here if required */

 Download from www.wowebook.com

ptg

879Creating Stored Procedures
2

8

-- set value of output parameter

set @p3 = @p1 + @p2

if @trancnt = 0 -- this proc issued begin tran

-- commit tran, decrement @@trancount to 0

commit tran myproc

-- commit not required with save tran

return 0 /* successful return */

END

GO

-- ===

-- Example to execute the stored procedure

-- ===

DECLARE @p3_output int

EXECUTE dbo.myproc

@p1 = 1,

@p2 = 1,

@p3 = @p3_output OUTPUT

SELECT @p3_output

GO

Temporary Stored Procedures

SQL Server enables you to create private and global temporary stored procedures.
Temporary stored procedures are analogous to temporary tables in that they can be
created with the # and ## prefixes added to the procedure name. The # prefix denotes a
local temporary stored procedure; ## denotes a global temporary stored procedure. A local
temporary stored procedure can be executed only by the connection that created it, and
the procedure is automatically deleted when the connection is closed. A global temporary
stored procedure can be accessed by multiple connections and exists until the connection
used by the user who created the procedure is closed and any currently executing versions
of the procedure by any other connections are completed.

If a stored procedure not prefixed with # or ## is created directly in the tempdb database,
the stored procedure exists until SQL Server is shut down. Procedures created directly in
tempdb continue to exist even after the creating connection is terminated.

 Download from www.wowebook.com

ptg

880 CHAPTER 28 Creating and Managing Stored Procedures

Temporary stored procedures are provided for backward compatibility with earlier versions
of SQL Server that did not support the reuse of execution plans for T-SQL statements or
batches. Applications connecting to SQL Server 2000 and higher should use the
sp_executesql system stored procedure to execute dynamic SQL statements instead of
creating temporary stored procedures.

TIP

It is strongly recommended that sp_executesql be used instead of temporary stored
procedures. Excessive use of temporary stored procedures can lead to locking con-
tention on the system tables in tempdb, which can adversely affect overall system per-
formance. For more information on using sp_executesql, see Chapter 44, "Advanced
Stored Procedure Programming and Optimization."

Executing Stored Procedures
To execute a stored procedure, you simply invoke it by using its name (the same way you
probably have already executed system stored procedures, such as sp_help). If the execu-
tion of the stored procedure isn’t the first statement in a batch, you need to precede the
procedure name with the EXEC keyword. Following is the basic syntax for executing stored
procedures:

[EXEC[UTE]] [@status =] [schema].procedure_name[; number]

[[@param_name =] expression [output][, ...]]

[WITH RECOMPILE]

NOTE

The reason you need the EXEC keyword when invoking a stored procedure in a batch or
other stored procedure is quite simple. SQL Server parses the commands sent to it in
a batch by searching for keywords. Stored procedure names aren’t keywords. If SQL
Server finds a procedure name among the SQL statements, chances are that SQL
Server will return an error message because it tries to treat it as part of the preceding
command. Sometimes the execution is successful, but SQL Server doesn’t execute
what you want. Consider this example:

SELECT * FROM titles

sp_help

The SELECT statement runs fine, but the procedure is not executed. The reason is
that sp_help ends up being used as a table alias for the titles table in the
SELECT statement.

However, if you precede the procedure name with EXEC, like this, you get the
expected behavior:

SELECT * FROM titles

 Download from www.wowebook.com

ptg

881Executing Stored Procedures
2

8

EXEC sp_help

Why don’t you have to put EXEC in front of the procedure name if the procedure is the
first statement in a batch? If SQL Server doesn’t recognize the first string in a batch, it
simply assumes that it is a name of a stored procedure. For example, execute the
following string and notice the error message:

Dsfdskgkghk

go

Msg 2812, Level 16, State 62, Line 1

Could not find stored procedure ‘Dsfdskgkghk’.

As good programming practice, it is best to always precede stored procedures with the
EXEC keyword. This way, it will always work as expected, whether or not it’s the first
statement in a batch.

Executing Procedures in SSMS

To execute a stored procedure in SSMS, open the object tree for the database, open the
Programmability folder, and open the Stored Procedures folder. Then right-click the
stored procedure, and from the context menu, choose Execute Stored Procedure. SSMS
then presents you with the Execute Procedure dialog, as shown in Figure 28.3. In this
window, you can enter values for any parameters contained in the stored procedure. If you
want to pass a NULL value to a parameter, you need to be sure to place a check mark in the
Pass Null Value check box for that parameter.

After you specify values for all the parameters, SSMS opens a new query window with the
generated execute statement and automatically executes it. It displays any results in the
Results window. If the stored procedure contains output parameters, SSMS generates local
variables for the output parameters and uses a SELECT statement to display the values
returned to the output parameters. Listing 28.5 shows an example of the execute script
and its results for the procedure invoked in Figure 28.3 (this procedure is the one gener-
ated from the custom procedure template, as shown in Listing 28.4).

LISTING 28.5 A Procedure Execution Script Generated by SSMS

USE [bigpubs2008]

GO

DECLARE @return_value int,

@p3 int

EXEC @return_value = [dbo].[myproc]

@p1 = 100,

@p2 = 200,

@p3 = @p3 OUTPUT

 Download from www.wowebook.com

ptg

882 CHAPTER 28 Creating and Managing Stored Procedures

FIGURE 28.3 Using the Execute Procedure dialog in SSMS.

SELECT @p3 as N’@p3’

SELECT ‘Return Value’ = @return_value

GO

@p3

300

Return Value

0

Execution Context and the EXECUTE AS Clause

Normally, stored procedures execute within the security context of the current user. The
user must have execute permission on the procedure and if the objects referenced within
the stored procedure are not owned by the user who created the stored procedure, the
current user must also have the necessary permissions granted on the referenced objects.
The current user does not inherit the permissions of the procedure creator. The only

 Download from www.wowebook.com

ptg

883Executing Stored Procedures
2

8

exception to this occurs when the objects referenced by a stored procedure are owned by
the same user who created the stored procedure. In this case, permissions on the refer-
enced objects in the stored procedure are dependent on the ownership chain that exists
between the calling procedure and referenced objects. For example, if the creator of a
stored procedure also owns the table that it references, the user executing the stored
procedure inherits the rights on the referenced table from the owner within the context of
the stored procedure, without having to be granted explicit rights on the table by the
table owner.

However, there are limitations to using ownership chaining alone for inheriting access
permissions:

. The rights inherited by ownership chaining apply only to DML statements: SELECT,
INSERT, UPDATE, and DELETE.

. The owners of the calling and called objects must be the same.

. The rights inherited by ownership chaining do not apply to dynamic queries inside
the stored procedure.

In SQL Server 2008, you can implicitly define the execution context of functions (except
inline table-valued functions), stored procedures, and triggers by specifying the EXECUTE
AS clause. The EXECUTE AS clause allows you to go beyond ownership chaining to specify
the security context under which a stored procedure will execute and what access rights
the user will have on the referenced objects. The EXECUTE AS clause allows you to specify
explicitly the security context under which the stored procedure will execute. In other
words, it allows you to specify which user account SQL Server should use to validate
permissions on the database objects referenced by the stored procedure. The user execut-
ing the stored procedure, in effect, impersonates the user specified in the EXECUTE AS
clause within the context of the execution of the stored procedure.

The EXECUTE AS clause can be specified when the stored procedure is created to set the
default security context for all users when executing the stored procedure. Alternatively,
the EXECUTE AS clause can be specified explicitly within the stored procedure code or
within each individual user session. When specified in a user session, the security context
switches to that specified until the connection is closed, a REVERT statement is run, or
another EXECUTE AS statement is run.

The syntax of the EXECUTE AS clause for stored procedures is as follows:

{ EXEC | EXECUTE } AS { CALLER | SELF | OWNER | ‘user_name’ }

You can specify the following security context options when using the EXECUTE AS clause:

. CALLER—This option specifies that the statements inside the stored procedure are
executed in the context of the caller of the module (that is, the current user). The
user executing the stored procedure must have execute permission on the stored
procedure and also permissions on any database objects that are referenced by the
stored procedure that are not owned by the procedure creator. CALLER is the default
behavior for all stored procedures, and it is the same as SQL Server 2000 behavior.

 Download from www.wowebook.com

ptg

884 CHAPTER 28 Creating and Managing Stored Procedures

. SELF—This option is equivalent to EXECUTE AS user_name, where the specified user is
the person creating or modifying the stored procedure.

. OWNER—This option specifies that the statements inside the stored procedure execute
in the context of the current owner of the stored procedure. If the procedure does
not have a specified owner, the owner of the schema in which the procedure was
created is used. OWNER must map to a single user account and cannot be a role or
group.

. ’user_name’—This option specifies that the statements inside the stored procedure
execute in the context of the user_name specified. Permissions for any objects within
the stored procedure are verified against this user. The user specified must exist in
the current database and cannot be a group, role, certificate, key, or built-in account.

To determine the execution context of a stored procedure, you can query the
execute_as_principal_id column in either the sys.sql_modules or
sys.assembly_modules catalog view.

Specifying an execution context for a stored procedure can be very useful when you want
to define custom permission sets. For example, some actions, such as TRUNCATE TABLE,
cannot be explicitly granted to other users. However, if you use the EXECUTE AS clause to
set the execution context of a stored procedure to a user who does have truncate table
permissions (for example, a user who has permissions to alter the table), you can then
incorporate the TRUNCATE TABLE statement within the procedure. Any user to whom you
then grant EXECUTE permission on the stored procedure is able to run it to execute the
TRUNCATE TABLE command contained in it.

TIP

When using the EXECUTE AS clause to customize the permission set for a stored pro-
cedure, it is good security policy to specify a login or user that has the least privileges
required to perform the operations defined in the stored procedure. Do not specify an
account such as a database owner account unless those permissions are required.

To specify the EXECUTE AS clause when you create or modify a stored procedure and
specify a user account other than your own, you must have impersonate permissions on
the specified user account in addition to having permissions to create or alter the stored
procedure. When no execution context is specified or EXECUTE AS CALLER is specified,
impersonate permissions are not required.

The following example demonstrates how the user context changes when you use the
EXECUTE AS clause in the creation of a stored procedure:

use bigpubs2008

go

sp_addlogin fred, fred2008

go

 Download from www.wowebook.com

ptg

885Deferred Name Resolution
2

8

sp_grantdbaccess fred

go

create proc test_execute_as

with EXECUTE AS ‘fred’

as

select user_name() as ‘User context within proc’

go

select user_name() as ‘User context before EXEC’

exec test_execute_as

User context before EXEC

dbo

User context within proc

fred

Deferred Name Resolution
In SQL Server 2008, the object names that a stored procedure references do not have to
exist at the time the procedure is created. SQL Server 2008 checks for the existence of
database objects at the time the stored procedure is executed and returns an error message
at runtime if the referenced object doesn’t exist. The only exception is when a stored
procedure references another stored procedure that doesn’t exist. In that case, a warning
message is issued, but the stored procedure is still created (see Listing 28.6).

LISTING 28.6 Procedure Name Resolution During Stored Procedure Creation

create proc p2

as

exec p3

go

The module ‘p2’ depends on the missing object ‘p3’. The module will still be

created; however, it cannot run successfully until the object exists.

When a table or view does exist at procedure creation time, the column names in the refer-
enced table are validated. If a column name is mistyped or doesn’t exist, the procedure is
not created (see Listing 28.7).

 Download from www.wowebook.com

ptg

886 CHAPTER 28 Creating and Managing Stored Procedures

LISTING 28.7 Column Name Validation in Stored Procedures

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’get_authors_and_titles’)

DROP PROCEDURE dbo.get_authors_and_titles

GO

create proc get_authors_and_titles

as

select a.au_lname, au_fname, title, isbn_number

from authors a join titleauthor ta on a.au_id = ta.au_id

join titles t on t.title_id = ta.title_id

return

go

Server: Msg 207, Level 16, State 1, Procedure get_authors_and_titles, Line 4

Invalid column name ‘isbn_number’.

One advantage of delayed (or deferred) name resolution is the increased flexibility when
creating stored procedures; the order of creating procedures and the tables they reference
does not need to be exact. Delayed name resolution is an especially useful feature when a
stored procedure references a temporary table that isn’t created within that stored proce-
dure. However, at other times, it can be frustrating to have a stored procedure create
successfully only to have it fail when it runs due to a missing table, as shown in
Listing 28.8.

LISTING 28.8 Runtime Failure of a Stored Procedure with an Invalid Object Reference

create proc get_authors_and_titles

as

select a.au_lname, au_fname, title, pub_date

from authors a join titleauthor ta on a.au_id = ta.au_id

join books t on t.title_id = ta.title_id

go

EXEC get_authors_and_titles

go

Server: Msg 208, Level 16, State 1, Procedure get_authors_and_titles, Line 4

Invalid object name ‘books’.

 Download from www.wowebook.com

ptg

887Deferred Name Resolution
2

8

Another issue to be careful of with deferred name resolution is that you can’t rename
objects referenced by stored procedures and have the stored procedure continue to work.
In versions of SQL Server prior to 7.0, after the stored procedure was created, object refer-
ences within the stored procedure were made via the object ID rather than the object
name. This allowed stored procedures to continue to function properly if a referenced
object was renamed. However, now that object names are resolved at execution time, the
procedure fails at the statement referencing the renamed object. For the stored procedure
to execute successfully, it needs to be altered to specify the new object name.

Identifying Objects Referenced in Stored Procedures

Because changing the name of a table can cause stored procedures to no longer work, you
might want to identify which stored procedures reference a specific table so you know
which stored procedures will be affected by changes to the table name or columns. You
can view the dependencies between database objects by querying the sys.sql_dependencies
object catalog view. Unfortunately, all you really see if you query the sys.sql_dependencies
view is a bunch of numbers—just the IDs of the objects and columns that have a depen-
dency relationship, along with some additional status information.

The better way to display a list of stored procedures that reference a specific table or view,
or to display a list of objects referenced by a stored procedure, is to use the
sys.dm_sql_referencing_entities and sys.dm_sql_referenced_entities dynamic
management functions.

sys.dm_sql_referencing_entities (‘ schema_name.table_or_view_name ‘ , ‘ OBJECT ‘)

sys.dm_sql_referenced_entities (‘ schema_name.proc_name ‘ , ‘ OBJECT ‘)

For example, to display the stored procedures, triggers, functions, and views that reference
the titles table, you would execute the following:

select referencing_schema_name, referencing_entity_name

From sys.dm_sql_referencing_entities (‘dbo.titles’ , ‘OBJECT’)

go

In the bigpubs2008 database, the titles table is referenced by the following:

referencing_schema_name referencing_entity_name

dbo AverageBookPrice

dbo AverageBookPrice2

dbo AveragePricebyType

dbo AveragePricebyType2

dbo reptq1

dbo reptq2

dbo reptq3

dbo title_authors

 Download from www.wowebook.com

ptg

888 CHAPTER 28 Creating and Managing Stored Procedures

dbo titleview

dbo valid_book_types

To display the objects referenced by the title_authors stored procedure, you could execute
the following:

select distinct

referenced_entity_name as table_name,

referenced_minor_name as column_name

From sys.dm_sql_referenced_entities (‘dbo.title_authors’ , ‘OBJECT’)

go

In the current database, the specified object references the following:

table_name column_name

authors NULL

authors au_fname

authors au_id

authors au_lname

titleauthor NULL

titleauthor au_id

titleauthor title_id

titles NULL

titles title

titles title_id

You can also see dependency information in SSMS by right-clicking an object and choos-
ing View Dependencies. This brings up the Object Dependencies window, as shown in
Figure 28.4. You can view either the objects that depend on the selected object or objects
on which the selected object depends. You can also expand the dependency tree for the
objects listed in the Dependencies pane.

Viewing Stored Procedures
You can view the source code for stored procedures in SQL Server 2008 by querying the
definition column of the object catalog view sys.sql_modules or by using the system
procedure sp_helptext (see Listing 28.9).

LISTING 28.9 Viewing Code for a Stored Procedure by Using sp_helptext

exec sp_helptext title_authors

go

Text

--

CREATE PROCEDURE title_authors

 Download from www.wowebook.com

ptg

889Viewing Stored Procedures
2

8

FIGURE 28.4 Viewing object dependencies in SSMS.

By default, all users have permission to execute sp_helptext to view the SQL code for the
stored procedures in a database. If you want to protect the source code of stored proce-
dures and keep its contents from prying eyes, you can create a procedure by using the
WITH ENCRYPTION option. When this option is specified, the source code stored in the
database is encrypted.

NOTE

If you use encryption when creating stored procedures, be aware that although SQL
Server can internally decrypt the source code, no mechanisms exist for the user or for
any of the end-user tools to decrypt the stored procedure text for display or editing. With
this in mind, make sure that you store a copy of the source code for those procedures
in a file in case you need to edit or re-create them. Also, procedures created by using
the WITH ENCRYPTION option cannot be published as part of SQL Server replication.

AS

BEGIN

SELECT a.au_lname, a.au_fname, t.title

FROM titles t INNER JOIN

titleauthor ta ON t.title_id = ta.title_id RIGHT OUTER JOIN

authors a ON ta.au_id = a.au_id

RETURN

END

 Download from www.wowebook.com

ptg

890 CHAPTER 28 Creating and Managing Stored Procedures

You can, however, attach a debugger to the server process and retrieve a decrypted
procedure from memory at runtime.

You can also view the text of a stored procedure by using the ANSI INFORMATION_SCHEMA
view routines. The routines view is an ANSI standard view that provides the source code
for the stored procedure in the routine_description column. The following example uses
the INFORMATION_SCHEMA.routines view to display the source code for the title_authors
stored procedure:

select routine_definition

from INFORMATION_SCHEMA.routines

where specific_catalog = ‘bigpubs2008’

and specific_schema = ‘dbo’

and routine_type = ‘Procedure’

and routine_name = ‘title_authors’

go

routine_definition

CREATE PROCEDURE title_authors

AS

BEGIN

SELECT a.au_lname, a.au_fname, t.title

FROM titles t INNER JOIN

titleauthor ta ON t.title_id = ta.title_id RIGHT OUTER JOIN

authors a ON ta.au_id = a.au_id

RETURN

END

However, the routine_description column is limited to only the first 4,000 characters of
the stored procedure code. A better way to view the code with a query is to use the
sys.sql_modules object catalog view:

select definition

from sys.sql_modules

where object_id = object_id(‘title_authors’)

go

CREATE PROCEDURE title_authors

AS

BEGIN

SELECT a.au_lname, a.au_fname, t.title

FROM titles t INNER JOIN

titleauthor ta ON t.title_id = ta.title_id RIGHT OUTER JOIN

authors a ON ta.au_id = a.au_id

 Download from www.wowebook.com

ptg

891Modifying Stored Procedures
2

8

RETURN

END

Finally, one other method of displaying the source code for a stored procedure is to use
the new object_definition() function. This function takes the object ID as a parameter.
If you, like most other people, do not know the object ID of the procedure in question,
you can use the object_id() function. The following is an example of using the
object_definition() function:

select object_definition(object_id(‘dbo.title_authors’))

go

--

CREATE PROCEDURE title_authors @state char(2) = ‘%’

AS

BEGIN

SELECT a.au_lname, a.au_fname, t.title

FROM titles t INNER JOIN

titleauthor ta ON t.title_id = ta.title_id RIGHT OUTER JOIN

authors a ON ta.au_id = a.au_id

RETURN

END

TIP

If you are running these queries to display the procedure code in a query window in
SSMS, you probably need to modify the query results options to have the procedures
display correctly. From the Query menu, select Query Options. Expand the Results item
and select Text. Enter a value up to 8192 for the Maximum Number of Characters
Displayed in Each Column setting and click OK.

You probably also want to have the results displayed as text rather than in the grid. To
make this change, under the Query menu, select the Results To submenu and then
select Results to Text. As a shortcut, you can press Ctrl+T to switch to Results to Text.
You can press Ctrl+D to switch back to Results to Grid.

Modifying Stored Procedures
You can modify the text of a stored procedure by using the ALTER PROCEDURE statement.
The syntax for ALTER PROCEDURE is similar to the syntax for CREATE PROCEDURE (see Listing
28.10). Using ALTER PROCEDURE has a couple advantages over dropping and re-creating a
procedure to modify it. The main advantage is that you don’t have to drop the procedure
first to make the change, so it remains available, even if the ALTER PROCEDURE command
fails due to a syntax or object reference error. The second advantage is that because you

 Download from www.wowebook.com

ptg

892 CHAPTER 28 Creating and Managing Stored Procedures

don’t have to drop the procedure, you don’t have to worry about reassigning permissions
to it after modifying it.

LISTING 28.10 Modifying a Stored Procedure by Using ALTER PROCEDURE

ALTER PROCEDURE title_authors @state char(2) = ‘%’

AS

BEGIN

SELECT a.au_lname, a.au_fname, t.title, t.pubdate

FROM titles t

INNER JOIN titleauthor ta ON t.title_id = ta.title_id

RIGHT OUTER JOIN authors a ON ta.au_id = a.au_id

where state like @state

RETURN

END

Viewing and Modifying Stored Procedures with SSMS

You can also use SSMS to create, view, and modify stored procedures.

To edit a stored procedure in SSMS, expand the Programmability folder and then the
Stored Procedures folder, right-click the name of the procedure you want to modify, and
select Modify (see Figure 28.5).

FIGURE 28.5 Modifying stored procedures in SSMS.

 Download from www.wowebook.com

ptg

893Using Input Parameters
2

8

SSMS then extracts the ALTER PROCEDURE statement for the selected procedure into a new
query window. Here, you can edit the procedure code as needed and then execute the
contents of the query window to modify the procedure. In addition, the Object Browser in
SSMS provides other options for extracting the stored procedure source code. It can gener-
ate code to create, alter, or drop the selected stored procedure. You can script the stored
procedure source code to a new window, to a file, or to the Windows Clipboard by right-
clicking the stored procedure name in the Object Browser and choosing the appropriate
option (see Figure 28.6).

Using Input Parameters
To increase the flexibility of stored procedures and perform more complex processing, you
can pass parameters to procedures. The parameters can be used anywhere that local vari-
ables can be used within the procedure code.

The following example is a stored procedure that requires three parameters:

CREATE PROC myproc

@parm1 int, @parm2 int, @parm3 int

AS

FIGURE 28.6 Extracting stored procedure source code to a new query window.

 Download from www.wowebook.com

ptg

894 CHAPTER 28 Creating and Managing Stored Procedures

-- Processing goes here

RETURN

If you want to help identify the data values for which the parameters are defined, it is
recommended that you give your parameters meaningful names. Parameter names, like
local variables, can be up to 128 characters in length, including the @ sign, and they
must follow SQL Server rules for identifiers. Up to 2,100 parameters can be defined for a
stored procedure.

When you execute a procedure, you can pass the parameters by position or by name:

--Passing parameters by position

EXEC myproc 1, 2, 3

--Passing parameters by name

EXEC myproc @parm2 = 2, @parm2 = 1, @parm3 =3

--Passing parameters by position and name

EXEC myproc 1, @parm3 =3, @parm2 = 2

After you specify one parameter by name, you must pass all subsequent parameters for the
procedure in that EXECUTE statement by name as well. You cannot pass any of the subse-
quent parameters by position. If you want to skip parameters that are not the last parame-
ter(s) in the procedure and have them take default values (as described in the next
section), you also need to pass parameters by name or use the DEFAULT keyword in place of
the parameter value.

TIP

When you are embedding calls to stored procedures in client applications and script
files, it is advisable to pass parameters by name. Reviewing and debugging the code
becomes easier that way. One time we spent half a day debugging a set of nested
stored procedures to figure out why they weren’t working correctly, only to find the
problem was due to a missed parameter; all the parameter values were shifted over
one place and the wrong values ended up being passed to the wrong parameters.
This resulted in the queries not finding any matching values. Had the parameters
been passed by name, this issue would not have occurred. This was a lesson learned
the hard way!

Input parameter values passed in can be only explicit constant values, local variables,
parameters, or, new for SQL Server 2008, table-valued parameters. However, you cannot
specify a function or another expression as an input parameter value. You would have to
store a return value from the function or expression value in a local variable and pass the
local variable as the input parameter. Likewise, you cannot use a function or another
expression as a default value for a parameter.

 Download from www.wowebook.com

ptg

895Using Input Parameters
2

8

Setting Default Values for Parameters

You can assign a default value to a parameter by specifying a value in the definition of the
parameter, as shown in Listing 28.11.

LISTING 28.11 Assigning a Default Value for a Parameter in a Stored Procedure

ALTER PROCEDURE title_authors @state char(2) = ‘%’

AS

SELECT a.au_lname, a.au_fname, t.title

FROM titles t

INNER JOIN titleauthor ta ON t.title_id = ta.title_id

RIGHT OUTER JOIN authors a ON ta.au_id = a.au_id

WHERE a.state like @state

RETURN

GO

You can have SQL Server apply the default value for a parameter during execution by not
specifying a value or by specifying the DEFAULT keyword in the position of the parameter,
as shown in Listing 28.12.

LISTING 28.12 Applying a Default Value for a Parameter When Executing a Stored Procedure

EXEC title_authors

EXEC title_authors DEFAULT

EXEC title_authors @state = DEFAULT

TIP

If you are involved in creating stored procedures that other people will use, you proba-
bly want to make the stored procedures as easy to use as possible.

If you leave out a parameter that is required, SQL Server presents an error message.
The myproc procedure, shown earlier in this section, requires three parameters:
@parm1, @parm2, and @parm3:

EXEC myproc

Server: Msg 201, Level 16, State 4, Procedure myproc, Line 0

Procedure ‘myproc’ expects parameter ‘@parm1’, which was not

supplied.

Note that SQL Server complains only about the first missing parameter. The program-
mer passes the first parameter, only to find out that more parameters are required.
This is a good way to annoy a programmer or an end user.

 Download from www.wowebook.com

ptg

896 CHAPTER 28 Creating and Managing Stored Procedures

When you execute a command-line program, you probably expect that you can use /?
to obtain a list of the parameters the program expects. You can program stored proce-
dures in a similar manner by assigning NULL (or some other special value) as a default
value to the parameters and checking for that value inside the procedure. The following
is an outline of a stored procedure that presents the user with information about the
parameters expected if the user doesn’t pass parameters:

CREATE PROC MyProc2

@parm1 int = NULL, @parm2 int = 32, @parm3 int = NULL

AS

IF (@parm1 IS NULL or @parm1 NOT BETWEEN 1 and 10) OR

@parm3 IS NULL

PRINT ‘Usage:

EXEC MyProc2

@parm1 int, (Required: Can be between 1 and 10)

@parm2 = 32, (Optional: Default value of 32)

@parm3 int, (Required: Any number within range)’

-- Processing goes here

RETURN

GO

EXEC MyProc2

GO

Usage:

EXEC MyProc2

@parm1 int, (Required: Can be between 1 and 10)

@parm2 = 32, (Optional: Default value of 32)

@parm3 int, (Required: Any number within range)

You can develop your own standards for the way the message is presented to the user,
but what is important is that the information is presented at all.

To display the parameters defined for a stored procedure, you can view them in the SSMS
Object Explorer (see Figure 28.7) or by executing the sp_help stored procedure, as shown
in Listing 28.13. (Note that the output has been edited to fit the page.)

LISTING 28.13 Displaying Stored Procedure Parameters by Using sp_help

exec sp_help title_authors

Name Owner Type Created_datetime

 Download from www.wowebook.com

ptg

897Using Input Parameters
2

8

FIGURE 28.7 Displaying stored procedure parameters in SSMS.

-------------- ----- ------ ---- ------- ----------- ---------------------------

title_authors dbo stored procedure 2008-09-15 21:15:06.540

Parameter_name Type Length Prec Scale Param_order Collation

-------------- ----- ------ ---- ------- ----------- ---------------------------

@state char 2 2 NULL 1 SQL_Latin1_General_CP1_CI_AS

You can also display the stored procedure parameters by running a query against the
INFORMATION_SCHEMA view parameters:

select substring(Parameter_NAME,1, 30) as Parameter_name,

substring (DATA_TYPE, 1, 20) as Data_Type,

CHARACTER_MAXIMUM_LENGTH as Length,

ordinal_position as param_order,

Collation_name

from INFORMATION_SCHEMA.parameters

where specific_name = ‘title_authors’

and specific_schema = ‘dbo’

order by ordinal_position

go

 Download from www.wowebook.com

ptg

898 CHAPTER 28 Creating and Managing Stored Procedures

Parameter_name Data_Type Length param_order Collation_name

---------------- ------------- ------- ----------- -----------------------------

@state char 2 1 SQL_Latin1_General_CP1_CI_AS

You can view parameter information for a stored procedure as well using the
sys.parameters catalog view:

select substring(p.name,1, 30) as Parameter_name,

substring (t.name, 1, 20) as Data_Type,

p.max_length as Length,

parameter_id as param_order,

default_value

from sys.parameters p

inner join sys.types t

on p.user_type_id = t.user_type_id

where p.object_id = object_id(‘title_authors’)

order by parameter_id

go

Parameter_name Data_Type Length param_order default_value

--------------- ---------- ------ ------------ --------------

@state char 2 1 NULL

Passing Object Names as Parameters

In SQL Server 2008, if you pass an object name as a parameter to a stored procedure, SQL
Server attempts to treat it as a table-valued parameter unless the object name is used either
as an argument in a WHERE clause or in a dynamic SQL query. For example, the code in
Listing 28.14 generates an error message when you try to create the stored procedure.

LISTING 28.14 Attempting to Create a Stored Procedure by Using a Parameter to Pass in a
Table Name

CREATE proc find_data @table varchar(128)

as

select * from @table

GO

Msg 1087, Level 16, State 1, Procedure find_data, Line 4

Must declare the table variable “@table”.

As you can see, when the parameter is used in the FROM clause, SQL Server expects it to be
defined as a table variable. To use the value in the parameter as a table name, you can
build a dynamic SQL query similar to the example shown in Listing 28.15.

 Download from www.wowebook.com

ptg

899Using Input Parameters
2

8

LISTING 28.15 Passing a Table as a Parameter to a Stored Procedure for Dynamic SQL
Execution

CREATE proc find_data @table varchar(128)

as

exec (‘select * from ‘ + @table)

return

go

exec find_data @table = ‘publishers’

go

pub_id pub_name city state country

------ ------------------------ ---------------- ----- ---------

0736 New Moon Books Boston MA USA

0877 Binnet & Hardley Washington DC USA

1389 Algodata Infosystems Berkeley CA USA

1622 Five Lakes Publishing Chicago IL USA

1756 Ramona Publishers Dallas TX USA

...

9952 Scootney Books New York NY USA

9999 Lucerne Publishing Paris NULL France

Using Wildcards in Parameters

Wildcards can be included in varchar-based input parameters and used in a LIKE clause in
a query to perform pattern matching. However, you should not use the char data type for
parameters that will contain wildcard characters because SQL Server pads spaces onto the
value passed in to the parameter to expand it to the specified size of the char data type.
For example, if you declared an @lastname parameter as char(40) and passed in ’S%’, SQL
Server would search not for a string starting with ’S’ but for a string starting with ’S’,
any characters, and ending with up to 38 spaces. This would likely not match any actual
data values.

Also, to increase the flexibility of a stored procedure that searches for character strings,
you can default the parameter to ’%’, as in the following example:

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’find_authors’)

DROP PROCEDURE dbo.find_authors

GO

create proc find_authors @lastname varchar(40) = ‘%’

as

select au_id, au_lname, au_fname

 Download from www.wowebook.com

ptg

900 CHAPTER 28 Creating and Managing Stored Procedures

from authors

where au_lname like @lastname

order by au_lname, au_fname

This procedure, if passed no parameter, returns data for all authors in the authors table. If
passed a string containing wildcard characters, this procedure returns data for all authors
matching the search pattern specified. If a string containing no wildcards is passed, the
query performs a search for exact matches against the string value.

Unfortunately, wildcard searches can be performed only against character strings. If you
want to have similar flexibility searching against a numeric value, such as an integer, you
can default the value to NULL and when the parameter is NULL, compare the column with
itself, as shown in the following example:

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’find_titles_by_sales’)

DROP PROCEDURE dbo.find_titles_by_sales

GO

create proc find_titles_by_sales @ytd_sales int = null

as

select title_id, title, ytd_sales

from titles

where ytd_sales = isnull(@ytd_sales, ytd_sales)

However, the problem with this approach is that the procedure returns all rows from the
titles table except those in which ytd_sales contains a NULL value. The reason is that
NULL is never considered equal to NULL; you cannot compare an unknown value with
another unknown value. To return all rows, including those in which ytd_sales is NULL,
you need to implement a dual-query solution, as in the following example:

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’find_titles_by_sales’)

DROP PROCEDURE dbo.find_titles_by_sales

GO

create proc find_titles_by_sales @ytd_sales int = null

as

if @ytd_sales is null

select title_id, title, ytd_sales

from titles

else

select title_id, title, ytd_sales

from titles

where ytd_sales= @ytd_sales

 Download from www.wowebook.com

ptg

901Using Input Parameters
2

8

Using Table-Valued Parameters

In previous versions of SQL Server, it was not possible to share the contents of table vari-
ables between stored procedures. SQL Server 2008 changes that with the introduction of
table-valued parameters, which allow you to pass table variables to stored procedures.
Table-valued parameters provide more flexibility and, in many cases, better performance
than temporary tables as a means to pass result sets between stored procedures.

NOTE

For more information on using temporary tables and the table data type in stored pro-
cedures, see Chapter 44.

Table-valued parameters provide many of the same performance advantages as table data
types. Table-valued parameters also share some of the same restrictions as table variables,
such as SQL Server not maintaining statistics on table-valued parameters and table-valued
parameters not permitted as the target of a SELECT INTO or INSERT EXEC statement. In
addition, table-valued parameters can be passed only as READONLY input parameters to
stored procedures. DML operations, such as UPDATE, INSERT, and DELETE, cannot be
performed on table-valued parameters within the body of a stored procedure.

To create and use table-valued parameters, you must first create a user-defined table type
and define the table structure. You do so using the CREATE TYPE command, as in the
following example:

if exists (select * from sys.systypes t where t.name = ‘ytdsales_tabletype’

and t.uid = USER_ID(‘dbo’))

drop type ytdsales_tabletype

go

CREATE TYPE ytdsales_tabletype AS TABLE

(title_id char(6),

title varchar(50),

pubdate date,

ytd_sales int)

go

After the table data type is created, you can use it for declaring local table variables and for
stored procedure parameters. To use the table-valued parameter in a procedure, you create
a procedure to receive and access data through a table-valued parameter:

/* Create a procedure to receive data for the table-valued parameter. */

if OBJECT_ID(‘tab_parm_test’) is not null

drop proc tab_parm_test

go

create proc tab_parm_test

 Download from www.wowebook.com

ptg

902 CHAPTER 28 Creating and Managing Stored Procedures

@pubdate datetime = null,

@sales_minimum int = 0,

@ytd_sales_tab ytdsales_tabletype READONLY

as

set nocount on

if @pubdate is null

-- if no date is specified, set date to last year

set @pubdate = dateadd(month, -12, getdate())

select * from @ytd_sales_tab

where pubdate > @pubdate

and ytd_sales >= @sales_minimum

return

go

Then, when calling that stored procedure, you declare a local table variable using the table
data type defined previously, populate the table variable with data, and then pass the table
variable to the stored procedure:

/* Declare a variable that references the type. */

declare @ytd_sales_tab ytdsales_tabletype

/* Add data to the table variable. */

insert @ytd_sales_tab

select title_id, convert(varchar(50), title), pubdate, ytd_sales

from titles

/* Pass the table variable populated with data to a stored procedure. */

exec tab_parm_test ‘6/1/2001’, 10000, @ytd_sales_tab

go

title_id title ytd_sales

-------- -- -----------

BU2075 You Can Combat Computer Stress! 18722

MC3021 The Gourmet Microwave 22246

TC4203 Fifty Years in Buckingham Palace Kitchens 15096

Using Output Parameters
If a calling batch passes a variable as a parameter to a stored procedure and that parameter
is modified inside the procedure, the modifications are not passed to the calling batch
unless you specify the OUTPUT keyword for the parameter when executing the stored proce-
dure.

 Download from www.wowebook.com

ptg

903Using Output Parameters
2

8

If you want a procedure to be able to pass parameter values out from the procedure, you
need to use the keyword OUTPUT when creating the procedure. The following example
shows a stored procedure that accepts two parameters, one of which is used as an
output parameter:

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’ytd_sales’)

DROP PROCEDURE dbo.ytd_sales

GO

CREATE PROC ytd_sales

@title varchar(80), @ytd_sales int OUTPUT

AS

SELECT @ytd_sales = ytd_sales

FROM titles

WHERE title = @title

RETURN

The calling batch (or stored procedure) needs to declare a variable to store the returned
value. The execute statement must include the OUTPUT keyword as well, or the
modifications won’t be reflected in the calling batch’s variable:

DECLARE @sales_up_to_today int

EXEC ytd_sales ‘Life Without Fear’, @sales_up_to_today OUTPUT

PRINT ‘Sales this year until today’’s date: ‘ +

CONVERT(VARCHAR(10), @sales_up_to_today) + ‘.’

Sales this year until today’s date: 111.

You can also pass the output parameter by name:

DECLARE @sales_up_to_today int

EXEC ytd_sales ‘Life Without Fear’,

@ytd_sales = @sales_up_to_today OUTPUT

PRINT ‘Sales this year until today’’s date: ‘ +

CONVERT(VARCHAR(10), @sales_up_to_today) + ‘.’

Note that when you pass an output parameter by name, the parameter name (@ytd_sales,
in this example) is listed on the left side of the expression, and the local variable
(@sales_up_to_today), which is set equal to the value of the output parameter, is on the
right side of the expression. An output parameter can also serve as an input parameter.

Output parameters can also be passed back and captured in a client application by using
ADO, ODBC, OLE DB, and so on.

 Download from www.wowebook.com

ptg

904 CHAPTER 28 Creating and Managing Stored Procedures

Returning Procedure Status
Most programming languages are able to pass a status code to the caller of a function or
subroutine. A value of 0 generally indicates that the execution was successful. SQL Server
stored procedures are no exception.

SQL Server automatically generates an integer status value of 0 after successful completion
of a stored procedure. If SQL Server detects a system error, a status value between -1 and -
99 is returned. You can use the RETURN statement to explicitly pass a status value less than
-99 or greater than 0. The calling batch or procedure can set up a local variable to retrieve
and check the return status.

In Listing 28.16, the stored procedure returns the year-to-date sales for a given title as a
result set. If the title does not exist, to avoid returning an empty result set, the procedure
returns the status value -101. In the calling batch or stored procedure, you need to create
a variable to hold the return value. The variable name is passed the EXECUTE keyword and
the procedure name as shown in Listing 28.16.

LISTING 28.16 Returning a Status Code from a Stored Procedure

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’ytd_sales2’)

DROP PROCEDURE dbo.ytd_sales2

GO

--Create the procedure

CREATE PROC ytd_sales2 @title varchar(80)

AS

IF NOT EXISTS (SELECT * FROM titles WHERE title = @title)

RETURN -101

SELECT ytd_sales

FROM titles

WHERE title = @title

RETURN

GO

-- Execute the procedure

DECLARE @status int

EXEC @status = ytd_sales2 ‘Life without Fear’

IF @status = -101

PRINT ‘No title with that name found.’

go

ytd_sales

111

 Download from www.wowebook.com

ptg

905Debugging Stored Procedures Using SQL Server Management Studio
2

8

-- Execute the procedure

DECLARE @status int

EXEC @status = ytd_sales2 ‘Life without Beer’

IF @status = -101

PRINT ‘No title with that name found.’

go

No title with that name found.

Return values can also be passed back and captured by client applications developed in
ADO, ODBC, OLE DB, and so on.

Debugging Stored Procedures Using SQL Server
Management Studio
One of the great tools available in the SQL Server 2000 Query Analyzer, the built-in SQL
Debugger, was left out of SQL Server Management Studio (SSMS) in SQL Server 2005.
Fortunately, SQL Server 2008 brings the T-SQL debugger back to SSMS.

The Transact-SQL debugger in SQL Server Management Studio enables you to step through
Transact-SQL scripts, stored procedures, triggers, and functions as they are running. The
Transact-SQL debugger allows you to do the following:

. Step through the Transact-SQL statements in the Query Editor line by line or set
breakpoints to stop at specific lines.

. Step into or over Transact-SQL stored procedures, functions, or triggers run by the
code in the query editor window.

. Watch the values assigned to variables and observe system objects such as the call
stack and threads.

If you want to run the T-SQL Debugger, the query editor window must be connected to
SQL Server as a member of the sysadmin server role.

NOTE

Debugging of T-SQL code should be done only on a test or development server, not on a
production server. Debugging sessions can often run for long periods of time while you
are investigating the operations of your Transact-SQL statements. If the code being
debugged involves a multistatement transaction, locks acquired by the session could be
held for extended periods while the code is paused in the debugger until the debugging
session is ended or the transaction committed or rolled back. This could lead to exten-
sive locking contention or blocking for other applications accessing production data.

 Download from www.wowebook.com

ptg

906 CHAPTER 28 Creating and Managing Stored Procedures

You start the debugger in a query editor window by either clicking the Debug button on
the Query toolbar or by clicking Start Debugging on the Debug menu, as shown in Figure
28.8.

When the query editor window enters debug mode, the debugger initially stops on the
first line of code in the stored procedure, as shown in Figure 28.9. You can then set any
breakpoints and run to the breakpoints or step through the procedure code one line at a
time. You can press F10 to step through the code one line at a time. If the SQL code
invokes a stored procedure or function, or a DML statement invokes a trigger, you can
press F11 to step into the called routine. If you step into a routine in the T-SQL Debugger,
SQL Server Management Studio opens a new query editor window populated with the
source code for the routine, places the window into debug mode, and then pauses execu-
tion on the first statement in the routine. You can then step through or set breakpoints in
the code for that routine.

Located near the bottom of the debugger window are some useful information windows.
The first group of windows is the Locals/Watch window, which displays the contents of
local variables or any watch expressions you have defined. The Locals window displays
the current values in all the local variables within the current scope. You can also modify
the values of the variables in the Locals window to test various scenarios or to adjust data
values so the code executes differently. To modify the value of a variable, right-click the
row and select Edit Value.

In the four Watch windows, you can add variables or expressions whose values you want
to watch, such as the global variables @@NESTLEVEL, @@FETCH_STATUS, or @@ROWCOUNT. To
add an expression to a Watch window, you can either select Add Watch in the
QuickWatch dialog box or enter the name of the expression in the Name column of an

FIGURE 28.8 Invoking the T-SQL debugger in SSMS.

 Download from www.wowebook.com

ptg

907Debugging Stored Procedures Using SQL Server Management Studio
2

8

FIGURE 28.9 Debugging a T-SQL stored procedure in SSMS.

empty row in a Watch window. The Watch windows, like the other tabbed windows in the
debugger, can be set as docked or floating windows, allowing you to view multiple
windows simultaneously (Figure 28.9 shows an example of the Watch1 window set as a
floating window).

The second group of windows is the Call Stack, Breakpoints, Output, and Results and
Messages windows. The Call Stack window displays the current execution location and
also displays information about how execution passed from the original query editor
window to the current execution location through any other functions, procedures, or
triggers. The Breakpoints window lets you view information about the breakpoints you
have set. From this window, you can also jump to the source code where the breakpoint is
set or disable or delete the breakpoint. The Output window displays various messages and
program data, including system messages from the debugger. The Results and Messages
tabs on the query editor window display the results of previously executed Transact-SQL
statements within the debugging session. The query editor window stays in debug mode
until either the last statement in the query editor window is executed or you manually
stop debugging. You can stop debugging, along with any further statement execution,
using any one of the following methods:

. On the Debug menu, click Stop Debugging.

. On the Debug toolbar, click the Stop Debugging button.

. On the Query menu, click Cancel Executing Query.

 Download from www.wowebook.com

ptg

908 CHAPTER 28 Creating and Managing Stored Procedures

. On the Query toolbar, click the Cancel Executing Query button.

If you want to stop debugging but allow the remaining Transact-SQL statements to run to
completion, click Detach All on the Debug menu.

Using System Stored Procedures
A system stored procedure is a stored procedure that has some special characteristics.
These procedures, created when SQL Server is installed or upgraded, are generally used to
administer SQL Server. They shield a DBA from accessing the system catalogs directly.
Some system stored procedures are used to present information from the system catalog,
and others modify the system catalogs.

NOTE

System stored procedures seem to have fallen out of favor with Microsoft. Most of
them have been listed as deprecated features in SQL Server 2008 and been replaced
with T-SQL commands, or the information provided by system stored procedures is now
available via the catalog views and dynamic management views. Many of the current
system stored procedures may be removed in future versions of Microsoft SQL Server,
so it is recommended that you avoid using many of the system stored procedures in
any of your development work and modify any code currently using system stored pro-
cedures to use the alternatives.

Although many of the system stored procedures have been deprecated and are not as criti-
cal to administering SQL Server as they once were, it is still a good idea to be familiar with
the basic system stored procedures. There are currently around 400 documented system
stored procedures in SQL Server 2008, so it would be a tough job to learn the names and
syntax for all of them. The total number of system stored procedures is more than 1,400.
Some of the undocumented stored procedures are called by other procedures, and others
are called from SSMS or other SQL Server tools and utility programs.

The following attributes characterize a system stored procedure:

. The stored procedure name begins with sp_.

. The stored procedure resides in the Resource database.

. The procedure is defined in the sys schema.

These attributes make the procedure global, which means you can execute the procedure
from any database without qualifying the database name. The procedure executes within
the current database context.

Although system stored procedures reside in the Resource database, they also run in any
database context when fully qualified with a database name, regardless of the current
database context. For instance, sp_helpfile shows information about the files configured
for the current database. In the following example, when not qualified, sp_helpfile

 Download from www.wowebook.com

ptg

909Using System Stored Procedures
2

8

returns file information for the master database, and when qualified with bigpubs2008..,
it returns file information for the bigpubs2008 database:

exec sp_helpfile

go

name fileid filename filegroup

size maxsize growth usage

-------- ------ --- ---------

--------- --------- ------ -----------

master 1 C:\MSSQL2008\MSSQL10.SQL2008UNLEASHED\MSSQL\DATA\master.mdf PRIMARY

4096 KB Unlimited 10% data only

mastlog 2 C:\MSSQL2008\MSSQL10.SQL2008UNLEASHED\MSSQL\DATA\mastlog.ldf NULL

512 KB Unlimited 10% log only

exec bigpubs2008..sp_helpfile

go

name fileid filename filegroup size

maxsize growth usage

bigpubs2008 1 E:\MSSQL2008\DATA\bigpubs2008.mdf PRIMARY 214912 KB

Unlimited 10% data only

bigpubs2008_log 2 E:\MSSQL2008\DATA\bigpubs2008_log.LDF NULL 504 KB

Unlimited 10% log only

Table 28.1 describes the categories of system stored procedures.

TABLE 28.1 System Stored Procedure Categories

Category Description

Catalog stored procedures Used to implement ODBC data dictionary functions and isolate
ODBC applications from changes to underlying system tables.

Cursor stored procedures Used to implement cursor variable functionality.

Database engine stored
procedures

Used for general maintenance of the SQL Server Database Engine.

Database mail stored
procedures

Used to perform email operations from within an instance of SQL
Server.

Database maintenance
plan procedures

Used to set up core database maintenance tasks.

Distributed queries stored
procedures

Used to link remote servers and manage distributed queries.

 Download from www.wowebook.com

ptg

910 CHAPTER 28 Creating and Managing Stored Procedures

Some of the more useful system stored procedures are listed in Table 28.2.

TABLE 28.1 System Stored Procedure Categories

Category Description

Full-text search stored
procedures

Used to implement and query full-text indexes.

Log shipping stored
procedures

Used to configure, modify, and monitor log shipping configurations.

Automation stored
procedures

Allow OLE automation objects to be used within a T-SQL batch.

Notification services stored
procedures

Used to manage SQL Server 2008 Notification Services.

Replication stored
procedures

Used to manage replication.

Security stored procedures Used to manage security, such as login IDs, usernames, and so on.

SQL Server Profiler stored
procedures

Used by SQL Server Profiler to monitor performance and activity.

SQL Server Agent stored
procedures

Used by SQL Server Agent to manage scheduled and event-driven
activities.

Web task stored
procedures

Used for creating web pages.

XML stored procedures Used for XML text management.

General extended stored
procedures

Provide an interface from an instance of SQL Server to external
programs for various maintenance activities (for example,
xp_sqlmaint)

TABLE 28.2 Useful System Stored Procedures

Procedure Name Description

sp_who and sp_who2 Return information about current connec-
tions to SQL Server.

sp_help [object_name] Lists the objects in a database or returns
information about a specified object.

sp_helpdb Returns a list of databases or information
about a specified database.

sp_configure Lists or changes configuration settings.

 Download from www.wowebook.com

ptg

911Startup Procedures
2

8

Startup Procedures
A SQL Server administrator can create stored procedures that are marked for execution
automatically whenever SQL Server starts. They are often referred to as startup procedures.
Startup procedures are useful for performing housekeeping-type tasks or starting up a
background process when SQL Server starts. Some possible uses for startup procedures
include the following:

. Automatically perform system or maintenance tasks in tempdb, such as creating a
global temporary table.

. Enable custom SQL Server Profiler traces automatically whenever SQL Server is
running. (For more information on SQL Server Profiler traces, see Chapter 6.)

. Automatically start other external processes on the SQL Server machine, using
xp_cmdshell. (Using xp_cmdshell is discussed in the section “Using Extended Stored
Procedures,” in Chapter 44.)

. Prime the data cache with the contents of your critical, frequently used tables.

. Prime the plan cache by executing procedures or functions you want to have com-
piled and cached before applications start using them.

To create a startup procedure, you log in as a system administrator and create the proce-
dure in the master database. Then you set the procedure startup option to true by using
sp_procoption:

sp_procoption procedure_name, startup, true

If you no longer want the procedure to run at startup, remove the startup option by
executing the same procedure and changing the value to false.

By default, a startup procedure runs in the context of the system administrator, but it can
use SETUSER to impersonate another account, if necessary. If you need to reference objects
in other databases from within a startup procedure, you need to fully qualify the object
with the appropriate database and owner names.

Startup procedures are launched asynchronously; that is, SQL Server doesn’t wait for them
to complete before continuing with additional startup tasks. This allows a startup proce-
dure to execute in a loop for the duration of the SQL Server process, or it allows several
startup procedures to be launched simultaneously. While a startup procedure is running, it
runs as a separate worker thread.

 Download from www.wowebook.com

ptg

912 CHAPTER 28 Creating and Managing Stored Procedures

TIP

If you need to execute a series of stored procedures in sequence during startup, you
can nest the stored procedure calls within a single startup procedure. This approach
consumes only a single worker thread.

Any error messages or print statements generated by a startup procedure are written to the
SQL Server error log. For example, consider the following whimsical but utterly useless
startup procedure:

use master

go

create procedure good_morning

as

print ‘Good morning, Dave’

return

go

sp_procoption good_morning, startup, true

go

When SQL Server is restarted, the following entries would be displayed in the error log:

2009-06-12 13:21:00.04 spid5s Recovery is complete. This is an

informational message only. No user action is required.

2009-06-12 13:21:00.15 spid5s Launched startup procedure ‘good_morning’.

2009-06-12 13:21:00.15 spid51s Good morning, Dave

Any result sets generated by a startup procedure vanish into the infamous bit bucket. If
you need to return result sets from a startup procedure, the procedure should be written
to insert the results into a table. The table needs to be a permanent table and not a tempo-
rary table because a temporary table would be automatically dropped when the startup
procedure finished executing.

The following example is a startup procedure that could preload all tables within the
Sales and Purchasing schemas in the AdventureWorks database into data cache memory
on SQL Server startup:

use master

go

create procedure prime_cache

as

declare @tablename varchar(128),

@schemaname varchar(128)

 Download from www.wowebook.com

ptg

913Startup Procedures
2

8

declare c1 cursor for

select s.name, o.name

from AdventureWorks.sys.objects o

join AdventureWorks.sys.schemas s

on o.schema_id = s.schema_id

where type = ‘U’

and s.name in (‘Sales’, ‘Purchasing’)

open c1

fetch c1 into @schemaname, @tablename

while @@fetch_status = 0

begin

print ‘Loading ‘’’ + @schemaname + ‘.’ + @tablename + ‘’’ into data cache’

exec (‘select * from AdventureWorks.’ + @schemaname + ‘.’ + @tablename)

fetch c1 into @schemaname, @tablename

end

close c1

deallocate c1

return

go

sp_procoption prime_cache, startup, true

go

The error log output from this startup procedure would be similar to the following:

2009-06-15 19:39:18.970 spid7s Launched startup procedure ‘prime_cache’.

2009-06-15 19:39:20.550 spid30s Loading ‘Sales.Store’ into data cache

2009-06-15 19:39:20.870 spid30s Loading ‘Sales.StoreContact’ into data cache

2009-06-15 19:39:20.870 spid30s Loading ‘Purchasing.ProductVendor’ into data

cache

2009-06-15 19:39:20.950 spid30s Loading ‘Purchasing.Vendor’ into data cache

2009-06-15 19:39:21.010 spid30s Loading ‘Purchasing.PurchaseOrderDetail’ into

data cache

2009-06-15 19:39:21.140 spid30s Loading ‘Purchasing.VendorAddress’ into data

cache

2009-06-15 19:39:21.150 spid30s Loading ‘Purchasing.VendorContact’ into data

cache

2009-06-15 19:39:21.160 spid30s Loading ‘Purchasing.PurchaseOrderHeader’ into

data cache

2009-06-15 19:39:21.220 spid30s Loading ‘Sales.ContactCreditCard’ into data

cache

2009-06-15 19:39:21.310 spid30s Loading ‘Sales.CountryRegionCurrency’ into

data cache

2009-06-15 19:39:21.420 spid30s Loading ‘Sales.CreditCard’ into data cache

2009-06-15 19:39:21.540 spid30s Loading ‘Sales.Currency’ into data cache

 Download from www.wowebook.com

ptg

914 CHAPTER 28 Creating and Managing Stored Procedures

2009-06-15 19:39:21.570 spid30s Loading ‘Sales.SalesOrderDetail’ into data

cache

2009-06-15 19:39:22.040 spid30s Loading ‘Sales.CurrencyRate’ into data cache

2009-06-15 19:39:22.120 spid30s Loading ‘Sales.Customer’ into data cache

2009-06-15 19:39:22.420 spid30s Loading ‘Sales.SalesOrderHeader’ into data cache

2009-06-15 19:39:23.170 spid30s Loading ‘Sales.CustomerAddress’ into data

cache

2009-06-15 19:39:23.290 spid30s Loading ‘Sales.SalesOrderHeaderSalesReason’

into data cache

2009-06-15 19:39:23.340 spid30s Loading ‘Sales.SalesPerson’ into data cache

2009-06-15 19:39:23.360 spid30s Loading ‘Sales.SalesPersonQuotaHistory’ into

data cache

2009-06-15 19:39:23.380 spid30s Loading ‘Sales.SalesReason’ into data cache

2009-06-15 19:39:23.380 spid30s Loading ‘Sales.Individual’ into data cache

2009-06-15 19:39:23.950 spid30s Loading ‘Sales.SalesTaxRate’ into data cache

2009-06-15 19:39:23.970 spid30s Loading ‘Sales.SalesTerritory’ into data cache

2009-06-15 19:39:24.000 spid30s Loading ‘Sales.SalesTerritoryHistory’ into

data cache

2009-06-15 19:39:24.060 spid30s Loading ‘Purchasing.ShipMethod’ into data

cache

2009-06-15 19:39:24.090 spid30s Loading ‘Sales.ShoppingCartItem’ into data

cache

2009-06-15 19:39:24.100 spid30s Loading ‘Sales.SpecialOffer’ into data cache

2009-06-15 19:39:24.110 spid30s Loading ‘Sales.SpecialOfferProduct’ into data

cache

If you want to disable the automatic execution of all startup procedures, you can use
sp_configure to disable the scan for startup procs configuration option. Setting this
option to 0 disables the running of startup procedures on subsequent SQL Server restarts.

If SQL Server is not currently running and you want to skip running the startup proce-
dures, you can specify Trace Flag 4022 as a startup parameter. You can set the trace flag for
a SQL Server instance by using the SQL Server Configuration Manager. In SQL Server
Configuration Manager, perform the following steps:

1. Click on SQL Server 2008 Services.

2. In the right pane, right-click the SQL Server instance you want to set the trace flag
for and select Properties.

3. Go to the Advanced tab and select the Startup Parameters box.

4. Click the expand arrow to the right of the input field to expand the entire field.

5. Place your cursor at the end of the value and type a semicolon (;).

6. Type -T4022 (see Figure 28.10).

7. Click OK.

 Download from www.wowebook.com

ptg

915Summary
2

8

Also, if you start SQL Server with minimal configuration (by using the -f flag), the
startup stored procedures are not executed.

Summary
Stored procedures are among the premier features of Microsoft SQL Server. They provide a
number of benefits over using ad hoc SQL, including faster performance; restricted, func-
tion-based access to tables; protection of application code from database changes; and the
ability to simplify complex tasks into a simple stored procedure call.

In the next chapter, you learn how to expand the capabilities of your T-SQL code by creat-
ing and using user-defined functions developed in T-SQL.

FIGURE 28.10 Setting Trace Flag 4022 to prevent startup procedures from executing.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 29

Creating and Managing
User-Defined Functions

IN THIS CHAPTER

. What’s New in SQL Server
2008

. Why Use User-Defined
Functions?

. Types of User-Defined
Functions

. Creating and Managing
User-Defined Functions

. Rewriting Stored Procedures as
Functions

. Creating and Using CLR
Functions

SQL Server provides a number of predefined functions that
are built in to the T-SQL language. The supplied functions
help extend the capabilities of T-SQL, providing the ability
to perform string manipulation, mathematic calculations,
data type conversions, and so on within T-SQL code.
Although SQL Server provides a reasonably extensive set of
functions, you might sometimes wish you had available a
function that is not provided. You could create a stored
procedure to perform custom processing, but you can’t use
the result of a stored procedure in a WHERE clause or as a
column in a SELECT list. For this type of situation, SQL
Server 2008 provides user-defined functions.

A user-defined function can return a single scalar value, like
the majority of the built-in functions, or it can return a
result set as a table result, similarly to a table variable.

This chapter takes a look at how to create and manage user-
defined functions as well as when it may be better to
rewrite stored procedures as functions.

What’s New in SQL Server 2008
Not much has really changed with user-defined functions
in SQL Server 2008 from SQL Server 2005. No real new
functionality or features have been added beyond the
ability to specify up to 2,100 parameters instead of 1,024.
User-defined functions can still be created in T-SQL or using
the .NET common language runtime (CLR). Being able to
define functions in the CLR significantly extends what you
can do in user-defined functions by opening up the power
and capabilities of the .NET Framework languages. This

 Download from www.wowebook.com

ptg

918 CHAPTER 29 Creating and Managing User-Defined Functions

means you can develop functions in SQL Server that are either impossible or very difficult
to achieve using T-SQL alone. Later in this chapter, in the section “Creating and Using
CLR Functions,” you learn about CLR functions and some general guidelines on when to
use CLR functions versus T-SQL functions.

NOTE

This chapter focuses primarily on creating T-SQL functions. For more information and
examples related to creating and coding examples of CLR functions, see Chapter 46,
“SQLCLR: Developing SQL Server Objects..”

Why Use User-Defined Functions?
The main benefit of user-defined functions is that they mean you are not limited to just
the functions SQL Server provides. You can develop your own functions to meet your
specific needs or to simplify complex SQL code. For example, the getdate() function
returns the current system date and time. It always includes both a date component and
time component, with accuracy down to the milliseconds. What if you wanted to return a
datetime value with just the date and have the time always set to midnight? To do this,
you would have to pass the result from getdate() through some other functions to zero
out the time component. The following is one possible solution:

select convert(datetime, convert(date, getdate()))

Each time you wanted just the date, with the time always set to midnight, you would
have to perform this same conversion operation on the result of the getdate() function.
As an alternative, you could create a user-defined function that performs the operations
on getdate() automatically and always returns the current date, with a time value of
midnight, as in this example:

USE bigpubs2008

go

CREATE FUNCTION getonlydate ()

RETURNS datetime

AS

BEGIN RETURN (select convert(datetime, convert(date, getdate())))

END

GO

You could then use the user-defined function in your SQL code in place of the more
complex conversion operation on the getdate() function each time. Like the built-in
system functions, user-defined functions can be used in SELECT lists, SET clauses of UPDATE
statements, VALUES clauses of INSERT statements, as default values, and so on. For

 Download from www.wowebook.com

ptg

919Why Use User-Defined Functions?

example, the following query uses the user-defined function getonlydate() to return the
current date, with a time of midnight:

select dbo.getonlydate()

The following examples show how you could use the getonlydate() user-defined function
in other statements:

USE bigpubs2008

go

CREATE TABLE Orders (

OrderID int IDENTITY (1, 1) NOT NULL Primary Key,

CustomerID nchar (5) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

EmployeeID int NULL ,

OrderDate datetime NULL default dbo.getonlydate(),

RequiredDate datetime NULL ,

ShippedDate datetime NULL

)

go

insert Orders (CustomerID, EmployeeID, RequiredDate)

values (‘BERGS’, 3, dbo.getonlydate() + 7)

go

update Orders

set ShippedDate = dbo.getonlydate()

where OrderID = 1

go

select OrderDate,

RequiredDate,

ShippedDate

from Orders

where OrderDate = dbo.getonlydate()

go

OrderDate RequiredDate ShippedDate

----------------------- ----------------------- -----------------------

2008-06-03 00:00:00.000 2008-06-10 00:00:00.000 2008-06-03 00:00:00.000

If you use the getonlydate() function consistently when you want to store only dates
with a time value of midnight, searching against datetime columns is easier because you
don’t have to concern yourself with the time component. For example, if you use
getdate() instead of getonlydate(), you have to account for the time component in your
queries against OrderDate to ensure that you find all records for a particular day:

2
9

 Download from www.wowebook.com

ptg

920 CHAPTER 29 Creating and Managing User-Defined Functions

SELECT OrderDate,

RequiredDate,

ShippedDate

from Orders

where OrderDate >= convert(varchar(10), getdate(), 110)

and OrderDate < convert(varchar(10), getdate() + 1, 110)

From this example, you can see how much using the getonlydate() user-defined function
can simplify your queries.

TIP

Another way to avoid the issues related to storing a time component in your date-val-
ued columns in SQL Server 2008 is to use the new DATE data type instead of
DATETIME. This new data type is discussed in more detail in Chapter 42, “What’s New
for Transact-SQL in SQL Server 2008.”

In addition to functions that return scalar values, you can also define functions that
return table results. You can use functions that return table results anywhere in queries
that a table or view can be used, including joins, subqueries, and so on. The following
examples show how to use a user-defined table-valued function that returns a list of valid
book types:

use bigpubs2008

go

create function valid_book_types()

returns TABLE

as

return (SELECT distinct type from titles)

go

select * from dbo.valid_book_types()

go

insert titles

select * from newtitles

where type in (select * from dbo.valid_book_types())

Essentially, this example reduces a query to a simple function that you can now use
anywhere a table can be referenced.

With a few restrictions—which are covered later in this chapter, in the “Creating and
Managing User-Defined Functions” section—you can write all types of functions in SQL
Server to perform various calculations or routines. For example, you could create a T-SQL
function that returns a valid list of code values, a function to determine the number of
days items are backordered, a function to return the average price of all books, and so on.
Plus, with the capability to create CLR-based functions, you can create significantly more

 Download from www.wowebook.com

ptg

921Types of User-Defined Functions

powerful functions than what can be accomplished using T-SQL alone. Examples of CLR-
based functions include a more robust soundex() function, a function to return the factor-
ial of a number, and an address comparison function. The possibilities are nearly endless.
As you have can see, user-defined functions significantly increase the capabilities and flex-
ibility of T-SQL.

Types of User-Defined Functions
SQL Server supports three types of user-defined functions:

. Scalar functions

. Inline table-valued functions

. Multistatement table-valued functions

The next few sections take an in-depth look at the differences between the function types
and how and where you can use them.

Scalar Functions

A scalar function is like the standard built-in functions provided with SQL Server. It
returns a single scalar value that can be used anywhere a constant expression can be used
in a query. (You saw an example of this in the earlier description of the
getonlydate()function.)

A scalar function typically takes one or more arguments and returns a value of a specified
data type. Every T-SQL function must return a result using the RETURN statement. The
value to be returned can be contained in a local variable defined within the function, or
the value can be computed in the RETURN statement. The following two functions are vari-
ations of a function that returns the average price for a specified type of book from the
titles table:

use bigpubs2008

go

CREATE FUNCTION AverageBookPrice(@booktype varchar(12) = ‘%’)

RETURNS money

AS

BEGIN

DECLARE @avg money

SELECT @avg = avg(price)

FROM titles

WHERE type like @booktype

RETURN @avg

END

go

2
9

 Download from www.wowebook.com

ptg

922 CHAPTER 29 Creating and Managing User-Defined Functions

CREATE FUNCTION AverageBookPrice2(@booktype varchar(12) = ‘%’)

RETURNS money

AS

BEGIN

RETURN (SELECT avg(price)

FROM titles

WHERE type like @booktype)

END

As mentioned earlier in this chapter, a scalar function can be used anywhere a constant
expression can be used. For example, SQL Server doesn’t allow aggregate functions in a
WHERE clause unless they are contained in a subquery. The AvgBookPrice() function lets
you compare against the average price without having to use a subquery:

select title_id, type, price from titles

where price > dbo.AverageBookPrice(‘popular_comp’)

go

title_id type price

-------- ------------ ---------------------

PC1035 popular_comp 17.1675

PS2091 psychology 17.0884

When invoking a user-defined scalar function, you must include the schema name. If you
omit the schema name, you get the following error, even if the function is created in your
default schema or exists only in the dbo schema in the database:

select AverageBookPrice(‘popular_comp’)

go

Server: Msg 195, Level 15, State 10, Line 1

‘AverageBookPrice’ is not a recognized function name.

You can return the value from a user-defined scalar function into a local variable in two
ways. You can assign the result to a local variable by using the SET statement or an assign-
ment select, or you can use the EXEC statement. The following commands are functionally
equivalent:

declare @avg1 money,

@avg2 money,

@avg3 money

select @avg1 = dbo.AverageBookPrice(‘popular_comp’)

set @avg2 = dbo.AverageBookPrice(‘popular_comp’)

exec @avg3 = dbo.AverageBookPrice ‘popular_comp’

select @avg1 as avg1, @avg2 as avg2, @avg3 as avg3

go

 Download from www.wowebook.com

ptg

923Types of User-Defined Functions

Warning: Null value is eliminated by an aggregate or other SET operation.

avg1 avg2 avg3

--------------------- --------------------- ---------------------

16.0643 16.0643 16.0643

Notice, however, that when you use a function in an EXEC statement, you invoke it simi-
larly to the way you invoke a stored procedure, and you do not use parentheses around
the function parameters. Also, when you invoke a function in the EXEC statement, the
function generates the following warning message: “Warning: Null value is eliminated by
an aggregate or other SET operation.” This warning isn’t generated when the function is
invoked in the SET or SELECT statement. To avoid confusion, you should stick to using the
EXEC statement for stored procedures and invoke scalar functions as you would normally
invoke a SQL Server built-in function.

Table-Valued Functions

A table-valued user-defined function returns a rowset instead of a single scalar value. You
can invoke a table-valued function in the FROM clause of a SELECT statement, just as you
would a table or view. In some situations, a table-valued function can almost be thought
of as a view that accepts parameters, so the result set is determined dynamically. A table-
valued function specifies the keyword TABLE in its RETURNS clause.

Table-valued functions are of two types: inline and multistatement. The two types of table-
valued functions return the same thing, and they are also invoked the same way. The only
real difference between them is the way the function is written to return the rowset. The
next couple sections look at each of these types of table-valued functions.

Inline Table-Valued Functions
An inline table-valued function specifies only the TABLE keyword in the RETURNS clause,
without table definition information. The code inside the function is a single RETURN state-
ment that invokes a SELECT statement. For example, you could create an inline table-
valued function that returns a rowset of all book types and the average price for each type,
where the average price exceeds the value passed into the function:

use bigpubs2008

go

CREATE FUNCTION AveragePricebyType (@price money = 0.0)

RETURNS table

AS

RETURN (SELECT type, avg(isnull(price, 0)) as avg_price

FROM titles

group by type

having avg(isnull(price, 0)) > @price)

2
9

 Download from www.wowebook.com

ptg

924 CHAPTER 29 Creating and Managing User-Defined Functions

You can invoke the function by referencing it in a FROM clause as you would a table or view:

select * from AveragePricebyType (15.00)

go

type avg_price

------------ ---------------------

business 15.0988

mod_cook 15.4236

Notice that when you invoke a table-valued function, you do not have to specify the
schema name as you do with a user-defined scalar function.

Multistatement Table-Valued Functions
Multistatement table-valued functions differ from inline functions in two major ways:

. The RETURNS clause specifies a table variable and its definition.

. The body of the function contains multiple statements, at least one of which popu-
lates the table variable with data values.

You define a table variable in the RETURNS clause by using the TABLE data type. The syntax
to define the table variable is similar to the CREATE TABLE syntax. Note that the name of
the table variable comes before the TABLE keyword:

RETURNS @variable TABLE (column definition | table_constraint [, ...])

The scope of the table variable is limited to the function in which it is defined. Although
the contents of the table variable are returned as the function result, the table variable
itself cannot be accessed or referenced outside the function.

Within the function in which a table variable is defined, that table variable can be treated
like a regular table. You can perform any SELECT, INSERT, UPDATE, or DELETE statement on
the rows in a table variable, except for SELECT INTO. Here’s an example:

INSERT INTO @table SELECT au_lname, au_fname from authors

The following example defines the inline table-valued function AveragePricebyType() as
a multistatement table-valued function called AveragePricebyType2():

use bigpubs2008

go

CREATE FUNCTION AveragePricebyType2 (@price money = 0.0)

RETURNS @table table (type varchar(12) null, avg_price money null)

AS

begin

insert @table

SELECT type, avg(isnull(price,0)) as avg_price

FROM titles

group by type

 Download from www.wowebook.com

ptg

925Creating and Managing User-Defined Functions

having avg(isnull(price, 0)) > @price

return

end

Notice the main differences between this version and the inline version: in the multistate-
ment version, you have to define the structure of the table rowset you are returning and
also have to include the BEGIN and END statements as wrappers around the multiple state-
ments that the function can contain. Other than that, both functions are invoked the
same way and return the same rowset:

select * from AveragePricebyType2 (15.00)

go

type avg_price

------------ ---------------------

business 15.0988

mod_cook 15.4236

Why use multistatement table-valued functions instead of inline table-valued functions?
Generally, you use multistatement table-valued functions when you need to perform
further operations (for example, inserts, updates, or deletes) on the contents of the table
variable before returning a result set. You would also use them if you need to perform
more complex logic or additional processing on the input parameters of the function
before invoking the query to populate the table variable.

Creating and Managing User-Defined Functions
In the preceding sections of this chapter, you saw some examples of creating functions.
The following sections discuss in more detail the CREATE FUNCTION syntax and the types of
operations allowed in functions. These sections also show how to create and manage T-
SQL functions by using SQL Server Management Studio (SSMS).

Creating User-Defined Functions

You create T-SQL functions by using T-SQL statements. You can enter the T-SQL code in
sqlcmd, SSMS, or any other third-party query tool that allows you to enter ad hoc T-SQL
code. The following sections first show the basic syntax for creating functions and then
show how you can create functions by using the features of SSMS.

Creating T-SQL Functions
User-defined functions can accept 0–2,100 input parameters but can return only a single
result: either a single scalar value or table result set.

The T-SQL syntax for the CREATE FUNCTION command for scalar functions is as follows:

CREATE FUNCTION [schema_name.] function_name

([{ @parameter_name [AS] [schema_name.]scalar_datatype [= default] }

2
9

 Download from www.wowebook.com

ptg

926 CHAPTER 29 Creating and Managing User-Defined Functions

[,...n]])

RETURNS scalar_datatype

[WITH { [ENCRYPTION]

[, SCHEMABINDING]

[, RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]

[, EXECUTE_AS_Clause]

}]

[AS]

BEGIN

SQL_Statements

RETURN scalar_expression

END

The syntax for the CREATE FUNCTION command for inline table-valued functions is as
follows:

CREATE FUNCTION [schema_name.] function_name

([{ @parameter_name [AS] [schema_name.]scalar_datatype [= default] }

[,...n]])

RETURNS TABLE

[WITH { [ENCRYPTION]

[, SCHEMABINDING]

[, RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]

[, EXECUTE_AS_Clause]

}]

[AS]

RETURN [(] select-stmt [)]

The syntax for the CREATE FUNCTION command for multistatement table-valued functions
is as follows:

CREATE FUNCTION [schema_name.] function_name

([{ @parameter_name [AS] [schema_name.]scalar_datatype [= default] }

[,...n]])

RETURNS @table_variable TABLE ({ column_definition | table_constraint }

[,...n])

[WITH { [ENCRYPTION]

[, SCHEMABINDING]

[, RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]

[, EXECUTE_AS_Clause]

}]

[AS]

BEGIN

SQL_Statements

RETURN

END

 Download from www.wowebook.com

ptg

927Creating and Managing User-Defined Functions

The types of SQL statements allowed in a function include the following:

. DECLARE statements to define variables and cursors that are local to the function.

. Assignments of values to variables that are local to the function, using the SET
command or an assignment select.

. Cursor operations on local cursors that are declared, opened, closed, and de-allocated
within the function. FETCH statements must assign values to local variables by using
the INTO clause.

. Control-of-flow statements such as IF, ELSE, WHILE, GOTO, and so on, excluding the
TRY...CATCH statements.

. UPDATE, INSERT, and DELETE statements that modify table variables defined within
the function.

. EXECUTE statements that call an extended stored procedure. (Any results returned by
the extended stored procedure are discarded.)

. Other user-defined functions, up to a maximum nesting level of 32.

If you specify the ENCRYPTION option, the SQL statements used to define the function are
stored encrypted in the syscomments table. This prevents anyone from viewing the func-
tion source code in the database.

NOTE

If you choose to encrypt the function code, you should be sure to save a copy of the
script used to create the function to a file outside the database, in case you ever need
to modify the function or re-create it. After the source code for the function is encrypt-
ed, you cannot extract the original unencrypted source code from the database.

If a function is created with the SCHEMABINDING option, the database objects that the func-
tion references cannot be altered or dropped unless the function is dropped first or the
schema binding of the function is removed, using the ALTER FUNCTION command and
without specifying the SCHEMABINDING option. A CREATE FUNCTION statement with the
SCHEMABINDING option specified fails unless all the following conditions are met:

. Any user-defined functions and views referenced within the function are also
schema bound.

. Any objects referenced by the function are referenced using a two-part name
(schema.object_name).

. The function and the objects it references belong to the same database.

. The user executing the CREATE FUNCTION statement has REFERENCES permission on all
database objects that the function references.

2
9

 Download from www.wowebook.com

ptg

928 CHAPTER 29 Creating and Managing User-Defined Functions

You can specify the SCHEMABINDING option only for T-SQL functions. The following example
modifies the AveragePricebyType2 function by specifying the SCHEMABINDING option:

ALTER FUNCTION AveragePricebyType2 (@price money = 0.0)

RETURNS @table table (type varchar(12) null, avg_price money null)

with schemabinding

AS

begin

insert @table

SELECT type, avg(price) as avg_price

FROM dbo.titles

group by type

having avg(price) > @price

return

end

The following example shows what happens if you try to modify a column in the titles
table referenced by the function:

alter table titles alter column price smallmoney null

go

Msg 5074, Level 16, State 1, Line 1

The object ‘AveragePricebyType2’ is dependent on column ‘price’.

Msg 5074, Level 16, State 1, Line 1

The statistics ‘price’ is dependent on column ‘price’.

Msg 4922, Level 16, State 9, Line 1

ALTER TABLE ALTER COLUMN price failed because one or more objects access this

column.

If the RETURNS NULL ON NULL INPUT option is specified, the function automatically returns
NULL as a result, without invoking the function body. If this option is not specified, the
default option of CALLED ON NULL INPUT is applied. The following example shows the
difference between these two options:

CREATE FUNCTION striptime (@datetimeval datetime)

RETURNS datetime

AS

BEGIN

DECLARE @dateval datetime

SELECT @dateval = convert(date, isnull(@datetimeval, getdate()))

RETURN @dateval

END

GO

 Download from www.wowebook.com

ptg

929Creating and Managing User-Defined Functions

CREATE FUNCTION striptime2(@datetimeval datetime)

RETURNS datetime

WITH RETURNS NULL ON NULL INPUT

AS

BEGIN

DECLARE @dateval datetime

SELECT @dateval = convert(date, isnull(@datetimeval, getdate()))

RETURN @dateval

END

GO

select dbo.striptime(NULL), dbo.striptime2(NULL)

----------------------- -----------------------

2006-06-05 00:00:00.000 NULL

The EXECUTE AS clause allows you to specify the security context under which the user-
defined function will execute. This way, you can control which user account SQL Server
uses to validate permissions on any database objects referenced by the function. This
option cannot be specified for inline table-valued functions.

Another key restriction on user-defined functions is that SQL statements within a func-
tion cannot generate side effects; that is, a user-defined function cannot generate perma-
nent changes to any resource whose scope extends beyond the function. For example, a
function cannot modify data in a table, operate on cursors not local to the function,
create or drop database objects, issue transaction control statements, or generate a result
set other than the defined function result via a SELECT statement or an extended stored
procedure that would be returned to the user. The only changes that can be made by the
SQL statements in a function are to the objects local to the function, such as local cursors
or variables.

A new feature in SQL Server 2008 is that you can now include most built-in system func-
tions within a user-defined function, even ones that are nondeterministic (that is, func-
tions that can return different data values on each call). For example, the getdate()
function is considered nondeterministic because even though it is always invoked with the
same argument, it returns a different value each time it is executed. However, the follow-
ing nondeterministic built-in functions are still not allowed in user-defined functions:

. newid()

. newsequentialid()

. rand()

. textptr()

User-defined functions can also call other user-defined functions, with a limit of 32 levels
of nesting. Nesting of functions can help improve the modularity and reusability of

2
9

 Download from www.wowebook.com

ptg

930 CHAPTER 29 Creating and Managing User-Defined Functions

FIGURE 29.1 Creating a new function from the Object Browser in SSMS.

function code. For example, the following version of the getonlydate() function uses the
striptime() function example shown earlier in this chapter:

CREATE FUNCTION dbo.getonlydate()

RETURNS datetime

as

BEGIN

DECLARE @date datetime

SET @date = dbo.striptime(getdate())

RETURN @date

end

Using SSMS to Create Functions
To create a function by using SSMS, open the Object Explorer to the database in which
you want to create the function. Then select the Programmability node, right-click the
Functions node, select New, and then choose one of the three available options as shown
in Figure 29.1:

. Inline Table-Valued Function

. Multistatement Table-Valued Function

. Scalar-Valued Function

 Download from www.wowebook.com

ptg

931Creating and Managing User-Defined Functions
2

9

SSMS opens a new query window populated with a template for that type of function.
Listing 29.1 shows an example of the default template code for an inline table-valued
function that would be opened into a new query window.

LISTING 29.1 An Example of a New Function Creation Script Generated by SSMS

-- ==

-- Template generated from Template Explorer using:

-- Create Inline Function (New Menu).SQL

--

-- Use the Specify Values for Template Parameters

-- command (Ctrl-Shift-M) to fill in the parameter

-- values below.

--

-- This block of comments will not be included in

-- the definition of the function.

-- ==

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Author: <Author,,Name>

-- Create date: <Create Date,,>

-- Description: <Description,,>

-- ===

CREATE FUNCTION <Inline_Function_Name, sysname, FunctionName>

(

-- Add the parameters for the function here

<@param1, sysname, @p1> <Data_Type_For_Param1, , int>,

<@param2, sysname, @p2> <Data_Type_For_Param2, , char>

)

RETURNS TABLE

AS

RETURN

(

-- Add the SELECT statement with parameter references here

SELECT 0

)

GO

You can modify the template code as necessary to name the function and to specify the
parameters, return value, and function body. When you are finished, you execute the

 Download from www.wowebook.com

ptg

932

FIGURE 29.2 Using the Specify Values for Template Parameters dialog with functions in
SSMS.

contents of the query window to create the function. After you create a function success-
fully, you should save the source code to a file by choosing File, Save or File, Save As. This
way, you can re-create the function from the file if it is accidentally dropped from the
database.

One thing you might notice about the function templates is that they contain template
parameters for parameter names and function names, for example. These template para-
meters are in the format <parameter_name, data_type, value>:

. parameter_name is the name of the template parameter in the script.

. data_type is the optional data type of the template parameter.

. value is the default value to be used to replace every occurrence of the template
parameter in the script.

You can automatically substitute values for template parameters by selecting Query,
Specify Values for Template Parameters or by pressing Ctrl+Shift+M. The Specify Values for
Template Parameters dialog, shown in Figure 29.2, appears.

CHAPTER 29 Creating and Managing User-Defined Functions

Enter the values for the template parameters in the Value column and then click OK.
SSMS then substitutes any values you specified wherever the template parameter is defined
within the template.

An alternative way to create a function from a template is to use the Template Explorer in
SSMS. You can open the Template Explorer by selecting View, Template Explorer in SSMS
(see Figure 29.3) or by pressing Ctrl+Alt+T. The Template Explorer window appears in
SSMS (which is also shown in Figure 29.3).

 Download from www.wowebook.com

ptg

933

FIGURE 29.3 Opening the Template Explorer to create functions in SSMS.

Creating and Managing User-Defined Functions
2

9

You can double-click the template for the type of function you want to create or right-
click the desired template and then select Open. SSMS opens a new query window popu-
lated with the template code.

NOTE

You are also able to edit the provided function templates available in the Template
Explorer by right-clicking them and selecting Edit. You can then customize the tem-
plates to include code fragments, comments, or a structure that is more to your prefer-
ences and save the changes to the template file. However, it is generally
recommended that you not modify the provided templates alone and instead create
your own custom templates.

Creating Custom Function Templates
To create a custom function template, right-click the Function folder in the Template
Explorer and select New. SSMS then creates an entry in the Template Explorer, and you can
specify the name for the template, as shown in Figure 29.4.

To begin adding code to the template, you double-click it or right-click and select Open. A
blank query window appears, and you can use it to enter the new template code. Probably
the best way to get started is to copy the template code from one of the templates
provided with SQL Server 2008.

 Download from www.wowebook.com

ptg

934 CHAPTER 29 Creating and Managing User-Defined Functions

FIGURE 29.4 Creating a new function template in SSMS.

Listing 29.2 shows an example of a new function template.

LISTING 29.2 An Example of Custom Function Template

--===

-- SQL Server 2008 Unleashed Sample

-- Create scalar-valued function template

--===

USE <database_name, sysname, bigpubs2008>

GO

IF OBJECT_ID (N’<schema_nm, sysname, dbo>.<func_nm, sysname, fn_myfunc>’)

IS NOT NULL

DROP FUNCTION <schema_nm, sysname, dbo>.<func_nm, sysname, fn_myfunc>

GO

CREATE FUNCTION <schema_nm, sysname, dbo>.<func_nm, sysname, fn_myfunc>

(<parameter1, sysname, @param1> <parameter1_datatype,, int>,

<parameter2, sysname, @param2> <parameter2_datatype,, int>,

<parameter3, sysname, @param3> <parameter3_datatype,, int>)

RETURNS <return_value_datatype,,int>

WITH EXECUTE AS CALLER

AS

-- place the body of the function here

 Download from www.wowebook.com

ptg

935Creating and Managing User-Defined Functions
2

9

BEGIN

DECLARE <variable1, sysname, @var1> <variable1_datatype,, int>,

<variable2, sysname, @var2> <variable2_datatype,, int>

select <variable1, sysname, @var1> = isnull(<parameter1, sysname, @param1>)

<T-SQL_Body,,>

RETURN <variable1, sysname, @var1>

END

GO

After you define a custom function template, you can use it as you do the built-in
templates. You can double-click it or right-click and select Open, and SSMS opens a new
query window with a new function creation script based on the custom template. If you
use the default values for the template parameters, after the parameter substitution, your
CREATE FUNCTION script should look like the one in Listing 29.3.

LISTING 29.3 An Example of a CREATE FUNCTION Script Generated from a Custom
Function Template

--===

-- SQL Server 2008 Unleashed Sample

-- Create scalar-valued function template

--===

USE bigpubs2008

GO

IF OBJECT_ID (N’dbo.fn_myfunction’) IS NOT NULL

DROP FUNCTION dbo.fn_myfunction

GO

CREATE FUNCTION dbo.fn_myfunction

(@param1 int,

@param2 int,

@param3 int)

RETURNS int

WITH EXECUTE AS CALLER

AS

-- place the body of the function here

BEGIN

DECLARE @var1 int,

@var2 int

 Download from www.wowebook.com

ptg

936 CHAPTER 29 Creating and Managing User-Defined Functions

select @var1 = isnull(@param1)

RETURN @var1

END

GO

Viewing and Modifying User-Defined Functions

Besides using T-SQL commands to create functions, you can also use them to view and
modify functions. You can get information by using the provided system procedures and
queries against the INFORMATION_SCHEMA.routines view. The following sections describe
these methods.

Using T-SQL to View Functions
To view the source code for a user-defined function, you can use the sp_helptext procedure:

use bigpubs2008

go

exec sp_helptext getonlydate

go

Text

--

CREATE FUNCTION getonlydate ()

RETURNS datetime

AS

BEGIN RETURN (select convert(datetime, convert(date, getdate())))

END

NOTE

To display the source code for the functions clearly, configure the SSMS query window
to display results as text rather than in the grid by pressing Ctrl+T.

In addition to sp_helptext, you can write queries against the
INFORMATION_SCHEMA.routines view to display the source code for a function:

SELECT routine_definition

from INFORMATION_SCHEMA.routines

where routine_name = ‘getonlydate’

and specific_schema = ‘dbo’

 Download from www.wowebook.com

ptg

937Creating and Managing User-Defined Functions
2

9

and specific_catalog = ‘bigpubs2008’

routine_definition

--

CREATE FUNCTION getonlydate ()

RETURNS datetime

AS

BEGIN RETURN (select convert(datetime, convert(date, getdate())))

END

If you want to display information about the input parameters for a function, you use the
INFORMATION_SCHEMA.parameters view. For scalar functions, the view also displays informa-
tion for the return parameter, which has an ordinal position of 0 and no parameter name:

select substring(parameter_name,1,20) as parameter_name,

substring(data_type, 1, 20) as data_type,

Parameter_mode,

ordinal_position

from INFORMATION_SCHEMA.parameters

where specific_name = ‘striptime’

and specific_schema = ‘dbo’

and specific_catalog = ‘bigpubs2008’

order by ordinal_position

go

parameter_name data_type Parameter_mode ordinal_position

-------------------- -------------------- -------------- ----------------

datetime OUT 0

@datetimeval datetime IN 1

If you want to display information about the result columns returned by a table-valued
function, use the INFORMATION_SCHEMA.routine_columns view:

select substring(column_name, 1, 20) as column_name,

substring (data_type, 1, 12)

+ case when character_maximum_length is not null

then ‘(‘ + cast(character_maximum_length as varchar(4)) + ‘)’

else ‘’

end

as datatype,

numeric_precision as ‘precision’,

numeric_scale as scale,

ordinal_position

from INFORMATION_SCHEMA.routine_columns

where table_name = ‘AveragePricebyType’

order by ordinal_position

go

 Download from www.wowebook.com

ptg

938 CHAPTER 29 Creating and Managing User-Defined Functions

column_name datatype precision scale ordinal_position

-------------------- ------------------ --------- ----------- ----------------

type char(12) NULL NULL 1

avg_price money 19 4 2

In addition, SQL Server provides the OBJECTPROPERTY function, which you can use to get
information about functions. One of the things you can find out is whether a function is a
multistatement table function, an inline function, or a scalar function. The OBJECTPROPERTY
function accepts an object ID and an object property parameter, and it returns the value 1 if
the property is true, 0 if it is false, or NULL if an invalid function ID or property parameter is
specified. The following property parameters are appropriate for functions:

. IsTableFunction—Returns 1 if the function is a table-valued function but not an
inline function.

. IsInlineFunction—Returns 1 if the function is an inline table-valued function.

. IsScalarFunction—Returns 1 if the function is a scalar function.

. IsSchemaBound—Returns 1 if the function was created with the SCHEMABINDING
option.

. IsDeterministic—Returns 1 if the function is deterministic (that is, it always
returns the same result each time it is called with a specific set of input values).

The following example demonstrates a possible use of the OBJECTPROPERTY function with
the INFORMATION_SCHEMA.routines view:

select convert(varchar(10), specific_Schema) as ‘schema’,

convert(varchar(20), specific_name) as ‘function’,

case objectproperty(object_id(specific_name), ‘IsScalarFunction’)

when 1 then ‘Yes’ else ‘No’ end as IsScalar,

case objectproperty(object_id(specific_name), ‘IsTableFunction’)

when 1 then ‘Yes’ else ‘No’ end as IsTable,

case objectproperty(object_id(specific_name), ‘IsInlineFunction’)

when 1 then ‘Yes’ else ‘No’ end as IsInline,

case objectproperty(object_id(specific_name), ‘IsSchemaBound’)

when 1 then ‘Yes’ else ‘No’ end as IsSchemaBnd,

case objectproperty(object_id(specific_name), ‘IsDeterministic’)

when 1 then ‘Yes’ else ‘No’ end as IsDtrmnstc

from information_Schema.routines

where routine_type = ‘FUNCTION’

order by specific_name

go

schema function IsScalar IsTable IsInline IsSchemaBnd IsDtrmnstc

---------- -------------------- -------- ------- -------- ----------- ----------

dbo AverageBookPrice Yes No No No No

 Download from www.wowebook.com

ptg

939Creating and Managing User-Defined Functions
2

9

dbo AverageBookPrice2 Yes No No No No

dbo AveragePricebyType No Yes Yes No No

dbo AveragePricebyType2 No Yes No Yes Yes

dbo getdateonly Yes No No No No

dbo getonlydate Yes No No No No

dbo striptime Yes No No No No

dbo striptime2 Yes No No No No

Using T-SQL to Modify Functions
You can use the ALTER FUNCTION command to change a function’s definition without
having to drop and re-create it. The syntax for the ALTER FUNCTION command is identical
to the syntax for CREATE FUNCTION, except that you replace the CREATE keyword with the
ALTER keyword. The following example modifies the AveragePricebyType2 function:

ALTER FUNCTION AveragePricebyType2 (@price money = 0.0)

RETURNS @table table (type varchar(12) null, avg_price money null)

with schemabinding

AS

begin

insert @table

SELECT type, avg(price) as avg_price

FROM dbo.titles

group by type

having avg(price) > @price

order by avg(price) desc

return

end

Using the ALTER FUNCTION command has a couple advantages over dropping and re-creat-
ing a function to modify it. The main advantage, as mentioned earlier, is that you don’t
have to drop the function first to make the change. The second advantage is that, because
you don’t have to drop the function, you don’t have to worry about reassigning permis-
sions to the function. To determine whether a function has been altered since it was
created, you can query the LAST_ALTERED column in the INFORMATION_SCHEMA.routines
view for that function.

One limitation of the ALTER FUNCTION command is that you cannot use this command to
change a table-valued function to a scalar function or to change an inline function to a
multistatement function. You have to drop and re-create the function.

Using SSMS to View and Modify Functions
To view or edit a function within SSMS, open the Object Explorer to the database in
which you want to create the function. Then select the Programmability node, right-click
the Functions node, and then select either the Table-Valued Functions folder or the Scalar-
Valued Functions folder. SSMS then displays a list of the functions of that type defined in
that database within the Object Explorer as well as in the Summary window.

 Download from www.wowebook.com

ptg

940 CHAPTER 29 Creating and Managing User-Defined Functions

FIGURE 29.5 The Options menu for viewing and editing functions in SSMS.

NOTE

If the function you want to view or edit is not shown in the list, it was probably created
after the list of functions in the Object Explorer was populated. You might need to
refresh the function list in Object Explorer. To do this, you right-click the Functions
folder and choose Refresh.

When you right-click a function name in either the Object Explorer or the Summary
window, you are presented with a number of options for viewing or modifying the func-
tion, as shown in Figure 29.5.

You can view or edit the function properties, view the function dependencies, delete the
function, rename it, modify it, or script the function definition. If you choose to edit the
function by clicking Modify, SSMS opens a new query window with the source code of the
function extracted from the database as an ALTER FUNCTION command. You can edit the
function as needed and execute the code in the query window to modify the function.

There are also options for scripting a function as a CREATE, ALTER, DROP, or SELECT
command to either a new query window, a file, or the Clipboard, as shown in Figure 29.6.

You can also view the function properties by selecting the Properties option from the
context menu. The Properties dialog appears, as shown in Figure 29.7. Unfortunately, except
for the function permissions and extended properties, the properties shown are read-only.

For more information on the features and options for SSMS and for scripting objects, see
Chapter 4, “SQL Server Management Studio.”

 Download from www.wowebook.com

ptg

941Creating and Managing User-Defined Functions
2

9

FIGURE 29.6 Options for scripting functions in SSMS.

FIGURE 29.7 The Function Properties dialog in SSMS.

Managing User-Defined Function Permissions

When a function is initially created, the only user who has permission to execute the
function is the user who created it. To allow other users to execute a scalar function, you
need to grant EXECUTE permission on the function to the appropriate user(s), group(s), or

 Download from www.wowebook.com

ptg

942 CHAPTER 29 Creating and Managing User-Defined Functions

role(s). For a table-valued function, you need to grant SELECT permission to the user(s),
group(s), or role(s) that will need to reference it. The following example grants EXECUTE
permission on the getonlydate() function to everyone and SELECT permission on the
AveragePriceByType function to the database user fred:

GRANT EXECUTE on dbo.getonlydate to public

GRANT SELECT on AveragePricebyType to fred

For more detailed information on granting and revoking permissions, see Chapter 11,
“Security and User Administration.”

In SQL Server 2008, you can also specify the execution context of scalar-valued and multi-
statement, table-valued, user-defined functions. Essentially, this capability allows you to
control which user account is used to validate permissions on objects referenced by the
function, regardless of what user is actually executing the function. This provides
additional flexibility and control in managing permissions for user-defined functions and
the objects they reference. Only EXECUTE or SELECT permissions need to be granted to
users on the function itself; you do not have to grant them explicit permissions on the
referenced objects. Only the user account defined as the execution context for the func-
tion by the EXECUTE AS clause must have the necessary permissions on the objects the
function accesses.

For example, in the following SQL script, the AverageBookPrice2 function is modified to
run within the context of the dbo user. Any user who invokes this function essentially
inherits the permissions of the dbo user on any objects accessed within the scope of the
function temporarily for the execution of the function:

ALTER FUNCTION [dbo].[AverageBookPrice2](@booktype varchar(12) = ‘%’)

RETURNS money

WITH EXECUTE AS ‘dbo’

AS

BEGIN

RETURN (SELECT avg(price)

FROM titles

WHERE type like @booktype)

END

GO

Rewriting Stored Procedures as Functions
In releases of SQL Server prior to SQL Server 2000, if you wanted to do custom processing
within SQL code, your only real option was to create stored procedures to do things that
often would have worked much better as functions. For example, you couldn’t use the
result set of a stored procedure in a WHERE clause or to return a value as a column in a
select list. Using a stored procedure to perform calculations on columns in a result set
often required using a cursor to step through each row in a result set and pass the column

 Download from www.wowebook.com

ptg

943Rewriting Stored Procedures as Functions
2

9

values fetched, one at a time, to the stored procedure as parameters. This procedure then
typically returned the computed value via an output parameter, which had to be mapped
to another local variable. Another alternative was to retrieve the initial result set into a
temporary table and then perform additional queries or updates against the temporary
table to modify the column values, which often required multiple passes. Neither of these
methods was an efficient means of processing the data, but prior to SQL Server 2000, few
alternatives existed. If you needed to join against the result set of a stored procedure, you
had to insert the result set into a temporary table first and then join against the tempo-
rary table, as shown in the following code fragment:

...

insert #results exec result_proc

select * from other_Table

join #results on other_table.pkey = #results.keyfield

...

Now that SQL Server supports user-defined functions, you might want to consider rewrit-
ing some of your old stored procedures as functions to take advantage of the capabilities of
functions and improve the efficiency of your SQL code. You mainly want to do this in situ-
ations in which you would like to be able to invoke a stored procedure directly from
within a query. If the stored procedure returns a result set, it is a candidate for being
written as a table-valued function. If it returns a scalar value, usually via an output parame-
ter, it is a candidate for being written as a scalar function. However, the following criteria
also are indications that a procedure is a good candidate for being rewritten as a function:

. The procedure logic is expressible in a single SELECT statement; however, it is
written as a stored procedure, rather than a view, because of the need for it to be
parameter driven.

. The stored procedure does not perform update operations on tables, except against
table variables.

. There are no dynamic SQL statements executed via the EXECUTE statement or
sp_executesql.

. The stored procedure returns no more than a single result set.

. If the stored procedure returns a result set, its primary purpose is to build an inter-
mediate result that is typically loaded into a temporary table, which is then queried
in a SELECT statement.

The result_proc stored procedure, used earlier in this section, could possibly be rewritten as
a table-valued function called fn_result(). The preceding code fragment could then be
rewritten as follows:

SELECT *

FROM fn_results() fn

join other_table o.pkey = fn.keyfield

 Download from www.wowebook.com

ptg

944 CHAPTER 29 Creating and Managing User-Defined Functions

Creating and Using CLR Functions
Prior to SQL Server 2005, the only way to extend the functionality of SQL Server beyond
what was available using the T-SQL language was to create extended stored procedures or
Component Object Model (COM) components. The main problem with these types of
extensions was that if not written very carefully, they could have an adverse impact on
the reliability and security of SQL Server. For example, extended stored procedures are
implemented as DLLs that run in the same memory space as SQL Server. An access viola-
tion raised in a poorly written extended stored procedure could crash SQL Server itself.

In addition, neither extended stored procedures nor COM components allow you to create
custom user-defined functions that can be written in any programming language other
than T-SQL, which has a limited command set for operations such as complex string
comparison and manipulation and complex numeric computations.

In SQL Server 2008, you can write custom user-defined functions in any Microsoft .NET
Framework programming language, such as Microsoft Visual Basic .NET or Microsoft
Visual C#. SQL Server supports both scalar and table-valued CLR functions, as well as CLR
user-defined aggregate functions. These extensions written in the CLR are much more
secure and reliable than extended stored procedures or COM components.

For information on the methods and tools to actually create and compile CLR user-
defined functions, see Chapter 46. This chapter focuses only on how to install and use
CLR functions in a SQL Server database.

NOTE

The CLR function examples presented in the following sections are provided as illustra-
tions only. The sample code will not execute successfully because the underlying CLR
assemblies have not been provided.

Adding CLR Functions to a Database

If you’ve already created and compiled a CLR function, your next task is to install that CLR
function in the database. The first step in this process is to copy the .NET assembly to a
location that SQL Server can access, and then you need to load it into SQL Server by creat-
ing an assembly. The syntax for the CREATE ASSEMBLY command is as follows:

CREATE ASSEMBLY AssemblyName [AUTHORIZATION Owner_name]

FROM { <client_assembly_specifier> | <assembly_bits> [,...n] }

[WITH PERMISSION_SET = (SAFE | EXTERNAL_ACCESS | UNSAFE)]

AssemblyName is the name of the assembly. client_assembly_specifier specifies the local
path or network location where the assembly being uploaded is located, and also the
manifest filename that corresponds to the assembly. It can be expressed as a fixed string or
an expression evaluating to a fixed string, with variables. The path can be a local path, but
often the path is a network share. assembly_bits is the list of binary values that make up
the assembly and its dependent assemblies.

 Download from www.wowebook.com

ptg

945Creating and Using CLR Functions
2

9

The WITH clause is optional, and it defaults to SAFE. Marking an assembly with the SAFE
permission set indicates that no external resources (for example, the Registry, Web
services, file I/O) are going to be accessed.

The CREATE ASSEMBLY command fails if it is marked as SAFE and assemblies like System.IO
are referenced. Also, if anything causes a permission demand for executing similar opera-
tions, an exception is thrown at runtime.

Marking an assembly with the EXTERNAL_ACCESS permission set tells SQL Server that it will
use resources such as networking, files, and so forth. Assemblies such as
System.Web.Services (but not System.Web) can be referenced with this set. To create an
EXTERNAL_ACCESS assembly, the creator must have EXTERN ACCESS_permission.

Marking an assembly with the UNSAFE permission set tells SQL Server that not only might
external resources be used, but unmanaged code may be invoked from managed code. An
UNSAFE assembly can potentially undermine the security of either SQL Server or the CLR.
Only members of the sysadmin role can create UNSAFE assemblies.

After the assembly is created, the next step is to associate the method within the assembly
with a user-defined function. You do this with the CREATE FUNCTION command, using the
following syntax:

CREATE FUNCTION [schema_name.] function_name

([{ @parameter_name [AS] [schema_name.]scalar_datatype [= default] }

[,...n]])

RETURNS { return_data_type | TABLE ({ column_name data_type } [,...n]) }

[WITH { [, RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]

[, EXECUTE_AS_Clause] }]

[AS] EXTERNAL NAME assembly_name.class_name.method_name

After creating the CLR function successfully, you can use it just as you would a T-SQL func-
tion. The following example shows how to manually deploy a table-valued CLR function:

CREATE ASSEMBLY fn_EventLog

FROM ‘F:\assemblies\fn_EventLog\fn_eventlog.dll’

WITH PERMISSION_SET = SAFE

GO

CREATE FUNCTION ShowEventLog(@logname nvarchar(100))

RETURNS TABLE (logTime datetime,

Message nvarchar(4000),

Category nvarchar(4000),

InstanceId bigint)

AS

EXTERNAL NAME fn_EventLog.TabularEventLog.InitMethod

GO

SELECT * FROM dbo.ReadEventLog(N’System’) as T

go

 Download from www.wowebook.com

ptg

946 CHAPTER 29 Creating and Managing User-Defined Functions

NOTE

The preceding examples show the steps involved in manually registering an assembly
and creating a CLR function. If you use Visual Studio’s Deploy feature, the
CREATE/ALTER ASSEMBLY and CREATE FUNCTION commands are issued automatically
by Visual Studio. For more details on using Visual Studio to create and deploy user-
defined CLR functions, see Chapter 46.

Deciding Between Using T-SQL or CLR Functions

One question that often comes up regarding user-defined functions is whether it’s better
to develop functions in T-SQL or in the CLR. The answer really depends on the situation
and what the function will be doing.

The general rule of thumb is that if the function will be performing data access or large
set-oriented operations with little or no complex procedural logic, it’s better to create that
function in T-SQL to get the best performance. The reason is that T-SQL works more
closely with the data and doesn’t require multiple transitions between the CLR and SQL
Server engine.

On the other hand, most benchmarks have shown that the CLR performs better than
T-SQL for functions that require a high level of computation or text manipulation. The
CLR offers much richer APIs that provide capabilities not available in T-SQL for opera-
tions such as text manipulation, cryptography, I/O operations, data formatting, and
invoking of web services. For example, T-SQL provides only rudimentary string manipula-
tion capabilities, whereas the .NET Framework supports capabilities such as regular
expressions, which are much more powerful for pattern matching and replacement than
the T-SQL replace() function.

Another good candidate for CLR functions is user-defined aggregate functions. User-
defined aggregate functions cannot be defined in T-SQL. To compute an aggregate value
over a group in T-SQL, you would have to retrieve the values as a result set and then
enumerate over the result set, using a cursor to generate the aggregate. This results in slow
and complicated code. With CLR user-defined aggregate functions, you need to imple-
ment the code only for the accumulation logic. The query processor manages the itera-
tion, and any user-defined aggregates referenced by the query are automatically
accumulated and returned with the query result set. This approach can be orders of
magnitude faster than using cursors, and it is comparable to using SQL Server built-in
aggregate functions. For example, the following shows how you might use a user-defined
aggregate function that aggregates all the authors for a specific BookId into a comma-
separated list:

use bigpubs2008

go

SELECT t.Title_ID, count(*), dbo.CommaList(a.au_lname) as AuthorNames

FROM Authors a

JOIN titleauthor ta on a.au_id = ta.au_id

 Download from www.wowebook.com

ptg

947Summary
2

9

JOIN Titles t on ta.title_id = t.title_id

GROUP BY t.title_id

having count(*) > 2

go

Title_ID AuthorNames

-------- ---

TC7777 O’Leary, Gringlesby, Yokomoto

NOTE

The preceding example will not execute successfully because we have not created the
CommaList() CLR function. It is provided merely as an example showing how such a
function could be used if it was created.

In a nutshell, performance tests have generally shown that T-SQL generally performs
better for standard CRUD (create, read, update, delete) operations, whereas CLR code
performs better for complex math, string manipulation, and other tasks that go beyond
data access.

Summary
User-defined functions in SQL Server 2008 allow you to create reusable routines that can
help make your SQL code more straightforward and efficient.

In this chapter, you saw how to create and modify scalar functions and inline and multi-
statement table-valued functions and how to invoke and use them in queries. Scalar func-
tions can be used to perform more complex operations than those provided by the
built-in scalar functions. Table-valued functions provide a way to create what are essen-
tially parameterized views, and you can include them inline in your queries, just as you
would in a table or view.

With the introduction of CLR-based functions, SQL Server 2008 greatly increases the
power and capabilities of user-defined functions, and CLR functions can also provide
performance improvements over T-SQL functions that need to perform complex computa-
tions or string manipulations.

In the next chapter, you learn how to create and manage triggers in SQL Server 2008.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 30

Creating and Managing
Triggers

IN THIS CHAPTER

. What’s New in Creating and
Managing Triggers

. Using DML Triggers

. Using DDL Triggers

. Using CLR Triggers

. Using Nested Triggers

. Using Recursive TriggersA trigger is a special type of stored procedure executed auto-
matically based on the occurrence of a database event. Prior
to SQL Server 2005, the database events that fired triggers
were based only on data manipulations, such as insertions,
updates, or deletions. Triggers in SQL Server 2005 and SQL
Server 2008 can also fire on events related to the definition
of database objects. The two types of triggering events are
referred to as Data Manipulation Language (DML) and Data
Definition Language (DDL) events.

Most of the benefits derived from triggers are based on their
event-driven nature. Once created, triggers automatically
fire (without user intervention) based on an event in the
database. This differs from other database code, which must
be called explicitly in order to execute.

Say, for example, that you would like to keep track of
historical changes to the data in several key tables in a data-
base. Whenever a change is made to the data in the tables,
you would like to put a copy of the data in a historical table
before the change is made. You could accomplish this via
the application code that is making the change to the data.
The application code could copy the data to the history
table before the change occurs and then execute the actual
change. You could also manage this in other ways, such as
by using stored procedures that are called by the applica-
tion and subsequently insert records into the history tables.

These solutions work, but a trigger-based solution has some
distinct advantages over them. With a trigger-based solu-
tion, a trigger can act on any modifications to the key
tables. In the case of the history table example, triggers
would automatically insert records into the history table
whenever a modification was made to the data. This would

 Download from www.wowebook.com

ptg

950 CHAPTER 30 Creating and Managing Triggers

all happen within the scope of the original transaction and would write history records for
any changes made to these tables, including ad hoc changes that may have been made
directly to the tables outside the application.

This is just one example of the benefits and uses of triggers. This chapter discusses the
different types of triggers and further benefits they can provide.

What’s New in Creating and Managing Triggers
The features and methods available for creating and managing triggers are essentially the
same in SQL Server 2008 as they were in SQL Server 2005. The upside to this is that you
can take the knowledge and skills that you have with SQL Server 2005 and apply them
directly to SQL Server 2008.

One area that has had some minor changes in SQL Server 2008 relates to events captured
by DDL triggers. In SQL Server 2008 more system stored procedures that perform DDL-like
operations fire DDL triggers and event notification. In SQL Server 2005 certain system
stored procedures would fire DDL triggers, but there are many more included in SQL
Server 2008. For example, the execution of the sp_rename stored procedure would not fire
a DDL trigger in SQL Server 2005, but it does in SQL Server 2008. Refer to the “Using DDL
Triggers” section later in this chapter for a complete list of DDL statements and system
stored procedures that DDL triggers respond to.

Using DML Triggers
DML triggers are invoked when a DML event occurs in the database. DML events
manipulate or modify the data in a table or view. These events include insertions,
updates, and deletions.

DML triggers are powerful objects for maintaining database integrity and consistency.
They are able to evaluate data before it has been committed to the database. During this
evaluation period, these triggers can perform a myriad of actions, including the following:

. Compare before and after versions of data.

. Roll back invalid modifications.

. Read from other tables, including those in other databases.

. Modify other tables, including those in other databases.

. Execute local and remote stored procedures.

Based on the nature of these actions, triggers were originally used in many cases to
enforce referential integrity. Triggers were used when foreign key columns in one table
had to be validated against primary keys or unique index values in another table. The trig-
gers could fire when data was modified, and validations could be performed to ensure that
referential integrity was maintained.

 Download from www.wowebook.com

ptg

951Using DML Triggers

The advent of declarative referential integrity (DRI) diminished the need for referential
integrity triggers. DRI is now generally implemented with database objects such as foreign
key constraints that perform the referential integrity validation internally. Because of this,
triggers generally handle more complex integrity concepts and enforce restrictions that
cannot be handled through data types, constraints, defaults, or rules. Following are some
examples of trigger uses:

. Maintenance of duplicate and derived data—A denormalized database generally
introduces data duplications (that is, redundancy). Instead of exposing this redun-
dancy to end users and programmers, you can keep the data in sync by using trig-
gers. If the derived data is allowed to be out of sync, you might want to consider
handling refreshes through batch processing or some other method instead.

. Complex column constraints—If a column constraint depends on other rows
within the same table or rows in other tables, using a trigger is the best method for
that column constraint.

. Complex defaults—You can use a trigger to generate default values based on data
in other columns, rows, or tables.

. Inter-database referential integrity—When related tables are found in two differ-
ent databases, you can use triggers to ensure referential integrity across the databases.

You can use stored procedures for all these tasks, but the advantage of using triggers is
that they fire on all data modifications. Stored procedure code or SQL in application code
is executed only when it makes the data modifications. With triggers, all data modifica-
tions are subject to the trigger code, except for bulk copy and a few other nonlogged
actions. Even if a user utilizes an ad hoc tool, such as SQL Server Management Studio
(SSMS) to make changes to the database, the integrity rules cannot be bypassed after the
trigger is in place.

NOTE

Triggers and stored procedures are not mutually exclusive. You can have both triggers
and stored procedures that perform modifications and validation on that same table. If
desired, you can perform some tasks via triggers and other tasks via stored procedures.

Creating DML Triggers

You can create and manage triggers in SQL Server Management Studio or directly via
Transact-SQL (T-SQL) statements. The Object Explorer in SSMS provides a simple means of
creating triggers that you can use to generate the underlying T-SQL code. You expand the
Object Explorer tree to the user table level and then right-click the Triggers node. When
you select the New Trigger option, as shown in Figure 30.1, the trigger template shown in
the right pane of Figure 30.1 appears.

3
0

 Download from www.wowebook.com

ptg

952 CHAPTER 30 Creating and Managing Triggers

FIGURE 30.1 Using SSMS to create triggers.

You can populate the trigger template by manually editing it, or you can select the Query
menu option Specify Values for Template Parameters. When you select Specify Values for
Template Parameters, a screen appears, allowing you to fill in the basic values for the
trigger, including the table that the trigger will be on and the events to respond to.

You can launch the New Trigger template and other templates related to triggers via the
Template Explorer, which you open by selecting View, Template Explorer in SSMS. Figure
30.2 shows a partial list of the available templates, including those related to triggers.

All the trigger templates provide a basic framework for you to create a trigger, but the core
logic is up to you. Existing triggers or sample triggers are often good alternatives to the
templates because they offer more of the core logic. You can right-click a trigger in the
Object Explorer and select the Script Trigger As option. This option contains several differ-
ent methods to script the trigger. After you script a trigger, you can modify it as necessary
to meet your needs.

TIP

Using the sys.triggers catalog view is a good way to list all the triggers in a data-
base. To use it, you simply open a new query editor window in SSMS and select all the
rows from the view as shown in the following example:

SELECT * FROM sys.triggers

 Download from www.wowebook.com

ptg

953Using DML Triggers

FIGURE 30.2 The Template Explorer.

After you have a basic trigger template, you can code the trigger, with limited restrictions.
Almost every T-SQL statement you would use in a SQL batch or stored procedure is also
available for use in the trigger code. However, you cannot use the following commands in
a DML trigger:

. ALTER DATABASE

. CREATE DATABASE

. DISK RESIZE

. DROP DATABASE

. LOAD DATABASE and LOAD LOG

. RECONFIGURE

. RESTORE DATABASE and RESTORE LOG

The following sections describe the different types of DML triggers that can be coded and
some of their common uses.

Using AFTER Triggers

An AFTER trigger is the original mechanism that SQL Server created to provide an auto-
mated response to data modifications. Prior to the release of SQL Server 2000, the AFTER
trigger was the only type of trigger, and the word AFTER was rarely used in its name. Any
trigger written for prior versions of SQL Server or documentation referring to these triggers
is for AFTER triggers.

SQL Server 2000 introduced a new type of trigger called an INSTEAD OF trigger. This trigger
is discussed later in the section titled “INSTEAD OF Triggers.” The introduction of that new

3
0

 Download from www.wowebook.com

ptg

954 CHAPTER 30 Creating and Managing Triggers

trigger and inclusion of the word AFTER in the name of the old trigger have helped accen-
tuate the behavior of the AFTER trigger: the AFTER trigger executes after a data modification
has taken place.

NOTE

Throughout the rest of this chapter, if the trigger type is not specified, you can assume
that it is an AFTER trigger.

The fact that an AFTER trigger fires after a data modification might seem to be a simple
concept, but it is critical to understanding how it works. The AFTER trigger fires after the
data modification statement completes but before the statement’s work is committed to
the databases. The statement’s work is captured in the transaction log but not committed
to the database until the trigger has executed and performed its actions.

The trigger has the capability to roll back its actions as well as the actions of the modifica-
tion statement that invoked it. This is possible because an implicit transaction exists that
includes both the modification statement and trigger it fires. If the trigger does not issue a
rollback, an implicit COMMIT of all the work is issued when the trigger completes.

The basic syntax for creating an AFTER trigger is as follows:

CREATE TRIGGER trigger_name

ON table_name

AFTER { INSERT | UPDATE | DELETE }

AS

SQL statements

The AFTER trigger is the default type of DML trigger, so the AFTER keyword is optional.

Listing 30.1 shows the code you use to create a trigger in the BigPubs2008 database. (You
can find instructions for creating the BigPubs2008 database in the introduction chapter at
the beginning of this book.) This new trigger prints a message, stating the number of rows
updated by an UPDATE statement. You then execute a couple of UPDATE statements to see
whether the trigger works.

LISTING 30.1 An Example of a Simple AFTER Trigger

CREATE TRIGGER tr_au_upd ON authors

AFTER UPDATE

AS

PRINT ‘TRIGGER OUTPUT: ‘ +CONVERT(VARCHAR(5), @@ROWCOUNT)

+ ‘ rows were updated.’

GO

UPDATE authors

SET au_fname = au_fname

 Download from www.wowebook.com

ptg

955Using DML Triggers

WHERE state = ‘UT’

GO

--TRIGGER OUTPUT: 1 rows were updated.

UPDATE authors

SET au_fname = au_fname

WHERE state = ‘CA’

GO

--TRIGGER OUTPUT: 37 rows were updated.

Even though you do not actually change the contents of the au_fname column (because
you set it to itself), the trigger fires anyway. Listing 30.1 does not show the typical use of a
trigger, but it gives you some insight into how and when a trigger fires. The fact that the
trigger fires, regardless of what is updated, causes many developers to test the @@rowcount
value at the beginning of the trigger code. If @@rowcount is equal to zero, the trigger can
return without executing the remainder of the trigger code. This is a good tactic for opti-
mizing the performance of triggers.

NOTE

Triggers are meant to guarantee the integrity of data. Although you can return result sets
and messages in triggers, doing so is not recommended. The programmers who write
applications that perform modifications on a table are probably not prepared to get
unexpected result sets or messages when they submit data modification statements.

The exception is returning an error with the RAISERROR command. If a trigger performs
ROLLBACK TRAN, it should also execute RAISERROR to communicate the failure to the
application.

Executing AFTER Triggers
You know that the AFTER trigger fires when a data modification (such as an insertion, an
update, or a deletion) takes place. What about the trigger’s execution in relationship to
other events, including the execution of constraints? The following events take place
before an AFTER trigger executes:

. Constraint processing—This includes CHECK constraints, UNIQUE constraints, and
PRIMARY KEY constraints.

. Declarative referential actions—These actions are defined by FOREIGN KEY
constraints that ensure the proper relationships between tables. This includes cascad-
ing FOREIGN KEY constraints.

. Triggering action—This data modification caused the trigger to fire. The action
occurs before the trigger fires, but the results are not committed to the database until
the trigger completes.

You need to consider this execution carefully when you design triggers. For example, if
you have a constraint and trigger defined on the same column, any violations to the

3
0

 Download from www.wowebook.com

ptg

956 CHAPTER 30 Creating and Managing Triggers

constraint abort the statement, and the trigger execution does not occur. For example, if
you have a foreign key constraint on a table that ensures referencial integrity and a trigger
that that does some validation on that same foreign key column then the trigger valida-
tion will only execute if the foreign key validation is successful.

Specifying Trigger Firing Order
You can create more than one trigger on a table for each data modification action. In
other words, you can have multiple triggers responding to an INSERT, an UPDATE, or a
DELETE command. This can be useful in certain situations, but it can generate confusion
because you might not know the order in which the triggers fire for the particular action.

Some of the confusion has been alleviated by the fact that SQL Server 2008 allows you to
specify the first and last trigger that fire for a particular action. If you have four triggers
responding to updates on a given table, you can set the order for two of the triggers (first
and last), but the order of the remaining two triggers remains unknown.

The sp_settriggerorder procedure is the tool you use to set the trigger order. This proce-
dure takes the trigger name, order value (FIRST, LAST, or NONE), and action (INSERT,
UPDATE, or DELETE) as parameters. For example, you could use the following to set the
firing order on the trigger used in this chapter’s simple example:

sp_settriggerorder tr_au_upd, FIRST, ‘UPDATE’

The execution of this command sets the tr_au_upd trigger as the first trigger to fire when
an update happens to the table on which this trigger has been placed. If an ALTER state-
ment is executed against the trigger after the trigger order has been defined, the firing
order is lost. The sp_settriggerorder procedure must be run again to reestablish the
firing order.

NOTE

It is recommended that you avoid defining multiple triggers for the same event on the
same table when possible. Often, it is possible to include all the logic in one trigger
defined for an action. This can simplify your database and avoid the uncertainty of the
firing order.

Special Considerations with AFTER Triggers
Following are a few other considerations for AFTER triggers:

. AFTER triggers can be used on tables that also have cascading referential integrity
constraints. The cascading feature, which was new to SQL Server 2000, allows you to
define cascading actions when a user updates or deletes a primary key to which a
foreign key points. This new feature is discussed in more detail in Chapter 24,
“Creating and Managing Tables.”

. WRITETEXT and TRUNCATE TABLE do not fire triggers. BCP, by default, does not fire
triggers either, but the FIRE_TRIGGERS bulk copy hint can be specified to cause both
AFTER and INSTEAD OF triggers to execute.

 Download from www.wowebook.com

ptg

957Using DML Triggers

. Triggers are objects, so they must have unique names within the database. If you try
to add a trigger with a name that already exists, you get an error message. You can,
however, use ALTER on an existing trigger.

The following restrictions apply to AFTER triggers:

. AFTER triggers can be placed only on tables, not on views.

. A single AFTER trigger cannot be placed on more than one table.

. The text, ntext, and image columns cannot be referenced in the AFTER trigger logic.

Using inserted and deleted Tables

In most trigger situations, you need to know what changes were made as part of the data
modification. You can find this information in the inserted and deleted tables. For the
AFTER trigger, these temporary memory-resident tables contain the rows modified by the
statement. With the INSTEAD OF trigger, the inserted and deleted tables are actually
temporary tables created on-the-fly.

The inserted and deleted tables have identical column structures and names as the
tables that were modified. Consider running the following statement against the
BigPubs2008 database:

UPDATE titles

SET price = $15.05

WHERE type LIKE ‘%cook%’

When this statement is executed, a copy of the rows to be modified is recorded, along
with a copy of the rows after the modification. These copies are available to the trigger in
the deleted and inserted tables.

If you want to be able to see the contents of the deleted and inserted tables for testing
purposes, you can create a copy of the table and then create a trigger on that copy (see
Listing 30.2). You can perform data modification statements and view the contents of
these tables without the modification actually taking place.

LISTING 30.2 Viewing the Contents of the inserted and deleted Tables

--Create a copy of the titles table in the BigPubs2008 database

SELECT *

INTO titles_copy

FROM titles

GO

--add an AFTER trigger to this table for testing purposes

CREATE TRIGGER tc_tr ON titles_copy

FOR INSERT, UPDATE, DELETE

AS

PRINT ‘Inserted:’

SELECT title_id, type, price FROM inserted

3
0

 Download from www.wowebook.com

ptg

958 CHAPTER 30 Creating and Managing Triggers

PRINT ‘Deleted:’

SELECT title_id, type, price FROM deleted

ROLLBACK TRANSACTION

The inserted and deleted tables are available within the trigger after INSERT, UPDATE, and
DELETE. Listing 30.3 shows the contents of inserted and deleted, as reported by the
trigger when executing the preceding UPDATE statement.

LISTING 30.3 Viewing the Contents of the inserted and deleted Tables When Updating
the titles_copy Table

UPDATE titles_copy

SET price = $15.05

WHERE type LIKE ‘%cook%’

Inserted:

title_id type price

-------- ------------ ---------------------

TC7777 trad_cook 15.05

TC4203 trad_cook 15.05

TC3218 trad_cook 15.05

MC3021 mod_cook 15.05

MC2222 mod_cook 15.05

Deleted:

title_id type price

-------- ------------ ---------------------

TC7777 trad_cook 14.3279

TC4203 trad_cook 14.595

TC3218 trad_cook 0.0017

MC3021 mod_cook 15.894

MC2222 mod_cook 14.9532

NOTE

In SQL Server 2008, an error message is displayed after a rollback is initiated in a trig-
ger. The error message indicates that the transaction ended in the trigger and that the
batch has been aborted. Prior to SQL Server 2005, an error message was not dis-
played when a rollback was encountered in the trigger.

The nature of the inserted and deleted tables enables you to determine the action that
fired the trigger. For example, when an INSERT occurs, the deleted table is empty because
there were no previous values prior to the insertion. Table 30.1 shows the DML triggering
events and the corresponding contents in the deleted and inserted tables.

 Download from www.wowebook.com

ptg

959Using DML Triggers

NOTE

Triggers do not fire on a row-by-row basis. One common mistake in coding triggers is to
assume that only one row is modified. However, triggers are set-based. If a single
statement affects multiple rows in the table, the trigger needs to handle the processing
of all the rows that were affected, not just one row at a time.

One common approach to dealing with the multiple rows in a trigger is to place the
rows in a cursor and then process each row that was affected, one at a time. This
approach works, but it can have an adverse effect on the performance of the trigger. To
keep your trigger execution fast, you should try to use rowset-based logic instead of
cursors in triggers when possible.

Rowset-based logic will typically join to the inserted or deleted table that are available
to a trigger. You can join these tables to other tables that are being manipulated by the
trigger. For example, a trigger on a Job table can update a related employee table with
rowset-based logic such as :

UPDATE employee

SET employee.job_lvl = i.min_lvl

FROM inserted i

WHERE employee.emp_id = i.emp_id

This kind of logic will allow the trigger update to work correctly if one job record is
changed or many job rows are changed at once. This is much more efficient than load-
ing all of the rows from the inserted table into a cursor which updates the employee
records one at a time within the cursor loop.

Checking for Column Updates
The UPDATE() function is available inside INSERT and UPDATE triggers. UPDATE() allows a
trigger to determine whether a column was affected by the INSERT or UPDATE statement
that fired the trigger. By testing whether a column was actually updated, you can avoid
performing unnecessary work.

For example, suppose a rule mandates that you cannot change the city for an author (a silly
rule, but it demonstrates a few key concepts). Listing 30.4 creates a trigger for both INSERT
and UPDATE that enforces this rule on the authors table in the BigPubs2008 database.

3
0

TABLE 30.1 Determining the Action That Fired a Trigger

Statement Contents of inserted Contents of deleted

INSERT Rows added Empty

UPDATE New rows Old rows

DELETE Empty Rows deleted

 Download from www.wowebook.com

ptg

960 CHAPTER 30 Creating and Managing Triggers

LISTING 30.4 Using the UPDATE() Function in a Trigger

CREATE TRIGGER tr_au_ins_upd ON authors

FOR INSERT, UPDATE

AS

IF UPDATE(city)

BEGIN

RAISERROR (‘You cannot change the city.’, 15, 1)

ROLLBACK TRAN

END

GO

UPDATE authors

SET city = city

WHERE au_id = ‘172-32-1176’

Server: Msg 50000, Level 15, State 1, Procedure

tr_au_ins_upd, Line 5

You cannot change the city.

Listing 30.4 shows how you generally write triggers that verify the integrity of data. If the
modification violates an integrity rule, an error message is returned to the client applica-
tion, and the modification is rolled back.

The UPDATE() function evaluates to TRUE if you update the column in the UPDATE state-
ment. As shown in the preceding example, you do not have to change the value in the
column for the UPDATE() function to evaluate to TRUE, but the column must be referenced
in the UPDATE statement. For example, with the author update, the city column was set it
to itself (the value does not change), but the UPDATE() function still evaluates to TRUE.

NOTE

If you created the tr_au_upd trigger on the authors table as part of the AFTER trigger
example earlier in this chapter, you might have also seen the TRIGGER OUTPUT: 1
rows were updated message. This trigger was set to be the first trigger to fire, and it
executes in addition to the new ins_upd trigger added in the example from this section.

Now you can add a couple of INSERT statements on the authors table:

INSERT authors (au_id, au_lname, au_fname, city, contract)

VALUES(‘111-11-1111’, ‘White’, ‘Johnson’,’Menlo Park’, 1)

--Results from the previous insert

Server: Msg 50000, Level 15, State 1

You cannot change the city.

 Download from www.wowebook.com

ptg

961Using DML Triggers

The UPDATE() function evaluates to TRUE and displays the error message. This outcome is
expected because the trigger was created for INSERT as well, and the IF UPDATE condition
is evaluated for both insertions and updates.

Now you can see what happens if you change the INSERT statement so that it does not
include the city column in the INSERT:

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES(‘111-11-2222’, ‘White’, ‘Johnson’, 1)

Server: Msg 50000, Level 15, State 1

You cannot change the city.

The error message is still displayed, even though the insertion was performed without the
city column. This process might seem counterintuitive, but the IF UPDATE condition
always returns a TRUE value for INSERT actions. The reason is that the columns have either
explicit default values or implicit (NULL) values inserted, even if they are not specified. The
IF UPDATE conditions see this as a change and evaluate to TRUE.

If you change the tr_au_ins_upd trigger to be for UPDATE only (not INSERT and UPDATE),
the insertions can take place without error.

Enforcing Referential Integrity by Using DML Triggers

Several options, including foreign key constraints and stored procedures, are available to
enforce referential integrity, but using a trigger is still a viable alternative. A trigger
provides a great deal of flexibility and allows you to customize your referential integrity
solution to fit your needs. Some of the other alternatives, such as foreign keys, do not
provide the same degree of customization.

TIP

In a database environment in which multiple databases are used with related data, a
trigger can be invaluable for enforcing referential integrity. The trigger can span data-
bases, and it can ensure that data rows inserted into a table in one database are valid
based on rows in another database.

Listing 30.5 shows how to re-create and populate the customers and orders tables in the
sample BigPubs2008 database.

LISTING 30.5 Creating and Populating the customers and orders Tables

if exists (select * from sysobjects

where id = object_id(‘orders’) and sysstat & 0xf = 3)

drop table orders

GO

if exists (select * from sysobjects

3
0

 Download from www.wowebook.com

ptg

962 CHAPTER 30 Creating and Managing Triggers

where id = object_id(‘customers’) and sysstat & 0xf = 3)

drop table customers

GO

CREATE TABLE customers

(customer_id INT PRIMARY KEY NOT NULL,

customer_name NVARCHAR(25) NOT NULL,

customer_comments NVARCHAR(22) NULL)

CREATE TABLE orders

(order_id INT PRIMARY KEY NOT NULL,

customer_id INT,

order_date DATETIME,

CONSTRAINT FK_orders_customers

FOREIGN KEY (customer_id) REFERENCES customers (customer_id))

INSERT customers (customer_id, customer_name, customer_comments)

VALUES(1, ‘Hardware Suppliers AB’,’Stephanie is contact.’)

INSERT customers (customer_id, customer_name, customer_comments)

VALUES(2, ‘Software Suppliers AB’,’Elisabeth is contact.’)

INSERT customers (customer_id, customer_name, customer_comments)

VALUES(3, ‘Firmware Suppliers AB’,’Mike is contact.’)

INSERT orders (order_id, customer_id, order_date)

VALUES(100, 1, GETDATE())

INSERT orders (order_id, customer_id, order_date)

VALUES(101, 1, GETDATE())

INSERT orders (order_id, customer_id, order_date)

VALUES(102, 1, GETDATE())

SELECT * FROM customers

SELECT * FROM orders

customer_id customer_name customer_comments

----------- ------------------------- ----------------------

1 Hardware Suppliers AB Stephanie is contact.

2 Software Suppliers AB Elisabeth is contact.

3 Firmware Suppliers AB Mike is contact.

order_id customer_id order_date

----------- ----------- -----------------------

100 1 2009-06-17 05:16:49.233

101 1 2009-06-17 05:16:49.233

102 1 2009-06-17 05:16:49.233

When foreign key constraints are used to enforce referencial integrity, they prohibit
several different types of changes to the data in the related tables. These restrictions

 Download from www.wowebook.com

ptg

963Using DML Triggers

ensure the that the integrity of the relationships is maintained. For example, the FOREIGN
KEY constraint FK_orders_customers on the orders table prohibits the following:

. Inserting rows into the orders table for customer numbers that don’t exist in the
customers table

. Updating the orders table by changing the customer number to values that don’t
exist in the customers table

. Deleting rows in the customers table for which orders exist

. Updating the customers table by changing the customer number for which orders
exist

You might want a cascading action instead of prohibiting the deletion or update of rows
on the customers table. This would include automatically cascading the DELETE or UPDATE
statement executed on the customers table to the related orders table. You can do this by
using triggers.

Cascading Deletes

A cascading delete is relatively simple to create. Listing 30.6 shows a cascading delete
trigger for the customers table.

TIP

SQL Server 2000 added a feature that allows you to define cascading actions on a
FOREIGN KEY constraint. When defining the constraints on a table, you can use the ON
UPDATE CASCADE or ON DELETE CASCADE clause, which causes changes to the primary
key of a table to cascade to the related foreign key tables. Refer to Chapter 26,
“Implementing Data Integrity,” for further information on this option.

LISTING 30.6 A Cascading Delete for the customers Table

CREATE TRIGGER cust_del_orders ON customers

FOR DELETE

AS

IF @@ROWCOUNT = 0

RETURN

DELETE orders

FROM orders o , deleted d

WHERE o.customer_id = d.customer_id

IF @@ERROR <> 0

BEGIN

RAISERROR (‘ERROR encountered in cascading trigger.’, 16, 1)

3
0

 Download from www.wowebook.com

ptg

964 CHAPTER 30 Creating and Managing Triggers

ROLLBACK TRAN

RETURN

END

The following DELETE statement deletes the row for Customer 1, so all three rows for that
customer in the orders table should be deleted by the trigger:

DELETE customers WHERE customer_id = 1

Server: Msg 547, Level 16, State 1

The DELETE statement conflicted with COLUMN REFERENCE

constraint ‘FK_orders_customers’.

The conflict occurred in database ‘BigPubs2008’,

table ‘orders’, column ‘customer_id’.

The statement has been terminated.

This result might not be what you expected. The FOREIGN KEY constraint here restricts the
DELETE statement, so the trigger never fires. The trigger in this example is an AFTER trigger.
Therefore, the trigger does not fire, and the cascading action never takes place. You have
several options to get around this situation:

. Remove the FOREIGN KEY constraint from orders to customers.

. Disable the FOREIGN KEY constraint from orders to customers.

. Keep the FOREIGN KEY constraint and perform all cascading actions in stored
procedures.

. Keep the FOREIGN KEY constraint and perform all cascading actions in the application.

. Use an INSTEAD OF trigger in place of the AFTER trigger.

. Use the new cascading referential integrity constraints.

Listing 30.7 shows how you can disable the FOREIGN KEY constraint so that a cascading
delete can occur.

LISTING 30.7 Disabling the FOREIGN KEY Constraint to the customers Table So That a
Cascading Delete Can Occur

ALTER TABLE orders

NOCHECK CONSTRAINT FK_orders_customers

GO

GO

DELETE customers WHERE customer_id = 1

SELECT * FROM customers

SELECT * FROM orders

customer_id customer_name customer_comments

 Download from www.wowebook.com

ptg

965Using DML Triggers

----------- ------------------------- ----------------------

2 Software Suppliers AB Elisabeth is contact.

3 Firmware Suppliers AB Mike is contact.

order_id customer_id order_date

----------- ----------- ---------------------------

In Listing 30.7, the cascading deletes occur via the trigger because the FOREIGN KEY
constraint is disabled. Compared to a trigger for cascading deletes, a trigger for cascading
updates is more complex and not as common. This issue is discussed in more detail in the
next section.

If you disable the FOREIGN KEY constraint, you have a potential integrity problem. If rows
are inserted or updated in the orders table, there are no constraints to ensure that the
customer number exists in the customer table. You can take care of this situation by using
an INSERT and UPDATE trigger on the orders table (see Listing 30.8). The trigger in Listing
30.8 tests for the existence of a customer before the order is inserted or updated.

LISTING 30.8 Handling a Restriction by Using a Trigger on the orders Table

if exists (select * from sysobjects where id = object_id(‘dbo.ord_ins_upd_cust’)

and sysstat & 0xf = 8)

drop trigger dbo.ord_ins_upd_cust

GO

CREATE TRIGGER ord_ins_upd_cust ON orders

FOR INSERT, UPDATE

AS

IF EXISTS (SELECT * FROM inserted

WHERE customer_id NOT IN

(SELECT customer_id FROM customers))

BEGIN

RAISERROR(‘No customer with such customer number’, 16, 1)

ROLLBACK TRAN

RETURN

END

Cascading Updates

A cascading update with a trigger is a bit tricky to achieve. Modifying a primary key, per
definition, really involves deleting a row and inserting a new row. The problem is that you
lose the connection between the old row and new row in the customers table. How do
you know which changes to cascade to which rows?

3
0

 Download from www.wowebook.com

ptg

966 CHAPTER 30 Creating and Managing Triggers

This situation is simpler if you can restrict the changes to one row (see Listing 30.9)
because you have only one row in the deleted and inserted tables. You know the
customer number before and after the modification.

LISTING 30.9 A Cascading Update in a Trigger

if exists (select * from sysobjects where id = object_id(‘dbo.cust_upd_orders’)

and sysstat & 0xf = 8)

drop trigger dbo.cust_upd_orders

GO

CREATE TRIGGER cust_upd_orders ON customers

FOR UPDATE

AS

DECLARE @rows_affected int, @c_id_before int, @c_id_after int

SELECT @rows_affected = @@ROWCOUNT

IF @rows_affected = 0

RETURN -- No rows changed, exit trigger

IF UPDATE(customer_id)

BEGIN

IF @rows_affected = 1

BEGIN

SELECT @c_id_before = customer_id FROM deleted

SELECT @c_id_after = customer_id FROM inserted

UPDATE orders

SET customer_id = @c_id_after

WHERE customer_id = @c_id_before

END

ELSE

BEGIN

RAISERROR (‘Cannot update more than 1 row.’, 16, 1)

ROLLBACK TRAN

RETURN

END

END

If several rows are updated, it’s not easy to know which order belongs to which customer.
You can easily modify the trigger shown in Listing 30.9 to handle a situation in which
several rows change to the same value; however, this is not allowed because of the
primary key on the customers table. Instances in which several rows are modified and the
primary key value is changed are rare, and you are not likely to encounter such situations.

 Download from www.wowebook.com

ptg

967Using DML Triggers

NOTE

The cascading FOREIGN KEY constraints are an excellent alternative to triggers, and
they are efficient. If you choose not to use the cascading feature, you might still want
to enjoy the simplicity of constraints. Then you need to handle cascading actions only
in stored procedures or in client applications.

Stored procedures are often a good choice because they essentially give application
developers a function-based interface for modifications. If the implementation details
(for example, the table structure or rules) change, client applications can be isolated
from the changes, as long as the interfaces to the stored procedures stay the same.
The question of how to handle a cascade is a matter of personal preference, however.

Handling cascading updates in a client application or stored procedure is a chicken-
and-egg situation: you cannot change the primary key table first because other tables
reference it. You also cannot change the referencing table because no row exists in the
primary key table with a corresponding value. The solution is to insert in the referenced
table a new row that contains the new primary key value, change the referencing rows,
and then delete the old row from the referenced table.

INSTEAD OF Triggers

SQL Server 2000 introduced a type of trigger called an INSTEAD OF trigger. This type of
trigger extends SQL Server’s trigger capabilities and provides an alternative to the AFTER
trigger that was heavily utilized in prior versions of SQL Server.

The name of the trigger gives you some insight into how this trigger operates: this trigger
performs its actions instead of the action that fired it. This is much different from the
AFTER trigger, which performs its actions after the statement that caused it to fire has
completed. This means you can have an INSTEAD OF update trigger on a table that success-
fully completes but does not include the actual update to the table.

The basic syntax for creating an INSTEAD OF trigger is as follows:

CREATE TRIGGER trigger_name

ON table_name

INSTEAD OF { INSERT | UPDATE | DELETE }

AS

SQL statements

Listing 30.10 shows how to create a trigger that prints a message stating the number of
rows updated by an UPDATE statement. It then executes an UPDATE against the table that
has the trigger on it. Finally, it selects the rows from the table for review.

3
0

 Download from www.wowebook.com

ptg

968 CHAPTER 30 Creating and Managing Triggers

LISTING 30.10 A Simple INSTEAD OF Trigger

if exists (select * from sysobjects where id = object_id(‘dbo.cust_upd_orders’)

and sysstat & 0xf = 8)

drop trigger dbo.cust_upd_orders

GO

CREATE TRIGGER trI_au_upd ON authors

INSTEAD OF UPDATE

AS

PRINT ‘TRIGGER OUTPUT: ‘

+CONVERT(VARCHAR(5), @@ROWCOUNT) + ‘ rows were updated.’

GO

UPDATE authors

SET au_fname = ‘Rachael’

WHERE state = ‘UT’

GO

TRIGGER OUTPUT: 1 rows were updated.

SELECT au_fname, au_lname FROM authors

WHERE state = ‘UT’

GO

au_fname au_lname

-------------------- --

Johann Wolfgang von Goethe

As you can see from the results of the SELECT statement, the first name (au_fname) column
is not updated to ’Rachael’. The UPDATE statement is correct, but the INSTEAD OF trigger
logic does not apply the update from the statement as part of its INSTEAD OF action. The
only action the trigger carries out is to print its message.

The important point to realize is that after you define an INSTEAD OF trigger on a table,
you need to include all the logic in the trigger to perform the actual modification as well
as any other actions that the trigger might need to carry out.

Executing INSTEAD OF Triggers
To gain a complete understanding of the INSTEAD OF trigger, you must understand its
execution in relationship to the other events that are occurring. The following key events
are important when the INSTEAD OF trigger fires:

. Triggering action—The INSTEAD OF trigger fires instead of the triggering action. As
shown earlier, the actions of the INSTEAD OF trigger replace the actions of the origi-
nal data modification that fired the trigger.

. Constraint processing—Constraint processing—including CHECK constraints,
UNIQUE constraints, and PRIMARY KEY constraints—happens after the INSTEAD OF
trigger fires.

 Download from www.wowebook.com

ptg

969Using DML Triggers

Listing 30.11 demonstrates the trigger execution order.

LISTING 30.11 INSTEAD OF Trigger Execution

CREATE TRIGGER employee_insInstead

ON employee

INSTEAD OF insert

AS

DECLARE @job_id smallint

--Insert the jobs record for the employee if it does not already exist

IF NOT EXISTS

(SELECT 1

FROM jobs j, inserted i

WHERE i.job_id = j.job_id)

BEGIN

INSERT jobs

(job_desc, min_lvl, max_lvl)

SELECT ‘Automatic Job Add’, i.job_lvl, i.job_lvl

FROM inserted i

--Capture the identify value for the job just inserted

--This will be used for the employee insert later

SELECT @job_id = @@identity

PRINT ‘NEW job_id ADDED FOR NEW EMPLOYEE:’ + convert(char(3),@job_id)

END

--Execute the original insert action with the newly added job_id

INSERT employee

(emp_id, fname, minit, lname, job_id, job_lvl, pub_id, hire_date)

SELECT emp_id, fname, minit, lname, @job_id, job_lvl, pub_id, hire_date

FROM Inserted

GO

The trigger in Listing 30.11 can be created in BigPubs2008. The key feature of this INSTEAD
OF trigger is that it can satisfy a referential integrity constraint that was not satisfied before
the INSERT was executed. Note the FOREIGN KEY constraint on the employee table that
references job_id on the jobs table. The trigger first checks whether the jobs record asso-
ciated with the job_id of the employee being inserted exists. If the jobs record does not

3
0

 Download from www.wowebook.com

ptg

970 CHAPTER 30 Creating and Managing Triggers

exist for the inserted employee’s job_id, the trigger inserts a new jobs record and uses it
for the insertion of the employee record.

If you execute the following INSERT statement, which has a job_id that does not exist,
it succeeds:

INSERT EMPLOYEE

(emp_id, fname, minit, lname, job_id, job_lvl, pub_id, hire_date)

VALUES (‘KNN33333F’, ‘Kayla’, ‘N’, ‘Nicole’, 20, 100, 9952, getdate())

Go

This statement succeeds because the constraint processing happens after the INSTEAD OF
trigger completes its actions. Conversely, if you were to create the same trigger as an AFTER
trigger, the FOREIGN KEY constraint would execute before the AFTER trigger, and the follow-
ing error message would be displayed:

INSERT statement conflicted with COLUMN FOREIGN KEY constraint

‘FK__employee__job_id__1BFD2C07’. The

conflict occurred in database ‘BigPubs2008’, table ‘jobs’, column ‘job_id’.

-->The statement has been terminated.

Notice with the previous INSTEAD OF trigger example that the last action the trigger
performs is the actual insertion of the employee record. The trigger was created to fire
when an employee was inserted, so the trigger must perform the actual insertion. This
insertion occurs in addition to any other actions that justify the trigger’s creation.

Using AFTER Versus INSTEAD OF Triggers
Now that you have seen some of the key differences between AFTER and INSTEAD OF trig-
gers, you need to decide which trigger to use. In the previous example (Listing 30.11), the
INSTEAD OF trigger is the only trigger option for this kind of functionality. However, you
can often use either trigger type to attain the same result.

Something you should consider when choosing one of these triggers is the efficiency of
the overall modification. For example, if you have a modification that will cause a trigger
to fire and often reject the modification, you might want to consider using the INSTEAD
OF trigger. The rationale is that the INSTEAD OF trigger does not perform the actual modifi-
cation until after the trigger completes, so you do not need to undo the modification. If
you were to use an AFTER trigger in the same scenario, any modifications that were
rejected would need to be rolled back because they have already been written to the trans-
action log by the time the AFTER trigger fires.

Conversely, if you have a situation in which the vast majority of the updates are not
rejected, the AFTER trigger might be your best choice.

The particular situation dictates the preferred trigger, but you should keep in mind that
INSTEAD OF triggers tend to be more involved than AFTER triggers because an INSTEAD OF
trigger must perform the actual data modification that fired it.

 Download from www.wowebook.com

ptg

971Using DML Triggers

Using AFTER and INSTEAD OF Triggers Together
An important consideration when coding an INSTEAD OF trigger is that it can exist on the
same table as an AFTER trigger. INSTEAD OF triggers can also execute based on the same
data modifications as AFTER triggers.

Consider, for example, the INSTEAD OF trigger from Listing 30.11 that you placed on the
employee table in the BigPubs2008 database. An AFTER trigger already existed on the
employee table. Listing 30.12 shows the code for the existing AFTER trigger on the
employee table.

LISTING 30.12 An AFTER Trigger Placed on the Same Table as an INSTEAD OF Trigger

if exists (select * from sysobjects where id = object_id(‘dbo.employee_insupd’)

and sysstat & 0xf = 8)

drop trigger dbo.employee_insupd

GO

CREATE TRIGGER employee_insupd

ON employee

FOR INSERT, UPDATE

AS

--Get the range of level for this job type from the jobs table.

declare @min_lvl tinyint,

@max_lvl tinyint,

@emp_lvl tinyint,

@job_id smallint

select @min_lvl = min_lvl,

@max_lvl = max_lvl,

@emp_lvl = i.job_lvl,

@job_id = i.job_id

from employee e, jobs j, inserted i

where e.emp_id = i.emp_id AND i.job_id = j.job_id

IF (@job_id = 1) and (@emp_lvl <> 10)

begin

raiserror (‘Job id 1 expects the default level of 10.’,16,1)

ROLLBACK TRANSACTION

end

ELSE

IF NOT (@emp_lvl BETWEEN @min_lvl AND @max_lvl)

begin

raiserror (‘The level for job_id:%d should be between %d and %d.’,

16, 1, @job_id, @min_lvl, @max_lvl)

ROLLBACK TRANSACTION

End

go

3
0

 Download from www.wowebook.com

ptg

972 CHAPTER 30 Creating and Managing Triggers

This AFTER trigger checks whether the job level assigned to the employee falls within a
valid range for the job_id assigned to the employee. It is fired for both insertions and
updates, and it can exist on the same table as the employee_insInstead INSTEAD OF
trigger described earlier. The combined effect on an employee insertion with both the trig-
gers on the employee table is to have the following actions happen:

1. The INSERT data modification is executed.

2. The INSTEAD OF trigger fires, completes its validation, and ultimately does the
employee insertion that is written to the transaction log.

3. Constraint processing completes.

4. The AFTER trigger fires, performing its actions on the employee record inserted by
the INSTEAD OF trigger.

5. The AFTER trigger completes and commits the transaction to the database.

One of the key points in this example is that the AFTER trigger performs its actions on the
row inserted by the INSTEAD OF trigger. It does not use the record from the original INSERT
that started the trigger execution. Therefore, in this chapter’s example, where the INSTEAD
OF trigger generates a new job_id, the new job_id value—not the job_id that was origi-
nally inserted—is used in the AFTER trigger.

You need to consider rollback and recovery in this scenario as well, but they are beyond
the scope of this discussion. This example simply shows that INSTEAD OF and AFTER trig-
gers can be combined and that you need to consider the order of execution when design-
ing a trigger solution.

Using Views with INSTEAD OF Triggers
One of the most powerful applications of an INSTEAD OF trigger is to a view. The INSTEAD
OF trigger, unlike the AFTER trigger, can be applied to a view and triggered based on modi-
fications to the view. For more information on views, see Chapter 27, “Creating and
Managing Views.”

The creation of INSTEAD OF triggers on views is important because data modifications
against views have many restrictions. The list is extensive, but following are a few examples:

. You cannot use data modification statements that apply to more than one table in
the view in a single statement.

. All columns defined as NOT NULL in the underlying tables that are being inserted
must have the column values specified in the INSERT statement.

. If the view was defined with the WITH CHECK OPTION clause, rows cannot be modi-
fied in a way that will cause them to disappear from the view.

You can use the INSTEAD OF trigger to overcome some of these restrictions. In particular,
the first restriction (related to making a single table modification) can be addressed with
the INSTEAD OF trigger. The INSTEAD OF trigger fires before the actual modification takes
place, so it can resolve the modifications to the underlying tables associated with the view.
It can then execute the modification directly against those base tables. The following
example demonstrates this capability:

 Download from www.wowebook.com

ptg

973Using DML Triggers

Use BigPubs2008

go

CREATE VIEW employeeJobs

AS

select j.min_lvl, j.max_lvl, j.job_id, j.job_desc, e.job_lvl, e.emp_id

from employee e, jobs j

where e.job_id = j.job_id

GO

This example creates a view in the BigPubs2008 database that joins data from the
employee and jobs tables. It retrieves the job types and the associated levels, the employ-
ees assigned to the job types, and each employee’s current job level. Following is a sample
set of rows from the view:

min_lvl max_lvl job_id job_desc job_lvl emp_id

------- ------- ------ -------------------------------------- ------- ---------

25 100 14 Designer 35 ENL44273F

25 100 14 Designer 89 PSA89086M

25 100 14 Designer 100 KFJ64308F

25 100 12 Editor 32 Y-L77953M

25 100 12 Editor 35 H-B39728F

25 100 12 Editor 100 HAS54740M

Let’s say you want to change the minimum job level (min_lvl) for the Designer job to 40
and at the same time set the job level (job_lvl) for any employees who have this job to
40. If you execute the following update—without an INSTEAD OF trigger—against the view,
you get the message shown:

UPDATE employeeJobs

SET min_lvl = 40,

job_lvl = 40

WHERE job_id = 12

GO

View or function ‘employeeJobs’ is not updateable

because the modification affects multiple base tables.

To get around this problem, you can use an INSTEAD OF trigger. The trigger can decipher
the update to the view and apply the updates to the base table without causing the error.
This functionality is demonstrated in the INSTEAD OF trigger shown in Listing 30.13.

LISTING 30.13 A Basic View with an INSTEAD OF Trigger

CREATE TRIGGER employeeJobs_updInstead

ON employeeJobs

INSTEAD OF UPDATE

AS

IF @@ROWCOUNT = 0 RETURN

3
0

 Download from www.wowebook.com

ptg

974 CHAPTER 30 Creating and Managing Triggers

--update the data related to the jobs table

UPDATE jobs

SET jobs.min_lvl = i.min_lvl,

jobs.max_lvl = i.max_lvl,

jobs.job_desc = i.job_desc

FROM inserted i

WHERE jobs.job_id = i.job_id

AND (jobs.min_lvl <> i.min_lvl

OR jobs.max_lvl <> i.max_lvl

OR jobs.job_desc <> i.job_desc)

--update the data related to the employee table

UPDATE employee

SET employee.job_lvl = i.min_lvl

FROM inserted i

WHERE employee.emp_id = i.emp_id

GO

A section in Listing 30.13 checks the fields related to the jobs table and updates the base
table if any of the values have changed. Another section updates the employee table for
the employee fields that have been changed in the view.

NOTE

You could enhance the trigger in Listing 30.13 to include logic to check for specific
updates or to update only those employees who are assigned to the job and have a job
level below the new minimum. These enhancements are not included in the listing to
keep the example simple.

If you now execute the same UPDATE statement, you don’t get an error message:

UPDATE employeeJobs

SET min_lvl = 40,

job_lvl = 40

WHERE job_id = 12

GO

The following results show values selected from the employeeJobs view after the update is
executed successfully:

min_lvl max_lvl job_id job_desc job_lvl emp_id

------- ------- ------ -------------------------------------- ------- ---------

25 100 14 Designer 35 ENL44273F

25 100 14 Designer 89 PSA89086M

 Download from www.wowebook.com

ptg

975Using DML Triggers

25 100 14 Designer 100 KFJ64308F

25 100 13 Sales Representative 35 PMA42628M

25 100 13 Sales Representative 64 CGS88322F

25 100 13 Sales Representative 100 TPO55093M

40 100 12 Editor 40 Y-L77953M

40 100 12 Editor 40 H-B39728F

40 100 12 Editor 40 HAS54740M

Notice that the Editor job now has a minimum level (min_lvl) equal to 40 and that all
the employees who have that job level (job_lvl) are also set to 40.

You can see the added flexibility that you get by using the INSTEAD OF trigger on a basic
view. This flexibility is also applicable to a more sophisticated view called a distributed
partitioned view. With this type of view, data for the view can be partitioned across differ-
ent servers. Partitioning this way enables you to scale a database solution and still have a
single view of the data that appears as one table.

You can make data modifications via a distributed partitioned view, but some restrictions
exist. If you do not meet the requirements for updating the view, you can use the INSTEAD
OF trigger to bypass these restrictions; this is similar to adding an INSTEAD OF trigger on a
nonpartitioned view.

INSTEAD OF Trigger Restrictions
INSTEAD OF triggers have many capabilities, but they also have limitations. Following are
some of them:

. INSTEAD OF triggers do not support recursion. This means they cannot call them-
selves, regardless of the setting of the Recursive Triggers database option. For
example, if an INSERT is executed on a table that has an INSTEAD OF trigger, and the
INSTEAD OF trigger performs an INSERT on this same table, the INSTEAD OF trigger for
this INSERT does not fire a second time. Any AFTER triggers defined on the same
table for INSERT fire based on the INSTEAD OF trigger INSERT.

. You can define only one INSTEAD OF trigger for each action on a given table.
Therefore, you can have a maximum of three INSTEAD OF triggers for each table: one
for INSERT, one for UPDATE, and one for DELETE.

. A table cannot have an INSTEAD OF trigger and a FOREIGN KEY constraint with CASCADE
defined for the same action. For example, you cannot have an INSTEAD OF trigger
defined for DELETE on a given table as well as a foreign key with a CASCADE DELETE
definition. You get an error if you attempt to do this. In this situation, you could have
INSTEAD OF triggers defined on INSERT and UPDATE without receiving errors.

3
0

 Download from www.wowebook.com

ptg

976 CHAPTER 30 Creating and Managing Triggers

Using DDL Triggers
DDL triggers were introduced in SQL Server 2005. These triggers focus on changes to the
definition of database objects as opposed to changes to the actual data. The definition of
database objects is dictated by the DDL events that these triggers respond to.

The DDL events that these triggers fire on can be broken down into two main categories.
The first category includes DDL events that are scoped at the database level and affect the
definition of objects such as tables, indexes, and users. The second category of DDL trig-
gers is scoped at the server level. These triggers apply to server objects, such as logins.

The number of DDL events at the database level far exceeds the number at the server
level. Table 30.2 lists the DDL statements and system stored procedures that DDL triggers
can fire on.

TABLE 30.2 DDL Statements and System Stored Procedures*

Create/Grant/Bind/Add Alter/Update/Deny Drop/Revoke/Unbind

Statements and System Stored Procedures with Database-Level Scope

CREATE_APPLICATION_ROLE ALTER_APPLICATION_ROLE DROP_APPLICATION_ROLE

(sp_addapprole) (sp_approlepassword) (sp_dropapprole)

CREATE_ASSEMBLY ALTER_ASSEMBLY DROP_ASSEMBLY

ALTER_AUTHORIZATION_

DATABASE (sp_changedbowner)

CREATE_CERTIFICATE ALTER_CERTIFICATE DROP_CERTIFICATE

CREATE_CONTRACT DROP_CONTRACT

CREATE_DATABASE ALTER_DATABASE DROP_DATABASE

CREATE_DEFAULT DROP_DEFAULT

BIND_DEFAULT UNBIND_DEFAULT

GRANT_DATABASE DENY_DATABASE REVOKE_DATABASE

CREATE_EVENT_NOTIFICATION DROP_EVENT_NOTIFICATION

CREATE_EXTENDED_PROPERTY ALTER_EXTENDED_PROPERTY DROP_EXTENDED_PROPERTY

(sp_addextendedproperty) (sp_updateextendedproperty) (sp_dropextended
property)

CREATE_FULLTEXT_INDEX ALTER_FULLTEXT_INDEX

DROP_FULLTEXT_INDEX

(sp_fulltexttable) (sp_fulltextcatalog) (sp_fulltexttable)

 Download from www.wowebook.com

ptg

977Using DDL Triggers
3

0

TABLE 30.2 DDL Statements and System Stored Procedures*

Create/Grant/Bind/Add Alter/Update/Deny Drop/Revoke/Unbind

(sp_fulltext_column)

CREATE_FUNCTION ALTER_FUNCTION DROP_FUNCTION

CREATE_INDEX ALTER_INDEX DROP_INDEX

(sp_indexoption)

CREATE_MASTER_KEY ALTER_MASTER_KEY DROP_MASTER_KEY

CREATE_MESSAGE_TYPE ALTER_MESSAGE_TYPE DROP_MESSAGE_TYPE

CREATE_PARTITION_FUNCTION ALTER_PARTITION_FUNCTION DROP_PARTITION_FUNCTION

CREATE_PARTITION_SCHEME ALTER_PARTITION_SCHEME DROP_PARTITION_SCHEME

CREATE_PLAN_GUIDE ALTER_PLAN_GUIDE DROP_PLAN_GUIDE

(sp_create_plan_guide) (sp_control_plan_guide) (sp_control_plan_guide)

CREATE_PROCEDURE ALTER_PROCEDURE DROP_PROCEDURE

CREATE_QUEUE ALTER_QUEUE DROP_QUEUE

CREATE_REMOTE_SERVICE_ ALTER_REMOTE_SERVICE_ DROP_REMOTE_SERVICE_

BINDING BINDING BINDING

RENAME

(sp_rename)

CREATE_ROLE ALTER_ROLE DROP_ROLE

(sp_addrole and
sp_addgroup)

(sp_droprole and
sp_dropgroup)

ADD_ROLE_MEMBER ALTER_ROUTEDROP_ROLE_MEMBER

CREATE_ROUTE ALTER_ROUTE DROP_ROUTE

CREATE_RULE DROP_RULE

BIND_RULE UNBIND_RULE

(sp_bindrule) (sp_unbindrule)

CREATE_SCHEMA ALTER_SCHEMA DROP_SCHEMA

(sp_addrole and sp_adduser) (sp_changeobjectowner)

(sp_addgroup and
sp_grantdbaccess)

 Download from www.wowebook.com

ptg

978 CHAPTER 30 Creating and Managing Triggers

TABLE 30.2 DDL Statements and System Stored Procedures*

Create/Grant/Bind/Add Alter/Update/Deny Drop/Revoke/Unbind

CREATE_SERVICE ALTER_SERVICE DROP_SERVICE

ADD_SIGNATURE DROP_SIGNATURE

CREATE_SPATIAL_INDEX ALTER_INDEX DROP_INDEX

CREATE_STATISTICS UPDATE_STATISTICS DROP_STATISTICS

CREATE_SYMMETRIC_KEY ALTER_SYMMETRIC_KEY DROP_SYMMETRIC_KEY

CREATE_SYNONYM DROP_SYNONYM

CREATE_TABLE ALTER_TABLE DROP_TABLE

(sp_tableoption)

CREATE_TRIGGER ALTER_TRIGGER DROP_TRIGGER

(sp_settriggerorder)

CREATE_TYPE DROP_TYPE

(sp_addtype) (sp_droptype)

CREATE_USER ALTER_USER DROP_USER

(sp_adduser and
sp_grantdbaccess)

(sp_change_users_login) (sp_dropuser and
sp_revokedbaccess)

CREATE_VIEW ALTER_VIEW DROP_VIEW

CREATE_XML_INDEX ALTER_INDEX DROP_INDEX

CREATE_XML_SCHEMA_ ALTER_XML_SCHEMA_ DROP_XML_SCHEMA_

COLLECTION COLLECTION COLLECTION

Statements and System Stored Procedures with Server-Level Scope

ALTER_AUTHORIZATION_

SERVER

CREATE_DATABASE ALTER_DATABASE DROP_DATABASE

(sp_fulltext_database)

CREATE_ENDPOINT ALTER_ENDPOINTDROP_ENDPOINT

CREATE_EXTENDED_PROCEDURE DROP_EXTENDED_PROCEDURE

(sp_addextendedproc) (sp_dropextendedproc)

ALTER_INSTANCE

 Download from www.wowebook.com

ptg

979Using DDL Triggers
3

0

TABLE 30.2 DDL Statements and System Stored Procedures*

Create/Grant/Bind/Add Alter/Update/Deny Drop/Revoke/Unbind

(sp_configure and
sp_addserver)

CREATE_LINKED_SERVER ALTER_LINKED_SERVER DROP_LINKED_SERVER

(sp_addlinkedserver) (sp_serveroption) (sp_dropserver)

CREATE_LINKED_SERVER_

LOGIN

DROP_LINKED_SERVER_

LOGIN

(sp_addlinkedsrvlogin) (sp_droplinkedsrvlogin)

CREATE_LOGIN ALTER_LOGIN DROP_LOGIN

(sp_addlogin and
sp_grantlogin)

(sp_defaultdb and
sp_defaultlanguage)

(sp_droplogin and
sp_revokelogin

(xp_grantlogin and
sp_denylogin)

(sp_password,
sp_change_users_login)

(xp_revokelogin)

CREATE_MESSAGE ALTER_MESSAGE DROP_MESSAGE

(sp_addmessage) (sp_altermessage) (sp_dropmessage)

CREATE_REMOTE_SERVER ALTER_REMOTE_SERVER DROP_REMOTE_SERVER

(sp_addserver) (sp_setnetname) (sp_dropserver)

GRANT_SERVER DENY_SERVER REVOKE_SERVER

ADD_SERVER_ROLE_MEMBER DROP_SERVER_ROLE_MEMBER

Statements and System Stored Procedures with Database-Level Scope

Create/Grant/Bind/Add Alter/Update/Deny Drop/Revoke/Unbind

CREATE_APPLICATION_ROLE ALTER_APPLICATION_ROLE DROP_APPLICATION_ROLE

(sp_addapprole) (sp_approlepassword) (sp_dropapprole)

CREATE_ASSEMBLY ALTER_ASSEMBLY DROP_ASSEMBLY

ALTER_AUTHORIZATION_

DATABASE(sp_changedbowner)

CREATE_CERTIFICATE ALTER_CERTIFICATE DROP_CERTIFICATE

CREATE_CONTRACT DROP_CONTRACT

CREATE_DATABASE ALTER_DATABASE DROP_DATABASE

CREATE_DEFAULT DROP_DEFAULT

BIND_DEFAULT UNBIND_DEFAULT

 Download from www.wowebook.com

ptg

980 CHAPTER 30 Creating and Managing Triggers

TABLE 30.2 DDL Statements and System Stored Procedures*

Create/Grant/Bind/Add Alter/Update/Deny Drop/Revoke/Unbind

GRANT_DATABASE DENY_DATABASE REVOKE_DATABASE

CREATE_EVENT_ DROP_EVENT_

NOTIFICATION NOTIFICATION

CREATE_EXTENDED_

PROPERTY

ALTER_EXTENDED_PROPERTY DROP_EXTENDED_PROPERTY

(sp_addextendedproperty) (sp_updateextendedproperty) (sp_dropextendedproperty)

CREATE_FULLTEXT_INDEX ALTER_FULLTEXT_INDEX DROP_FULLTEXT_INDEX

(sp_fulltexttable) (sp_fulltextcatalog) (sp_fulltexttable)

(sp_fulltext_column)

CREATE_FUNCTION ALTER_FUNCTION DROP_FUNCTION

CREATE_INDEX ALTER_INDEX DROP_INDEX

(sp_indexoption)

CREATE_MASTER_KEY ALTER_MASTER_KEY DROP_MASTER_KEY

CREATE_MESSAGE_TYPE ALTER_MESSAGE_TYPE DROP_MESSAGE_TYPE

CREATE_PARTITION_FUNCTION ALTER_PARTITION_FUNCTION DROP_PARTITION_

FUNCTION

CREATE_PARTITION_SCHEME ALTER_PARTITION_SCHEME DROP_PARTITION_SCHEME

CREATE_PLAN_GUIDE ALTER_PLAN_GUIDE DROP_PLAN_GUIDE

(sp_create_plan_guide) (sp_control_plan_guide) (sp_control_plan_guide)

CREATE_PROCEDURE ALTER_PROCEDURE DROP_PROCEDURE

CREATE_QUEUE ALTER_QUEUE DROP_QUEUE

CREATE_REMOTE_SERVICE_BIN

DING

ALTER_REMOTE_SERVICE_BINDIN

G

DROP_REMOTE_SERVICE_BIN

DING

RENAME

(sp_rename)

CREATE_ROLE ALTER_ROLE DROP_ROLE

(sp_addrole and
sp_addgroup)

(sp_droprole and
sp_dropgroup)

ADD_ROLE_MEMBER ALTER_ROUTE DROP_ROLE_MEMBER

 Download from www.wowebook.com

ptg

981Using DDL Triggers
3

0

TABLE 30.2 DDL Statements and System Stored Procedures*

Create/Grant/Bind/Add Alter/Update/Deny Drop/Revoke/Unbind

CREATE_ROUTE ALTER_ROUTE DROP_ROUTE

CREATE_RULE DROP_RULE

BIND_RULE UNBIND_RULE

(sp_bindrule) (sp_unbindrule)

CREATE_SCHEMA ALTER_SCHEMA DROP_SCHEMA

(sp_addrole and sp_adduser) (sp_changeobjectowner)

(sp_addgroup and
sp_grantdbaccess)

CREATE_SERVICE ALTER_SERVICE DROP_SERVICE

ADD_SIGNATURE DROP_SIGNATURE

CREATE_SPATIAL_INDEX ALTER_INDEX DROP_INDEX

CREATE_STATISTICS UPDATE_STATISTICS DROP_STATISTICS

CREATE_SYMMETRIC_KEY ALTER_SYMMETRIC_KEY DROP_SYMMETRIC_KEY

CREATE_SYNONYM DROP_SYNONYM

CREATE_TABLE ALTER_TABLE DROP_TABLE

(sp_tableoption)

CREATE_TRIGGER ALTER_TRIGGER DROP_TRIGGER

(sp_settriggerorder)

CREATE_TYPE DROP_TYPE

(sp_addtype) (sp_droptype)

CREATE_USER ALTER_USER DROP_USER

(sp_adduser and
sp_grantdbaccess)

(sp_change_users_login) (sp_dropuser and
sp_revokedbaccess)

CREATE_VIEW ALTER_VIEW DROP_VIEW

CREATE_XML_INDEX ALTER_INDEX DROP_INDEX

CREATE_XML_SCHEMA_

COLLECTION

ALTER_XML_SCHEMA_COLLECTION DROP_XML_SCHEMA_

COLLECTION

Statements and System Stored Procedures with Server-Level Scope

ALTER_AUTHORIZATION_

SERVER

 Download from www.wowebook.com

ptg

982 CHAPTER 30 Creating and Managing Triggers

TABLE 30.2 DDL Statements and System Stored Procedures*

Create/Grant/Bind/Add Alter/Update/Deny Drop/Revoke/Unbind

CREATE_DATABASE ALTER_DATABASE DROP_DATABASE

(sp_fulltext_database)

CREATE_ENDPOINT ALTER_ENDPOINT DROP_ENDPOINT

CREATE_EXTENDED_PROCEDURE DROP_EXTENDED_PROCEDURE

(sp_addextendedproc) (sp_dropextendedproc)

ALTER_INSTANCE

(sp_configure and
sp_addserver)

CREATE_LINKED_SERVER ALTER_LINKED_SERVER DROP_LINKED_SERVER

(sp_addlinkedserver) (sp_serveroption) (sp_dropserver)

CREATE_LINKED_SERVER_

LOGIN

DROP_LINKED_SERVER_

LOGIN

(sp_addlinkedsrvlogin) (sp_droplinkedsrvlogin)

CREATE_LOGIN ALTER_LOGIN DROP_LOGIN

(sp_addlogin and
sp_grantlogin)

(sp_defaultdb and
sp_defaultlanguage)

(sp_droplogin and
sp_revokelogin

(xp_grantlogin and
sp_denylogin)

(sp_password,
sp_change_users_login)

(xp_revokelogin)

CREATE_MESSAGE ALTER_MESSAGE DROP_MESSAGE

(sp_addmessage) (sp_altermessage) (sp_dropmessage)

CREATE_REMOTE_SERVER ALTER_REMOTE_SERVER DROP_REMOTE_SERVER

(sp_addserver) (sp_setnetname) (sp_dropserver)

GRANT_SERVER DENY_SERVER REVOKE_SERVER

ADD_SERVER_ROLE_MEMBER DROP_SERVER_ROLE_MEMBER

System stored procedures are enclosed in parentheses.

 Download from www.wowebook.com

ptg

983Using DDL Triggers
3

0

Triggers created on the DDL events are particularly important for auditing purposes. In
the past, it was very difficult to isolate changes to the definition of a database or to
secure them from change. With DDL triggers, you have the tools necessary to manage
these changes.

Creating DDL Triggers

The basic syntax for creating a DDL trigger follows:

CREATE TRIGGER trigger_name

ON { ALL SERVER | DATABASE }

[WITH <ddl_trigger_option> [,...n]]

{ FOR | AFTER } { event_type | event_group } [,...n]

AS { sql_statement [;] [...n] | EXTERNAL NAME < method specifier > [;] }

The best way to illustrate the use of the DDL trigger syntax and power of these triggers is
to look at a few examples. The example shown in Listing 30.14 illustrates the creation of a
DDL trigger that is scoped at the database level and prevents table-level changes.

LISTING 30.14 A Database-Scoped DDL Trigger for Tables

CREATE TRIGGER tr_TableAudit

ON DATABASE

FOR CREATE_TABLE, ALTER_TABLE, DROP_TABLE

AS

PRINT ‘You must disable the TableAudit trigger in order

to change any table in this database’

ROLLBACK

GO

This trigger is fired whenever the CREATE, ALTER, or DROP TABLE statements are executed.
Consider, for example, the following statements that can be run against the
BigPubs2008 database:

ALTER table titles

add new_col int null

alter table titles

drop column new_col

You must disable the TableAudit trigger in order to change any table in this

database

Msg 3609, Level 16, State 2, Line 1

The transaction ended in the trigger. The batch has been aborted.

These ALTER statements add a column to the titles table and then remove the column.
With the tr_TableAudit trigger in place on the BigPubs2008 database, the error message is
displayed after the first ALTER statement is executed.

 Download from www.wowebook.com

ptg

984 CHAPTER 30 Creating and Managing Triggers

This type of trigger is useful for controlling development and production database envi-
ronments. It goes beyond the normal security measures and helps manage unwanted
change. For development environments, this type of trigger enables the database adminis-
trator to lock down an environment and focus all changes through that person.

The previous examples include events scoped at the database level. Let’s look at an
example that applies to server-level events. The script in Listing 30.15 creates a trigger
scoped at the server level. It prevents changes to the server logins. When this trigger is
installed, it displays a message and rolls back any login changes that are attempted.

LISTING 30.15 A Server-Scoped DDL Trigger for Logins

CREATE TRIGGER tr_LoginAudit

ON ALL SERVER

FOR CREATE_LOGIN, ALTER_LOGIN, DROP_LOGIN

AS

PRINT ‘You must disable the tr_LoginAudit trigger before making login changes’

ROLLBACK

The DDL trigger examples we have looked at thus far have targeted specific events listed
in Table 30.2. These individual events can also be referenced via an event group. Event
groups are hierarchical in nature and can be referenced in DDL triggers instead of the indi-
vidual events. For example, the table-level trigger from Listing 30.14 can be changed as
shown in Listing 30.16 to accomplish the same result. In Listing 30.16, the
DDL_TABLE_EVENTS group reference replaces the individual event references to
CREATE_TABLE, ALTER_TABLE, and DROP_TABLE.

LISTING 30.16 An Example of a DDL Trigger Referencing an Event Group

USE [BigPubs2008]

IF EXISTS (SELECT * FROM sys.triggers

WHERE name = N’tr_TableAudit’ AND parent_class=0)

DROP TRIGGER [tr_TableAudit] ON DATABASE

go

CREATE TRIGGER tr_TableAudit

ON DATABASE

FOR DDL_TABLE_EVENTS

AS

PRINT ‘You must disable the TableAudit trigger in

order to change any table in this database’

ROLLBACK

GO

 Download from www.wowebook.com

ptg

985Using DDL Triggers
3

0

SQL Server Books Online has an excellent diagram listing all the event groups that can be
used to fire DDL triggers. Refer to the “DDL Event Groups” topic in Books Online, which
shows the event groups and related DDL events they contain. Event groups simplify
administration and allow for auditing at a high level.

The DDL trigger examples we have looked at thus far have executed simple print state-
ments. To further extend the functionality of DDL triggers, you can code them to capture
event information related to the DDL trigger execution. You do this by using the
EVENTDATA function. The EVENTDATA function returns an XML string that includes the time
of the event, server process ID (SPID), and type of event that fired the trigger. For some
events, additional information, such as the object name or T-SQL statement, is included in
the XML string as well.

The EVENTDATA function is essentially the replacement for the inserted and deleted tables
available with DML triggers but not available with DDL triggers. It gives you information
you can use to implement an auditing solution that captures changes to a data definition.
This function is particularly useful in situations in which you do not want to prevent
changes to your definition, but you want a record of the changes that occur.

Listing 30.17 shows an auditing solution with a DDL trigger that utilizes the EVENTDATA
function to capture any changes to indexes in the BigPubs2008 database. Several event
data elements are selected from the EVENTDATA XML string and displayed whenever a
change is made to an index.

LISTING 30.17 An Example of a DDL Trigger That References an Event Group

CREATE TRIGGER tr_ddl_IndexAudit

ON DATABASE

FOR CREATE_INDEX, ALTER_INDEX, DROP_INDEX

AS

DECLARE @EventData XML

-- Capture event data from the EVENTDATA function

SET @EventData = EVENTDATA()

-- Select the auditing info from the XML stream

SELECT @EventData.query (‘’data(/EVENT_INSTANCE/PostTime)’’)

AS [Event Time],

@EventData.query (‘’data(/EVENT_INSTANCE/EventType)’’)

AS [Event Type],

@EventData.query (‘’data(/EVENT_INSTANCE/ServerName)’’)

AS [Server Name],

@EventData.query (‘’data(/EVENT_INSTANCE/TSQLCommand/CommandText)’’)

AS [Command Text]

GO

To test the DDL trigger in Listing 30.17, you can run the following statement to create an
index on the titles table in the BigPubs2008 database:

 Download from www.wowebook.com

ptg

986 CHAPTER 30 Creating and Managing Triggers

CREATE NONCLUSTERED INDEX [nc_titles_type] ON [dbo].[titles] ([type] ASC)

The INDEX CREATE statement completes successfully, and the event-specific information
appears in the Results pane.

You can further extend the auditing capabilities of this type of DDL trigger by writing the
results to an audit table. This would give you a quick way of tracking changes to database
objects. This type of approach dramatically improves change control and reporting on
database changes.

NOTE

DDL triggers can also execute managed code based on the CLR. This topic is dis-
cussed in the section “Using CLR Triggers,” later in this chapter.

Managing DDL Triggers

The administration of DDL triggers is similar to the administration of DML triggers, but
DDL triggers are located in a different part of the Object Explorer tree. The reason is that
DDL triggers are scoped at the server or database level, not at the table level. Figure 30.3
shows the Object Explorer tree and the nodes related to DDL triggers at both the server
and database levels. The tr_TableAudit trigger you created earlier in this chapter is shown
under the Database Triggers node. Figure 30.3 shows the options available when you
right-click a database trigger in the Object Explorer tree.

FIGURE 30.3 Using SSMS to manage DDL triggers.

 Download from www.wowebook.com

ptg

987Using DDL Triggers
3

0

The DDL triggers scoped at the server level are found in the Triggers node under the
Server Objects node of the Object Explorer tree. (The Server Objects node is near the
bottom of Figure 30.3.)

You can obtain information about DDL triggers by using catalog views. These views
provide a convenient and flexible means for querying database objects, including DDL
triggers. Table 30.3 lists the catalog views that relate to triggers. The table includes the
scope of the trigger that the view reports on and a brief description of what it returns.

Listing 30.18 shows sample SELECT statements that utilize the catalog views. These state-
ments use the sys.triggers and sys.server_triggers views. The SELECT against the
sys.triggers table uses a WHERE clause condition that checks the parent_class column to
retrieve only DDL triggers. The SELECT from sys.server_triggers does not need a WHERE
clause because it inherently returns only DDL triggers. The results of each statement are
shown below each SELECT in the listing.

LISTING 30.18 Viewing DDL Triggers with Catalog Views

--DATABASE SCOPED DDL TRIGGERS

select left(name,20) ‘Name’, create_date, modify_date, is_disabled

from sys.triggers

where parent_class = 0

TABLE 30.3 Catalog Views for DDL Triggers

Catalog View Description

Statements with Database-Level Scope

sys.triggers All triggers, including DDL database-scoped triggers

sys.trigger_events All trigger events, including those that fire DDL database-
scoped triggers

sys.sql_modules All SQL-defined modules, including trigger definitions

sys.assembly_modules All CLR-defined modules, including database-scoped triggers

Statements with Server-Level Scope

sys.server_triggers Server-scoped DDL triggers

sys.server_trigger_events Events that fire server-scoped triggers

sys.sql_modules DDL trigger definitions for server-scoped triggers

sys.server_assembly_modules CLR trigger definitions for server-scoped triggers

 Download from www.wowebook.com

ptg

988 CHAPTER 30 Creating and Managing Triggers

--Name create_date modify_date is_disabled

---------------------- ----------------------- ----------------------- -----------

--tr_TableAudit 2009-06-18 12:48:43.140 2009-06-18 12:48:43.140 0

--tr_ddl_IndexAudit 2009-06-22 06:35:10.233 2009-06-22 06:35:10.233 0

--SERVER SCOPED DDL TRIGGERS

select left(name,20) ‘Name’, create_date, modify_date, is_disabled

from sys.server_triggers

--Name create_date modify_date is_disabled

---------------------- ----------------------- ----------------------- -----------

--tr_LoginAudit 2009-06-18 12:13:46.077 2005-06-18 12:13:46.077 0

Using CLR Triggers
CLR triggers are triggers based on the CLR. CLR integration, which was added with SQL
Server 2008, allows for database objects (such as triggers) to be coded in one of the
supported .NET languages, including Visual Basic .NET and C#.

The decision to code triggers and other database objects by using the CLR depends on the
type of operations in the trigger. Typically, objects that have heavy computations or
require references to objects outside SQL are coded in the CLR. Triggers strictly geared
toward database access should continue to be coded in T-SQL.

You can code both DDL and DML triggers by using a supported CLR language. Generally
speaking, it is much easier to code a CLR trigger in the Visual Studio .NET Integrated
Development Environment (IDE), but you can create them outside the IDE as well. Visual
Studio .NET provides a development environment that offers IntelliSense, debugging facil-
ities, and other user-friendly capabilities that come with a robust IDE. The .NET
Framework and development environment are discussed in more detail in Chapter 4, “SQL
Server and the .NET Framework.”

The following basic steps are required to create a CLR trigger:

1. Create the CLR class. You code the CLR class module with references to the name-
spaces required to compile CLR database objects.

2. Compile the CLR class into an assembly or a DDL file, using the appropriate
language compiler.

3. Load the CLR assembly into SQL Server so that it can be referenced.

4. Create the CLR trigger that references the loaded assembly.

The following listings provide examples of each of these steps.

 Download from www.wowebook.com

ptg

989Using CLR Triggers
3

0

NOTE

The CLR must be enabled on your server before you can add CLR components. The
CLR option is disabled by default. To enable the CLR, you use the sp_configure ‘clr
enabled’, 1 T-SQL command followed by the RECONFIGURE command. You can also
enable CLR integration by using SQL Server 2008 Surface Area Configuration and then
choosing the Surface Area Configuration for Features and selecting the Enable CLR
Integration option.

Listing 30.19 contains C# code that can be used for the first step: creating the CLR class.
This simple example selects rows from the inserted table.

LISTING 30.19 A CLR Trigger Class Created with C#

using System;

using System.Data;

using System.Data.Sql;

using Microsoft.SqlServer.Server;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using System.Xml;

using System.Text.RegularExpressions;

public class clrtriggertest

{

public static void showinserted()

{

SqlTriggerContext triggContext = SqlContext.TriggerContext;

SqlConnection conn = new SqlConnection (“context connection = true”);

conn.Open();

SqlCommand sqlComm = conn.CreateCommand();

SqlPipe sqlP = SqlContext.Pipe;

SqlDataReader dr;

sqlComm.CommandText = “SELECT pub_id, pub_name from inserted”;

dr = sqlComm.ExecuteReader();

while (dr.Read())

sqlP.Send((string)dr[0] + “, “ + (string)dr[1]);

}

}

The CLR class in Listing 30.19 needs to be compiled so that SQL Server can use it. The
compiler for C# is located in the .NET Framework path, which is

 Download from www.wowebook.com

ptg

990 CHAPTER 30 Creating and Managing Triggers

C:\WINDOWS\Microsoft.NET\Framework\version by default. The last part of the path,
version, is the number of the latest version installed on your machine. For simplicity’s
sake, you can add the full .NET Framework path to your path variable in the Advanced tab
of your System Properties dialog. If you add the .NET Framework path to your path vari-
able, you can run the executable for the compiler without navigating to that location.

You can save the code from Listing 30.19 in a text file named clrtriggertesting.cs.
Then you can open a command prompt window and navigate to the folder where you
saved the clrtriggertesting.cs file. The command shown in Listing 30.20 compiles the
clrtriggertesting.cs file into clrtriggertesting.dll. This command can be run from
any directory if you have added the .NET Framework path (for example,
C:\WINDOWS\Microsoft.NET\Framework\v3.5) to your path variable. Without the addi-
tional path entry, you need to navigate to the .NET Framework path prior to executing
the command.

LISTING 30.20 A CLR Trigger Class Compilation

csc /target:library clrtriggertesting.cs

After compiling clrtriggertesting.dll, you need to load the assembly into SQL Server.
Listing 30.21 shows the T-SQL command you can execute to create the assembly for
clrtriggertesting.dll.

LISTING 30.21 Using CREATE ASSEMBLY in SQL Server

CREATE ASSEMBLY triggertesting

from ‘c:\clrtrigger\clrtriggertesting.dll’

WITH PERMISSION_SET = SAFE

The final step is to create the trigger that references the assembly. Listing 30.22 shows the
T-SQL commands to add a trigger on the publishers table in the BigPubs2008 database.

LISTING 30.22 Creating a CLR Trigger

CREATE TRIGGER tri_publishers_clr

ON publishers

FOR INSERT

AS

EXTERNAL NAME triggertesting.clrtriggertest.showinserted

Listing 30.23 contains an INSERT statement to the publishers table that fires the newly
created CLR trigger.

 Download from www.wowebook.com

ptg

991Using Nested Triggers
3

0

LISTING 30.23 Using an INSERT Statement to Fire a CLR Trigger

INSERT publishers

(pub_id, pub_name)

values (‘9922’,’Sams Publishing’)

The trigger simply echoes the contents of the inserted table. The output from the trigger
based on the insertion in Listing 30.23 is as follows:

9922, Sams Publishing

The tri_publishers trigger demonstrates the basic steps for creating a CLR trigger. The
true power of CLR triggers lies in performing more complex calculations, string manipula-
tions and things of this nature that the can be done much more efficiently with CLR
programming languages than they can in T-SQL.

NOTE

For more detailed information and examples of CLR triggers, see Chapter 45.

Using Nested Triggers
Triggers can be nested up to 32 levels. If a trigger changes a table on which another trigger
exists, the second trigger is fired and can then fire a third trigger, and so on. If the nesting
level is exceeded, the trigger is canceled, and the transaction is rolled back.

The following error message is returned if the nesting level is exceeded:

Server: Msg 217, Level 16, State 1, Procedure ttt2, Line 2

Maximum stored procedure nesting level exceeded (limit 32).

You can disable nested triggers by setting the nested triggers option of sp_configure
to 0 (off):

EXEC sp_configure ‘nested triggers’, 0

GO

RECONFIGURE WITH OVERRIDE

GO

After the nested triggers option is turned off, the only triggers to fire are those that are
part of the original data modification: the top-level triggers. If updates to other tables are
made via the top-level triggers, those updates are completed, but the triggers on those
tables do not fire. For example, say you have an UPDATE trigger on the jobs table in the
BigPubs2008 database and an UPDATE trigger on the employee table as well. The trigger on
the jobs table updates the employee table. If an update is made to the jobs table, the jobs
trigger fires and completes the updates on the employee table. However, the trigger on the
employee table does not fire.

 Download from www.wowebook.com

ptg

992 CHAPTER 30 Creating and Managing Triggers

The default configuration is to allow nested triggers, but there are reasons for turning off
the nested triggers option. For example, you might want triggers to fire on direct data
modifications but not on modifications that are made by another trigger. Say you have a
trigger on every table that updates the audit time. You might want the audit time for a
table to be updated by a trigger when that table is being updated directly, but you might
not want the audit date updated on any of the other tables that are part of the nested
trigger executions. This can be accomplished by turning off the nested triggers option.

Using Recursive Triggers
Recursive triggers were introduced in SQL Server 7.0. If a trigger modifies the same table
where the trigger was created, the trigger does not fire again unless the recursive trig-
gers option is turned on. recursive triggers is a database option turned off by default.

The first command in the following example checks the setting of recursive triggers
for the BigPubs2008 database, and the second sets recursive triggers to TRUE:

EXEC sp_dboption BigPubs2008, ‘recursive triggers’

EXEC sp_dboption BigPubs2008, ‘recursive triggers’, TRUE

If you turn off nested triggers, recursive triggers are automatically disabled, regardless of
how the database option is set. The maximum nesting level for recursive triggers is the
same as for nested triggers: 32 levels.

You should use recursive triggers with care. It is easy to create an endless loop, as shown
in Listing 30.24, which creates a recursive trigger on a new test table in the BigPubs2008
database.

LISTING 30.24 The Error Message Returned for an Endless Loop with Recursive Triggers

--The first statement is used to disable the previously created

--DDL trigger which would prevent any changes.

DISABLE TRIGGER ALL ON DATABASE

EXEC sp_configure ‘nested triggers’, 1

RECONFIGURE WITH OVERRIDE

EXEC sp_dboption BigPubs2008, ‘recursive triggers’, TRUE

CREATE TABLE rk_tr_test (id int IDENTITY)

GO

CREATE TRIGGER rk_tr ON rk_tr_test FOR INSERT

AS INSERT rk_tr_test DEFAULT VALUES

GO

INSERT rk_tr_test DEFAULT VALUES

Server: Msg 217, Level 16, State 1, Procedure rk_tr, Line 2

Maximum stored procedure nesting level exceeded (limit 32).

 Download from www.wowebook.com

ptg

993Summary
3

0

The recursion described thus far is known as direct recursion. Another type of recursion
exists as well: indirect recursion. With indirect recursion, a table that has a trigger fires an
update to another table, and that table, in turn, causes an update to happen to the origi-
nal table on which the trigger fired. This action causes the trigger on the original table to
fire again.

With indirect recursion, setting the recursive triggers database setting to FALSE does
not prevent the recursion from happening. The only way to prevent this type of recursion
is to set the nested triggers setting to FALSE, which, in turn, prevents all recursion.

Summary
Triggers are among the most powerful tools for ensuring the quality of data in a database.
The range of commands that can be executed from within triggers and their capability to
automatically fire give them a distinct role in defining sound database solutions.

Chapter 31, “Transaction Management and the Transaction Log,” looks at the methods for
defining and managing transactions within SQL Server 2008.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 31

Transaction
Management and the

Transaction Log

IN THIS CHAPTER

. What’s New in Transaction
Management

. What Is a Transaction?

. How SQL Server Manages
Transactions

. Defining Transactions

. Transactions and Batches

. Transactions and Stored
Procedures

. Transactions and Triggers

. Transactions and Locking

. Coding Effective Transactions

. Transaction Logging and the
Recovery Process

. Long-Running Transactions

. Bound Connections

. Distributed Transactions

Transaction management is an important area in database
programming. The transactions you construct and issue can
have a huge impact on the performance of SQL Server and
the consistency of your databases. This chapter looks at the
methods for defining and managing transactions in SQL
Server 2008.

What’s New in Transaction
Management
Not much has really changed in SQL Server 2008 related to
transactions, transaction logging, and transaction manage-
ment. About the only real change is the removal of the
WITH TRUNCATE_ONLY and WITH NO_LOG options from the
BACKUP LOG command. These options are no longer avail-
able in SQL Server 2008 to prune the transaction log. The
alternative is to switch the database to simple recovery
model.

What Is a Transaction?
A transaction is one or more SQL statements that must be
completed as a whole or, in other words, as a single logical
unit of work. Transactions provide a way of collecting and
associating multiple actions into a single all-or-nothing
multiple-operation action. All operations within the trans-
action must be fully completed or not performed at all.

Consider a bank transaction in which you move $1,000
from your checking account to your savings account. This

 Download from www.wowebook.com

ptg

996 CHAPTER 31 Transaction Management and the Transaction Log

transaction is, in fact, two operations: a decrement of your checking account and an incre-
ment of your savings account. Consider the impact on your finances if the bank’s server
went down after it completed the first step and never got to the second! When the two
operations are combined, as a transaction, they either both succeed or both fail as a single,
complete unit of work.

A transaction is a logical unit of work that has four special characteristics, known as the
ACID properties:

. Atomicity—Associated modifications are an all-or-nothing proposition; either all
are done or none are done.

. Consistency—After a transaction finishes, all data is in the state it should be in, all
internal structures are correct, and everything accurately reflects the transaction that
has occurred.

. Isolation—One transaction cannot interfere with the processes of another transac-
tion.

. Durability—After the transaction has finished, all changes made are permanent.

The responsibility for enforcing the ACID properties of a transaction is split between T-
SQL developers and SQL Server. The developers are responsible for ensuring that the modi-
fications are correctly collected together and that the data is going to be left in a
consistent state that corresponds with the actions being taken. SQL Server ensures that the
transaction is isolated and durable, undertakes the atomicity requested, and ensures the
consistency of the final data structures. The transaction log of each database provides the
durability for the transaction. As you see in this chapter, you have some control over how
SQL Server handles some of these properties.

How SQL Server Manages Transactions
SQL Server uses the database’s transaction log to record the modifications that occur
within the database. Each log record is labeled with a unique log sequence number (LSN),
and all log entries that are part of the same transaction are linked together so that they
can be easily located if the transaction needs to be undone or redone. The primary respon-
sibility of logging is to ensure transaction durability—either ensuring that the completed
changes make it to the physical database files or ensuring that any unfinished transactions
are rolled back in the event of an error or a server failure.

What is logged? Obviously, the start and end of a transaction are logged, but SQL Server
also logs the actual data modification, page allocations and de-allocations, and changes to
indexes. SQL Server keeps track of a number of pieces of information, all with the aim of
ensuring the ACID properties of the transaction.

After a transaction has been committed, it cannot be rolled back. The only way to undo a
committed transaction is to write another transaction to reverse the changes made. A
transaction can be rolled back before it is committed, however.

 Download from www.wowebook.com

ptg

997Defining Transactions

SQL Server provides transaction management for all users, using the following components:

. Transaction-control statements to define the logical units of work

. A write-ahead transaction log

. An automatic recovery process

. Data-locking mechanisms to ensure consistency and transaction isolation

Defining Transactions
You can carry out transaction processing with Microsoft SQL Server in three ways:

. AutoCommit—Every T-SQL statement is its own transaction and automatically
commits when it finishes. This is the default mode in which SQL Server operates.

. Explicit—This approach provides programmatic control of the transaction, using
the BEGIN TRAN and COMMIT/ROLLBACK TRAN/WORK commands.

. Implicit—In this mode, when you issue certain SQL commands, SQL Server auto-
matically starts a transaction. You must finish the transaction by explicitly issuing
the COMMIT/ROLLBACK TRAN/WORK commands.

Each of these methods is discussed in the following sections.

NOTE

The terms for explicit and implicit transactions can be somewhat confusing. The way to
keep them straight is to think of how a multistatement transaction is initiated, not how it
is completed. AutoCommit transactions are in a separate category because they are
both implicitly started and committed.

Implicit and explicit transactions have to be explicitly ended, but explicit transactions
must also be explicitly started with the BEGIN TRAN statement, whereas no BEGIN
TRAN is necessary to start a multistatement transaction when in implicit transaction
mode.

AutoCommit Transactions

AutoCommit is the default transaction mode for SQL Server. Each individual T-SQL
command automatically commits or rolls back its work at the end of its execution. Each
SQL statement is considered to be its own transaction, with begin and end control points
implied. Following is an example:

[implied begin transaction]

UPDATE account

SET balance = balance + 1000

WHERE account_no = “123456789”

[implied commit or rollback transaction]

3
1

 Download from www.wowebook.com

ptg

998 CHAPTER 31 Transaction Management and the Transaction Log

If an error is present in the execution of the statement, the action is undone (that is,
rolled back); if no errors occur, the action is completed, and the changes are saved.

Now let’s consider the banking transaction mentioned at the beginning of this chapter
that involved moving money from a savings account to a checking account. Assume that
it is written as follows in T-SQL:

declare @checking_account char(10),

@savings_account char(10)

select @checking_account = ‘0003456321’,

@savings_account = ‘0003456322’

update account

set balance = balance - $1000

where account_number = @checking_account

update savings_account

set balance = balance + $1000

where account_number = @savings_account

What would happen if an error occurred in updating the savings account? With
AutoCommit, each statement is implicitly committed after it completes successfully, so
the update for the checking account has already been committed. You would have no way
of rolling it back except to write another separate update to add the $1,000 back to the
account. If the system crashed during the updates, how would you know which updates, if
any, completed, and whether you need to undo any of the changes because the subse-
quent commands were not executed? You would need some way to group the two
commands together as a single logical unit of work so they can complete or fail as a
whole. SQL Server provides transaction control statements that allow you to explicitly
create multistatement user-defined transactions.

Explicit User-Defined Transactions

To have complete control of a transaction and define logical units of work that consist of
multiple data modifications, you need to write explicit user-defined transactions. Any SQL
Server user can make use of the transaction control statements; no special privileges are
required.

To start a multistatement transaction, use the BEGIN TRAN command, which optionally
takes a transaction name:

BEGIN TRAN[SACTION] [transaction_name [WITH MARK [‘description’]]]

The transaction name is essentially meaningless as far as transaction management is
concerned, and if transactions are nested (which is discussed later in this chapter), the
name is useful only for the outermost BEGIN TRAN statement. Rolling back to any other
name, besides a savepoint name (savepoints are covered in the next section), generates an
error message similar to the following error message and does not roll back the transaction:

 Download from www.wowebook.com

ptg

999Defining Transactions

Msg 6401, Level 16, State 1, Line 5

Cannot roll back t2. No transaction or savepoint of that name was found.

Naming transactions is really useful only when you use the WITH MARK option. If the WITH
MARK option is specified, a transaction name must be specified. WITH MARK allows for restor-
ing a transaction log backup to a named mark in the transaction log. (For more information
on restoring database and log backups, see Chapter 14, “Database Backup and Restore.”)
This option allows you to restore a database to a known state or to recover a set of related
databases to a consistent state. However, you need to be aware that BEGIN TRAN records are
written to the log only if an actual data modification occurs within the transaction.

You complete an explicit transaction by issuing either a COMMIT TRAN or COMMIT [WORK]
statement, and you can undo an explicit transaction by using either ROLLBACK TRAN or
ROLLBACK [WORK]. The syntax of these commands is as follows:

COMMIT [TRAN[SACTION] [transaction_name]] | [WORK]

ROLLBACK [TRAN[SACTION] [transaction_name | savepointname]] | [WORK]

The COMMIT statement marks the successful conclusion of a transaction. This statement can
be coded as COMMIT, COMMIT WORK, or COMMIT TRAN. The only difference is that the first two
versions are SQL-92 ANSI compliant.

The ROLLBACK statement unconditionally undoes all work done within the transaction. This
statement can also be coded as ROLLBACK, ROLLBACK WORK, or ROLLBACK TRAN. The first two
commands are ANSI-92 SQL compliant and do not accept user-defined transaction names.
ROLLBACK TRAN is required if you want to roll back to a savepoint within a transaction.

The following example shows how you could code the previously mentioned banking
example as a single transaction in SQL Server:

declare @checking_account char(10),

@savings_account char(10)

select @checking_account = ‘0003456321’,

@savings_account = ‘0003456322’

begin tran

update account

set balance = balance - $1000

where account_number = @checking_account

if @@error != 0

begin

rollback tran

return

end

update savings_account

set balance = balance + $1000

where account_number = @savings_account

if @@error != 0

3
1

 Download from www.wowebook.com

ptg

1000 CHAPTER 31 Transaction Management and the Transaction Log

begin

rollback tran

return

end

commit tran

Certain commands cannot be specified within a user-defined transaction, primarily
because they cannot be effectively rolled back in the event of a failure. In most cases,
because of their long-running nature, you would not want them to be specified within a
transaction anyway. Following are the commands you cannot specify in a user-defined
transaction:

ALTER DATABASE

ALTER FULLTEXT CATALOG

ALTER FULLTEXT INDEX

BACKUP DATABASE

BACKUP LOG

CREATE DATABASE

CREATE FULLTEXT CATALOG

CREATE FULLTEXT INDEX

DROP DATABASE

DROP FULLTEXT CATALOG

DROP FULLTEXT INDEX

RESTORE DATABASE

RECONFIGURE

RESTORE LOG

UPDATE STATISTICS

Savepoints
A savepoint allows you to set a marker in a transaction that you can roll back to undo a
portion of the transaction but commit the remainder of the transaction. The syntax is
as follows:

SAVE TRAN[SACTION] savepointname

Savepoints are not ANSI-SQL 92 compliant, so you must use the SQL Server–specific trans-
action management commands that allow you to specify a named point within the trans-
action and then recover back to it.

The following code illustrates the differences between the two types of syntax when using
the SAVE TRAN command:

 Download from www.wowebook.com

ptg

1001Defining Transactions

SQL-92 Syntax SQL Server–Specific Syntax

BEGIN TRAN mywork

UPDATE table1...

SAVE TRAN savepoint1

INSERT INTO table2...

DELETE table3...

IF @@error = -1

ROLLBACK WORK

COMMIT WORK

BEGIN TRAN mywork

UPDATE table1...

SAVE TRAN savepoint1

INSERT INTO table2...

DELETE table3...

IF @@error = -1

ROLLBACK TRAN savepoint1

COMMIT TRAN

Note the difference between the SQL-92 syntax on the left and the SQL Server–specific
syntax on the right. In the SQL-92 syntax, when you reach the ROLLBACK WORK command,
the entire transaction is undone rather than undoing only to the point marked by the
savepoint. You have to use the SQL Server–specific ROLLBACK TRAN command and specify
the savepoint name to roll back the work to the savepoint and still be able to subse-
quently roll back or commit the rest of the transaction.

Nested Transactions
As a rule, you can’t have more than one active transaction per user session within SQL
Server. However, suppose you have a SQL batch that issues a BEGIN TRAN statement and
then subsequently invokes a stored procedure, which also issues a BEGIN TRAN statement.
Because you can have only one transaction active, what does the BEGIN TRAN inside the
stored procedure accomplish? In SQL Server, this leads to an interesting anomaly referred
to as nested transactions.

To determine whether transactions are open and how deep they are nested within a
connection, you can use the global function @@trancount. If no transaction is active, the
transaction nesting level is 0. As a transaction is initiated, the transaction nesting level is
incremented; as a transaction completes, the transaction nesting is decremented. The
overall transaction remains open and can be entirely rolled back until the transaction
nesting level returns to 0.

You can use the @@trancount function to monitor the current status of a transaction. For
example, what would SQL Server do when encountering the following transaction (which
produces an error because of the reference constraint on the titles table)?

use BIGPUBS2008

go

BEGIN TRAN

DELETE FROM publishers

WHERE pub_id = ‘0736’

go

Msg 547, Level 16, State 0, Line 2

The DELETE statement conflicted with the REFERENCE constraint

“FK__pub_info__pub_id__2BDE8E15”. The conflict occurred in database

“bigpubs2008”, table “dbo.pub_info”, column ‘pub_id’.

The statement has been terminated.

3
1

 Download from www.wowebook.com

ptg

1002

TABLE 31.1 Transaction Statements’ Effects on @@trancount

Statement Effect on @@trancount

BEGIN TRAN +1

COMMIT –1

ROLLBACK Sets to 0

SAVE TRAN savepoint No effect

ROLLBACK TRAN savepoint No effect

Is the transaction still active? You can find out by using the @@trancount function:

select @@trancount

go

—————-

1

In this case, @@trancount returns a value of 1, which indicates that the transaction is still
open and in progress. This means that you can still issue commands within the transac-
tion and commit the changes, or you can roll back the transaction. Also, if you were to
log out of the user session from SQL Server before the transaction nesting level reached 0,
SQL Server would automatically roll back the transaction.

Although nothing prevents you from coding a BEGIN TRAN within another BEGIN TRAN,
doing so has no real benefit, even though such cases might occur. However, if you nest
transactions in this manner, you must execute a COMMIT statement for each BEGIN TRAN
statement issued. The reason is that SQL Server modifies the @@trancount with each trans-
action statement and considers the transaction finished only when the transaction nesting
level returns to 0. Table 31.1 shows the effects that transaction control statements have on
@@trancount.

CHAPTER 31 Transaction Management and the Transaction Log

Following is a summary of how transactional control relates to the values reported by:

. When you log in to SQL Server, the value of @@trancount for your session is
initially 0.

. Each time you execute begin transaction, SQL Server increments @@trancount.

. Each time you execute commit transaction, SQL Server decrements @@trancount.

. Actual work is committed only when @@trancount reaches 0 again.

. When you execute ROLLBACK TRANSACTION, the transaction is canceled and
@@trancount returns to 0. Notice that ROLLBACK TRANSACTION cuts straight through

 Download from www.wowebook.com

ptg

1003Defining Transactions
3

1

any number of nested transactions, canceling the overall main transaction. This
means that you need to be careful how you write code that contains a ROLLBACK
statement. You need to be sure to check for the return status up through all levels
and exit accordingly so you don’t continue executing data modifications that were
meant to be part of the larger overall transaction.

. Setting savepoints and rolling back to a savepoint do not affect @@trancount or
transaction nesting in any way.

. If a user connection is lost for any reason when @@trancount is greater than 0, any
pending work for that connection is automatically rolled back. SQL Server requires
that multistatement transactions be explicitly committed.

. Because the BEGIN TRAN statement increments @@trancount, each BEGIN TRAN state-
ment must be paired with a COMMIT for the transaction to complete successfully.

Let’s look at some sample code to see the values of @@trancount as the transaction
progresses. This first example is a simple explicit transaction with a nested BEGIN TRAN:

SQL Statement @@trancount Value

SELECT “Starting.....”

BEGIN TRAN

DELETE FROM table1

BEGIN TRAN

INSERT INTO table2

COMMIT

UPDATE table3

COMMIT

0

1

1

2

2

1

1

0

Transactions are nested syntactically only. The only commit tran statement that has an
impact on real data is the last one, the statement that returns @@trancount to 0. That state-
ment fully commits the work done by the initial and nested transactions. Until that final
COMMIT TRAN is encountered, all the work can be rolled back with a ROLLBACK statement.

As a general rule of thumb, if a transaction is already active, you shouldn’t issue another
BEGIN TRAN statement. You should check the value of @@trancount to determine whether a
transaction is already active. If you want to be able to roll back the work performed within
a nested transaction without rolling back the entire transaction, you can set a savepoint
instead of issuing a BEGIN TRAN statement. Later in this chapter, you see an example
showing how to check @@trancount within a stored procedure to determine whether the
stored procedure is being invoked within a transaction and then issue a BEGIN TRAN or
SAVE TRAN, as appropriate.

Implicit Transactions

AutoCommit transactions and explicit user-defined transactions, which are the default
transaction mode in SQL Server 2008, are not ANSI-92 SQL compliant. The ANSI-92 SQL
standard states that any data retrieval or modification statement issued should implicitly

 Download from www.wowebook.com

ptg

1004 CHAPTER 31 Transaction Management and the Transaction Log

begin a multistatement transaction that remains in effect until an explicit ROLLBACK or
COMMIT statement is issued. Microsoft refers to this transation mode as IMPLICIT_
TRANSACTIONS.

To enable implicit transactions for a connection in SQL Server 2008, you need to enable
the IMPLICIT_TRANSACTIONS session setting using the following command:

SET IMPLICIT_TRANSACTIONS ON

After this option is turned on, transactions are implicitly started, if they are not already in
progress, whenever any of the following commands are executed:

ALTER TABLE

CREATE

DELETE

DROP

FETCH

GRANT

INSERT

OPEN

REVOKE

SELECT

TRUNCATE TABLE

UPDATE

Note that neither the ALTER VIEW nor ALTER PROCEDURE statement starts an implicit
transaction.

You must explicitly complete implicit transactions by issuing a COMMIT or ROLLBACK; a new
transaction is started again on the execution of any of the preceding commands. If you
plan to use implicit transactions, the main issue to be aware of is that locks are held until
you explicitly commit the transaction. This can cause problems with concurrency and the
system’s capability to truncate the transaction log.

Even when using implicit transactions, you can still issue the BEGIN TRAN statement and
create transaction nesting. In the following example, IMPLICIT_TRANSACTIONS ON is turned
on to see the effect this has on the value of @@trancount.

SQL Statements @@trancount Value

SET IMPLICIT_TRANSACTIONS ON 0

go 0

INSERT INTO table1 1

UPDATE table2 1

COMMIT 0

 Download from www.wowebook.com

ptg

1005Defining Transactions
3

1

As you can see in this example, if a BEGIN TRAN is issued while a transaction is still active,
transaction nesting occurs, and a second COMMIT is required to finish the transaction. The
main difference between this example and the preceding one is that here, a BEGIN TRAN is
not required to start the transaction. The first INSERT statement initiates the transaction.
When you are running in implicit transaction mode, you don’t need to issue a BEGIN TRAN
statement; in fact, you should avoid doing so to prevent transaction nesting and the need
for multiple commits.

The following example shows the previous banking transaction using implicit
transactions:

set implicit_transactions on

go

declare @checking_account char(10),

@savings_account char(10)

select @checking_account = ‘0003456321’,

@savings_account = ‘0003456322’

update account

set balance = balance - $1000

where account_number = @checking_account

if @@error != 0

begin

rollback

return

end

update savings_account

set balance = balance + $1000

where account_number = @savings_account

if @@error != 0

begin

rollback

go

SELECT * FROM table1 1

BEGIN TRAN 2

DELETE FROM table1 2

COMMIT 1

go

DROP TABLE table1 1

COMMIT 0

 Download from www.wowebook.com

ptg

1006 CHAPTER 31 Transaction Management and the Transaction Log

return

end

commit

This example is nearly identical to the explicit transaction example except for the lack of a
BEGIN TRAN statement. In addition, when in implicit transaction mode, you cannot roll
back to a named transaction because no name is assigned when the transaction is invoked
implicitly. You can, however, still set savepoints and roll back to savepoints to partially
roll back work within an implicit transaction.

TIP

If you need to know within your SQL code whether implicit transactions are enabled so
you can avoid issuing explicit BEGIN TRAN statements, you can check the @@options
function. @@options returns a bitmap that indicates which session-level options are
enabled for the current session. If bit 2 is on, implicit transactions are enabled. The
following code snippet can be used in stored procedures or SQL batches to check this
value and decide whether to issue a BEGIN TRAN statement:

if @@options & 2 != 2 — if bit 2 is not turned on

BEGIN TRAN —a begin tran can be issued since implicit transactions

are off

...

Implicit Transactions Versus Explicit Transactions

When would you want to use implicit transactions versus explicit transactions? If you are
porting an application from another database environment, such as DB2 or Oracle, that
uses implicit transactions, that application converts over to SQL Server more easily and
with fewer code changes if you run in implicit transaction mode. Also, if the application
you are developing needs to be ANSI compliant and run across multiple database plat-
forms with minimal code changes, you might want to use implicit transactions.

If you use implicit transactions in your applications, you need to be sure to issue COMMIT
statements as frequently as possible to prevent leaving transactions open and holding
locks for an extended period of time, which can have an adverse impact on concurrency
and overall system performance.

If an application is going to be hosted only on SQL Server, it is recommended that you use
AutoCommit and explicit transactions so that changes are committed as quickly as possi-
ble and so that only those logical units of work that are explicitly defined contain multi-
ple commands within a transaction.

 Download from www.wowebook.com

ptg

1007Transactions and Batches
3

1

Transactions and Batches
There is no inherent transactional quality to batches. As you have seen already, unless you
provide the syntax to define a single transaction made up of several statements, each indi-
vidual statement in a batch is its own separate transaction, and each statement is carried
to completion or fails individually.

The failure of a transaction within a batch does not cause the batch to stop processing. In
other words, transaction flow does not affect process flow. After a ROLLBACK TRAN state-
ment, processing continues with the next statement in the batch or stored procedure. For
this reason, you should be sure to check for error conditions after each data modification
within a transaction and exit the batch or stored procedure, as appropriate.

Consider the banking transaction again, this time removing the RETURN statements:

declare @checking_account char(10),

@savings_account char(10)

select @checking_account = ‘0003456321’,

@savings_account = ‘0003456322’

begin tran

update account

set balance = balance - $1000

where account_number = @checking_account

if @@error != 0

rollback tran

update savings_account

set balance = balance + $1000

where account_number = @savings_account

if @@error != 0

rollback tran

commit tran

Assume that a check constraint on the account prevents the balance from being set to a
value less than 0. If the checking account has less than $1,000 in it, the first update fails,
and the T-SQL code catches the error condition and rolls back the transaction. At this
point, the transaction is no longer active, but the batch still contains additional state-
ments to execute. Without a return after the rollback, SQL Server continues with the next
statement in the batch, which in this case is the update to the savings account. However,
this now executes as its own separate transaction, and it automatically commits if it
completes successfully. This is not the result you want because now that second update is
its own separate unit of work, so you have no way to roll it back.

The key concept to keep in mind here is that transaction flow does not affect program
flow. In the event of an error within a transaction, you need to make sure you have the
proper error checking and a means to exit the transaction in the event of an error. This

 Download from www.wowebook.com

ptg

1008 CHAPTER 31 Transaction Management and the Transaction Log

prevents the batch from continuing with any remaining modifications that were meant to
be a part of the original transaction. As a general rule, a RETURN statement should almost
always follow a rollback.

In addition to being able to define multiple transactions within a batch, you can also have
transactions that span multiple batches. For example, you could write an application that
begins a transaction in one batch and then asks for user verification during a second batch.
The SQL might look like this:

First batch:

use bigpubs2008

go

begin transaction

insert publishers (pub_id, pub_name, city, state)

values (‘1111’, ‘Joe and Marys Books’, ‘Northern Plains’, ‘IA’)

if @@error = 0

print ‘publishers insert was successful. Please go on.’

else

print ‘publisher insert failed. Please roll back’

Second batch:

update titles

set pub_id = ‘1111’

where pub_id = ‘1234’

delete authors

where state = ‘CA’

commit transaction

Writing transactions that span multiple batches is almost always a bad idea. The locking and
concurrency problems can become complicated, with awful performance implications.
What if the application prompted for user input between batches, and the user went out to
lunch? Locks would be held until the user got back and continued the transaction. In
general, you want to enclose each transaction in a single batch, using conditional program-
ming constructs to handle situations like the preceding example. Following is a better way
to write that code:

begin transaction

insert publishers (pub_id, pub_name, city, state)

values (‘1111’, ‘Joe and Marys Books’, ‘Northern Plains’, ‘IA’)

if @@error = 0

begin

print ‘publishers insert was successful. Continuing.’

update titles

set pub_id = ‘1111’

where pub_id = ‘1234’

delete authors

 Download from www.wowebook.com

ptg

1009Transactions and Stored Procedures
3

1

where state = ‘CA’

commit transaction

end

else

begin

print ‘publisher insert failed. rolling back transaction’

rollback transaction

end

The important point in this example is that the transaction now takes place within a
single batch for better performance and consistency. As you see in the next section, it is
usually best to encode transactions in stored procedures for even better performance and
to avoid the possibility of unfinished transactions.

Transactions and Stored Procedures
Because SQL code in stored procedures runs locally on the server, it is recommended that
entire transactions be completely encapsulated within stored procedures to speed transac-
tion processing. This way, the entire transaction executes within a single stored procedure
call from the client application, rather than being executed across multiple requests. The
less network traffic that occurs between the client application and SQL Server during
transactions, the faster they can finish.

Another advantage of using stored procedures for transactions is that doing so helps you
avoid the occurrence of partial transactions—that is, transactions that are started but not
fully committed. Using stored procedures this way also avoids the possibility of user inter-
action within a transaction. The stored procedure keeps the transaction processing
completely contained because it starts the transaction, carries out the data modifications,
completes the transaction, and returns the status or data to the client.

Stored procedures also provide the additional benefit that if you need to fix, fine-tune, or
expand the duties of the transaction, you can do all this at one time, in one central loca-
tion. Your applications can share the same stored procedure, providing consistency for the
logical unit of work across your applications.

Although stored procedures provide a useful solution to managing transactions, you need
to know how transactions work within stored procedures and code for them appropriately.
Consider what happens when one stored procedure calls another, and they both do their
own transaction management. Obviously, they now need to work in concert with each
other. If the called stored procedure has to roll back its work, how can it do so correctly
without causing data integrity problems?

The issues you need to deal with go back to the earlier topics of transaction nesting and
transaction flow versus program flow. Unlike a rollback in a trigger (see the next section),
a rollback in a stored procedure does not abort the rest of the batch or the calling proce-
dure.

 Download from www.wowebook.com

ptg

1010 CHAPTER 31 Transaction Management and the Transaction Log

For each BEGIN TRAN encountered in a nested procedure, the transaction nesting level is
incremented by 1. For each COMMIT encountered, the transaction nesting level is decre-
mented by 1. However, if a rollback other than to a named savepoint occurs in a nested
procedure, it rolls back all statements to the outermost BEGIN TRAN, including any work
performed inside the nested stored procedures that has not been fully committed. It then
continues processing the remaining commands in the current procedure as well as the
calling procedure(s).

To explore the issues involved, you can work with the sample stored procedure shown in
Listing 31.1. The procedure takes a single integer argument, which it then attempts to
insert into a table (test_table). All data entry attempts—whether successful or not—are
logged to a second table (auditlog). Listing 31.1 contains the code for the stored proce-
dure and the tables it uses.

LISTING 31.1 Sample Stored Procedure and Tables for Transaction Testing

CREATE TABLE test_table (col1 int)

go

CREATE TABLE auditlog (who varchar(128), valuentered int null)

go

CREATE PROCEDURE trantest @arg INT

AS

BEGIN TRAN

IF EXISTS(SELECT * FROM test_table WHERE col1 = @arg)

BEGIN

RAISERROR (‘Value %d already exists!’, 16, -1, @arg)

ROLLBACK TRANSACTION

END

ELSE

BEGIN

INSERT INTO test_table (col1) VALUES (@arg)

COMMIT TRAN

END

INSERT INTO auditlog (who, valuentered) VALUES (USER_NAME(), @arg)

return

Now explore what happens if you call this stored procedure in the following way and
check the values of the two tables:

set nocount on

EXEC trantest 1

EXEC trantest 2

SELECT * FROM test_table

SELECT valuentered FROM auditlog

go

 Download from www.wowebook.com

ptg

1011Transactions and Stored Procedures
3

1

The execution of this code gives the following results:

col1

—————-

1

2

valuentered

—————-

1

2

These would be the results you would expect because no errors would occur, and nothing
would be rolled back.

Now, if you were to run the same code a second time, test_table would still have only
two rows because the procedure would roll back the attempted insert of the duplicate
rows. However, because the procedure and batch are not aborted, the code would
continue processing, and the rows would still be added to the auditlog table. The result
would be as follows:

set nocount on

EXEC trantest 1

EXEC trantest 2

SELECT * FROM test_table

SELECT valuentered FROM auditlog

go

Msg 50000, Level 16, State 1, Procedure trantest, Line 6

Value 1 already exists!

Msg 50000, Level 16, State 1, Procedure trantest, Line 6

Value 2 already exists!

col1

—————-

1

2

valuentered

—————-

1

2

1

2

 Download from www.wowebook.com

ptg

1012 CHAPTER 31 Transaction Management and the Transaction Log

Now explore what happens when you execute the stored procedure from within a transac-
tion:

set nocount on

BEGIN TRAN

EXEC trantest 3

EXEC trantest 1

EXEC trantest 4

COMMIT TRAN

SELECT * FROM test_table

SELECT valuentered FROM auditlog

go

The execution of this code gives the following results:

Msg 50000, Level 16, State 1, Procedure trantest, Line 6

Value 1 already exists!

Msg 266, Level 16, State 2, Procedure trantest, Line 0

Transaction count after EXECUTE indicates that a COMMIT or ROLLBACK TRANSACTION

statement is missing. Previous count = 1, current count = 0.

Msg 3902, Level 16, State 1, Line 6

The COMMIT TRANSACTION request has no corresponding BEGIN TRANSACTION.

col1

—————-

1

2

4

valuentered

—————-

1

2

1

2

1

4

A number of problems are occurring now. For starters, you get a message telling you that
the transaction nesting level was messed up. More seriously, the results show that the
value 4 made it into the test_table table anyway and that the auditlog table picked up
the inserts of 1 and the 4 but lost the fact that you tried to insert a value of 3. What
happened?

 Download from www.wowebook.com

ptg

1013Transactions and Stored Procedures
3

1

Let’s examine this example one step at a time. First, you start the transaction and insert
the value 3 into trantest. The stored procedure starts its own transaction, adds the value
to test_table, commits that, and then adds a row to auditlog. Next, you execute the
procedure with the value 1. This value already exists in the table, so the procedure raises
an error and rolls back the transaction. Remember that a ROLLBACK undoes work to the
outermost BEGIN TRAN—which means the start of this batch. This rolls back everything,
including the insert of 3 into trantest and auditlog. The auditlog entry for the value 1
is inserted and not rolled back because it occurred after the transaction was rolled back
and is a standalone, automatically committed statement now.

You then receive an error regarding the change in the transaction nesting level because a
transaction should leave the state of a governing procedure in the same way it was
entered; it should make no net change to the transaction nesting level. In other words,
the value of @@trancount should be the same when the procedure exits as when it was
entered. If it is not, the transaction control statements are not properly balanced.

Also, because the batch is not aborted, the value 4 is inserted into trantest, an operation
that completes successfully and is automatically committed. Finally, when you try to
commit the transaction, you receive the last error regarding a mismatch between BEGIN
TRAN and COMMIT TRAN because no transaction is currently in operation.

The solution to this problem is to write the stored procedures so that transaction nesting
doesn’t occur and so the stored procedure rolls back only its own work. When a rollback
occurs, it should return an error status so that the calling batch or procedure is aware of
the error condition and can choose to continue or abort the work at that level. You can
manage this by checking the current value of @@trancount and determining what needs to
be done. If a transaction is already active, the stored procedure should not issue a BEGIN
TRAN and nest the transaction; rather, it should set a savepoint. This allows the procedure
to perform a partial rollback of its work. If no transaction is active, the procedure can
safely begin a new transaction. The following SQL code fragment is an example of using
this approach:

DECLARE @trancount INT

/* Capture the value of the transaction nesting level at the start */

SELECT @trancount = @@trancount

IF (@trancount = 0) — no transaction is currently active, start one

BEGIN TRAN mytran

ELSE — a transaction is active, set a savepoint only

SAVE TRAN mytran

.

.

/* This is how to trap an error. Roll back either to your

own BEGIN TRAN or roll back to the savepoint. Return an

error code to the caller to indicate an internal failure.

How the caller handles the transaction is up to the caller.*/

 Download from www.wowebook.com

ptg

1014 CHAPTER 31 Transaction Management and the Transaction Log

IF (@@error <> 0)

BEGIN

ROLLBACK TRAN mytran

RETURN –1969

END

.

.

/* Once you reach the end of the code, you need to pair the BEGIN TRAN,

if you issued it, with a COMMIT TRAN. If you executed the SAVE TRAN

instead, you have nothing else to do...end of game! */

IF (@trancount = 0)

COMMIT TRAN

RETURN 0

If you apply these concepts to all stored procedures that need to incorporate transaction
processing as well as the code that calls the stored procedures, you should be able to avoid
problems with transaction nesting and inconsistency in your transaction processing. You
just need to be sure to check the return value of the stored procedure and determine
whether the whole batch should be failed or whether that one call is of little importance
to the overall outcome and the transaction can continue.

For additional examples of and discussion about coding guidelines for stored procedures in
transactions, see Chapter 44, “Advanced Stored Procedure Programming and Optimization.”

Transactions and Triggers
SQL Server 2008 provides two types of Data Manipulation Language (DML) triggers: AFTER
and INSTEAD OF. INSTEAD OF triggers perform their actions before any modifications are
made to the actual table the trigger is defined on.

Whenever a trigger is invoked, it is always invoked within another transaction, whether
it’s a single-statement AutoCommit transaction or a user-defined multistatement transac-
tion. This is true for both AFTER triggers and INSTEAD OF triggers. Even though an INSTEAD
OF trigger fires before, or “instead of,” the data modification statement itself, if a transac-
tion is not already active, an AutoCommit transaction is still automatically initiated as the
data modification statement is invoked and prior to the invocation of the INSTEAD OF
trigger. (For more information on AFTER and INSTEAD OF triggers, see Chapter 30,
“Creating and Managing Triggers.”)

NOTE

Although the information presented in this section applies to both AFTER and INSTEAD
OF triggers, the examples presented pertain primarily to AFTER triggers.

Because the trigger is already operating within the context of a transaction, the only trans-
action control statements you should ever consider using in a trigger are ROLLBACK and

 Download from www.wowebook.com

ptg

1015Transactions and Triggers
3

1

SAVE TRAN. You don’t need to issue a BEGIN TRAN because a transaction is already active; a
BEGIN TRAN would only serve to increase the transaction nesting level, and that would
complicate things further.

Triggers and Transaction Nesting

To demonstrate the relationship between a trigger and the transaction nesting level, you
can use the following SQL code to create a trigger on the employee table:

use bigpubs2008

go

CREATE TRIGGER tD_employee ON employee

FOR DELETE

AS

DECLARE @msg VARCHAR(255)

SELECT @msg = ‘Trancount in trigger = ‘ + CONVERT(VARCHAR(2), @@trancount)

PRINT @msg

RETURN

go

The purpose of this trigger is simply to show the state of the @@trancount within the
trigger as the deletion is taking place.

If you now execute code for implied and explicit transactions, you can see the values of
@@trancount and behavior of the batch. First, here’s the implied transaction:

set nocount on

print ‘Trancount before delete = ‘ + CONVERT(VARCHAR(2), @@trancount)

DELETE FROM employee WHERE emp_id = ‘PMA42628M’

print ‘Trancount after delete = ‘ + CONVERT(VARCHAR(2), @@trancount)

go

The results of this are as follows:

Trancount before delete = 0

Trancount in trigger = 1

Trancount after delete = 0

Because no transaction starts until the DELETE statement executes, the first value of
@@trancount indicates this with a value of 0. Within the trigger, the transaction count has
a value of 1; you are now inside the implied transaction caused by the DELETE. After the
trigger returns, the DELETE is automatically committed, the transaction is finished, and
@@trancount returns to 0 to indicate that no transaction is currently active.

Now explore what happens within an explicit transaction:

 Download from www.wowebook.com

ptg

1016 CHAPTER 31 Transaction Management and the Transaction Log

begin tran

print ‘Trancount before delete = ‘ + CONVERT(VARCHAR(2), @@trancount)

DELETE FROM employee WHERE emp_id = ‘PMA42628M’

print ‘Trancount after delete = ‘ + CONVERT(VARCHAR(2), @@trancount)

commit tran

print ‘Trancount after commit = ‘ + CONVERT(VARCHAR(2), @@trancount)

go

This code gives the following results:

Trancount before delete = 1

Trancount in trigger = 1

Trancount after delete = 1

Trancount after commit = 0

In this example, a transaction is already active when the DELETE is executed. The BEGIN
TRAN statement initiates the transaction, and @@trancount is 1 before the DELETE is
executed. The trigger becomes a part of that transaction, which is not committed until the
COMMIT TRAN statement is executed.

What would happen, however, if the trigger performed a rollback? You can find out by
modifying the trigger to perform a rollback as follows:

ALTER TRIGGER tD_employee ON employee

FOR DELETE

AS

print ‘Trancount in trigger = ‘ + CONVERT(VARCHAR(2), @@trancount)

ROLLBACK TRAN

return

Now rerun the previous batch. The outcome this time is as follows:

Trancount before delete = 1

Trancount in trigger = 1

Msg 3609, Level 16, State 1, Line 3

The transaction ended in the trigger. The batch has been aborted.

Notice in this example that the batch did not complete, as evidenced by the missing output
from the last two print statements. When a rollback occurs within a trigger, SQL Server
aborts the current transaction, continues processing the commands in the trigger, and after
the trigger returns, aborts the rest of the batch and returns error message 3609 to indicate
that the batch has been aborted because the transaction ended within the trigger. A
ROLLBACK TRAN statement in a trigger rolls back all work to the first BEGIN TRAN statement. It
is not possible to roll back to a specific named transaction, although you can roll back to a
named savepoint, as discussed later in this section.

 Download from www.wowebook.com

ptg

1017Transactions and Triggers
3

1

Again, the batch and transaction are aborted when the trigger rolls back; any subsequent
statements in the batch are not executed. The key concept to remember is that the trigger
becomes an integral part of the statement that fired it and of the transaction in which
that statement occurs.

It is important to note, however, that although the batch is aborted immediately after
the trigger that performed a rollback returns, any statements within the trigger that
follow the ROLLBACK TRAN statement but before it returns are executed. For example, you
can modify the previous trigger further to include a print statement after the ROLLBACK
TRAN statement:

ALTER TRIGGER tD_employee ON employee

FOR DELETE

AS

print ‘Trancount in trigger = ‘ + CONVERT(VARCHAR(2), @@trancount)

ROLLBACK TRAN

print ‘Trancount in trigger after rollback = ‘ + CONVERT(VARCHAR(2), @@trancount)

return

Now, if you rerun the previous batch, you can see the print statement after the ROLLBACK
TRAN but before the RETURN statement is executed:

Trancount before delete = 1

Trancount in trigger = 1

Trancount in trigger after rollback = 0

Msg 3609, Level 16, State 1, Line 3

The transaction ended in the trigger. The batch has been aborted.

Notice that the Trancount after the ROLLBACK TRAN in the trigger is now 0. If the trigger
subsequently performed any data modifications following the ROLLBACK TRAN, they would
now be running as AutoCommit transactions. For this reason, you must be sure to issue a
RETURN statement to exit the trigger after a ROLLBACK TRAN is issued to avoid the trigger
performing any operations that would then be automatically committing, leaving no
opportunity to roll them back.

Triggers and Multistatement Transactions

Now let’s look at another example. First, you need to create a trigger to enforce referential
integrity between the titles table and publishers table:

--The first statement is used to disable any previously created

--DDL triggers in the database which would prevent creating a new trigger.

 Download from www.wowebook.com

ptg

1018 CHAPTER 31 Transaction Management and the Transaction Log

DISABLE TRIGGER ALL ON titles

go

create trigger tr_titles_i on titles for insert as

declare @rows int — create variable to hold @@rowcount

select @rows = @@rowcount

if @rows = 0 return

if update(pub_id) and (select count(*)

from inserted i, publishers p

where p.pub_id = i.pub_id) != @rows

begin

rollback transaction

raiserror (‘Invalid pub_id inserted’, 16, 1)

end

return

go

Next, for the trigger to take care of the referential integrity, you might first need to disable
the foreign key constraint on the titles table with a command similar to the following:

alter table titles nocheck constraint FK__titles__pub_id__0F424F67

NOTE

The system-generated name for the foreign key constraint may possibly be different on
your database. You can use sp_helpconstraint titles to verify the name of the for-
eign key constraint on the pub_id column of the titles table and use it in place of
the constraint name specified in this example.

Now, run a multistatement transaction with an invalid pub_id in the second insert statement:

/* transaction inserts rows into a table */

begin tran add_titles

insert titles (title_id, pub_id, title)

values (‘XX1234’, ‘0736’, ‘Tuning SQL Server’)

insert titles (title_id, pub_id, title)

values (‘XX1235’, ‘abcd’, ‘Tuning SQL Server’)

insert titles (title_id, pub_id, title)

values (‘XX1236’, ‘0877’, ‘Tuning SQL Server’)

commit tran

go

Msg 50000, Level 16, State 1, Procedure tr_titles_i, Line 10

Invalid pub_id inserted

Msg 3609, Level 16, State 1, Line 4

The transaction ended in the trigger. The batch has been aborted.

 Download from www.wowebook.com

ptg

1019Transactions and Triggers
3

1

How many rows are inserted if ’abcd’ is an invalid pub_id? In this example, no rows are
inserted because the ROLLBACK TRAN in the trigger rolls back all modifications made by the
trigger, including the insert with the bad pub_id and all statements preceding it within
the transaction. After the RETURN statement is encountered in the trigger, the rest of the
batch is aborted.

CAUTION

You should never issue a BEGIN TRAN statement in a trigger because a transaction is
already active at the time the trigger is executed. Rolling back to a named transaction
in a trigger is illegal and generates a runtime error, rolling back the transaction and
immediately terminating processing of the trigger and batch. The only transaction con-
trol statements you should ever consider including in a trigger are ROLLBACK TRAN and
SAVE TRAN.

Using Savepoints in Triggers

Although BEGIN TRAN statements are not recommended within a trigger, you can set a
savepoint in a trigger and roll back to the savepoint. This technique rolls back only the
operations within the trigger subsequent to the savepoint. The trigger and transaction it is
a part of are still active until the transaction is subsequently committed or rolled back.
The batch continues processing.

Savepoints can be used to avoid a trigger’s arbitrarily rolling back an entire transaction.
You can roll back to the named savepoint in the trigger and then issue a raiserror and
return immediately to pass the error code back to the calling process. The calling process
can then check the error status of the data modification statement and take appropriate
action, either rolling back the transaction, rolling back to a savepoint in the transaction,
or ignoring the error and committing the data modification.

The following example shows a trigger that uses a savepoint:

alter trigger tr_titles_i on titles for insert as

declare @rows int — create variable to hold @@rowcount

select @rows = @@rowcount

if @rows = 0 return

save tran titlestrig

if update(pub_id) and (select count(*)

from inserted i, publishers p

where p.pub_id = i.pub_id) != @rows

begin

rollback transaction titlestrig

raiserror (‘Invalid pub_id inserted’, 16, 1)

end

return

 Download from www.wowebook.com

ptg

1020 CHAPTER 31 Transaction Management and the Transaction Log

This trigger rolls back all work since the savepoint and returns an error number of 50000.
In the transaction, you can check for the error number and make the decision about
whether to continue the transaction, roll back the transaction, or, if savepoints were set in
the transaction, roll back to a savepoint and let the transaction continue. The following
example rolls back the entire transaction if either of the first two inserts fail, but it rolls
back to the named savepoint only if the third insert fails, allowing the first two to be
committed:

begin tran add_titles

insert titles (title_id, pub_id, title)

values (‘XX1234’, ‘0736’, ‘Tuning SQL Server’)

if @@error = 50000 — roll back entire transaction and abort batch

begin

rollback tran add_titles

return

end

insert titles (title_id, pub_id, title)

values (‘XX1236’, ‘0877’, ‘Tuning SQL Server’)

if @@error = 50000 — roll back entire transaction and abort batch

begin

rollback tran add_titles

return

end

save tran keep_first_two — set savepoint for partial rollback

insert titles (title_id, pub_id, title)

values (‘XX1235’, ‘abcd’, ‘Tuning SQL Server’)

if @@error = 50000 — roll back to save point, continue batch

begin

rollback tran keep_first_two

end

commit tran

TIP

When you use a savepoint inside a trigger, the trigger does not roll back the transac-
tion. Therefore, the batch is not automatically aborted. You must explicitly return from
the batch after rolling back the transaction to prevent subsequent statements from
executing.

NOTE

Don’t forget to reenable the constraint on the titles table when you are finished
testing:

alter table titles check constraint FK__titles__pub_id__0F424F67

 Download from www.wowebook.com

ptg

1021Transactions and Locking
3

1

Transactions and Locking
SQL Server issues and holds on to locks for the duration of a transaction to ensure the
isolation and consistency of the modifications. Data modifications that occur within a
transaction acquire exclusive locks, which are then held until the completion of the trans-
action. Shared locks, or read locks, are held for only as long as the statement needs them;
usually, a shared lock is released as soon as data has been read from the resource (for
example, row, page, table). You can modify the length of time a shared lock is held by
using keywords such as HOLDLOCK in a query or setting the REPEATABLE_READ or
SERIALIZABLE lock isolation levels. If one of these options is specified, shared locks are
held until the completion of the transaction.

What this means for you as a database application developer is that you should try to
hold on to as few locks or as small a lock as possible for as short a time as possible to
avoid locking contention between applications and to improve concurrency and applica-
tion performance. The simple rule when working with transactions is to keep them short
and keep them simple. In other words, you should do what you need to do in the most
concise manner, in the shortest possible time. You should keep any extraneous commands
that do not need to be part of the logical unit of work—such as SELECT statements,
commands for dropping temporary tables, commands for setting up local variables, and so
on—outside the transaction.

To modify the manner in which a transaction and its locks can be handled by a SELECT
statement, you can issue the SET TRANSACTION ISOLATION LEVEL statement. This state-
ment allows the query to choose how much it is protected against other transactions
modifying the data being used. The SET TRANSACTION ISOLATION LEVEL statement has the
following mutually exclusive options:

. READ COMMITTED—This setting is the default for SQL Server. Modifications made
within a transaction are locked exclusively, and the changes cannot be viewed by
other user processes until the transaction completes. Commands that read data only
hold shared locks on the data for as long as they are reading it. Because other trans-
actions are not blocked from modifying the data after you have read it within your
transaction, subsequent reads of the data within the transaction might encounter
nonrepeatable reads or phantom data.

. READ UNCOMMITTED—With this level of isolation, one transaction can read the
modifications made by other transactions prior to being committed. This is, there-
fore, the least restrictive isolation level, but it is one that allows the reading of dirty
and uncommitted data. This option has the same effect as issuing NOLOCK within
SELECT statements, but it has to be set only once for your connection. This option
should never be used in an application in which accuracy of the query results is
required.

. REPEATABLE READ—When this option is set, as data is read, locks are placed and
held on the data for the duration of the transaction. These locks prevent other trans-
actions from modifying the data you have read so that you can carry out multiple
passes across the same information and get the same results each time. This isolation

 Download from www.wowebook.com

ptg

1022 CHAPTER 31 Transaction Management and the Transaction Log

level is obviously more restrictive than READ COMMITTED and READ UNCOMMITTED, and
it can block other transactions. However, although it prevents nonrepeatable reads,
it does not prevent the addition of new rows or phantom rows because only existing
data is locked.

. SERIALIZABLE—This option is the most restrictive isolation level because it places
a range lock on the data. This prevents any modifications to the data being read
from until the end of the transaction. It also avoids phantom reads by preventing
rows from being added or removed from the data range set.

. SNAPSHOT—Snapshot isolation specifies that data read by any statement will see
only data modifications that were committed before the start of the transaction. The
effect is as if the statements in a transaction see a snapshot of the committed data as
it existed at the start of the transaction. The ALLOW_SNAPSHOT_ISOLATION database
option must be set to ON for a transaction to specify the SNAPSHOT isolation level.

READ_COMMITTED_SNAPSHOT Isolation

In addition to the SNAPSHOT isolation level, SQL Server also supports a special form of read-
committed isolation, referred to as READ_COMMITTED_SNAPSHOT. This form of isolation is
similar to snapshot isolation, but unlike snapshot isolation, which sees the version of the
data at the start of the transaction, read committed snapshot queries see the version of the
data at the start of the statement.

To enable the READ_COMMITTED_SNAPSHOT isolation level for queries, you need to enable the
READ_COMMITTED_SNAPSHOT database option. Any queries that normally would run at the
standard READ_COMMITTED isolation level automatically run at the
READ_COMMITTED_SNAPSHOT isolation level, without requiring any code changes.

For more information on transaction isolation levels and their effect on lock types,
locking behavior, and performance, see Chapter 37, “Locking and Performance.”

Coding Effective Transactions
Poorly written or inefficient transactions can have a detrimental effect on concurrency of
access to data and overall application performance. SQL Server can hold locks on a
number of resources while the transaction is open; modified rows acquire exclusive locks,
and other locks might also be held, depending on the isolation level used. To reduce
locking contention for resources, transactions should be kept as short and efficient as
possible. During development, you might not even notice that a problem exists; the
problem might become noticeable only after the system load is increased and multiple
users are executing transactions simultaneously. Following are some guidelines to consider
when coding transactions to minimize locking contention and improve application
performance:

. Do not return result sets within a transaction. Doing so prolongs the transaction
unnecessarily. Perform all data retrieval and analysis outside the transaction.

 Download from www.wowebook.com

ptg

1023Transaction Logging and the Recovery Process
3

1

. Never prompt for user input during a transaction. If you do, you lose all control over
the duration of the transaction. (Even the best programmers miss this one on occa-
sion.) On the failure of a transaction, be sure to issue the rollback before putting up
a message box telling the user that a problem occurred.

. Keep the start and end of a transaction together in the same batch or, better yet, use
a stored procedure for the operation.

. Keep the transaction short. Start the transaction at the point where you need to do
the modifications. Do any preliminary work beforehand.

. Make careful use of different locking schemes and transaction isolation levels.

. If user input is unavoidable between data retrieval and modification and you need to
handle the possibility of another user modifying the data values read, use optimistic
locking strategies or snapshot isolation rather than acquiring and holding locks by
using HOLDLOCK or other locking options. Chapter 37 covers optimistic locking
methods and snapshot isolation in more detail.

. Collect multiple transactions into one transaction, or batch transactions together, if
appropriate. This advice might seem to go against some of the other suggestions, but
it reduces the amount of overhead SQL Server will encounter to start, finish, and log
the transactions.

Transaction Logging and the Recovery Process
Every SQL Server database has its own transaction log that keeps a record of all data modi-
fications in a database (for example, insert, update, delete) in the order in which they
occur. This information is stored in one or more log files associated with the database. The
information stored in these log files cannot be modified or viewed effectively by any user
process.

SQL Server uses a write-ahead log. The buffer manager guarantees that changes are written
to the transaction log before the changes are written to the database. The buffer manager
also ensures that the log pages are written out in sequence so that transactions can be
recovered properly in the event of a system crash.

The following is an overview of the sequence of events that occurs when a transaction
modifies data:

1. Writes a BEGIN TRAN record to the transaction log in buffer memory.

2. Writes data modification information to transaction log pages in buffer memory.

3. Writes data modifications to the database in buffer memory.

4. Writes a COMMIT TRAN record to the transaction log in buffer memory.

5. Writes transaction log records to the transaction log file(s) on disk.

6. Sends a COMMIT acknowledgment to the client process.

 Download from www.wowebook.com

ptg

1024 CHAPTER 31 Transaction Management and the Transaction Log

The end of a typical transaction is indicated by a COMMIT record in the transaction log. The
presence of the COMMIT record indicates that the transaction must be reflected in the data-
base or be redone, if necessary. A transaction aborted during processing by an explicit roll-
back or a system error has its changes automatically undone.

Notice that the data records are not written to disk when a COMMIT occurs. This is done to
minimize disk I/O. All log writes are done synchronously to ensure that the log records are
physically written to disk and in the proper sequence. Because all modifications to the
data can be recovered from the transaction log, it is not critical that data changes be
written to disk right away. Even in the event of a system crash or power failure, the data
can be recovered from the log if it hasn’t been written to the database.

SQL Server ensures that the log records are written before the affected data pages by
recording the log sequence number (LSN) for the log record making the change on the
modified data page(s). Modified, or “dirty,” data pages can be written to disk only when
the LSN recorded on the data page is less than the LSN of the last log page written to the
transaction log.

When and how are the data changes written to disk? Obviously, they must be written out
at some time; otherwise, it could take an exceedingly long time for SQL Server to start up
if it had to redo all the transactions contained in the transaction log. Also, how does SQL
Server know during recovery which transactions to reapply, or roll forward, and which
transactions to undo or roll back? The following section looks at the mechanisms involved
in the recovery process.

The Checkpoint Process

During recovery, SQL Server examines the transaction log for each database and verifies
whether the changes reflected in the log are also reflected in the database. In addition, it
examines the log to determine whether any data changes that were written to the data
were caused by a transaction that didn’t complete before the system failure.

As discussed earlier, a COMMIT writes the log records for a transaction to the transaction log
(see Figure 31.1). Dirty data pages are written out either by the Lazy Writer or checkpoint
process. The Lazy Writer process runs periodically to check whether the number of free
buffers has fallen below a certain threshold, reclaims any unused pages, and writes out
any dirty pages that haven’t been referenced recently.

The checkpoint process also scans the buffer cache periodically and writes all dirty log
pages and dirty data pages to disk (see Figure 31.2). The purpose of the checkpoint is to
sync up the data stored on disk with the changes recorded in the transaction log.
Typically, the checkpoint process finds little work to do because most dirty pages have
been written out previously by the worker threads or Lazy Writer process.

 Download from www.wowebook.com

ptg

1025Transaction Logging and the Recovery Process
3

1

Buffer Cache

Log

Data

Log

Data

FIGURE 31.1 A commit writes all “dirty” log pages from cache to disk.

Buffer Cache

Log

Data

1

2

Log

Data

FIGURE 31.2 A checkpoint writes log pages from cache to disk and then writes all “dirty”
data pages.

SQL Server performs the following steps during a checkpoint:

1. Writes a record to the log file to record the start of the checkpoint.

2. Stores information recorded for the checkpoint in a chain of checkpoint log records.

3. Records the minimum recovery LSN (MinLSN), which is the first log image that
must be present for a successful database-wide rollback. The MinLSN is either the
LSN of the start of the checkpoint, LSN of the oldest active transaction, or LSN of
the oldest transaction marked for replication that hasn’t yet been replicated to all
subscribers.

4. Writes a list of all outstanding, active transactions to the checkpoint records.

5. Writes all modified log pages to the transaction log on disk.

 Download from www.wowebook.com

ptg

1026 CHAPTER 31 Transaction Management and the Transaction Log

6. Writes all dirty data pages to disk. (Data pages that have not been modified are not
written back to disk to save I/O.)

7. Writes a record to the log file, indicating the end of the checkpoint.

8. Writes the LSN of the start of the checkpoint log records to the database boot page.
(This is done so that SQL Server can find the last checkpoint in the log during recov-
ery.)

Figure 31.3 shows a simplified version of the contents of a transaction log after a check-
point. (For simplicity, the checkpoint records are reflected as a single log entry.)

The primary purpose of a checkpoint is to reduce the amount of work the server needs to
do at recovery time to redo or undo database changes. A checkpoint can occur under the
following circumstances:

. When a checkpoint statement is executed explicitly for the current database.

. When ALTER DATABASE is used to change a database option. ALTER DATABASE auto-
matically checkpoints the database when database options are changed.

. When an instance of SQL Server is shut down gracefully either due to the execution
of the SHUTDOWN statement or because the SQL Server service was stopped.

NOTE

The SHUTDOWN WITH NOWAIT statement does not perform what is considered a grace-
ful shutdown of SQL Server. This statement forces a shutdown of SQL Server without
waiting for current transactions to complete and without executing a checkpoint of each
database. This type of shutdown may cause the subsequent restart of SQL Server to
take a longer time to recover the databases on the server.

Check
point

Begin
(T1)

Update
(T1)

Delete
(T1)

Begin
(T2)

Commit
(T1)

Commit
(T3)

Insert
(T2)

Begin
(T3)

Update
(T3)

Delete
(T2)

Check
point

Begin
(T4)

Update
(T4)

Begin
(T5)

Commit
(T4)

Insert
(T2)

Oldest
Active

Transaction
(MinLSN)

FIGURE 31.3 A simplified view of the end of the transaction log with various completed and
active transactions, as well as the last checkpoint.

 Download from www.wowebook.com

ptg

1027Transaction Logging and the Recovery Process
3

1

. When SQL Server periodically generates automatic checkpoints in each database to
reduce the amount of time the instance would take to recover the database.

Automatic Checkpoints
The frequency of automatic checkpoints is determined by the setting of the recovery inter-
val for SQL Server. However, the determination of when to perform a checkpoint is based
on the number of records in the log, not a specific period of time. The time interval
between the occurrences of automatic checkpoints can be highly variable. If few modifica-
tions are made to the database, the time interval between automatic checkpoints could be
quite long. Conversely, automatic checkpoints can occur quite frequently if the update
activity on a database is high.

The recovery interval does not state how often automatic checkpoints should occur. The
recovery interval is actually related to an estimate of the amount of time it would take
SQL Server to recover the database by applying the number of transactions recorded since
the last checkpoint. By default, the recovery interval is set to 0, which means SQL Server
determines the appropriate recovery interval for each database. It is recommended that
you keep this setting at the default value unless you notice that checkpoints are occurring
too frequently and are impairing performance. You should try increasing the value in
small increments until you find one that works well. You need to be aware that if you set
the recovery interval higher, fewer checkpoints will occur, and the database will likely take
longer to recover following a system crash.

If the database is using either the full or bulk-logged recovery model, an automatic check-
point occurs whenever the number of log records reaches the number that SQL Server esti-
mates it can process within the time specified by the recovery interval option.

If the database is using the simple recovery model, an automatic checkpoint occurs
whenever the number of log records reaches the number that SQL Server estimates it can
process during the time specified by the recovery interval option or the log becomes
70% full and the database is in log truncate mode. A database is considered to be in log
truncate mode when the database is using the simple recovery model and one of the
following events has occurred since the last full backup of the database:

. A minimally logged operation is performed in the database, such as a minimally
logged bulk copy operation or a minimally logged WRITETEXT statement.

. An ALTER DATABASE statement is executed that adds or deletes a file in the database.

. A BACKUP LOG statement referencing the database is executed with either the NO_LOG
or TRUNCATE_ONLY option.

 Download from www.wowebook.com

ptg

1028 CHAPTER 31 Transaction Management and the Transaction Log

When a database is configured to use the simple recovery model, the automatic check-
point also truncates the unused portion of the transaction log prior to the oldest active
transaction.

Manual Checkpoints
In addition to automatic checkpoints, a checkpoint can be explicitly initiated by members
of the sysadmin fixed server role or the db_owner or db_backupoperator fixed database
roles. The syntax for the CHECKPOINT command is as follows:

CHECKPOINT [checkpoint_duration]

To minimize the performance impact on other applications, SQL Server 2008 by default
adjusts the frequency of the writes that a checkpoint operation performs. SQL Server uses
this strategy for automatic checkpoints and for any CHECKPOINT statement that does not
specify the checkpoint_duration value.

You can use the checkpoint_duration option to request the amount of time, in seconds,
for the checkpoint to complete. When checkpoint_duration is specified, SQL Server
attempts to perform the checkpoint within the requested duration. The performance
impact of using checkpoint_duration depends on the number of dirty pages, the activity
on the system, and the actual duration specified. For example, if the checkpoint would
normally complete in 120 seconds, specifying a checkpoint_duration of 60 seconds
causes SQL Server to devote more resources to the checkpoint than would be assigned by
default to be able to complete the checkpoint in half the time. In contrast, specifying a
checkpoint_duration of 240 seconds causes SQL Server to assign fewer resources than
would be assigned by default. In other words, a short checkpoint_duration increases the
resources devoted to the checkpoint, and a longer checkpoint_duration reduces the
resources devoted to the checkpoint.

Regardless of the checkpoint duration specified, SQL Server always attempts to complete a
checkpoint when possible. In some cases, a checkpoint may complete sooner than the
specified duration, and at times it may run longer than the specified duration.

The Recovery Process

When SQL Server is started, it verifies that completed transactions recorded in the log are
reflected in the data and that incomplete transactions whose changes are reflected in the
data are rolled back out of the database. This is the recovery process. Recovery is an auto-
matic process performed on each database during SQL Server startup. Recovery must be
completed before the database is made available for use.

The recovery process guarantees that all completed transactions recorded in the transac-
tion log are reflected in the data and all incomplete transactions reflected in the data are
rolled back. During recovery, SQL Server looks for the last checkpoint record in the log.

 Download from www.wowebook.com

ptg

1029Transaction Logging and the Recovery Process
3

1

Only the changes that occurred or were still open since the last checkpoint need to be
examined to determine the need for any transactions to be redone (that is, rolled forward)
or undone (that is, rolled back). After all the changes are rolled forward or rolled back, as
necessary, the database is checkpointed, and recovery is complete.

The recovery algorithm has three phases centered around the last checkpoint record in the
transaction log, as shown in Figure 31.4.

These phases are as follows:

1. Analysis phase—SQL Server reads forward from the last checkpoint record in the
transaction log. This pass identifies a list of pages (the dirty page table [DPT]) that
might have been dirty at the time of the system crash or when SQL Server was shut
down, as well as a list of the uncommitted transactions at the time of the crash.

2. Redo (roll-forward) phase—During this phase, SQL Server rolls forward all the
committed transactions recorded in the log since the last checkpoint. This phase
returns the database to the state it was in at the time of the crash. The starting point
for the redo pass is the LSN of the oldest committed transaction within the DPT, so
that only changes not previously checkpointed (only the committed dirty pages) are
reapplied.

3. Undo (rollback) phase—This phase moves backward from the end of the log to the
oldest active transaction at the time of the system crash or shutdown. All transac-
tions that were not committed at the time of the crash but had pages written to the
database are undone so that none of their changes are actually reflected in the data-
base.

Now let’s examine the transactions in the log in Figure 31.4 and determine how they will
be handled during the recovery process:

. Transaction T1 is started and committed prior to the last checkpoint. No recovery
is necessary.

Check
point

Begin
(T1)

Update
(T1)

Delete
(T1)

Begin
(T2)

Commit
(T1)

Commit
(T3)

Insert
(T2)

Begin
(T3)

Update
(T3)

Delete
(T2)

Check
point

Begin
(T4)

Update
(T4)

Begin
(T5)

Commit
(T4)

Insert
(T2)

Oldest
Active

Transaction
(MinLSN)

Analyze from last Checkpoint

Redo T3 and T4

Undo T2 S
e
r
v
e
r
C
r
a
s
h

FIGURE 31.4 The phases of the recovery process.

 Download from www.wowebook.com

ptg

1030 CHAPTER 31 Transaction Management and the Transaction Log

. Transaction T2 started before the last checkpoint but had not completed at the time
of the system crash. The changes written out by the checkpoint process for this
transaction have to be rolled back.

. Transaction T3 started before the last checkpoint was issued and committed after
that checkpoint but prior to the system crash. The changes made to the data after
the checkpoint need to be rolled forward.

. Transaction T4 started and committed after the last checkpoint. This entire transac-
tion needs to be rolled forward.

. Transaction T5 started after the last checkpoint, but no changes to the data were
recorded in the log, so no data changes were written to the data. (Remember that
changes must be written to the log before they can be written to the data.) No undo
action is required for this transaction.

In a nutshell, this type of analysis is pretty much the same analysis the recovery process
would do. To identify the number of transactions rolled forward or rolled back during
recovery, you can examine the SQL Server error log and look at the recovery startup
messages for each database. Following is a sample fragment of the recovery messages you
might see in the SQL Server error log:

2009-05-22 10:37:04.440 spid15s Starting up database ‘tempdb’.

2009-05-22 10:37:04.630 spid18s Starting up database ‘msdb’.

2009-05-22 10:37:04.640 spid19s Starting up database ‘sample’.

2009-05-22 10:37:04.660 spid20s Starting up database ‘AdventureWorks’.

2009-05-22 10:37:04.670 spid21s Starting up database ‘bigpubs2008’.

2009-05-22 10:37:05.140 spid20s 1 transactions rolled forward in database

‘AdventureWorks’ (6). This is an informational message only. No user action is

required.

2009-05-22 10:37:05.150 spid19s 1 transactions rolled forward in database

‘sample’ (5). This is an informational message only. No user action is required.

2009-05-22 10:37:05.240 spid19s 0 transactions rolled back in database

‘AdventureWorks’ (6). This is an informational message only. No user action is

required.

2009-05-22 10:37:05.260 spid20s 0 transactions rolled back in database

‘sample’ (5). This is an informational message only. No user action is required.

2009-05-22 10:37:05.260 spid19s Recovery is writing a checkpoint in database

‘AdventureWorks’ (6). This is an informational message only. No user action is

required.

2009-05-22 10:37:05.300 spid20s Recovery is writing a checkpoint in database

‘sample’ (5). This is an informational message only. No user action is required.

2009-05-22 10:37:05.340 spid18s 50 transactions rolled forward in database

‘msdb’ (4). This is an informational message only. No user action is required.

2009-05-22 10:37:05.350 spid19s Starting up database ‘AdventureWorksDW’.

2009-05-22 10:37:05.460 spid20s 0 transactions rolled back in database ‘msdb’

(4). This is an informational message only. No user action is required.

 Download from www.wowebook.com

ptg

1031Transaction Logging and the Recovery Process
3

1

2009-05-22 10:37:05.470 spid20s Recovery is writing a checkpoint in database

‘msdb’ (4). This is an informational message only. No user action is required.

2009-05-22 10:37:05.480 spid20s Starting up database ‘AdventureWorksLT’.

2009-05-22 10:37:05.520 spid21s 1 transactions rolled forward in database

‘bigpubs2008’ (7). This is an informational message only. No user action is

required.

2009-05-22 10:37:05.610 spid7s 1 transactions rolled back in database

‘bigpubs2008’ (7). This is an informational message only. No user action is

required.

2009-05-22 10:37:05.610 spid7s Recovery is writing a checkpoint in database

‘bigpubs2008’ (7). This is an informational message only. No user action is

required.

2009-05-22 10:37:05.630 spid19s 1 transactions rolled forward in database

‘AdventureWorksDW’ (8). This is an informational message only. No user action is

required.

2009-05-22 10:37:05.680 spid18s 0 transactions rolled back in database

‘AdventureWorksDW’ (8). This is an informational message only. No user action is

required.

2009-05-22 10:37:05.700 spid18s Recovery is writing a checkpoint in database

‘AdventureWorksDW’ (8). This is an informational message only. No user action is

required.

2009-05-22 10:37:05.740 spid20s 1 transactions rolled forward in database

‘AdventureWorksLT’ (9). This is an informational message only. No user action is

required.

2009-05-22 10:37:05.760 spid20s 0 transactions rolled back in database

‘AdventureWorksLT’ (9). This is an informational message only. No user action is

required.

2009-05-22 10:37:05.770 spid20s Recovery is writing a checkpoint in database

‘AdventureWorksLT’ (9). This is an informational message only. No user action is

required.

2009-05-22 10:37:05.770 spid18s Starting up database ‘AdventureWorks2008’.

2009-05-22 10:37:05.780 spid19s Starting up database ‘AdventureWorksDW2008’.

2009-05-22 10:37:05.790 spid21s Starting up database ‘AdventureWorksLT2008’.

2009-05-22 10:37:05.900 spid19s 1 transactions rolled forward in database

‘AdventureWorksDW2008’ (11). This is an informational message only. No user action

is required.

2009-05-22 10:37:05.910 spid21s 1 transactions rolled forward in database

‘AdventureWorksLT2008’ (12). This is an informational message only. No user action

is required.

2009-05-22 10:37:05.940 spid18s 9 transactions rolled forward in database

‘AdventureWorks2008’ (10). This is an informational message only. No user action

is required.

2009-05-22 10:37:05.950 spid7s 0 transactions rolled back in database

‘AdventureWorksDW2008’ (11). This is an informational message only. No user action

 Download from www.wowebook.com

ptg

1032 CHAPTER 31 Transaction Management and the Transaction Log

is required.

2009-05-22 10:37:05.950 spid19s 0 transactions rolled back in database

‘AdventureWorksLT2008’ (12). This is an informational message only. No user action

is required.

2009-05-22 10:37:05.960 spid7s Recovery is writing a checkpoint in database

‘AdventureWorksDW2008’ (11). This is an informational message only. No user action

is required.

2009-05-22 10:37:05.970 spid19s Recovery is writing a checkpoint in database

‘AdventureWorksLT2008’ (12). This is an informational message only. No user action

is required.

2009-05-22 10:37:06.530 spid19s 0 transactions rolled back in database

‘AdventureWorks2008’ (10). This is an informational message only. No user action

is required.

2009-05-22 10:37:06.630 spid19s Recovery is writing a checkpoint in database

‘AdventureWorks2008’ (10). This is an informational message only. No user action

is required.

2009-05-22 10:37:08.220 spid19s Recovery completed for database

AdventureWorks2008 (database ID 10) in 1 second(s) (analysis 73 ms, redo 1 ms, undo

572 ms.) This is an informational message only. No user action is required.

2009-05-22 10:37:08.250 spid7s Recovery is complete. This is an informational

message only. No user action is required.

Managing the Transaction Log

Each database in SQL Server has at least one transaction log file. The transaction log file
contains the transaction log records for all changes made in that database. By default,
transaction log files have the file extension .ldf.

A database can have several log files, and each log file can have a maximum size of 32TB.
A log file cannot be part of a filegroup. No information other than transaction log records
can be written to a log file.

Regardless of how many physical files have been defined for the transaction log, SQL
Server treats it as one contiguous file. The transaction log for a database is actually
managed as a set of virtual log files (VLFs). VLFs have no fixed size, and there is no fixed
number of VLFs for a physical log file. The size and number of VLFs is not configurable.
SQL Server determines the size of the VLFs dynamically, based on the total size of all the
log files and the growth increment specified for the log. Figure 31.5 shows an example of
a physical log file divided into multiple virtual log files.

The transaction log is essentially a wrap-around file. Initially, the logical log file begins at
the start of the physical log file. As transactions are committed, new log records are added
to the end of the logical log, and the logical log expands toward the end of the physical
log. When the logical log reaches the end of the physical log file, SQL Server attempts to
wrap around and start writing log records back at the beginning of the physical log file, as
shown in Figure 31.6.

 Download from www.wowebook.com

ptg

1033Transaction Logging and the Recovery Process
3

1

VLF2 VLF3 VLF4 VLF5VLF1

Physical Log File

u
n
u
s
e
d

Active Portion of Log
Min
LSN

Start of logical log
(1st active VLF)

End of logical log
(last active VLF)

Last LSN

FIGURE 31.5 The structure of a physical log file showing VLFs.

SQL Server, however, can reuse only the first VLF if it is no longer part of the logical log;
that is, the VLF does not contain any active log records, and the contents of the inactive
VLFs have been truncated. Log truncation frees any virtual logs whose records all appear
before the MinLSN. The MinLSN is the log sequence number of the oldest log record
required for a successful database recovery.

In environments where the log is not being maintained, SQL Server automatically trun-
cates and reuses the space in the VLFs at the beginning of the log file as soon as it reaches
the end of the log file. This can occur as long as the VLFs at the beginning of the log file
do not contain the MinLSN. SQL Server assumes that the log is not being maintained

VLF2 VLF3 VLF4 VLF5VLF1

Active Portion of Log

u
n
u
s
e
d

Start of logical logEnd of logical log

Min LSN

Reusable VLFs

FIGURE 31.6 An example of the active portion of a log cycling around to reusable VLF at the
beginning of a log file.

 Download from www.wowebook.com

ptg

1034 CHAPTER 31 Transaction Management and the Transaction Log

when the database is in simple recovery mode, or when you have never performed a full
backup of the database.

If the database is configured to use the bulk-logged or full recovery models so that the log
is being maintained, the reusable portion of the log prior to the MinLSN cannot be trun-
cated or purged until the transaction log has actually been backed up.

If the first VLF cannot be reused because it contains the MinLSN or it hasn’t been trun-
cated yet, SQL Server needs to expand the log file. This is done by adding a new VLF to
the end of the physical log (as long as the log file is still configured to grow automati-
cally). SQL Server can then continue writing log records to the new VLF. However, if the
log file is not configured to auto-grow, a 9002 error is generated, indicating that the log
file is out of space.

Certain conditions can cause log records to remain active, preventing the MinLSN from
moving out of the first VLF, which in turn prevents the VLFs at the beginning of the phys-
ical log file from being reused. Some of the conditions that can lead to the log space not
being reused include, but are not limited to, the following:

. No checkpoint has taken place yet since the log was last truncated, and the log
records are needed for database recovery.

. A database or log backup is in progress.

. A long-running transaction is still active.

. Database mirroring is paused. (For more information, see Chapter 20, “Database
Mirroring.”)

. The database is the primary database for transactional replication, and transactions
relevant to the publications have not yet been delivered to the distribution database.
(For more information on replication, see Chapter 19, “Replication.”)

. A database snapshot is being created (for more information, see Chapter 32,
“Database Snapshots”).

If something is preventing the log from being truncated, SQL Server 2008 provides infor-
mation in the system catalogs to determine what is preventing log truncation. This infor-
mation is available in the log_reuse_wait_desc column of the sys.databases catalog
view, which you can display by using a query similar to the following:

select name, log_reuse_wait_desc

from sys.databases

where name = db_name()

When a log file is configured to auto-grow and there is significant update activity against
the database and the inactive portion of the transaction log is not being truncated
frequently enough (or at all) to allow for the reuse of VLFs, the log file size can become
excessive. This can lead to insufficient disk space in the file system that contains the log

 Download from www.wowebook.com

ptg

1035Transaction Logging and the Recovery Process
3

1

file. This can subsequently also lead to a 9002 out-of-space error if the log file needs to
grow and not enough disk space is available. At times, you might need to shrink the log
file to reduce its size.

Shrinking the Log File
After the log has been backed up and the active portion of the log has wrapped around to
the beginning of the log file, the VLFs at the end of the physical log can be deleted from
the log file, and the log file can be reduced in size.

When you shrink a log file, the space freed can only come from the end of the log file.
The unit of size reduction is the size of the virtual log file. For example, if you have a 1GB
log file that has been divided into five 200MB virtual log files, the log file can only be
shrunk in 200MB increments. The file size can be reduced to sizes such as 800MB or
400MB, but the file cannot be reduced to sizes such as 333MB or 750MB.

SQL Server 2008 provides the DBCC SHRINKFILE command for shrinking the transaction
log file. Its syntax is as follows:

DBCC SHRINKFILE ({ ’file_name’ } { [,EMPTYFILE] | [,target_size] })

[WITH NO_INFOMSGS]

If no target size is specified for the DBCC SHRINKFILE command, SQL Server removes as
many of the inactive virtual log files from the end of the physical log file as possible to
restore the transaction log file to its default size. The default size of the transaction log file
is the size specified when the log file was created or the last size set by using the ALTER
DATABASE command.

If a target size is specified for DBCC SHRINKFILE, SQL Server attempts to remove as many
VLFs from the end of the log file as possible to reduce the log file to as close to the target
size as possible without making the log smaller than the specified target size. After shrink-
ing, the log file is typically somewhat larger than the target size, especially if the target
size is not a multiple of the VLF size.

If no VLFs beyond the target_size mark contain an active portion of the log, all the VLFs
that come after the target_size mark are freed, and the DBCC SHRINKFILE statement
completes successfully, with no messages. However, if any VLF beyond the target_size
mark does contain an active portion of the log, SQL Server frees from the end of the phys-
ical log file as many of the VLFs as possible that do not contain active portions of the log.
When this occurs, the DBCC SHRINKFILE command returns an informational message indi-
cating that not all the requested space was freed. When the active portion of the log
moves off the VLF(s) at the end of the physical log file, you can reissue the DBCC SHRINK-
FILE statement again to free the remaining space.

You can also use SQL Server Management Studio (SSMS) to shrink the transaction log file.
In the Object Browser, expand the Databases folder and right-click the target database.
Then select Tasks, Shrink, and Files. The Shrink File dialog appears, as shown in Figure 31.7.

 Download from www.wowebook.com

ptg

1036 CHAPTER 31 Transaction Management and the Transaction Log

In the File Type drop-down list, select Log. To shrink the log file to its default size, click
the radio button next to Release Unused Space in the Shrink Action area of the dialog box.
To shrink the log file to a desired size, click the radio button next to Reorganize Pages
Before Releasing Unused Space and specify the desired target size. After you choose the
desired shrink option, click OK.

In addition to manually shrinking the transaction log, SQL Server also provides a database
option, AUTO_SHRINK, that can be enabled to shrink the log and database files automati-
cally when space is available at the end of the file. If you are regularly backing up or trun-
cating the log, the AUTO_SHRINK option keeps the size of the log file in check. The
auto-shrink process runs periodically and determines whether the log file can be shrunk.
The Log Manager keeps track of how much log space has been used since the auto-shrink
process last ran. The auto-shrink process then shrinks the log either to 125% of the
maximum log space used since auto-shrink last ran or the default size of the transaction
log file, whichever is larger.

FIGURE 31.7 The SSMS Shrink File dialog.

 Download from www.wowebook.com

ptg

1037Long-Running Transactions
3

1

TIP

Repeated growing and shrinking of the log file can lead to excessive file fragmentation,
which can have an adverse impact on the file I/O performance. It is recommended that
instead of using AUTO_SHRINK, you set the transaction log to the size it is expected to
grow to during normal processing and enable the auto-grow option so that it doesn’t
run out of space if something prevents the log from being truncated. By doing so, you
help avoid the need for the log file to be constantly expanded during normal processing
and also avoid excessive fragmentation of the log file. If something causes the log file
to auto-grow and exceed the normal log file size, you can always manually shrink the
file back to its normal size.

Long-Running Transactions
As you have already seen, transaction information is recorded in each database’s transac-
tion log. However, long-running transactions can be a cause of consternation to a system
administrator who is attempting to back up and prune the transaction log. Only the inac-
tive portion of the log can be truncated during this operation. The inactive portion of the
log is the pages that contain log records for all completed transactions prior to the first log
record of the oldest still-active transaction (see Figure 31.8). Even if completed transac-
tions follow the first record of the oldest active transaction, they cannot be removed from
the log until the oldest active transaction completes. The reason is that the log is pruned
by clearing out entire pages of information prior to the oldest active transaction. Pages
after that point cannot be cleared because they might contain records for the active trans-
action that would be needed in the event of a rollback or database recovery.

In addition to preventing the log from being pruned, long-running transactions can
degrade concurrency by holding locks for an extended period of time, preventing other
users from accessing the locked data.

Check
point

Begin
(T1)

Update
(T1)

Delete
(T1)

Begin
(T2)

Commit
(T1)

Commit
(T3)

Insert
(T2)

Begin
(T3)

Update
(T3)

Delete
(T2)

Check
point

Begin
(T4)

Update
(T4)

Begin
(T5)

Commit
(T4)

Insert
(T2)

Inactive Portion of the
Log

Active Portion of the
Log

Oldest
Active

Transaction
(MinLSN)

FIGURE 31.8 The inactive portion of the log is the pages in the log prior to the oldest active
transaction.

 Download from www.wowebook.com

ptg

1038 CHAPTER 31 Transaction Management and the Transaction Log

To get information about the oldest active transaction in a database, you can use the DBCC
OPENTRAN command, whose syntax is as follows:

DBCC OPENTRAN [(‘DatabaseName’ | DatabaseId)]

[WITH TABLERESULTS [, NO_INFOMSGS]]

The following example displays a sample of the oldest active transaction for the
bigpubs2008 database:

DBCC OPENTRAN (bigpubs2008)

go

Transaction information for database ‘bigpubs2008’.

Oldest active transaction:

SPID (server process ID): 56

UID (user ID) : -1

Name : add_titles

LSN : (1926:170:6)

Start time : May 26 2009 12:17:09:220AM

SID : 0xe6810e075514c744bc8d03b34c27b004

DBCC execution completed. If DBCC printed error messages, contact your system

administrator.

DBCC OPENTRAN returns the server process ID (SPID) of the process that initiated the trans-
action, user ID, name of the transaction (naming transactions are helpful here because the
names might help you identify the SQL code that initiated the transaction), LSN of the
page containing the initial BEGIN TRAN statement for the transaction, and, finally, time the
transaction was started.

If you specify the TABLERESULTS option, this information is returned in two columns that
you can load into a table for logging or comparison purposes. The NO_INFOMSGS option
suppresses the display of the ’DBCC execution completed...’ message. The following
example runs DBCC OPENTRAN and inserts the results into a temp table:

CREATE TABLE #opentran_results

(result_label VARCHAR(30), result_value VARCHAR(46))

insert #opentran_results

exec (‘dbcc opentran (bigpubs2008) WITH TABLERESULTS, no_infomsgs’)

select * from #opentran_results

go

 Download from www.wowebook.com

ptg

1039Bound Connections
3

1

result_label result_value

——————————————— ———————————————————————

OLDACT_SPID 57

OLDACT_UID -1

OLDACT_NAME add_titles

OLDACT_LSN (1926:203:1)

OLDACT_STARTTIME May 26 2009 12:20:10:407AM

OLDACT_SID 0xe6810e075514c744bc8d03b34c27b004

If no open transactions exist for the database, you receive the following message from
DBCC OPENTRAN:

No active open transactions.

DBCC execution completed. If DBCC printed error messages, contact your

system administrator.

DBCC OPENTRAN provides a means for you to identify which transactions are potential prob-
lems, based on their longevity. If you capture the process information at the same time,
using sp_who, you can identify who or what application is causing the longest-running
transaction(s). Using this information, you can terminate the process, if necessary, or you
can just have a quiet word with the user if the query is ad hoc or with the application
developers if it is SQL code generated by a custom application.

Bound Connections
During the course of a transaction, the process that initiated the transaction acquires
exclusive locks on the data that is modified. These locks prevent other user processes or
connections from seeing any of these changes until they are committed. However, it is
common for some SQL Server applications to have multiple connections to SQL Server.
Even though each connection might be for the same user, SQL Server treats each connec-
tion as an entirely separate SQL Server process, and by default, one connection cannot see
the uncommitted changes of another nor modify records locked by the other connection.

Bound connections provide a means of linking multiple connections together to share the
same lock space and participate in the same transaction. This capability can be useful,
especially if an application makes use of extended stored procedures. Extended stored
procedures, although invoked from within a user session, run externally in a separate
session. An extended stored procedure might need to call back into the database to access
data. Without bound connections between the original process and extended stored proce-
dure, the extended stored procedure would be blocked by the locks held on the data by
the originating process.

 Download from www.wowebook.com

ptg

1040 CHAPTER 31 Transaction Management and the Transaction Log

NOTE

In earlier versions of SQL Server, bound sessions were primarily used in developing
extended stored procedures that needed to execute T-SQL statements on behalf of the
process calling them. In SQL Server 2008, it is recommended that extended stored
procedures be replaced with stored procedures written using the common language
runtime (CLR). CLR-stored procedures are more secure, scalable, and stable than
extended stored procedures. In addition, CLR-stored procedures use the SqlContext
object to join the context of the calling session rather than bound connections.

Bound connections are of two types: local and distributed. Local bound connections are
two or more connections within a single server that are bound into a single transaction
space. Distributed bound connections make use of the Microsoft Distributed Transaction
Coordinator (MS DTC; described in more detail in the following section, “Distributed
Transactions”) to share a transaction space across connections from more than one server.

Distributed Transactions
Typically, transaction management controls only the data modifications made within a
single SQL Server instance. However, the increasing interest and implementation of
distributed systems brings up the need to access and modify data distributed across multi-
ple SQL Server instances within a single unit of work.

What if in the banking example, the checking accounts reside on one SQL Server instance
and the savings accounts on another? Moving money from one account to another would
require updates to two separate SQL Server instances. How do you modify data on two
different instances and still treat it as a single unit of work? You need some way to ensure
that the distributed transaction retains the same ACID properties as a local transaction. To
provide this capability, SQL Server ships with the MS DTC service, which provides the
capability to control and manage the integrity of multiserver transactions. MS DTC uses
the industry-standard two-phase commit protocol to ensure the consistency of all parts of
any distributed transaction passing through SQL Server and any referenced linked servers.

Chapter 54, “Managing Linked and Remote Servers” (on the CD), covers the process of
configuring servers and writing SQL code to support distributed transactions.

 Download from www.wowebook.com

ptg

1041Summary
3

1

Summary
A transaction is a logical unit of work as well as a unit of recovery. The successful control
of transactions is of the utmost importance to the correct modification of related informa-
tion. In this chapter, you learned how to define and control transactions, examined differ-
ent transaction-management schemes, learned how the recovery process works, and
discovered how to correctly code transactions within triggers and stored procedures. You
also learned methods for optimizing transactions to improve application performance,
and you got an overview of locking and distributed transactions. Locking is covered in
more detail in Chapter 37, and distributed transactions are covered in more detail in
Chapter 54. In addition, this chapter discussed the snapshot isolation options available in
SQL Server 2008. Snapshot isolation provides the capability to keep versions of row data
that existed prior to the start of a transaction.

Chapter 32 discusses the concept of database snapshots, which provide a way to keep a
read-only, static view of a database.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

CHAPTER 32

Database Snapshots

IN THIS CHAPTER

. What’s New with Database
Snapshots

. What Are Database
Snapshots?

. Limitations and Restrictions of
Database Snapshots

. Copy-on-Write Technology

. When to Use Database
Snapshots

. Setup and Breakdown of a
Database Snapshot

. Reverting to a Database
Snapshot for Recovery

. Setting Up Snapshots Against
a Database Mirror

. Database Snapshots
Maintenance and Security
Considerations

Database snapshots have been a feature of competing
database products (Oracle and DB2) for years. Database
snapshots are great for fulfilling point-in-time reporting
requirements, reverting a database back to a point in time
(recoverability and availability), and for potentially reduc-
ing the processing impact of querying against your primary
transactional databases (via database mirroring and data-
base snapshots).

Keep in mind that database snapshots are point in time and
read-only. Database snapshots are not materialized views.
Materialized views become part of the data object (table)
that they are touching (that is, that are bound to them);
when data changes in the base tables, materialized views
change (that is, are updated). Database snapshots are point-
in-time reflections of an entire database and are not bound
to the underlying database objects from which they pull
their data. They provide a full, read-only copy of the data-
base at a specific point in time. Because of this point-in-
time aspect, data latency must be well understood for all
users of this feature: snapshot data is only as current as at
the time the snapshot was made.

Database snapshots make huge use of Microsoft’s copy-on-
write technology. In fact, the copy-on-write technology is
the primary enabling mechanism for snapshots. If you
recall from Chapter 20, “Database Mirroring,” the copy-on-
write technology is what enables database mirroring.
Database snapshots can also be used in conjunction with
database mirroring to provide a highly available transac-
tional system and a reporting platform that is created from
the database mirror and offloads the reporting away from

 Download from www.wowebook.com

ptg

1044 CHAPTER 32 Database Snapshots

the primary transactional database, without any data loss impact whatsoever. This is a
very powerful reporting and availability configuration.

What’s New with Database Snapshots
With SQL Server 2005, everything about database snapshots was new because this was a
completely new feature for SQL Server. With SQL Server 2008, there is little new to this
feature other than under-the-cover improvements to the copy-on-write mechanisms and
three more years of production implementations under their belt. One hundred percent of
the SQL code you have set up for creating and managing snapshots will work perfectly
with SQL Server 2008. No upgrade pain here.

Database snapshots have solved many companies’ reporting, data safeguarding, and
performance issues and directly contributed to higher availability across the board. Be
aware, though, there are plenty of restrictions with doing database snapshots. In fact,
these restrictions may prohibit you from using snapshots at all. We talk about these
restrictions and when you can safely do database snapshots in a bit.

NOTE

The examples in this chapter are based on the SQL Server 2005 version of the
AdventureWorks database rather than the newer AdventureWorks2008 or
AdventureWorks2008R2 sample databases used for many of the examples in the other
chapters in this book. The reason for this is because of the examples presented that
create a snapshot from a Database Mirror. Database Mirroring cannot be implemented
on a database that is also configured for FILESTREAM storage. The 2008 and 2008R2
versions of the AdventureWorks database make use of FILESTREAM storage.

Fortunately, the 2005 version of the AdventureWorks database can be installed using
the same installer that installs the AdventureWorks2008 or AdventureWorks2008R2
database. If you didn’t install AdventureWorks when you installed either of these
sample databases, simply relaunch the installer and choose to install the
AdventureWorks OLTP database.

For more information on downloading and installing the AdventureWorks sample data-
bases, see the Introduction chapter.

What Are Database Snapshots?
Microsoft has kept up its commitment of providing a database engine foundation that can
be highly available 7 days a week, 365 days a year. Database snapshots contribute to this
goal in several ways:

. They decrease recovery time of a database because you can restore a troubled data-
base with a database snapshot—referred to as reverting.

. They create a security blanket (safeguard) prior to running mass updates on a critical
database. If something goes wrong with the update, the database can be reverted in
a very short amount of time.

 Download from www.wowebook.com

ptg

1045What Are Database Snapshots?

SQL Server 2008

Source
Server CREATE DB ‘xyz’

AS SNAPSHOT OF
AdventureWorks

Transactional
Users

Point-in-time
Reporting Users

(Read-Only)

---Reverting---if needed---
RESTORE DB AdventureWorks

FROM DATABASE_SNAPSHOT = ‘xyz’

Adventure
Works DB

translog

Database Snapshot

FIGURE 32.1 Basic database snapshot concept: a source database and its database snap-
shot, all on a single SQL Server instance.

. They provide a read-only, point-in-time reporting database for ad hoc or canned
reporting needs quickly (thus, increasing reporting environment availability).

. They create a read-only, point-in-time reporting and off-loaded database for ad hoc
or canned reporting needs quickly from a database mirror (again, increasing report-
ing environment availability and also offloading reporting impact away from your
production server/principal database server).

. As a bonus, database snapshots can be used to create testing or QA synchronization
points to enhance and improve all aspects of critical testing (thus decreasing bad
code from going into production that directly affects the stability and availability of
that production implementation).

A database snapshot is simply a point-in-time full database view. It’s not a copy—at least
not a full copy when it is originally created. We talk about this more in a moment. Figure
32.1 shows conceptually how a database snapshot can be created from a source database
on a single SQL Server instance.

3
2

This point-in-time view of a database’s data never changes, even though the data (data
pages) in the primary database (the source of the database snapshot) may change. It is
truly a snapshot at a point in time. For a snapshot, it always simply points to data pages
that were present at the time the snapshot was created. If a data page is updated in the

 Download from www.wowebook.com

ptg

1046

SQL Server 2008

SQL
Server

Empty Sparse file
of a Snapshot just created

(no updates to original
data pages have occurred yet)

Source Data
Pages

Sparse File
Pages

Source

Adventure
Works DB Snapshot

AdventureWorks
DB

FIGURE 32.2 Source database data pages and the sparse file data pages that comprise the
database snapshot.

source database, a copy of the original source data page is moved to a new page chain
termed the sparse file. This utilizes copy-on-write technology. Figure 32.2 shows the sparse
file that is created, alongside the source database itself.

CHAPTER 32 Database Snapshots

A database snapshot really uses the primary database’s data pages up until the point that
one of these data pages is updated (changed in any way). As already mentioned, if a data
page is updated in the source database, the original copy of the data page (which is refer-
enced by the database snapshot) is written to the sparse file page chain as part of an
update operation, using the copy-on-write technology. It is this new data page in the
sparse file that still provides the correct point-in-time data to the database snapshot that it
serves. Figure 32.3 illustrates that as more data changes (updates) occur in the source data-
base, the sparse file gets larger and larger with the old original data pages.

Eventually a sparse file could contain the entire original database if all data pages in the
primary database were changed. As you can also see in Figure 32.3, which data pages the
database snapshot uses from the original (source) database and which data pages are used

 Download from www.wowebook.com

ptg

1047

SQL Server 2008

SQL
Server

Copy of original
pages for snapshot

only when a page is changed
(Copy-on-write)

Source Data
Pages

Source

Adventure
Works DB Snapshot

AdventureWorks
DB

System Catalog
of changed pages

Sparse File
Pages

FIGURE 32.3 Data pages being copied to the sparse file for a database snapshot as pages
are being updated in the source database.

What Are Database Snapshots?
3

2

from the sparse file are all managed by references in the system catalog for the database
snapshot. This setup is incredibly efficient and represents a major breakthrough of provid-
ing data to others. Because SQL Server is using the copy-on-write technology, a certain
amount of overhead is used during write operations. This is one of the critical factors you
must sort through if you plan on using database snapshots. Nothing is free. The overhead
includes the copying of the original data page, the writing of this copied data page to the
sparse file, and then the subsequent metadata updating to the system catalog that
manages the database snapshot data page list. Because of this sharing of data pages, it
should also be clear why database snapshots must be within the same instance of a SQL
Server: both the source database and snapshot start out as the same data pages and then
diverge as source data pages are updated. In addition, when a database snapshot is created,
SQL Server rolls back any uncommitted transactions for that database snapshot; only the
committed transactions are part of a newly created database snapshot. And, as you might
expect of something that shares data pages, database snapshots become unavailable if the
source database becomes unavailable (for example, if it is damaged or goes offline).

 Download from www.wowebook.com

ptg

1048 CHAPTER 32 Database Snapshots

NOTE

You might plan to do a new snapshot after about 30% of the source database has
changed to keep overhead and file sizes in the sparse file at a minimum. The most fre-
quent problem that occurs with database snapshots is related to sparse file sizes and
available space. Remember, the sparse file has the potential of being as big as the
source database itself (if all data pages in the source database eventually get updat-
ed). Plan ahead for this situation!

There are, of course, alternatives to database snapshots, such as data replication, log ship-
ping, and even materialized views, but none are as easy to manage and use as database
snapshots.

The most common terms associated with database snapshots are

. Source database—This is the database on which the database snapshot is based. A
database is a collection of data pages. It is the fundamental data storage mechanism
that SQL Server uses.

. Snapshot databases—There can be one or more database snapshots defined against
any one source database. All snapshots must reside in the same SQL Server instance.

. Database snapshot sparse file—This new data page allocation contains the origi-
nal source database data pages when updates occur to the source database data
pages. One sparse file is associated with each database data file. If you have a source
database allocated with one or more separate data files, you have corresponding
sparse files of each of them.

. Reverting to a database snapshot—If you restore a source database based on a
particular database snapshot that was done at a point in time, you are reverting. You
are actually doing a database RESTORE operation with a FROM DATABASE_SNAPSHOT
statement.

. Copy-on-write technology—As part of an update transaction in the source data-
base, a copy of the source database data page is written to a sparse file so that the
database snapshot can be served correctly (that is, still see the data page as of the
snapshot point in time).

As Figure 32.4 illustrates, any data query using the database snapshot looks at both the
source database data pages and the sparse file data pages at the same time. And these data
pages always reflect the unchanged data pages at the point in time the snapshot was
created.

Limitations and Restrictions of Database Snapshots
Many restrictions or limitations are involved with using database snapshots in SQL Server.
Some of them are pretty restrictive and may determine whether you can consider using
snapshots. With the current release of SQL Server Management Studio, you cannot even

 Download from www.wowebook.com

ptg

1049Limitations and Restrictions of Database Snapshots
3

2

SQL Server 2008

SQL
Server

Source Data
Pages

Source

Adventure
Works DB

Snapshot
AdventureWorks

DB

System Catalog
of changed pages

Sparse File
Pages

Snapshot
Users

SELECT…data…
FROM AdventureWorks
 SNAPSHOT

FIGURE 32.4 A query using the database snapshot touches both source database data
pages and sparse file data pages to satisfy a query.

set up database snapshots with this GUI or a wizard; it must all be done using T-SQL state-
ments (which is not that bad a deal). The following are some of the other restrictions:

. You must drop all other database snapshots when using a database snapshot to
revert a source database.

. You lose visibility to the source database’s uncommitted transactions in the database
snapshot when it is created.

. The more updates to pages in the source database, the bigger your database snapshot
sparse files become.

. A database snapshot can be done only for an entire database, not for a subset of
the database.

. No additional changes can be made to a database snapshot. It is read-only and can’t
even have additional indexes created for it to make reporting queries run faster.

. Additional overhead is incurred on update operations on the source database due to
the copy-on-write technique (not with SELECT statements).

 Download from www.wowebook.com

ptg

1050 CHAPTER 32 Database Snapshots

. If you’re using a database snapshot to revert (restore) a source database, neither
the snapshot nor source database is available.

. The source database cannot be dropped, detached, or restored until the database
snapshot is dropped first.

. Files on the source database or the snapshot cannot be dropped.

. For the database snapshot to be used, the source database must also be online
(unless the source database is a mirrored database).

. The database snapshot must be on the same SQL Server instance as the source
database.

. Snapshots are read-only.

. Database snapshot files must be on NTFS only (not FAT 32 or RAW partitions).

. Full-text indexing is not supported.

. If a source database ever goes into a RECOVERY_PENDING status, the database snapshot
also becomes unavailable.

. If a database snapshot ever runs out of disk space, it must be dropped; it is actually
marked as SUSPECT.

This may seem like a lot of restrictions—and it is. But look to Microsoft to address many
of these restrictions in future releases. These current restrictions may disqualify many folks
from getting into the database snapshot business. Others will thrive in its use out of the
box.

Copy-on-Write Technology
The copy-on-write technology that Microsoft first introduced with SQL Server 2005 is at
the core of both database mirroring and database snapshot capabilities. How it is used in
database mirroring is explained in Chapter 20. In this section, we walk through a typical
transactional user’s update of data in a source database.

As you can see in Figure 32.5, an update transaction is initiated against the
AdventureWorks database (labeled A). As the data is being updated in the source database’s
data page and the change is written to the transaction log (labeled B), the copy-on-write
technology also copies the original source database data page in its unchanged state to the
sparse data file (also labeled B) and updates the metadata page references in the system
catalog (also labeled B) with this movement.

The original source data page is still available to the database snapshot. This adds extra
overhead to any transaction that updates, inserts, or deletes data from the source database.
After the copy-on-write technology finishes its write on the sparse file, the original
update transaction is properly committed, and acknowledgment is sent back to the user
(labeled C).

 Download from www.wowebook.com

ptg

1051When to Use Database Snapshots
3

2

SQL Server 2008

SQL
Server

Data
Pages

Snapshot
Users

Transactional
Users

Q
u

er
y

d
at

a

Source

System Catalog
of changed pages

Sparse File
Pages

Copy of original
pages for snapshot

only when a page
is changed

(Copy-on-write)

U
p

d
at

ed
 R

o
w

C
o

m
m

it
te

d

BB

AC

B

Adventure
Works DB

translog
B

Snapshot
AdventureWorks

DB

FIGURE 32.5 Using the copy-on-write technology with database snapshots.

NOTE

Database snapshots cannot be used for any of SQL Server’s internal databases—
tempdb, master, msdb, or model. Also, database snapshots are supported only in the
Enterprise Edition of SQL Server 2008.

When to Use Database Snapshots
As mentioned previously, there are a few basic ways you can use database snapshots effec-
tively. Each use is for a particular purpose, and each has its own benefits. After you have
factored in the limitations and restrictions mentioned earlier, you can consider these uses.
Let’s look at each of them separately.

 Download from www.wowebook.com

ptg

1052 CHAPTER 32 Database Snapshots

SQL Server 2008

Source
Server UPDATE AWSource.tableX

set xyz = …
FROM AWSnapshot6:00AM.tableX

All
Users

Restore from
Any Point-in-time

Snapshot if needed

6:00AM Snapshot

12:00PM Snapshot

6:00PM Snapshot

12:00AM Snapshot

Adventure
Works DB

translog

Database Snapshot

Database Snapshot

Database Snapshot

Database Snapshot

FIGURE 32.6 Basic database snapshot configuration: a source database and one or more
database snapshots at different time intervals.

Reverting to a Snapshot for Recovery Purposes

Probably the most basic usage of database snapshots is decreasing recovery time of a data-
base by restoring a troubled database with a database snapshot—referred to as reverting. As
Figure 32.6 shows, one or more regularly scheduled snapshots can be generated during a
24-hour period, effectively providing you with data recovery milestones that can be
rapidly used. As you can see in this example, four database snapshots are six hours apart
(6:00 a.m., 12:00 p.m., 6:00 p.m., and 12:00 a.m.). Each is dropped and re-created once
per day, using the same snapshot name. Any one of these snapshots can be used to
recover the source database rapidly in the event of a logical data error (such as rows
deleted or a table being dropped). This technique is not supposed to take the place of a
good maintenance plan that includes full database backups and incremental transaction
log dumps. However, it can be extremely fast to get a database back to a particular
milestone.

To revert to a particular snapshot interval, you simply use the RESTORE DATABASE
command with the FROM DATABASE_SNAPSHOT statement. This is a complete database
restore; you cannot limit it to just a single database object. In addition, you must drop all
other database snapshots before you can use one of them to restore a database.

As you can also see in Figure 32.6, a targeted SQL statement variation from a complete
database restore from a snapshot could be used instead if you knew exactly what you
wanted to restore at the table and row level. You could simply use SQL statements (such as

 Download from www.wowebook.com

ptg

1053When to Use Database Snapshots
3

2

an UPDATE SQL statement or an INSERT SQL statement) from one of the snapshots to selec-
tively apply only the fixes you are sure need to be recovered (reverted). In other words,
you don’t restore the whole database from the snapshot, you only use some of the snap-
shots’ data with SQL statements and bring the messed-up data row values back in line
with the original values in the snapshot. This is at the row and column level and usually
requires quite a bit of detailed analysis before it can be applied to a production database.

It is also possible to use a snapshot to recover a table that someone accidentally dropped.
There is a little data loss since the last snapshot, but it is a simple INSERT INTO statement
from the latest snapshot before the table drop. So be careful here, but consider the value
as well.

Safeguarding a Database Prior to Making Mass Changes

Often, you plan regular events against your database tables that result in some type of mass
update being applied to big portions of the database. If you do a quick database snapshot
before any of these types of changes, you are essentially creating a nice safety net for rapid
recovery in the event you are not satisfied with the mass update results. Figure 32.7 illus-
trates this type of safeguarding technique.

If you are not satisfied with the entire update operation, you can use RESTORE DATABASE
from the snapshot and revert it to this point. Or, if you are happy with some updates but
not others, you can use the SQL statement UPDATE to selectively update (restore) particular
values back to their original values using the snapshot.

SQL Server 2008

Source
Server UPDATE AWSource.tableX

set xyz = …
FROM AWSafeguard6:00AM.tableX

SAFEGUARD Snapshot
(Before the mass changes)

All
Users

Generating
Mass Changes

Restore from snapshot
(if changes are not correct)

Adventure
Works DB

Database Snapshot

FIGURE 32.7 Creating a before database snapshot prior to scheduled mass updates to a
database.

 Download from www.wowebook.com

ptg

1054 CHAPTER 32 Database Snapshots

SQL Server 2008

Source
Server

BEFORE TEST Snapshot

Testing
Users

Restore from the BEFORE snashot
after testing cycle is complete and can

continue with next test.

Adventure
Works DB

Database Snapshot

FIGURE 32.8 Establishing a baseline testing database snapshot before running tests and
then reverting when finished.

Providing a Testing (or Quality Assurance) Starting Point (Baseline)

In testing and the QA phases of your development life cycle, you often need to conduct
tests over and over. These are either logic tests or even performance tests. To aid testing
and QA, database snapshots can be made of a test database prior to full testing (create a
testing baseline database snapshot) and then the test database can be reverted back to its
original state at a moment’s notice, using that baseline snapshot. This procedure can be
done any number of times. Figure 32.8 shows how easy it is to simply create a testing
reference point (or synchronization point) with a database snapshot.

You then just run your test scripts or do any manual testing—as much as you want—and
then revert back to this starting point rapidly. Then you run more tests again.

Providing a Point-in-Time Reporting Database

If what you really need is a true point-in-time reporting database from which you can run
ad hoc or canned reports, often a database snapshot can serve this purpose much better
than resorting to log shipping or data replication. Key to determining when you can use
this database snapshot technique is whether the reporting load on this database server
instance can easily support the reporting workload and whether the update transactions
against this database are adversely affected by the database snapshot overhead of each

 Download from www.wowebook.com

ptg

1055When to Use Database Snapshots
3

2

transaction. Figure 32.9 shows the typical database snapshot configuration for one or
more database snapshots that are to be used for reporting.

Remember, this is a point-in-time snapshot of the source database. How frequently you
need to create a new snapshot is dictated by your reporting requirements for data latency
(how old the data can be in these reports).

Providing a Highly Available and Offloaded Reporting Database from
a Database Mirror

If you are using database mirroring to improve your availability, you can also create a
database snapshot against this mirrored database and expose the snapshot to your report-
ing users. Even though the mirrored database cannot be used for any access whatsoever (it
is in constant restore mode), SQL Server allows a snapshot to be created against it (as
shown in Figure 32.10). This is a very powerful configuration in that a database snapshot
against a mirror does not impact the load of the principal server—guaranteeing high
performance against the principal server. Also, when the database snapshot is isolated over
to the mirror server, the performance of the reporting users is also more predictable

SQL Server 2008

Source
Server

Transactional
Users

Point-in-time
Reporting Users

(Read-Only)

6:00AM Reporting Snapshot

12:00PM Reporting Snapshot

6:00PM Reporting Snapshot

12:00AM Reporting Snapshot

Adventure
Works DB

translog

Database Snapshot

Database Snapshot

Database Snapshot

Database Snapshot

FIGURE 32.9 A point-in-time reporting database via a database snapshot.

 Download from www.wowebook.com

ptg

1056 CHAPTER 32 Database Snapshots

SQL Server 2008

Principal
Server

If
 t

h
is

 s
er

ve
r

n
o

d
e

b
ec

o
m

es
 t

h
e

m
ir

ro
r.

Adventure
Works DB

translog

SQL Server 2008

Witness
Server MSDB DB

SQL Server 2008
Mirror Server

Adventure
Works DB

translog

Netw
ork

Rep
orti

ng U
se

rs

Rep
orti

ng U
se

rs

Rep
ort

ing
 U

se
rs

Database SnapshotDatabase Snapshot

FIGURE 32.10 Creating a database snapshot for reporting against a mirrored database to
offload the reporting impact on the principal server.

because they are not competing with the transactional users for resources on the principal
server. The only real issues arise when the principal server fails over to the mirror data-
base. You now have both transactional and reporting users using the same database server
instance, and the performance of them all is affected.

A possible solution to this situation would be to automatically (or manually) drop the
database snapshot on the mirror server if it becomes the principal and create a new snap-
shot on the old principal server if it is available (it is now the mirror). You then just point
all your reporting users to this new database snapshot. This task can be handled fairly
easily in an application server layer. This solution is basically a reciprocal principal/mirror
reporting configuration approach that always tries to get the database snapshot that is
used for reporting to be on the server that is the mirror server. You would never really
want to have active database snapshots on both the principal server and mirror server at
the same time. This is way too much overhead for both servers. You want just the data-
base snapshots to be on the mirror server. For a full explanation of all the capabilities of a
database mirroring configuration, refer to Chapter 20.

Setup and Breakdown of a Database Snapshot
You might actually be surprised to find out how easily you can set up a database snapshot.
This simplicity is partly due to the level at which database snapshots are created: at the
database level and not at the table level. Setting up a database snapshot only entails

 Download from www.wowebook.com

ptg

1057Setup and Breakdown of a Database Snapshot
3

2

running a CREATE DATABASE with the AS SNAPSHOT OF statement. You cannot create data-
base snapshots from SQL Server Management Studio or from any other GUI or wizard for
that matter. All must be done using SQL scripts. All SQL scripts for this chapter are avail-
able to you as a download from the Sams Publishing website for this book title (www.
samspublishing.com) and on this book’s CD. The script file, named
DBSnapshotSQL2008.sql, also contains a variety of other useful SQL statements to help
you better manage a database snapshot environment.

Creating a Database Snapshot

One of the first things you must figure out before you create a database snapshot is
whether your source database data portion has more than one physical file in its alloca-
tion. All these file references must be accounted for in the snapshot. You execute the
system stored procedure sp_helpdb with the source database name as the parameter, as
shown here:

EXEC SP_HELPDB AdventureWorks

Go

The detailed file allocations of this database are as follows:

Name FileID File Name

AdventureWorks_Data 1 C:\Server\

MSSQL10.SQL08DE01\MSSQL\DATA\AdventureWorks_Data.mdf

AdventureWorks_Log 2 C:\Server\

MSSQL10.SQL08DE01\MSSQL\DATA\AdventureWorks_Log.ldf

You need to worry about only the data portion of the database for the snapshot:

CREATE DATABASE SNAP_AdventureWorks_6AM

ON

(NAME = AdventureWorks_Data,

FILENAME= ‘C:\Server\ MSSQL10.SQL08DE01\MSSQL\DATA\SNAP_AW_data_6AM.snap’

AS SNAPSHOT OF AdventureWorks

go

Creating the database snapshot is really that easy. Now let’s walk through a simple
example showing how to create a series of four database snapshots against the
AdventureWorks source database that represent snapshots six hours apart (refer to
Figure 32.6). Here is the next snapshot to be run at 12:00 p.m.:

CREATE DATABASE SNAP_AdventureWorks_12PM

ON

(NAME = AdventureWorks_Data,

FILENAME= ‘C:\Server\ MSSQL10.SQL08DE01\MSSQL\DATA\SNAP_AW_data_12PM.snap’)

AS SNAPSHOT OF AdventureWorks

go

 Download from www.wowebook.com

www.samspublishing.com
www.samspublishing.com

ptg

1058 CHAPTER 32 Database Snapshots

These represent snapshots at equal time intervals and can be used for reporting or reverting.

NOTE

We use a simple naming convention for the database names for snapshots and for
the snapshot files themselves. The database snapshot name is the word SNAP,
followed by the source database name, followed by a qualifying description of what
this snapshot represents, all separated with underscores. For example, a database
snapshot that represents a 6:00 a.m. snapshot of the AdventureWorks database
would have this name:

”SNAP_AdventureWorks_6AM”

The snapshot file-naming convention is similar. The name would start with the word
SNAP, followed by the database name that the snapshot is for (AdventureWorks, in our
example), followed by the data portion indication (for example, data, data1), a short
identification of what this snapshot represents (for example, 6AM), and then the file-
name extension .snap to distinguish it from .mdf and .ldf files. For example, the
snapshot filename for the preceding database snapshot would look like this:

”SNAP_AdventureWorks_data_6AM.snap”

We use the AdventureWorks database for this example. AdventureWorks currently uses only
a single data file allocation for its data portion. Here’s how you create the first snapshot,
to reflect a 6:00 a.m. snapshot:

1. Create the snapshot on the source database AdventureWorks:

Use [master]

go

CREATE DATABASE SNAP_AdventureWorks_6AM

ON (NAME = AdventureWorks_Data, FILENAME= ‘C:\Program Files\

Microsoft SQL Server\ MSSQL10.SQL08DE01\MSSQL\DATA\

SNAP_AdventureWorks_data_6AM.snap’)

AS SNAPSHOT OF AdventureWorks

Go

2. Look at this newly created snapshot from the SQL Server instance point of view,
using a SQL query against the sys.databases system catalog, as follows:

Use [master]

go

SELECT name,

database_id,

source_database_id, — source DB of the snapshot

create_date,

snapshot_isolation_state_desc

FROM sys.databases

Go

 Download from www.wowebook.com

ptg

1059Setup and Breakdown of a Database Snapshot
3

2

This shows the existing source database and the newly created database snapshot:

name database_id source_database_id create_date snapshot_

isolation_state_desc

--

AdventureWorks 7 NULL 2009-02-17 23:37:02.763

OFF

SNAP_AdventureWorks_6AM 9 7 2009-12-05 06:18:36.597

ON

Note that source_database_id for the newly created database snapshot contains the
database ID of the source database. Of course, you can also look at the database
snapshot properties by using SQL Server Management Studio, as shown in
Figure 32.11.

3. Look at the newly created physical file for the sparse file (for the database snapshot)
by querying the sys.master_files system catalog:

SELECT database_id, file_id, name, physical_name

FROM sys.master_files

WHERE Name = ‘AdventureWorks_data’

FIGURE 32.11 Using SQL Server Management Studio to view the database snapshot
properties.

 Download from www.wowebook.com

ptg

1060 CHAPTER 32 Database Snapshots

and is_sparse = 1

go

Note that we are focusing on only the sparse files for the newly created database snap-
shot (that is, the is_sparse = 1 qualification). This query results in the following:

database_id file_id name physical_name

----------- ----------- --

9 1 AdventureWorks_Data C:\Prog...\DATA\

SNAP_AdventureWorks_data_6AM.snap

4. To see the number of bytes that a snapshot sparse file is burning up, you can issue a
series of SQL statements against system catalog views/tables by using
fn_virtualfilestats and sys.master_files. However, the following is a quick-and-
dirty stored procedure that should make this task much easier. Just create this stored
procedure on your SQL Server instance (in the master database), and you can use it to
see the sizes of any database snapshot sparse file on your server (also available in the
downloadable SQL script file for this chapter):

CREATE PROCEDURE SNAP_SIZE_UNLEASHED2008

@DBDATA varchar(255) = NULL

AS

if @DBDATA is not null

BEGIN

SELECT B.name as ‘Sparse files for Database Name’,

A.DbId, A.FileId, BytesOnDisk FROM fn_virtualfilestats

(NULL, NULL) A,

sys.master_files B

WHERE A.DbID = B.database_id

and A.FileID = B.file_id

and B.is_sparse = 1

and B.name = @DBDATA

END

ELSE

BEGIN

SELECT B.name as ‘Sparse files for Database Name’,

A.DbId, A.FileId, BytesOnDisk

FROM fn_virtualfilestats (NULL, NULL) A,

sys.master_files B

WHERE A.DbID = B.database_id

and A.FileID = B.file_id

and B.is_sparse = 1

END

Go

When the SNAP_SIZE_UNLEASHED2008 stored procedure is created, you run it with or
without the name of the data portion of the database for which you have created a
snapshot. If you do not supply the data portion name, you see all sparse files and

 Download from www.wowebook.com

ptg

1061Setup and Breakdown of a Database Snapshot
3

2

their sizes on the SQL Server instance. The following example shows how to execute
this stored procedure to see the sparse file current size for the AdventureWorks_data
portion:

EXEC SNAP_SIZE_UNLEASHED2008 ‘AdventureWorks_Data’

Go

This results in the detail bytes that the sparse file is using on disk:

Sparse files for Database Name DbId FileId BytesOnDisk

--

AdventureWorks_Data 9 1 196608

Currently, the sparse file is very small (196KB) because it was recently created. Little
to no source data pages have changed, so it is basically empty right now. It will start
growing as data is updated in the source database and data pages are copied to the
sparse file (by the copy-on-write mechanism). You can use the
SNAP_SIZE_UNLEASHED2008 stored procedure to keep an eye on the sparse file size.

5. Believe it or not, the database snapshot is ready for you to use. The following SQL
statement selects rows from this newly created database snapshot for a typical point-
in-time–based query against the CreditCard table:

Use [SNAP_AdventureWorks_6AM]

go

SELECT [CreditCardID]

,[CardType]

,[CardNumber]

,[ExpMonth]

,[ExpYear]

,[ModifiedDate]

FROM [SNAP_AdventureWorks_6AM].[Sales].[CreditCard]

WHERE CreditCardID = 1

go

This statement delivers the correct, point-in-time result rows from the database snap-
shot:

CreditCardID CardType CardNumber ExpMonth ExpYear

ModifiedDate

—————— —————————————————————————

1 SuperiorCard 33332664695310 1 2010

2009-12-03 00:00:39.560

You can take a look at how this all looks from SQL Server Management Studio. Figure
32.12 shows the database snapshot database SNAP_AdventureWorks_6AM along with the
source database AdventureWorks. It also shows the results of the system queries on these
database object properties.

 Download from www.wowebook.com

ptg

1062 CHAPTER 32 Database Snapshots

FIGURE 32.12 SSMS snapshot properties, system query results, and snapshot isolation
state.

You are now in the database snapshot business!

Breaking Down a Database Snapshot

If you want to get rid of a snapshot or overlay a current snapshot with a more up-to-date
snapshot, you simply use the DROP DATABASE command and then create it again. The DROP
DATABASE command immediately removes the database snapshot entry and all sparse file
allocations associated with the snapshot. It’s very simple indeed. The following example
drops the database snapshot just created:

Use [master]

go

DROP DATABASE SNAP_AdventureWorks_6AM

go

If you’d like, you can also drop (delete) a database snapshot from SQL Server Management
Studio by right-clicking the database snapshot entry and choosing the Delete option.
However, it’s best to do everything with scripts so that you can accurately reproduce the
same action over and over.

Reverting to a Database Snapshot for Recovery
If you have a database snapshot defined for a source database, you can use that snapshot
to revert the source database to that snapshot’s point-in-time milestone. In other words,
you consciously overlay a source database with the point-in-time representation of that
database (which you got when you created a snapshot). You must remember that you will
lose all data changes that occurred from that point-in-time moment and the current state
of the source database. However, this may be exactly what you intend.

 Download from www.wowebook.com

ptg

1063Reverting to a Database Snapshot for Recovery
3

2

Reverting a Source Database from a Database Snapshot

Reverting is just a logical term for using the DATABASE RESTORE command with the FROM
DATABASE_SNAPSHOT statement. It effectively causes the point-in-time database snapshot to
become the source database. Under the covers, much of this is managed from the system
catalog metadata level. However, the results are that the source database will be in exactly
the same state as the database snapshot. When you use a database snapshot as the basis of
a database restore, all other database snapshots that have the same source database must
first be dropped. Again, to see what database snapshots may be defined for a particular
database, you can execute the following query:

Use [master]

go

SELECT name,

database_id,

source_database_id, — source DB of the snapshot

create_date,

snapshot_isolation_state_desc

FROM sys.databases

Go

This query shows the existing source database and the newly created database snapshot, as
follows:

name database_id source_database_id create_date snapshot_isolation_

state_desc

--

AdventureWorks 7 NULL 2009-02-17 23:37:02.763

OFF

SNAP_AdventureWorks_6AM 9 7 2009-12-05 06:01:36.597

ON

SNAP_AdventureWorks_12PM 10 7 2009-12-05 12:00:36.227

ON

In this example, there are two snapshots against the AdventureWorks database. The one you
don’t want to use when reverting must be dropped first. Then you can proceed to restore
the source database with the remaining snapshot that you want. These are the steps:

1. Drop the unwanted snapshot(s):

Use [master]

go

DROP DATABASE SNAP_AdventureWorks_12PM

go

2. Issue the RESTORE DATABASE command with the remaining snapshot:

USE [master]

 Download from www.wowebook.com

ptg

1064 CHAPTER 32 Database Snapshots

go

RESTORE DATABASE AdventureWorks FROM DATABASE_SNAPSHOT =

‘SNAP_AdventureWorks_6AM’

go

When this process is complete, the source database and snapshot are essentially the same
point-in-time database. But the source database quickly diverges, as updates begin to flow
in again.

Using Database Snapshots with Testing and QA

Reverting to a “golden” copy of a database via a database snapshot is going to be popular
going forward because of the simplicity that creating and reverting provides. Testing and
QA groups will thrive on this feature, and this will directly affect the velocity of testing
in your organization. With the increase in the frequency and stability of your testing and
QA environments, a direct improvement in the quality of your application should be
attainable. Essentially, these are the steps:

1. Create the golden database snapshot before you run your testing:

Use [master]

go

CREATE DATABASE SNAP_AdventureWorks_GOLDEN

ON (NAME = AdventureWorks_Data, FILENAME= ‘C:\Program Files\

Microsoft SQL Server\ MSSQL10.SQL08DE01\MSSQL\DATA\

SNAP_AdventureWorks_data_GOLDEN.snap’)

AS SNAPSHOT OF AdventureWorks

Go

2. Run tests or QA to your heart’s content.

3. Revert to the golden copy when the testing is completed so that the process can be
repeated again, regression testing can be run, stress testing can be done, performance
testing can be started, or further application testing can be done:

USE [master]

go

RESTORE DATABASE AdventureWorks

FROM DATABASE_SNAPSHOT = ‘SNAP_AdventureWorks_GOLDEN’

go

Setting Up Snapshots Against a Database Mirror
If you are using database mirroring to improve your availability, you can also create a
database snapshot against this mirrored database and expose the snapshot to your report-
ing users. Doing so further enhances the overall database availability to all end users

 Download from www.wowebook.com

ptg

1065Setting Up Snapshots Against a Database Mirror
3

2

(transactional and reporting users). In addition, it serves to isolate the reporting users from
the transactional users. The reporting users are connected to the mirror server’s version of
the database (via a database snapshot of the mirrored database), and their reporting
queries do not impact the principal server in any way. Remember that the mirrored data-
base is not usable for any access whatsoever (it is in constant restore mode). SQL Server
allows a snapshot to be created against it (refer to Figure 32.10). As mentioned previously,
the only real issues arise when the principal server fails over to the mirror database. When
the mirror server takes over for the principal, the database snapshot terminates its report-
ing user connections. The reporting users only need to reconnect to pick up where they
left off. However, you now have both transactional and reporting users using the same
database server instance, and performance of all is affected.

A possible solution to this situation would be to automatically (or manually) drop the
database snapshot on the mirror server if it becomes the principal and create a new snap-
shot on the old principal server if it is available (it is now the mirror). You then just point
all your reporting users to this new database snapshot. This process can be handled fairly
easily in an application server layer. This is basically a reciprocal principal/mirror reporting
configuration approach that always tries to get the database snapshot that is used for
reporting to be on the server that is the mirror server. You would never really want to
have active database snapshots on both the principal server and mirror server at the same
time.

Reciprocal Principal/Mirror Reporting Configuration

The following steps outline the method to create the snapshot on the mirror, drop it
when the mirror becomes the principal, and create a new snapshot against the old princi-
pal (now the mirror):

1. Create the database snapshot on a mirrored database server for reporting on the
mirror server (REM12374333\SQL08DE02):

Use [master]

go

CREATE DATABASE SNAP_AdventureWorks_REPORTING

ON (NAME = AdventureWorks_Data, FILENAME= ‘C:\Program Files\

Microsoft SQL Server\MSSQL10.SQL08DE02\MSSQL\DATA\

SNAP_AdventureWorks_data_REPORTING.snap’)

AS SNAPSHOT OF AdventureWorks

Go

As you can see in Figure 32.13, this would be the live configuration of the principal
server (REM12374333\SQL08DE01), the mirror server (REM12374333\SQL08DE02), and the
reporting database snapshot (SNAP_AdventureWorks_REPORTING), as shown from SQL
Server Management Studio.

 Download from www.wowebook.com

ptg

1066 CHAPTER 32 Database Snapshots

FIGURE 32.13 SQL Server Management Studio, showing database mirroring with a database
snapshot for reporting configuration.

If the principal fails over to the mirror, you would drop the database snapshot that is
currently created off that database and create a new one on the old principal (now the
mirror), as shown in the following steps.

2. Drop the reporting database snapshot on the new principal server (the principal is
now REM12374333\SQL08DE02):

Use [master]

go

DROP DATABASE SNAP_AdventureWorks_REPORTING

go

3. Create the new reporting database snapshot on the new mirrored database server
(the mirror is now REM12374333\SQL08DE01):

Use [master]

go

CREATE DATABASE SNAP_AdventureWorks_REPORTING

ON (NAME = AdventureWorks_Data, FILENAME= ‘C:\Program Files\

Microsoft SQL Server\ MSSQL10.SQL08DE01\MSSQL\DATA\

SNAP_AdventureWorks_data_REPORTING.snap’)

AS SNAPSHOT OF AdventureWorks

Go

That’s it. You now have your reporting users completely isolated away from your principal
server (and the transactional users) again. Life can return to normal very quickly.

 Download from www.wowebook.com

ptg

1067Database Snapshots Maintenance and Security Considerations
3

2

Database Snapshots Maintenance and Security
Considerations
With regard to database snapshots, several things need to be highly managed: snapshot
sparse file size management, data latency management that corresponds to your users’
needs, the location of the sparse files within your physical deployment, the sheer number
of database snapshots you are willing to support against a single database instance, and
the security and access needs of users of database snapshots.

Security for Database Snapshots

By default, you get the security roles and definitions that you have created in the source
database available to you within the database snapshot except for roles or individual
permissions that you have in the source database used for updating data or objects. This is
referred to as “inherited from the source database.” These updating rights are not available
to you in a database snapshot. A database snapshot is a read-only database! If you have
specialized roles or restrictions you want to be present in the database snapshot, you need
to define them in the source database, and you get them instantly. You manage from a
single place, and everyone is happy.

Snapshot Sparse File Size Management

Sparse file size is probably the most critical aspect to deal with when managing database
snapshots. It is imperative that you keep a close watch on the growing size of any (and all)
database snapshot sparse files you create. If your snapshot runs out of space because you
didn’t manage file size well, it becomes suspect and is not available to use. The only path
out of this scenario is to drop the snapshot and re-create it. Following are some issues to
consider for sparse files:

. Monitor sparse files regularly. Make use of stored procedures such as the
SNAP_SIZE_UNLEASHED2008 stored procedure to help with this situation.

. Pay close attention to the volatility of the source database. This rate of change
directly translates to the size of the sparse file and how fast it grows. The rule of
thumb is to match your drop and re-create of a database snapshot frequency to
when the sparse file is at around 30% of the size of the source database. Your data
latency user requirements may demand a faster rate of drop/re-create.

. Isolate sparse files away from the source database data files. You do not want to com-
pete with disk arm movement in any way. Always work to get disk I/O as parallel as
possible.

Number of Database Snapshots per Source Database

In general, you shouldn’t have too many database snapshots defined on a database
because of the copy-on-write overhead each snapshot requires. However, this all depends
on the volatility of the source database and a server’s capacity. If there is low volatility and

 Download from www.wowebook.com

ptg

1068 CHAPTER 32 Database Snapshots

the server is not using much CPU, memory, and disk capacity, this database could more
readily support many separate database snapshots at once. If the volatility is high and
CPU, memory, and perhaps disk capacity are saturated, you should minimize drastically
the number of database snapshots.

Summary
Database snapshots can be thought of as an enabling capability with many purposes. They
are great for fulfilling point-in-time reporting requirements easily, reverting a database to a
point in time (recoverability and availability), insulating a database from issues that may
arise during mass updates, and potentially reducing the processing impact of querying
against the primary transactional databases (via database mirroring and database snap-
shots). You must remember that database snapshots are point in time and read-only. The
only way to update a snapshot is to drop it and re-create it. Data latency of this point-in-
time snapshot capability must always be made very clear to any of its users.

Database snapshots are snapshots of the entire database, not a subset. This clearly makes
data snapshots very different from alternative data access capabilities such as data replica-
tion and materialized views. This feature has been made possible via a major breakthrough
from Microsoft called copy-on-write technology. This is certainly an exciting extension to
SQL Server but is not to be used as a substitute for good old database backups and restores.
This is one capability that we recommend you consider using as soon as possible.

Chapter 33, “Database Maintenance,” provides a detailed explanation of the best practices
surrounding maintaining a database.

 Download from www.wowebook.com

ptg

CHAPTER 33

Database Maintenance

IN THIS CHAPTER

. What’s New in Database
Maintenance

. The Maintenance Plan Wizard

. Managing Maintenance Plans
Without the Wizard

. Executing a Maintenance Plan

. Maintenance Without a
Maintenance Plan

. Database Maintenance Policies

Database maintenance is an essential part of database
administration needed to keep databases healthy. It includes
tasks performed after your database is created to ensure the
integrity of the data in the database, provide performance
improvements, and help keep your database safe.

This chapter examines some of the key tasks that should be
included in your database maintenance plan. It discusses
the means for creating these plans, including tools such as
the Maintenance Plan Wizard that is part of SQL Server
2008. These tools make the creation of a solid database
maintenance plan easier and provide a framework that
allows you to create the plan once and let automation do
the rest of the work.

What Needs to Be Maintained

The core tasks related to the maintenance of a SQL
Server database are backing up the database and log,
rebuilding indexes, updating statistics, and running
integrity checks against the database. These ongoing,
repetitive tasks are best run on a scheduled basis and
are the backbone of the maintenance plan. Other
tasks related to maintenance involve managing access
by the users, maintaining data files, and monitoring
performance. These tasks are more apt to be per-
formed on an ad hoc basis when the need arises.

 Download from www.wowebook.com

ptg

1070 CHAPTER 33 Database Maintenance

What’s New in Database Maintenance
The required database maintenance tasks in SQL Server 2008 have remained the same as
in earlier versions, and the tools to perform that maintenance are generally the same as
they were in SQL Server 2005. Maintenance plans are still the core tool for performing
database maintenance. These plans and the tools to create the plans (such as the
Maintenance Plan Wizard) look and behave much like they did in SQL Server 2005.
Enhancements to the maintenance plans that were introduced in SQL Server 2005 service
packs have been carried on to SQL Server 2008.

One new feature related to database maintenance in SQL Server 2008 is the introduction
of Database Maintenance Policies (a subset of the Policy-Based Management feature intro-
duced in SQL Server 2008). Policy-Based Management is discussed in detail in Chapter 22,
“Administering Policy-Based Management.” In this chapter, we briefly cover the basics of
using policies for performing database maintenance.

The Maintenance Plan Wizard
The Maintenance Plan Wizard is a tool that is available in SSMS. It provides an automated
means for creating the basic tasks needed to maintain a database. It does not include all
the tasks available for use in a maintenance plan but is a great starting point that allows
you to quickly generate the basic elements of a good plan.

You launch the Maintenance Plan Wizard by expanding the Management node in SSMS and
then right-clicking Maintenance Plans and selecting Maintenance Plan Wizard. The
Maintenance Plan Wizard is like most other Microsoft wizards in that it presents sequen-
tial dialog boxes that allow you to incrementally provide the information needed to create
the wizard’s objective.

The Maintenance Plan Wizard first displays an introductory dialog box. When you click
Next, it displays a dialog box (like the one shown in Figure 33.1) that allows you to
specify the name and a description for your maintenance plan. You should choose a
naming convention that will allow you to easily identify a maintenance plan and the type
of maintenance it is performing. The name is displayed in the Object Explorer tree, and a
good naming convention will make it easier to locate the plan you want.

The Select Plan Properties screen also allows you to specify the schedule for the mainte-
nance plan. This schedule will be tied to the corresponding scheduled job that is created
when the Maintenance Plan Wizard completes. You will find that the scheduling dialog
that appears when you click on the Change button is very flexible and consistent with
other places in SQL Server where a schedule can be defined.

After you name the maintenance plan and specify the schedule, you can click Next. The
dialog box that appears next allows you to select the maintenance tasks you would like to
perform on the server. Figure 33.2 shows the Select Maintenance Tasks dialog, with the
tasks that are available from the wizard. You can select more than one task for a given
plan. As mentioned earlier, the tasks listed in the wizard are not all the tasks available in a
maintenance plan.

 Download from www.wowebook.com

ptg

1071The Maintenance Plan Wizard

FIGURE 33.1 Setting the Maintenance Plan Properties using the Maintenance Plan Wizard.

3
3

The dialog box that appears next, as shown in Figure 33.3, allows you to specify the order
in which the tasks are executed. Obviously, the order of the tasks can be a critical factor
and is dependent on the type of tasks you are running. You can click the Move Up and
Move Down buttons to change the order of the tasks.

FIGURE 33.2 Selecting maintenance tasks in the Maintenance Plan Wizard.

 Download from www.wowebook.com

ptg

1072

FIGURE 33.3 Selecting the order of the maintenance tasks in the Maintenance Plan Wizard.

The dialog boxes discussed so far are consistent for all the maintenance plans. The dialog
boxes that follow are dependent on the tasks selected for the plan. Each task has a rele-
vant set of properties that are displayed for entry in a subsequent dialog box. The follow-
ing sections cover some of the common maintenance tasks and the wizard screens that
relate to them.

Backing Up Databases

Backing up databases is the most basic element of a maintenance plan—and probably the
most important part. The importance of backups and the role they play are discussed in
detail in Chapter 14, “Database Backup and Restore,” but basically, backups are needed to
help limit the amount of data loss. For example, in the event of a disk drive failure, data-
base backups can be used to restore the database data that was located on that drive.

The database backup options available via a maintenance plan include full, differential,
and transaction log backups. The type of backup you select for a plan is heavily dependent
on the type of environment you are maintaining and the type of database you are backing
up. Databases that have very few changes may only need a nightly full backup and do not
require transaction log or differential backups.

In most cases, it is a good idea to take a full backup of your system and user databases
each night. Figure 33.4 shows the backup options the wizard displays for a full backup.

To set the properties for a full backup, you need to first define the databases you want to
back up. You select the databases by using the Databases drop-down at the top of the
screen. This drop-down is unique in that it gives you a variety of radio button options

CHAPTER 33 Database Maintenance

 Download from www.wowebook.com

ptg

1073

FIGURE 33.4 Full backup options in the Maintenance Plan Wizard.

The Maintenance Plan Wizard
3

3

rather than just a simple list. You can choose to back up all databases, all system data-
bases, or all user databases, or you can select specific databases.

After you select the database(s) you want to back up, you must select a destination for the
backup files. The destination includes the type of media (that is, tape or disk) and the file
or files on that medium. The option Back Up Databases Across One or More Files allows
you to specify one or more fixed files that the database backup will always be written to.
With this option, you can choose to append each backup to the file(s) or overwrite the
contents of the file(s) each time the backup is performed. If you choose to overwrite the
backup each time, you have only the latest backup available for restoration. If you choose
to append to the file, older backups are retained on this file, and the file continues to
grow with each subsequent backup.

The preferred option for creating full backups with the wizard is the option Create a
Backup File for Every Database. This option creates a separate file for each database in the
maintenance plan. The backup file that is created has the database name as the first part
of the filename, followed by _backup_ and then a time stamp that indicates when the
backup was created. For example, a backup named
AdventureWorks2008_backup_200608231402.bak would be a backup file created using this

 Download from www.wowebook.com

ptg

1074

option for the AdventureWorks2008 database. Multiple versions of backups can be retained
with this option, and the identification of the backup is simple because of the naming
convention.

CAUTION

You should use the option Back Up Databases Across One or More Files with caution.
The pitfall with overwriting the file with this option is that only one backup is available
for restoration. When this option is used with the Append option, you can eat up all
your disk space if the file is not cleaned up. In addition, if multiple databases are
backed up with the plan, all these backups will be spread across the file or files speci-
fied for the destination. A separate backup for each database is not created with this
option. This can lead to confusion and complicate the restoration process.

Generally speaking, you should steer clear of backing up the database to a single file
or set of files. Instead, you should choose the option Create a Backup File for Every
Database. This option has fewer pitfalls and requires little attendance.

When you use the Create a Backup File for Every Database option, you need to specify a
folder for the database backups to be written to. You can use the default folder, or you can
change it to a folder of your choice. It is a good practice to choose a folder on a drive that
is different from the drive where your database files reside. Having backups on the same
drive as your data could be a big problem if that drive fails and your only backups are on
that drive. If you select the option Create a Sub-directory for Each Database, each database
has a separate subfolder under the folder specified for the backup.

CAUTION

The main pitfall associated with the option Create a Backup File for Every Database is
that many backup files can be created and are not automatically deleted by default.
This point has been mentioned already, but it is a critical consideration. The good news
is that you can now add the deletion of the older backups to the maintenance plan
using the Maintenance Plan Wizard. To accomplish this, you need to select the
Maintenance Cleanup task and provide the desired retention information that deter-
mines when the older backups are removed.

Another useful option on the Define Back Up Database screen is Verify Backup Integrity. If
you select this option, SQL Server checks the integrity of the backup files that were written
as part of the backup operation. Selecting this option extends the execution time for the
backup plan but is generally a good idea to ensure that you have a viable backup for
recovery. It is particularly useful when backups have been written across multiple files.
Unfortunately, the backup task does not allow you to utilize the checksum options avail-
able with the SQL Server 2008 BACKUP command, but the basic VERIFY option suffices in
most instances.

CHAPTER 33 Database Maintenance

 Download from www.wowebook.com

ptg

1075The Maintenance Plan Wizard
3

3

New to SQL Server 2008 is an option to define the compression for the database backup
file. The Set Backup Compression drop-down at the bottom of the screen determines
whether compression will be used. If the default for the server is set to compress backup or
the specific option Compress Backup is selected, the backup file is created in a compressed
format that will reduce the size of the backup file and save disk space. The trade-off when
using compressed backups is that the creation of these backups takes additional CPU
resources during their creation. However, the additional CPU processing time is typically
offset by the faster I/O as a result of the reduced size of the backup file.

NOTE

In SQL Server 2008, compressed backups can only be performed in the Enterprise
Edition. Beginning in SQL Server 2008 R2, compressed backups can be created in the
Standard and all higher editions of SQL Server 2008 R2. Every edition of SQL Server
2008 and later can restore compressed backups, however.

Checking Database Integrity

The Define Database Check Integrity Task screen of the Maintenance Plan Wizard, shown
in Figure 33.5, allows you to schedule the database consistency command DBCC CHECKDB,
which checks the data pages for inconsistencies and is a good tool for ensuring that a
database is healthy. The integrity checks can be made before each backup or on an inde-
pendent schedule.

The options available for checking database integrity via the wizard are limited.

Checking the Include Indexes check box causes integrity checks to be performed on the
index pages as well. Checking the index pages for each table extends the amount of time

FIGURE 33.5 The Define Database Check Integrity Task screen of the Maintenance Plan
Wizard.

 Download from www.wowebook.com

ptg

1076 CHAPTER 33 Database Maintenance

FIGURE 33.6 The Define Shrink Database Task page of the Maintenance Plan Wizard.

the task runs, but it is the most thorough way to perform an integrity check. If problems
are found, you can run the DBCC CHECKDB command manually with additional options to
repair the problems. For more information on resolving DBCC errors, see Chapter 56,
“SQL Server Disaster Recovery Planning” (on the CD). In some cases, the problems cannot
be fixed without the possibility of data loss. You should consider contacting Microsoft
support if you receive consistency errors in a critical database.

Shrinking Databases

The Define Shrink Database Task page of the Maintenance Plan Wizard, shown in Figure
33.6, can be useful for keeping the size of your databases manageable. As its name implies,
this task is used to reduce the overall size of a database. This task’s execution is essentially
the equivalent to running the DBCC SHRINKDATABASE command, and it contains task
options that mirror the options available with the DBCC command.

The setting Shrink Database When It Grows Beyond specifies the overall database size that
must be exceeded for the shrink operation to occur. You set the size in megabytes, and it
must be a whole number. If the database, including data and log files, is smaller than this
size, the shrink operation does not occur.

The remaining options determine how the shrink operation runs when the shrink thresh-
old is exceeded. The Amount of Free Space to Remain After Shrink option determines how
much space is left in the database files after the shrink operation is finished. This is a
target percentage and may not be feasible if the amount of disk space is limited. SQL
Server does its best to achieve the target percentage, but it is not guaranteed. Generally, in
environments where you have abundant disk space, it is best to leave at least 10% free
after the operation so that the database can grow without the need for expanding the size
of the database files.

 Download from www.wowebook.com

ptg

1077The Maintenance Plan Wizard
3

3

The last settings on the screen determine how free space beyond the target percentage is
handled. For example, let’s assume that a large number of rows were deleted from a data-
base and the target free space percentage is set to 10%. The shrink operation is run and is
able to shrink the database such that 40% is now free. You can choose to retain in the
database files the 30% beyond the target that is free by selecting the Retain Freed Space in
Database Files option. Choosing this option is the same as running the DBCC SHRINK DATA-
BASE command with the NOTRUNCATE option. With this option, you do not see any changes
to the size of the database files, and the free space on the disk remains unchanged.

The other option, Return Freed Space to Operating System, can reduce the size of the data-
base files and return that space to the operating system. This option utilizes the
TRUNCATEONLY option that comes with the DBCC SHRINK DATABASE command and is the
option needed to free up disk space on a server.

TIP

Running the Shrink Database task for every database is not necessarily a good idea.
With the Shrink Database task, the database is condensed so that the data is located
on contiguous pages in the database data file(s). This involves the movement of pages
from one part of the file to another. This movement can cause fragmentation in tables
and indexes. The fragmentation can, in turn, cause performance problems and undo
work that may have been done with other tasks, such as rebuilding the indexes.

The other problem with shrinking the database relates to the cost of expanding the
database at a later time. For example, let’s say you have a database that has grown to
1GB. You shrink the database so that it is now only 800MB, but normal use of the
database causes it to expand again. The expansion of the database files can be
expensive and cause performance problems during the actual expansion, especially on
high-volume production systems. The best solution is to purchase the appropriate
amount of disk space and size the database so that database files do not need to
expand frequently and the shrink operation is not needed. This is easier said than
done, but it is the right answer nonetheless.

Maintaining Indexes and Statistics

Maintaining indexes and statistics is essential in most database environments, including
those that have frequent changes to the data. These changes can cause tables and their
indexes to become fragmented and inefficient. These types of environments can also lead
to outdated statistics on indexes. Outdated statistics can cause the query engine to make
less-than-optimal choices when determining the best access path to the data.

The maintenance of indexes and statistics is facilitated through the use of three different
tasks in the Maintenance Plan Wizard: Reorganize Index, Rebuild Index, and Update
Statistics. Using the Reorganize Index task is equivalent to running the ALTER INDEX
REORGANIZE command. This task defragments and compacts clustered and nonclustered
indexes on tables and views. This helps improve index-scanning performance and should
improve overall response time. The operation is always done online and is also equivalent
to running the DBCC INDEXDEFRAG command.

 Download from www.wowebook.com

ptg

1078 CHAPTER 33 Database Maintenance

FIGURE 33.7 The Reorganize Index task options in the Maintenance Plan Wizard.

Figure 33.7 shows the screen you use to define the Reorganize Index task. This screen
allows you select tables, views, or tables and views. You can also select specific tables or
views that you want to reorganize. The Compact Large Objects option is equivalent to
ALTER INDEX LOB_COMPACTION = ON. It causes data in large object (LOB) data types, such
as image or text objects, to be compacted.

The Reorganize Index task moves the leaf-level pages so that they match the logical order-
ing of the index. This behavior improves performance, but it is not as extensive as the
Rebuild Index task, which is equivalent to the ALTER INDEX REBUILD command. It is also
equivalent to the DBCC DBREINDEX command. When the Rebuild Index task is executed, it
rebuilds the indexes from scratch. This rebuilding can achieve the best performance
results, but it also has the most impact on users of the database.

Figure 33.8 shows the options available for rebuilding an index with the Maintenance
Plan Wizard.

The options for rebuilding are separated into two sections: Free Space Options and
Advanced Options. The Free Space Options section pertains to the amount of free space
left in the index pages after the rebuild operation completes. This free space is defined by
the fill factor for the index. When the Reorganize Pages with the Default Amount of Free
Space option is used, the fill factor is reset to the value used when the index was created.
The other option, Change Free Space per Page Percentage To, allows you to choose a new
fill factor value to be used for all indexes that have been selected for the rebuild operation.

 Download from www.wowebook.com

ptg

1079The Maintenance Plan Wizard
3

3

FIGURE 33.8 The Rebuild Index task options in the Maintenance Plan Wizard.

The following advanced Rebuild Index task options are available:

. Sort Results in tempdb—This option is equivalent to the SORT_IN_TEMPDB option for
the index. It causes tempdb to be used to store intermediate results while rebuilding
the index. If this option is not used, these intermediate results are stored in the data-
base in which the index resides. Storing the results in tempdb can help prevent
unnecessary growth of the user database in which the index is being rebuilt.

. Keep Index Online While Reindexing—This option is equivalent to the ONLINE
option for the index. It allows users to access the underlying table and associated
indexes during the index rebuild operation. If this option is not used, the index
rebuild is on offline operation, and a table lock is held on the table that is having its
indexes rebuilt.

These index options and further information regarding indexes are discussed in Chapter
25, “Creating and Managing Indexes.” Refer to Chapter 34, “Data Structures, Indexes, and
Performance,” for details on the performance impact of some of the index options
discussed.

The maintenance of statistics can be just as important as the maintenance of indexes on a
table. Statistics contain information about the distribution of data in tables and indexes
and provide valuable information to the SQL Server query engine. When the statistics are
outdated, the query engine may not make the best decisions for getting the data.

 Download from www.wowebook.com

ptg

1080 CHAPTER 33 Database Maintenance

Fortunately, there are database options that cause statistics to be automatically updated.
The AUTO UPDATE STATISTICS and AUTO UPDATE STATISTICS ASYNCHRONOUSLY options cause
index statistics to be created automatically. However, in some situations the automatic
update of statistics does not happen often enough, or the update happens at inopportune
times and can cause performance issues. You can address these situations by scheduling the
updating of statistics via a maintenance plan, using the Update Statistics task.

Figure 33.9 shows the Maintenance Plan Wizard screen for setting the Update Statistics
task options.

The top portion of the Define Update Statistics Task screen is much like the option screens
for maintaining indexes. You can choose the type of objects (tables or views) on which
you want to update statistics, or you can focus on specific tables or views. The Update
options at the bottom of the screen identify the types of statistics to be updated. If the All
Existing Statistics option is selected, statistics for both indexes and columns are updated.
Statistics on columns exist if the AUTO CREATE STATISTICS option has been set to ON or the
statistics were manually created. The other two update options on the screen allow you to
focus the update of statistics on columns only or indexes only.

Scheduling a Maintenance Plan

One of the greatest features of a maintenance plan is that you can schedule it. Scheduling
takes manual work off your plate and provides consistency that might be missed if the
plan had to be run manually. History is kept for each of the scheduled executions, which
provides an audit trail, and notifications can be tied to the scheduled plans to allow a user
to respond to failures or other results from the plan.

FIGURE 33.9 The Update Statistics task options in the Maintenance Plan Wizard.

 Download from www.wowebook.com

ptg

1081The Maintenance Plan Wizard
3

3

A schedule can be created for an entire maintenance plan or individual schedules can be
created for each task in the plan. The scheduling selection is available on the Select Plan
Properties screen, which is one of the first screens displayed while using the Maintenance
Plan Wizard (refer to Figure 33.1). Choose the Separate Schedules for Each Task option to
create a schedule for each task. The default option is Single Schedule for the Entire Plan or
No Schedule. If you choose the option for separate schedules, the Schedule Change button
is enabled on the task definition screen and this schedule is tied to that specific task.

Both scheduling options utilize the same scheduling screen. The screen to set scheduling
options, the Job Schedule Properties dialog box shown in Figure 33.10, appears when you
click on the Schedule Change button. This screen contains the same flexible scheduling
features available in the SQL Server Agent.

When a maintenance plan is saved, a scheduled job with the same name as the mainte-
nance plan is created. The job schedule defined for the maintenance plan is applied to the
scheduled job, and the SQL Server Agent manages the execution of the job, based on the
schedule. Scheduling changes made to the maintenance plan are automatically reflected
in the scheduled job. In addition, if the name of the maintenance plan is changed, the
name of the scheduled job is changed as well. If an attempt is made to delete the sched-
uled job related to the maintenance plan, an error is returned, disallowing the deletion.

FIGURE 33.10 Scheduling options in the Maintenance Plan Wizard.

 Download from www.wowebook.com

ptg

1082 CHAPTER 33 Database Maintenance

TIP

Scheduling in the Maintenance Plan Wizard is limited to one schedule per plan or task
depending on which option you choose. You can surpass this limitation by adding addi-
tional schedules to the scheduled job associated with the maintenance plan. To do
so, you simply open the associated scheduled job located in the SQL Server Agent
node in SSMS and create the additional schedules. This capability is handy when you
want a varied execution, such as a weekly schedule combined with daily executions of
the same plan.

The scheduled job associated with a maintenance plan executes an SSIS package. Figure
33.11 shows an example of the scheduled job step for a SQL Server 2008 maintenance plan.

The utilization of SSIS in the execution of maintenance plans was a significant change in
SQL Server 2005. SSIS provides added workflow capabilities and extends the feature set for
maintenance plans. The scheduled job step that executes an SSIS package for the mainte-
nance plan shows some of the options and flexibility of SSIS, but the real power is in the
maintenance plan editor and the Business Intelligence Design Studio (BIDS) used to
manage all SSIS packages. Chapter 52, “SQL Server Integration Services,” provides further
details on SSIS. The maintenance plan editor is discussed in the following section.

FIGURE 33.11 Scheduling jobs for a maintenance plan.

 Download from www.wowebook.com

ptg

1083The Maintenance Plan Wizard
3

3

An integral part of a scheduled maintenance plan is the notification and reporting capa-
bilities. The Select Report Options screen is displayed at the end of the Maintenance Plan
Wizard (see Figure 33.12).

The option Write a Report to a Text File provides details about the execution of each main-
tenance plan. This option should be selected for most plans, and it provides excellent
information for researching past executions and diagnosing any maintenance plan failures.

The E-mail Report option provides a means for notifying a SQL Server operator when a
task fails. You must have Database Mail enabled to be able to use this option, and the
operator selected must have a valid email address to receive the notification. You can also
edit the job associated with the maintenance plan after it has been created and set up
notification there. The notification options on the scheduled job are more extensive than
those in the Maintenance Plan Wizard.

CAUTION

If you have a maintenance plan generate a report, you need to make sure you have a
means for cleaning up the files. The wizard does not create a plan that deletes the
older report files. You can address this situation by modifying the plan after the wizard
has created it and adding a Maintenance Cleanup task. This same task can be used to
delete old database backup files. The modification of a maintenance plan and addition
of the Maintenance Cleanup task are discussed in the following section.

FIGURE 33.12 Reporting options in the Maintenance Plan Wizard.

 Download from www.wowebook.com

ptg

1084 CHAPTER 33 Database Maintenance

Managing Maintenance Plans Without the Wizard
You can create or modify maintenance plans in SQL Server 2008 without using the
Maintenance Plan Wizard. To create a new maintenance plan without the wizard, you
right-click the Maintenance Plan node in the Object Explorer and select New
Maintenance Plan. You are prompted for a maintenance plan name and then taken to the
Design tab for the maintenance plan. The Design tab consists of a properties section at the
top of the screen and a plan designer surface that is empty for a new maintenance plan.

Existing maintenance plans are displayed in the Design tab when you right-click the plan
and select Modify. Figure 33.13 shows the Design tab for a maintenance plan that was
created with the Maintenance Plan Wizard to back up the system databases.

The Design tab represents a significant difference from the way maintenance plans were
managed in SQL Server 2000. The plan designer surface on the Design tab has drag-and-
drop capabilities that allow you to add maintenance tasks to your plan. The available tasks
are located in the Toolbox component. The Toolbox and the related tasks are shown in
Figure 33.13 in the middle portion of the screen. To add a tool from the Toolbox, you drag
the item from the Toolbox to the plan designer surface. Alternatively, you can double-click
the task, and the task appears on the plan designer surface.

FIGURE 33.13 The maintenance plan Design tab.

 Download from www.wowebook.com

ptg

1085Managing Maintenance Plans Without the Wizard
3

3

On the plan designer surface, you can move each of the tasks around, link them to other
tasks, and edit them by double-clicking them. You can also right-click a task to edit it,
group it with other tasks, autosize it, and gain access to other task options. You can right-
click an empty section of the plan designer surface to add annotations or comments that
provide additional information about the task or the overall plan.

NOTE

The dialog boxes displayed when you edit a task are unique for each task. The avail-
able maintenance plan tasks display an options screen like the one displayed during
the execution of the Maintenance Plan Wizard. This provides consistency that is in
place regardless of where the task is defined.

Adding a task to an existing maintenance plan is a good starting point to become familiar
with the workings of the Design tab. Consider, for example, the maintenance plan shown
in Figure 33.13. This plan, which was initially created with the Maintenance Plan Wizard,
is used to create full database backups of all the system databases. One critical aspect that
is missing from this plan is a task to remove older database backups. The task that can
help you with this is the Maintenance Cleanup task. If you double-click that task in the
Toolbox, the task is added to the plan designer surface, as shown in Figure 33.14.

FIGURE 33.14 Adding a task to the plan designer surface.

 Download from www.wowebook.com

ptg

1086 CHAPTER 33 Database Maintenance

After you add a task to the plan designer surface, you need to configure it. Note that a
small red X icon appears on the right side of the task if the task has not yet been config-
ured. To configure the Maintenance Cleanup task, you double-click it on the plan designer
surface. Figure 33.15 shows the screen that appears so you can configure the Maintenance
Cleanup task.

You can use the Maintenance Cleanup task to clean up old backup files or maintenance
plan text reports. The deletion of older backup files is particularly important because data-
base backups tend to be large files and can use up a significant amount of disk space. The
File Location section of the screen enables you to delete a specific file, or you can delete
files in a folder based on search criteria. In most cases, you want to search the folder to
delete older files.

When cleaning up database backup files, you typically specify the file extension .bak. If
you chose to write each database’s backups to a separate folder, you should choose the
Include First-Level Subfolders options, which allows you to search all first-level subfolders
that exist under the folder specified. This simplifies the cleanup process and eliminates the
need to have a separate cleanup task for each subfolder.

In the last section of the configuration screen for the Maintenance Cleanup task, you
specify how old a file must be in order to be deleted. The default is four weeks, but you

FIGURE 33.15 Configuring the Maintenance Cleanup task.

 Download from www.wowebook.com

ptg

1087Managing Maintenance Plans Without the Wizard
3

3

can adjust this setting to the desired time frame by using the related drop-downs. If you
uncheck Delete Files Based on the Age of the File at Task Run Time, all files in the folder
or subfolders are deleted, regardless of age.

NOTE

The deletion of database backup files is not based on the file dates or the name of the
backup file. The Maintenance Cleanup task uses a procedure named xp_delete_file
that examines the database backup and time the backup was created. Renaming the
database backup file does not affect its inclusion in the deletion process.

After configuring the options for the Maintenance Cleanup task, you can click the View T-
SQL button at the bottom of the screen. This feature reveals what is going on behind the
scenes when the plan executes. Prior to SQL Server 2005, you had to obtain this kind of
information by using the Profiler.

When you click OK, the task is ready to use in the maintenance plan. The task runs in
parallel with the other tasks defined in the plan unless a precedence or link is established
between the tasks. To establish a link between the tasks, you select the first task that you
want to execute. When the task is selected, a green arrow is shown at the bottom of the
task’s box in the plan designer surface. You click the green arrow and drag it to the task
that you want to run next. The green arrow is then connected to the other task. If you
double-click the green arrow (or right-click and choose Edit), the Precedence Constraint
Editor appears, as shown in Figure 33.16.

The paragraph at the top of the Precedence Constraint Editor gives a good description of
what a precedence constraint is. In short, it can link tasks together based on the results of
their execution. For example, if a backup database task succeeds, a Maintenance Cleanup

FIGURE 33.16 The Precedence Constraint Editor.

 Download from www.wowebook.com

ptg

1088 CHAPTER 33 Database Maintenance

task can be defined to run next. You can also set the constraint value so that the next task
will run only if the first task fails, or you can have the next task run based on the prior
task’s completion, regardless of whether if succeeds or fails. In addition, you can link
multiple tasks together with precedence. You define the logical relationship between tasks
in the Multiple Constraints section of the Precedence Constraint Editor.

The workflow and relationships that can be defined between tasks for a maintenance plan
are extensive and beyond the scope of this chapter. Many of the workflow concepts are
similar to those of the DTS designer in SQL Server 2000 and the SSIS designer in SQL
Server 2008.

Executing a Maintenance Plan
Maintenance plans that have been scheduled run automatically according to the schedule
defined. You can also run maintenance plans manually by right-clicking a maintenance
plan and selecting Execute or by selecting the SQL Server Agent job associated with the
maintenance plan and starting the job. The execution behavior is different, depending on
the means you use. If you choose to run the maintenance plan from the Management node,
the SSIS package is launched, and the Execute Maintenance Plan window displays the
current status of the plan execution.

If you run the SQL Server Agent job to execute the maintenance plan, a dialog box indi-
cating the execution status of the job appears. The dialog does not indicate success for the
maintenance plan until the entire maintenance plan has completed. The dialog box for
the job can be closed, and the job will still continue to run. The Execute Maintenance
Plan window, on the other hand, does not have an option to close it, and it must stay
open until the plan completes.

There are two other means for monitoring the execution of maintenance plans. The Job
Activity Monitor shows a status of executing while a maintenance plan is executing. You
can set the refresh settings on the Job Activity Monitor to auto-refresh for the desired
increment. You can also monitor the execution by establishing a connection to the SSIS
server in SSMS. To establish an SSIS connection in SSMS, you click the Connect drop-
down in the Object Explorer and choose Integration Services. Figure 33.17 shows an
example of the Object Explorer with an Integration Services connection.

The Integration Services connection in the Object Explorer shows the packages that are
running in addition to the packages that have been created. If you expand the Stored
Packages node and navigate to the MSDB node, you see a node named Maintenance Plans
that shows all the SSIS packages that have been created. You can also edit the package
with BIDS, but that topic is beyond the scope of this chapter. See Chapter 52 for more
information.

 Download from www.wowebook.com

ptg

1089Maintenance Without a Maintenance Plan
3

3

FIGURE 33.17 The Object Explorer with an Integration Services connection.

NOTE

SSIS does not need to be installed on the SQL Server machine to be able to create
and execute maintenance plans. In the initial release of SQL Server 2005, this was a
requirement but was changed with SQL Server 2005 SP2. This change carried over to
SQL Server 2008, and maintenance plans are now fully functional with the SQL Server
Database Services installation.

Maintenance Without a Maintenance Plan
You can perform database maintenance without the use of the built-in maintenance plans
that come with SQL Server. The additional complexity in SQL Server 2008 may steer some
people away from the use of these plans. In addition, these plans cannot be scripted, so
deployment to multiple environments is not straightforward.

Database maintenance that is performed without a maintenance plan is often performed
using custom scripts or stored procedures that execute the T-SQL commands to perform
the maintenance. Other methods include manually executing the SQLMAINT utility to
perform various maintenance tasks such as database backups and consistency checks.
Often these maintenance commands or custom scripts are then scheduled to run on a
regular basis by manually setting up jobs within the SQL Server Agent job scheduler in
SQL Server Management Studio. (For more information on setting up and scheduling jobs
in SQL Server Agent, see Chapter 16, “SQL Server Scheduling and Notification.”)

Setting up maintenance tasks manually is a viable option, especially for the more experi-
enced DBA because it requires additional development work and familiarity with the
maintenance commands and options. However, even the experienced DBA should
consider using maintenance plans because maintenance tasks set up manually may lack
the integration with other SQL Server components that is offered with the SQL Server
2008 maintenance plans.

 Download from www.wowebook.com

ptg

1090 CHAPTER 33 Database Maintenance

Database Maintenance Policies
Policy-Based Management, a new management feature introduced in SQL Server 2008,
allows you to manage your SQL Server instances through clearly defined policies, reducing
the potential for administrative errors or oversight. The policy-based framework imple-
ments the policies you defined via a Policy Engine, SQL Server Agent jobs, SQLCLR, DDL
triggers, and Service Broker. You can choose to have the policies you defined be applied or
evaluated against a single server or a group of servers, thus improving the scalability of
monitoring and administration.

Policy-Based Management allows you to prescribe the way you want your databases main-
tained, and the system will help ensure things stay that way. Essentially, Policy-Based
Management allows you to define rules for one or more SQL Servers and evaluate them.
The goal of this feature is to make it easier for you to manage one or more servers by noti-
fying you when servers are out of compliance with the database maintenance policies you
have defined.

For example, you could define a policy to ensure that transaction log backups are being
performed on the appropriate intervals on your OLTP databases. Policy-Based
Management allows you to determine when one of your databases is not in compliance
with your log backup policy. You can set up this policy to be evaluated on demand or via
a schedule.

For more information on defining and using policies, see Chapter 22.

Summary
Establishing a database maintenance plan is important. Just like your car or your home, a
database needs maintenance to keep working properly. The powerful features available
with the SQL Server 2008 maintenance plans and Maintenance Plan Wizard make the
creation of a robust maintenance plan relatively easy. If you establish your maintenance
plans early in the life of your databases, you will save yourself time and aggravation in
the long run.

Chapter 34 delves further into the importance of indexes and their relationship to perfor-
mance. It expands on the optimization of indexes mentioned in this chapter and describes
the role that indexes play in keeping databases running fast.

 Download from www.wowebook.com

ptg

CHAPTER 34

Data Structures, Indexes,
and Performance

IN THIS CHAPTER

. What’s New for Data
Structures, Indexes, and
Performance

. Understanding Data Structures

. Database Files and Filegroups

. Database Pages

. Understanding Table Structures

. Understanding Index Structures

. Data Modification and
Performance

. Index Utilization

. Index Selection

. Evaluating Index Usefulness

. Index Statistics

. SQL Server Index Maintenance

. Index Design Guidelines

. Indexed Views

. Indexes on Computed Columns

. Filtered Indexes and Statistics

. Choosing Indexes: Query
Versus Update Performance

. Identifying Missing Indexes

. Identifying Unused Indexes

A number of factors affect SQL Server performance. One
of the key factors is your table and index design; poor table
and index design can result in excessive I/O and poor
performance. To aid in developing a good table and index
design in an effort to improve SQL Server performance by
minimizing I/O, you need to have a good understanding of
SQL Server data structures and indexes.

Proper table and index design is a key issue in achieving
optimum SQL Server application performance. For example,
you can often realize substantial performance gains in your
SQL Server applications by creating the proper indexes to
support the queries and operations being performed. At the
same time, it’s important to keep in mind that although
many indexes on a table can help improve response time
for queries and reports, too many indexes can hurt the
performance of inserts, updates, and deletes due to the
overhead required to maintain the index and data rows.
Additionally, other index design decisions, such as which
column(s) to create a clustered index on, might be influ-
enced as much by how the data is inserted and modified
and what the possible locking implications might be as they
are by the query response time alone.

In this chapter, you learn about the underlying structures of
databases, tables, rows, and indexes and how SQL Server
maintains index and data structures because this informa-
tion provides a basis for understanding the performance of
your tables and indexes. This chapter discusses the storage
structures in SQL Server and how these storage structures are
maintained and managed. The chapter also discusses how
SQL Server evaluates and uses indexes to improve query
response time. Using this information, you should have a
better understanding of the issues and factors that influence
good table and index design.

 Download from www.wowebook.com

ptg

1092 CHAPTER 34 Data Structures, Indexes, and Performance

What’s New for Data Structures, Indexes, and
Performance
SQL Server 2008 provides a number of new features related to data structures, indexes,
and performance.

Among these new features are filtered indexes and statistics. Filtered indexes utilize a WHERE
clause that filters or limits the number of rows included in the index. The smaller filtered
index allows queries run against rows containing data values in the index to run faster.
These filtered indexes can also save on the disk space used by the index. A well-designed
filtered index can improve query performance, reduce index maintenance costs, and
reduce index storage costs compared with full-table indexes.

Also new to SQL Server 2008 is the capability to compress data in indexes and tables to
reduce the amount of storage space required and, in turn, reduce the I/O needed for these
objects. Page-level data compression helps to reduce both storage and memory requirements
as the data is compressed both on disk and when brought into the SQL Server data cache.
Row-level compression isn’t true data compression but implements a more efficient storage
format for fixed-length data.

Other storage features introduced in SQL Server 2008 to reduce storage space requirements
are sparse columns and column sets. Sparse columns are ordinary columns that use an opti-
mized storage format for NULL values.

FILESTREAM storage was also introduced in SQL Server 2008 as a new storage mechanism
for binary large object (BLOB) data. FILESTREAM storage is a property that can be applied
to varbinary(max) columns and enables SQL Server applications to store unstructured
data, such as documents and images, directly in the NTFS file system while still maintain-
ing the behavior of a database column. The advantages of FILESTREAM storage are
improved performance and increased size of BLOB data, expanding from the 2GB limit of
image columns to the available space in the file system.

Spatial indexes are new to SQL Server 2008 as well. These indexes are used against spatial
data defined by coordinates of latitude and longitude. The spatial data is essential for effi-
cient global navigation. The spatial indexes are grid-based and help optimize the perfor-
mance of searches against the spatial data.

NOTE

This chapter assumes that you already have an understanding of the different types of
indexes and how to define them. For more information on index types and how to cre-
ate indexes, see Chapter 25, “Creating and Managing Indexes.”

 Download from www.wowebook.com

ptg

1093Database Files and Filegroups
3

4

Understanding Data Structures
SQL Server DBAs and users do not see data and storage the same way SQL Server does. A
DBA or end user sees a database more logically as the following:

. Databases, physically stored in files

. Tables and indexes, placed in filegroups within databases

. Rows, stored in tables

SQL Server internally sees these storage structures at a lower, physical level as

. Databases, physically stored in data and log files

. Pages within these files, allocated to tables and indexes

. Data and index rows, stored in slots on pages

Database Files and Filegroups
Databases in SQL Server 2008 span at least two, and optionally several, database files. There
must always be at least one file for data and one file for the transaction log. These database
files are normal operating system files created in a directory within the operating system.
These files are created when the database is created or when a database is expanded.

Each database file has the following set of properties:

. A logical filename—This name is used for internal reference to the file.

. A physical filename—This name is the actual physical pathname of the file.

. An initial size—If no size is specified for primary data file, its initial size, by
default, is the minimum size required to hold the contents of the model database.

. An optional maximum size—A maximum file size limit can be specified.

. A file growth increment—This amount is specified in megabytes or as a
percentage.

The information and properties about each file for a database are stored in the database
visible via the system catalog view called sys.database_files. This view exists in every
database and contains information about each of the database files. The master database
contains a similar view, sys.master_files, that contains file information for all databases
within the SQL Server instance. Table 34.1 lists the most useful columns in the
sys.database_files view.

 Download from www.wowebook.com

ptg

1094 CHAPTER 34 Data Structures, Indexes, and Performance

SQL Server uses the file location information visible in the sys.master_files catalog view
most of the time. However, the Database Engine uses the file location information stored
in the primary file to initialize the file location entries in the master database when
attaching a database using the CREATE DATABASE statement with either the FOR ATTACH or
FOR ATTACH_REBUILD_LOG options.

Every database can have three types of files:

. Primary data file

. Secondary data files

. Log files

In addition, in SQL Server 2008, databases can also have FILESTREAM data files and full-
text data files.

TABLE 34.1 The sysfiles Table

Column Name Description

file_id A file identification number that is unique within each database

file_guid GUID for the file

type File type (0=rows [that is, data files], 1=log, 2=FILESTREAM, 4=Full-text
catalogs prior to SQL Server 2008

type_desc Description of the file type (ROWS, LOG, FILESTREAM, FULLTEXT)

data_space_id 0 represents a log file; values > 0 represent the ID of the filegroup the
data file belongs to

name The logical name of the file

filename The physical name of the file, including path

state File state (0 = OFFLINE, 1 = RESTORING, 2 = RECOVERING, 3 =
RECOVERY_PENDING, 4 = SUSPECT, 6 = OFFLINE, 7=DEFUNCT)

state_desc Description of the file state (OFFLINE, RESTORING, RECOVERING,
RECOVERY_PENDING, SUSPECT, OFFLINE, DEFUNCT)

size Current size of the file in 8KB pages

max_size Maximum file size in 8KB pages

growth File growth setting (0=fixed, >0=autogrow in units of 8KB pages or by
percentage if is_percent_growth is set to 1)

is_media_read_only 1=file is on read-only media

is_read_only 1= file is marked read-only

is_sparse 1=file is a sparse file

is_percent_growth 1=growth of file value is percentage

 Download from www.wowebook.com

ptg

1095Database Files and Filegroups
3

4

Primary Data File

Every database has only one primary database file. The location of the primary database
file is stored in the master database (visible via the filename column in the
sys.master_files view). When SQL Server opens a database, it looks for this file and then
reads from the file information on the other files defined for the database.

The file extension for the primary database file defaults to .mdf. The primary database file
always belongs to the default filegroup. It is often sufficient to have only one database file
for storing your tables and indexes (the primary database file). The file can, of course, be
created on a RAID partition to help spread I/O. However, if you need finer control over
placement of your tables across disks or disk arrays, or if you want to be able to back up
only a portion of your database via filegroups, you can create additional, secondary data
files for a database.

Secondary Data Files

A database can have any number of secondary files (in reality, the maximum number of
files per database is 32,767, but that should be sufficient for most implementations). You
can put a secondary file in the default filegroup or in another filegroup defined for the
database. Secondary data files have the file extension.ndf by default.

Following are some situations in which the use of secondary database files might be
beneficial:

. You want to perform a partial backup. A backup can be performed for the entire
database or a subset of the database. The subset is specified as a set of files or file-
groups. The partial backup feature is useful for large databases, where it is impracti-
cal to back up the entire database. When recovering with partial backups, a
transaction log backup must also be available. For more information about backups,
see Chapter 14, “Database Backup and Restore.”

. You want more control over placement of database objects. When you create a table
or index, you can specify the filegroup in which the object is created. This could
help you spread I/O by placing your most active tables or indexes on separate file-
groups defined on separate disks or disk arrays.

. Creating multiple files on a single disk provides no real performance benefit but
could help in recovery. If you have a 90GB database in a single file and have to
restore it, you need to have enough disk space available to create a new 90GB file. If
you don’t have 90GB of space available on a single disk, you cannot restore the data-
base. On the other hand, if the database was created with three files each 30GB in
size, you more likely will be able to find three 30GB chunks of space available on
your server.

 Download from www.wowebook.com

ptg

1096 CHAPTER 34 Data Structures, Indexes, and Performance

The Log File

Each database must have at least one log file. The log file contains the transaction log
records of all changes made in a database (for more information on what is contained in
the transaction log, see Chapter 31, “Transaction Management and the Transaction Log”).
By default, log files have the file extension .ldf.

A database can have several log files, and each log file can have a maximum size of 32TB.
A log file cannot be part of a filegroup. No information other than transaction log records
can be written to a log file.

For more information on the log file and log file management, see Chapter 31.

File Management

In SQL Server 2008, you can specify that a database file should grow automatically as
space is needed. SQL Server can also shrink the size of the database if the space is not
needed. You can control whether to use this feature along with the increment by which
the file is to be expanded. The increment can be specified as a fixed number of megabytes
or as a percentage of the current size of the file. You can also set a limit on the maximum
size of the file or allow it to grow until no more space is available on the disk.

Listing 34.1 provides an example of a database being created with a 10MB growth increment
for the first database file, 20MB for the second, and 20% growth increment for the log file.

LISTING 34.1 Creating a Database with Autogrowth

CREATE DATABASE Customer

ON (NAME=’Customer_Data’,

FILENAME=’D:\SQL_data\Customer_Data1.mdf’,

SIZE=50,

MAXSIZE=100,

FILEGROWTH=10),

(NAME=’Customer_Data2’,

FILENAME=’E:\SQL_data\Customer_Data2.ndf’,

SIZE=100,

FILEGROWTH=20)

LOG ON (NAME=’Customer_Log’,

FILENAME=’F:\SQL_data\Customer_Log.ldf’,

SIZE=50,

FILEGROWTH=20%)

GO

The Customer_Data file has an initial size of 50MB, a maximum size of 100MB, and a file
increment of 10MB.

The Customer_Data2 file has an initial size of 100MB, has a file growth increment of
20MB, and can grow until the E: disk partition is full.

 Download from www.wowebook.com

ptg

1097Database Files and Filegroups
3

4

The transaction log has an initial size of 50MB; the file increases by 20% with each file
growth. The increment is based on the current file size, not the size originally specified.

When creating or expanding data files in SQL Server 2008, SQL Server uses fast file initial-
ization. This allows for the fast execution of the file creation and growth. With fast file
initialization, the space is added to the data file immediately, but without initializing the
logical pages in the data file with zeros. The existing disk content in the data file is not
overwritten until new data is written to the files. This provides a huge performance advan-
tage when a data file autogrows while an application is attempting to write data to the
database. The application does not need to wait until the space is initialized; it can begin
writing to the database immediately.

SQL Server also provides an option to autoshrink databases as well as manually shrink
databases. However, shrinking a database is a resource-intensive process and should be
done only if it is absolutely imperative to reclaim disk space. Also, if a data file is
constantly shrinking and growing, it can lead to excessive file fragmentation at the file
system level as well as excessive logical fragmentation within the file, both of which can
lead to poor I/O performance.

Using Filegroups

All databases have a primary filegroup that contains the primary data file. There can be
only one primary filegroup. If you don’t create any other filegroups or change the default
filegroup to a filegroup other than the primary filegroup, all files will be in the primary
file group unless specifically placed in another filegroup.

In addition to the primary filegroup, you can add one or more filegroups to the database,
and a filegroup can contain one or more files. The main purpose of using filegroups is to
provide more control over the placement of files and data on your server. When you
create a table or index, you can map it to a specific filegroup, thus controlling the place-
ment of data. A typical SQL Server database installation generally uses a single RAID array
to spread I/O across disks and create all files in the primary filegroup; more advanced
installations or installations with very large databases spread across multiple array sets can
benefit from the finer level of control of file and data placement afforded by additional
filegroups.

For example, for a simple database such as AdventureWorks, you can create just one
primary file that contains all data and objects and a log file that contains the transaction
log information. For a larger and more complex database, such as a securities trading
system where large data volumes and strict performance criteria are the norm, you might
create the database with one primary file and four additional secondary files. You can then
set up filegroups so you can place the data and objects within the database across all five
files. If you have a table that itself needs to be spread across multiple disk arrays for perfor-
mance reasons, you can place multiple files in a filegroup, each of which resides on a
different disk, and create the table on that filegroup. For example, you can create three
files (Data1.ndf, Data2.ndf, and Data3.ndf) on three disk arrays, respectively, and then

 Download from www.wowebook.com

ptg

1098 CHAPTER 34 Data Structures, Indexes, and Performance

assign them to the filegroup called spread_group. Your table can then be created specifi-
cally on the filegroup spread_group. Queries for data from the table are spread across the
three disk arrays, thereby improving I/O performance.

If a filegroup contains more than one file, when space is allocated to objects stored in that
filegroup, the data is stored proportionally across the files. In other words, if you have one
file in a filegroup with twice as much free space as another, the first file has two extents
allocated from it for each extent allocated from the second file (extents and space alloca-
tion are discussed in more detail later in this chapter).

Listing 34.2 provides an example of using filegroups in a database to control the file place-
ment of the customer_info table.

LISTING 34.2 Using a Filegroup to Control Placement for a Table

CREATE DATABASE Customer

ON (NAME=’Customer_Data’,

FILENAME=’C:\SQLData\Customer_Data1.mdf’,

SIZE=50,

MAXSIZE=100,

FILEGROWTH=10)

LOG ON (NAME=’Customer_Log’,

FILENAME=’C:\SQLData\Customer_Log.ldf’,

SIZE=50,

FILEGROWTH=20%)

GO

ALTER DATABASE Customer

ADD FILEGROUP Cust_table

GO

ALTER DATABASE Customer

ADD FILE

(NAME=’Customer_Data2’,

FILENAME=’G:\SQLData\Customer_Data2.ndf’,

SIZE=100,

FILEGROWTH=20)

TO FILEGROUP Cust_Table

GO

USE Customer

CREATE TABLE customer_info

(cust_no INT, cust_address NCHAR(200), info NVARCHAR(3000))

ON Cust_Table

GO

 Download from www.wowebook.com

ptg

1099Database Files and Filegroups
3

4

TABLE 34.2 The sys.filegroups System Catalog View

Column Name Description

name Name of the data space, unique within the database.

data_space_id Data space ID number, unique within the database.

type FG = Filegroup.

type_desc Description of data space type: ROWS_FILEGROUP.

is_default 1 = This is the default data space. The default data space is used when a file-
group or partition scheme is not specified in a CREATE TABLE or CREATE INDEX
statement.
0 = This is not the default data space.

filegroup_guid
GUID for the filegroup.
NULL = PRIMARY filegroup.

log_filegroup_id Not used; value is NULL.

is_read_only
1 = Filegroup is read-only.
0 = Filegroup is read/write.

The CREATE DATABASE statement in Listing 34.2 creates a database with a primary database
file and log file. The first ALTER DATABASE statement adds a filegroup. A secondary data-
base file is added with the second ALTER DATABASE command. This file is added to the
Cust_Table filegroup. The CREATE TABLE statement creates a table; the ON Cust_Table
clause places the table in the Cust_Table filegroup (the Customer_Data2 file on the G: disk
partition).

The sys.filegroups system catalog view contains information about the database file-
groups defined within a database, as shown in Table 34.2.

The following statement returns the filename, size in megabytes (not including autogrow),
and the name of the filegroup to which each file belongs:

SELECT

convert(varchar(30), sf.name) as filename,

size/128 as size_in_MB,

convert(varchar(30), sfg.name) as filegroupname

FROM sys.database_files sf

INNER JOIN sys.filegroups sfg

ON sf.data_space_id = sfg.data_space_id

 Download from www.wowebook.com

ptg

1100 CHAPTER 34 Data Structures, Indexes, and Performance

go

filename size_in_MB filegroupname

------------------------------ ----------- -------------------------

Customer_Data 50 PRIMARY

Customer_Data2 100 Cust_table

FILESTREAM Filegroups

FILESTREAM storage is a new feature in SQL Server 2008 for storing unstructured data,
such as documents, images, and videos. FILESTREAM storage helps to solve the issues with
using unstructured data by integrating the SQL Server Database Engine with the NTFS file
system for storing the unstructured data, such as documents and images, on the file system
with the database storing a pointer to the data. Although the actual data resides outside
the database in the NTFS file system, you can still use Transact-SQL (T-SQL) statements to
insert, update, query, and back up FILESTREAM data, while maintaining transactional
consistency between the unstructured data and corresponding structured data with same
level of security.

NOTE

To use FILESTREAM storage, you must first enable FILESTREAM storage at the
Windows level as well as at the SQL Server instance level. You can enable FILESTREAM
at the Windows level during installation of SQL Server 2008 or at any time using SQL
Server Configuration Manager. After you enable FILESTREAM at the Windows level, you
next need to enable FILESTREAM for the SQL Server instance. You can do this either
through SQL Server Management Studio (SSMS) or via T-SQL.

After you enabled FILESTREAM for the SQL Server instance, you can enable it for a data-
base by creating a FILESTREAM filegroup. You can do this when the database is created (or
to an existing database) by adding a filegroup and including the CONTAINS FILESTREAM
clause. Unlike regular filegroups, a FILESTREAM filegroup can contain only a single file
reference, which is actually a file system folder rather than an actual file. The actual folder
must not exist (although the path up to the folder must exist); SQL Server creates the
filestream folder. For example, in Listing 34.3, the code adds a FILESTREAM filegroup
called CustFSGroup and adds the folder G:\SQLData\custinfo_FS into the file group. This
custinfo_FS folder is created by SQL Server in the G:\SQLData folder.

LISTING 34.3 Using a Filegroup to Control Placement for a Table

ALTER DATABASE Customer

ADD FILEGROUP Cust_FSGroup CONTAINS FILESTREAM

ALTER DATABASE Customer

 Download from www.wowebook.com

ptg

1101Database Pages
3

4

ADD FILE

(NAME=custinfo_FS,

FILENAME = ‘G:\SQLData\custinfo_FS’)

to FILEGROUP Cust_FSGroup

GO

If you look in the G:\SQLData\custinfo_FS folder, you should see a Filestream.hdr file
and an $FSLOG folder. The Filestream.hdr file is a FILESTREAM container header file that
should not be moved or modified.

As you can see in the example in Listing 34.3, for FILESTREAM files or file groups, unlike
regular files, you do not specify size or growth information. No space is preallocated. The
file and filegroup grow as data is added to tables that have been created with
FILESTREAM columns.

As you create tables with FILESTREAM columns, a subfolder is created in the filegroup
folder for each table. The filenames are GUIDs. Each FILESTREAM column created in the
table results in another subfolder created under the table subfolder. The column subfolder
name is also a GUID. At this point, there still are no actual files created. That happens
after you start adding rows to the table. A file is created in the column subfolder for each
row inserted into the table with a non-NULL value for the FILESTREAM column.

For more information on creating and using tables with FILESTREAM columns, see
Chapter 42, “What’s New for Transact-SQL in SQL Server 2008.”

Database Pages
All information in SQL Server is stored at the page level. The page is the smallest level of
I/O in SQL Server and is the fundamental storage unit. Pages contain the data itself or
information about the physical layout of the data. The page size is the same for all page
types: 8KB, or 8,192 bytes. The pages are arranged in two basic types of storage structures:
linked data pages and index trees.

Databases are divided into logical 8KB pages. Within each file allocated to a database, the
pages are numbered contiguously from 0 to n. The actual number of pages in the database
file depends on the size of the file. Pages in a database are uniquely referenced by specify-
ing the database ID, the file ID for the file the page resides in, and the page number
within the file. When you expand a database with ALTER DATABASE, the new space is
added at the end of the file, and the page numbers continue incrementing from the previ-
ous last page in the file. If you add a completely new file, its first page number is 0. When
you shrink a database, pages are removed from the end of the file only, starting at the
highest page in the database and moving toward lower-numbered pages until the database
reaches the specified size or a used page that cannot be removed. This ensures that page
numbers within a file are always contiguous.

 Download from www.wowebook.com

ptg

1102 CHAPTER 34 Data Structures, Indexes, and Performance

TABLE 34.3 Page Types

Page Type Stores

Data Data rows for all data except text, ntext, image, nvarchar(max),
varchar(max), varbinary(max), and xml data

Row Overflow Data columns that cause a data row to exceed the 8,060 bytes per page
limit

LOB Large object types (text, ntext, image, nvarchar(max), varchar(max),
varbinary(max), xml data, and varchar, nvarchar, varbinary, and
sqlvariant when data row size exceeds 8KB)

Index Index entries and pointers

Global Allocation
Map

Information about allocated (used) extents

Page Free Space Information about page allocation and free space on pages

Index Allocation
Map

Information about extents used by a table or an index

Differential
Changed Map

Information about which extents have been modified since the last full
database backup

Bulk Changed Map Information about which extents have been used in a minimally logged or
bulk-logged operation since the last BACKUP LOG statement

Body

Header
96 byte header

8096 bytes

8K PagE
(8192Bytes)

FIGURE 34.1 SQL Server page layout.

Page Types

There are eight page types in SQL Server, as listed in Table 34.3.

All pages, regardless of type, have a similar layout. They all have a page header, which is
96 bytes, and a body, which consequently is 8,096 bytes. The page layout is shown in
Figure 34.1.

 Download from www.wowebook.com

ptg

1103Database Pages
3

4

Data Pages

The actual data rows in tables are stored on data pages. Figure 34.2 shows the basic struc-
ture of a data page.

The following sections discuss and examine the contents of the data page.

The Page Header
The page header contains control information for the page. Some fields assist when SQL
Server checks for consistency among its storage structures, and some fields are used when
navigating among the pages that constitute a table. Table 34.4 describes the more useful
fields contained in the page header.

Header

Row Offset Table

.

.

.

96118140……

Row 0

Row 1

 Row 2

Byte Address

Row ID012

96

118

 140

0

34
8095

FIGURE 34.2 The structure of a SQL Server data page.

 Download from www.wowebook.com

ptg

1104 CHAPTER 34 Data Structures, Indexes, and Performance

The Data Rows
Following the page header, starting at byte 96 on the page, are the actual data rows. Each
data row has a unique row number within the page. Data rows in SQL Server cannot cross
page boundaries. The maximum available space in a SQL Server page is 8,060 bytes of in-row
data. When a data row is logged in the transaction log (for an insert, for example), addi-
tional logging information is stored on the log page along with the data row. Because log
pages are 8,192 bytes in size and also have a 96-byte header, a log page has only 8,096 bytes
of available space. If you want to store the data row and logging information on a single log
page, the in-row data cannot be more than 8,060 bytes in size. This, in effect, limits the
maximum in-row data row size for a table in SQL Server 2008 to 8,060 bytes as well.

TABLE 34.4 Information Contained in the Page Header

Page Header
Fields

Description

PageID Unique identifier for the page. It consists of two parts: the file ID number and
page number.

NextPage File number and page number of the next page in the chain (0 if the page is
the last or only page in the chain or if the page belongs to a heap table).

PrevPage File number and page number of the previous page in the chain (0 if the page
is the first or only page in the chain or if the page belongs to a heap table).

ObjectID ID of the object to which this page belongs.

PartitionID ID of the partition of which this page is a part.

AllocUnitID ID of the allocation unit that contains this page.

LSN Log sequence number (LSN) value used for changes and updates to this page.

SlotCnt Total number of rows (slots) used on the page.

Level Level at which this page resides in an index tree (0 indicates a leaf page or
data page).

IndexID ID of the index this page belongs to (0 indicates that it is a data page).

freedata Byte offset where the available free space starts on the page.

Pminlen Minimum size of a data row. Essentially, this is the number of bytes in the
fixed-length portion of the data rows.

FreeCnt Number of free bytes available on the page.

reservedCnt Number of bytes reserved by all transactions.

Xactreserved Number of bytes reserved by the most recently started transaction.

tornBits Bit string containing 1 bit per sector for detecting torn page writes (or check-
sum information if torn_page_detection is not on).

flagBits Two-byte bitmap that contains additional information about the page.

 Download from www.wowebook.com

ptg

1105Database Pages
3

4

NOTE

Although 8,060 bytes is the maximum size of in-row data, 8,060 bytes is not the maxi-
mum row size limit in SQL Server 2008. Data rows can also have row-overflow and
large object (LOB) data stored on separate pages, as you see later in this chapter.

The number of rows stored on a page depends on the size of each row. For a table that has
all fixed-length, non-nullable columns, the size of the row and the number of rows that
can be stored on a page are always the same. If the table has any variable or nullable
fields, the number of rows stored on the page depends on the size of each row. SQL Server
attempts to fit as many rows as possible in a page. Smaller row sizes allow SQL Server to fit
more rows on a page, which reduces page I/O and allows more data pages to fit in
memory. This helps improve system performance by reducing the number of times SQL
Server has to read data in from disk.

Because each data row also incurs some overhead bytes in addition to the actual data, the
maximum amount of actual data that can be stored in a single row on a page is slightly
less than 8,060 bytes. The actual amount of overhead required per row depends on
whether the table contains any variable-length columns. If you attempt to create a table
with a minimum row size including data and row overhead that exceeds 8,060 bytes, you
receive an error message as shown in the following example (remember that a multibyte
character set data type such as nchar or nvarchar requires 2 bytes per character, so an
nchar(4000) column requires 8,000 bytes):

CREATE TABLE customer_info2

(cust_no INT, cust_address NCHAR(25), info NCHAR(4000))

go

Msg 1701, Level 16, State 1, Line 1

Creating or altering table ‘customer_info2’ failed because the

minimum row size would be 8061, including 7 bytes of internal

overhead. This exceeds the maximum allowable table row size of 8060

bytes.

If the table contains variable-length or nullable columns, you can create a table for which
the minimum row size is less than 8,060 bytes, but the data rows could conceivably
exceed 8,060 bytes. SQL Server allows the table to be created. If you then try to insert a
row that exceeds 8,060 bytes of data and overhead, the data that exceeds the 8,060-byte
limit for in-row data is stored in a row-overflow page.

The Structure of Data Rows The data for all fixed-length data fields in a table is stored at
the beginning of the row. All variable-length data columns are stored after the fixed-
length data. Figure 34.3 shows the structure of the data row in SQL Server.

 Download from www.wowebook.com

ptg

1106 CHAPTER 34 Data Structures, Indexes, and Performance

Status
Byte A
(1 byte)

Fixed Length
 Data Columns

(n bytes)

Number
of

Columns
(2 bytes)

Null
Bitmap

(1 bit for
each

column)

Number
of Variable

Length
Columns
(2 bytes)

Status
Byte B
(1 byte)

not used

Length
of Fixed
Length
Data

(2 bytes)

Column
Offset
Array

(2 x number
of variable
columns)

Variable Length
Data Columns

(n bytes)

FIGURE 34.3 The structure of a SQL Server data row.

The total size of each data row is a factor of the sum of the size of the columns plus the
row overhead. Seven bytes of overhead is the minimum for any data row:

. 1 byte for status byte A.

. 1 byte for status byte B (in SQL Server 2008, only 1 bit is used indicating that the
record is a ghost-forwarded row).

. 2 bytes to store the length of the fixed-length columns.

. 2 bytes to store the number of columns in the row.

. 1 byte for every multiple of 8 columns (ceiling(numcols / 8) in the table for the
NULL bitmap. A 1 in the bitmap indicates that the column allows NULLs.

The values stored in status byte A are as follows:

. Bit 0—This bit provides version information. In SQL Server 2008, it’s always 0.

. Bits 1 through 3—This 3-bit value indicates the nature of the row. 0 indicates that
the row is a primary record, 1 indicates that the row has been forwarded, 2 indicates
a forwarded stub, 3 indicates an index record, 4 indicates a blob fragment, 5 indi-
cates a ghost index record, 6 indicates a ghost data record, and 7 indicates a ghost
version record. (Many of these topics, such as forwarded and ghost records, are
discussed in further detail later in this chapter.)

. Bit 4—This bit indicates that a NULL bitmap exists. This is somewhat unnecessary in
SQL Server 2008 because a NULL bitmap is always present, even if no NULLs are
allowed in the table.

. Bit 5—This bit indicates that one or more variable-length columns exists in the row.

. Bit 6—This bit indicates the row contains versioning information.

. Bit 7—This bit is not currently used in SQL Server 2008.

If the table contains any variable-length columns, the following additional overhead bytes
are included in each data row:

. 2 bytes to store the number of variable-length columns in the row.

. 2 bytes times the number of variable-length columns for the offset array. This is
essentially a table in the row identifying where each variable-length column can be
found within the variable-length column block.

Within each block of fixed-length or variable-length data, the data columns are stored in
the column order in which they were defined when the table was created. In other words,

 Download from www.wowebook.com

ptg

1107Database Pages
3

4

all fixed-length fields are stored in column ID order in the fixed-length block, and all
nullable or variable-length fields are stored in column ID order in the variable-length block.

Storage of the sql_variant Data Type The sql_variant data type can contain a value
of any column data type in SQL Server except for text, ntext, image, variable-length
columns with the MAX qualifier, and timestamp. For example, a sql_variant in one row
could contain character data; in another row, an integer value; and in yet another row, a
float value. Because they can contain any type of value, sql_variant columns are always
considered variable length. The format of a sql_variant column is as follows:

. Byte 1 indicates the actual data type being stored in the sql_variant.

. Byte 2 indicates the sql_variant version, which is always 1 in SQL Server 2008.

. The remainder of the sql_variant column contains the data value and, for some
data types, information about the data value.

The data type value in byte 1 corresponds to the values in the xtype column in the
systypes database system table. For example, if the first byte contains a hex 38, that
corresponds to the xtype value of 56, which is the int data type.

Some data types stored in a sql_variant column require additional information bytes
stored at the beginning of the data value (after the sql_variant version byte). The data
types requiring additional information bytes and the values in these information bytes are
as follows:

. Numeric and decimal data types require 1 byte for the precision and 1 byte for the
scale.

. Character strings require 2 bytes to store the maximum length and 4 bytes for the
collation ID.

. Binary and varbinary data values require 2 bytes to store the maximum length.

Storage of Sparse Columns A new storage feature introduced in SQL Server 2008 is sparse
columns. Sparse columns are ordinary columns that use an optimized storage format for
NULL values. Sparse columns reduce the space requirements for NULL values at the cost of
more overhead to retrieve non-NULL values. A rule of thumb is to consider using sparse
columns when you expect at least 90% of the rows to contain NULL values. Prime candi-
dates are tables that have many columns where most of the attributes are NULL for most
rows—for example, when different attributes apply to different subsets of rows and, for
each row, only a subset of columns are populated with values.

The sparse columns feature significantly increases the number of possible columns in a
table from 1,024 to 30,000. However, not all 30,000 can contain values. The number of
actual populated columns you can have depends on the number of bytes of data in the
rows. With sparse columns, storage of NULL values is optimized, requiring no space at all
for storing NULL values. This is unlike nonsparse columns, which, as you saw earlier, do
need space even for NULL values (a fixed-length NULL value requires the full column width,
and a variable-length NULL requires at least 2 bytes of storage in the column offset array).

 Download from www.wowebook.com

ptg

1108 CHAPTER 34 Data Structures, Indexes, and Performance

TABLE 34.5 Bytes Stored in the Sparse Vector

Name Number of Bytes Description

Complex column
header

2 A value of 05 indicates the column is a sparse vector

Sparse column
count

2 Number of sparse columns

Column ID set 2 × # of sparse
columns

The column IDs of each column with a value stored in
the sparse vector

Column offset
table

2 × # of sparse
columns

The offset of the ending position of each sparse
column

Sparse data Depends on actual
values

The actual data values for each sparse column stored
in column ID order

Although sparse columns themselves require no space for NULL values, there is some fixed
overhead space required to allow rows to contain sparse columns. This space is needed to
add the sparse vector to the end of the data row. A sparse vector is added to the end of a
data row only if at least one sparse column is defined on the table.

The sparse vector is used to keep track of the physical storage of sparse columns in the
row. It is stored as the last variable-length column in the row. No bit is stored in the NULL
bitmap for the sparse vector column but it is included in the count of the variable
columns (refer to Figure 34.3 for the general structure of a data row). The bytes stored in
the sparse vector are shown in Table 34.5.

With the required overhead space for the sparse vector, the maximum size of all fixed-
length non-NULL sparse columns is reduced to 8,019 bytes per row.

As you can see, the contents of a sparse vector are like a data row structure within a data
row. If you refer to Figure 34.3, you can see that the structure of the sparse vector is
similar to the shaded structure of a data row. One of the main differences is that the
sparse vector stores no information for any sparse columns that contain NULL values. Also,
fixed-length and variable-length columns are stored the same within the sparse vector.
However, if you have any variable-length columns in the sparse vector that are too large
to fit in the 8,019-byte limit of the data row, they are stored on row-overflow pages.

The Row Offset Table
The location of a row within a page is identified by the row offset table, which is located at
the end of the page. To find a specific row within a page, SQL Server looks up the starting
byte address for a given row ID in the row offset table, which contains the offset of the
row from the beginning of the page (refer to Figure 34.2). Each entry in the row offset
table is 2 bytes in size, so for each row in a table, an additional 2 bytes of space is added
in from the end of the page for the row offset entry.

 Download from www.wowebook.com

ptg

1109Database Pages
3

4

The row offset table keeps track of the logical order of rows on a data page. If a table has
a clustered index defined on it, the data rows are stored in clustered index order.
However, they may not be physically stored in clustered key order on the page itself.
Instead, the row offset array indicates the logical clustered key order of the data rows. For
example, row offset slot 0 refers to the first row in the clustered index key order, slot 1
refers to the second row, slot 2 refers to the third row, and so on. The physical location of
the rows on the page may be in any order, depending on when rows on the page were
inserted or deleted.

Row-Overflow Pages

While the maximum in-row size is 8,060 bytes per row, SQL Server 2008 allows actual
rows to exceed this size for tables that contain varchar, nvarchar, varbinary,
sql_variant, or common language runtime (CLR) user-defined type columns. Although
the length of each one of these columns must still fall within the limit of 8,000 bytes, the
combined width of the row can exceed the 8,060-byte limit.

When a combination of varchar, nvarchar, varbinary, sql_variant, or CLR user-defined
type columns exceeds the 8,060-byte limit, SQL Server moves the record column with the
largest width to another page in the ROW_OVERFLOW_DATA allocation unit, while maintain-
ing a 24-byte pointer to the row-overflow page on the original page. Moving large records
to another page occurs dynamically as records are lengthened based on update operations.
Update operations that shorten records may cause records to be moved back to the origi-
nal page in the IN_ROW_DATA allocation unit.

Row-overflow pages are used only under certain circumstances. For one, the row itself has
to exceed 8,060 bytes; it does not matter how full the data page itself is. If a row is less
than 8,060 bytes and there’s not enough space in the data page, normal page splitting
occurs to store the row. Also, each column in a table must be completely on the row or
completely off it. A variable-length column cannot have some of its data on the regular
data page and some of its data on the row-overflow page. One row can span multiple row-
overflow pages depending on how many large variable-length columns there are.

Be aware that having data rows that require a row-overflow page increases the I/O cost of
retrieving the data row. Querying and performing other select operations, such as sorts or
joins on large records that contain row-overflow data, also slow processing time because
these records are processed synchronously instead of asynchronously.

Therefore, when you design a table with multiple varchar, nvarchar, varbinary,
sql_variant, or CLR user-defined type columns, you might want to consider the percent-
age of rows that are likely to require row overflow and the frequency with which this
overflow data is likely to be queried. If there are likely to be frequent queries on many
rows of row-overflow data, you should consider normalizing the table so that some
columns are moved to another table, reducing the overall row size so that the rows fit
within 8,060 bytes. The data can then be recombined in a query using an asynchronous
JOIN operation.

 Download from www.wowebook.com

ptg

1110 CHAPTER 34 Data Structures, Indexes, and Performance

TIP

Because of the performance implications, row-overflow pages are intended to be a solu-
tion for situations in which most of your data rows fit completely on your data pages and
you only occasionally have rows that require a row-overflow page. Row-overflow pages
allow SQL Server to handle the large data rows effectively without requiring a redesign
of your table. However, if you find more than a few of your rows exceed the in-row size,
you probably should look into using the LOB data types or redesigning your table.

LOB Data Pages

If you want to store large amounts of text or binary data, you can use the text, ntext, and
image data types, as well as the varchar(max), nvarchar(max), and varbinary(max) data
types. (For information about how to use these data types, see Chapter 24, “Creating and
Managing Tables,” and Chapter 38, “Database Design and Performance.”) Each column for
a row of these data types can store up to 2GB (minus 2 bytes) of data. By default, the LOB
values are not stored as part of the data row, but as a collection of pages on their own. For
each LOB column, the data page contains a 16-byte pointer, which points to the location
of the initial page of the LOB data. A row with several LOB columns has one pointer for
each column.

The pages that hold LOB data are 8KB in size, just like any other page in SQL Server. An
individual LOB page can hold LOB data for multiple columns and also from multiple
rows. A LOB data page can even contain a mix of LOB data. This helps reduce the storage
requirements for the LOB data, especially when smaller amounts of data are stored in
these columns. For example, if SQL Server could store data for only a single column for a
single row on a single LOB data page and the data value consisted of only a single charac-
ter, it would still use an entire 8KB data page to store that data! Definitely not an efficient
use of space.

A LOB data page can hold LOB data for only a single table, however. A table with a LOB
column has a single set of pages to hold all its LOB data.

LOB information is presented externally (to the user) as a long string of bytes. Internally,
however, the information is stored within a set of pages. The pages are not necessarily
organized sequentially but are logically organized as a B-tree structure. (B-tree structures
are covered in more detail later in this chapter.) If an operation addresses some informa-
tion in the middle of the data, SQL Server can navigate through the B-tree to find the data.
In previous versions, SQL Server had to follow the entire page chain from the beginning to
find the desired information.

If the amount of the data in the LOB field is less than 32KB, the 16-byte pointer in the
data row points to an 84-byte root structure in the LOB B-tree. This root structure points
to the pages and location where the actual LOB data is stored (see Figure 34.4). The data
itself can be placed anywhere within the LOB pages for the table. The root structure keeps

 Download from www.wowebook.com

ptg

1111Database Pages
3

4

track of the location of the information in a logical manner. If the data is less than 64
bytes, it is stored in the root structure itself.

If the amount of LOB data exceeds 32KB, SQL Server allocates intermediate B-tree index
nodes that point to the LOB pages. In this situation, the intermediate node pages are
stored on pages not shared between different occurrences of LOB columns; the intermedi-
ate node pages store nodes for only one LOB column in a single data row.

Storing LOB Data in the Data Row
To further conserve space and help minimize I/O, SQL Server 2008 supports storing LOB
data in the actual data row. When the LOB data is stored outside the data row pages, at a
minimum, SQL Server needs to perform one additional page read per row to get the LOB
data.

Why would you want to store LOB data in the row? Why not just store the data in a
varchar(8000)? Well, primarily because there is an upper limit of 8KB if the data is stored
within the data row (not counting the other columns). Using a LOB data type, you can
store more than 2 billion bytes of text. If you know most of your records will be small, but
on occasion, some very large values will be stored, the text in row option provides
optimum performance and better space efficiency for the majority of your LOB values,
while providing the flexibility you need for the occasional large values. This option also
provides the benefit of keeping the data all in a single column instead of having to split it
across multiple columns or rows when the data exceeds the size limit of a single row.

Header

Header

Root structure

Header

Header
LOB Pointer in
Data Row

Data Page

LOB Data Page

LOB Data Page

LOB Data Page

FIGURE 34.4 LOB data root structure pointing at the location of LOB data in the LOB B-tree.

 Download from www.wowebook.com

ptg

1112 CHAPTER 34 Data Structures, Indexes, and Performance

If you want to enable the text in row option for a table with a LOB column, use the
sp_tableoption stored procedure:

exec sp_tableoption pub_info, ‘text in row’, 512

This example enables up to 512 bytes of LOB data in the pub_info table to be stored in
the data row. The maximum amount of LOB data that can be stored in a data row is 7,000
bytes. When a LOB value exceeds the specified size, rather than store the 16-byte pointer
in the data row as it would normally, SQL Server stores the 24-byte root structure that
contains the pointers to the separate chunks of LOB data for the row in the LOB column.

The second parameter to sp_tableoption can be just the option ON. If no size is specified,
the option is enabled with a default size of 256 bytes. To disable the text in row option,
you can set its value to 0 or OFF with sp_tableoption. When the option is turned off, all
LOB data stored in the row is moved off to LOB pages and replaced with the standard 16-
byte pointer. This can be a time-consuming process for a large table.

Also, you should keep in mind that just because this option is enabled it doesn’t always
mean that the LOB data will be stored in the row. All other data columns that are not LOB
take priority over LOB data for storage in the data row. If a variable-length column grows
and there is not enough space left in the row or page for the LOB data, the LOB data is
moved off the page.

Storage of MAX Data
An alternative to the text and image data types in SQL Server 2008 is the option of defin-
ing variable-length data using the MAX specifier. When you use the MAX specifier with
varchar, nvarchar, and varbinary columns, SQL Server determines automatically whether
to store the data as a regular varchar, nvarchar, or varbinary value or as a LOB.
Essentially, if the actual length is less than 8,000 bytes, SQL Server treats it as if it were
one of the regular variable-length data types, including using row-overflow pages if neces-
sary. If the MAX column exceeds 8,000 bytes, it is stored like LOB data.

Index Pages

Index information is stored on index pages. An index page has the same layout as a data
page. The difference is the type of information stored on the page. Generally, a row in
an index page contains the index key and a pointer to the page or row at the next
(lower) level.

The actual information stored in an index page depends on the index type and whether it
is a leaf-level page. A leaf-level clustered index page is the data page itself; you’ve already
seen its structure. The information stored on other index pages is as follows:

. Clustered indexes, nonleaf pages—Each index row contains the index key and a
pointer (the fileId and a page address) to a page in the index tree at the next lower
level.

. Nonclustered index, nonleaf pages—Each index row contains the index key and
a page-down pointer (the file ID and a page address) to a page in the index tree at

 Download from www.wowebook.com

ptg

1113Space Allocation Structures
3

4

the next lower level. For nonunique indexes, the nonleaf row also contains the row
locator information for the corresponding data row.

. Nonclustered index, leaf pages—Rows on this level contain an index key and a
reference to a data row. For heap tables, this is the Row ID; for clustered tables, this
is the clustered key for the corresponding data row.

The actual structure and content of index rows, as well as the structure of the index
tree, are discussed in more detail later in this chapter.

Space Allocation Structures
When a table or index needs more space in a database, SQL Server needs a way to deter-
mine where space is available in the database to be allocated. If the table or index is still
fewer than eight pages in size, SQL Server must find a mixed extent with one or more
pages available that can be allocated. If the table or index is eight pages or larger in size,
SQL Server must find a free uniform extent that can be allocated to the table or index.

Extents

If SQL Server allocated space one page at a time as pages were needed for a table (or an
index), SQL Server would be spending a good portion of its time just allocating pages, and
the data would likely be scattered noncontiguously throughout the database. Scanning such
a table would not be very efficient. For these reasons, pages for each object are grouped
together and allocated in extents; an extent consists of eight logically contiguous pages.

When a table or index is created, it is initially allocated a page on a mixed extent. If no
mixed extents are available in the database, a new mixed extent is allocated. A mixed
extent can be shared by up to eight objects (each page in the extent can be assigned to a
different table or index).

As the table grows to at least eight pages in size, all future allocations to the table are done
as uniform extents.

Figure 34.5 shows the use of mixed and uniform extents.

Mixed Extent

Table 2

8

Table 1

9

Table 2

10

Index 1

11

Table 1

12

Table 3

13

Index 1

14

Table 1

15

Uniform Extent

Table 1

16

Table 1

17

Table 1

18

Table 1

19

Table 1

20

Table 1

21

Table 1

22

Table 1

23

Page
Address

Page
Address

FIGURE 34.5 Mixed and uniform extents.

 Download from www.wowebook.com

ptg

1114 CHAPTER 34 Data Structures, Indexes, and Performance

If SQL Server had to search throughout an entire database file to find free extents, it would-
n’t be efficient. Instead, SQL Server uses two special types of pages to record which extents
have been allocated to tables or indexes and whether it is a mixed or uniform extent:

. Global allocation map pages (GAMs)

. Shared global allocation map pages (SGAMs)

Global and Shared Global Allocation Map Pages

The allocation map pages track whether extents have been allocated to objects and
indexes and whether the allocation is for mixed extents or uniform extents. As mentioned
in the preceding section, there are two types of GAMs:

. Global allocation map (GAM)—The GAM keeps track of all allocated extents in a
database, regardless of what it’s allocated to. The structure of the GAM is straightfor-
ward: each bit in the page outside the page header represents one extent in the file,
where 1 means that the extent is not allocated, and 0 means that the extent is allo-
cated. Nearly 8,000 bytes (64,000 bits) are available in a GAM page after the header
and other overhead bytes are taken into account. Therefore, a single GAM covers
approximately 64,000 extents, or 4GB (64,000 * 64KB) of data.

. Shared global allocation map (SGAM)—The SGAM keeps track of mixed extents
that have free space available. An SGAM has a structure similar to a GAM, with each
bit representing an extent. A value of 1 means that the extent is a mixed extent and
there is free space (at least one unused page) available on the extent. A value of 0
means that the extent is not currently allocated, that the extent is a uniform extent,
or that the extent is a mixed extent with no free pages.

Table 34.6 summarizes the meaning of the bit in GAMs and SGAMs.

When SQL Server needs to allocate a uniform extent, it simply searches the GAM for a bit
with a value of 1 and sets it to 0 to indicate it has been allocated. To find a mixed extent
with free pages, it searches the SGAM for a bit set to 1. When all pages in a mixed extent
are used, its corresponding bit is set to 0. When a mixed extent needs to be allocated, SQL
Server searches the GAM for an extent whose bit set to 1 and sets the bit to 0, and the
corresponding SGAM bit is set to 1. There is some more processing involved as well, such
as spreading the data evenly across database files, but the allocation algorithms are still
relatively simple.

TABLE 34.6 Meaning of the GAM and SGAM Bits

Extent Usage GAM Bit SGAM Bit

Free, not used 1 0

Uniform or mixed with no free pages 0 0

Mixed, with free pages available 0 1

 Download from www.wowebook.com

ptg

1115Space Allocation Structures
3

4

SQL Server is able to easily locate GAM pages in a database because the first GAM page is
located at the third page in the file (page number 2). There is another GAM every 511,230
pages after the first GAM. The fourth page (page number 3) in each database file is the
SGAM page, and there is another SGAM each 511,230 pages after the first SGAM.

Page Free Space Pages

A page free space (PFS) page records whether each page is allocated and the amount of free
space available on the page. Each PFS covers 8,088 contiguous pages in the file. For each
of the 8,088 pages, the PFS has a 1-byte record that contains a bitmap for each page indi-
cating whether the page is empty, 1 to 50% full, 51 to 80% full, 81 to 95% full, or more
than 95% full. The first PFS page in a file is located at page number 1, the second PFS page
is located at page 8088, and each additional PFS page is located every 8,088 pages after
that. SQL Server uses PFS pages to find free pages on extents and to find pages with space
available on extents when a new row needs to be added to a table or index.

Figure 34.6 shows the layout of GAM, SGAM, and PFS pages in a database file. Note that
every file has a single file header located at page 0.

Index Allocation Map Pages

Index allocation map (IAM) pages keep track of the extents used by a heap or index. Each
heap table and index has at least one IAM page for each file where it has extents. An IAM
cannot reference pages in other database files; if the heap or index spreads to a new data-
base file, a new IAM for the heap or index is created in that file. IAM pages are allocated as
needed and are spread randomly throughout the database files.

An IAM page contains a small header that has the address of the first extent in the range
of pages being mapped by the IAM. It also contains eight page pointers that keep track of
index or heap pages that are in mixed extents. These pointers might or might not contain
any information, depending on whether any data has been deleted from the tables and
the page(s) released. Remember, an index or heap will have no more than eight pages in
mixed extents (after eight pages, it begins using uniform extents), so only the first IAM
page stores this information. The remainder of the IAM page is for the allocation bitmap.
The IAM bitmap works similarly to the GAM, indicating which extents over the range of
extents covered by the IAM are used by the heap or index the IAM belongs to. If a bit is
on, the corresponding extent is allocated to the table.

Each IAM covers a possible range of 63,903 extents (511,224 pages), covering a 4GB
section of a file. Each bit represents an extent within that range, whether or not the

Page 0

File
Heaader

Page 2

GAM
Page

Page 3

SGAM
Page

Page
8089

 PFS
Page

…

Page 1

 PFS
Page

Page
16177

 PFS
Page

…

Page
509545

 PFS
Page

Page
511232

GAM
Page

Page
511233

SGAM
Page

… … …

FIGURE 34.6 The layout of GAM, SGAM, and PFS pages in a database file.

 Download from www.wowebook.com

ptg

1116 CHAPTER 34 Data Structures, Indexes, and Performance

extent is allocated to the object that the IAM belongs to. If the bit is set to 1, the relative
extent in the range is allocated to the index or heap. If the bit is set to 0, the extent is
either not allocated or might be allocated to another heap or index.

For example, assume that an IAM page resides at page 649 in the file. If the bit pattern in
the first byte of the IAM is 1010 0100, the first, third, and sixth extents within the range
of the IAM are allocated to the heap or index. The second, fourth, fifth, seventh, and
eighth extents are not.

NOTE

For a heap table, the data pages and rows within them are not stored in any specific
order. Unlike versions of SQL Server prior to 7.0, the pages in a heap structure are not
linked together in a page chain. The only logical connection between data pages is the
information recorded in the IAM pages, which are linked together. The structure of heap
tables is examined in more detail later in this chapter.

Differential Changed Map Pages

The seventh page (page number 6), and every 511,232nd page thereafter, in the database
file is the differential changed map (DCM) page. This page keeps track of which extents in a
file have been modified since the last full database backup. When an extent has been
modified, its corresponding bit in the DCM is turned on. This information is used when a
differential backup is performed on the database. A differential backup copies only the
extents changed since the last full backup was made. Using the DCM, SQL Server can
quickly tell which extents need to be backed up by examining the bits on the DCM pages
for each data file in the database. When a full backup is performed for the database, all
the bits are set back to 0.

Bulk Changed Map Pages

The eighth page (page number 7), and every 511,232nd page thereafter, in the database file
is the bulk changed map (BCM). When you perform a minimally or bulk-logged operation
in SQL Server 2008 in BULK_LOGGED recovery mode, SQL Server logs only the fact that the
operation occurred and doesn’t log the actual data changes. The operation is still fully
recoverable because SQL Server keeps track of what extents were actually modified by the
bulk operation in the BCM page. Similar to the DCM page, each bit on a BCM page repre-
sents an extent within its range, and if the bit is set to 1, that indicates that the corre-
sponding extent has been changed by a minimally logged bulk operation since the last
full database backup. All the bits on the BCM page are reset to 0 whenever a full database
backup or log backup occurs.

When you initiate a log backup for a database using the BULK_LOGGED recovery model, SQL
Server scans the BCM pages and backs up all the modified extents along with the contents
of the transaction log itself. You should be aware that the log file itself might be small, but
the backup of the log can be many times larger if a large bulk operation has been
performed since the last log backup.

 Download from www.wowebook.com

ptg

1117Data Compression
3

4

Data Compression
SQL Server 2008 introduced a new data compression feature that is available in Enterprise
and Datacenter Editions. Data compression helps to reduce both storage and memory
requirements as the data is compressed both on disk and when brought into the SQL
Server data cache.

When compression is enabled and data is written to disk, it is compressed and stored in
the designated compressed format. When the data is read from disk into the buffer cache,
it remains in its compressed format. This helps reduce both storage requirements and
memory requirements. It also reduces I/O because more data can be stored on a data page
when it’s compressed. When the data is passed to another component of SQL Server,
however, the Database Engine then has to uncompress the data on the fly. In other words,
every time data has to be passed to or from the buffered cache, it has to be compressed or
uncompressed. This requires extra CPU overhead to accomplish. However, in most cases,
the amount of I/O and buffer cache saved by compression more than makes up for the
CPU costs, boosting the overall performance of SQL Server.

Data compression can be applied on the following database objects:

. Tables (clustered or heap)

. Nonclustered indexes

. Indexed views

As the DBA, you need to evaluate which of the preceding objects in your database could
benefit from compression and then decide whether you want to compress it using either row-
level or page-level compression. Compression is enabled or disabled at the object level There is
no single option you can enable that turns compression on or off for all objects in the data-
base. Fortunately, other than turning compression on or off for the preceding objects, you
don’t have to do anything else to use data compression. SQL Server handles data compression
transparently without your having to re-architect your database or your applications.

Row-Level Compression

Row-level compression isn’t true data compression. Instead, space savings are achieved by
using a more efficient storage format for fixed-length data to use the minimum amount of
space required. For example, the int data type uses 4 bytes of storage regardless of the value
stored, even NULL. However, only a single byte is required to store a value of 100. Row-level
compression allows fixed-length values to use only the amount of storage space required.

Row-level compression saves space and reduces I/O by

. Reducing the amount of metadata required to store data rows

. Storing fixed-length numeric data types as if they were variable-length data types,
using only as many bytes as necessary to store the actual value

. Storing CHAR data types as variable-length data types

. Not storing NULL or 0 values

 Download from www.wowebook.com

ptg

1118 CHAPTER 34 Data Structures, Indexes, and Performance

Row-level data compression provides less compression than page-level data compression,
but it also incurs less overhead, reducing the amount of CPU resources required to
implement it.

Row-level compression can be enabled when creating a table or index or using the ALTER
TABLE or ALTER INDEX commands by specifying the WITH (DATA_COMPRESSION = ROW)
option. The following example enables row compression on the titles table in the
bigpubs2008 database:

ALTER TABLE titles REBUILD WITH (DATA_COMPRESSION=ROW)

Additionally, if a table or index is partitioned, you can apply compression at the parti-
tion level.

When row-level compression is applied to a table, a new row format is used that is unlike
the standard data row format discussed previouslywhich has a fixed-length data section
separate from a variable-length data section (see Figure 34.3). This new row format is
referred to as column descriptor, or CD, format. The name of this row format refers to the
fact the every column has description information contained in the row itself. Figure 34.7
illustrates a representative view of the CD format (a definitive view is difficult because,
except for the header, the number of bytes in each region is completely dependent on the
values in the data row).

The row header is always 1 byte in length and contains information similar to Status Bits
A in a normal data row:

. Bit 0—This bit indicates the type of record (1 = CD record format).

. Bit 1—This bit indicates whether the row contains versioning information.

. Bits 2–4—This three-bit value indicates what kind of information is stored in the
row (such as primary record, ghost record, forwarding record, index record).

. Bit 5—This bit indicates whether the row contains a Long data region (with values
greater than 8 bytes in length).

. Bits 6 and 7—These bits are not used.

The CD region consists of two parts. The first is either a 1- or 2-byte value indicating the
number of short columns (8 bytes or less). If the most significant bit of the first byte is set
to 0, it’s a 1-byte field representing up to 127 columns; if it’s 1, it’s a 2-byte field represent-
ing up to 32,767 columns. Following the first 1 or 2 bytes is the CD array. The CD array
uses 4 bits for each column in the table to represent information about the length of the

Header
(1 byte)

CD Region Short Data Region Long Data Region Special Information

FIGURE 34.7 A representative structure of a CD format row.

 Download from www.wowebook.com

ptg

1119Data Compression
3

4

column. A bit representation of 0 indicates the column is NULL. A bit representation of the
values 1 to 9 indicates the column is 0 to 8 bytes in length, respectively. A bit representa-
tion of 10 (0xa) indicates that the corresponding column value is a long data value and
uses no space in the short data region. A bit representation of 11 (0xb) represents a bit
column with a value of 1, and a bit representation of 12 (0xc) indicates that the corre-
sponding value is a 1-byte symbol representing a value in the page compression dictionary
(the page compression dictionary is discussed next in the page-level compression section).

The short data region contains each of the short data values. However, because accessing
the last columns can be expensive if there are hundreds of columns in the table, columns
are grouped into clusters of 30 columns. At the beginning of the short data region, there is
an area called the short data cluster array. Each entry in the array is a single byte, which
indicates the sum of the sizes of all the data in the previous cluster in the short data
region; the value is essentially a pointer to the first column of the cluster (no row offset is
needed for the first cluster because it starts immediately after the CD region).

Any data value in the row longer than 8 bytes is stored in the long data region. This can
include LOB and row-overflow pointers. Long data needs an actual offset value to allow
SQL Server to locate each value. This offset array looks similar to the offset array used in
the standard data row structure. The long data region consists of three parts: an offset
array, a long data cluster array, and the long data. The long data cluster array is similar to
the short data cluster array; it has one entry for each 30-column cluster (except for the last
one) and serves to limit the cost of locating columns near the end of a long list of columns.

The special information section at the end of the row contains three optional pieces of
information. The existence of any or all of this information is indicated by bits in the first
1-byte header at the beginning of the row. The three special pieces of information are

. Forwarding pointer—This pointer is used in a heap when a row is forwarded due
to an update (forward pointers are discussed later in this chapter).

. Back pointer—If the row is a forwarded row, it contains a pointer back to the origi-
nal row location.

. Versioning information—If snapshot isolation is being used, 14 bytes of version-
ing information are appended to the row.

Page-Level Compression

Page-level compression is an implementation of true data compression, using both column
prefix and dictionary-based compression. Data is compressed be storing repeating values or
common prefixes only once and then referencing those values from other columns and
rows. When you implement page compression for a table, row compression is applied as
well. Page-level compression offers increased data compression over row-level compression
alone but at the expense of greater CPU utilization. It works using these techniques:

. First, row-level data compression is applied to fit as many rows as it can on a
single page.

 Download from www.wowebook.com

ptg

1120 CHAPTER 34 Data Structures, Indexes, and Performance

. Next, column prefix compression is run. Essentially, repeating patterns of data at the
beginning of the values of a given column are removed and substituted with an
abbreviated reference, which is stored in the compression information (CI) structure
stored after the page header.

. Finally, dictionary compression is applied on the page. Dictionary compression
searches for repeated values anywhere on a page and stores them in the CI.

Page compression is applied only after a page is full and if SQL Server determines that
compressing a page will save a meaningful amount of space.

The amount of compression provided by page-level data compression is highly dependent
on the data stored in a table or index. If a lot of the data repeats itself, compression is
more efficient. If the data is more randomly discrete values, fewer benefits are gained from
using page-level compression.

Column prefix compression looks at the column values on a single page and chooses a
common prefix that can be used to reduce the storage space required for values in that
column. The longest value in the column that contains the prefix is chosen as the anchor
value. A row that represents the prefix values for each column is created and stored in the
CI structure that immediately follows the page header. Each column is then stored as a
delta from the anchor value, where repeated prefix values in the column are replaced by a
reference to the corresponding prefix. If the value in a row does not exactly match the
selected prefix value, a partial match can still be indicated.

For example, consider a page that contains the following data rows before prefix compres-
sion as shown in Figure 34.8.

After you apply column prefix compression on the page, the CI structure is stored after
the page header holding the prefix values for each column. The columns then are stored
as the difference between the prefix and column value, as shown in Figure 34.9.

In the first column in the first data row, the value 4b represents that the first four charac-
ters of the prefix (aaab) are present at the beginning of the column for that row and also
the character b. If you append the character b to the first four values of the prefix, it
rebuilds the original value of aaabb. For any columns values that are [empty], the column
matches the prefix value exactly. Any column value that starts with 0 means that none of
the first characters of the column match the prefix. For the fourth column, there is no
common prefix value in the columns, so no prefix value is stored in the CI structure.

Page Header

aaabb aaaab abcd abc

aaabccc bbbbb abcd mno

aaaccc aaaacc bbbb xyz
Data Rows

FIGURE 34.8 Sample page of a table before prefix compression.

 Download from www.wowebook.com

ptg

1121Data Compression
3

4

aaabccc

Page Header

Data Rows

aaabccc aaabcccaaabccc

4b4b abcd[empty]

0bbbb[empty] mno[empty]

[empty]3ccc xyz0bbbb

FIGURE 34.9 Sample page of a table after prefix compression.

After column prefix compression is applied to every column individually on the page, SQL
Server then looks to apply dictionary compression. Dictionary compression looks for
repeated values anywhere on the page and also stores them in the CI structure after the
column prefix values. Dictionary compression values replace repeated values anywhere on
a page. The following illustrates the same page shown previously after dictionary compres-
sion has been applied:

The dictionary is stored as a set of these duplicate values and a symbol to represent these
values in the columns on the page. As you can see in this example, 4b is repeated in
multiple columns in multiple rows, and the value is replaced by the symbol 0 throughout
the page. The value 0bbbb is replaced by the symbol 1. SQL Server recognizes that the
value stored in the column is a symbol and not a data value by examining the coding in
the CD array, as discussed earlier.

Not all pages contain both the prefix record and a dictionary. Having them both depends
on whether the data has enough repeating values or patterns to warrant either a prefix
record or a dictionary.

Data Rows

Page Header

0 0 [empty] abcd
[empty] 1 [empty] mno

3ccc [empty] 1 xyz

aaabccc aaaacc abcd [NULL]
4b 0bbbb

FIGURE 34.10 Sample page of a table after dictionary compression.

 Download from www.wowebook.com

ptg

1122 CHAPTER 34 Data Structures, Indexes, and Performance

The CI Record

The CI record is the only main structural change to a page when it is page compressed
versus a page that uses row compression only. As shown in the previous examples, the CI
record is located immediately after the page header. There is no entry for the CI record in
the row offset table because its location is always the same. A bit is set in the page header
to indicate whether the page is page compressed. When this bit is present, SQL Server
knows to look for the CI record. The CI record contains the data elements shown in
Table 34.7.

Implementing Page Compression

Page compression can be implemented for a table at the time it is created or by using the
ALTER TABLE command, as in the following example:

ALTER TABLE sales_big REBUILD WITH (DATA_COMPRESSION=PAGE)

Unlike row compression, which is applied immediately on the rows, page compression
isn’t applied until the page is full. The rows cannot be compressed until SQL Server can
determine what encodings for prefix and dictionary substitution are going to be used to
replace the actual data. When you enable page compression for a table or a partition, SQL
Server examines every full page to determine the possible space savings. Any pages that
are not full are not considered for compression. During the compression analysis, the
prefix and dictionary values are created, and the column values are modified to reflect the
prefix and dictionary values. Then row compression is applied. If the new compressed
page can hold at least five additional rows, or 25% more rows than the page currently

TABLE 34.7 Data Elements Within the CI Record

Name Description

Header This structure contains 1 byte to keep track of information about the CI. Bit 0 is
the version (currently always 0), Bit 1 indicates the presence of a column prefix
anchor record, and Bit 2 indicates the presence of a compression dictionary.

PageModCount This value keeps track of the number of changes to the page to determine
whether the compression on the page should be reevaluated and the CI record
rebuilt.

Offsets This element contains values to help SQL Server find the dictionary. It contains
the offset of the end of the Column prefix anchor record and offset of the end of
the CI record itself.

Anchor Record This record looks exactly like a regular CD record (see Figure 34.7). Values
stored are the common prefix values for each column, some of which might be
NULL.

Dictionary The first 2 bytes represent the number of entries in the dictionary, followed by
an offset array of 2-byte entries, which indicate the end offset of each dictionary
entry, and then the actual dictionary values.

 Download from www.wowebook.com

ptg

1123Data Compression
3

4

holds, the page is compressed. If neither one of these criteria is met, the compressed
version of the page is discarded.

New rows inserted into a compressed page are compressed as they are inserted. However,
new entries are not added to the prefix list or dictionary based on a single new row. The
prefix values and dictionary symbols are rebuilt only on an all-or-nothing basis. After the
page is changed a sufficient number of times, SQL Server evaluates whether to rebuild the
CI record. The PageModCount field in the CI record is used to keep track of the number of
changes to the page since the CI record was last built or rebuilt. This value is updated
every time a row is updated, deleted, or inserted. If SQL Server encounters a full page
during a data modification and the PageModCount is greater than 25 or the PageModCount
divided by the number of rows on the page is greater than 25%, SQL Server reapplies the
compression analysis on the page. Again, only if recompressing the page creates room for
five additional rows, or 25% more rows than the page currently holds, the new
compressed page replaces the existing page.

In B-tree structures (nonclustered indexes or a clustered table), only the leaf-level and data
pages are considered for compression. When you insert a new row into a leaf or data page,
if the compressed row fits, it is inserted and nothing more is done. If it doesn’t fit, SQL
Server attempts to recompress the page and then recompress the row based on the new CI
record. If the row fits after recompression, it is inserted and nothing more is done. If the
row still doesn’t fit, the page needs to be split. When a compressed page is split, the CI
record is copied to the new page exactly as it was, along with the rows moved to the new
page. However, the PageModCount value is set to 25, so that when the new page gets full, it
will be immediately analyzed for recompression. Leaf and data pages are also checked for
recompression whenever you run an index rebuild or shrink operation.

If you enable compression on a heap table, pages are evaluated for compression only
during rebuild and shrink operations. Also, if you drop a clustered index on a table,
turning it into a heap, SQL Server runs compression analysis on any full pages.
Compression is avoided during normal data modification operations on a heap to avoid
changes to the Row IDs, which are used as the row locators for any indexes on the heap.
(See the “Understanding Index Structures” section later in this chapter for a discussion of
row locators.) Although the RowModCounter is still maintained, SQL Server essentially
ignores it and never tries to recompress a page based on the RowModCounter value.

Evaluating Page Compression

Before choosing to implement page compression, you should determine if the overhead of
page compression will provide sufficient benefit in space savings. To determine how
changing the compression state will affect a table or an index, you can use the SQL Server
2008 sp_estimate_data_compression_savings stored procedure, which is available only
in the editions of SQL Server that support data compression. This stored procedure evalu-
ates the effects of compression by sampling up to 5,000 pages in the table and creating a
copy of these 5,000 pages of the table in tempdb, performing the compression, and then
using the sample to estimate the overall size for the table after compression. The syntax
for sp_estimate_data_compression_savings is as follows:

 Download from www.wowebook.com

ptg

1124 CHAPTER 34 Data Structures, Indexes, and Performance

sp_estimate_data_compression_savings

[@schema_name =] ‘schema_name’

, [@object_name =] ‘object_name’

, [@index_id =] index_id

, [@partition_number =] partition_number

, [@data_compression =] ‘data_compression’

You can estimate the data compression savings for a table for either row or page compres-
sion by specifying either ’ROW’ or ’PAGE’ as the value for the @data_compression parame-
ter. You can also estimate the average size of the compressed table if compression is
disabled by specifying NONE as the value for @data_compression. You can also use the
sp_estimate_data_compression_savings procedure to estimate the space savings for
compression on a specific index or partition. The following example estimates the space
savings if page compression were applied to the big_sales table in the bigpubs2008 table
versus row compression:

use bigpubs2008

go

exec sp_estimate_data_compression_savings ‘dbo’, ‘sales_big’, null, null, ‘PAGE’

go

object_name schema_name index_id partition_number

size_with_current_compression_setting(KB)

size_with_requested_compression_setting(KB)

sample_size_with_current_compression_setting(KB)

sample_size_with_requested_compression_setting(KB)

------------ ------------ --------- ----------------

--

--

--

sales_big dbo 1 1

116512

39128

40016

13440

sales_big dbo 2 1

36648

22128

10904

6584

exec sp_estimate_data_compression_savings ‘dbo’, ‘sales_big’, null, null, ‘ROW’

go

 Download from www.wowebook.com

ptg

1125Data Compression
3

4

object_name schema_name index_id partition_number

size_with_current_compression_setting(KB)

size_with_requested_compression_setting(KB)

sample_size_with_current_compression_setting(KB)

sample_size_with_requested_compression_setting(KB)

------------ ------------ --------- ----------------

--

--

--

sales_big dbo 1 1

116512

97936

40344

33912

sales_big dbo 2 1

36648

27176

10992

8152

You can see in this example that the space savings from page compression would be
significant, with an estimated reduction in the size of the table itself (index_id = 1) from
113MB (116,512 KB) to 38MB (39,128 KB), a savings of more than 66%. Row compression
would not provide nearly as significant a savings, with an estimated reduction in size from
113MB to only 95MB (97,936 KB) , only a 16% savings.

If you compress the table, you can compare the estimated space savings to the actual size.
For example, let’s look at the initial size of the sales_big table:

use bigpubs2008

go

select sum(page_count) as pages, sum(compressed_page_count) as compressed_pages

from sys.dm_db_index_physical_stats (DB_ID(),

OBJECT_ID(‘sales_big’), 1, null, ‘DETAILED’)

where index_level = 0

SELECT SUM(used_page_count/ 128.0) AS size_in_MB

FROM sys.dm_db_partition_stats

WHERE object_id=OBJECT_ID(‘dbo.sales_big’) AND index_id=1

GO

pages compressed_pages

--

14519 0

 Download from www.wowebook.com

ptg

1126 CHAPTER 34 Data Structures, Indexes, and Performance

size_in_MB

--

113.742187

Now, implement page compression on the sales_big table:

ALTER TABLE sales_big REBUILD WITH (DATA_COMPRESSION=PAGE)

Now, re-examine the size of the sales_big table:

select sum(page_count) as pages, sum(compressed_page_count) as compressed_pages

from sys.dm_db_index_physical_stats (DB_ID(),

OBJECT_ID(‘sales_big’), 1, null, ‘DETAILED’)

where index_level = 0

SELECT SUM(used_page_count/ 128.0) AS size_in_MB

FROM sys.dm_db_partition_stats

WHERE object_id=OBJECT_ID(‘dbo.sales_big’) AND index_id=1

GO

pages compressed_pages

--

4452 4451

size_in_MB

--

34.906250

In this example, you can see that the table was reduced in size significantly, from 14,519
pages to 4,452 pages (113.7MB to 34.9MB), pretty much right in line with the estimated
space savings. You can also see that compression was reasonably effective, compressing
4,451 of 4,452 pages.

Be aware that you may not always receive the space savings predicted due to the effects of
fill factor and the actual size of the rows. For example, if you have a row that is 8,000 bytes
long and compression reduces its size by 40%, only one row can still be fit on the data page,
so there is no space savings for that page. If the results of running
sp_estimate_data_compression_savings indicate that the table will grow, this indicates that
many of the rows in the table are using nearly the full precision of the data types, and the
addition of the small overhead needed for the compressed format is more than the savings
from compression. In this, it is obvious that there is no advantage to enabling compression.

Managing Data Compression with SSMS

The preceding examples show the T-SQL commands you can use to evaluate and manage
row and page compression in SQL Server 2008. SSMS provides a Data Compression Wizard
for evaluating and performing data compression activities. To invoke the Data

 Download from www.wowebook.com

ptg

1127Understanding Table Structures
3

4

Compression Wizard, right-click on the table in the Object Explorer and select Storage and
then select Manage Compression. Click Next to move past the Welcome page to bring up
the Select Compression Type page, as shown in Figure 34.11.

On the Compression Type Page, you can choose the compression type to use at the parti-
tion level or to use the same compression type for all partitions. You can also see the esti-
mated savings for selected compression type by clicking on the Calculate button. After
you click on Calculate, the wizard displays the current partition size and requested
compression size in the corresponding columns (note that it might take a few moments to
do the calculation).

After making your selections, click on Next to display the Select and Output Option page.
Here, you have the opportunity to have the wizard generate a script of commands you can
run manually to implement the selected compression type. If you choose to generate a
script, you have the option to save the script to a file, the Clipboard, or to a new query
window in SSMS. You also have the option to run the compression changes immediately
or schedule a SQL Agent job to run the changes at a specified time.

Understanding Table Structures
A table is logically defined as a set of columns with certain properties, such as the data
type, nullability, constraints, and so on. Information about data types, column properties,
constraints, and other information related to defining and creating tables can be found in
Chapters 24, “Creating and Managing Tables,” and 27, “Creating and Managing Views.”

FIGURE 34.11 The Data Compression Wizard’s Select Compression Type page.

 Download from www.wowebook.com

ptg

1128 CHAPTER 34 Data Structures, Indexes, and Performance

Internally, a table is contained in one or more partitions. A partition is a user-defined unit of
data organization. By default, a table has at least one partition that contains all the table pages.
This partition resides in a single filegroup, as described earlier. When a table has multiple parti-
tions, the data is partitioned horizontally so that groups of rows are mapped into individual
partitions, based on a specified column. The partitions can be placed in one or more filegroups
in the database. The table is treated as a single logical entity when queries or updates are
performed on the data. Figure 34.12 shows the organization of a table in SQL Server 2008.

Each table has one row in the sys.objects catalog view, and each table and index in a
database is represented by a single row in the sys.indexes catalog view. Each partition of
a table or index is represented by one or more rows in the sys.partitions catalog view.
Each partition can have three types of data, each stored on its own set of pages: in-row
data pages, row-overflow pages, and LOB data pages. Each of these types of pages has an
allocation unit, which is contained in the sys.allocation_units view. There is always at
least one allocation unit for the in-row data. The following sample query shows how to
view the partition and allocation information for the databaselog and currency tables in
the AdventureWorks2008R2 database:

use AdventureWorks2008R2

go

SELECT convert(varchar(15), o.name) AS table_name,

p.index_id as indid,

convert(varchar(30), i.name) AS index_name ,

convert(varchar(18), au.type_desc) AS allocation_type,

au.data_pages as d_pgs,

partition_number as ptn

FROM sys.allocation_units AS au

JOIN sys.partitions AS p ON au.container_id = p.partition_id

JOIN sys.objects AS o ON p.object_id = o.object_id

JOIN sys.indexes AS i ON p.index_id = i.index_id AND i.object_id = p.object_id

Table

Partitionn…

Heap or
B-Tree

Partition1

Heap or
B-Tree

Data LOB
Row

Overflow Data LOB
Row

Overflow

FIGURE 34.12 Table organization in SQL Server 2008.

 Download from www.wowebook.com

ptg

1129Understanding Table Structures
3

4

WHERE o.name = N’databaselog’ OR o.name = N’currency’

ORDER BY o.name, p.index_id;

table_name indid index_name allocation_type d_pgs ptn

----------- ----- ---------------------------- ----------------- ----- ---

Currency 1 PK_Currency_CurrencyCode IN_ROW_DATA 1 1

Currency 2 AK_Currency_Name IN_ROW_DATA 1 1

DatabaseLog 0 NULL IN_ROW_DATA 753 1

DatabaseLog 0 NULL LOB_DATA 0 1

DatabaseLog 0 NULL ROW_OVERFLOW_DATA 0 1

DatabaseLog 2 PK_DatabaseLog_DatabaseLogID IN_ROW_DATA 3 1

In this example, you can see that the DatabaseLog table (which is a heap table) has three
allocation units associated with the table—LOB, row-overflow, and in-row data—and one
allocation unit for the nonclustered index PK_DatabaseLog_DatabaseLogID. The currency
table (which is a clustered table) has a single in-row allocation unit for both the table
(index_id = 1) and the nonclustered index (AK_Currency_Name).

In SQL Server 2008, there are two types of tables: heap tables and clustered tables. Let’s
look at how they are stored.

Heap Tables

A table without a clustered index is a heap table. There is no imposed ordering of the
data rows for a heap table. Additionally, there is no direct linkage between the pages in a
heap table.

By default, a heap has a single partition. Heaps have one row in sys.partitions, with an
index ID of 0 for each partition used by the heap. When a heap has multiple partitions,
each partition has a heap structure that contains the data for that specific partition. For
example, if a heap has four partitions, there are four heap structures (one in each parti-
tion) and four rows in sys.partitions.

Depending on the data types in the heap, each heap structure has one or more allocation
units to store and manage the data for each partition. At a minimum, each heap has one
IN_ROW_DATA allocation unit per partition. The heap also has one LOB_DATA allocation unit
per partition, if it contains large object columns. It also has one ROW_OVERFLOW_DATA allo-
cation unit per partition if it contains variable-length columns that exceed the 8,060-byte
row size limit.

To access the contents of a heap, SQL Server uses the IAM pages. In SQL Server 2008, each
heap table has at least one IAM page. The address of the first IAM page is available in the
undocumented sys.sytem_internals_allocation_units system view. The column
first_iam_page points to the first IAM page in the chain of IAM pages that manage the
space allocated to the heap in a specific partition. The following query returns the first
IAM pages for each of the allocation units for the heap table DatabaseLog in
AdventureWorks2008R2:

 Download from www.wowebook.com

ptg

1130 CHAPTER 34 Data Structures, Indexes, and Performance

use AdventureWorks2008R2

go

select p.partition_number as ptn,

type_desc,

filegroup_id,

first_iam_page

from sys.system_internals_allocation_units i

inner join

sys.partitions p

on p.hobt_id = i.container_id

where p.object_id = OBJECT_ID(‘DatabaseLog’)

and index_id = 0

go

ptn type_desc filegroup_id first_iam_page

----------- -------------------- ------------ --------------

1 IN_ROW_DATA 1 0xAA0000000100

1 LOB_DATA 1 0xB90000000100

1 ROW_OVERFLOW_DATA 1 0x000000000000

Note that the value 0x000000000000 for the first_iam_page for ROW_OVERFLOW_DATA indi-
cates that no extents have yet been allocated for storing row-overflow data.

NOTE

The sys.system_internals_allocation_units system view is reserved for Microsoft
SQL Server internal use only. Future compatibility and availability of this view is not guar-
anteed.

The data pages and rows in the heap are not sorted in any specific order and are not linked.
The IAM page registers which extents are used by the table. SQL Server can then simply scan
the allocated extents referenced by the IAM page, in physical order. This essentially avoids
the problem of page chain fragmentation during reads because SQL Server always reads full
extents in sequential order. Using the IAM pages to set the scan sequence also means that
rows from the heap often are not returned in the order in which they were inserted.

As discussed earlier, each IAM can map a maximum of 63,903 extents for a table. As a table
uses extents beyond the range of those 63,903 extents, more IAM pages are created for the
heap table as needed. A heap table also has at least one IAM page for each file on which
the heap table has extents allocated. Figure 34.13 illustrates the structure of a heap and
how its contents are traversed using the IAM pages.

Clustered Tables

A clustered table is a table that has a clustered index defined on it. When you create a clus-
tered index, the data rows in the table are physically sorted in the order of the columns in
the index key. The data pages are chained together in a doubly linked list (each page points

 Download from www.wowebook.com

ptg

1131Understanding Table Structures
3

4

IAM

File A

SYS.SYSTEM_INTERNALS_ALLOCATION_UNITS

ALLOCATION_UNIT_ID TYPE FILEGROUP ID CONTAINER ID FIRST PAGE ROOT
 PAGE

FIRST IAM
PAGE

TOTAL
PAGES

USED
PAGES

DATA
PAGES

IAMData
Page

Data
Page

Data
Page

Data
Page

Data
Page•••••

File B

IAM Data
Page

Data
Page

Data
Page

Data
Page

FIGURE 34.13 The structure of a heap table.

to the next page and to the previous page). Normally, data pages are not linked. Only
index pages within a level are linked in this manner to allow for ordered scans of the data
in an index level. Because the data pages of a clustered table constitute the leaf level of the
clustered index, they are chained as well. This allows for an ordered table scan. The page
pointers are stored in the page header. Figure 34.14 shows a simplified example of the data
pages of a clustered table. (Note that the figure shows only the data pages.)

Previous

Albert, Lynn,…

Alexis, Amy,…

Cox, Nancy,…

Dean, Beth,…

Next Previous

Eddy, Elizabeth,…

Franks, Anabelle,…

Hunt, Sally,…

Martin, Emma,…

Next Previous

Smith, David,…

Toms, Mike,…

Watson, Tom,…

Next

FIGURE 34.14 The data page structure of a clustered table.

 Download from www.wowebook.com

ptg

1132 CHAPTER 34 Data Structures, Indexes, and Performance

TIP

More details on the structure and maintenance of clustered tables are provided in the
remainder of this chapter.

Understanding Index Structures
When you run a query against a table that has no indexes, SQL Server has to read every
page of the table, looking at every row on each page to find out whether each row satisfies
the search arguments. SQL Server has to scan all the pages because there’s no way of
knowing whether any rows found are the only rows that satisfy the search arguments.
This search method is referred to as a table scan.

A table scan is not an efficient way to retrieve data unless you really need to retrieve all
rows. The Query Optimizer in SQL Server always calculates the cost of performing a table
scan and uses that as a baseline when evaluating other access methods. The various access
methods and query plan cost analysis are discussed in more detail in Chapter 35,
“Understanding Query Optimization.”

Suppose that a table is stored on 10,000 pages; even if only one row is to be returned or
modified, all the pages must be searched, resulting in a scan of approximately 80MB of
data (that is, 10,000 pages × 8KB per page = 80,000KB).

Indexes are structures stored separately from the actual data pages; they contain pointers
to data pages or data rows. Indexes are used to speed up access to the data; they are also
the mechanism used to enforce the uniqueness of key values.

Indexes in SQL Server are balanced trees (B-trees; see Figure 34.12). There is a single root
page at the top of the tree, which branches out into N pages at each intermediate level
until it reaches the bottom (leaf level) of the index. The leaf level has one row stored for
each row in the table. The index tree is traversed by following pointers from the upper-

Level 2
(Root)

Level 1
(Intermediate)

Level 0
(Leaf)

FIGURE 34.15 The basic structure of a B-tree index.

 Download from www.wowebook.com

ptg

1133Understanding Index Structures
3

4

level pages down through the lower-level pages. Each level of the index is linked as a
doubly linked list.

An index can have many intermediate levels, depending on the number of rows in the
table, index type, and index key width. The maximum number of columns in an index is
16; the maximum width of an index row is 900 bytes.

To provide a more efficient mechanism to identify and locate specific rows within a table
quickly and easily, SQL Server supports two types of indexes: clustered and nonclustered.

Clustered Indexes

When you create a clustered index, all rows in the table are sorted and stored in the clus-
tered index key order. Because the rows are physically sorted by the index key, you can
have only one clustered index per table. You can think of the structure of a clustered index
as being similar to a filing cabinet: the data pages are like folders in a file drawer in alpha-
betical order, and the data rows are like the records in the file folder, also in sorted order.

You can think of the intermediate levels of the index tree as the file drawers, also in alpha-
betical order, that assist you in finding the appropriate file folder. Figure 34.16 shows an
example of a clustered index tree structure.

In Figure 34.16, note that the data page chain is in clustered index order. However, the
rows on each page might not be physically sorted in clustered index order, depending on
when rows were inserted or deleted in the page. SQL Server still keeps the proper sort
order of the rows via the row IDs and the row offset table. A clustered index is useful for
range-retrieval queries or searches against columns with duplicate values because the rows
within the range are physically located in the same page or on adjacent pages.

The data pages of the table are also the leaf level of a clustered index. To find all clustered
index key values, SQL Server must eventually scan all the data pages.

SQL Server performs the following steps when searching for a value using a clustered index:

1. Queries the system catalogs for the page address for the root page of the index. (For
a clustered index, the root_page column in
sys.system_internals_allocation_units points to the top of the clustered index
for a specific partition.)

2. Compares the search value against the key values stored on the root page.

3. Finds the highest key value on the page where the key value is less than or equal to
the search value.

4. Follows the page pointer stored with the key to the appropriate page at the next
level down in the index.

5. Continues following page pointers (that is, repeats steps 3 and 4) until the data page
is reached.

6. Searches the rows on the data page to locate any matches for the search value. If no
matching row is found on that data page, the table contains no matching values.

 Download from www.wowebook.com

ptg

1134 CHAPTER 34 Data Structures, Indexes, and Performance

Data (Leaf) Pages

Page 8

Albert, Lynn,…

Alexis, Amy,…
Key Page ptr

Page 14

Albert

Cox

Eddy

8

9

10

Page 9

Dean, Beth,…

Cox, Nancy,…

Page 10

Eddy, Elizabeth,…

Frank, Anabelle,…

Page 11

Sally, Hunt,…

Martin, Emma,…

Page 12

Smith, David,…

Toms, Mike,…

Page 13

Watson, Tom,…

Key Page ptr

Page 24

Albert

Hunt

14

15

Key Page ptr

Page 15

Hunt

Smith

Watson

11

12

13

FIGURE 34.16 The structure of a clustered index.

By default, a clustered index has a single partition and thus has at least one row in
sys.partitions with index_id = 1. When a clustered index has multiple partitions, a
separate B-tree structure contains the data for that specific partition.

Depending on the data types in the clustered index, each clustered index structure has
one or more allocation units in which to store and manage the data for a specific parti-
tion. At a minimum, each clustered index has one IN_ROW_DATA allocation unit per parti-
tion. If the table contains any LOB data, the clustered index also has one LOB_DATA
allocation unit per partition and one ROW_OVERFLOW_DATA allocation unit per partition if
the table contains any variable-length columns that exceed the 8,060-byte row size limit.

Clustered Index Row Structure
The structure of a clustered index row is similar to the structure of a data row except that
it contains only key columns; this structure is detailed in Figure 34.17.

 Download from www.wowebook.com

ptg

1135Understanding Index Structures
3

4

(Shaded Areas represent data present only when index contains nullable or variable length columns)

Status
Byte A
(1 byte)

Fixed Length
 Key Data
(n bytes)

Number
of

Columns
(2 bytes)

Null
Bitmap
(1 bit for

each
column)

File ID
(2 bytes)

Page
Number
(4 bytes)

Slot
number
(2 bytes)

Row Locator

Number
 of

Variable
Length

Columns
(2 bytes)

Column
 Offset
 Array
(2 x

number
of variable
columns)

Variable Length
Key Data
(n bytes)

FIGURE 34.17 Clustered index row structure.

Notice that unlike a data row, index rows do not contain the status byte B or the 2 bytes to
hold the length of fixed-length data fields. Instead of storing the length of the fixed-length
data, which also indicates where the fixed-length portion of a row ends and the variable-
length portion begins, the page header pminlen value is used to help describe an index
row. The pminlen value is the minimum length of the index row, which is essentially the
sum of the size of all fixed-width fields and overhead. Therefore, if no variable-length or
nullable fields are in the index key, pminlen also indicates the width of each index row.

The null bitmap field and field for the number of columns in the index row are present
only when an index key contains nullable columns. The number of columns value is only
needed to determine how many bits are needed in the null bitmap and therefore how
many bytes are required to store the null bitmap (1 byte per eight columns). The data
contents of a clustered index row include the key values along with a 6-byte down-page
pointer (the first 2 bytes are the file ID, and the last 4 bytes are the page number). The
down-page pointer is the last value in the fixed-data portion of the row.

Nonunique Clustered Indexes
When a clustered index is defined on a table, the clustered index keys are used as row
locators to identify the data rows being referenced by nonclustered indexes (more on this
topic in the following section on nonclustered indexes). Because the clustered keys are
used as unique row pointers, there needs to be a way to uniquely refer to each row in the
table. If the clustered index is defined as a unique index, the key itself uniquely identifies
every row. If the clustered index was not created as a unique index, SQL Server adds a 4-
byte integer field, called a uniqueifier, to the data row to make each key unique when
necessary. When is the uniqueifier necessary? SQL Server adds the uniqueifier to a row
when the row is added to a table and that new row contains a key that is a duplicate of
the key for an already-existing row.

The uniqueifier is added to the variable-length data area of the data row, which also
results in the addition of the variable-length overhead bytes. Therefore, each duplicate row
in a clustered index has a minimum of 4 bytes of overhead added for the additional

 Download from www.wowebook.com

ptg

1136 CHAPTER 34 Data Structures, Indexes, and Performance

uniqueifier. If the row had no variable-length keys previously, an additional 8 bytes of
overhead are added to the row to store the uniqueifier (4 bytes) plus the overhead bytes
required for the variable data (storing the number of variable columns requires 2 bytes,
and the column offset array requires 2 bytes).

Nonclustered Indexes

A nonclustered index is a separate index structure, independent of the physical sort order
of the data rows in the table. You can have up to 999 nonclustered indexes per table.

A nonclustered index is similar to the index in the back of a book. To find the pages on
which a specific subject is discussed, you look up the subject in the index and then go to
the pages referenced in the index. This method is efficient as long as the subject is
discussed on only a few pages. If the subject is discussed on many pages, or if you want to
read about many subjects, it can be more efficient to read the entire book.

A nonclustered index works similarly to the book index. From the index’s perspective, the
data rows are randomly spread throughout the table. The nonclustered index tree contains
the index key values, in sorted order. There is a row at the leaf level of the index for each

data row in the table. Each leaf-level row contains a data row locator to locate the actual
data row in the table.

Toms

Watson

Hunt

Martin

Smith

Albert

Hunt

Albert

Dean

Non-
Leaf
Level

Leaf
Level

Albert

Toms
Index
Pages

Data Pages

11:1

9:2

8:2

13:2

8:1

10:2

Albert

Alexis

Cox

9:1

11:2

12:1

Dean

Eddy

Franks

Eddy

Smith

Page 8

…
…

Hunt

Alexis

Page 11

…
…

Cox

Toms

Page 12

…
…

Watson

Dean

Page 13

…
…Franks

Page 10

…
…

Albert

Martin

Page 9

…
…

12:2

13:1

FIGURE 34.18 A nonclustered index on a heap table.

 Download from www.wowebook.com

ptg

1137Understanding Index Structures
3

4

If no clustered index is created for the table, the data row locator for the leaf level of the
index is an actual pointer to the data page and the row number within the page where the
row is located (see Figure 34.18).

Nonclustered indexes on clustered tables use the associated clustered index key value for
the record as the data row locator. When SQL Server reaches the leaf level of a nonclus-

tered index, it uses the clustered index key to start searching through the clustered index
to find the actual data row (see Figure 34.19). This adds some I/O to the search itself, but
the benefit is that if a page split occurs in a clustered table, or if a data row is moved (for
example, as a result of an update), the nonclustered index row locator stays the same. As

Non-Clustered
Index

Where
firstname=‘Sally’

= Indicates
search

Amy

Anabelle

Ruth

Albert

Cox

Eddy

Albert

Alexis

Lynn

Amy

…
…

Eddy

Franks

Elizabeth

Anabelle

Hunt

Martin

Sally

Emma

Smith

Toms

David

Mike

Watson Tom…
…

…
…

…
…

…Cox

Dean

Nancy

Beth

…
…

Alexis

Franks

Dean

David

Emma

Lynn

Smith

Martin

Albert

Mike

Nancy

Sally

Toms

Cox

Hunt

Tom Watson

Amy

Mike

Alexis

Toms

Amy

David

Albert

Hunt

Alexis

Smith

Mike

Tom

Toms

Hunt

Smith

Watson

Data Pages

Clustered
Index

FIGURE 34.19 A nonclustered index on a clustered table.

 Download from www.wowebook.com

ptg

1138 CHAPTER 34 Data Structures, Indexes, and Performance

(Shaded Areas represent data present only when index contains nullable or variable length columns)

Status
Byte A
(1 byte)

Fixed Length
 Key Data
(n bytes)

Number
of

Columns
(2 bytes)

Null
Bitmap
(1 bit for

each
column)

File ID
(2 bytes)

Page
Number
(4 bytes)

Slot
number
(2 bytes)

Row Locator

Number
 of

Variable
Length

Columns
(2 bytes)

Column
 Offset
 Array
(2 x

number
of variable
columns)

Variable Length
Key Data
(n bytes)

FIGURE 34.20 The structure of a nonclustered index leaf row for a heap table.

long as the clustered index key value itself is not modified, no data row locators in the
nonclustered index have to be updated.

SQL Server performs the following steps when searching for a value by using a nonclus-
tered index:

1. Queries the system catalog to determine the page address for the root page of the
index.

2. Compares the search value against the index key values on the root page.

3. Finds the highest key value on the page where the key value is less than or equal to
the search value.

4. Follows the down-page pointer to the next level down in the nonclustered index tree.

5. Continues following page pointers (that is, repeats steps 3 and 4) until the nonclus-
tered index leaf page is reached.

6. Searches the index key rows on the leaf page to locate any matches for the search
value. If no matching row is found on the leaf page, the table contains no match-
ing values.

7. If a match is found on the leaf page, SQL Server follows the data row locator to the
data row on the data page.

Nonclustered Index Leaf Row Structures
In nonclustered indexes, if the row locator is a row ID, it is stored at the end of the fixed-
length data portion of the row. The rest of the structure of a nonclustered index leaf row is
similar to a clustered index row. Figure 34.20 shows the structure of a nonclustered leaf
row for a heap table.

If the row locator is a clustered index key value, the row locator resides in either the fixed
or variable portion of the row, depending on whether the clustered key columns were
defined as fixed or variable length. Figure 34.21 shows the structure of a nonclustered leaf
row for a clustered table.

When the row locator is a clustered key value and the clustered and nonclustered indexes
share columns, the data value for the key is stored only once in the nonclustered index
row. For example, if your clustered index key is on lastname and you have a nonclustered

 Download from www.wowebook.com

ptg

1139Understanding Index Structures
3

4

(Shaded Areas represent data present only when index contains nullable or variable length columns)

Status
Byte A
(1 byte)

Fixed Length
 Nonclustered

Key Data
(n bytes)

Number
of

Columns
(2 bytes)

Null
Bitmap

(1 bit for
each

column)

Number
 of

Variable
Length

Columns
(2 bytes)

Column
 Offset
 Array
(2 x

number
of variable
columns)

Variable Length
Nonclustered

Key Data
(n bytes)

Row Locator

Non-
Overlapping
Fixed Length
Clustered Key

Data
(n bytes)

Non-
Overlapping

Variable
Length

Clustered Key
Data

(n bytes)

FIGURE 34.21 The structure of a nonclustered index leaf row for a clustered table.

(Shaded Areas represent data present only when index contains nullable or variable length columns)

Status
Byte A
(1 byte)

Fixed Length
 Key Data
(n bytes)

File ID
(2 bytes)

Number
 of

Columns
(2 bytes)

Number
of

Variable
Length

Columns
(2 bytes)

Variable Length
Key Data
(n bytes)

Page-Down Pointer

Page Number
(4 bytes)

Column
Offset
Array
(2 x

number
of variable
columns)

Null
Bitmap

(1 bit for
each

column)

FIGURE 34.22 The structure of a nonclustered nonleaf index row for a unique index.

index defined on both firstname and lastname, the index rows do not store the value of
lastname twice, but only once for both keys.

Nonclustered Index Nonleaf Row Structures
The nonclustered index nonleaf rows are similar in structure to clustered index nonleaf
rows in that they contain a page-down pointer to a page at the next level down in the
index tree. The nonleaf rows don’t need to point to data rows; they only need to provide
the path to traverse the index tree to a leaf row. If the nonclustered index is defined as
unique, the nonleaf index key row contains only the index key value and page-down
pointer. Figure 34.22 shows the structure of a nonleaf index row for a unique nonclus-
tered index.

If the nonclustered index is not defined as a unique index, the nonleaf rows also contain
the row locator information for the corresponding data row. Storing the row locator in the
nonleaf index row ensures each index key row is unique (because the row locator, by its

 Download from www.wowebook.com

ptg

1140 CHAPTER 34 Data Structures, Indexes, and Performance

(Shaded Areas represent data present only when index contains nullable or variable length columns)

Number
of

Columns
(2 bytes)

Null Bitmap
(1 bit for each

column)

Number
 of

Variable
Length

Columns
(2 bytes)

Column
 Offset
 Array
(2 x

number
of variable
columns)

Variable Length
Key Data
(n bytes)

Page-Down PointerRow Locator

Page
Number
(4 bytes)

File ID
(2 bytes)

File ID
(2 bytes)

Page
Number
(4 bytes)

Slot
Number
(2 bytes)

Status
Byte A
(1 byte)

Fixed Length
Key Data
(n bytes)

FIGURE 34.23 The structure of a nonclustered nonleaf index row for a nonunique index on a
heap table.

(Shaded Areas represent data present only when index contains nullable or variable length columns)

Status
Byte A
(1 byte)

Fixed Length
Nonclustered

Key Data
(n bytes)

Number
of

Columns
(2 bytes)

Null
Bitmap
(1 bit for

each
column)

Number
 of

Variable
Length

Columns
(2 bytes)

Column
 Offset
 Array
(2 x

number
of variable
columns)

Variable Length
Nonclustered

Key Data
(n bytes)

Row Locator

Non-
Overlapping
Fixed Length
Clustered Key

Data
(n bytes)

Non-
Overlapping

Variable
Length

Clustered Key
Data

(n bytes)

File ID
(2 bytes)

Page
Number
(4 bytes)

Page-Down Pointer

FIGURE 34.24 The structure of a nonclustered nonleafindex row for a nonunique index on a
clustered table.

nature, must be unique). Ensuring each index key row is unique allows any corresponding
nonleaf index rows to be located and deleted more easily when the data row is deleted.
For a heap table, the row locator is the corresponding data row’s page and row pointer, as
shown in Figure 34.23.

If the table is clustered, the clustered key values are stored in the nonleaf index rows of the
nonunique nonclustered index just as they are in the leaf rows, as shown in Figure 34.24.

As you can see, it’s possible for the index pointers and row overhead to exceed the size of
the index key itself. This is why, for I/O and storage reasons, it is always recommended
that you keep your index keys as small as possible.

 Download from www.wowebook.com

ptg

1141Data Modification and Performance
3

4

Data Modification and Performance
Now that you have a better understanding of the storage structures in SQL Server, it’s time
to look at how SQL Server maintains and manages those structures when data modifica-
tions are taking place in the database.

Inserting Data

When you add a data row to a heap table, SQL Server adds the row to the heap wherever
space is available. SQL Server uses the IAM and PFS pages to identify whether any pages
with free space are available in the extents already allocated to the table. If no free pages
are found, SQL Server uses the information from the GAM and SGAM pages to locate a
free extent and allocate it to the table.

For clustered tables, the new data row is inserted to the appropriate location on the appro-
priate data page relative to the clustered index key order. If no more room is available on
the destination page, SQL Server needs to link a new page in the page chain to make room
available and add the row. This is called a page split.

In addition to modifying the affected data pages when adding rows, SQL Server needs to
update all nonclustered indexes to add a pointer to the new record. If a page split occurs,
this incurs even more overhead because the clustered index needs to be updated to store
the pointer for the new page added to the table. Fortunately, because the clustered key is
used as the row locator in nonclustered indexes when a table is clustered, even though
the page and row IDs have changed, the nonclustered index row locators for rows moved
by a page split do not have to be updated as long as the clustered key column values
remain the same.

Page Splits
When a page split occurs, SQL Server looks for an available page to link into the page
chain. It first tries to find an available page in the same extent as the pages it will be
linked to. If no free pages exist in the same extent, it looks at the IAM to determine
whether there are any free pages in any other extents already allocated to the table or
index. If no free pages are found, a new extent is allocated to the table.

When a new page is found or allocated to the table and linked into the page chain, the
original page is “split.” Approximately half the rows are moved to the new page, and the
rest remain on the original page (see Figure 34.25). Whether the new page goes before or
after the original page when the split is made depends on the amount of data to be moved.
In an effort to minimize logging, SQL Server moves the smaller rows to the new page. If
the smaller rows are at the beginning of the page, SQL Server places the new page before
the original page and moves the smaller rows to it. If the larger rows are at the beginning
of the page, SQL Server keeps them on the original page and moves the smaller rows to the
new page after the original page.

 Download from www.wowebook.com

ptg

1142 CHAPTER 34 Data Structures, Indexes, and Performance

AAAA …
BBBB…
CCCC …
EEEE …
FFFF …

Page 1:201

GGGG …
HHHH …
JJJJ …
LLLL…

Page 1:202

AAAA …
BBBB …
CCCC …

Page 1:201

GGGG …
HHHH …
JJJJ …
KKKK …

Page 1:202

EEEE …
FFFF …

DDDD …

Page 1:307

DDDD…

New Row
Page
Split

FIGURE 34.25 Page splitting due to inserts.

After determining where the new row goes between the existing rows and whether the
new page is to be added before or after the original page, SQL Server has to move rows to
the new page. The simplified algorithm for determining the split point is as follows:

1. Place first row (with the lowest clustered key value) at the beginning of first page.

2. Place the last row (with the highest clustered key value) on the second page.

3. Place the row with the next lowest clustered key value on the first page after the
existing row(s).

4. Place the next-to-last row (with the second highest clustered key value) on the
second page.

5. Continue alternating back and forth until the space between the two pages is bal-
anced or one of the pages is full.

In some situations a double split can occur. If the new row has to go between two existing
rows on a page, but the new row is too large to fit on either page with any of the existing
rows, a new page is added after the original. The new row is added to the new page, a
second new page is added after that, and the remaining original rows are inserted into the
second new page. An example of a double split is shown in Figure 34.26.

 Download from www.wowebook.com

ptg

1143Data Modification and Performance
3

4

AAAA …
BBBB…
CCCC …
EEEE …
FFFF …

Page 1:201

GGGG …
HHHH …
JJJJ …
LLLL…

Page 1:202

AAAA …
BBBB …
CCCC …

Page 1:201

GGGG …
HHHH …
JJJJ …
KKKK …

Page 1:202

EEEE,,,
FFFF …

Page 1:308

DDDD XXXX
XXXXXXXXX
XXXXXXXXX
XXXXXXXXX
XXXXXXXXX

DDDD XXXX
XXXXXXXXX
XXXXXXXXX
XXXXXXXXX
XXXXXXXXX

Page 1:307

Page
Split

FIGURE 34.26 Double page split due to large row insert.

NOTE

Although page splits are expensive when they occur, they do generate free space in the
split pages for future inserts into those pages. Page splits also help keep the index
tree balanced as rows are added to the table. However, if you monitor the system with
Performance Monitor and are seeing hundreds of page splits per second, you might
want to consider rebuilding the clustered index on the table and applying a lower fill
factor to provide more free space in the existing pages. This can help improve system
performance until eventually the pages fill up and start splitting again. For this reason,
some shops supporting high-volume online transaction processing (OLTP) environments
with a lot of insert activity rebuild the indexes with a lower fill factor on a daily basis.

 Download from www.wowebook.com

ptg

1144 CHAPTER 34 Data Structures, Indexes, and Performance

Deleting Rows

What happens when rows are deleted from a table? How, and when, does SQL Server
reclaim the space when data is removed from a table?

Deleting Rows from a Heap
In a heap table, SQL Server does not automatically compress the space on a page when a
row is removed; that is, the rows are not all moved up to the beginning of the page to
keep all free space at the end, as SQL Server did in versions prior to 7.0. To optimize
performance, SQL Server holds off on compacting the rows until the page needs contigu-
ous space for storing a new row.

Deleting Rows from an Index
Because the data pages of a clustered table are actually the leaf pages of the clustered
index, the behavior of data row deletes on a clustered table is the same as row deletions
from an index page.

When rows are deleted from the leaf level of an index, they are not actually deleted but are
marked as ghost records. Keeping the row as a ghost record makes it easier for SQL Server
to perform key-range locking (key-range locking is discussed in Chapter 37, “Locking and
Performance”). If ghost records were not used, SQL Server would have to lock the entire
range surrounding the deleted record. With the ghost record still present and visible inter-
nally to SQL Server (it is not visible in query result sets), SQL Server can use the ghost
record as an endpoint for the key-range lock to prevent “phantom” records with the same
key value from being inserted, while allowing inserts of other values to proceed.

Ghost records do not stay around forever, though. SQL Server has a special internal house-
keeping process that periodically examines the leaf level of B-trees for ghost records and
removes them. This is the same thread that performs the autoshrink process for databases.

Whenever you delete a row, all nonclustered indexes need to be updated to remove the
pointers to the deleted row. Nonleaf index rows are not ghosted when deleted. As with
heap tables, however, the space is not compressed on the nonleaf index page until space is
needed for a new row.

Reclaiming Space
Only when the last row is deleted from a data page is the page deallocated from the table.
The only exception is if it is the last page remaining; all tables must have at least one page
allocated, even if it’s empty. When a deletion of an index row leaves only one row remain-
ing on the page, the remaining row is moved to a neighboring page, and the now-empty
index page is deallocated.

If the page to be deallocated is the last remaining used page in a uniform extent allocated
to the table, the extent is deallocated from the table as well.

 Download from www.wowebook.com

ptg

1145Data Modification and Performance
3

4

Updating Rows

SQL Server 2008 performs row updates by evaluating the number of rows affected, whether
the rows are being accessed via a scan or index retrieval and whether any index keys are
being modified, and automatically chooses the appropriate and most efficient update strat-
egy for the rows affected. SQL Server can perform two types of update strategies:

. In-place updates

. Not-in-place updates

In-Place Updates
In SQL Server 2008, in-place updates are performed as often as possible to minimize the
overhead of an update. An in-place update means that the row is modified where it is on
the page, and only the affected bytes are changed.

When an in-place update is performed, in addition to the reduced overhead in the table
itself, only a single modify record is written to the log. However, if the table has a trigger
on it or is marked for replication, the update is still done in place but is recorded in the
log as a delete followed by an insert (this provides the before-and-after image for the
trigger that is referenced in the inserted and deleted tables).

In-place updates are performed whenever a heap is being updated and the row still fits on
the same page, or when a clustered table is updated and the clustered key itself is not
changed. You can get an in-place update if the clustered key changes but the row does not
have to move; that is, the sorting of the rows wouldn’t change.

Not-In-Place Updates
If the change to a clustered key prevents an in-place update from being performed, or if
the modification to a row increases its size such that it can no longer fit on its current
page, the update is performed as a delete followed by an insert; this is referred to as a not-
in-place update.

When performing an update that affects multiple index keys, SQL Server keeps a list of the
rows that need to be updated in memory, if it’s small enough; otherwise, it is stored in
tempdb. SQL Server then sorts the list by index key and type of operation (delete or insert).
This list of operations, called the input stream, consists of both the old and new values for
every column in the affected rows as well as the unique row identifier for each row.

SQL Server then examines the input stream to determine whether any of the updates
conflict or would generate duplicate key values while processing (if they were to generate
a duplicate key after processing, the update cannot proceed). It then rearranges the opera-
tions in the input stream in a manner to prevent any intermediate violations of the
unique key.

For example, consider the following update to a table with a unique key on a sequential
primary key:

update table1 set pkey = pkey + 1

 Download from www.wowebook.com

ptg

1146 CHAPTER 34 Data Structures, Indexes, and Performance

Even though all values would still be unique when the update finished, if the update were
performed internally one row at a time in sequential order, it would generate duplicates
during the intermediate processing as the pkey value was incremented and matched the
next pkey value. SQL Server would rearrange and rework the updates in the input stream
to process them in a manner that would avoid the duplicates and then process them a
row at a time. If possible, deletes and inserts on the same key value in the input stream
are collapsed into a single update. In some cases, you might still get some rows that can
be updated in place.

Forward Pointers
As mentioned earlier, when page splits on a clustered table occur, the nonclustered
indexes do not need to be updated to reflect the new location of the rows because the row
locator for the row is the clustered index key rather than the page and row ID. When an
update operation on a heap table causes rows to move, the row locators in the nonclus-
tered index would need to be updated to reflect the new location or the rows. This could
be expensive if there were a larger number of nonclustered indexes on the heap.

SQL Server 2008 addresses this performance issue through the use of forward pointers.
When a row in a heap moves, it leaves a forward pointer in the original location of the row.
The forward pointer avoids having to update the nonclustered index row locator. When
SQL Server is searching for the row via the nonclustered index, the index pointer directs it
to the original location, where the forward pointer redirects it to the new row location.

A row never has more than one forward pointer. If the row moves again from its
forwarded location, the forward pointer stored at the original row location is updated to
the row’s new location. There is never a forward pointer that points to another forward
pointer. If the row ever shrinks enough to fit back into its original location, the forward
pointer is removed, and the row is put back where it originated.

When a forward pointer is created, it remains unless the row moves back to its original
location. The only other circumstance that results in forward pointers being deleted occurs
when the entire database is shrunk. When a database file is shrunk and the data reorga-
nized, all row locators are reassigned because the rows are moved to new pages.

Index Utilization
Now that you have an understanding of table and index structures and the overhead
required to maintain your data and indexes, you might want to put things into practice to
actually come up with an index design for your database, defining the appropriate indexes
to support your queries. To effectively determine the appropriate indexes that should be
created, you need to determine whether they’ll actually be used by the SQL Server Query
Optimizer. If an index is not being used effectively, it’s just wasting space and creating
unnecessary overhead during updates.

 Download from www.wowebook.com

ptg

1147Index Utilization
3

4

The main criterion to remember is that SQL Server does not use an index for the more
efficient row locator lookup if at least the first column of the index is not included in a
valid search argument (SARG) or join clause. You should keep this point in mind when
choosing the column order for composite indexes. For example, consider the following
index on the stores table in the bigpubs2008 database:

create index nc1_stores on stores (city, state, zip)

NOTE

Unless stated otherwise, all sample queries from this point on in this chapter are run
in the bigpubs2008 database, which is available on the included CD or via download
from this book’s website at www.samspublishing.com. Instructions on installing this
database is provided in the Introduction.

Each of the following queries could use the index because they include the first column,
city, of the index as part of the SARG:

select stor_name from stores

where city = ‘Frederick’

and state = ‘MD’

and zip = ‘21702’

select stor_name from stores

where city = ‘Frederick’

and state = ‘MD’

select stor_name from stores

where city = ‘Frederick’

and zip = ‘21702’

However, the following queries do not use the index for a row locator lookup because
they don’t specify the city column as a SARG:

select stor_name from stores

where state = ‘MD’

and zip = ‘21702’

select stor_name from stores

where zip = ‘21702’

For the index nc1_stores to be used for a row locator lookup in the last query, you would
have to reorder the columns so that zip is first—but then the index wouldn’t be useful for

 Download from www.wowebook.com

www.samspublishing.com

ptg

1148 CHAPTER 34 Data Structures, Indexes, and Performance

any queries specifying only city and/or state. Satisfying all the preceding queries in this
case would require additional indexes on the stores table.

NOTE

For the two preceding queries, if you were to display the execution plan information (as
described in Chapter 36, “Query Analysis”), you might see that the queries actually use
the nc1_stores index to retrieve the result set. However, if you look closely, you can
see the queries are not using the index in the most efficient manner; the index is
being used to perform an index scan rather than an index seek. An index seek is what
we are really after. (Alternative query access methods are discussed in more detail in
Chapter 35). In an index seek, SQL Server searches for the specific SARG by walking
the index tree from the root level down to the specific row(s) with matching index key
values and then uses the row locator value stored in the index key to directly retrieve
the matching row(s) from the data page(s); the row locator is either a specific row iden-
tifier or the clustered key value for the row.

For an index scan, SQL Server searches all the rows in the leaf level of the index,
looking for possible matches. If any are found, it then uses the row locator to retrieve
the data row.

Although both seeks and scans use an index, the index scan is still more expensive in
terms of I/O than an index seek but slightly less expensive than a table scan, which is
why it is used. However, in this chapter you learn to design indexes that result in index
seeks, and when this chapter talks about queries using an index, index seeks are what
it refers to (except for the section on index covering, but that’s a horse of a slightly dif-
ferent color).

You might think that the easy solution to get row locator lookups on all possible columns
is to index all the columns on a table so that any type of search criteria specified for a
query can be helped by an index. This strategy might be somewhat appropriate in a read-
only decision support system (DSS) environment that supports ad hoc queries, but it is
not likely because many of the indexes probably still wouldn’t even be used. As you see in
the section “Index Selection,” later in this chapter, just because an index is defined on a
column doesn’t mean that the Query Optimizer is necessarily always going to use it if the
search criteria are not selective enough. Also, creating that many indexes on a large table
could take up a significant amount of space in the database, increasing the time required
to back up and run DBCC checks on the database. As mentioned earlier, too many indexes
on a table in an OLTP environment can generate a significant amount of overhead during
inserts, updates, and deletes and have a detrimental impact on performance.

TIP

A common design mistake often made is too many indexes defined on tables in OLTP
environments. In many cases, some of the indexes are redundant or are never even
considered by the SQL Server Query Optimizer to process the queries used by the appli-
cations. These indexes end up simply wasting space and adding unnecessary overhead
to data updates.

 Download from www.wowebook.com

ptg

1149Index Selection
3

4

A case in point was one client who had eight indexes defined on a table, four of which
had the same column, which was a unique key, as the first column in the index. That
column was included in the WHERE clauses for all queries and updates performed on
the table. Only one of those four indexes was ever used.

It is hoped that, by the end of this chapter, you understand why all these indexes were
unnecessary and are able to recognize and determine which columns benefit from hav-
ing indexes defined on them and which indexes to avoid.

Index Selection
To determine which indexes to define on a table, you need to perform a detailed query
analysis. This process involves examining the search clauses to see what columns are refer-
enced, knowing the bias of the data to determine the usefulness of the index, and ranking
the queries in order of importance and frequency of execution. You have to be careful not
to examine individual queries and develop indexes to support one query, without consid-
ering the other queries that are executed on the table as well. You need to come up with a
set of indexes that work for the best cross-section of your queries.

TIP

A useful tool to help you identify your frequently executed and critical queries is SQL
Server Profiler. I’ve found SQL Server Profiler to be invaluable when going into a new
client site and having to identify the problem queries that need tuning. SQL Server
Profiler allows you to trace the procedures and queries being executed in SQL Server
and capture the runtime, reads and writes, execution plans, and other processing infor-
mation. This information can help you identify which queries are providing substandard
performance, which ones are being executed most often, which indexes are being used
by the queries, and so on.

You can analyze this information yourself manually or save a trace to analyze with the
Database Engine Tuning Advisor. The features of SQL Server Profiler are covered in
more detail in Chapter 6, “SQL Server Profiler.” The Database Engine Tuning Advisor is
discussed in more detail in Chapter 55, “Configuring, Tuning, and Optimizing SQL
Server Options.”

Because it’s usually not possible to index for everything, you should index first for the
queries most critical to your applications or those run frequently by many users. If you have
a query that’s run only once a month, is it worth creating an index to support only that
query and having to maintain it throughout the rest of the month? The sum of the addi-
tional processing time throughout the month could conceivably exceed the time required to
perform a table scan to satisfy that one query.

 Download from www.wowebook.com

ptg

1150 CHAPTER 34 Data Structures, Indexes, and Performance

TIP

If, due to query response time requirements, you must have an index in place when a
query is run, consider creating the index only when you run the query and then drop-
ping the index for the remainder of the month. This approach is feasible as long as the
time it takes to create the index and run the query that uses the index doesn’t exceed
the time it takes to simply run the query without the index in place.

Evaluating Index Usefulness
SQL Server provides indexes for two primary reasons: as a method to enforce the unique-
ness of the data in the database tables and to provide faster access to data in the tables.
Creating the appropriate indexes for a database is one of the most important aspects of
physical database design. Because you can’t have an unlimited number of indexes on a
table, and it wouldn’t be feasible anyway, you should create indexes on columns that have
high selectivity so that your queries will use the indexes. The selectivity of an index can
be defined as follows:

Selectivity ratio = Number of unique index values / Number of rows in table

If the selectivity ratio is high—that is, if a large number of rows can be uniquely identified
by the key—the index is highly selective and useful to the Query Optimizer. The optimum
selectivity would be 1, meaning that there is a unique value for each row. A low selectivity
means that there are many duplicate values and the index would be less useful. The SQL
Server Query Optimizer decides whether to use any indexes for a query based on the selec-
tivity of the index. The higher the selectivity, the faster and more efficiently SQL Server
can retrieve the result set.

For example, say that you are evaluating useful indexes on the authors table in the
bigpubs2008 database. Assume that most of the queries access the table either by author’s
last name or by state. Because a large number of concurrent users modify data in this
table, you are allowed to choose only one index—author’s last name or state. Which one
should you choose? Let’s perform some analysis to see which one is a more useful, or
selective, index.

First, you need to determine the selectivity based on the author’s last name with a query
on the authors table in the bigpubs2008 database:

select count(distinct au_lname) as ‘# unique’,

count(*) as ‘# rows’,

str(count(distinct au_lname) / cast (count(*) as real),4,2) as ‘selectivity’

from authors

go

unique # rows selectivity

----------- ----------- -----------

160 172 0.93

 Download from www.wowebook.com

ptg

1151Evaluating Index Usefulness
3

4

The selectivity ratio calculated for the au_lname column on the authors table, 0.93, indi-
cates that an index on au_lname would be highly selective and a good candidate for an
index. All but 12 rows in the table contain a unique value for last name.

Now, look at the selectivity of the state column:

select count(distinct state) as ‘# unique’,

count(*) ‘# rows’,

str(count(distinct state) / cast (count(*) as real),4,2) as ‘selectivity’

from authors

go

unique # rows selectivity

----------- ----------- -----------

38 172 0.22

As you can see, an index on the state column would be much less selective (0.22) than
an index on the au_lname column and possibly not as useful.

One of the questions to ask at this point is whether a few values in the state column that
have a high number of duplicates are skewing the selectivity or whether there are just a few
unique values in the table. You can determine this with a query similar to the following:

select state,

count(*) as numrows,

count(*)/b.totalrows * 100 as percentage

from authors a,

(select convert(numeric(6,2), count(*)) as totalrows from authors) as b

group by state, b.totalrows

having count(*) > 1

order by 2 desc

go

state numrows percentage

----- ----------- -------------------------------------

CA 37 21.5116200

NY 18 10.4651100

TX 15 8.7209300

OH 9 5.2325500

FL 8 4.6511600

IL 7 4.0697600

NJ 7 4.0697600

WA 6 3.4883700

PA 6 3.4883700

CO 5 2.9069700

LA 5 2.9069700

MI 5 2.9069700

 Download from www.wowebook.com

ptg

1152 CHAPTER 34 Data Structures, Indexes, and Performance

MN 3 1.7441800

MO 3 1.7441800

OK 3 1.7441800

AZ 3 1.7441800

AK 2 1.1627900

IN 2 1.1627900

GA 2 1.1627900

MA 2 1.1627900

NC 2 1.1627900

NE 2 1.1627900

SD 2 1.1627900

VA 2 1.1627900

WI 2 1.1627900

WV 2 1.1627900

As you can see, most of the state values are relatively unique, except for one value, ’CA’,
which accounts for more than 20% of the values in the table. Therefore, state is probably
not a good candidate for an indexed column, especially if most of the time you are search-
ing for authors from the state of California. SQL Server would generally find it more effi-
cient to scan the whole table rather than search via the index.

NOTE

When a single value skews the selectivity of an index, as in this example with the
state column, this type of column might be a candidate for a filtered index, a new fea-
ture in SQL Server 2008. See the section “Filtered Indexes and Statistics,” later in
this chapter.

As a general rule of thumb, if the selectivity ratio for a nonclustered index key is less than
0.85 (in other words, if the Query Optimizer cannot discard at least 85% of the rows based
on the key value), the Query Optimizer generally chooses a table scan to process the query
rather than a nonclustered index. In such cases, performing a table scan to find all the
qualifying rows is more efficient than seeking through the B-tree to locate a large number
of data rows.

NOTE

You can relate the concept of selectivity to a hypothetical example. Say that you need
to find every instance of the word SQL in this book. Would it be easier to do it by using
the index and going back and forth from the index to all the pages that contain the
word, or would it be easier just to scan each page from beginning to end to locate
every occurrence? What if you had to find all references to the word squonk, if any?
Squonk would definitely be easier to find via the index (actually, the index would help
you determine that it doesn’t even exist). Therefore, the selectivity for Squonk would be
high, and the selectivity for SQL would be much lower.

 Download from www.wowebook.com

ptg

1153Index Statistics
3

4

How does SQL Server determine whether an index is selective and which index, if it has
more than one to choose from, would be the most efficient to use? For example, how
would SQL Server know how many rows the following query might return?

select * from table

where key between 1000000 and 2000000

If the table contains 10,000,000 rows with values ranging between 0 and 20,000,000, how
does the Query Optimizer know whether to use an index or a table scan? There could be
10 rows in the range, or 900,000. How does SQL Server estimate how many rows are
between 1,000,000 and 2,000,000? The Query Optimizer gets this information from the
index statistics, as described in the next section.

Index Statistics
As mentioned earlier, the selectivity of a key is an important factor that determines
whether an index will be used to retrieve the data rows that satisfy a query. SQL Server
stores the selectivity and a histogram of sample values of the key; based on the statistics
stored for the key columns for the index and the SARGs specified for the query, the Query
Optimizer decides which index to use.

To see the statistical information stored for an index, use the DBCC SHOW_STATISTICS
command, which returns the following pieces of information:

. A histogram that contains an even sampling of the values for the first column in the
index key. SQL Server stores up to 200 sample values in the histogram.

. Index densities for the combination of columns in the index. Index density indicates
the uniqueness of the index key(s) and is discussed later in this section.

. The number of rows in the table at the time the statistics were computed.

. The number of rows sampled to generate the statistics.

. The number of sample values (steps) stored in the histogram.

. The average key length.

. Whether the index is defined on a string column.

. The date and time the statistics were generated.

The syntax for DBCC SHOW_STATISTICS is as follows:

DBCC SHOW_STATISTICS (tablename, index)

Listing 34.4 displays the abbreviated output from DBCC SHOW_STATISTICS, showing the
statistical information for the aunmind nonclustered index on the au_lname and au_fname
columns of the authors table.

 Download from www.wowebook.com

ptg

1154 CHAPTER 34 Data Structures, Indexes, and Performance

LISTING 34.4 DBCC SHOW_STATISTICS Output for the aunmind Index on the authors
Table

dbcc show_statistics (authors, aunmind)

go

Name Updated Rows Rows Sampled Steps Density

Average key length String Index Filter Expression Unfiltered Rows

---------- -------------------- ---- --------------- ------ --------

--- ---------------

aunmind Mar 14 2010 10:20PM 172 172 148 1

24.06977 YES NULL 172

(1 row(s) affected)

All density Average Length Columns

------------- -------------- -------------------------

0.00625 6.406977 au_lname

0.005813953 13.06977 au_lname, au_fname

0.005813953 24.06977 au_lname, au_fname, au_id

(3 row(s) affected)

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS

--

Ahlberg 0 2 0 1

Alexander 0 1 0 1

Amis 0 1 0 1

Arendt 0 1 0 1

Arnosky 0 1 0 1

Bate 0 1 0 1

Bauer 0 1 0 1

Benchley 0 1 0 1

Bennet 0 1 0 1

Blotchet-Halls 0 1 0 1

...

del Castillo 0 1 0 1

Dillard 0 1 0 1

Doctorow 0 1 0 1

Doyle 0 1 0 1

Durrenmatt 2 1 2 1

Eastman 0 1 0 1

...

Gringlesby 0 1 0 1

Grisham 0 1 0 1

Gunning 0 1 0 1

 Download from www.wowebook.com

ptg

1155Index Statistics
3

4

Hill 0 1 0 1

Hutchins 3 2 3 1

Ionesco 0 1 0 1

Ishiguro 0 1 0 1

...

Tyler 0 1 0 1

Van Allsburg 0 1 0 1

Van der 0 1 0 1

Van der Meer 0 1 0 1

von Goethe 0 1 0 1

Walker 0 1 0 1

Warner 0 1 0 1

White 0 2 0 1

Wilder 0 1 0 1

Williams 0 2 0 1

Wilson 0 1 0 1

Yates 0 1 0 1

Yokomoto 0 1 0 1

Young 0 1 0 1

Looking at the output, you can determine that the statistics were last updated on March
14, 2010. At the time the statistics were generated, the table had 172 rows, and all 172
rows were sampled to generate the statistics (no filtering was applied). The average key
length is 24.06977 bytes. From the All density information, you can see that this index is
highly selective. (A low density means high selectivity; index densities are covered shortly.)

After the general information and the index densities, the index histogram is displayed.

The Statistics Histogram

Up to 200 sample values can be stored in the statistics histogram. Each sample value is
called a step. The sample value stored in each step is the endpoint of a range of values. Three
values are stored for each step:

. RANGE_ROWS—This indicates how many other rows are inside the range between the
current step and the step prior, not including the step values themselves.

. EQ_ROWS—This is the number of rows that have the same value as the sample value.
In other words, it is the number of duplicate values for the step.

. Range density—This indicates the number of distinct values within the range. The
range density information is actually displayed in two separate columns,
DISTINCT_RANGE_ROWS and AVG_RANGE_ROWS:

. DISTINCT_RANGE_ROWS is the number of distinct values between the current step
and the step prior, not including the step values itself.

. AVG_RANGE_ROWS is the average number of rows per distinct value within the
range of the step.

 Download from www.wowebook.com

ptg

1156 CHAPTER 34 Data Structures, Indexes, and Performance

In the output in Listing 34.4, distinct key values in the first column of the index are
stored as the sample values in the histogram. Because most of the values for au_lname are
unique, most of the range values are 0. You can see that there is a duplicate in the index
key for the last name of Hutchins (EQ_ROWS is 2). For comparison purposes, Listing 34.5
shows a snippet of the DBCC SHOW_STATISTICS output for the titleidind index on the
sales table in bigpubs2008.

LISTING 34.5 DBCC SHOW_STATISTICS Output for the titleidind Index on the sales
Table in the bigpubs2008 Database

dbcc show_statistics (sales, ‘titleidind’)

go

Name Updated Rows Rows Sampled Steps Density

Average key length String Index Filter Expression Unfiltered Rows

----------- ------------------- ------- ------------ ------ -------------

------------------ ------------ ----------------- ---------------

titleidind Mar 14 2010 10:39PM 168725 152432 188 0.003537365

26.40519 YES NULL 168725

All density Average Length Columns

------------- -------------- --

0.001858736 6 title_id

5.99844E-06 10 title_id, stor_id

5.926804E-06 26.4007 title_id, stor_id, ord_num

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS

------------ ---------- -------- -------------------- --------------

BI0194 0 274.8199 0 1

BI2184 639.6047 312.9337 2 277.1448

BI2915 893.1208 271.811 3 261.8779

BI3976 637.2789 260.778 2 276.137

BI8448 1685.068 281.8409 6 300.0652

BU1111 616.3464 276.8259 2 267.0668

BU7832 357.0157 299.8948 1 296.2236

CH0249 1067.558 279.8349 3 313.0259

CH0639 1019.879 284.8499 3 299.0454

CH0671 316.3136 259.7751 1 262.4521

CH0847 1333.867 266.796 5 295.557

CH1260 1069.884 287.8589 3 313.7079

CH1380 612.8576 311.9307 2 265.5551

CH1568 645.4193 286.8559 2 279.6643

CH1692 974.525 275.8229 3 285.7469

CH2080 329.1057 285.8529 1 273.066

CH2240 715.1943 273.817 2 309.8983

CH2256 352.364 310.9277 1 292.364

 Download from www.wowebook.com

ptg

1157Index Statistics
3

4

CH2360 630.3014 293.8768 2 273.1136

CH2480 626.8126 311.9307 2 271.6019

CH2574 679.1439 279.8349 2 294.2774

CH2610 334.9203 280.8379 1 277.8905

CH2706 343.0607 300.8978 1 284.6448

CH2856 326.7799 287.8589 1 271.1362

...

FI9853 623.3239 295.8828 2 270.0902

FI9965 625.6497 323.9666 2 271.098

LC1680 629.1384 286.8559 2 272.6097

LC5292 647.7451 265.793 2 280.6721

MC3021 610.5318 244.7302 2 264.5473

NF2924 652.3968 266.796 2 282.6877

NF8918 669.8406 310.9277 2 290.2462

PC9999 665.1889 275.8229 2 288.2306

PS2106 709.3798 259.7751 2 307.3788

TC3218 617.5093 291.8708 2 267.5707

TC4203 29.23513 293.8768 0 284.9097

TC7777 29.23513 269.805 0 284.9097

As you can see in this example, there are a greater number of rows per range and a greater
number of duplicates for each step value. Also, 188 steps in the histogram are used, and
the sample values for the 168,725 rows in the table are distributed across those 188 step
values. Also, in this example, 152,432 rows, rather than the whole table, were sampled to
generate the statistics.

How the Statistics Histogram Is Used

The histogram steps are used for SARGs only when a constant expression is compared
against an indexed column and the value of the constant expression is known at query
compile time. The following SARG examples show where histogram steps can be used:

. where col_a = getdate()

. where cust_id = 12345

. where monthly_sales < 10000 / 12

. where l_name like “Smith” + “%”

Some constant expressions cannot be evaluated until query runtime. They include
search arguments that contain local variables or subqueries and also join clauses, such as
the following:

. where price = @avg_price

. where total_sales > (select sum(qty) from sales)

. where titles.pub_id = publishers.pub_id

 Download from www.wowebook.com

ptg

1158 CHAPTER 34 Data Structures, Indexes, and Performance

For these types of statements, you need some other way of estimating the number of
matching rows. In addition, because histogram steps are kept only on the first column of
the index, SQL Server must use a different method for determining the number of match-
ing rows for SARGs that specify multiple column values for a composite index, such as
the following:

select * from sales

where title_id = ‘BI3976’

and stor_id = ‘P648’

When the histogram is not used or cannot be used, SQL Server uses the index density
values to estimate the number of matching rows.

Index Densities

SQL Server stores the density values of each column in the index for use in queries where
the SARG value is not known until runtime or when the SARG is on multiple columns of
the index. For composite keys, SQL Server stores the density for the first column of the
composite key; for the first and second columns; for the first, second, and third columns;
and so on. This information is shown in the All density section of the DBCC
SHOW_STATISTICS output in Listings 34.4 and 34.5.

Index density essentially represents the inverse of all unique key values of the key. The
density of each key is calculated by using the following formula:

Key density = 1.00 / Count of distinct key values in the table

Therefore, the density for the au_lname column in the authors table in the bigpubs2008
database is calculated as follows:

Select Density = 1.00/ (select count(distinct au_lname) from authors)

go

Density

0.0062500000000

The density for the combination of the columns au_lname and au_fname is as follows:

Select Density = 1.00/ (select count(distinct au_lname + au_fname) from authors)

go

Density

0.0058139534883

Notice that, unlike with the selectivity ratio, a smaller index density indicates a more
selective index. As the density value approaches 1, the index becomes less selective and
essentially useless. When the index selectivity is poor, the Query Optimizer might choose
to do a table scan or a leaf-level index scan rather than perform an index seek because it is
more cost-effective.

 Download from www.wowebook.com

ptg

1159Index Statistics
3

4

TABLE 34.8 Index Densities for the titleidind Index on the sales Table

Key Column Index Density

title_id 0.001858736

title_id, stor_id 5.99844E-06 (.00000599844)

title_id, stor_id, ord_num 5.926804E-06 (.000005926804)

TIP

Watch out for database indexes that have poor selectivity. Such indexes are often more
of a detriment to the performance of the system than they are a help. Not only are they
usually not used for data retrieval, but they also slow down your data modification
statements because of the additional index overhead. You should identify such indexes
and consider dropping them.

Typically, the density value should become smaller (that is, more selective) as you add
more columns to the key. For example, in Listing 34.5, the densities get progressively
smaller (and thus, more selective) as additional columns are factored in, as shown in
Table 34.8.

Estimating Rows Using Index Statistics

How does the Query Optimizer use the index statistics to estimate the number of rows
that match the SARGs in a query?

SQL Server uses the histogram information when searching for a known value being
compared to the leading column of the index key column, especially when the search
spans a range or when there are duplicate values in the key. Consider this query on the
sales table in the bigpubs2008 database:

select * from sales

where title_id = ‘BI3976’

Because there are duplicates of title_id in the table, SQL Server uses the histogram on
title_id (refer to Listing 34.5) to estimate the number of matching rows. For the value of
BI3976, it would look at the EQ_ROWS value, which is 260.778. This indicates that there are
approximately 261 rows in the table that have a title_id value of BI3976.

When an exact match for the search argument is not found as a step in the histogram,
SQL Server uses the AVG_RANGE_ROWS value for the next step greater than the search value.
For example, SQL Server would estimate that for a search value of ’BI4184’, on average, it
would >match approximately 300.0652 rows because that is the AVG_RANGE_ROWS value for
the step value of ’BI8448’, which is the next step greater than ’BI3976’.

 Download from www.wowebook.com

ptg

1160 CHAPTER 34 Data Structures, Indexes, and Performance

When the query is a range retrieval that spans multiple steps, SQL Server sums the
RANGE_ROWS and EQ_ROWS values between the endpoints of the range retrieval. For example,
when we use the histogram in Listing 34.5, if the search argument were where title_id
<= ‘BI3976’, the row estimate would be 274.8199+639.6047+312.9337+893.1208+
271.811+637.2789+260.778, or 3290.3470 rows.

As mentioned previously, when the histogram cannot be used, SQL Server uses just the
index density to estimate the number of matching rows. The formula is straightforward
for an equality search; it looks like this:

Row Estimate = Number of Rows in Table × Index Density

For example, to estimate the number of matching rows for any given title_id in the
sales table, multiply the number of rows in the sales table by the index density for the
title_id key (0.001862197), as follows:

select count(*) * 0.001862197 as ‘Row Estimate’

from sales

go

Row Estimate

314.199188825

If a query specifies both the title_id and stor_id as SARGs, and if the SARG for
title_id is a constant expression that can be evaluated at optimization time, SQL Server
uses both the index density on title_id and stor_id as well as the histogram on
title_id to estimate the number of matching rows. For some data values, the estimated
number of matching rows for title_id and stor_id calculated using the index density
could be greater than the estimated number of rows that match the specific title_id, as
determined by the histogram. SQL Server uses whichever is the smaller of the two to
calculate the row estimate.

Multiplying the number of rows in the sales table by the index density for title_id,
stor_id (5.997505E-06), you can see that it is nearly unique, essentially matching only a
single row:

select count(*) * 5.997505E-06 as ‘Row Estimate’

from sales

Row Estimate

1.011929031125

In this example, SQL Server would use the index density on title_id and stor_id to esti-
mate the number of matching rows. In this case, it is estimated that the query will return,
on average, one matching row.

 Download from www.wowebook.com

ptg

1161Index Statistics
3

4

Generating and Maintaining Index and Column Statistics

At this point, you might ask, “How do the index statistics get created?” and “How are they
maintained?” The index statistics are first created when you create the index on a table
that already contains data rows or when you run the UPDATE STATISTICS command. Index
statistics can also be automatically updated by SQL Server. SQL Server can be configured to
constantly monitor the update activity on the indexed key values in a database and
update the statistics through an internal process, when appropriate.

Auto-Update Statistics
To automatically update statistics, an internal SQL Server process monitors the updates to
a table’s columns to determine when statistics should be updated. SQL Server internally
keeps track of the number of modifications made to a column via column modification
counters (colmodctrs). SQL Server uses information about the table and the colmodctrs to
determine whether statistics are out of date and need to be updated. Statistics are consid-
ered out of date in the following situations:

. When the table size has gone from 0 to >0 rows

. When the number of rows in the table at the time the statistics were gathered was
500 or fewer and the colmodctr of the leading column of the statistics object has
changed by more than 500

. When the table had more than 500 rows at the time the statistics were gathered and
the colmodctr of the leading column of the statistics object has changed by more
than 500 + 20% of the number of rows in the table

If the statistics are defined on a temporary table, there is an additional threshold for updat-
ing statistics every six column modifications if the table contains fewer than 500 rows.

The colmodctrs are incremented in the following situations:

. When a row is inserted into the table

. When a row is deleted from the table

. When an indexed column is updated

Whenever the index statistics have been updated for a column, the colmodctr for that
column is reset to 0.

When SQL Server generates an update of the column statistics, it generates the new statis-
tics based on a sampling of the data values in the table. Sampling helps minimize the
overhead of the AutoStats process. The sampling is random across the data pages, and the
values are taken from the table or the smallest nonclustered index on the columns needed
to generate the statistics. After a data page containing a sampled row has been read from
disk, all the rows on the data page are used to update the statistical information.

 Download from www.wowebook.com

ptg

1162 CHAPTER 34 Data Structures, Indexes, and Performance

CAUTION

Having up-to-date statistics on tables helps ensure that optimum execution plans are
being generated for queries at all times. In most cases, you would want SQL Server to
automatically keep the statistics updated. However, it is possible that Auto-Update
Statistics can cause an update of the index statistics to run at inappropriate times in a
production environment or in a high-volume environment to run too often. If this prob-
lem is occurring, you might want to turn off the AutoStats feature and set up a sched-
uled job to update statistics during off-peak periods. Do not forget to update statistics
periodically; otherwise, the resulting performance problems might end up being much
worse than the momentary ones caused by the AutoStats process.

To determine how often the AutoStats process is being run, you can use SQL Server
Profiler to determine when an automatic update of index statistics is occurring by moni-
toring the Auto Stats event in the Performance event class. (For more information on
using SQL Server Profiler, see Chapter 6.)

If necessary, it is possible to turn off the AutoStats behavior by using the sp_autostats
system stored procedure. This stored procedure allows you to turn the automatic updating
of statistics on or off for a specific index or all the indexes of a table. The following
command turns off the automatic update of statistics for an index named aunmind on the
authors table:

Exec sp_autostats ‘authors’, ‘OFF’, ‘aunmind’

When you run sp_autostats and simply supply the table name, it displays the current
setting for the table as well as the database. Following are the settings for the authors table:

Exec sp_autostats ‘authors’

go

Global statistics settings for [bigpubs2008]:

Automatic update statistics: ON

Automatic create statistics: ON

settings for table [authors]

Index Name AUTOSTATS Last Updated

------------------------ --------- ------------------------

[UPKCL_auidind] ON 2009-10-19 01:23:47.263

[aunmind] OFF 2010-03-14 22:20:52.177

[_WA_Sys_state_4AB81AF0] ON 2009-10-19 01:23:47.263

[au_fname] ON 2009-10-19 01:23:47.280

[phone] ON 2009-10-19 01:23:47.293

[address] ON 2009-10-19 01:23:47.310

[city] ON 2009-10-19 01:23:47.310

[zip] ON 2009-10-19 01:23:47.310

 Download from www.wowebook.com

ptg

1163Index Statistics
3

4

There are three other ways to disable auto-updating of statistics for an index:

. Specify the STATISTICS_NORECOMPUTE clause when creating the index.

. Specify the NORECOMPUTE option when running the UPDATE STATISTICS command.

. Specify the NORECOMPUTE option when creating statistics with the CREATE STATISTICS
command. (You learn more about this command in the “Creating Statistics” section,
later in the chapter.)

You can also turn AutoStats on or off for the entire database by setting the database
option in SQL Server Management Studio; to do this, right-click the database in Object
Explorer to bring up the Database Properties dialog, select the Options page, and set the
Auto Update Statistics option to False. You can also disable or enable the AutoStats option
for a database by using the ALTER DATABASE command:

ALTER DATABASE dbname SET AUTO_UPDATE_STATISTICS { ON | OFF }

NOTE

What actually happens when you execute sp_autostats or use the NORECOMPUTE
option in the UPDATE STATISTICS command to turn off auto-update statistics for a spe-
cific index or table? SQL Server internally sets a flag in the system catalog to inform
the internal SQL Server process not to update the index statistics for the table or index
that has had the option turned off using any of these commands. To re-enable Auto
Update Statistics, you either run UPDATE STATISTICS without the NORECOMPUTE option
or execute the sp_autostats system stored procedure and specify the value ’ON’ for
the second parameter.

Asynchronous Statistics Updating
In versions prior to SQL Server 2005, when SQL Server determined that the statistics being
examined to optimize a query were out of date, the query would wait for the statistics update
to complete before compilation of the query plan would continue. This is still the default
behavior in SQL Server 2008. However, the database option, AUTO_UPDATE_STATISTICS_ASYNC,
can be enabled to support asynchronous statistics updating.

When the AUTO_UPDATE_STATISTICS_ASYNC option is enabled, queries do not have to wait
for the statistics to be updated before compiling. Instead, SQL Server puts the out-of-date
statistics on a queue to be updated by a worker thread, which runs as a background
process. The query and any other concurrent queries compile immediately by using the
existing out-of-date statistics. Because there is no delay for updated statistics, query
response times are more predictable, even if the out-of-date statistics may cause the Query
Optimizer to choose a less-efficient query plan. Queries that start after the updated statis-
tics are ready use the updated statistics.

 Download from www.wowebook.com

ptg

1164 CHAPTER 34 Data Structures, Indexes, and Performance

Manually Updating Statistics
Whether or not you’ve disabled AutoStats, you can still manually update index statistics
by using the UPDATE STATISTICS T-SQL command, whose syntax is as follows:

UPDATE STATISTICS table | view

[{ { index | statistics_name }

| ({ index |statistics_name } [,...n]) }]

[WITH [[FULLSCAN]

| SAMPLE number { PERCENT | ROWS }]

| RESAMPLE

[[,] [ALL | COLUMNS | INDEX]

[[,] NORECOMPUTE]]

If neither the FULLSCAN nor SAMPLE option is specified, the default behavior is to perform a
sample scan to calculate the statistics, and SQL Server automatically computes the appro-
priate sample size.

The FULLSCAN option forces SQL Server to perform a full scan of the data in the table or
index to calculate the statistics. This generates more accurate statistics than using
sampling but is also the most time-consuming and I/O-intensive method. When you use
the SAMPLE option, you can specify a fixed number of rows or a percentage of rows to
sample to build or update the index statistics. If the sampling ratio specified ever results in
too few rows being sampled, SQL Server automatically corrects the sampling, based on the
number of existing rows in the table or view. At a minimum, approximately 1,000 data
pages are sampled.

The RESAMPLE option specifies that the statistics be generated using the previously defined
sampling ratio. This RESAMPLE option is useful for indexes or column statistics created with
different sampling values. For example, if the index statistics were created using FULLSCAN,
and the column statistics were created using a 50% sample, specifying the RESAMPLE
option would update the statistics using FULLSCAN on the indexes and using the 50%
sample for the others.

Specifying ALL, COLUMNS, or INDEX specifies whether the UPDATE STATISTICS command
affects all existing statistics or only column or index statistics. By default, if no option is
specified, the UPDATE STATISTICS statement affects all statistics.

As previously discussed, SQL Server automatically updates the index statistics by default. If
you specify the NORECOMPUTE option with UPDATE STATISTICS, it disables AutoStats for the
table or index.

When the automatic update statistics option is turned off, you should run the UPDATE
STATISTICS command periodically, when appropriate. To determine the last time statistics
were updated, you run the following command:

select STATS_DATE(tableid, indexid)

 Download from www.wowebook.com

ptg

1165Index Statistics
3

4

Following is an example:

select STATS_DATE(object_id(‘authors’), 1)

go

2010-03-15 00:04:51.407

TIP

You can get the index ID from sys.indexes for each index on a table by using the
following query:

select name, index_id from sys.indexes

Where object_id = object_id(‘table_name’) and index_id > 0

Column-Level Statistics
In addition to statistics on indexes, SQL Server can also store statistics on individual
columns that are not part of any indexes. Knowing the likelihood of a particular value
being found in a nonindexed column can help the Query Optimizer better estimate the
number of matching rows for SARGs on the nonindexed columns. This helps it determine
the optimal execution plan, whether or not SQL Server is using an index to actually
locate the rows.

For example, consider the following query:

select stor_name

from stores st

join sales s on (st.stor_id = s.stor_id)

where s.qty <= 100

SQL Server knows the density of the stor_id column in both the sales and stores tables
because of indexes on the column in those tables. There is no index on qty. However, if
the Query Optimizer were to know how many rows in the sales table had a qty less than
100, it would be better able to choose the most efficient query plan for joining between
sales and stores. For example, assume that, on average, there are approximately 500
sales per store. However, there are only approximately 5 sales per store where the qty is
less than 100. With the statistics on qty, SQL Server has the opportunity to determine
this, and knowing there might be only 5 matching rows per store in sales versus 500, it
might choose a different, more efficient, join strategy between the two tables.

Being able to keep statistics on the qty column without having to add it to an existing
index with stor_id or create a separate index on qty provides SQL Server with the selec-
tivity information it needs for optimization. By not having to create an index on qty to

 Download from www.wowebook.com

ptg

1166 CHAPTER 34 Data Structures, Indexes, and Performance

generate statistics on the column, you avoid incurring the overhead of having to maintain
the index key rows for each insert, update, and delete that occurs on the table. Only the
index statistics on qty need to be maintained, which is required only after many modifica-
tions to the data have occurred.

By default, SQL Server generates column statistics automatically when queries are opti-
mized and the column is specified in a SARG or join clause. If no column statistics exist
and the Query Optimizer needs to estimate the approximate density or distribution of
column values, SQL Server automatically generates statistics for that column. This rule has
two exceptions:

. Statistics are not automatically created for columns when the cost of creating the
statistics exceeds the cost of the query plan itself.

. Statistics are not automatically created when SQL Server is too busy (that is, when
there are too many outstanding query compilations in progress).

If you want to disable or re-enable the database option to autocreate statistics in the data-
base, you use the ALTER DATABASE command:

ALTER DATABASE dbname SET AUTO_CREATE_STATISTICS { ON | OFF }

You can also turn the Auto Create Statistics option on or off for the entire database by
setting the database option in SSMS. In Object Explorer, right-click the database to bring
up the Database Properties dialog, select the Options page, and set the Auto Create
Statistics option to True or False.

Column statistics are stored in the system catalogs. General information about them can
be viewed in the sys.stats catalog view. Autogenerated statistics have a name in the
format _WA_Sys_colname_systemgeneratednumber. You can retrieve a list of autogenerated
column statistics with a query similar to the following:

SELECT cast(object_name(object_id) as varchar(30)) as ‘table’,

cast (name as varchar(30)) as autostats

FROM sys.stats

WHERE auto_created = 1

AND objectproperty (object_id, ‘IsUserTable’) = 1

go

table autostats

------------------------------ ------------------------------

table autostats

------------------------------ ------------------------------

authors _WA_Sys_state_4AB81AF0

sales _WA_Sys_ord_num_628FA481

sales _WA_Sys_qty_628FA481

stores _WA_Sys_state_6477ECF3

stores _WA_Sys_zip_6477ECF3

titles _WA_Sys_type_6A30C649

 Download from www.wowebook.com

ptg

1167Index Statistics
3

4

Creating Statistics
If you want finer control over how the column statistics are generated, you can use the
CREATE STATISTICS command. Its syntax is similar to that of UPDATE STATISTICS, with the
exception that you specify a column or list of columns instead of an index on which to
create statistics:

CREATE STATISTICS statistics_name ON table (column [,...n])

[WITH [[FULLSCAN | SAMPLE number { PERCENT | ROWS }] [,]]

[NORECOMPUTE]]

Any column that can be specified as an index key can also be specified for statistics,
except for XML columns or when the maximum allowable size of the combined column
values exceeds the 900-byte limit on an index key. Statistics can also be created on
computed columns if the ARITHABORT and QUOTED_IDENTIFIER database options are set to
ON. In addition, statistics can be created on CLR user-defined type columns if the CLR type
supports binary ordering.

If you want to create single-column statistics on all eligible columns in a database, you
can use the sp_createstats system procedure:

sp_createstats [[@indexonly =] ‘indexonly’]

[,[@fullscan =] ‘fullscan’]

[,[@norecompute =] ‘norecompute’]

The created statistics have the same name as the column on which they are created.
Statistics are not created on columns that already have statistics on them (for example, the
first column of an index or a column that already has explicitly created statistics).

To display a list of all column statistics, whether autogenerated or manually created, you
use a query similar to the previous one, but you include user-created statistics as well:

SELECT cast(object_name(object_id) as varchar(30)) as ‘table’,

cast (name as varchar(30)) as name,

stats_id

FROM sys.stats

WHERE objectproperty (object_id, ‘IsUserTable’) = 1

and (auto_created = 1 or user_created = 1)

order by 1, 3

go

table name stats_id

------------------------------ ------------------------------ -----------

authors _WA_Sys_state_4AB81AF0 3

authors au_fname 4

authors phone 5

authors address 6

authors city 7

authors zip 8

 Download from www.wowebook.com

ptg

1168 CHAPTER 34 Data Structures, Indexes, and Performance

discounts discounttype 2

discounts stor_id 3

discounts lowqty 4

discounts highqty 5

discounts discount 6

employee fname 3

employee minit 4

employee job_id 5

employee job_lvl 6

employee pub_id 7

employee hire_date 8

jobs job_desc 2

jobs min_lvl 3

jobs max_lvl 4

publishers pub_name 2

publishers city 3

publishers state 4

publishers country 5

roysched lorange 3

roysched hirange 4

roysched royalty 5

sales _WA_Sys_ord_num_628FA481 3

sales ord_date 4

sales _WA_Sys_qty_628FA481 5

sales payterms 6

stores _WA_Sys_state_6477ECF3 3

stores _WA_Sys_zip_6477ECF3 4

stores stor_name 5

stores stor_address 6

titleauthor au_ord 4

titleauthor royaltyper 5

titles _WA_Sys_type_6A30C649 3

titles pub_id 4

titles price 5

titles advance 6

titles royalty 7

titles ytd_sales 8

titles notes 9

titles pubdate 10

To remove a collection of statistics on one or more columns for a table in the current data-
base, you use the DROP STATISTICS command, which has the following syntax:

DROP STATISTICS {table | view}.statistics_name

Be aware that dropping the column statistics could affect how your queries are optimized,
and less efficient query plans might be chosen. Also, if the Auto Create Statistics option is

 Download from www.wowebook.com

ptg

1169SQL Server Index Maintenance
3

4

enabled for the database, SQL Server is likely to automatically create statistics on the
columns the next time they are referenced in a SARG or join clause for a query.

String Summary Statistics
SQL Server 2008 supports string summary statistics for estimating the selectivity of LIKE
conditions. String summary statistics are statistical summaries of substring frequency
distribution for character columns. String summary statistics can be created on columns of
type text, ntext, char, varchar, and nvarchar. String summary statistics allow SQL Server
to estimate the selectivity of LIKE conditions, where the search string may have any
number of wildcards in any combination, including LIKE conditions where the first char-
acter is a wildcard. In previous versions of SQL Server, row estimates could not be accu-
rately obtained when the leading character of a search string was a wildcard character.
String summary statistics allow SQL Server to estimate the selectivity of any of the follow-
ing predicates:

. Column LIKE ’string%’

. Column LIKE ‘%string’

. Column LIKE ‘%string%’

. Column LIKE ’str[abc]ing’

. Column LIKE ‘%abc%xy’

String summary statistics include additional information beyond what is displayed by
DBCC SHOW_STATISTICS for the histogram. You can determine whether string summary
statistics have been created for a column or an index by examining the String Index
column returned by DBCC SHOW_STATISTICS. If the value is YES, the statistics for that
column or index also include a string summary. However, DBCC SHOW_STATISTICS does not
display the actual contents of the string summary.

SQL Server Index Maintenance
SQL Server indexes are self-maintaining, which means that any time a data modification
(such as an update, a delete, or an insert) takes place on a table, the index B-tree is auto-
matically updated to reflect the correct data values and current rows. Generally, you do
not have to do any maintenance of the indexes, but indexes and tables can become frag-
mented over time. There are two types of fragmentation: external fragmentation and
internal fragmentation.

External fragmentation occurs when the logical order of pages does not match the physical
order or the extents allocated to the table are not contiguous. These situations occur typi-
cally with clustered tables as a result of page splits and pages being allocated and linked
into the page chain from other extents. External fragmentation is usually not much of an
issue for most queries performing small result set retrievals via an index. It’s more of a
performance issue for ordered scans of all or part of a table or index. If the table is heavily
fragmented and the pages are not contiguous, scanning the page chain is more expensive.

 Download from www.wowebook.com

ptg

1170 CHAPTER 34 Data Structures, Indexes, and Performance

Internal fragmentation occurs when an index is not using up all the space within the
pages in the table or index. Fragmentation within an index page can happen for the
following reasons:

. As more records are added to a table, space is used on the data page and on the index
page. As a result, the page eventually becomes completely full. If another insert takes
place on that page and there is no more room for the new row, SQL Server splits the
page into two, each page now being about 50% full. If the clustered key values being
inserted are not evenly distributed throughout the table (as often happens with clus-
tered indexes on sequential keys), this extra free space might not be used.

. Frequent update statements can cause fragmentation in the database at the data and
index page level because the updates cause rows to move to other pages. Again, if
future clustered key values inserted into the table are not evenly distributed through-
out the table, the empty slots left behind might not be used.

. As rows are deleted, space becomes freed up on data and index pages. If no new rows
within the range of deleted values on the page are inserted, the page remains sparse.

NOTE

Internal fragmentation is not always a bad thing. Although pages that are not complete-
ly full use up more space and require more I/O during retrieval, free space within a
page allows for rows to be added without having to perform an expensive page split.
For some environments where the activity is more insert intensive than query intensive,
you might want more free space in pages. This can be accomplished by applying the fill
factor when creating the index on the table. Applying the fill factor is described in more
detail in the next section.

Usually, in a system, all these factors contribute to the fragmentation of data within the
data pages and index pages. In an environment subject to a lot of data modification, you
might see a lot of fragmentation on the data and index pages over a period of time. These
sparse and fragmented pages remain allocated to the table or index even if they have
only a single row or two, and the extent containing the page remains allocated to the
table or index.

Data fragmentation can adversely affect performance for table or index scanning opera-
tions because the data is spread across more pages than necessary. More I/Os are required
to retrieve the data. SQL Server provides a dynamic management view,
sys.dm_db_index_physical_stats, which is a multistatement table-valued function that
returns size and fragmentation information for the data and indexes of a specified table or
view. The results from the function are returned by a normal SELECT statement and thus
can be saved to a table for reporting purposes and historical analysis. The syntax of
dm_db_index_physical_stats is as follows:

sys.dm_db_index_physical_stats (

{ database_id | NULL | 0 | DEFAULT }

 Download from www.wowebook.com

ptg

1171SQL Server Index Maintenance
3

4

TABLE 34.9 dm_db_index_physical_stats Parameters

Parameter Description

database_id The ID of the database. The default is 0, which returns information for all data-
bases. NULL, 0, and DEFAULT are equivalent values in this context. If you
specify NULL or 0, for database_id, you must specify NULL for object_id,
index_id, and partition_number.

object_id The object ID of the table or view the index is on. Valid inputs are the ID
number of a table or view, NULL, 0, or DEFAULT. The default is 0, which returns
information for all tables and views in the specified database. NULL, 0, and
DEFAULT are equivalent values in this context.

index_id The ID of the index. Valid inputs are the ID number of an index, 0 if object_id
is a heap, NULL, -1, or DEFAULT. The default is -1, which returns information
for all indexes for a table or view. NULL, -1, and DEFAULT are equivalent values
in this context. If you specify NULL for index_id, you must also specify NULL
for partition_number.

partition_number The partition number in the object. Valid inputs are the partition_number of
an index or a heap, NULL, 0, or DEFAULT. The default is 0, which returns infor-
mation for all partitions of the object. NULL, 0, and DEFAULT are equivalent
values in this context. Use a partition_number of 1 for a nonpartitioned
index or heap.

mode The scan level used to obtain physical index statistics. Valid inputs are
DEFAULT, NULL, LIMITED, SAMPLED, or DETAILED. The default mode is LIMITED.
NULL and DEFAULT are equivalent values in this context.

, { object_id | NULL | 0 | DEFAULT }

, { index_id | NULL | 0 | -1 | DEFAULT }

, { partition_number | NULL | 0 | DEFAULT }

, { mode | NULL | DEFAULT })

The parameters for dm_db_index_physical_stats are summarized in Table 34.9.

The sys.dm_db_index_physical_stats function requires only an Intent-Shared table lock,
regardless of the mode in which it runs. This provides for the capability to run the
sys.dm_db_index_physical_stats function online without blocking update activity on a
table.

The scan-level mode determines the level of scanning performed by the function to obtain
the physical statistics for the index. The LIMITED mode is the fastest and scans the smallest
number of pages. It scans all data pages for a heap but scans only leaf-level pages for an
index. It also returns only a subset of the data columns, as shown in Table 34.10. The
SAMPLED mode returns statistics based on a 1% sample of all the pages in the index or
heap. If the index or heap has fewer than 10,000 pages, DETAILED mode is used instead of
SAMPLED. The SAMPLED scan mode displays information for only data pages of a heap and
leaf-level pages of an index. The DETAILED mode scans all pages and returns all statistics
for all data and index levels.

 Download from www.wowebook.com

ptg

1172 CHAPTER 34 Data Structures, Indexes, and Performance

TABLE 34.10 dm_db_index_physical_stats Result Columns

Column Name Data Type Description

Displayed in
LIMITED

Scan Mode

database_id Smallint A database ID database
containing the table or view.

Yes

object_id int The object ID of the table or
view where the index is
located.

Yes

index_id int The index ID of the index. 0
indicates a heap.

Yes

partition_number int A partition number within the
owning table, view, or index.

Yes

index_type_desc nvarchar

(60)

The index type. Values are
HEAP, CLUSTERED INDEX,
NONCLUSTERED INDEX, PRIMARY
XML INDEX, and XML INDEX.

Yes

alloc_unit_type_desc nvarchar

(60)

A description of the allocation
unit type. Values are
IN_ROW_DATA, LOB_DATA, and
ROW_OVERFLOW_DATA.

Yes

index_depth tinyint The number of index levels. Yes

index_level tinyint The current level of the index.
0 indicates index leaf levels,
heaps, and LOB_DATA or
ROW_OVERFLOW_DATA allocation
units.

Yes

avg_fragmentation_in_percent float The percentage of logical frag-
mentation (out-of-order pages
in the index).

Yes

TIP

The scan modes get progressively slower from LIMITED to DETAILED because more
work is performed in each mode. To quickly gauge the size or fragmentation level of a
table or an index, first use the LIMITED mode. It is the fastest and does not return a
row for each nonleaf level in the IN_ROW_DATA allocation unit of the index.

Table 34.10 describes the result columns returned by the dm_db_index_physical_stats
table-valued function.

 Download from www.wowebook.com

ptg

1173SQL Server Index Maintenance
3

4

TABLE 34.10 dm_db_index_physical_stats Result Columns

Column Name Data Type Description

Displayed in
LIMITED

Scan Mode

fragment_count bigint The number of fragments
(physically consecutive leaf
pages) in the index.

Yes

avg_fragment_size_in_pages float The average number of pages
in one fragment in an index.

Yes

page_count bigint The total number of index or
data pages at the current level.

Yes

avg_page_space_used_in_percent Float The average percentage of
available data storage space
used in all pages.

No

record_count Bigint The total number of records at
the current level.

No

ghost_record_count Bigint The number of ghost records
ready for removal by the ghost
cleanup task.

No

version_ghost_record_count Bigint The number of ghost records
retained by an outstanding
snapshot isolation transaction
in an allocation unit.

No

min_record_size_in_bytes Int The minimum record size, in
bytes.

No

max_record_size_in_bytes Int The maximum record size, in
bytes.

No

avg_record_size_in_bytes Float The average record size, in
bytes.

No

forwarded_record_count Bigint The number of forwarded
records in a heap.

No

compressed_page_count_ Bigint The number of compressed
pages in a heap.

No

 Download from www.wowebook.com

ptg

1174 CHAPTER 34 Data Structures, Indexes, and Performance

Listing 34.6 shows examples of running sys.dm_db_index_physical_stats on the
sales_big table, using both LIMITED and DETAILED scan modes.

LISTING 34.6 sys.dm_db_index_physical_stats Examples

use bigpubs2008

go

select str(index_id,3,0) as indid,

left(index_type_desc, 20) as index_type_desc,

index_depth as idx_depth,

index_level as idx_level,

str(avg_fragmentation_in_percent, 5,2) as avg_frgmnt_pct,

str(page_count, 10,0) as pg_cnt

FROM sys.dm_db_index_physical_stats

(db_id(), object_id(‘sales_big’),null, 0, ‘LIMITED’)

select str(index_id,3,0) as indid,

left(index_type_desc, 20) as index_type_desc,

index_depth as idx_depth,

index_level as idx_level,

str(avg_fragmentation_in_percent, 5,2) as avg_frgmnt_pct,

str(page_count, 10,0) as pg_cnt

FROM sys.dm_db_index_physical_stats

(db_id(), object_id(‘sales_big’),null, 0, ‘DETAILED’)

go

indid index_type_desc idx_depth idx_level avg_frgmnt_pct pg_cnt

----- -------------------- --------- --------- -------------- ----------

1 CLUSTERED INDEX 3 0 63.42 14519

2 NONCLUSTERED INDEX 3 0 14.90 4571

indid index_type_desc idx_depth idx_level avg_frgmnt_pct pg_cnt

----- -------------------- --------- --------- -------------- ----------

1 CLUSTERED INDEX 3 0 63.42 14519

1 CLUSTERED INDEX 3 1 92.11 38

1 CLUSTERED INDEX 3 2 0.00 1

2 NONCLUSTERED INDEX 3 0 14.90 4571

2 NONCLUSTERED INDEX 3 1 87.50 8

2 NONCLUSTERED INDEX 3 2 0.00 1

Again, you can see from the output in Listing 34.6 that the logical fragmentation
(avg_frgmnt_pct) is 63.42% for the leaf level of the clustered index (idx_level = 0). This
indicates that nearly two thirds of the data pages are out of sequence in relation to order-

 Download from www.wowebook.com

ptg

1175SQL Server Index Maintenance
3

4

ing of the clustered key values. If you want to improve the performance of table scans or
clustered index scans for the sales_big table, you need to decide whether to rebuild the
index or simply defragment the index.

The degree of fragmentation helps you decide which defragmentation method to use. A
rough guideline to use to help decide is to examine the avg_fragmentation_in_percent
value returned by the sys.dm_db_index_physical_stats function. If the
avg_fragmentation_in_percent value is greater than 5% but less than 30%, you should
reorganize the index. If the avg_fragmentation_in_percent value is greater than 30%, you
should consider rebuilding the index. If you also have a dedicated maintenance window
large enough to perform a rebuild instead of simply reorganizing the index, you may as
well run a rebuild because it performs a more thorough defragmentation than reorganiz-
ing the index.

Another factor in determining whether an index needs to be defragmented is how the
data is accessed. If your applications are performing primarily single-row lookups,
randomly accessing individual rows of data, the internal or external fragmentation is not a
factor when it comes to query performance. Accessing one row from a fragmented table is
just as easy as from an unfragmented table. However, if your applications are performing
ordered range scan operations and reading all or large numbers of the pages in a table,
excessive fragmentation can greatly slow down the scan. The more contiguous and full the
pages, the better the performance will be of the scanning operations.

TIP

If you have very low levels of fragmentation (less than 5%), it is recommended that you
not bother with either a reorganization or a rebuild because the benefit of removing
such a small amount of fragmentation is not enough to justify the cost of reorganizing
or rebuilding the index.

In SQL Server 2008, the ALTER INDEX command provides options for defragmenting an
index. Following is the syntax for the ALTER INDEX command:

ALTER INDEX { index_name | ALL }

ON [database_name. [schema_name] . | schema_name.]

table_or_view_name

{ REBUILD

[[PARTITION = ALL]

[WITH (<rebuild_index_option> [,...n])]

| [PARTITION = partition_number

[WITH (<single_partition_rebuild_index_option>

[,...n])

]

]

]

| DISABLE

 Download from www.wowebook.com

ptg

1176 CHAPTER 34 Data Structures, Indexes, and Performance

| REORGANIZE

[PARTITION = partition_number]

[WITH (LOB_COMPACTION = { ON | OFF })]

| SET (<set_index_option> [,...n])

}

[;]

<rebuild_index_option > ::=

{

PAD_INDEX = { ON | OFF }

| FILLFACTOR = fillfactor

| SORT_IN_TEMPDB = { ON | OFF }

| IGNORE_DUP_KEY = { ON | OFF }

| STATISTICS_NORECOMPUTE = { ON | OFF }

| ONLINE = { ON | OFF }

| ALLOW_ROW_LOCKS = { ON | OFF }

| ALLOW_PAGE_LOCKS = { ON | OFF }

| MAXDOP = max_degree_of_parallelism

| DATA_COMPRESSION = { NONE | ROW | PAGE }

[ON PARTITIONS ({ <partition_number_expression> | <range> }

[, ...n])]

}

<range> ::=

<partition_number_expression> TO <partition_number_expression>

}

<single_partition_rebuild_index_option> ::=

{

SORT_IN_TEMPDB = { ON | OFF }

| MAXDOP = max_degree_of_parallelism

| DATA_COMPRESSION = { NONE | ROW | PAGE } }

}

<set_index_option>::=

{

ALLOW_ROW_LOCKS = { ON | OFF }

| ALLOW_PAGE_LOCKS = { ON | OFF }

| IGNORE_DUP_KEY = { ON | OFF }

| STATISTICS_NORECOMPUTE = { ON | OFF }

}

The REORGANIZE option is always performed online, regardless of which edition of SQL
Server 2008 you are running, allowing for other users to continue to update and query
the underlying data in the table while the REORGANIZE process is running. The REBUILD
option can be executed online only if you are running SQL Server 2008 Enterprise or
Developer Editions. In all other editions of SQL Server 2008, the REBUILD option is

 Download from www.wowebook.com

ptg

1177SQL Server Index Maintenance
3

4

executed offline. When it is executed offline, SQL Server acquires exclusive locks on the
underlying data and associated indexes so any data modifications to the table are blocked
until the rebuild completes.

Reorganizing an index uses minimal system resources to defragment only the leaf level of
clustered and nonclustered indexes of tables and views. The first phase of the reorganiza-
tion process compacts the rows on the leaf pages, reapplying the current fill factor value
to reduce the internal fragmentation. To view the current fill factor setting, you can run a
query such as the following against the sys.indexes system catalog view:

select cast(name as varchar(30)) as name, index_id, fill_factor

from sys.indexes

where object_id = object_id(‘sales_big’)

go

name index_id fill_factor

---------------------------- ----------- -----------

ci_sales_big 1 0

idx1 2 0

For more information on fill factor and how to set it, see the “Setting the Fill Factor”
section, later in this chapter.

The second phase of the reorganization process involves the rearranging of the leaf-level
pages so that the logical and physical order of the pages match, thereby reducing the
external fragmentation of the leaf level of the index. SQL Server 2008 runs a
REORGANIZATION of an index online because the second phase processes only two pages at
a time, in an operation similar to a bubble sort. When defragmenting the index, SQL
Server 2008 determines the first physical page belonging to the leaf level and the first
logical page in the leaf level, and it swaps the data on those two pages. It then identifies
the next logical and physical page and swaps them, and so on, until no more swaps need
to be made. At this point, the logical page ordering matches the physical page ordering.
While swapping the logical and physical pages, SQL Server uses an additional new page as
a temporary storage area. After each page swap, SQL Server releases all locks and latches
and saves the key of the last moved page.

The following example uses ALTER TABLE to reorganize the clustered index on the
sales_big table:

ALTER INDEX ci_sales_big on sales_big REORGANIZE

After running this command, you can run a query similar to the query in Listing 34.6 to
display the fragmentation of the ci_sales_big index on the sales_big table:

select str(s.index_id,3,0) as indid,

left(i.name, 20) as index_name,

left(index_type_desc, 20) as index_type_desc,

index_depth as idx_depth,

index_level as level,

str(avg_fragmentation_in_percent, 5,2) as avg_frgmnt_pct,

 Download from www.wowebook.com

ptg

1178 CHAPTER 34 Data Structures, Indexes, and Performance

str(page_count, 10,0) as pg_cnt

FROM sys.dm_db_index_physical_stats

(db_id(‘bigpubs2008’), object_id(‘sales_big’),1, 0, ‘DETAILED’) s

join sys.indexes i on s.object_id = i.object_id and s.index_id = i.index_id

go

indid index_name index_type_desc idx_depth level avg_frgmnt_pct pg_cnt

----- ------------ ------------- --------- ----- -------------- ------

1 ci_sales_big CLUSTERED INDEX 3 0 0.32 14519

1 ci_sales_big CLUSTERED INDEX 3 1 92.11 38

1 ci_sales_big CLUSTERED INDEX 3 2 0.00 1

As you can see, the average fragmentation percentage is down to .32% from 63.42%, indi-
cating that the index is now mostly defragmented. However, the average fragmentation
percentage of the intermediate level of the index (level = 1) is still 92.11%, indicating
that it is heavily fragmented. To defragment the nonleaf levels of the index, you need to
rebuild the index. The following example shows how to rebuild the index using the ALTER
INDEX command:

ALTER INDEX ci_sales_big on sales_big REBUILD

After running this command, you can again run a query similar to the query in Listing
34.6 to display the fragmentation of the ci_sales_big index on the sales_big table:

select str(s.index_id,3,0) as indid,

left(i.name, 20) as index_name,

left(index_type_desc, 20) as index_type_desc,

index_depth as idx_depth,

index_level as level,

str(avg_fragmentation_in_percent, 5,2) as avg_frgmnt_pct,

str(page_count, 10,0) as pg_cnt

FROM sys.dm_db_index_physical_stats

(db_id(‘bigpubs2008’), object_id(‘sales_big’),1, 0, ‘DETAILED’) s

join sys.indexes i on s.object_id = i.object_id and s.index_id = i.index_id

go

indid index_name index_type_desc idx_depth level avg_frgmnt_pct pg_cnt

----- ------------ ------------- --------- ----- -------------- --------

1 ci_sales_big CLUSTERED INDEX 3 0 0.01 14520

1 ci_sales_big CLUSTERED INDEX 3 1 5.26 38

1 ci_sales_big CLUSTERED INDEX 3 2 0.00 1

You can see from these results that the REBUILD option performs a more thorough defrag-
mentation of the ci_sales_big index than REORGANIZE. The average fragmentation
percentage of both the leaf and intermediate levels is significantly less.

 Download from www.wowebook.com

ptg

1179SQL Server Index Maintenance
3

4

NOTE

When you rebuild a nonclustered index, the rebuild operation requires enough tempo-
rary disk space to store both the old and new indexes. However, if the index is disabled
before being rebuilt, the disk space made available by disabling the index can be
reused by the subsequent rebuild or any other operation. No additional space is
required except for temporary disk space for sorting, which is typically only about 20%
of the index size.

Therefore, if disk space is limited, it may be helpful to disable a nonclustered index
before rebuilding it. For more information on disabling indexes, see the “Disabling
Indexes” section, later in this chapter.

One of the other options to the CREATE INDEX and ALTER INDEX commands is the
FILLFACTOR option. The fill factor allows you to specify, as a percentage, the fullness of the
pages at the data and leaf index page levels, essentially deciding how much free space to
create in the index and data pages to make room for new rows and avoid page splits.

Setting the Fill Factor

Fill factor is a setting you can use when creating an index to specify, as a percentage, how
full you want your data pages or leaf-level index pages to be when the index is created. A
lower fill factor has the effect of spreading the data and leaf index rows across a greater
number of pages by leaving more free space in the pages. This reduces page splitting and
dynamic reorganization of index and data pages, which can improve performance in envi-
ronments where there are a lot of inserts and updates to the data, while at the same time
reducing performance for queries because an increased number of pages need to be read to
retrieve multiple rows. A higher fill factor has the effect of packing more data and index
rows per page by leaving less free space in the pages. Using a higher fill factor is useful in
environments where the data is relatively static because it reduces the number of pages
required for storing the data and its indexes, and it helps improve performance for queries
by reducing the number of pages that need to be accessed.

By default, when you create an index on a table, if you don’t specify a value for
FILLFACTOR, the default value is 0. With a FILLFACTOR setting of 0, or 100, the data pages
for a clustered index and the leaf pages for a nonclustered index are created completely
full. However, space is left within the nonleaf nodes of the index for one or two more
rows. The default fill factor to be used when creating indexes is a server-level configura-
tion option. If you want to change the server-wide default for the fill factor, you use the
sp_configure command:

sp_configure ‘fill factor’,N

It is generally recommended that you leave the server-wide default for fill factor as 0
and specify your FILLFACTOR settings on an index-by-index basis. You can specify a

 Download from www.wowebook.com

ptg

1180 CHAPTER 34 Data Structures, Indexes, and Performance

specific fill factor value for an index by including the FILLFACTOR option for the CREATE
INDEX statement:

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name

ON [[database_name.][schema_name.]] table_or_view_name

[WITH (<relational_index_option> [,...n])]

<relational_index_option> ::=

{ PAD_INDEX = { ON | OFF }

| FILLFACTOR = fillfactor

| SORT_IN_TEMPDB = { ON | OFF }

| IGNORE_DUP_KEY = { ON | OFF }

| STATISTICS_NORECOMPUTE = { ON | OFF }

| DROP_EXISTING = { ON | OFF }

| ONLINE = { ON | OFF }

| ALLOW_ROW_LOCKS = { ON | OFF }

| ALLOW_PAGE_LOCKS = { ON | OFF }

| MAXDOP = max_degree_of_parallelism }

The FILLFACTOR option for the CREATE INDEX command allows you to specify, as a
percentage, how full the data or leaf-level index pages should be when you create an
index on a table. The specified percentage can be from 1 to 100. Specifying a value of 80
would mean that each data or leaf page would be filled approximately 80% full at the
time you create the index. It is important to note that as more data gets modified or
added to a table, the fill factor is not maintained at the level specified during the CREATE
INDEX command. Over a period of time, you will find that each page has a different
percentage of fullness as rows are added and deleted.

TIP

A fill factor setting specified when creating a nonclustered index affects only the non-
clustered index pages and doesn’t affect the data pages. To apply a fill factor to the
data pages in a table, you must provide a fill factor setting when creating a clustered
index on the table. Also, it is important to remember that the fill factor is applied only
at index creation time and is not maintained by SQL Server. When you begin updating
and inserting data, the fill factor is eventually lost. Therefore, specifying a fill factor
when creating your indexes is useful only if the table already contains data or if you
simply want to set a default fill factor for the index other than 0 that will be used when
indexes are rebuilt or reorganized by ALTER INDEX.

If you specify only the FILLFACTOR option, only the data or leaf-level index pages are
affected by the fill factor. To specify the level of fullness for nonleaf pages, use the PAD_INDEX
option together with FILLFACTOR. This option allows you to specify how much space to
leave open on each node of the index, which can help to reduce page splits within the

 Download from www.wowebook.com

ptg

1181SQL Server Index Maintenance
3

4

nonleaf levels of the index. You don’t specify a value for PAD_INDEX; it uses the same
percentage value specified with the FILLFACTOR option. For example, to apply a 50% fill
factor to the leaf and nonleaf pages in a nonclustered index on title_id in the titles
table, you would execute the following:

CREATE INDEX title_id_index on titles (title_id)

with (FILLFACTOR = 50, PAD_INDEX = ON)

TIP

When you use PAD_INDEX, the value specified by FILLFACTOR cannot be such that the
number of rows on each index node falls below two. If you do specify such a value,
SQL Server internally overrides it so that the number of rows on an intermediate index
page is never less than two.

Reapplying the Fill Factor

When might you need to reestablish the fill factor for your indexes or data? As data gets
modified in a table, the value of FILLFACTOR is not maintained at the level specified in the
CREATE INDEX statement. As a result, each page can reach a different level of fullness. Over
a period of time, this can lead to heavy fragmentation in the database if insert/delete
activity is not evenly spread throughout the table, and it could affect performance. In
addition, if a table becomes very large and then very small, rows could become isolated
within data pages. This space will likely not be recovered until the last row on the page is
deleted and the page is marked as unused. To either spread out rows or to reclaim space by
repacking more rows per page, you need to reapply the fill factor to your clustered and
nonclustered indexes.

In environments where insert activity is heavy, reapplying a low fill factor might help
performance by spreading out the data and leaving free space on the pages, which helps
to minimize page splits and possible page-locking contention during heavy OLTP activity.
You can use Performance Monitor to monitor your system and determine whether exces-
sive page splits are occurring. (See Chapter 39, “Monitoring SQL Server Performance” for
more information on using Performance Monitor.)

A DBA must manually reapply the fill factor to improve the performance of the system.
This can be done by using the ALTER INDEX command discussed earlier or by dropping
and re-creating the index. ALTER INDEX is preferred because, by default, it applies the origi-
nal fill factor specified when the index was created, or you can provide a new fill factor to
override the default. The original fill factor for an index is stored in sys.indexes in the
fill_factor column. In addition, if you use the ALTER INDEX command to reorganize or
rebuild your table or index, it attempts to reapply the index’s original fill factor when it
reorganizes the pages.

 Download from www.wowebook.com

ptg

1182 CHAPTER 34 Data Structures, Indexes, and Performance

Disabling Indexes
Another feature available in SQL Server 2008 is the capability to set an index as disabled.
When an index is disabled, the definition of the index is maintained in the system catalogs,
but the index itself contains no index key rows. Disabling an index prevents user access to
the index. Disabling a clustered index also prevents access to the underlying table data.

You can manually disable an index at any time by using the ALTER INDEX DISABLE statement:

ALTER INDEX titleidind ON sales DISABLE

The reasons you might want to disable an index include the following:

. Correcting a disk I/O or allocation error on an index page and then rebuilding the
index later

. Temporarily removing the index for troubleshooting purposes

. Saving temporary disk space while rebuilding nonclustered indexes

When you disable an index, the index is not maintained while it is disabled, and the
Query Optimizer does not consider the index when creating query execution plans.
However, statistics on a disabled nonclustered index remain in place and are updated
automatically if the AutoStats option is in effect.

If you disable a clustered index, all nonclustered indexes on the table are automatically
disabled as well. The nonclustered index cannot be re-enabled until the clustered index is
either enabled or dropped. After you enable the clustered index, the nonclustered indexes
must be explicitly enabled unless the clustered index was enabled by using the ALTER
INDEX ALL REBUILD statement. Because the data rows of the table cannot be accessed while
the clustered index is disabled, the following operations cannot be performed on the table:

. SELECT, UPDATE, DELETE, and INSERT

. CREATE INDEX

. CREATE STATISTICS

. UPDATE STATISTICS

. ALTER TABLE statements that modify table columns or constraints

After an index is disabled, it remains in a disabled state until it is rebuilt or dropped. You
can enable a disabled index by rebuilding it by using one of the following methods:

. ALTER INDEX statement with the REBUILD clause

. CREATE INDEX with the DROP_EXISTING clause

. DBCC DBREINDEX

To determine whether an index is currently disabled, you can use the INDEXPROPERTY func-
tion (a value of 1 indicates the index is disabled):

select indexproperty(object_id(‘sales’), ‘titleidind’, ‘IsDisabled’)

1

 Download from www.wowebook.com

ptg

1183Index Design Guidelines
3

4

FIGURE 34.27 Setting and viewing index properties in SSMS.

Managing Indexes with SSMS

So far, you’ve seen the commands necessary for index management. In addition to these
commands, SSMS provides tools for managing indexes.

To reorganize or rebuild an index using SSMS, in the Object Explorer, connect to an
instance of the SQL Server 2008 Database Engine and then expand that instance. Then
expand Databases, expand the database that contains the table with the specified index,
and expand Tables. Next, expand the table in which the index belongs and then expand
Indexes. Finally, right-click the index to rebuild and then click Rebuild or Reorganize. To
rebuild or reorganize all indexes on a table, right-click Indexes and select Rebuild All or
Reorganize All.

You can also disable indexes in SSMS. In the Object Explorer, right-click the index you
want to disable and then select the Disable option. To disable all indexes on a table, right-
click on Indexes and select Disable All.

You can also use SSMS to modify indexes. In the Object Explorer, right-click the index you
want to modify and then click Properties. In the Properties dialog that appears (see Figure
34.27), you can add or remove columns from the index, change the uniqueness setting,
set the index option, set the fill factor, rebuild the index, view the index fragmentation,
reorganize the index, and so on.

 Download from www.wowebook.com

ptg

1184 CHAPTER 34 Data Structures, Indexes, and Performance

Index Design Guidelines
SQL Server indexes are mostly transparent to end users and T-SQL developers. Indexes are
typically not specified in queries unless you use table hints to force the Query Optimizer
to use a particular index. (Although forcing indexes is generally not advised, using Query
Optimizer table hints is covered in more detail in Chapter 35.) Normally, based on the
index key histogram or density values, the SQL Server cost-based Query Optimizer auto-
matically chooses the index that is least expensive from an I/O standpoint.

Chapter 35 goes into greater detail on how the Query Optimizer estimates I/O and deter-
mines the most efficient query plan. In the meantime, the following are some of the
main guidelines to follow in creating useful indexes that the Query Optimizer can use
effectively:

. For composite indexes, try to keep the more selective columns leftmost in the
index. The first element in the index should be the most unique (if possible), and
index column order in general should be from most to least unique. However,
remember that selectivity doesn’t help if the first ordered index column is not speci-
fied in your SARGs or join clauses. To ensure that the index is used for the largest
number of queries, be sure the first ordered column is the column used most often
in your queries.

. Be sure to index columns used in joins. Joins are processed inefficiently if no index
on the column(s) is specified in a join. Remember that a PRIMARY KEY constraint
automatically creates an index on a column, but a FOREIGN KEY constraint does not.
You should create indexes on your foreign key columns if your queries commonly
join between the primary key and foreign key tables.

. Tailor your indexes for your most critical queries and transactions. You cannot index
for every possible query that might be run against your tables. However, your appli-
cations will perform better if you can identify your critical and most frequently
executed queries and design indexes to support them. SQL Server Profiler, which is
covered in Chapter 6, is a useful tool for identifying the most frequently executed
queries. SQL Server Profiler can also help identify slow-running queries that might
benefit from improved index design.

. Avoid indexes on columns that have poor selectivity. The Query Optimizer is not
likely to use the indexes, so they would simply take up space and add unnecessary
overhead during inserts, updates, and deletes. One possible exception occurs when
the index can be used to cover a query. Index covering is discussed in more detail in
the “Index Covering” section, later in this chapter.

. Choose your clustered and nonclustered indexes carefully. The next two sections dis-
cuss tips and guidelines for choosing between clustered or nonclustered indexes,
based on the data contained in the columns and the types of queries executed
against the columns.

 Download from www.wowebook.com

ptg

1185Index Design Guidelines
3

4

Clustered Index Indications

Searching for rows via a clustered index is almost always faster than searching for rows via
a nonclustered index—for two reasons. One reason is that a clustered index contains only
pointers to pages rather than pointers to individual data rows; therefore, a clustered index
is more compact than a nonclustered index. Because a clustered index is smaller and
doesn’t require an additional lookup via the row locator to find the matching rows, the
rows can be found with fewer page reads than with a similarly defined nonclustered index.
The second reason is that because the data in a table with a clustered index is physically
sorted on the clustered key, searching for duplicate values or for a range of clustered key
values is faster; the rows are adjacent to each other, and SQL Server can simply locate the
first qualifying row and then search the rows in sequence until the last qualifying row is
found. However, because you are allowed to create only one clustered index per table, you
must judiciously choose the column or columns on which to define the clustered index.

If you require only a single index on a table, it’s typically advantageous to make it a clus-
tered index; the resulting overhead of maintaining clustered indexes during updates, inserts,
and deletes can be considerably less than the overhead incurred by nonclustered indexes.

By default, the primary key on a table is defined as a clustered unique index. In most
applications, the primary key column on a table is almost always retrieved in single-row
lookups. For single-row lookups, a nonclustered index usually costs you only a few more
I/Os than a similar clustered index. Are you or the users really going to notice a difference
between three page reads to retrieve a single data row versus four- to six-page reads to
retrieve a single data row? Not at all. However, if you have to perform a range retrieval,
such as a lookup on last name, will you notice a difference between scanning 10% of the
table versus having to find the rows using a full table scan? Most definitely. With this in
mind, you might want to consider creating your primary key as a unique nonclustered
index and choosing another candidate for your clustered index.

Following are guidelines to consider for other potential candidates for clustered indexes:

. Columns with a number of duplicate values searched frequently (for
example, WHERE last_name = ‘Smith’)—Because the data is physically sorted,
all the duplicate values are kept together. Any query that tries to fetch records
against such keys finds all the values, using a minimum of I/O. SQL Server locates
the first row that matches the SARG and then scans the data rows in order until it
finds the last row matching the SARG.

. Columns often specified in the ORDER BY clause—Because the data is already
sorted, SQL Server can avoid having to re-sort the data if the ORDER BY is on the clus-
tered index key and the data is retrieved in clustered key order. Remember that even
for a table scan, the data is retrieved in clustered key order because the data in the
table is in clustered key order. The only exception is if a parallel query operation is
used to retrieve the data rows; in that case, the results needs to be re-sorted when
the result sets from each parallel thread are merged. (For more information on paral-
lel query strategies, see Chapter 35.)

 Download from www.wowebook.com

ptg

1186 CHAPTER 34 Data Structures, Indexes, and Performance

. Columns often searched for within a range of values (for example, WHERE
price between $10 and $20)—A clustered index can be used to locate the first
qualifying row in the range of values. Because the rows in the table are in sorted
order, SQL Server can simply scan the data pages in order until it finds the last quali-
fying row within the range. When the result set within the range of values is large, a
clustered index scan is significantly more efficient in terms of total logical I/O
performed than repeated row locator lookups via a nonclustered index.

. Columns, other than the primary key, frequently used in join clauses—
Clustered indexes tend to be smaller than nonclustered indexes; the amount of page
I/O required per lookup is generally less for a clustered index than for a nonclustered
index. It can be a significant difference when joining many records. An extra page
read or two might not seem like much for a single-row retrieval, but add those addi-
tional page reads to 100,000 join iterations, and you’re looking at a total of 100,000
to 200,000 additional page reads.

When you consider columns for a clustered index, you might want to try to keep your
clustered indexes on relatively static columns to minimize the re-sorting of data rows
when an indexed column is updated. Any time a clustered index key value changes, the
entire data row has to be moved to keep the clustered data values in physical sort order. In
addition, all nonclustered indexes using the clustered key as the row locator to that row
also need to be updated.

You should also avoid creating clustered indexes on wide keys that are made up of several
columns, especially several large-size columns. The reason is that the clustered key values
are incorporated in all nonclustered indexes as the row locater. Because the nonclustered
index entries contain the clustering key in addition to the key columns defined for that
nonclustered index, the nonclustered indexes end up being significantly larger and less
efficient in terms of I/O.

Because you can physically sort the data in a table in only one way, you can have only
one clustered index per table. Any other columns you want to index have to be defined
with nonclustered indexes.

Nonclustered Index Indications

SQL Server allows you to create a maximum of 999 nonclustered indexes on a table. Until
tables become extremely large, the actual space taken by a nonclustered index is a minor
expense compared to the increased access performance. You need to keep in mind,
however, that as you add more indexes to the system, database modification statements
get slower due to the index maintenance overhead.

Also, when defining nonclustered indexes, you typically want to define indexes on
columns that are more selective (that is, columns with low density values) so that they can
be used effectively by the Query Optimizer. A high number of duplicate values in a

 Download from www.wowebook.com

ptg

1187Index Design Guidelines
3

4

nonclustered index can often make it more expensive (in terms of I/O) to process the
query using the nonclustered index than a table scan. Let’s look at a hypothetical example:

select title from titles

where price between $5. and $10.

Assume that you have 1 million rows within the range; those 1 million rows could be
randomly scattered throughout the table. Although the index leaf level has all the index
rows in sorted order, reading all data rows one at a time would require a separate lookup
via the row locator for each row in the worst-case scenario.

Thus, the worst-case I/O estimate for range retrievals using a nonclustered index is as
follows:

Number of levels in the nonclustered index

+ Number of index pages scanned to find all matching rows

+ (Number of matching rows × Number of pages per lookup via the row locator)

If you have no clustered index on the table, the row locator is simply a page and row
pointer and requires one data page read to find the matching data row. If 1 million rows
are in the range, the worst-case cost estimate to search via the nonclustered index with no
clustered index on the table would be as follows:

Number of index page reads to find all the row locators

+ (1 million matching rows × 1 data page read)

= 1 million + I/O

If you have a clustered index on the table, the row locator is a clustered index key for the
data row. Using the row locator to find the matching row requires searching the clustered
index tree to locate the data row. Assuming that the clustered index has two nonleaf
levels, it would cost three pages to find each qualifying row on a data page. If the range
has 1 million rows, the worst-case cost estimate to search via the nonclustered index with
a clustered index on the table would be as follows:

Number of index page reads to find all the row locators

+ (1 million matching rows × 3 pages per lookup via the row locator)

= 3 million + I/O

Contrast each of these scenarios with the cost of a table scan. If the entire table takes up
50,000 pages, a full table scan would cost only 50,000 in terms of I/O. Therefore, in this
example, doing a table scan would actually be more efficient than using the nonclus-
tered index.

The following guidelines help you identify potential candidates for nonclustered indexes
for your environment:

. Columns referenced in SARGs or join clauses that have a relatively high selectivity
(the density value is low).

 Download from www.wowebook.com

ptg

1188 CHAPTER 34 Data Structures, Indexes, and Performance

. Columns referenced in both the WHERE clause and the ORDER BY clause. When the
data rows are retrieved using a nonclustered index, they are retrieved in nonclus-
tered index key order. If the result set is to be ordered by the nonclustered index
key(s) as well, SQL Server can avoid having to re-sort the result set, resulting in a
more efficient query. In the following sample query, SQL Server can avoid the extra
step of sorting the result set if a nonclustered index is on state and the index is
used to retrieve the matching rows:

select * from authors

where state like ‘C%’

order by state

In general, nonclustered indexes are useful for single-row lookups, joins, queries on
columns that are highly selective, or queries with small range retrievals. Also, when
considering your nonclustered index design, you should not overlook the benefits of
index covering, as described in the following section.

Index Covering

Index covering is a situation in which all the information required by the query in the
SELECT and WHERE clauses can be found entirely within the nonclustered index itself.
Because the nonclustered index contains a leaf row corresponding to every data row in the
table, SQL Server can satisfy the query from the leaf rows of the nonclustered index. This
results in faster retrieval of data because all the information can come directly from the
index page, and SQL Server avoids lookups of the data pages.

Because the leaf pages in a nonclustered index are linked together, the leaf level of the index
can be scanned just like the data pages in a table. Because the leaf index rows are typically
much smaller than the data rows, a nonclustered index that covers a query will be faster
than a clustered index on the same columns because fewer pages would need to be read.

In the following example, a nonclustered index on the au_lname and au_fname columns of
the authors table would cover the query because the result columns and the SARGs can
all be derived from the index itself:

Select au_lname, au_fname

From authors

Where au_lname like ‘M%’

Go

Many other queries that use an aggregate function (such as MIN, MAX, AVG, SUM, and COUNT)
or simply check for existence of criteria also benefit from index covering. The following
aggregate query samples can take advantage of index covering:

select count(au_lname) from authors where au_lname like ‘M%’

select count(*) from authors where au_lname like ‘M%’

select count(*) from authors

 Download from www.wowebook.com

ptg

1189Index Design Guidelines
3

4

You might wonder how the last query, which doesn’t even specify a SARG, can use an
index. SQL Server knows that by its nature, a nonclustered index contains a row for every
data row in the table; it can simply count all the rows in any of the nonclustered indexes
instead of scanning the whole table. For the last query, SQL Server chooses the smallest
nonclustered index—that is, the one with the smallest number of leaf pages.

Index covering can sometimes occur when you are not expecting it. As discussed previ-
ously in this chapter, when you have a clustered index defined on a table, the clustered
key is carried into all the nonclustered indexes to be used as the row locator to locate the
actual data row. Having the additional clustered key column values in the nonclustered
index provides more data values that can be used in index covering.

For example, assume that the authors table has a clustered index on au_lname and
au_fname and a nonclustered primary key defined on au_id. Each row in the nonclustered
index on au_id would contain the clustered key values for au_lname and au_fname for its
corresponding data row. Because of this, the following query would actually be covered by
the nonclustered index on au_id:

select au_lname, au_fname

from authors

where au_id like ‘123%’

Explicitly adding additional columns to nonclustered indexes to promote the occurrence
of index covering has historically been a common method of improving query response
time. Consider the following query:

select royalty from titles

where price between $10 and $20

If you create an index on only the price column, SQL Server can find the rows in the
index where price is between $10 and $20, but it has to access the data rows to retrieve
royalty. With 100 rows in the range, the worst-case I/O cost to retrieve the data rows
would be as follows:

Number of index levels

+ Number of index pages to find the 100 matching rows

+ (100 × Number of pages per lookup via the row locator)

If the royalty column were added to the index on the price column, SQL Server could
scan the index to retrieve the results instead of having to perform the lookups via the row
locator against the table, resulting in faster query response. The I/O cost using index
covering would be lower, as follows:

Number of index levels

+ Number of index pages to scan to find the 100 matching rows

 Download from www.wowebook.com

ptg

1190 CHAPTER 34 Data Structures, Indexes, and Performance

If you are considering padding your indexes to take advantage of index covering, beware
of making an index too wide. As index row width approaches data row width, the benefits
of covering are lost as the number of pages in the leaf level increases. As the number of
leaf-level index pages approaches the number of pages in the table, the number of index
levels also increases, increasing the I/O cost of using the index to locate data.

You should also avoid adding to the index columns that are frequently updated.
Remember that any changes to the columns in the data rows cascade into the indexes as
well. This increases the index maintenance overhead, which can adversely affect update
performance.

As an alternative to adding columns to the nonclustered index key to encourage index
covering, you might want to consider taking advantage of the included columns feature in
SQL Server 2008.

Included Columns

A feature available for nonclustered indexes in SQL Server 2008 is included columns.
Included columns allow you to add nonkey columns to the leaf level of a nonclustered
index for the purpose of index covering.

One advantage of included columns is that because the nonkey columns are stored only
in the leaf level of the index, the nonleaf rows of the index are smaller, which helps
reduce the overall size of the index, thereby helping reduce the I/O cost of using the
index. Another advantage is that this feature allows you to exceed the SQL Server
maximum limits of 16 index key columns and 900-byte index key size. The included
nonkey columns are not factored in when calculating the number of index key columns
or index key size. All data types are allowed as included columns except for the text,
ntext, and image data types. To add included columns to an index, specify the INCLUDE
clause to the CREATE INDEX statement:

CREATE INDEX NC_titles_price on titles (price) INCLUDE (royalty)

An additional advantage of included columns is that you can add columns to a unique
index for index covering purposes without affecting the uniqueness of the actual index
key(s) and without having to create a second index on the unique key column(s) and the
additional covering columns. For example, consider that you have a large number of
queries that search titles by title_id to retrieve the price value. Creating a covering index
on title_id and price could improve performance of these queries. However, creating a
unique index on title_id and price would not enforce uniqueness on title_id alone (it
would allow the insertion of multiple rows with the same title_id as long as they had
different prices). Without using included columns, you would have to create a unique
index on title_id and an additional nonunique index on title_id and price to enforce
uniqueness on title_id and also have a covering index on title_id and price. However,
with the included column feature, you can create just a single unique index on title_id
with price as an included column:

CREATE INDEX UQ_titleid_price on titles (title_id) INCLUDE (price)

 Download from www.wowebook.com

ptg

1191Indexed Views
3

4

TIP

If you have existing nonclustered indexes with a large index key size, you might want to
consider redesigning them so that only columns used for searching and lookups are
key columns. You should make all other columns that were added for index covering
into included columns. This way, you still have all columns needed to cover your
queries, but the index key itself is smaller and more efficient.

You still should be careful to avoid adding unnecessary columns as included columns of
an index. Adding too many index columns, key or nonkey, can adversely affect perfor-
mance for the following reasons:

. Fewer index leaf rows fit on a page, which can increase I/O costs to search the leaf
level of the index and also reduce data cache efficiency.

. Because of the increased leaf row size, more disk space is required to store the index,
especially if you are adding varchar(max), nvarchar(max), varbinary(max), or xml
data types as nonkey index columns. Because the column values are also copied into
the index leaf level, you are essentially storing the data values twice.

. Changes to the included columns in the data rows cascade into the leaf rows of the
index as well. This increases the index maintenance overhead, which can adversely
affect performance of data modifications.

Wide Indexes Versus Multiple Indexes

As an index key gets wider, the selectivity of the key generally becomes higher as well. It
might seem that creating wide indexes would result in better performance. This is not
necessarily true. The reason is that the wider the key, the fewer rows SQL Server stores on
the index pages, requiring more pages at each level; this results in a higher number of
levels in the index B-tree. To get to specific rows, SQL Server must perform more I/O.

To get better performance from queries, instead of creating a few wide indexes, you should
consider creating multiple narrower indexes. The advantage here is that with smaller keys,
the Query Optimizer can quickly scan through multiple indexes to determine the most
efficient access plan. SQL Server has the option of performing multiple index lookups
within a single query and merging the result sets together to generate an intersection of
the indexes. Also, with more indexes, the Query Optimizer can choose from a wider
variety of query plan alternatives.

If you are considering creating a wide key, you should individually check the distribution
of values for each member of the composite key. If the selectivity on the individual
columns is high, you might want to break up the index into multiple indexes. If the selec-
tivity of individual columns is low but is high for combined columns, it makes sense to
have wider keys on the table. To get to the right combination, you can populate your
table with real-world data, experiment with creating multiple indexes, and check the

 Download from www.wowebook.com

ptg

1192 CHAPTER 34 Data Structures, Indexes, and Performance

distribution of values for each column. Based on the histogram steps and index density,
you can make the decisions for an index design that works best for your environment.

Indexed Views
As discussed in Chapter 27, “Creating and Managing Views,” SQL Server 2008 allows you
to create indexed views. An indexed view is any view that has a clustered index defined on
it. When a CREATE INDEX statement is executed on a view, the result set for the view is
materialized and stored in the database with the same structure as a table with a clustered
index. Changes made to the data in the underlying tables of the view are automatically
reflected in the view the same way any changes to a table are reflected in its indexes. In
addition to a clustered index, you can create additional nonclustered indexes on indexed
views to provide additional query performance. Additional indexes on views might
provide more options for the Query Optimizer to choose from during the optimization
process.

In the Developer and Enterprise Editions of SQL Server 2008, when an indexed view exists
on a table and you access the view directly within a query, the Query Optimizer automati-
cally considers using the index on the view to improve query performance, just as an
index on a table is used to improve performance. The Query Optimizer also considers
using the indexed view, even for queries that do not directly name the view in the FROM
clause. In other words, when a query might benefit from using the indexed view, the
Query Optimizer can use the indexed view to satisfy the query in place of an existing
index on the table itself. (For more information on how indexed views are used in query
plans, see Chapter 35.)

It is important to note that although indexed views can be created in all editions of SQL
Server 2008, only the Developer and Enterprise Editions automatically use indexed views to
optimize queries. In the other editions, indexed views are not used to improve query
performance unless the view is explicitly specified in the query and the NOEXPAND hint is
specified as well. Without the NOEXPAND hint, SQL Server expands the view to its underlying
base tables and optimizes based on the table indexes. The following example shows the use
of the NOEXPAND option to force SQL Server to use the indexed view specified in the query:

select * from sales_Qty_Rollup WITH (NOEXPAND)

where stor_id between ‘B914’ and ‘B999’SET ARITHABORT ON

Indexed views add overhead and can be more complex for SQL Server to maintain over
time than normal indexes. Each time an underlying table of a view is modified, SQL
Server has to update the view result set and potentially the index on that view. The scope
of a view’s index can be larger than that of any single table’s index, especially if the view
is defined on several large tables. The overhead associated with maintaining a view and its
index during updates can negate any benefit that queries gain from the indexed view.
Because of this additional maintenance overhead, you should create indexes only on

 Download from www.wowebook.com

ptg

1193Indexes on Computed Columns
3

4

views where the advantage provided by the improved speed in retrieving the results
outweighs the increased maintenance overhead.

Following are some guidelines to consider when you design indexed views:

. Create indexes on views where the underlying table data is relatively static.

. Create indexed views that will be used by several queries.

. Keep the indexes small. As with table indexes, a smaller index allows SQL Server to
access the data more efficiently.

. Create indexed views that will be significantly smaller than the underlying table(s).
An indexed view might not provide significant performance gains if its size is similar
to the size of the original table.

. You need to specify the NOEXPAND hint in editions of SQL Server other than the
Developer and Enterprise Editions of SQL Server; otherwise, the indexed view is not
used to optimize the query.

Indexes on Computed Columns
SQL Server 2008 allows you to build indexes on computed columns in your tables.
Computed columns can participate at any position of an index, along with your other
table columns, including in a PRIMARY KEY or UNIQUE constraint. To create an index on
computed columns, you must set the following session options as shown:

. SET CONCAT_NULL_YIELDS_NULL ON

. SET QUOTED_IDENTIFIER ON

. SET ANSI_NULLS ON

. SET ANSI_PADDING ON

. SET ANSI_WARNINGS ON

. SET NUMERIC_ROUNDABORT OFF

If any of these six SET options were not in effect when you created the table, you get the
following message when you try to create an index on the computed column:

Server: Msg 1934, Level 16, State 1, Line 2

CREATE INDEX failed because the following SET options

have incorrect settings: ‘<OPTION NAME>’.

 Download from www.wowebook.com

ptg

1194 CHAPTER 34 Data Structures, Indexes, and Performance

In addition, the functions in the computed column must be deterministic. A deterministic
function is one that returns the same result every time it is called with the same set of
input parameters.

When you create a clustered index on a computed column, it is no longer a virtual
column in the table. The computed value for the column is stored in the data rows of the
table. If you create a nonclustered index on a computed column, the computed value is
stored in the nonclustered index rows but not in the data rows, unless you also have a
clustered index on the computed column.

Be aware of the overhead involved with indexes on computed columns. Updates to the
columns that the computed columns are based on result in updates to the index on the
computed column as well.

Indexes on computed columns can be useful when you need an index on large character
fields. As discussed earlier, the smaller an index, the more efficient it is. You could create a
computed column on the large character field by using the CHECKSUM() function.
CHECKSUM() generates a 4-byte integer that is relatively unique for character strings but not
absolutely unique. (Different character strings can generate the same checksum, so when
searching against the checksum, you need to include the character string as an additional
search argument to ensure that you are matching the right row.) The benefit is that you
can create an index on the 4-byte integer generated by the CHECKSUM() that can be used to
search against the character string instead of having to create an index on the large char-
acter column itself. Listing 34.7 shows an example of applying this solution.

LISTING 34.7 Using an Index on a Computed Checksum Column

--The first statement is used to disable any previously created

--DDL triggers in the database which would prevent creating a new constraint.

DISABLE TRIGGER ALL ON DATABASE

go

-- First add the computed column to the table

alter table titles add title_checksum as CHECKSUM(title)

go

-- Next, create an index on the computed column

create index NC_titles_titlechecksum on titles(title_checksum)

go

-- In your queries, include both the checksum column and the title column in

-- your search argument

select title_id, ytd_sales

from titles

where title_checksum = checksum(‘Fifty Years in Buckingham Palace Kitchens’)

and title = ‘Fifty Years in Buckingham Palace Kitchens’

 Download from www.wowebook.com

ptg

1195Filtered Indexes and Statistics
3

4

SQL Server 2008 also supports persisted computed columns. With persisted computed
columns, SQL Server stores the computed values in the table without requiring an index on
the computed column. Like indexed computed columns, persisted computed columns are
updated when any other columns on which the computed column depends are updated.

Persisted computed columns allow you to create an index on a computed column that is
defined with a deterministic, but imprecise, expression. This option enables you to create
an index on a computed column when SQL Server cannot determine with certainty
whether a function that returns a computed column expression—for example, a CLR func-
tion that is created in the Microsoft .NET Framework—is both deterministic and precise.

Filtered Indexes and Statistics
As discussed earlier in this chapter, a nonclustered index contains a row for every row in
the table, even rows with a large number of duplicate key values where the nonclustered
index will not be an effective method for finding those rows. For these situations, SQL
Server 2008 introduces filtered indexes. Filtered indexes are an optimized form of nonclus-
tered indexes, created by specifying a search predicate when defining the index. This
search predicate acts as a filter to create the index on only the data rows that match the
search predicate. This reduces the size of the index and essentially creates an index that
covers your queries, which return only a small percentage of rows from a well-defined
subset of data within your table.

Filtered indexes can provide the following advantages over full-table indexes:

. Improved query performance and plan quality—A well-designed filtered index
improves query performance and execution plan quality because it is smaller than a
full-table nonclustered index and has filtered statistics. Filtered statistics are more
accurate than full-table statistics because they cover only the rows contained in the
filtered index.

. Reduced index maintenance costs—Filtered indexes are maintained only when
data modifications affect the data values contained in the index. Also, because a
filtered index contains only the frequently accessed data, the smaller size of the
index reduces the cost of updating the statistics.

. Reduced index storage costs—Filtered indexes can reduce disk storage for non-
clustered indexes when a full-table index is not necessary. You can replace a full-
table nonclustered index with multiple filtered indexes without significantly
increasing the storage requirements.

Following are some of the situations in which filtered indexes can be useful:

. When a column contains mostly NULL values, but your queries search only for rows
where data values are NOT NULL.

. When a column contains a large number of duplicate values, but your queries typi-
cally ignore those values and search only for the more unique values.

 Download from www.wowebook.com

ptg

1196 CHAPTER 34 Data Structures, Indexes, and Performance

. When you want to enforce uniqueness on a subset of values—for example, a
column on which you want to allow NULL values. A unique constraint allows only
one NULL value; however, a filtered index can be defined as unique over only the
rows that are NOT NULL.

. When queries retrieve only a particular range of data values and you want to index
these values but not the entire table. For example, you have a table that contains a
large number of historical values, but you want to search only values for the current
year or quarter. You can create a filtered index on the desired range of values and
possibly even use the INCLUDE option to add columns so your index fully covers
your queries.

Now, you may be asking, “Can’t some of the preceding solutions be accomplished using
indexed views?” Yes, they can, but filtered indexes provided a better alternative. The most
significant advantage is that filtered indexes can be used in any edition of SQL Server
2008, whereas indexed views are chosen by the optimizer only in the Developer,
Enterprise, and Datacenter Editions unless you use the NOEXPAND hint in other editions. In
addition, filtered indexes have reduced index maintenance costs (the query processor uses
fewer CPU resources to update a filtered index than an indexed view); the Query
Optimizer considers using a filtered index in more situations than the equivalent indexed
view; you can perform online rebuilds of filtered indexes (online index rebuilds are not
supported for indexed views); and filtered indexes can be nonunique, whereas indexed
views must be unique.

Based on these advantages, it is recommended that you use filtered indexes instead of
indexed views when possible. Consider replacing indexed views with filtered indexes
when the view references only one table, the view query doesn’t return computed
columns, and the view predicate uses simple comparison logic and doesn’t contain a view.

Creating and Using Filtered Indexes

To define filtered indexes, you use the normal CREATE INDEX command but include a
WHERE condition as a search predicate to specify which data rows the filtered index should
include. In the current implementation, you can specify only simple search predicates
such as IN; the comparison operators IS NULL, IS NOT NULL, =, <>, !=, >, >=, !>, <, <=, !<;
and the logical operator AND. In addition, filtered indexes cannot be created on computed
columns, user-defined data types, Hierarchyid, or spatial types.

For example, assume you need to search only the sales table in the bigpubs2008 database
for sales since 9/1/2008. The majority of the rows in the sales table have order dates prior
to 9/1/2008. To create a filtered index on the ord_date column, you would execute a
command like the following:

create index ord_date_filt on sales (ord_date)

WHERE ord_date >= ‘2008-09-01 00:00:00.000’

 Download from www.wowebook.com

ptg

1197Filtered Indexes and Statistics
3

4

FIGURE 34.29 Query plan for a query using a value not in the filtered index.

Now, let’s look at a couple queries that may or may not use the new filtered index. First,
let’s consider the following query looking for any sales for 9/15/2008:

select * from sales

where ord_date = ‘9/15/2008’

If you look at the execution plan in Figure 34.28, you can see that the filtered index,
ord_date_filt, is used to locate the qualifying row values. The clustered index,
UPKCL_sales, is used as the row locator to retrieve the data rows (as described earlier in the
“Nonclustered Indexes” section).

NOTE

For more information on understanding and analyzing query plans, see Chapter 36.

If you run the following query using a data values that’s outside the range of values stored
in the filtered index, you see that the filtered index is not used (see Figure 34.29):

select * from sales

where ord_date = ‘9/15/2008’

FIGURE 34.28 Query plan for a query that uses a filtered index.

 Download from www.wowebook.com

ptg

1198 CHAPTER 34 Data Structures, Indexes, and Performance

Now let’s consider a query that you might expect would use the filtered index but does not:

select stor_id, qty from sales

where ord_date > ‘9/15/2008’

Now, you might expect that this query would use the filtered index because the data
values are within the range of values for the filtered index, but due to the number of rows
that match, SQL Server determines that the I/O cost of using the filtered nonclustered
index to locate the matching rows and then retrieve the data rows using the clustered
index row locators requires more I/Os than simply performing a clustered index scan of
the entire table (the same query plan as shown in Figure 34.29).

In this case, you might want to use included columns on the filtered index so that the
data values for the query can be retrieved using index covering without incurring the
extra cost of using the row locators to retrieve the actual data rows. The following
example creates a filtered index on ord_date that includes stor_id and qty:

create index ord_date_filt2 on sales (ord_date)

INCLUDE (qty, stor_id)

WHERE ord_date >= ‘2008-09-01 00:00:00.000’

If you rerun the same query and examine the query plan, you see that the filtered index is
used this time, and SQL Server uses index covering (see Figure 34.30). You can tell that it’s
using index covering with the ord_dat_filt2 index because there is no use of the clus-
tered index to retrieve the data rows. Using the row locators is unnecessary because all the
information requested by the query can be retrieved from the index leaf rows that contain
the values of the included columns as well.

Creating and Using Filtered Statistics

Similar to the way you use filtered indexes, SQL Server 2008 also lets you create filtered
statistics. Like filtered indexes, filtered statistics are also created over a subset of rows in
the table based on a specified filter predicate. Creating a filtered index on a column
autocreates the corresponding filtered statistics. In addition, filtered statistics can be
created explicitly by including the WHERE clause with the CREATE STATISTICS statement.

FIGURE 34.30 Query plan using index covering on a filtered index with included columns.

 Download from www.wowebook.com

ptg

1199Choosing Indexes: Query Versus Update Performance
3

4

Filtered statistics can be used to avoid a common issue with statistics where the cardinality
estimation is skewed due to a large number of NULL or duplicate values, or due to a data
correlation between columns. For example, let’s consider the titles table in the
bigpubs2008 database. All the cooking books (type = ‘trad_cook’ or ’mod_cook’) are
published by a single publisher (pub_id = ‘0877’). However, SQL Server stores column-
level statistics on each of these columns independent of each other. Based on the statis-
tics, SQL Server estimates there are six rows in the titles table where pub_id = ‘0877’,
and five rows where the type is either ’trad_cook’ or ’mod_cook’.

However, let’s assume you were to execute the following query:

select * from titles where pub_id = ‘0877’

and type in (‘trad_cook’, ‘mod_cook’)

When the Query Optimizer estimates the selectivity of this query where each search predi-
cate is part of an AND condition, it assumes the conditions are independent of one another
and estimates the number of matching rows by taking the intersection of the two condi-
tions. Essentially, it multiplies the selectivity of each of the two conditions together to
determine the total selectivity. The selectivity of each is 0.011 (6/537) and 0.009 (5/537),
which, when multiplied together, comes out to approximately 0.0001, so the optimizer
estimates at most only a single row will match. However, because all five cooking books
are published by pub_id ‘0877’, in actuality a total of five rows match.

Now, in this example, the difference between one row and five rows is likely not signifi-
cant enough to make a big difference in query performance, but a similar estimation error
could be quite large with other data sets, leading the optimizer to possibly choose an inap-
propriate, and considerably more expensive, query plan.

Filtered statistics can help solve this problem by letting you capture these types of data
correlations in your column statistics. For example, to capture the fact that all cooking
books are also published by the same publisher, you could create the filtered statistics
using the following statement:

create statistics pub_id_type on titles (pub_id, type)

where pub_id = ‘0877’ and type in (‘trad_cook’, ‘mod_cook’)

When these filtered statistics are defined and the same query is run, SQL Server uses the
filtered statistics to determine that the query will match five rows instead of only one.

Although using this solution could require having to define a number of filtered statistics,
it can be effective to help fix your most critical queries where cardinality estimates due to
data correlation or data skew issues are causing the Query Optimizer to choose poorly
performing query plans.

Choosing Indexes: Query Versus Update Performance
I/O is the primary factor in determining query performance. The challenge for a database
designer is to build a physical data model that provides efficient data access. Creating

 Download from www.wowebook.com

ptg

1200 CHAPTER 34 Data Structures, Indexes, and Performance

indexes on database tables allows SQL Server to access data with fewer I/Os. Defining
useful indexes during the logical and physical data modeling step is crucial. The SQL
Server Query Optimizer relies heavily on index key distribution and index density to
determine which indexes to use for a query. The Query Optimizer in SQL Server can use
multiple indexes in a query (through index intersection) to reduce the I/O required to
retrieve information. In the absence of indexes, the Query Optimizer performs a table
scan, which can be costly from an I/O standpoint.

Although indexes provide a means for faster access to data, they slow down data modifica-
tion statements due to the extra overhead of having to maintain the index during inserts,
updates, and deletes.

In a DSS environment, defining many indexes can help your queries and does not create
much of a performance issue because the data is relatively static and doesn’t get updated
frequently. You typically load the data, create the indexes, and forget about it until the
next data load. As long as you have the necessary indexes to support the user queries and
they’re getting decent response time, the penalties of having too many indexes in a DSS
environment are the space wasted for indexes that possibly won’t be used, the additional
time required to create the excessive indexes, and the additional time required to back up
and run DBCC checks on the data.

In an OLTP environment, on the other hand, too many indexes can lead to significant
performance degradation, especially if the number of indexes on a table exceeds four or
five. Think about it for a second. Every single-row insert is at least one data page write and
one or more index page writes (depending on whether a page split occurs) for every index
on the table. With eight nonclustered indexes, that would be a minimum of nine writes to
the database for a single-row insert. Therefore, for an OLTP environment, you want as few
indexes as possible—typically only the indexes required to support the update and delete
operations and your critical queries, and to enforce your uniqueness constraints.

The natural solution, in a perfect world, would be to create a lot of indexes for a DSS envi-
ronment and as few indexes as possible in an OLTP environment. Unfortunately, in the
real world, you typically have an environment that must support both DSS and OLTP
applications. How do you resolve the competing indexing requirements of the two envi-
ronments? Meeting the indexing needs of DSS and OLTP applications requires a bit of a
balancing act, with no easy solution. It often involves making hard decisions as to which
DSS queries might have to live with table scans and which updates have to contend with
additional overhead.

One solution is to have two separate databases: one for DSS applications and another for
OLTP applications. Obviously, this method requires some method of keeping the databases
in sync. The method chosen depends on how up-to-date the DSS database has to be. If you
can afford some lag time, you could consider using a dump-and-load mechanism, such as
Log Shipping or periodic full database restores. If the DSS system requires up-to-the-
minute concurrency, you might want to consider using replication or database mirroring.

Another possible alternative is to have only the required indexes in place during normal
processing periods to support the OLTP requirements. At the end of the business day, you
can create the indexes necessary to support the DSS queries and reports, and they can run

 Download from www.wowebook.com

ptg

1201Identifying Missing Indexes
3

4

as batch jobs after normal processing hours. When the DSS reports are complete, you can
drop the additional indexes, and you’re ready for the next day’s processing. Note that this
solution assumes that the time required to create the additional indexes is offset by the
time saved by the faster running of the DSS queries. If the additional indexes do not result
in substantial time savings, they are probably not necessary and need not be created in
the first place. The queries need to be more closely examined to select the appropriate
indexes to best support your queries.

As you can see, it is important to choose indexes carefully to provide a good balance
between data search and data modification performance. The application environment
usually governs the choice of indexes. For example, if the application is mainly OLTP with
transactions requiring fast response time, creating too many indexes might have an
adverse impact on performance. On the other hand, the application might be a DSS with
few transactions doing data modifications. In that case, it makes sense to create a number
of indexes on the columns frequently used in queries.

Identifying Missing Indexes
When developing an index design for your database and applications, you should make
sure you create appropriate indexes for the various queries that will be executed against
your tables. However, it can be quite a chore to identify all the queries you may need to
create indexes for. Fortunately, SQL Server 2008 provides a couple of tools to help you
identify any indexes you may need in your database: The Database Engine Tuning Advisor
and the missing index dynamic management objects.

The Database Engine Tuning Advisor

The Database Engine Tuning Advisor is a tool that can analyze a SQL Script file or a set of
queries captured in a SQL Profiler trace and recommend changes to your indexing scheme.
After performing its analysis, the Database Engine Tuning Advisor provides recommenda-
tions for new or more effective indexes, indexed views, and partitioning schemes, along
with the estimated improvement in execution time should the recommendation be imple-
mented. You can choose to implement the recommendations immediately or later, or you
can save the SQL statements to a script file. For detailed information on using the
Database Engine Tuning Advisor, see Chapter55.

Although the Database Engine Tuning Advisor is a useful tool, and improvements have been
made since it was introduced in SQL Server 2005 to improve its recommendations, it does
still have some limitations. For one, because the Database Engine Tuning Advisor gathers
statistics by sampling the data, repeatedly running the tool on the same workload may
produce different results as different samples are used. In addition, if you impose constraints,
such as specifying maximum disk space for tuning recommendations, the Database Engine
Tuning Advisor may be forced to drop certain existing indexes, and the resulting recommen-
dation may produce a negative expected improvement. The Database Engine Tuning Advisor
may also not make recommendations under the following circumstances:

. The table being tuned contains fewer than 10 data pages.

 Download from www.wowebook.com

ptg

1202 CHAPTER 34 Data Structures, Indexes, and Performance

. The recommended indexes would not offer enough improvement in query perfor-
mance over the current physical database design.

. The user who runs the Database Engine Tuning Advisor is not a member of the
db_owner database role or the sysadmin fixed server role.

Missing Index Dynamic Management Objects

In addition to the Database Engine Tuning Advisor, SQL Server 2008 introduces the
missing index dynamic management objects to help identify potentially missing indexes
in your database. The missing index dynamic management objects are a set of new dynamic
management objects introduced in SQL Server 2008:

. sys.dm_db_missing_index_group_stats—Returns summary information
about missing index groups, such as the performance improvements that could be
gained by implementing a specific group of missing indexes.

. sys.dm_db_missing_index_groups—Returns information about a specific group
of missing indexes, such as the group identifier and identifiers of all missing indexes
contained in that group.

. sys.dm_db_missing_index_columns—Returns detailed information about a
missing index; for example, it returns the name and identifier of the table where the
index is missing, and the columns and column types that should make up the
missing index.

. sys.dm_db_missing_index_details—Returns information about the database
table columns missing an index.

After running a typical workload on SQL Server, you can query the dynamic management
functions to retrieve information about possible missing indexes. Listing 34.8 provides a
sample query that displays the missing index information for a query on the sales table
that was run between 10:30 and 10:40 p.m. on 2/21/2010.

LISTING 34.8 Querying the Missing Index Dynamic Management Objects

SELECT

mig.index_group_handle as handle,

convert(varchar(30), statement) AS table_name,

convert(varchar(12), column_name) AS Column_name,

convert(varchar(10), column_usage) as ColumnUsage,

avg_user_impact as avg_impact

FROM sys.dm_db_missing_index_details AS mid

CROSS APPLY sys.dm_db_missing_index_columns (mid.index_handle)

INNER JOIN sys.dm_db_missing_index_groups AS mig

ON mig.index_handle = mid.index_handle

inner join sys.dm_db_missing_index_group_stats AS migs

ON migs.group_handle = mig.index_group_handle

where mid.object_id = object_id(‘sales’)

and last_user_seek between ‘2010-02-21 22:30’ and ‘2010-02-21 22:40’

 Download from www.wowebook.com

ptg

1203Identifying Missing Indexes
3

4

ORDER BY mig.index_group_handle, mig.index_handle, column_id;

GO

handle table_name Column_name ColumnUsage avg_impact

----------- ------------------------------ ------------ ----------- ----------

2 [bigpubs2008].[dbo].[sales] stor_id INCLUDE 87.46

2 [bigpubs2008].[dbo].[sales] qty INEQUALITY 87.46

In this example, the optimizer recommends an index on the qty column to support an
inequality operator. It is also recommended that the stor_id column be specified as an
included column in the index. This index is estimated to improve performance by 87.46%.

Although the missing index feature provides some helpful information for identifying
potentially missing indexes in your database, it too has a few limitations:

. It is not intended to fine-tune the existing indexes, only to recommend additional
indexes when no useful index is found that can be used to satisfy a search or join
condition.

. It reports only included columns for some queries. You need to determine whether
the included columns should be specified as additional index key columns instead.

. It may return different costs for the same missing index group for different executions.

. It does not suggest filtered indexes.

. It is unable to provide recommendations for clustered indexes, indexed views, or
table partitioning (you should use the Database Engine Tuning Advisor instead for
these recommendations).

Probably the key limitation is that although the missing index feature is helpful for identi-
fying indexes that may be useful for you to define, it’s not a substitute for a well-thought-
out index design.

Missing Index Feature Versus Database Engine Tuning Advisor

The missing indexes dynamic management objects are a lightweight, server-side, always-
on feature for identifying and correcting potential indexing oversights. The Database
Engine Tuning Advisor, on the other hand, is a comprehensive client-side tool that can be
used to assess the physical database design and recommend new physical design structures
for improving performance, including not only indexes, but also indexed views or parti-
tioning schemes.

The Database Engine Tuning Advisor and missing indexes feature can possibly return
different recommendations, even for a single-query workload. The reason is that the
missing indexes dynamic management objects’ index key column recommendations are
not order sensitive. On the other hand, the Database Engine Tuning Advisor recommenda-
tions include ordering of the key columns for indexes to optimize query performance.

 Download from www.wowebook.com

ptg

1204 CHAPTER 34 Data Structures, Indexes, and Performance

Table 34.11 details some other differences between the missing indexes feature and
Database Engine Tuning Advisor in greater detail.

TABLE 34.11 Differences Between Missing Index Features and Database Engine Tuning
Advisor

Comparison Point Missing Indexes Feature Database Engine Tuning Advisor

Execution method Server side, always on Client-side, standalone application

Scope of analysis Quick, ad hoc analysis, providing
limited information about missing
indexes only

Thorough workload analysis, provid-
ing full recommendation report
about the best physical database
design configuration |
in the context of a submitted work-
load

Statements analyzed SELECT statements only SELECT, UPDATE, INSERT, and
DELETE

Available disk storage
space

Not factored into analysis Factored into analysis; recommen-
dations are not provided if they
would exceed available storage
space

Columns ordering Recommended index column
order not provided

Optimal index column order deter-
mined based on query execution
cost

Index type Nonclustered only Both clustered and nonclustered
index recommendations provided

Indexed views
recommendations

Not provided Recommended in supported
editions

Partitioning
recommendations

Not provided Recommended in supported
editions

Impact analysis An approximate impact of adding
a missing index is reported via
the
sys.dm_db_missing_index_gro

up_stats dynamic management
view (DMV)

Up to 15 different analysis reports
generated to provide information
about the impact of implementing
recommendations

 Download from www.wowebook.com

ptg

1205Identifying Unused Indexes
3

4

Identifying Unused Indexes
As mentioned previously in this chapter, each index on a table adds additional overhead
for data modifications because the indexes also need to be maintained as changes are made
to index key columns. In an OLTP environment, excessive indexes on your tables can be
almost as much of a performance issue as missing indexes. To improve OLTP performance,
you should limit the number of indexes on your tables to only those absolutely needed;
you definitely should eliminate any unnecessary and unused indexes that may be defined
on your tables to eliminate the overhead they introduce.

Fortunately, SQL Server provides a DMV that you can use to identify which indexes in
your database are not being used: sys.dm_db_index_usage_stats. The columns in the
sys.dm_db_index_usage_stats are shown in Table 34.12.

TABLE 34.12 Columns in the sys.dm_db_index_usage_stats DMV

Column Name Description

database_id ID of the database on which the table or view is defined

object_id ID of the table or view on which the index is defined

index_id ID of the index

user_seeks Number of seeks by user queries

user_scans Number of scans by user queries

user_lookups Number of bookmark lookups by user queries

user_updates Number of updates by user queries

last_user_seek Time of last user seek

last_user_scan Time of last user scan

last_user_lookup Time of last user lookup

last_user_update Time of last user update

system_seeks Number of seeks by system queries

system_scans Number of scans by system queries

system_lookups Number of lookups by system queries

system_updates Number of updates by system queries

last_system_seek Time of last system seek

last_system_scan Time of last system scan

last_system_lookup Time of last system lookup

last_system_update Time of last system update

 Download from www.wowebook.com

ptg

1206 CHAPTER 34 Data Structures, Indexes, and Performance

Every individual seek, scan, lookup, or update on an index by a query execution is
counted as a use of that index, and the corresponding counter in the view is incremented.
Thus, you can run a query against this DMV to see whether there are any indexes that
your queries are not using, that is, indexes that either have no rows in the DMV or have 0
values in the user_seeks, user_scans, or user_lookups columns (or the time values of the
last_user_* columns are significantly in the past). You especially need to focus on any
indexes that don’t show any user query activity but do have a high value in the
last_user_update column. This indicates an index that’s adding significant update over-
head but not being used by any queries for locating data rows.

For example, the query shown in Listing 34.9 returns all indexes in the current database
that have never been accessed; that is, they would have no records at all in the
sys.dm_db_index_usage_stats table.

LISTING 34.9 A Query for Unused Indexes

SELECT convert(varchar(12), OBJECT_SCHEMA_NAME(I.OBJECT_ID)) AS SchemaName,

convert(varchar(20), OBJECT_NAME(I.OBJECT_ID)) AS ObjectName,

convert(varchar(30), I.NAME) AS IndexName

FROM sys.indexes I

WHERE -- only get indexes for user created tables

OBJECTPROPERTY(I.OBJECT_ID, ‘IsUserTable’) = 1

-- ignore heaps

and I.index_id > 0

-- find all indexes that exist but are NOT used

AND NOT EXISTS (

SELECT index_id

FROM sys.dm_db_index_usage_stats

WHERE OBJECT_ID = I.OBJECT_ID

AND I.index_id = index_id

AND database_id = DB_ID())

ORDER BY SchemaName, ObjectName, IndexName

Also, you should be aware that that the information is reported in the DMV both for oper-
ations caused by user-submitted queries and for operations caused by internally generated
queries, such as scans for gathering statistics. If you run UPDATE STATISTICS on a table, the
sys.dm_db_index_usage_stats table will have a row for each index for the system scan
performed by the UPDATE STATISTICS command. However, the index may still be unused
by any queries in your applications. Consequently, you might want to modify the previ-
ous query to look for indexes with 0 values in the last_user_* columns instead of indexes
with no row at all in the DMV. Listing 34.10 provides an alternative query.

 Download from www.wowebook.com

ptg

1207Summary
3

4

LISTING 34.10 A Query for Indexes Unused by Appliation Queries

SELECT convert(varchar(12), OBJECT_SCHEMA_NAME(I.OBJECT_ID)) AS SchemaName,

convert(varchar(20), OBJECT_NAME(I.OBJECT_ID)) AS ObjectName,

convert(varchar(30), I.NAME) AS IndexName

FROM sys.indexes I

LEFT OUTER JOIN

sys.dm_db_index_usage_stats u

on I.index_id = u.index_id

and u.database_id = DB_ID()

WHERE -- only get indexes for user created tables

OBJECTPROPERTY(I.OBJECT_ID, ‘IsUserTable’) = 1

-- ignore heaps

and I.index_id > 0

-- find all indexes that exist but are NOT used

and isnull(u.last_user_seek, 0) = 0

and isnull(u.last_user_scan, 0) = 0

and isnull(u.last_user_lookup, 0) = 0

ORDER BY SchemaName, ObjectName, IndexName

Note that the information returned by sys.dm_db_index_usage_stats is useful only if
your server has been running long enough and has processed a sufficient amount of your
standard and peak workflow. Also, you should be aware that the data in the DMV is
cleared each time SQL Server is restarted, or if a database is detached and reattached. To
prevent losing useful information, you might want to create a scheduled job that periodi-
cally queries the DMVs and saves the information to your own tables so you can track the
information over time for more thorough and complete analysis.

 Download from www.wowebook.com

ptg

1208 CHAPTER 34 Data Structures, Indexes, and Performance

Summary
One of the most important aspects of improving SQL Server performance is proper table
and index design. Choosing the appropriate indexes for SQL Server to use to process
queries involves thoroughly understanding the queries and transactions being run against
the database, understanding the bias of the data, understanding how SQL Server uses
indexes, and staying aware of the performance implications of overindexing tables in an
OLTP environment. In general, you should consider using clustered indexes to support
range retrievals or when data needs to be sorted in clustered index order; you should use
nonclustered indexes for single- or discrete-row retrievals or when you can take advantage
of index covering.

To really make good index design choices, you should have an understanding of the SQL
Server Query Optimizer to know how it uses indexes and index statistics to develop query
plans. This would be a good time to continue on and read Chapter 35.

 Download from www.wowebook.com

ptg

CHAPTER 35

Understanding Query
Optimization

IN THIS CHAPTER

. What’s New in Query
Optimization

. What Is the Query Optimizer?

. Query Compilation and
Optimization

. Query Analysis

. Row Estimation and Index
Selection

. Join Selection

. Execution Plan Selection

. Query Plan Caching

. Other Query Processing
Strategies

. Parallel Query Processing

. Common Query Optimization
Problems

. Managing the Optimizer

Query optimization is the process SQL Server goes
through to analyze individual queries and determine the
best way to process them. To achieve this end, SQL Server
uses a cost-based Query Optimizer. As a cost-based Query
Optimizer, the Query Optimizer’s purpose is to determine
the query plan that will access the data with the least
amount of processing time in terms of CPU and logical and
physical I/O. The Query Optimizer examines the parsed
SQL queries and, based on information about the objects
involved (for example, number of pages in the table, types
of indexes defined, index statistics), generates a query plan.
The query plan is the set of steps to be carried out to
execute the query.

To allow the Query Optimizer to do its job properly, you
need to have a good understanding of how the Query
Optimizer determines query plans for queries. This knowl-
edge will help you to understand what types of queries can
be optimized effectively and to learn techniques to help the
Query Optimizer choose the best query plan. This knowl-
edge will help you write better queries, choose better
indexes, and detect potential performance problems.

NOTE

To better understand the concepts presented in this
chapter, you should have a reasonable understanding
of how data structures and indexes affect perfor-
mance. If you haven’t already read Chapter 34, “Data
Structures, Indexes, and Performance,” it is recom-
mended that you review it now.

 Download from www.wowebook.com

ptg

1210 CHAPTER 35 Understanding Query Optimization

NOTE

Occasionally throughout this chapter, graphical execution plans are used to illustrate
some of the principles discussed. Chapter 36, “Query Analysis,” provides a more
detailed discussion of the graphical execution plan output and describes the informa-
tion contained in the execution plans and how to interpret it. In this chapter, the execu-
tion plans are provided primarily to give you an idea of what you can expect to see for
the different types of queries presented when you are doing your own query analysis.

What’s New in Query Optimization
SQL Server 2008 introduces a few new features and capabilities related to query optimiza-
tion and query performance in an attempt to deliver on the theme of “predictable perfor-
mance.” The primary new features and enhancements are as follows:

. An enhancement has been added to the OPTIMIZE FOR query hint option to include
a new UNKNOWN option, which specifies that the Database Engine use statistical data
to determine the values for one or more local variables during query optimization,
instead of the initial values.

. Table hints can now be specified as query hints in the context of plan guides to
provide advanced query performance tuning options

. A new FORCESEEK table hint has been added. This hint specifies that the query opti-
mizer should use only an index seek operation as the access path to the data refer-
enced in the query.

. Hash values are available for finding and tuning similar queries. The
sys.dm_exec_query_stats and sys.dm_exec_requests catalog views provide query
hash and query plan hash values that you can use to help determine the aggregate
resource usage for similar queries and similar query execution plans. This can help
you find and tune similar queries that individually consume minimal system
resources but collectively consume significant system resources.

. The new filtered indexes feature in SQL Server 2008 is considered for estimating
index usefulness.

. Parallel query processing on partitioned objects has been improved.

One of the key improvements in SQL Server 2008 is the simplification of the creation and
use of plan guides:

. The sp_create_plan_guide stored procedure now accepts XML execution plan
output directly via the @hints parameter instead of having to embed the output in
the USE PLAN hint.

. A new stored procedure, sp_create_plan_guide_from_handle, allows you to create
one or more plan guides from an existing query plan in the plan cache.

. You can create multiple OBJECT or SQL plan guides for the same query and batch or
module although only one of these plan guides can be enabled at any given time.

 Download from www.wowebook.com

ptg

1211What Is the Query Optimizer?

. A new system function, sys.fn_validate_plan_guide, enables you to validate a
plan guide.

. New SQL Profiler event classes, Plan Guide Successful and Plan Guide Unsuccessful,
enable you to verify whether plan guides are being used by the Query Optimizer.

. New Performance Monitor counters in the SQL Server, SQL Statistics Object—Guided
Plan Executions/sec and Misguided Plan Executions/sec—can be used to monitor the
number of plan executions in which the query plan has been successfully or unsuc-
cessfully generated by using a plan guide.

. Built-in support is now available for creating, deleting, enabling, disabling, or script-
ing plan guides in SQL Server Management Studio (SSMS). Plan guides now are locat-
ed in the Programmability folder in Object Explorer.

NOTE

Many of the internals of the Query Optimizer and its costing algorithms are considered
proprietary and have not been made public. Much of the information provided here is
based on analysis and observation of query plans generated for various queries and
search values.

The intent of this chapter is therefore not so much to describe the specific steps, algo-
rithms, and calculations implemented by the Query Optimizer, but rather to provide a
general overview of the query optimization process in SQL Server 2008 and what goes
into estimating and determining an efficient query plan. Also, there are a number of
possible ways SQL Server can optimize and process queries. The examples presented
in this chapter focus on some of the more common optimization strategies.

What Is the Query Optimizer?
For any given SQL statement, the source tables can be accessed in many ways to return
the desired result set. The Query Optimizer analyzes all the possible ways the result set can
be generated and chooses the most appropriate method, called the query plan or execution
plan. SQL Server uses a cost-based Query Optimizer. The Query Optimizer assigns a cost to
every possible execution plan in terms of CPU resource usage and page I/O. The Query
Optimizer then chooses the execution plan with the lowest associated cost.

Thus, the primary goal of the Query Optimizer is to find the least expensive execution
plan that minimizes the total time required to process a query. Because I/O is the most
significant factor in query processing time, the Query Optimizer analyzes the query and
primarily searches for access paths and techniques to minimize the number of logical and
physical page accesses as much as possible. The lower the number of logical and physical
I/Os performed, the faster the query should run.

The process of query optimization in SQL Server is extremely complicated and is based on
sophisticated costing models and data access algorithms. It is beyond the scope of a single
chapter to explain in detail all the various costing algorithms that the Query Optimizer

3
5

 Download from www.wowebook.com

ptg

1212 CHAPTER 35 Understanding Query Optimization

currently employs. This chapter is intended to help you better understand some of the
concepts related to how the Query Optimizer chooses an execution strategy and provide
an overview of the query optimization strategies employed to improve query processing
performance.

Query Compilation and Optimization
Query compilation is the complete process from the submission of a query to its actual
execution. There are many steps involved in query compilation—one of which is opti-
mization. All T-SQL statements are compiled, but not all are optimized. Primarily, only the
standard SQL Data Manipulation Language (DML) statements—SELECT, INSERT, UPDATE,
and DELETE—require optimization. The other procedural constructs in T-SQL (IF, WHILE,
local variables, and so on) are compiled as procedural logic but do not require optimiza-
tion. DML statements are set-oriented requests that the Query Optimizer must translate
into procedural code that can be executed efficiently to return the desired results.

NOTE

SQL Server also optimizes some Data Definition Language (DDL) statements, such as
CREATE INDEX or ALTER TABLE, against the data tables. For example, a displayed
query plan for the creation of an index shows optimization steps for accessing the
table, sorting data, and inserting into the index tree. However, the focus in this chapter
is on optimization of DML statements.

Compiling DML Statements

When SQL Server compiles an execution plan for a DML statement, it performs the
following basic steps:

1. The query is parsed and checked for proper syntax, and the T-SQL statements are
parsed into keywords, expressions, operators, and identifiers to generate a query tree.
The query tree (sometimes referred to as the sequence tree) is an internal format of
the query that SQL Server can operate on. It is essentially the logical steps needed to
transform the query into the desired result.

2. The query tree is then normalized and simplified. During normalization, the tables
and columns are verified, and the metadata (data types, null properties, index
statistics, and so on) about them is retrieved. In addition, any views are resolved to
their underlying tables, and implicit conversions are performed (for example, an
integer compared with a float value). Also during this phase, any redundant opera-
tions (for example, unnecessary or redundant joins) are removed, and the query
tree is simplified.

3. The Query Optimizer analyzes the different ways the source tables can be accessed
and selects the series of steps that return the results fastest while typically using the
fewest resources. The query tree is updated with the optimized series of steps, and an
execution plan (also referred to as query plan) is generated from the final, optimized
version of the sequence tree.

 Download from www.wowebook.com

ptg

1213Query Analysis

4. After the optimized execution plan is generated, SQL Server stores the optimized
plan in the procedure cache.

5. SQL Server reads the execution plan from the procedure cache and executes the
query plan, returning the result set (if any) to the client.

The optimized execution plan is then left in the procedure cache. If the same query or
stored procedure is executed again and the plan is still available in the procedure cache,
the steps to optimize and generate the execution plan are skipped, and the stored query
execution plan is reused to execute the query or stored procedure.

Optimization Steps

When the query tree is passed to the Query Optimizer, the Query Optimizer performs a
series of steps to break down the query into its component pieces for analysis to generate
an optimal execution plan:

1. Query analysis—The query is analyzed to determine search arguments and join
clauses. A search argument is defined as a WHERE clause that compares a column to a
constant. A join clause is a WHERE clause that compares a column from one table to a
column from another table.

2. Row estimation and index selection—Indexes are selected based on search argu-
ments and join clauses (if any exist). Indexes are evaluated based on their distribu-
tion statistics and are assigned a cost.

3. Join selection—The join order is evaluated to determine the most appropriate order
in which to access tables. In addition, the Query Optimizer evaluates the most
appropriate join algorithm to match the data.

4. Execution plan selection—Execution costs are evaluated, and a query execution plan
is created that represents the most efficient solution found by the optimizer.

The next four sections of this chapter examine each of these steps in more detail.

NOTE

Unless stated otherwise, the examples presented in this chapter operate on the tables
in the bigpubs2008 database. A copy of the bigpubs2008 database is available on the
CD included with this book. Instructions on how to install the database are presented
in the Introduction.

Query Analysis
The first step in query optimization is to analyze each table in the query to identify all
search arguments (SARGs), OR clauses, and join clauses. The SARGs, OR clauses, and join
clauses are used in the second step, index selection, to select useful indexes to satisfy a
query.

3
5

 Download from www.wowebook.com

ptg

1214 CHAPTER 35 Understanding Query Optimization

Identifying Search Arguments

A SARG is defined as a WHERE clause that compares a column to a constant. The format of
a SARG is as follows:

Column operator constant_expression [and...]

SARGs provide a way for the Query Optimizer to limit the rows searched to satisfy a query.
The general goal is to match a SARG with an index to avoid a table scan. Valid operators
for a SARG are =, >, <, >=, and <=, BETWEEN, and LIKE. Multiple SARGs can be combined
with the AND clause. (A single index might match some or all of the SARGs ANDed
together.) Following are examples of SARGs:

. flag = 7

. salary > 100000

. city = ‘Saratoga’ and state = ‘NY’

. price between $10 and $20 (the same as price > = $10 and price <= $20)

. 100 between lo_val and hi_val (the same as lo_val <= 100 and hi_val >= 100)

. au_lname like ‘Sm%’ (the same as au_lname >= ‘Sm’ and au_lname < ‘Sn’)

In some cases, the column in a SARG might be compared with a constant expression rather
than a single constant value. The constant expression can be an arithmetic operation, a
built-in function, a string concatenation, a local variable, or a subquery result. As long as
the left side of the SARG contains a column, it’s considered an optimizable SARG.

Identifying OR Clauses

The next statements the Query Optimizer looks for in the query are OR clauses. OR clauses
are SARGable expressions combined with an OR condition rather than an AND condition
and are treated differently than standard SARGs. The format of an OR clause is

SARG or SARG [or ...]

with all columns involved in the OR belonging to the same table.

This IN statement

column in (constant1, constant2, ...)

is also treated as an OR clause, becoming this:

column = constant1 or column = constant2 or ...

Some examples of OR clauses are as follows:

where au_lname = ‘Smith’ or au_fname = ‘Fred’

where (type = ‘business’ and price > $25) or pub_id = “1234”

where au_lname in (‘Smith’, ‘Jones’, ‘N/A’)

 Download from www.wowebook.com

ptg

1215Query Analysis

An OR clause is a disjunction; all rows matching either of the two criteria appear in the
result set. Any row matching both criteria should appear only once.

The main issue is that an OR clause cannot be satisfied by a single index search. Consider
the first example just presented:

where au_lname = ‘Smith’ or au_fname = ‘Fred’

An index on au_lname and au_fname helps SQL Server find all the rows where au_lname =
‘Smith’ AND au_fname = ‘Fred’, but searching the index tree does not help SQL Server
efficiently find all the rows where au_fname = ‘Fred’ and the last name is any value.
Unless an index on au_fname exists as well, the only way to find all rows with au_fname =
‘Fred’ is to search every row in the table or scan every row in a nonclustered index that
contains au_fname as a nonleading index key.

An OR clause can typically be resolved by either a table scan or by using the OR strategy.
Using a table scan, SQL Server reads every row in the table and applies each OR criteria to
each row. Any row that matches any one of the OR criteria is put into the result set.

A table scan is an expensive way to process a query, so the Query Optimizer looks for an
alternative for resolving an OR. If an index can be matched against all SARGs involved in
the OR clause, SQL Server evaluates the possibility of applying the index union strategy
described later in this chapter, in the section “Using Multiple Indexes.”

Identifying Join Clauses

The next type of clause the Query Optimizer looks for during the query analysis phase is
the join clause. A join condition is specified in the FROM clause using the JOIN keyword, as
follows:

FROM table1 JOIN table2 on table1.column = table2.column

Alternatively, join conditions can be specified in the WHERE clause using the old-style join
syntax, as shown in the following example:

Table1.Column Operator Table2.Column

A join clause always involves two tables, except in the case of a self-join, but even in a
self-join, you must specify the table twice in the query. Here’s an example:

select employee = e.LastName + ‘, ‘ + e.FirstName,

manager = m.LastName + ‘, ‘ + m.FirstName

from Northwind..Employees e left outer join Northwind..Employees m

on e.ReportsTo = m.EmployeeID

order by 2, 1

SQL Server treats a self-join just like a normal join between two different tables.

3
5

 Download from www.wowebook.com

ptg

1216 CHAPTER 35 Understanding Query Optimization

In addition to join clauses, the Query Optimizer also looks for subqueries, derived tables,
and common table expressions and makes the determination whether they need to be flat-
tened into joins or processed using a different strategy. Subquery optimization is discussed
later in this chapter.

Row Estimation and Index Selection
When the query analysis phase of optimization is complete and all SARGs, OR clauses, and
join clauses have been identified, the next step is to determine the selectivity of the
expressions (that is, the estimated number of matching rows) and to determine the cost of
finding the rows. The costs are measured primarily in terms of logical and physical I/O,
with the goal of generating a query plan that results in the lowest estimated I/O and
processing cost. Primarily, the Query Optimizer attempts to identify whether an index
exists that can be used to locate the matching rows. If multiple indexes or search strategies
can be considered, their costs are compared with each other and also against the cost of a
table or clustered index scan to determine the least expensive access method.

An index is typically considered useful for an expression if the first column in the index is
used in the expression and the search argument in the expression provides a means to
effectively limit the search. If no useful indexes are found for an expression, typically a
table or clustered index scan is performed on the table. A table or clustered index scan is
the fallback tactic for the Query Optimizer to use if no lower-cost method exists for
returning the matching rows from a table.

Evaluating SARG and Join Selectivity

To determine selectivity of a SARG, which helps in determining the most efficient query
plan, the Query Optimizer uses the statistical information stored for the index or column,
if any. If no statistics are available for a column or index, SQL Server automatically creates
statistics on nonindexed columns specified in a SARG if the AUTO_CREATE_STATISTICS
option is enabled for the database. SQL Server also automatically generates and updates
the statistics for any indexed columns referenced in a SARG if the
AUTO_UPDATE_STATISTICS option is enabled. In addition, you can explicitly create statistics
for a column or set of columns in a table or an indexed view by using the CREATE STATIS-
TICS command. Both index statistics and column statistics (whether created automatically
or manually with the CREATE STATISTICS command) are maintained and kept up-to-date,
as needed, if the AUTO_UPDATE_STATISTICS option is enabled or if the UPDATE STATISTICS
command is explicitly run for a table, index, or column statistics. Available and up-to-date
statistics allow the Query Optimizer to more accurately assess the cost of different query
plans and choose a high-quality plan.

If no statistics are available for a column or an index and the AUTO CREATE STATISTICS
and AUTO UPDATE STATISTICS options have been disabled for the database or table, SQL
Server cannot make an informed estimate of the number of matching rows for a SARG

 Download from www.wowebook.com

ptg

1217Row Estimation and Index Selection

Operator Row Estimate

= (# of rows in table).75

between, > and < 9% (closed-range search)

>, <, >=, <= 30% (open-range search)

Using these default percentages almost certainly results in inappropriate query execution
plans being chosen. You should always try to ensure that you have up-to-date statistics
available for any columns referenced in your SARGs and join clauses.

When the value of a SARG can be determined at the time of query optimization, the
Query Optimizer uses the statistics histogram to estimate the number of matching rows for
the SARG. The histogram contains a sampling of the data values in the column and stores
information on the number of matching rows for the sampled values, as well as for values
that fall between the sampled values. If the statistics are up-to-date, this is the most accu-
rate estimate of the number of matching rows for a SARG. (For a more detailed discussion
of index and column statistics and the information contained in them, see Chapter 34.)

If the SARG contains an expression that cannot be evaluated until runtime (for example, a
local variable or scalar function) but is an equality expression (=), the Query Optimizer
uses the density information from the statistics to estimate the number of matching rows.
The density value reflects the overall uniqueness of the data values in the column or
index. Density information does not estimate the number of matching rows as accurately
as the histogram because its value is determined across the entire range of values in a
column or an index key and can be skewed higher by one or more values that have a
high number of duplicates. Expressions that cannot be evaluated until runtime include
comparisons against local variables or function expressions that cannot be evaluated until
query execution.

If an expression cannot be evaluated at the time of optimization and the SARG is not an
equality search but a closed- or open-range search, the density information cannot be
used. The same percentages are used for the row estimates as when no statistics are avail-
able (9% for a closed-range search and 30% for an open-range search).

As a special case, if a SARG contains the equality (=) operator and a unique index exists
that matches the SARG, based on the nature of a unique index, the Query Optimizer
knows, without having to analyze the index statistics, that one and only one row can
match the SARG.

If the query contains a join clause, SQL Server determines whether any usable indexes or
column statistics exist that match the column(s) in the join clause. Because the Query
Optimizer has no way of determining what value(s) will join between rows in the table at

3
5

and resorts to using some built-in percentages for the number of matching rows for
various types of expressions. These percentages currently are as follows:

 Download from www.wowebook.com

ptg

1218 CHAPTER 35 Understanding Query Optimization

150,000 rows

– 1,570 rows (where qty = 1000)

= 148,430 rows (where qty <> 1000)

optimization time, it can’t use the statistics histogram on the join column to estimate the
number of matching rows. Instead, it uses the density information, as it does for SARGs
that are unknown during optimization.

A lower density value indicates a more selective index. As the density approaches 1, the
join condition becomes less selective. For example, if a nonclustered index has a high
density value, it will likely be more expensive in terms of I/O to retrieve the matching
rows using the nonclustered index than to perform a table scan or clustered index scan
and the index likely will not be used.

NOTE

For a more thorough and detailed discussion of indexes and index and column statis-
tics, see Chapter 34.

SARGs and Inequality Operators
In previous versions of SQL Server, when a SARG contained an inequality operator (!= or
<>), the selectivity of the SARG could not be determined effectively for the simple reason
that index or column statistics can help you estimate only the number of matching rows
for a specific value, not the number of nonmatching rows. However, for some SARGs with
inequality operators, if index or column statistics are available, SQL Server 2008 is able to
estimate the number of matching rows. For example, consider the following SARG:

WHERE qty <> 1000

Without any available index or column statistics on the qty column, SQL Server would
treat the inequality SARG as a SARG with no available statistics. Potentially every row in
the table could satisfy the search criteria, so it would estimate the number of matching
rows as all rows in the table.

However, if index or column statistics were available for the qty column, the Query
Optimizer would look up the search value (1000) in the statistics and estimate the number
of matching rows for the search value and then determine the number of matching rows
for the query as the total number of rows in the table minus the estimated number of
matching rows for the search value. For example, if there are 150,000 rows in the table
and the statistics indicate that 1,570 rows match, where qty = 1000, the number of
matching rows would be calculated as follows:

In this example, with the large number of estimated rows where qty <> 1000, SQL Server
would likely end up performing a table scan to resolve the query. However, if the Query
Optimizer estimates that there is a very small number of rows where qty <> 1000, the
Query Optimizer might determine that it would be more efficient to use an index to find

 Download from www.wowebook.com

ptg

1219Row Estimation and Index Selection

the nonmatching rows. You may be wondering how SQL Server efficiently searches the
index for the rows where qty <> 1000 without having to look at every row. In this case,
internally, it converts the inequality SARG into two range retrievals by using an OR
condition:

WHERE qty < 1000 OR qty > 1000

NOTE

Even if an inequality SARG is optimizable, that doesn’t necessarily mean an index will
be used. It simply allows the Query Optimizer to make a more accurate estimate of the
number of rows that will match a given SARG. More often than not, an inequality SARG
will result in a table or clustered index scan. You should try to avoid using inequality
SARGs whenever possible.

SARGs and LIKE Clauses
In SQL Server versions prior to SQL Server 2005, the Query Optimizer would estimate the
selectivity of a LIKE clause only if the first character in the string was a constant. Every
row would have to be examined to determine if it was a match. SQL Server 2008 uses
string summary statistics, which were introduced in SQL Server 2005, for estimating the
selectivity of LIKE conditions.

String summary statistics provide a statistical summary of substring frequency distribution
for character columns. String summary statistics can be created on columns of type text,
ntext, char, varchar, and nvarchar. String summary statistics allow SQL Server to esti-
mate the selectivity of LIKE conditions where the search string may have any number of
wildcards in any combination, including when the first character is a wildcard. In versions
of SQL Server prior to 2005, row estimates could not be accurately obtained when the
leading character of a search string was a wildcard character. SQL Server 2008 can estimate
the selectivity of LIKE predicates similar to the following:

. au_lname LIKE ‘Smith%’

. stor_name LIKE ‘%Books’

. title LIKE ‘%Cook%’

. title_id LIKE ‘BU[1234567]001’

. title LIKE ‘%Cook%Chicken’

The string summary statistics result in fairly accurate row estimates. However, if there is a
user-specified escape character in a LIKE pattern (for example, stor_name LIKE ‘%abc#_%’
ESCAPE ‘#’), SQL Server 2008 has to guess at the selectivity of the SARG.

The values generated for string summary statistics are not visible via DBCC SHOW_STATIS-
TICS. However, DBCC SHOW_STATISTICS does indicate if string summary statistics have been
calculated; if the value YES is specified in the String Index field in the first rowset
returned by DBCC SHOW_STATISTICS, the statistics also include a string summary. Also, if

3
5

 Download from www.wowebook.com

ptg

1220 CHAPTER 35 Understanding Query Optimization

the strings are more than 80 characters in length, only the first and last 40 characters are
used for creating the string summary statistics. Accurate frequency estimates cannot be
determined for substrings that do not appear in the first and last 40 characters of a string.

SARGS on Computed Columns
In versions of SQL Server prior to 2005, for a SARG to be optimizable, there had to be no
computations on the column itself in the SARG. In SQL Server 2008, expressions involv-
ing computations on a column might be treated as SARGs during optimization if SQL
Server can simplify the expression into a SARG. For example, the SARG

ytd_sales/12 = 1000

can be simplified to this:

ytd_sales = 12000

The simplified expression is used only during optimization to determine an estimate of
the number of matching rows and the usefulness of the index. During actual execution,
the conversion is not done while traversing the index tree because it won’t be able to do
the repeated division by 12 for each row while searching through the tree. However,
doing the conversion during optimization and getting a row estimate from the statistics
helps the Query Optimizer decide on other strategies to consider, such as index scanning
versus table scanning, or it might help to determine an optimal join order if it’s a multi-
table query.

SQL Server 2008 supports the creation, update, and use of statistics on computed columns.
The Query Optimizer can make use of the computed column statistics even when a query
doesn’t reference the computed column by name but rather contains an expression that
matches the computed column expression. This feature avoids the need to rewrite the
SARGs in queries with expressions that match a computed column expression to SARGs
that explicitly contain the computed column itself.

When the SARG has a more complex operation performed on it, such as a function, it
can potentially prevent effective optimization of the SARG. If you cannot avoid using a
function or complex expression on a column in the search expression, you should
consider creating a computed column on the table and creating an index on the
computed column. This materializes the function result into an additional column on
the table that can be indexed for faster searching, and the index statistics can be used to
better estimate the number of matching rows for the SARG expression that references
the function.

An example of using this approach would be for a query that has to find the number of
orders placed in a certain month, regardless of the year. The following is a possible solution:

select distinct stor_id

from sales

where datepart(month, ord_date) = 6

 Download from www.wowebook.com

ptg

1221Row Estimation and Index Selection

This query gets the correct result set but ends up having to do so with a full table or index
scan because the function on the ord_date column prevents the Query Optimizer from
using an index seek against any index that might exist on the ord_date column.

If this query is used frequently in the system and quick response time is critical, you could
create a computed column on the function and index it as follows:

alter table sales add ord_month as datepart(month, ord_date)

create index nc_sales_ordmonth on sales(ord_month)

Now, when you run the query on the table again, if you specify the computed column in
the WHERE clause, the Query Optimizer can use the index on the computed column to
accurately estimate the number of matching rows and possibly use the nonclustered index
to find the matching rows and avoid a table scan, as it does for the following query:

select distinct stor_id

from sales

where ord_month = 6

Even if the query still ends up using a table scan, it at least has statistics available to know
how many rows it can expect to match where the month matches the value specified. In
addition, if a computed column exists that exactly matches the SARG expression, SQL
Server 2008 can still use the statistics and index on the computed column to optimize the
query, even if the computed column is not specified in the query itself. For example, with
the ord_month column defined on the sales table and an index created on it, the follow-
ing query can also use the statistics and index to optimize the query:

select distinct stor_id

from sales

where datepart(month, ord_date) = 6

TIP

The automatic matching of computed columns in SQL Server 2008 enables you to cre-
ate and exploit computed columns without having to change the queries in your appli-
cation. Be aware, though, that computed column matching is based on identical
comparison. For example, a computed column of the form A + B + C does not match
an expression of the form A + C + B.

Estimating Access Path Cost

After the selectivity of each of the SARGs, OR clauses, and join clauses is determined, the
next phase of optimization is estimating the access path cost of the query. The Query
Optimizer attempts to identify the total cost of various access paths to the data and deter-
mine which path results in the lowest cost to return the matching rows for an expression.

3
5

 Download from www.wowebook.com

ptg

1222 CHAPTER 35 Understanding Query Optimization

Number of index levels in the clustered index

+ Number of pages to scan within the range of values

3 (index levels to find the first row)

+ 3 (data pages: 600 rows divided by 250 rows per page)

= 6 logical page I/Os

The primary cost of an access path, especially for single-table queries, is the number of
logical I/Os required to retrieve the data. Using the available statistics and the information
stored in SQL Server regarding the average number of rows per page and the number of
pages in the table, the Query Optimizer estimates the number of logical page reads neces-
sary to retrieve the estimated number of rows using a table scan or any of the candidate
indexes. It then ranks the candidate indexes to determine which access path would
retrieve the matching data rows with the lowest cost, typically the access path that
requires the fewest number of logical and physical I/Os.

NOTE

A logical I/O occurs every time a page is accessed. If the page is not in cache, a physi-
cal I/O is first performed to bring the page into cache memory, and then a logical I/O
is performed against the page. The Query Optimizer has no way of knowing whether a
page will be in memory when the query actually is executed, so it always assumes a
cold cache, that the first read of a page will be from disk. In a very few cases (for
example, small OLTP queries), this assumption may result in a slightly slower plan
being chosen that optimizes for the number of initial I/Os required to process the
query. However, the cold cache assumption is a minor factor in the query plan costing,
and it’s actually the total number of logical I/Os that is the primary factor in determin-
ing the cost of the access path.

TIP

The following sections assume a general understanding of SQL Server index structures.
If you haven’t done so already, now is a good time to read through Chapter 34.

Clustered Index Cost
Clustered indexes are efficient for lookups because the rows that match the SARGs are
clustered on the same page or over a range of adjacent pages. SQL Server needs only to
find its way to the first page and then read the rows from that page and any subsequent
pages in the page chain until no more matching rows are found.

Therefore, the I/O cost estimate for a clustered index is calculated as follows:

The number of pages to scan is based on the estimated number of matching rows divided
by the number of rows per page. For example, if SQL Server can store 250 rows per page
for a table, and 600 rows are within the range of values being searched, SQL Server would
estimate that it requires at least three page reads to find the qualifying rows. If the index
is three levels deep, the logical I/O cost would be as follows:

 Download from www.wowebook.com

ptg

1223Row Estimation and Index Selection

For a unique clustered index and an equality operator, the logical I/O cost estimate is one
data page plus the number of index levels that need to be traversed to access the data page.

When a clustered index is used to retrieve the data rows, you see a query plan similar to
the one shown in Figure 35.1.

Nonclustered Index Cost
When searching for values using a nonclustered index, SQL Server reads the index key
values at the leaf level of the index and uses the bookmark to locate and read the data
row. SQL Server has no way of knowing if matching search values will be on the same data
page until it has read the bookmark. It is possible that while retrieving the rows, SQL
Server might find all data rows on different data pages, or it might revisit the same data
page multiple times. Either way, a separate logical I/O is required each time it visits the
data page.

The I/O cost is therefore based on the depth of the index tree, the number of index leaf
rows that need to be scanned to find the matching key values, and the number of match-
ing rows. The cost of retrieving each matching row depends on whether the table is clus-
tered or is a heap table (that is, a table with no clustered index defined on it). For a heap
table, the nonclustered row bookmark is the page and row pointer (the row ID [RID]) to
the actual data row. A single I/O is required to retrieve the data row. Therefore, the worst-
case logical I/O cost for a heap table can be estimated as follows:

FIGURE 35.1 An execution plan for a clustered index seek.

3
5

Number of nonclustered index levels

+ Number of leaf pages to be scanned

+ Number of qualifying rows (each row represents a separate data page read)

 Download from www.wowebook.com

ptg

1224

NOTE

This estimate assumes that the data rows have not been forwarded. In a heap table,
when a row has been forwarded, the original row location contains a pointer to the new
location of the data row; therefore, an additional page read is required to retrieve the
actual data row. The actual I/O cost would be one page greater per row than the esti-
mated I/O cost for any rows that have been forwarded.

When a nonclustered index is used to retrieve the data rows from a heap table with a clus-
tered index, you see a query plan similar to the one shown in Figure 35.2. Notice that in
SQL Server 2008, the bookmark lookup operator is replaced by a RID lookup, essentially as
a join with the RIDs returned by the nonclustered index seek.

CHAPTER 35 Understanding Query Optimization

If the table is clustered, the row bookmark is the clustered key for the data row. The
number of I/Os to retrieve the data row depends on the depth of the clustered index tree
because SQL Server has to use the clustered index to find each row. The logical I/O cost of
finding a row using the nonclustered index on a clustered table is therefore as follows:

FIGURE 35.2 An execution plan for a nonclustered index seek against a heap table.

Number of nonclustered index levels

+ Number of leaf pages to be scanned

+ Number of qualifying rows × Number of page reads to find a single row via the clustered
index

 Download from www.wowebook.com

ptg

1225Row Estimation and Index Selection
3

5

For example, consider a heap table with a nonclustered index on last name. Assume that
the index holds 800 rows per page (they’re really big last names!), and 1,700 names are
within the range you are looking for. If the index is three levels deep, the estimated logical
I/O cost for the nonclustered index would be as follows:

Now, assume that the table has a clustered index on it, and the size of the nonclustered
index is the same. If the clustered index is three levels deep, including the data page, the
estimated logical I/O cost of using the nonclustered index would be as follows:

3 (index levels)

+ 3 (leaf pages: 1,700 leaf rows/800 rows per page)

+ 1,700 (data page reads)

= 1,706 total logical I/Os

3 (nonclustered index levels)

+ 3 (leaf pages: 1,700 leaf rows/800 rows per page)

+ 5,100 (1,700 rows × 3 clustered page reads per row)

= 5,106 (total logical I/Os)

NOTE

Although the I/O cost is greater for bookmark lookups in a nonclustered index when a
clustered index exists on the table, the cost savings during row inserts, updates, and
deletes using the clustered index as the bookmark are substantial, whereas the couple
extra logical I/Os per row during retrieval do not substantially impact query perfor-
mance.

For a unique nonclustered index using an equality operator, the I/O cost is estimated as
the number of index levels traversed to access the bookmark plus the number of I/Os
required to access the data page via the bookmark.

When a nonclustered index is used to retrieve the data rows on a table with a clustered
index, you see a query plan similar to the one shown in Figure 35.3. Notice that in SQL
Server 2008, the bookmark lookup operator is replaced by a clustered index seek, essentially

 Download from www.wowebook.com

ptg

1226 CHAPTER 35 Understanding Query Optimization

as a join between the clustered index and the clustered index keys returned by the nonclus-
tered index seek.

Covering Nonclustered Index Cost
When analyzing a query, the Query Optimizer considers any possibility to take advantage
of index covering. Index covering is a method of using the leaf level of a nonclustered
index to resolve a query when all the columns referenced in the query (in both the
column list and WHERE clause, as well as any GROUP BY columns) are included in the index
leaf row as either index key columns or included columns.

Index covering can save a significant amount of I/O because the query doesn’t have to
access the data page to return the requested information. In most cases, a nonclustered
index that covers a query is faster than a similarly defined clustered index on the table
because of the greater number of rows per page in the index leaf level compared to the
number of rows per page in the table itself. (As the nonclustered leaf row size approaches
the data row size, the I/O cost savings are minimal, if any.)

If index covering can take place in a query, the Query Optimizer considers it and estimates
the I/O cost of using the nonclustered index to cover the query. The estimated I/O cost of
index covering is as follows:

Number of index levels

+ Number of leaf level index pages to scan

FIGURE 35.3 An execution plan for a nonclustered index seek against a table with a
clustered index.

 Download from www.wowebook.com

ptg

1227Row Estimation and Index Selection
3

5

3 (nonclustered index levels)

+ 3 (leaf pages: 1,700 leaf rows/800 rows per page)

= 6 total logical I/Os

The number of leaf-level pages to scan is based on the estimated number of matching
rows divided by the number of leaf index rows per page. For example, if index covering
could be used on the nonclustered index on title_id for the query in the previous
example, the I/O cost would be the following:

Other times, if the index keys can be searched to limit the range, you might see an index
seek used, as shown in Figure 35.5. Note that the difference here from a normal index
lookup is the lack of the RID or clustered index lookup because SQL Server does not need
to go to the data row to find the needed information.

Table Scan Cost
If no usable index exists that can be matched with a SARG or a join clause, the Query
Optimizer’s only option is to perform a table scan. The estimate of the total I/O cost is
simply the number of pages in the table, which is stored in the system catalogs and can be
viewed by querying the used_page_count column of the sys.dm_db_partition_stats
dynamic management view (DMV):

FIGURE 35.4 An execution plan for a covered index scan without limits on the search.

NOTE

For more information on index covering and when it can take place, as well as the
included columns feature introduced in SQL Server 2008, see Chapter 34.

When index covering is used to retrieve the data rows, you might see a query plan similar
to the one shown in Figure 35.4. If the entire leaf level of the index is searched, it displays
as an index scan, as shown in this example.

 Download from www.wowebook.com

ptg

1228 CHAPTER 35 Understanding Query Optimization

FIGURE 35.5 An execution plan for a covered index seek with limits on the search.

Keep in mind that there are instances (for example, large range retrievals on a nonclus-
tered index column) in which a table scan might be cheaper than a candidate index in
terms of total logical I/O. For example, in the previous nonclustered index example, if the
index does not cover the query, it costs between 1,706 and 5,106 logical I/Os to retrieve
the matching rows using the nonclustered index, depending on whether a clustered index
exists on the table. If the total number of pages in the table is less than either of these
values, a table scan would be more efficient in terms of total logical I/Os than using a
nonclustered index.

When a table scan is used to retrieve the data rows from a heap table, you see a query
plan similar to the one shown in Figure 35.6.

When a table scan is used to retrieve the data rows from a clustered table, you see a query
plan similar to the one shown in Figure 35.7. Notice that it displays as a clustered index
scan because the table is the leaf level of the clustered index.

Using Multiple Indexes

SQL Server allows the creation of multiple indexes on a table. If a query has multiple
SARGs that can each be efficiently searched using an available index, the Query Optimizer
in SQL Server can make use of multiple indexes by intersecting the indexes or using the
index union strategy.

select used_page_count

from sys.dm_db_partition_stats

where object_id = object_id(‘sales_noclust’)

and (index_id = 0 -- data pages for heap table

or index_id = 1) -- data pages for clustered table

go

used_page_count

1244

 Download from www.wowebook.com

ptg

1229Row Estimation and Index Selection
3

5

FIGURE 35.6 A table scan on a heap table.

FIGURE 35.7 A table scan on a clustered table.

Index Intersection
Index intersection is a mechanism that allows SQL Server to use multiple indexes on a
table when you have two or more SARGs in a query and each can be efficiently satisfied
using an index as the access path. Consider the following example:

--First, create 2 additional indexes on sales to support the query

create index ord_date_idx on sales(ord_date)

create index qty_idx on sales(qty)

go

select * from sales

 Download from www.wowebook.com

ptg

1230 CHAPTER 35 Understanding Query Optimization

where qty = 816

and ord_date = ‘1/2/2008’

In this example, two additional nonclustered indexes are created on the sales table: one
on the qty column and one on the ord_date column. In this example, the Query
Optimizer considers the option of searching the index leaf rows of each index to find the
rows that meet each of the search conditions and joining on the matching bookmarks
(either the clustered index key or RIDs if it’s a heap table) for each result set. It then
performs a merge join on the bookmarks and uses the output from that to retrieve the
actual data rows for all the bookmarks that are in both result sets.

The index intersection strategy is applied only when the cost of retrieving the bookmarks
for both indexes and then retrieving the data rows is less than that of retrieving the quali-
fying data rows using only one of the indexes or using a table scan.

You can go through the same analysis as the Query Optimizer to determine whether an
index intersection makes sense. For example, the sales table has a clustered index on
stor_id, ord_num, and title_id, and this clustered index is the bookmark used to retrieve
the data rows for the matching data rows found via the nonclustered indexes. Assume the
following statistics:

. There are 1,200 rows estimated to match where qty = 816.

. There are approximately 215 index rows per leaf page for the index on qty.

. There are 212 rows estimated to match where ord_date = ‘1/2/2008’.

. There are approximately 185 index rows per leaf page for the index on ord_date.

. The Query Optimizer estimates that the overlap between the two result sets is 1 row.

. The number of levels in the index on qty is 3.

. The number of levels in the index on ord_date is 3.

. The number of levels in the clustered index on the sales table is 3.

. The sales table is 1,252 pages in size.

Using this information, you can calculate the I/O cost for the different strategies the
Query Optimizer can consider.

A table scan would cost 1,252 pages.

A standard data row retrieval via the nonclustered index on qty would have the following
approximate cost:

2 index page reads (root and intermediate pages to locate first leaf page)

+ 6 leaf page reads (1200 rows / 215 rows per page)

+ 3600 (1,200 rows × 3 pages per bookmark lookup via the clustered index)

= 3,608 pages

 Download from www.wowebook.com

ptg

1231Row Estimation and Index Selection
3

5

2 nonclustered index page reads (root and intermediate pages)

+ 2 nonclustered leaf page reads (212 rows / 185 rows per page)

+ 636 (212 rows × 3 pages per bookmark lookup via clustered index)

= 640 pages

A standard data row retrieval via the nonclustered index on ord_date would have the
following approximate cost:

8 pages (1 root page + 1 intermediate page + the 6 leaf pages to find all the bookmarks
for the 1,200 matching index rows on qty)

+ 4 pages (1 root page + 1 intermediate page + 2 leaf pages to find all the bookmarks for
the 212 matching index rows on ord_date)

+ 3 page reads to find the 1 estimated overlapping row between the two indexes using the
clustered index

= 15 pages

The index intersection is estimated to have the following cost:

As you can see from these examples, the index intersection strategy is definitely the
cheapest approach. If at any point the estimated intersection cost reaches 640 pages, SQL
Server just uses the single index on ord_date and checks both search criteria against the
212 matching rows for ord_date. If the estimated cost of using an index in any way ever
exceeds 1,252 pages, a table scan is likely to be performed, with the criteria checked
against all rows.

When an index intersection is used to retrieve the data rows from a table with a clustered
index, you see a query plan similar to the one shown in Figure 35.8.

If the table does not have a clustered index (that is, a heap table like the sales_noclust
table in the bigpubs2008 database) and has supporting nonclustered indexes for an index
intersection, you see a query plan similar to the one shown in Figure 35.9.

Notice that in the example shown in Figure 35.9, the Query Optimizer performs a hash
join rather than a merge join on the RIDs returned by each nonclustered index seek and
uses the results from the hash join to perform an RID lookup to retrieve the matching
data rows.

NOTE

To duplicate the query plan shown in Figure 35.9, you need to create the following two
additional indexes on the sales_noclust table:

create index ord_date_idx on sales_noclust(ord_date)

create index qty_idx on sales_noclust(qty)

 Download from www.wowebook.com

ptg

1232 CHAPTER 35 Understanding Query Optimization

FIGURE 35.8 An execution plan for an index intersection on a clustered table.

FIGURE 35.9 An execution plan for an index intersection on a heap table.

The Index Union Strategy
You see a strategy similar to an index intersection applied when you have an OR condition
between your SARGs, as in the following query:

select * from sales

where title_id = ‘DR8514’

or ord_date = ‘2006-01-01 00:00:00.000’

The index union strategy (often referred to as the OR strategy) is similar to an index inter-
section, with one slight difference. With the index union strategy, SQL Server executes

 Download from www.wowebook.com

ptg

1233Row Estimation and Index Selection
3

5

each part separately, using the index that matches the SARG, but after combining the
results with a merge join, it removes any duplicate bookmarks for rows that match both
search arguments. It then uses the unique bookmarks to retrieve the result rows from the
base table.

When the index union strategy is used on a table with a clustered index, you see a query
plan similar to the one shown in Figure 35.10. Notice the addition of the stream aggrega-
tion step, which differentiates it from the index intersection query plan. The stream
aggregation step performs a grouping on the bookmarks returned by the merge join to
eliminate the duplicate bookmarks.

The following steps describe how SQL Server determines whether to use the index union
strategy:

1. Estimate the cost of a table scan and the cost of using the index union strategy. If
the cost of the index union strategy exceeds the cost of a table scan, stop here and
simply perform a table scan. Otherwise, continue with the succeeding steps to
perform the index union strategy.

2. Break the query into multiple parts, as in this example:

select * from sales where title_id = ‘DR8514’

select * from sales where ord_date = ‘2006-01-01 00:00:00.000’

3. Match each part with an available index.

4. Execute each piece and perform a join on the row bookmarks.

5. Remove any duplicate bookmarks.

6. Use the resulting list of unique bookmarks to retrieve all qualifying rows from the
base table.

If any one of the OR clauses needs to be resolved via a table scan for any reason, SQL
Server simply uses a table scan to resolve the whole query rather than applying the index
union strategy.

FIGURE 35.10 An execution plan for an index union strategy on a clustered table.

 Download from www.wowebook.com

ptg

1234 CHAPTER 35 Understanding Query Optimization

When the index union strategy is used on a heap table (such as the sales_noclust table),
you see a query plan similar to the one shown in Figure 35.11. Notice that the merge join
is replaced with a concatenation operation, and the stream aggregate is replaced with
distinct sort operation. Although the steps are slightly different from the index intersec-
tion strategy, the result is similar: a list of unique RIDs is returned, and they are used to
retrieve the matching data rows in the table itself.

When the OR in the query involves only a single column and a nonclustered index exists
on the column, the Query Optimizer in SQL Server 2008 typically resolves the query with
an index seek against the nonclustered index and then a bookmark lookup to retrieve the
data rows. Consider the following query:

select * from sales

where ord_date in (‘6/15/2005’, ‘9/28/2008’, ‘6/25/2008’)

This query is the same as the following:

select * from sales

where ord_date = ‘6/15/2005’

or ord_date = ‘9/28/2008’

or ord_date = ‘6/25/2008’

To process this query, SQL Server performs a single index seek that looks for each of the
search values and then joins the list of bookmarks returned with either the clustered index
or the RIDs of the target table. No removal of duplicates is necessary because each OR
condition matches a distinct set of rows. Figure 35.12 shows an example of the query plan
for multiple OR conditions against a single column.

Index Joins
Besides using the index intersection and index union strategies, another way of using
multiple indexes on a single table is to join two or more indexes to create a covering
index. This is similar to an index intersection, except that the final bookmark lookup is
not required because the merged index rows contain all the necessary information.
Consider the following example:

FIGURE 35.11 An execution plan for an index union strategy on a heap table.

 Download from www.wowebook.com

ptg

1235Row Estimation and Index Selection
3

5

FIGURE 35.12 An execution plan using index seek to retrieve rows for an OR condition on a
single column.

select stor_id from sales

where qty = 816

and ord_date = ‘1/2/2008’

Again, the sales table contains indexes on both the qty and ord_date columns. Each of
these indexes contains the clustered index as a bookmark, and the clustered index
contains the stor_id column. In this instance, when the Query Optimizer merges the two
indexes using a merge join, joining them on the matching clustered indexes, the index
rows in the merge set have all the information needed to resolve the query because
stor_id is part of the nonclustered indexes. There is no need to perform a bookmark
lookup on the data page. By joining the two index result sets, SQL Server creates the same
effect as having one covering index on qty, ord_date, and stor_id on the table. If you use
the same numbers as in the “Index Intersection” section presented earlier, the cost of the
index join would be as follows:

8 pages (1 root page + 1 intermediate page + the 6 leaf pages to find all the book-
marks for the 1,200 matching index rows on qty)

+ 4 pages (1 root page + 1 intermediate page + 2 leaf pages to find all the bookmarks
for the 212 matching index rows on ord_date)

= 12 pages

 Download from www.wowebook.com

ptg

1236 CHAPTER 35 Understanding Query Optimization

Figure 35.13 shows an example of the execution plan for an index join. Notice that it does
not include the bookmark lookup present in the index intersection execution plan (refer
to Figure 35.8).

Optimizing with Indexed Views

In SQL Server 2008, when you create a unique clustered index on a view, the result set for
the view is materialized and stored in the database with the same structure as a table that
has a clustered index. Changes made to the data in the underlying tables of the view are
automatically reflected in the view the same way as changes to a table are reflected in its
indexes. In the Developer and Enterprise Editions of SQL Server 2008, the Query
Optimizer automatically considers using the index on the view to speed up access for
queries run directly against the view. The Query Optimizer in the Developer and
Enterprise Editions of SQL Server 2008 also looks at and considers using the indexed view
for searches against the underlying base table, when appropriate.

NOTE

Although indexed views can be created in any edition of SQL Server 2008, they are
considered for query optimization only in the Developer and Enterprise Editions of SQL
Server 2008. In other editions of SQL Server 2008, indexed views are not used to opti-
mize the query unless the view is explicitly referenced in the query and the NOEXPAND
Query Optimizer hint is specified. For example, to force the Query Optimizer to consider
using the sales_Qty_Rollup indexed view in the Standard Edition of SQL Server
2008, you execute the query as follows:

FIGURE 35.13 An execution plan for an index join.

 Download from www.wowebook.com

ptg

1237Row Estimation and Index Selection
3

5

select * from sales_Qty_Rollup WITH (NOEXPAND)

where stor_id between ‘B914’ and ‘B999’

The NOEXPAND hint is allowed only in SELECT statements, and the indexed view must be
referenced directly in the query. (Only the Developer and Enterprise Editions consider
using an indexed view that is not directly referenced in the query.) As always, you
should use Query Optimizer hints with care. When the NOEXPAND hint is included in the
query, the Query Optimizer cannot consider other alternatives for optimizing the query.

Consider the following example, which creates an indexed view on the sales table,
containing stor_id and sum(qty) grouped by stor_id:

set quoted_identifier on

go

if object_id(‘sales_Qty_Rollup’) is not null

drop view sales_Qty_Rollup

go

create view sales_qty_rollup

with schemabinding

as

select stor_id, sum(qty) as total_qty, count_big(*) as id

from dbo.sales

group by stor_id

go

create unique clustered index idx1 on sales_Qty_Rollup (stor_id)

go

The creation of the clustered index on the view essentially creates a clustered table in the
database with the three columns stor_id, total_qty, and id. As you would expect, the
following query on the view itself uses a clustered index seek on the view to retrieve the
result rows from the view instead of having to scan or search the sales table itself:

select * from sales_Qty_Rollup

where stor_id between ‘B914’ and ‘B999’

However, the following query on the sales table uses the indexed view sales_qty_rollup
to retrieve the result set as well:

select stor_id, sum(qty)

from sales

where stor_id between ‘B914’ and ‘B999’

group by stor_id

 Download from www.wowebook.com

ptg

1238 CHAPTER 35 Understanding Query Optimization

Essentially, the Query Optimizer recognizes the indexed view essentially as another index
on the sales table that covers the query. The execution plan in Figure 35.14 shows the
indexed view being searched in place of the table.

NOTE

In addition to the seven required SET options that need to be set appropriately when the
indexed view is created, they must also be set the same way for a session to be able to
use the indexed view in queries. The required SET option settings are as follows:

SET ARITHABORT ON

SET CONCAT_NULL_YIELDS_NULL ON

SET QUOTED_IDENTIFIER ON

SET ANSI_NULLS ON

SET ANSI_PADDING ON

SET ANSI_WARNINGS ON

SET NUMERIC_ROUNDABORT OFF

If these SET options are not set appropriately for the session running a query that
could make use of an indexed view, the indexed view is not used, and the table is
searched instead.

For more information on indexed views, see Chapters 27, “Creating and Managing
Views,” and 34, “Data Structures, Indexes, and Performance.”

FIGURE 35.14 An execution plan showing an indexed view being searched to satisfy a query
on a base table.

 Download from www.wowebook.com

ptg

1239Row Estimation and Index Selection
3

5

You might find rare situations when using the indexed view in the Enterprise, Datacenter,
or Developer Editions of SQL Server 2008 leads to poor query performance, and you might
want to avoid having the Query Optimizer use the indexed view. To force the Query
Optimizer to ignore the indexed view(s) and optimize the query using the indexes on the
underlying base tables, you specify the EXPAND VIEWS query option, as follows:

select * from sales_Qty_Rollup

where stor_id between ‘B914’ and ‘B999’

OPTION (EXPAND VIEWS)

Optimizing with Filtered Indexes

SQL Server 2008 introduces the capability to define filtered indexes and statistics on a
subset of rows rather than on the entire rowset in a table. This is done by specifying
simple predicates in the index create statement to restrict the set of rows included in the
index. Filtered statistics help solve a common problem in estimating the number of
matching rows when the estimates become skewed due to a large number of duplicate
values (or NULLs) in an index or due to data correlation between columns. Filtered indexes
provide query optimization benefits when you frequently query specific subsets of your
data rows.

If a filtered index exists on a table, the optimizer recognizes when a search predicate is
compatible with the filtered index; it considers using the filtered index to optimize the
query if the selectivity is good.

For example, the titles table in the bigpubs2008 database contains a large percentage of
rows where ytd_sales is 0. A nonclustered index typically doesn’t help for searches in
which ytd_sales is 0 because the selectivity isn’t adequate, and a table scan would be
performed. An advantageous approach then is to create a filtered index on ytd_sales
without including the values of 0 to reduce the size of the index and make it more efficient.

For example, first create an unfiltered index on ytd_sales on the titles table:

create index ytd_sales_unfiltered on titles (ytd_sales)

Then, execute the following two queries:

select * from titles where ytd_sales = 0

select * from titles where ytd_sales = 10

As you can see by the query plan displayed in Figure 35.15, a query where ytd_sales = 0
still uses a table scan instead of the index because the selectivity is poor, whereas it uses
the index for ytd_sales = 10.

 Download from www.wowebook.com

ptg

1240 CHAPTER 35 Understanding Query Optimization

Now, drop the unfiltered index and re-create a filtered index that excludes values of 0:

drop index titles.ytd_sales_unfiltered

go

create index ytd_sales_filtered on titles (ytd_sales)

where ytd_sales <> 0

Re-run the queries and examine the query plan again. Figure 35.16 shows that the
query where ytd_sales = 0 still uses a table scan as before, but the query where
ytd_sales = 10 is able to use the filtered index.

In this case, it may be beneficial to define the filtered index instead of a normal index on
ytd_sales because the filtered index will require less space and be a more efficient index

FIGURE 35.15 An execution plan showing index not being used due to poor selectivity.

FIGURE 35.16 An execution plan showing the filtered index being used.

 Download from www.wowebook.com

ptg

1241Join Selection
3

5

by excluding all the rows with ytd_sales values of 0, especially if the majority of the
queries against the table are searching for ytd_sales values that are nonzero.

NOTE

For more information on creating and using filtered indexes, see Chapter 34.

Join Selection
The job of the Query Optimizer is incredibly complex. The Query Optimizer can consider
literally thousands of options when determining the optimal execution plan. The statistics
are simply one of the tools that the Query Optimizer can use to help in the decision-
making process.

In addition to examining the statistics to determine the most efficient access paths for
SARGs and join clauses, the Query Optimizer must consider the optimum order in which
to access the tables, the appropriate join algorithms to use, the appropriate sorting algo-
rithms, and many other details too numerous to list here. The goal of the Query
Optimizer during join selection is to determine the most efficient join strategy.

As mentioned at the beginning of this chapter, delving into the detailed specifics of the
various join strategies and their costing algorithms is beyond the scope of a single chapter
on optimization. In addition, some of these costing algorithms are proprietary and not
publicly available. The goal of this section, then, is to present an overview of the most
common query processing algorithms that the Query Optimizer uses to determine an effi-
cient execution plan.

Join Processing Strategies

If you are familiar with SQL, you are probably very familiar with using joins between
tables in creating SQL queries. A join occurs any time the SQL Server Query Optimizer has
to compare two inputs to determine an output. The join can occur between one table and
another table, between an index and a table, or between an index and another index (as
described previously, in the section “Index Intersection”).

The SQL Server Query Optimizer uses three primary types of join strategies when it must
compare two inputs: nested loops joins, merge joins, and hash joins. The Query Optimizer
must consider each one of these algorithms to determine the most appropriate and effi-
cient algorithm for a given situation.

Each of the three supported join algorithms could be used for any join operation. The
Query Optimizer examines all the possible alternatives, assigns costs to each, and chooses
the least expensive join algorithm for a given situation. Merge and hash joins often

 Download from www.wowebook.com

ptg

1242 CHAPTER 35 Understanding Query Optimization

greatly improve the query processing performance for very large data tables and data
warehouses.

Nested Loops Joins
The nested loops join algorithm is by far the simplest of the three join algorithms. The
nested loops join uses one input as the “outer” loop and the other input as the “inner”
loop. As you might expect, SQL Server processes the outer input one row at a time. For
each row in the outer input, the inner input is searched for matching rows.

Figure 35.17 illustrates a query that uses a nested loops join.

Note that in the graphical execution plan, the outer loop is represented as the top input
table, and the inner loop is represented as the bottom input table. In most instances, the
Query Optimizer chooses the input table with the fewest number of qualifying rows to be
the outer loop to limit the number of iterative lookups against the inner table. However,
the Query Optimizer may choose the input table with the greater number of qualifying
rows as the outer table if the I/O cost of searching that table first and then performing the
iterative loops on the other table is lower than the alternative.

The nested loop join is the easiest join strategy for which to estimate the I/O cost. The
cost of the nested loop join is calculated as follows:

Number of I/Os to read in outer input

+ Number of matching rows × Number of I/Os per lookup on inner input

= Total logical I/O cost for query

FIGURE 35.17 An execution plan for a nested loops join.

The Query Optimizer evaluates the I/O costs for the various possible join orders as well as
the various possible access paths and indexes available to determine the most efficient

 Download from www.wowebook.com

ptg

1243Join Selection
3

5

join order. The nested loops join is efficient for queries that typically affect only a small
number of rows. As the number of rows in the outer loop increases, the effectiveness of
the nested loops join strategy diminishes. The reason is the increased number of logical
I/Os required as the number of qualifying rows increases.

Also, if there are no useful indexes on the join columns, the nested loop join is not an
efficient join strategy because it requires a table scan lookup on the inner table for each
row in the outer table. Lacking useful indexes for the join, the Query Optimizer often opts
to perform a merge or hash join.

Merge Joins
The merge join algorithm is much more effective than the nested loops join for dealing
with large data volumes or when the lack of limiting SARGs or useful indexes on SARGs
leads to a table scan of one or both tables involved in the join. A merge join works by
retrieving one row from each input and comparing them, matching on the join
column(s). Figure 35.18 illustrates a query that uses a merge join.

A merge join requires that both inputs be sorted on the merge columns—that is, the
columns specified in the equality (ON) clauses of the join predicate. A merge join does not
work if both inputs are not sorted. In the query shown in Figure 35.18, both tables have a
clustered index on stor_id, so the merge column (stor_id) is already sorted for each
table. If the merge columns are not already sorted, a separate sort operation may be
required before the merge join operation. When the input is sorted, the merge join opera-
tion retrieves a row from each input and compares them, returning the rows if they are
equal. If the inputs are not equal, the lower-value row is discarded, and another row is
obtained from that input. This process repeats until all rows have been processed.

Usually, the Query Optimizer chooses a merge join strategy, as in this example, when the
data volume is large and both columns are contained in an existing presorted index, such
as a clustered primary key. If either of the inputs is not already sorted, the Query
Optimizer has to perform an explicit sort before the join. Figure 35.19 shows an example
of a sort being performed before the merge join is performed.

FIGURE 35.18 An execution plan for a merge join.

 Download from www.wowebook.com

ptg

1244 CHAPTER 35 Understanding Query Optimization

In the query in Figure 35.19, the titles table is already sorted on the primary key on
title_id, but the rows being returned from the sales table are being returned initially in
stor_id order. (stor_id is the leading column in the clustered primary key on sales.) The
resulting rows matching the search criteria on ord_date via the clustered index scan on
the sales table are then re-sorted by title_id, and then the merge join is performed with
the rows retrieved from the titles table.

If one or more of the inputs to the merge join is not sorted, and the additional sorting
causes the merge join to be too expensive to perform, the Query Optimizer may consider
using the hash join strategy instead.

Hash Joins
The final—and most complicated—join algorithm is the hash join. The hash join is an
effective join strategy for dealing with large data volumes where the inputs might not be
sorted and when no useful indexes exist on your tables for performing the join. Figure
35.20 illustrates a query that uses a hash join.

The basic hash join algorithm involves separating the two inputs into a build input and
probe input. The Query Optimizer usually attempts to assign the smaller input as the
build input. The hash join scans the build input and creates a hash table. Each row from
the build input is inserted into the hash table based on a hash key value, which is
computed. The probe input is then scanned, one row at a time. A hash key value is
computed for each row in the probe, and the hash table is scanned for matches. The hash
join is an effective join strategy when dealing with large data volumes and unsorted data
inputs.

In a hash join, the keys that are common between the two tables are hashed into a hash
bucket, using the same hash function. This bucket usually starts out in memory and then
moves to disk, as needed. The type of hashing that occurs depends on the amount of

FIGURE 35.19 An execution plan for a merge join with a preliminary sort step.

 Download from www.wowebook.com

ptg

1245Join Selection
3

5

FIGURE 35.20 An execution plan for a hash join.

memory required. Hashing is commonly used for inner and outer joins, intersections,
unions, and differences. The Query Optimizer often uses hashing for intermediate
processing.

Pseudocode for a simple hash join might look like this:

create an empty hash table

for each row in the input table

read the row

hash the key value

insert the hashed key into the hash bucket

for each row in the larger table

read the row

hash the key value

if hashed key value is found in the hash bucket

output hash key and both row identifiers

drop the hash table

Although hashing is useful when no useful indexes are on the tables for a join, the Query
Optimizer still might not choose it as the join strategy if it has a high cost in terms of
memory required. If the entire hash table doesn’t fit in memory, SQL Server has to split
both the build and probe inputs into partitions, each containing a different set of hash
keys, and write those partitions out to disk. As each partition is needed, it is brought into
memory. This increases the amount of I/O and general processing time for the query.

If you want to use the hashing strategy efficiently, it is best if the smaller input is used as
the build input. If, during execution, SQL Server discovers that the build input is actually
larger than the probe input, it might switch the roles of the build and probe input
midstream. The Query Optimizer usually doesn’t have a problem determining which input

 Download from www.wowebook.com

ptg

1246 CHAPTER 35 Understanding Query Optimization

is smaller if the statistics on the columns involved in the query are current. Column-level
statistics can also help the Query Optimizer determine the estimated number of rows
matching a SARG, even if no actual index will be used.

Grace Hash Joins If the two inputs are too large to fit into memory for a normal hash
join, SQL Server might use a modified method, called the grace hash join. This method
partitions the smaller input table (also referred to as the build input) into a number of
buckets. The total number of buckets is calculated by determining the bucket size that will
fit in memory and dividing it into the number of rows in the table. The larger table (also
referred to as the probe input) is then also partitioned into the same number of buckets.
Each bucket from each input can then be read into memory and the matches made.

A hybrid join is a join method that uses elements of both a simple in-memory hash and
grace hash.

NOTE

Hash and merge join strategies can be applied only when the join is an equijoin—that
is, when the join condition compares columns from two inputs with the equality (=)
operator. If the join is not based on an equality, (for example, using a BETWEEN clause),
using nested loop joins is the only strategy that can be employed.

Determining the Optimal Join Order

In addition to determining the best join strategies, the Query Optimizer also evaluates and
determines the optimal join order that would result in the most efficient query plan. In
the query’s execution plan, you might find that the order of the tables in the execution
plan is a different order than specified in the query. Regardless of the join strategy used,
the Query Optimizer needs to determine which table is the outer input and which is the
inner input to the join strategy chosen. For example, consider the following query:

select a.au_lname, t.title, pubdate

from authors a

join titleauthor ta on a.au_id = ta.au_id

join titles t on ta.title_id = t.title_id

In addition to the possible access paths and join strategies available, the server can
consider the following pool of possible join orders:

authors → titleauthor → titles

titles → titleauthor → authors

titleauthor → titles → authors

 Download from www.wowebook.com

ptg

1247Join Selection
3

5

titleauthor → authors → titles

authors → titles → titleauthor

titles → authors → titleauthor

For each of these join orders, the Query Optimizer considers the various access paths avail-
able for each table as well as the different join strategies available. For example, the Query
Optimizer could consider the following possible join strategies:

. Perform a table scan on the authors table and for each row perform an index seek
against the auidind index on titleauthor to find the matching rows by au_id. And
for each matching row in titleauthor, perform an index seek against the primary
key of the titles table to find the matching rows in titles by title_id.

. Perform a table scan on the titles table and for each row perform an index seek
against the titleidind index on titleauthor to find the matching rows by
title_id. And for each matching row in titleauthor, perform an index seek against
the primary key of the authors table to find the matching rows in authors by au_id.

. Perform an index scan of the titleidind of the titleauthor table and use a hash
join to match it with a clustered index scan of the titles table. And for each of the
qualifying rows from this hash join, perform another hash join with an index scan
of the aunmind index of the authors table.

NOTE

If you run this query yourself and examine the query plan, you’ll likely see that the third
alternative is the one chosen by the Query Optimizer. Index scans are performed on the
authors and titleauthor tables because the nonclustered indexes on those tables
cover the join query. That is, the nonclustered indexes contain all the columns neces-
sary to satisfy the join conditions as well as the requested result columns.

These are just three of the possibilities. There are many more options for the Query
Optimizer to consider as execution plans for processing this join. For example, for each of
the three options, there are other indexes to consider, and there are other possible join
orders and strategies to consider as well.

As you can see, there can be a large number of execution plan options for the Query
Optimizer to consider for processing a join, and this example is a relatively simple three-
table join. The number of options increases exponentially as the number of tables
involved in the query increases. The “Execution Plan Selection” section, later in this
chapter, describes how the Query Optimizer deals with the large number of possible
execution plan options.

 Download from www.wowebook.com

ptg

1248 CHAPTER 35 Understanding Query Optimization

Subquery Processing

SQL Server optimizes subqueries differently, depending on how they are written. For
example, SQL Server attempts to flatten some subqueries into joins when possible, to
allow the Query Optimizer to select the optimal join order rather than be forced to
process the query inside-out. The following sections examine the different types of
subqueries and how SQL Server optimizes them.

IN, ANY, and EXISTS Subqueries
In SQL Server, any query that contains a subquery introduced with an IN, = ANY, or
EXISTS predicate is usually flattened into an existence join unless the outer query also
contains an OR clause or unless the subquery is correlated or contains one or more
aggregates.

An existence join is optimized the same way as a regular join, with one exception: With
an existence join, as soon as a matching row is found in the inner table, the value TRUE is
returned, and SQL Server stops looking for further matches for that row in the outer table
and moves on to the next row. A normal join would continue processing to find all
matching rows. The following query provides an example of an existence join and a
quantified predicate subquery that will be converted to an existence join:

select pub_name from publishers p

where exists (select 1 from titles t

where type = ‘business’

and t.pub_id = p.pub_id)

select pub_name from publishers

where pub_id in (select pub_id from titles

where type = ‘business’)

Figure 35.21 shows an example of the execution plan for both of these queries. You can
see that the query plans are the same, providing proof that the quantified predicate
subquery is being flattened into an existence join.

Materialized Subqueries
If an outer query is comparing a column against the result of a subquery using any of the
comparison operators (=, >, <, >=, <=, !=), and the subquery is not correlated, the results of
the subquery are often resolved—that is, materialized—before comparison against the
outer table column. For these types of queries, the Query Optimizer processes the query
inside-out.

An example of this type of query is as follows:

select title from titles

where ytd_sales = (select max(qty) from sales)

In this example, the subquery is resolved first to find the maximum qty value from the
sales table to compare against ytd_sales in the outer query. Figure 35.22 shows an
example of a query plan for this materialized subquery.

 Download from www.wowebook.com

ptg

1249Join Selection
3

5

FIGURE 35.21 An execution plan for an existence join and a quantified predicate subquery
flattened into an existence join.

The following query is an interesting case in which the subquery is not materialized first:

select title from titles

where ytd_sales = (select max(ytd_sales) from titles)

In this example, with no index on the ytd_sales column, the Query Optimizer recognizes
that a table scan is required on the titles table to find the maximum ytd_sales value.
Rather than run the subquery first using a table scan and then use the value returned to
perform another lookup against the titles table, it simply scans the titles table and
returns and sorts the ytd_sales value in descending order. It then simply returns the rows
with the top matching values because these rows are the ones where the ytd_sales value

FIGURE 35.22 An execution plan for a materialized subquery.

 Download from www.wowebook.com

ptg

1250 CHAPTER 35 Understanding Query Optimization

is the maximum. Figure 35.23 shows an example of a query plan for this subquery
processing strategy.

Correlated Subqueries
A correlated subquery contains a reference to an outer table in a join clause in the
subquery. Following is an example of a correlated subquery:

SELECT title_id, price

FROM titles

WHERE ytd_sales IN

(SELECT qty

FROM sales

WHERE titles.title_id = sales.title_id)

Because correlated subqueries depend on values from the outer query for resolution, they
cannot be processed independently. Instead, SQL Server usually processes correlated
subqueries repeatedly, once for each qualifying outer row. Often, a correlated subquery
looks like a nested loop join. A sample execution plan for the preceding correlated
subquery example is shown in Figure 35.24. Notice that an inner join using a left semi
join is performed. Semi joins are joins that return rows from one table based on the exis-
tence of related rows in the other table. A left semi join operation returns each row from
the first (top or left) input when there is a matching row in the second (bottom or right)
input. If the attributes are returned from the bottom (or right) table, it’s referred to as a
right semi join.

NOTE

The inverse of a semi join is an anti–semi join. An anti–semi join looks for rows in one
table based on their nonexistence in the other, such as for a NOT IN or NOT EXISTS
type subquery, or for some outer join queries.

FIGURE 35.23 An execution plan for a subquery flattened into a table scan with sort.

 Download from www.wowebook.com

ptg

1251Execution Plan Selection
3

5

FIGURE 35.24 An execution plan for a correlated subquery.

However, if there is no useful index on the correlated columns to find the matching
rows, the Query Optimizer may choose to perform a single search against each table sepa-
rately and perform a hash join against the results.

Execution Plan Selection
At this point in the query optimization process, the Query Optimizer has examined the
entire query and estimated the costs of all possible access paths for the SARGs and join
clauses and also the various join orders and query-processing strategies. It now needs to
choose which plan to pass on to SQL Server for execution.

For a single table query, choosing the best query plan typically involves choosing the
access path and query processing strategy that results in the most efficient execution plan;
usually, this is the plan that requires the fewest number of logical I/Os and typically
requiring the least resources to process the query on that table. However, sometimes the
Query Optimizer may choose a plan that returns rows faster to the user but with a greater,
but reasonable, cost in resources (I/O plus CPU and memory). For example, processing a
query in parallel (that is, using multiple CPUs simultaneously for the same query) typi-
cally requires more resources than processing it via a single CPU, but the query may
complete much faster when processed in parallel. The Query Optimizer may choose to use
such a parallel plan for execution if the load on the server is not adversely affected.

For a multitable query, choosing the best plan involves not only determining the cheapest
access path and query processing strategy for each table individually but also determining
the best access paths in conjunction with the optimal join strategy that results in the
lowest estimated query cost, as discussed in the earlier section on join selection.

In addition, if any UNION, ORDER BY, GROUP BY, or DISTINCT clauses are present, the Query
Optimizer chooses the most efficient method to process them.

For all its options, the overriding factor in selecting a plan is primarily the overall I/O cost.
The Query Optimizer usually selects a query plan that results in the least amount of I/O

 Download from www.wowebook.com

ptg

1252 CHAPTER 35 Understanding Query Optimization

processing because I/O is often the most expensive aspect of a query. After the plan is
selected, it’s passed to the Database Engine for execution.

NOTE

As you can see in examples throughout this chapter, you can examine the query plan
chosen by the Query Optimizer with the graphical execution plan feature of SSMS. You
can also display a text representation of the execution plan by enabling the
SHOWPLAN_TEXT, SHOWPLAN_ALL, SHOWPLAN_XML, STATISTICS PROFILE, or STATISTICS
XML option in a user session. How to interpret the output from these tools is covered
in Chapter 36, “Query Analysis,” along with a discussion of other tools available for
examining the query plan selection process.

You also have the capability to influence or override the query plan selection process,
using methods discussed later in this chapter, in the section “Managing the Optimizer.”

The Query Optimizer can choose from many possible execution plans, especially when a
large number of tables are involved in the query—and an even greater number of permu-
tations of join strategies and index usage is possible. The number of permutations grows
exponentially as the number of tables involved in the query grows. Some complex queries
could potentially have millions of possible execution plans. In these cases, the Query
Optimizer does not analyze all possible plan combinations. Instead, it tries to find an
execution plan that has a cost reasonably close to the theoretical minimum.

Initially, SQL Server tries to determine whether only one viable plan for a query exists.
This is called trivial plan optimization. For simple queries, this can save the Query
Optimizer a lot of work. The idea behind trivial plan optimization is that cost-based opti-
mization can be expensive to initialize and run. The Query Optimizer can try many possi-
ble variations in looking for the cheapest plan and the time required to find the optimal
query plan could potentially be longer than the time required to execute the query itself.
If the Query Optimizer can determine by investigating the query and the relevant meta-
data that there is only one viable plan for a query, it can avoid a lot of the work required
to initialize and perform cost-based optimization.

An example of a trivial query plan is a single table SELECT statement with a SARG on a
unique key or a SELECT on a table with no indexes or GROUP BY clause. Another example is
an INSERT statement using a VALUES clause into a table that doesn’t participate in indexed
views: There is only one way to insert this record. For each of these examples, the query
plans are fairly obvious plans that are typically very inexpensive, so the Query Optimizer
generates the plan without trying to find something better. If the Query Optimizer tried to
consider every possible plan, the optimization cost could actually exceed the query
processing time, outweighing any benefit provided by well-optimized queries.

If a trivial plan is not available, the Query Optimizer next performs some query simplifica-
tions, usually syntactic transformations of the query itself, such as commutative properties
and operations that can be rearranged. An example of simplification is evaluation of
simple single-table SARG filters before processing the joins. While the filters are logically

 Download from www.wowebook.com

ptg

1253Execution Plan Selection
3

5

evaluated after the joins, evaluating the filters before the joins still produces the correct
result and is more efficient because it removes unqualified rows before the join operation
is performed, resulting in fewer iterations and, subsequently, fewer I/Os.

After any attempts at query simplification, the Query Optimizer begins a more thorough
optimization process. To avoid just running through all the possibilities that would cause
the optimization process to take a long time, it breaks up the optimization into three
phases. After each phase, the Query Optimizer applies a set of rules to evaluate the cost of
any resulting plan. If, according to these rules, the plan is cheap enough, it chooses and
submits that plan for execution. If, according to the rules, no plan is cheap enough, the
Query Optimizer continues on to the next phase, with its own set of (usually more
complex) rules to apply. In the vast majority of cases, the Query Optimizer finds a viable
execution plan in the preliminary phases.

The first phase of optimization, Phase 0, contains a limited set of rules and is applied to
queries with at least four tables. As you’ve seen previously, join reordering alone generates
many potential plan candidates, so the Query Optimizer uses a limited number of join
orders in Phase 0 and considers using only the hash or nested-loop join strategies. If, at
the end of this phase, the Query Optimizer finds a plan with an estimated cost below the
threshold for Phase 0, the optimization ends. Phase 0 is also referred to as the transaction
processing phase because the final query plans produced by Phase 0 are typically found in
transaction processing applications.

The next phase is Phase 1, or quick plan optimization. This phase applies additional trans-
formation rules and examines different possible join orders than were considered in Phase
0. If, at the end of Phase 1, the Query Optimizer finds a best plan with a cost less than the
threshold for Phase 1, optimization ends and the best plan identified is returned.

Up to this point, the Query Optimizer has considered only nonparallel query plans. If
more than one CPU is available to SQL Server and the cost of the least expensive plan
produced by Phase 1 is greater than the Cost Threshold for Parallelism configuration
setting, the Query Optimizer runs the Phase 1 optimization again, this time looking for
the best parallel query plan. The costs of the nonparallel and parallel plans generated by
Phase 1 are then compared and the Query Optimizer enters the last phase of optimization,
Phase 2, for the cheaper of the two.

Phase 2 is also referred to as the full optimization phase. If the cost of the best nonparallel
plan found so far is still below the parallelism threshold, or there is only a single CPU
available, the full optimization phase continues using a brute-force method to find the
best serial plan, checking additional combinations of indexes and processing strategies
such as outer join reordering and automatic indexed view substitution for multitable
views. In this phase, the Query Optimizer examines every possible execution plan and
eventually chooses the cheapest one. The number of execution plans it considers during
Phase 2 is restricted by a time limit. When the designated time limit for Phase 2 is
reached, the Query Optimizer returns the cheapest plan found thus far.

Eventually, an execution plan is determined to be the most efficient. After this is deter-
mined, the execution plan is passed on to the SQL Server query processor to be executed.

 Download from www.wowebook.com

ptg

1254 CHAPTER 35 Understanding Query Optimization

Query Plan Caching
SQL Server 2008 has a pool of memory used to store both execution plans and data. The
amount of memory allocated to execution plans or data changes dynamically, depending
on the needs of the system. The portion of memory used to store execution plans is often
referred to as the plan cache.

The first time a cacheable query is submitted to SQL Server, the query plan is compiled
and put into the plan cache. Query plans are read-only re-entrant structures shared by
multiple users. At most, there are two instances of a query plan at any time in the plan
cache: a serial execution plan and parallel query execution plan. The same parallel execu-
tion plan is used for all parallel executions, regardless of the degree of parallelism.

When you execute subsequent SQL statements, the Database Engine first checks to see
whether an existing execution plan for the same SQL statement already resides in the plan
cache. If it finds one, SQL Server attempts to reuse the matching execution plan, thereby
saving the overhead of having to recompile an execution plan for each ad hoc SQL state-
ment issued. If no matching execution plan is found, SQL Server is forced to generate a
new execution plan for the query.

The ability to reuse query plans for ad hoc queries in addition to caching query plans for
stored procedures can help improve the performance for complex queries that are
executed frequently because SQL Server can avoid having to compile a query plan every
time it’s executed if a matching query plan is found in memory first.

Query Plan Reuse

Query plan reuse for stored procedures is pretty straightforward. The whole idea behind
stored procedures is to promote plan reuse. For stored procedures and triggers, plan reuse
is simply based on the procedure or trigger name. The first time a stored procedure is
executed, the query plan is generated based on the initial parameters. On subsequent
executions, SQL Server checks the plan cache to see whether a query plan exists for a
procedure with the same name, and if one is found, it simply substitutes the new parame-
ter values into the existing query plan for execution.

Another method that promotes query plan reuse is using the sp_executesql stored proce-
dure for executing dynamic SQL statements. When using sp_executesql, typically you
specify a dynamic query with explicitly identified parameters for SARGs. Here’s an example:

sp_executesql N’select t.title, pubdate from bigpubs2008.dbo.authors a

join bigpubs2008.dbo.titleauthor ta on a.au_id = ta.au_id

join bigpubs2008.dbo.titles t on ta.title_id = t.title_id

where a.au_lname = @name’, N’@name varchar(30)’, ‘Smith’

When the same query is executed again via sp_executesql, SQL Server reuses the exist-
ing query plan (if it is still in the plan cache) and simply substitutes the different para-
meter values.

 Download from www.wowebook.com

ptg

1255Query Plan Caching
3

5

Although SQL Server can also match query plans for ad hoc SQL statements, there are
some limitations as to when a plan can be reused. For SQL Server to match SQL state-
ments to existing execution plans in the plan cache for ad hoc queries, all object refer-
ences in the query must be qualified with at least the schema name, and fully qualified
object names (database plus schema name) provide increased likelihood of plan reuse. In
addition, plan caching for ad hoc queries requires an exact text match between the
queries. The text match is both case sensitive and space sensitive. For example, the follow-
ing two queries are logically identical, but because they are not textually identical, they
would not share the same query plan:

select a.au_lname, t.title, pubdate

from authors a

join titleauthor ta on a.au_id = ta.au_id

join titles t on ta.title_id = t.title_id

select a.au_lname,

t.title,

pubdate

from authors a

join titleauthor ta on a.au_id = ta.au_id

join titles t on ta.title_id = t.title_id

Another factor that can prevent query plan reuse by matching queries is differences in
certain SET options, database options, or configuration options in effect for the user
session when the query is invoked. For example, a query might optimize differently for
one session if the ANSI_NULLS option is turned on than it would if it were turned off. The
following list of SET options must match for a query plan to be reused by a session:

. ANSI_PADDING

. FORCEPLAN

. CONCAT_NULL_YIELDS_NULL

. ANSI_WARNINGS

. ANSI_NULLS

. QUOTED_IDENTIFIER

. ANSI_NULL_DFLT_ON

. ANSI_NULL_DFLT_OFF

If any one of these setting values does not match the setting options for a cached plan,
the session generates a new query plan. Likewise, if the session is using a different
language or DATEFORMAT setting than that used by a cached plan, it needs to generate a
new execution plan. As you can see, sometimes fairly subtle differences can prevent plan
reuse.

 Download from www.wowebook.com

ptg

1256 CHAPTER 35 Understanding Query Optimization

Simple Query Parameterization
For certain simple queries executed without parameters, SQL Server 2008 automatically
replaces constant literal values with parameters and compiles the query plan. This simple
parameterization of the query plan increases the possibility of query plan matching for
subsequent queries. If a subsequent query differs in only the values of the constants, it
matches with the parameterized query plan and reuses the query plan.

Consider this query:

SELECT * FROM AdventureWorks.Production.Product WHERE ProductSubcategoryID = 1

The search value 1 at the end of the statement can be treated like a parameter. When the
query plan is generated for this query, the Query Optimizer replaces the search value with
a placeholder parameter, such as @p1. This process is called simple parameterization. Using
the method of simple parameterization, SQL Server 2008 recognizes that following state-
ment is identical to the first except for the search value of 9 and would generate essentially
the same execution plan:

SELECT * FROM AdventureWorks.Production.Product WHERE ProductSubcategoryID = 9

This query will reuse the query plan generated by the first query.

NOTE

You can determine whether simple parameterization has been used for a query by
examining the query plan information for the query. If the query plan information con-
tains such placeholders as @p1 and @p2 in the search predicates when literal values
were specified in the actual query, you know simple parameterization has been applied
for the query. You can see an example of this in Figure 35.13 where parameters were
substituted in the query plan for the search arguments against qty and ord_date.

Query Plan Aging

A query plan is saved in cache along with a cost factor that reflects the cost of actually
creating the plan when compiling the query. For ad hoc query plans, SQL Server sets its
cost to 0, which indicates that the plan can be removed from the plan cache immediately
if space is needed for other plans. For other query plans, such as for a stored procedure,
the query plan cost is a measure of the amount of resources required to produce it. This
cost is calculated in “number of ticks.” The maximum plan cost is 31. The plan cost is
determined as follows:

Every 2 I/Os required by the plan = 1 tick (with a maximum of 19 ticks)

Every 2 context switches in the plan = 1 tick (with a maximum of 8 ticks)

Every 16 pages (128KB) of memory required for the plan = 1 tick (with a maximum of 4
ticks)

 Download from www.wowebook.com

ptg

1257Query Plan Caching
3

5

All reusable query plans remain in cache until space is needed in the plan cache for a new
plan. When space is needed, SQL Server removes the oldest unused execution plan from
the plan cache that has the lowest plan cost.

As plans age in cache, the plan cost is not decremented until the size of the plan cache
reaches 50% of the buffer pool size. When this occurs, the next access of the plan cache
results in the plan cost for all query plans being decremented by 1. As plans reside in the
plan cache over a period of time and are not reused, they eventually reach a plan cache
cost of 0 and thus become eligible to be removed from cache the next time plan cache
space is needed. However, when a query plan is reused, its plan cost is reset back to its
initial value. This helps ensure that frequently accessed query plans remain in the plan
cache.

Recompiling Query Plans

Certain changes in a database over time can cause existing execution plans to become
either inefficient or invalid, based on the new state of the database. SQL Server detects the
changes that invalidate an execution plan and marks the plan as not valid. A new plan is
then automatically recompiled the next time the query that uses that query plan is
invoked. Most query plan recompilations are required either for statement correctness or
to obtain potentially faster query execution plans. The types of conditions that can invali-
date a query plan include the following:

. Modifications made to the definition of a table or view referenced by the query
using ALTER TABLE and ALTER VIEW

. Changes made to any indexes used by the execution plan

. Updates to the statistics used by the execution plan via either the UPDATE STATIS-
TICS command or automatically

. Dropping of an index or indexed view used by the execution plan

. Execution of sp_recompile on a table referenced by the query plan

. Large numbers of changes to keys (generated by INSERT or DELETE statements from
other users that modify a table referenced by the query)

. Adding or dropping a trigger on a table

. When the number of rows in the inserted or deleted tables grows significantly
within a trigger defined on a table referenced in the query plan

. Execution of a stored procedure with the WITH RECOMPILE option specified

To avoid the unnecessary recompilation of statements that do not require it, SQL Server
2008 performs statement-level recompilation: only the statement inside the batch or
stored procedure that requires recompilation is recompiled. Statement-level recompilation

 Download from www.wowebook.com

ptg

1258 CHAPTER 35 Understanding Query Optimization

helps improve query performance because, in most cases, only a small number of state-
ments within a batch or stored procedure cause recompilations and their associated penal-
ties, in terms of CPU time and locks. These penalties are therefore avoided for the other
statements in the batch that do not have to be recompiled.

Forcing Query Plan Recompiles
If you suspect that a query plan that is being reused is not appropriate for the current
execution of a query, you can also manually force the query plan to be recompiled for the
query. This capability can be especially useful for parameterized queries. Query parameteri-
zation provides a performance benefit by minimizing compilation overhead, but a para-
meterized query often provides less specific costing information to the Query Optimizer
and can result in the creation of a more general plan, which can be less efficient than a
more specific plan created for a specific set of literal values.

If the initial parameterized query plan generated for the query was not based on a repre-
sentative set of parameters, or if you are invoking an instance of the query with a nonrep-
resentative set of search values, you might find it necessary to force the Query Optimizer
to generate a new query plan. You can force query recompilation for a specific execution
of a query by specifying the RECOMPILE query hint. For more information on specifying
the RECOMPILE query hint, see the “Managing the Optimizer” section, later in this chapter.

Monitoring the Plan Cache

You can view and get information about the query plans currently in plan cache memory
by using some of the DMVs available in SQL Server 2008. Following are some of the useful
ones related to monitoring the plan cache:

. sys.dm_exec_cached_plans—Returns general information about the query
execution plans currently in the plan cache.

. sys.dm_exec_query_stats—Returns aggregate performance statistics for cached
query plans.

. sys.dm_exec_sql_text—Returns the text of the SQL statement for a specified
plan handle.

. sys.dm_exec_cached_plan_dependent_objects—Returns one row for every
dependent object of a compiled plan.

. sys.dm_exec_plan_attributes—Returns one row per attribute associated with
the plan for a specified plan handle.

sys.dm_exec_cached_plans

The sys.dm_exec_cached_plans DMV provides information on all the execution plans
currently in the plan cache. Because the cache can have a large number of plans, you
usually want to limit the results returned from sys.dm_exec_cached_plans by using a filter
on the cacheobjtype column and also using the TOP clause. For example, the query shown
in Listing 35.1 returns the top 10 compiled plans currently in the plan cache, sorted in
descending order by the number of times the plan has been reused (usecounts).

 Download from www.wowebook.com

ptg

1259Query Plan Caching
3

5

LISTING 35.1 Returning the Top 10 Compiled Plans, by Usage Count

select top 10 objtype, usecounts, size_in_bytes, plan_handle

from sys.dm_exec_cached_plans

where cacheobjtype = ‘Compiled Plan’

order by usecounts desc

go

objtype usecounts size_in_bytes plan_handle

--------- --------- ------------- --

Prepared 127 65536 0x06000100962E9C11B820A207000000000000000000000000

Adhoc 110 49152 0x06000100804AD300B8E02D0C000000000000000000000000

Adhoc 40 16384 0x060001006CC40F18B860D80A000000000000000000000000

Adhoc 26 8192 0x0600040023900901B820A106000000000000000000000000

Adhoc 26 8192 0x060004003E77102CB8E0A306000000000000000000000000

Proc 17 8192 0x05000400F578A275B8405F07000000000000000000000000

Adhoc 17 8192 0x06000400EBC44D2AB880A006000000000000000000000000

Adhoc 15 8192 0x060001001AF2320BB8801A08000000000000000000000000

Proc 12 212992 0x05000400744F1F67B8604F0E000000000000000000000000

Proc 12 49152 0x050004006A934A11B8C0550E000000000000000000000000

The types of plans in the plan cache are listed under the cacheobjtype column and can be
any of the following:

. Compiled Plan—The actual compiled plan generated that can be shared by
sessions running the same procedure or query.

. Compiled Plan Stub—A small, compiled plan stub generated when a batch is
compiled for the first time and the Optimize for Ad Hoc Workloads option is
enabled. It helps to relieve memory pressure by not allowing the plan cache to
become filled with compiled plans that are not reused.

. Executable Plan—The actual execution plan and the environment settings for
the session that ran the compiled plan. Caching the environment settings for an
execution plan makes subsequent executions more efficient. Each concurrent execu-
tion of the same compiled plan will have its own executable plan. All executable
plans are associated with a compiled plan having the same plan_handle, but not all
compiled plans have an associated executable plan.

. Parse Tree—The internal parsed form of a query generated before compilation
and optimization.

. CLR Compiled Func—Execution plan for a CLR-based function.

. CLR Compiled Proc—Execution plan for a CLR-based procedure.

. Extended proc—The cached information for an extended stored procedure.

 Download from www.wowebook.com

ptg

1260 CHAPTER 35 Understanding Query Optimization

The type of object or query for which a plan is cached is stored in the objtype column.
This column can contain one of the following values:

. Proc—The cached plan is for a stored procedure or inline function.

. Prepared—The cached plan is for queries submitted using sp_executesql or for
queries using the prepare and execute method.

. Adhoc—The cached plan is for queries that don’t fall into any other category.

. ReplProc—The cached plan is for replication agents.

. Trigger—The cached plan is for a trigger.

. View—The cached plan is for a view or a noninline function. You typically see a
parse tree only for a view or noninline function, not a compiled plan. The view or
function typically does not have its own separate plan because it is expanded as part
of another query.

. UsrTab or SysTab—The cached plan is for a user or system table that has computed
columns. This is typically associated with a parse tree.

. Default, Check, or Rule—The cached plan is simply a parse tree for these types of
objects because they are expanded as part of another query in which they are
applied.

To determine how often a plan is being reused, you can examine the value in the
usecounts columns. The usecounts value is incremented each time the cached plan is
looked up and reused.

sys.dm_exec_sql_text

Overall, the information returned by sys.dm_exec_cached_plans is not overly useful
unless you know what queries or stored procedures these plans refer to. You can view the
SQL text of these query plans by writing a query that joins sys.dm_exec_cached_plans
with the sys.dm_exec_sql_text DMV. For example, you can use the query shown in
Listing 35.2 to return the SQL text for the top 10 largest ad hoc query plans currently in
the plan cache.

LISTING 35.2 Returning the Top 10 Largest Ad Hoc Query Plans

select top 10 objtype, usecounts, size_in_bytes, plan_handle,

-- the following removes newline and carriage return from the sql text

replace(replace(text, char(13), ‘ ‘), char(10), ‘ ‘) as sqltext

from sys.dm_exec_cached_plans as p

cross apply sys.dm_exec_sql_text (p.plan_handle)

where cacheobjtype = ‘Compiled Plan’

and objtype = ‘Adhoc’

order by size_in_bytes desc, usecounts desc

 Download from www.wowebook.com

ptg

1261Query Plan Caching
3

5

sys.dm_exec_query_stats

The plan cache also keeps track of useful statistics about each cached plan, such as the
amount of CPU or the number of reads and writes performed by the query plan since it
was placed into the plan cache. This information can be examined using the
sys.dm_exec_query_stats DMV, which returns statistics for each statement in a stored
procedure or a SQL batch. To provide statistics for the procedure or batch as a whole, you
need to summarize the data. Listing 35.3 provides a sample query that returns the I/O,
CPU, and elapsed time statistics for the 10 most recently executed stored procedures.

LISTING 35.3 Returning Query Plan Stats for the 10 Most Recently Executed Procedures

select TOP 10 usecounts, size_in_bytes,

max(last_execution_time) as last_execution_time,

sum(total_logical_reads) as total_logical_reads,

sum(total_physical_reads) as total_physical_reads,

sum(total_worker_time/1000) as total_CPU_time,

sum(total_elapsed_time/1000) as total_elapsed_time,

replace(substring (text,

patindex(‘%create procedure%’, text),

datalength(text)),

‘create procedure’, ‘’) as procname

from sys.dm_exec_query_stats s

join sys.dm_exec_cached_plans p on s.plan_handle = p.plan_handle

CROSS APPLY sys.dm_exec_sql_text(p.plan_handle) as st

where p.objtype = ‘Proc’ and p.cacheobjtype = ‘Compiled Plan’

group by usecounts, size_in_bytes, text

order by max(last_execution_time) desc

Table 35.1 describes some of the most useful columns returned by the
sys.dm_exec_query_stats DMV.

TABLE 35.1 Description of Columns for sys.dm_exec_query_stats

Column Name Description

statement_start_offset The starting position of the query that the row describes within the
text of its batch or stored procedure, indicated in bytes, beginning
with 0.

statement_end_offset The ending position of the query that the row describes within the
text of its batch or stored proc. A value of -1 indicates the end of
the batch.

plan_generation_num The number of times the plan has been recompiled while it has
remained in the cache.

 Download from www.wowebook.com

ptg

1262 CHAPTER 35 Understanding Query Optimization

TABLE 35.1 Description of Columns for sys.dm_exec_query_stats

Column Name Description

plan_handle A pointer to the plan. This value can be passed to the
dm_exec_query_plan dynamic management function.

creation_time The time the plan was compiled.

last_execution_time The last time the plan was executed.

execution_count The number of times the plan has been executed since it was last
compiled.

total_worker_time The total amount of CPU time, in microseconds, consumed by
executions of this plan for the statement.

last_worker_time The CPU time, in microseconds, consumed the last time the plan
was executed.

min_worker_time The minimum CPU time, in microseconds, this plan has ever
consumed during a single execution.

max_worker_time The maximum CPU time, in microseconds, this plan has ever
consumed during a single execution.

total_physical_reads The total number of physical reads performed by executions of this
plan since it was compiled.

last_physical_reads The number of physical reads performed the last time the plan was
executed.

min_physical_reads The minimum number of physical reads this plan has ever
performed during a single execution.

max_physical_reads The maximum number of physical reads this plan has ever
performed during a single execution.

total_logical_writes The total number of logical writes performed by executions of this
plan since it was compiled.

last_logical_writes The number of logical writes performed the last time the plan was
executed.

min_logical_writes The minimum number of logical writes this plan has ever performed
during a single execution.

max_logical_writes The maximum number of logical writes this plan has ever performed
during a single execution.

total_logical_reads The total number of logical reads performed by executions of this
plan since it was compiled.

last_logical_reads The number of logical reads performed the last time the plan was
executed.

 Download from www.wowebook.com

ptg

1263Query Plan Caching
3

5

The query_hash and query_plan_hash values are new for SQL Server 2008. You can use
these values to determine the aggregate resource usage for queries that differ only by
literal values or with similar execution plans. You can use these values to write queries
that you can use to help determine the aggregate resource usage for similar queries and
similar query execution plans. For example, Listing 35.4 provides a query to find the
query_hash and query_plan_hash values for queries that select from the titles table
searching by ytd_sales. Looking at the results, you can see that even with different search
arguments, each of the matching queries generates the same query hash value, but they
have different query plan hash values for queries that use different query plans.

LISTING 35.4 Returning Query and Query Plan Hash Values for a Query

SELECT convert(varchar(41), substring(st.text, 1, 42)) AS ‘Query Text’,

qs.query_hash AS ‘Query Hash’,

qs.query_plan_hash as ‘Query Plan Hash’

FROM sys.dm_exec_query_stats qs

CROSS APPLY sys.dm_exec_sql_text (qs.sql_handle) st

WHERE st.text like ‘SELECT * from titles where ytd_sales%’

go

TABLE 35.1 Description of Columns for sys.dm_exec_query_stats

Column Name Description

min_logical_reads The minimum number of logical reads this plan has ever performed
during a single execution.

max_logical_reads The maximum number of logical reads this plan has ever performed
during a single execution.

total_elapsed_time The total elapsed time, in microseconds, for completed executions
of this plan.

last_elapsed_time The elapsed time, in microseconds, for the most recently completed
execution of this plan.

min_elapsed_time The minimum elapsed time, in microseconds, for any completed
execution of this plan.

max_elapsed_time The maximum elapsed time, in microseconds, for any completed
execution of this plan.

query_hash The binary hash value calculated on the query and used to identify
queries with similar logic.

query_plan_hash The binary hash value calculated on the query execution plan and
used to identify similar query execution plans.

 Download from www.wowebook.com

ptg

1264 CHAPTER 35 Understanding Query Optimization

Query Text Query Hash Query Plan Hash

--

select * from titles where ytd_sales = 0 0x9AB21AC5889FE2D0 0x8D6DE6D258BABB2B

select * from titles where ytd_sales = 0 0x9AB21AC5889FE2D0 0x8D6DE6D258BABB2B

select * from titles where ytd_sales = 99 0x9AB21AC5889FE2D0 0xE889B5D23D917DFD

select * from titles where ytd_sales = 10 0x9AB21AC5889FE2D0 0xE889B5D23D917DFD

select * from titles where ytd_sales = 0 0x9AB21AC5889FE2D0 0x8D6DE6D258BABB2B

select * from titles where ytd_sales = 0 0x9AB21AC5889FE2D0 0xE889B5D23D917DFD

This query hash or query plan hash value can be used in a query to aggregate performance
statistics for like queries. For example, the following query returns the average processing
time and logical reads for the same queries that were returned in Listing 35.2:

SELECT

SUM(total_worker_time) / SUM(execution_count)/1000. AS “Avg CPU Time(ms)”,

SUM(total_logical_reads) / SUM(execution_count) AS “Avg Reads”

FROM

sys.dm_exec_query_stats

where query_hash = 0x9AB21AC5889FE2D0

go

Avg CPU Time(ms) Avg Reads

--------------------------------------- --------------------

164.092000 7

Listing 35.5 provides a sample query using the query hash value to return information
about the top 25 queries ranked by average processing time.

LISTING 35.5 Returning Top 25 Queries Using Query Hash

SELECT TOP 25 query_stats.query_hash AS “Query Hash”,

SUM(query_stats.total_worker_time) / SUM(query_stats.execution_count) AS

“Avg CPU Time”,

MIN(query_stats.statement_text) AS “Statement Text”

FROM

(SELECT QS.*,

SUBSTRING(ST.text, (QS.statement_start_offset/2) + 1,

((CASE statement_end_offset

WHEN -1 THEN DATALENGTH(ST.text)

ELSE QS.statement_end_offset END

- QS.statement_start_offset)/2) + 1) AS statement_text

FROM sys.dm_exec_query_stats AS QS

CROSS APPLY sys.dm_exec_sql_text(QS.sql_handle) as ST) as query_stats

GROUP BY query_stats.query_hash

 Download from www.wowebook.com

ptg

1265Query Plan Caching
3

5

ORDER BY 2 DESC;

GO

sys.dm_exec_plan_attributes

If you want to get information about specific attributes of a specific query plan, you use
sys.dm_exec_plan_attributes. This DMV takes a plan_handle as an input parameter (see
Listing 35.1 for an example of a query that you can use to retrieve a query’s plan handle)
and returns one row for each attribute associated with the query plan. These attributes
include information such as the ID of the database context the query plan was generated
in, the ID of the user who generated the query plan, session SET options in effect at the
time the plan was generated, and so on. Many of these attributes are used as part of the
cache lookup key for the plan (indicated by the value 1 in the is_cache_key_column).
Following is an example of the output for sys.dm_exec_plan_attributes:

select convert(varchar(30), attribute) as attribute,

convert(varchar(12), value) as value,

is_cache_key

FROM

sys.dm_exec_plan_attributes (0x06000400EBC44D2AB880A006000000000000000000000000)

where is_cache_key = 1

go

attribute value is_cache_key

--

set_options 187 1

objectid 709739755 1

dbid 4 1

dbid_execute 0 1

user_id -2 1

language_id 0 1

date_format 1 1

date_first 7 1

compat_level 100 1

status 0 1

required_cursor_options 0 1

acceptable_cursor_options 0 1

merge_action_type 0 1

is_replication_specific 0 1

optional_spid 0 1

optional_clr_trigger_dbid 0 1

optional_clr_trigger_objid 0 1

 Download from www.wowebook.com

ptg

1266 CHAPTER 35 Understanding Query Optimization

Note the attributes flagged as cache keys for the plan. If one of these properties does not
match the state of the current user session, the plan cannot be reused for that session, and
a new plan must be compiled and stored in the plan cache. If you see multiple plans in
cache for what appears to be the same query, you can determine the key differences
between them by comparing the columns associated with the plan’s cache keys to see
where the differences lie.

TIP

If SQL Server has been running for a while, with a lot of activity, the number of plans in
the plan cache can become quite large, resulting in a large number of rows being
returned by the plan cache DMVs. To run your own tests to determine which query
plans get cached and when specific query plans are reused, you should clear out the
cache occasionally. You can use the DBCC FREEPROCCACHE command to clear all
cached plans from memory. If you want to clear only the cached plans for objects or
queries in a specific database, you execute the following command:

DBCC FLUSHPROCINDB (dbid)

Keep in mind that you should run these commands only in a test environment. Running
these commands in production servers could impact the performance of the currently
running applications.

Other Query Processing Strategies
In addition to the optimization strategies covered so far, SQL Server also has some addi-
tional strategies it can apply for special types of queries. These strategies are used to help
further reduce the cost of executing various types of queries.

Predicate Transitivity

You might be familiar with the transitive property from algebra. The transitive property
simply states that if A=B and B=C, then A=C. SQL Server supports the transitive property
in its query predicates. Predicate transitivity enables SQL Server to infer a join equality
from two given equalities. Consider the following example:

SELECT *

FROM table1 t1

join table2 t2 on t1.column1 = t2.column1

join table3 t3 on t2.column1 = t3.column1

Using the principle of predicate transitivity, SQL Server is able to infer that t1.column1 is
equal to t3.column1. This capability provides the Query Optimizer with another join

 Download from www.wowebook.com

ptg

1267Other Query Processing Strategies
3

5

strategy to consider when optimizing this query. This might result in a much cheaper
execution plan.

The transitive property can also be applied to SARGs used on join columns. Consider the
following query:

select *

from sales s

join stores st on s.stor_id = st.stor_id

and s.stor_id = ‘B199’

Again, using transitive closure, it follows that st.stor_id is also equal to ’B199’. SQL
Server recognizes this and can compare the search value against the statistics on both
tables to more accurately estimate the number of matching rows from each table.

Group by Optimization

One way SQL Server can process GROUP BY results is to retrieve the matching detailed data
rows into a worktable and then sort the rows and calculate the aggregates on the groups
formed. In SQL Server 2008, the Query Optimizer also may choose to use hashing to orga-
nize the data into groups and then compute the aggregates.

The hash aggregation strategy uses the same basic method for grouping and calculating
aggregates as for a hash join. At the point where the probe input row is checked to deter-
mine whether it already exists in the hash bucket, the aggregate is computed if a hash
match is found. The following pseudocode summarizes the hash aggregation strategy:

create a hash table

for each row in the input table

read the row

hash the key value

search the hash table for matches

if match found

aggregate the value into the old record

else

insert the hashed key into the hash bucket

scan and output the hash table contents

drop the hash table

For some join queries that contain GROUP BY clauses, SQL Server might perform the group-
ing operation before processing the join. This could reduce the size of the input table to
the join and lower the overall cost of executing the query.

 Download from www.wowebook.com

ptg

1268 CHAPTER 35 Understanding Query Optimization

NOTE

One important point to keep in mind is that regardless of the GROUP BY strategy
employed, the rows are not guaranteed to be returned in sorted order by the grouping
column(s) as they were in earlier releases. If the results must be returned in a specific
sort order, you need to use the ORDER BY clause with GROUP BY to ensure ordered
results. You might want to get into the habit of doing this regularly.

Queries with DISTINCT

When the DISTINCT clause is specified in a query, SQL Server can eliminate duplicate rows
by the sorting the result set in a worktable to identify and remove the duplicates, similar
to how a worktable is used for GROUP BY queries. In SQL Server 2008, the Query Optimizer
can also employ a hashing strategy similar to that used for GROUP BY to return only the
distinct rows before the final result set is determined.

In addition, if the Query Optimizer can determine at compile time that there will be no
possibility of duplicate rows in the result set (for example, each row contains the table’s
primary key), the strategies for removing duplicate rows are skipped altogether.

Queries with UNION

When you specify UNION in a query, SQL Server merges the result sets, applying one of the
merge or concatenation operators with sorting strategies to remove any duplicate rows.
Figure 35.25 shows an example similar to the OR strategy where the rows are concatenated
and then sorted to remove any duplicates.

If you specify UNION ALL in a query, SQL Server simply appends the result sets together. No
intermediate sorting or merge step is needed to remove duplicates. Figure 35.26 shows the
same query as in Figure 35.25, except that a UNION ALL is specified.

When you know that you do not need to worry about duplicate rows in a UNION result set,
always specify UNION ALL to eliminate the extra overhead required for sorting.

When a UNION is used to merge large result sets together, SQL Server 2008 may opt to use a
merge join or hash match operation to remove any duplicate rows. Figure 35.27 shows an
example of a UNION query where the rows are concatenated, and then a hash match opera-
tion is used to remove any duplicates.

Parallel Query Processing
The query processor in SQL Server 2008 includes parallel query processing—an execution
strategy that can improve the performance of complex queries on computers with more
than one processor.

SQL Server inserts exchange operators into each parallel query to build and manage the
query execution plan. The exchange operator is responsible for providing process manage-
ment, data redistribution, and flow control. The exchange operators are displayed in the

 Download from www.wowebook.com

ptg

1269Parallel Query Processing
3

5

FIGURE 35.25 An execution plan for a UNION query.

FIGURE 35.26 An execution plan for a UNION ALL query.

 Download from www.wowebook.com

ptg

1270 CHAPTER 35 Understanding Query Optimization

FIGURE 35.27 An execution plan for a UNION query, using a hash match to eliminate
duplicate rows.

query plans as the Distribute Streams, Repartition Streams, and Gather Streams
logical operators. One or more of these operators can appear in the execution plan output
of a query plan for a parallel query.

Whereas a parallel query execution plan can use more than one thread, a serial execution
plan, used by a nonparallel query, uses only a single thread for its execution. Prior to
query execution time, SQL Server determines whether the current system state and config-
uration allow for parallel query execution. If parallel query execution is justified, SQL
Server determines the optimal number of threads, called the degree of parallelism, and
distributes the query workload execution across those threads. The parallel query uses the
same number of threads until the query completes. SQL Server reexamines the optimal
degree of parallelism each time a query execution plan is retrieved from the procedure
cache. Individual instances of the same query could be assigned a different degree of
parallelism.

SQL Server calculates the degree of parallelism for each instance of a parallel query execu-
tion by using the following criteria:

. How many processors does the computer running SQL Server have, and how many
are allocated to SQL Server?

If two or more processors are allocated to SQL Server, it can use parallel queries.

. What is the number of concurrent active users?

 Download from www.wowebook.com

ptg

1271Parallel Query Processing
3

5

The degree of parallelism is inversely related to CPU usage. The Query Optimizer
assigns a lower degree of parallelism if the CPUs are already busy.

. Is sufficient memory available for parallel query execution?

Queries, like other processes, require resources to execute, particularly memory.
Obviously, a parallel query demands more memory than a serial query. More impor-
tantly, as the degree of parallelism increases, so does the amount of memory
required. The Query Optimizer carefully considers this in developing a query execu-
tion plan. The Query Optimizer could either adjust the degree of parallelism or use a
serial plan to complete the query.

. What is the type of query being executed?

Queries that use several CPU cycles justify using a parallel execution plan. Some
examples are joins of large tables, substantial aggregations, and sorting of large result
sets. The Query Optimizer determines whether to use a parallel or serial plan by
checking the value of the cost threshold for parallelism.

. Are a sufficient number of rows processed in the given stream?

If the Query Optimizer determines that the number of rows in a stream is too low, it
does not execute a parallel plan. This prevents scenarios where the parallel execution
costs exceed the benefits of executing a parallel plan.

Regardless of the answers to the previous questions, the Query Optimizer does not use a
parallel execution plan for a query if any one of the following conditions is true:

. The serial execution cost of the query is not high enough to consider an alternative
parallel execution plan.

. A serial execution plan exists that is estimated to be faster than any possible parallel
execution plan for the particular query.

. The query contains scalar or relational operators that cannot be run in parallel.

Parallel Query Configuration Options

Two server configuration options—maximum degree of parallelism and cost thresh-
old for parallelism—affect the consideration for a parallel query. Although doing so
is not recommended, you can change the default settings for each. For single processor
machines, these settings are ignored.

The maximum degree of parallelism option limits the number of threads to use in a
parallel plan execution. The range of possible values is 0 to 32. This value is configured to
0 by default, which allows the Query Optimizer to use up to the actual number of CPUs
allocated to SQL Server. If you want to suppress parallel processing completely, set the
value to 1.

 Download from www.wowebook.com

ptg

1272 CHAPTER 35 Understanding Query Optimization

The cost threshold for parallelism option establishes a ceiling value the Query
Optimizer uses to consider parallel query execution plans. If the calculated value to
execute a serial plan is greater than the value set for the cost threshold for parallelism, a
parallel plan is generated. This value is defined by the estimated time, in seconds, to
execute the serial plan. The range of values for this setting is 0 to 32767. The default value
is 5. If the maximum degree of parallelism is set to 1, or if the computer has a single
processor, the cost threshold for parallelism value is ignored.

You can modify the settings for the maximum degree of parallelism and the cost
threshold for parallelism server configuration options either by using the
sp_configure system stored procedure or through SSMS. To set the values for these
options, use the sp_configure system stored procedure via SSMS or via SQLCMD, as
follows:

USE master

go

exec sp_configure ‘show advanced options’, 1

GO

RECONFIGURE

GO

exec sp_configure ‘max degree of parallelism’, 2

exec sp_configure ‘cost threshold for parallelism’, 15

RECONFIGURE

GO

To set these configuration options via SSMS, right-click the SQL Server instance in the
Object Explorer and then click Properties. In the Server Properties dialog, select the
Advanced page. The parallelism options are near the bottom, as shown in Figure 35.28.

Identifying Parallel Queries

You can identify when a parallel execution plan is being chosen by displaying the graphi-
cal execution plan in SSMS. The graphical execution plan uses icons to represent the
execution of specific statements and queries in SQL Server. The execution plan output for
every parallel query has at least one of these three logical operators:

. Distribute Streams—Receives a single input stream of records and distributes
multiple output streams. The contents and form of the record are unchanged. All
records enter through the same single input stream and appear in one of the output
streams, preserving the relative order.

. Gather Streams—Assembles multiple input streams of records and yields a single
output stream. The relative order of the records, contents, and form is maintained.

. Repartition Streams—Accepts multiple input streams and produces multiple
streams of records. The record contents and format are unchanged.

 Download from www.wowebook.com

ptg

1273Parallel Query Processing
3

5

FIGURE 35.28 Setting SQL Server parallelism options.

Figure 35.29 shows a portion of a sample query plan that uses parallel query techniques—
both repartition streams and gather streams.

Parallel Queries on Partitioned Objects

SQL Server 2008 provides improved query processing performance for partitioned objects
when running parallel plans including changes in the way parallel and serial plans are
represented, and enhancements to the partitioning information provided in both compile-
time and runtime execution plans. SQL Server 2008 also automates and improves the
thread partitioning strategy for parallel query execution plans on partitioned objects.

In addition to the performance improvements, query plan information has been improved
as well in SQL Server 2008, now providing the following information related to parti-
tioned objects:

. The partitions accessed by the query, available in runtime execution plans.

. An optional Partitioned attribute indicating that an operation, such as a seek,
scan, insert, update, merge, or delete, is performed on a partitioned table.

. Summary information that provides a total count of the partitions accessed. This
information is available only in runtime plans.

 Download from www.wowebook.com

ptg

1274 CHAPTER 35 Understanding Query Optimization

FIGURE 35.29 A graphical execution plan of a query using parallel query techniques.

Common Query Optimization Problems
So you’ve written a query and examined the query plan, and performance isn’t what you
expected. It might appear that SQL Server isn’t choosing the appropriate query plan that
you expect. Is something wrong with the query or with the Query Optimizer? Before
delving into a detailed discussion about how to debug and analyze query plans (covered
in detail in Chapter 36), the following sections look at some of the most common prob-
lems and SQL coding issues that can lead to poor query plan selection.

Out-of-Date or Insufficient Statistics

Admittedly, having out-of-date or unavailable statistics is not as big a problem as it was in
SQL Server releases prior to 7.0. Back in those days, the first question asked when
someone was complaining of poor performance was, “When did you last update statis-
tics?” If the answer was “Huh?” we usually found the culprit.

With the Auto-Update Statistics and Auto-Create Statistics features in SQL Server 2008,
this problem is not as prevalent as it used to be. If a query detects that statistics are out of
date or missing, it causes them to be updated or created and then optimizes the query
plan based on the new statistics.

 Download from www.wowebook.com

ptg

1275Common Query Optimization Problems
3

5

NOTE

If statistics are missing or out of date, the first running query that detects this condi-
tion might run a bit more slowly as it updates or creates the statistics first, especially
if the table is relatively large, and also if it has been configured for FULLSCAN when
indexes are updated.

However, SQL Server 2008 provides the AUTO_UPDATE_STATISTICS_ASYNC database
option. When this option is set to ON, queries do not wait for the statistics to be
updated before compiling. Instead, the out-of-date statistics are put on a queue for
updating by a worker thread in a background process, and the query and any other
concurrent queries compile immediately, using the existing out-of-date statistics.
Although there is no delay for updated statistics, the out-of-date statistics may cause
the Query Optimizer to choose a less efficient query plan, but the response times are
more predictable. Any queries invoked after the updated statistics are ready will use
the updated statistics in generating a query plan. This may cause the recompilation of
any cached plans that depend on the older statistics.

You should consider setting the AUTO_UPDATE_STATISTICS_ASYNC option to ON when
any of your applications have experienced client request timeouts caused by queries
waiting for updated statistics or when it is acceptable for your application to run
queries with less efficient query plans due to outdated statistics so that you can main-
tain predictable query response times.

You could have insufficient statistics to properly optimize a query if the sample size used
when the statistics were generated wasn’t large enough. Depending on the nature of your
data and size of the table, the statistics might not accurately reflect the actual data distrib-
ution and cardinality. If you suspect that this is the case, you can update statistics by spec-
ifying the FULLSCAN option or a larger sample size, so SQL Server examines more records to
derive the statistics.

For more information on understanding and managing index statistics, see Chapter 34.

Poor Index Design

Poor index design is another reason—often a primary reason—why queries might not opti-
mize as you expect them to. If no supporting indexes exist for a query, or if a query
contains SARGs that cannot be optimized effectively to use the available indexes, SQL
Server ends up performing either a table scan, an index scan, or another hash or merge
join strategy that is less efficient. If this appears to be the problem, you need to reevaluate
your indexing decisions or rewrite the query so it can take advantage of an available
index. For more information on designing useful indexes, see Chapter 34.

 Download from www.wowebook.com

ptg

1276 CHAPTER 35 Understanding Query Optimization

Search Argument Problems

It’s the curse of SQL that there are a number of ways to write a query and get the same
result set. Some queries, however, might not be as efficient as others. A good understand-
ing of the Query Optimizer can help you avoid writing search arguments that SQL Server
can’t optimize effectively. The following sections highlight some of the common
“gotchas” encountered in SQL Server SARGs that can lead to poor or unexpected query
performance.

Using Optimizable SARGs
As mentioned previously, in the section “Identifying Search Arguments,” the Query
Optimizer uses search arguments to help it narrow down the set of rows to evaluate. The
search argument is in the form of a WHERE clause that equates a column to a constant. The
SARGs that optimize most effectively are those that compare a column with a constant
value that is not an expression or a variable, and with no operation performed against the
column itself. The following is an example:

SELECT column1

FROM table1

WHERE column1 = 123

You should try to avoid using any negative logic in your SARGs (for example, !=, <>, not
in) or performing operations on, or applying functions to, the columns in the SARG.

No SARGs
You need to watch out for queries in which the SARG might have been left out inadver-
tently, such as this:

select title_id from titles

A SQL query with no search argument (that is, no WHERE clause) always performs a table or
clustered index scan unless a nonclustered index can be used to cover the query. (See
Chapter 34 for a discussion of index covering.) If you don’t want the query to affect the
entire table, you need to be sure to specify a valid SARG that matches an index on the
table to avoid table scans.

Unknown Values in WHERE Clauses
You need to watch out for expressions in which the search value in the SARG cannot be
evaluated until runtime. In these expressions, often the search value is a local variable or
subquery that can be materialized to a single value.

SQL Server treats these expressions as SARGs but can’t use the statistics histogram to esti-
mate the number of matching rows because it doesn’t have a value to compare against the
histogram values during query optimization. The values for the expressions aren’t known
until the query is actually executed. In this situation, the Query Optimizer uses the index
density information. The Query Optimizer is generally able to better estimate the number
of rows affected by a query when it can compare a known value against the statistics

 Download from www.wowebook.com

ptg

1277Common Query Optimization Problems
3

5

histogram than when it has to use the index density to estimate the average number of
rows that match an unknown value. This is especially true if the data in a table isn’t
distributed evenly. When you can, you should try to avoid using constant expressions that
can’t be evaluated until runtime so that the statistics histogram can be used rather than
the density value.

To avoid using constant expressions in WHERE clauses that can’t be evaluated until runtime,
you should consider putting the queries into stored procedures and passing in the
constant expression as a parameter. Because the Query Optimizer evaluates the value of a
parameter prior to optimization, SQL Server evaluates the expression prior to optimizing
the stored procedure.

For best results when writing queries inside stored procedures, you should use stored
procedure parameters rather than local variables in your SARGs whenever possible. This
strategy allows the Query Optimizer to optimize the query by using the statistics
histogram, comparing the parameter value against the statistics histogram to estimate the
number of matching rows. If you use local variables as SARGs in stored procedures, the
Query Optimizer is restricted to using index density, even if the local variable is assigned
the value of a parameter.

Other types of constructs for which it is difficult for the Query Optimizer to accurately
estimate the number of qualifying rows or the data distribution using the statistics
histogram include aggregations in subqueries, scalar expressions, user-defined functions,
and noninline table-valued functions.

Data Type Mismatches
Another common problem is data type mismatches. If you attempt to join tables on
columns of different data types, the Query Optimizer might not be able to effectively use
indexes to evaluate the join. This can result in a less efficient join strategy because SQL
Server has to convert all values first before it can process the query. You should avoid
this situation by maintaining data type consistency across the join key columns in your
database.

Large Complex Queries

For complex queries with a large number of tables and join conditions, the number of
possible execution plans can be enormous. The full optimization phase of the Query
Optimizer has a time limit to restrict how long it spends analyzing all the possible query
plans. There is no known general and effective shortcut to arrive at the optimal plan. To
deal with such a large selection of plans, SQL Server 2008 implements a number of heuris-
tics to deal with very large queries and attempt to come up with an efficient query plan
within the time available. When it is not possible to analyze the entire set of plan alterna-
tives and the heuristics are applied, it is not uncommon to encounter suboptimal query
plans being chosen.

 Download from www.wowebook.com

ptg

1278 CHAPTER 35 Understanding Query Optimization

When is your query large enough to be a concern? Answering this question is difficult
because the answer depends on the number of tables involved, the form of filter and join
predicates, and the operations performed. If a query involves more than 12 tables, it is
likely that the Query Optimizer is having to rely on heuristics and shortcuts to generate a
query plan and may miss some optimal strategies.

In general, you get more optimal query plans if you can simplify your queries as much as
possible.

Triggers

If you are using triggers on INSERT, UPDATE, or DELETE, it is possible that your triggers can
cause performance problems. You might think that INSERT, UPDATE, or DELETE is perform-
ing poorly when actually it is the trigger that needs to be tuned. In addition, you might
have triggers that fire other triggers. If you suspect that you are having performance prob-
lems with the triggers, you can monitor the SQL they are executing and the response
time, as well as execution plans generated for statements within triggers using SQL Server
Profiler. For more information on monitoring performance with SQL Server Profiler, see
Chapter 6, “SQL Server Profiler.” You can also see the query plans for statements executed
in triggers by using SSMS if you enable the Include Actual Execution Plan option. For
more information on using SSMS to view and analyze query plans, see Chapter 36.

Managing the Optimizer
Because the Query Optimizer might sometimes make poor decisions as to how to best
process a query, you need to know how and when you may need to override the Query
Optimizer and force SQL Server to process a query in a specific manner.

How often does SQL Server require manual intervention to execute a query optimally?
Considering the overwhelming number of query types and circumstances in which those
queries are run, SQL Server does a surprisingly effective job of query optimization in most
instances. For all but the most grueling, complex query operations, experience has shown
that SQL Server’s Query Optimizer is quite clever—and very, very good at wringing the
best performance out of any hardware platform. For this reason, you should treat the
material covered in this chapter as a collection of techniques to be used only where other
methods of getting optimal query performance have already failed.

Before indiscriminately applying the techniques discussed in this section, remember one
very important point: use of these features can effectively hide serious fundamental design
or coding flaws in your database, application, or queries. In fact, if you’re tempted to use
these features (with a few moderate exceptions), it should serve as an indicator that the
problems might lie elsewhere in the application or queries.

If you are satisfied that no such flaws exist and that SQL Server is choosing the wrong
plan to optimize your query, you can use the methods discussed in this section to override
two of the three most important decisions the Query Optimizer makes:

 Download from www.wowebook.com

ptg

1279Managing the Optimizer
3

5

. Choosing which index, if any, to resolve the query

. Choosing the join strategy to apply in a multitable query

The other decision made by the Query Optimizer is the locking strategy to apply. Using
table hints to override locking strategies is discussed in Chapter 37, “Locking and
Performance.”

Throughout this and following sections, one point must remain clear in your mind: these
options should be used only in exception cases to cope with specific optimization problems
in specific queries in specific applications. There are therefore no standard or global rules
to follow because the application of these features, by definition, means that normal SQL
Server behavior isn’t taking place.

The practical result of this idea is that you should test every option in your environment,
with your data and your queries, and use the techniques and methods discussed in this
chapter and the other performance-related chapters to optimize and fine-tune the perfor-
mance of your queries. The fastest-performing query wins, so you shouldn’t be afraid to
experiment with different alternatives—but you shouldn’t think that these statements and
features are globally applicable or fit general categories of problems, either! There are, in
fact, only three rules: Test, test, and test!

TIP

As a general rule, Query Optimizer and table hints should be used only as a last resort,
when all other methods to get the Query Optimizer to generate a more efficient query
plan have failed. Always try to find other ways to rewrite the queries to encourage the
Query Optimizer to choose a better plan. This includes adding additional SARGs, substi-
tuting unknown values for known values in SARGS or trying to replace unknown values
with known values, breaking up queries, converting subqueries to joins or joins to
subqueries, and so on. Essentially, you should try other coding variations on the query
itself to get the same result in a different way and try to see if one of the variations
ends up using the more efficient query plan that you expect it to.

In reality, about the only time you should use these hints is when you’re testing the
performance of a query and want to see if the Query Optimizer is actually choosing the
best execution plan. You can enable the various query analysis options, such as
STATISTICS PROFILE and STATISTICS IO, and then see how the query plan and
statistics change as you apply various hints to the query. You can examine the output
to determine whether the I/O cost and/or runtime improves or gets worse if you force
one index over another or if you force a specific join strategy or join order.

The problem with hard-coding table and Query Optimizer hints into application queries
is that the hints prevent the Query Optimizer from modifying the query plan as the data
in the tables changes over time. Also, if subsequent service packs or releases of SQL
Server incorporate improved optimization algorithms or strategies, the queries with
hard-coded hints will not be able to take advantage of them.

 Download from www.wowebook.com

ptg

1280 CHAPTER 35 Understanding Query Optimization

If you find that you must incorporate any of these hints to solve query performance
problems, you should be sure to document which queries and stored procedures con-
tain Query Optimizer and table hints. It’s a good idea to periodically go back and test
the queries to determine whether the hints are still appropriate. You might find that,
over time, as the data values in the table change, the forced query plan generated
because of the hints is no longer the most efficient query plan, and the Query
Optimizer now generates a more efficient query plan on its own.

Optimizer Hints

You can specify three types of hints in a query to override the decisions made by the
Query Optimizer:

. Table hints

. Join hints

. Query hints

The following sections examine and describe each type of table hint.

Forcing Index Selection with Table Hints
In addition to locking hints that can be specified for each table in a query, SQL Server 2008
allows you to provide table-level hints that enable you to specify the index SQL Server
should use for accessing the table. The syntax for specifying an index hint is as follows:

SELECT column_list FROM tablename WITH (INDEX (indid | index_name [, ...]))

This syntax allows you to specify multiple indexes. You can specify an index by name or
by ID. It is recommended that you specify indexes by name as the IDs for nonclustered
indexes can change if they are dropped and re-created in a different order than that in
which they were created originally. You can specify an index ID of 0, or the table name
itself, to force a table scan.

When you specify multiple indexes in the hint list, all the indexes listed are used to
retrieve the rows from the table, forcing an index intersection or index covering via an
index join. If the collection of indexes listed does not cover the query, a regular row fetch
is performed after all the indexed columns are retrieved.

To get a list of indexes on a table, you can use sp_helpindex. However, the stored procedure
doesn’t display the index ID. To get a list of all user-defined tables and the names of the
indexes defined on them, you can execute a query against the sys.indexes catalog view
similar to the one shown in Listing 35.6, which was run against the bigpubs2008 database.

LISTING 35.6 Query Against sys.indexes Catalog View to Get Index Names and IDs

select ‘Table name’ = convert(char(20), object_name(object_id)),

‘Index name’ = convert(char(30), name),

‘Index ID’ = index_id,

‘Index Type’ = convert(char(15), type_desc)

 Download from www.wowebook.com

ptg

1281Managing the Optimizer
3

5

from sys.indexes where object_id > 99 —only system tables have id less than 99

and index_id between 1 and 254 /* do not include rows for text columns

or tables without a clustered index*/

/* do not include auto statistics */

and is_hypothetical = 0

and objectproperty(object_id, ‘IsUserTable’) = 1

order by 1, 3

go

Table name Index name Index ID Index Type

authors UPKCL_auidind 1 CLUSTERED

authors aunmind 2 NONCLUSTERED

employee employee_ind 1 CLUSTERED

employee PK_emp_id 2 NONCLUSTERED

jobs PK__jobs__job_id__25319086 1 CLUSTERED

PARTS PK__PARTS__09746778 1 CLUSTERED

PARTS UQ__PARTS__0A688BB1 2 NONCLUSTERED

pub_info UPKCL_pubinfo 1 CLUSTERED

publishers UPKCL_pubind 1 CLUSTERED

roysched titleidind 2 NONCLUSTERED

sales UPKCL_sales 1 CLUSTERED

sales titleidind 2 NONCLUSTERED

sales ord_date_idx 7 NONCLUSTERED

sales qty_idx 8 NONCLUSTERED

sales_big ci_sales_big 1 CLUSTERED

sales_big idx1 2 NONCLUSTERED

sales_noclust idx1 2 NONCLUSTERED

sales_noclust ord_date_idx 3 NONCLUSTERED

sales_noclust qty_idx 4 NONCLUSTERED

stores UPK_storeid 1 CLUSTERED

stores nc1_stores 2 NONCLUSTERED

titleauthor UPKCL_taind 1 CLUSTERED

titleauthor auidind 2 NONCLUSTERED

titleauthor titleidind 3 NONCLUSTERED

titles UPKCL_titleidind 1 CLUSTERED

titles titleind 2 NONCLUSTERED

titles ytd_sales_filtered 11 NONCLUSTERED

SQL Server 2008 introduces the new FORCESEEK table hint, which provides an additional
query optimization option. This hint specifies that the query optimizer use only an index
seek operation as the access path to the data in the table or view referenced in the query
rather than a index or table scan. If a query plan contains table or index scan operators,
forcing an index seek operation may yield better query performance. This is especially true

 Download from www.wowebook.com

ptg

1282 CHAPTER 35 Understanding Query Optimization

when inaccurate cardinality or cost estimations cause the optimizer to favor scan opera-
tions at plan compilation time.

Before using the FORCESEEK table hint, you should make sure that statistics on the table
are current and accurate. Also, you should evaluate the query for items that can cause
poor cardinality or cost estimates and remove these items if possible. For example, replace
local variables with parameters or literals and limit the use of multistatement table-valued
functions and table variables in the query.

Also, be aware that if you specify the FORCESEEK hint in addition to an index hint, the
FORCESEEK hint can cause the optimizer to use an index other than one specified in the
index hint.

Forcing Join Strategies with Join Hints
Join hints let you force the type of join that should be used between two tables. The join
hints correspond with the three types of join strategies:

. LOOP

. MERGE

. HASH

You can specify join hints only when you use the ANSI-style join syntax—that is, when
you actually use the keyword JOIN in the query. The hint is specified between the type of
join and the keyword JOIN, which means you can’t leave out the keyword INNER for an
inner join. Thus, the syntax for the FROM clause when using join hints is as follows:

FROM table1 {INNER | OUTER} [LOOP | MERGE | HASH} JOIN table2

The following example forces SQL Server to use a hash join:

select st.stor_name, ord_date, qty

from stores st INNER HASH JOIN sales s on st.stor_id = s.stor_id

where st.stor_id between ‘B100’ and ‘B599’

You can also specify a global join hint for all joins in a query by using a query processing
hint.

Specifying Query Processing Hints
SQL Server 2008 enables you to specify additional query hints to control how your queries
are optimized and processed. You specify query hints at the end of a query by using the
OPTION keyword. There can be only one OPTION clause per query, but you can specify
multiple hints in an OPTION clause, as shown in the following syntax:

OPTION (hint1 [, ...hintn])

Query hints are grouped into four categories: GROUP BY, UNION, join, and miscellaneous.

 Download from www.wowebook.com

ptg

1283Managing the Optimizer
3

5

GROUP BY Hints GROUP BY hints specify how GROUP BY or COMPUTE operations should be
performed. The following GROUP BY hints can be specified:

. HASH GROUP—This option forces the Query Optimizer to use a hashing function to
perform the GROUP BY operation.

. ORDER GROUP—This option forces the Query Optimizer to use a sorting operation
to perform the GROUP BY operation.

Only one GROUP BY hint can be specified at a time.

UNION Hints The UNION hints specify how UNION operations should be performed. The
following UNION hints can be specified:

. MERGE UNION—This option forces the Query Optimizer to use a merge operation to
perform the UNION operation.

. HASH UNION—This option forces the Query Optimizer to use a hash operation to
perform the UNION operation.

. CONCAT UNION—This option forces the Query Optimizer to use the concatenation
method to perform the UNION operation.

Only one UNION hint can be specified at a time, and it must come after the last query in
the UNION. The following is an example of forcing concatenation for a UNION:

select stor_id from sales where stor_id like ‘B19%’

UNION

select title_id from titles where title_id like ‘C19%’

OPTION (CONCAT UNION)

Join Hints The join hint specified in the OPTION clause specifies that all join operations in
the query are performed as the type of join specified in the hint. The join hints that can
be specified in the query hints are the same as the table hints:

. LOOP JOIN

. MERGE JOIN

. HASH JOIN

If you also specify a join hint for a specific pair of tables, the table-level hints specified
must be compatible with the query-level join hint.

Miscellaneous Hints The following miscellaneous hints can be used to override various
query operations:

. FORCE ORDER—This option tells the Query Optimizer to join the tables in the order
in which they are listed in the FROM clause and not to determine the optimal join
order.

 Download from www.wowebook.com

ptg

1284 CHAPTER 35 Understanding Query Optimization

. FAST n—This hint instructs SQL Server to optimize the query to return the first n
rows as quickly as possible, even if the overall throughput is reduced. In other
words, it improves response time at the expense of total query execution time. This
option generally influences the Query Optimizer to retrieve data using a nonclus-
tered index that matches the ORDER BY clause of a query instead of using a different
access method that would require a sort operation first to return rows in the speci-
fied order. After n number of rows have been returned, the query continues execu-
tion normally to produce its full result set.

. ROBUST PLAN—This option forces the Query Optimizer to attempt a plan that
works for the maximum potential row size, even if it means degrading performance.
If you have very wide VARCHAR columns, some types of query plans might create
intermediate tables, and if any of the internal operations need to store and process
rows in these intermediate tables, some rows might exceed SQL Server’s row size
limit. If this happens, SQL Server generates an error during query execution. When
the ROBUST PLAN hint is specified, the Query Optimizer does not consider any plans
that might encounter this problem.

. MAXDOP number—This hint overrides the server-level configuration setting for max
degree of parallelism for the current query in which the hint is specified.

. KEEP PLAN—When this hint is specified, it forces the Query Optimizer to relax the
estimated recompile threshold for a query. The estimated recompile threshold is the
point at which a query is automatically recompiled when the estimated number of
indexed column changes have been made to a table by updates, inserts, or deletes.
Specifying KEEP PLAN ensures that the query is not recompiled as frequently when
there are multiple updates to a table. This option is useful primarily for queries
whose execution plan stays in memory, such as for stored procedures. You might
want to specify this option for a stored procedure that does a lot of work with
temporary tables, which can lead to frequent recompilations of the execution plan
for the stored procedure.

. KEEPFIXED PLAN—This query hint tells the Query Optimizer not to recompile the
query plan when there are changes in statistics or modifications to indexed columns
used by the query via updates, deletes, or inserts. When this option is specified, the
query is recompiled only if the schema of the underlying tables is changed or
sp_recompile is executed against those tables.

. EXPAND VIEWS—This hint tells the Query Optimizer not to consider any indexed
view as a substitute for any part of the query and to force the view to be expanded
into its underlying query. This hint essentially prevents direct use of indexed views
in the query plan.

. MAXRECURSION number—This hint specifies the maximum number of recursions
allowed for the common table expression query, where number is an integer between
0 and 32767. When 0 is specified, no limit is applied. If this option is not specified,
the default limit for the server is 100. For more information on common table

 Download from www.wowebook.com

ptg

1285Managing the Optimizer
3

5

expressions and recursive queries, see Chapter 43, “Transact-SQL Programming
Guidelines, Tips, and Tricks.”

. RECOMPILE—This hint forces SQL Server not to keep the execution plan generated
for the query in the plan cache after it executes. This forces a new plan to be gener-
ated the next time the same or a similar query plan is executed. RECOMPILE is useful
for queries with variable values that vary widely each time they are compiled and
executed. This hint can be used for individual statements within a stored procedure
in place of the global WITH RECOMPILE option when you want only a subset of
queries inside the stored procedure to be recompiled rather than all of them.

. OPTIMIZE FOR (@variable_name = literal_constant [, ...n])—
This hint instructs SQL Server to use a specified value to optimize the SARGs for a
local variable that is otherwise unknown when the query is compiled and optimized.
The value is used only during query optimization and not during query execution.
OPTIMIZE FOR can help improve optimization by allowing the Query Optimizer to
use the statistics histogram rather than index densities to estimate the rows that
match the local variable, or can be used when you create plan guides.

. OPTIMIZE FOR UNKNOWN—This hint instructs the query optimizer to use statistical
data instead of the initial values for local variables when the query is compiled and
optimized, including parameters created with forced parameterization.

. TABLE HINT (object_name [, table_hint [[,]...n]])—New in SQL
Server 2008, you can now specify table hints in the Query Hint OPTION clause. It is
recommended that the TABLE HINT clause be used only in the context of a plan
guide. For all other ad hoc queries, it is recommend that normal table hints be used.

. USE PLAN N’xml_plan’—This hint instructs SQL Server to use an existing query
plan for a query as specified by the designated xml_plan. The USE PLAN query hint
can be used for queries whose plans result in slow execution times but for which you
know better plans exist.

NOTE

Optimizer hints are not always executed. For example, the Query Optimizer is likely to
ignore a HASH UNION hint for a query using the UNION ALL statement. Because UNION
ALL means to return all rows whether or not there are duplicates, you don’t need to
hash these values to determine uniqueness and remove duplicates, so the normal con-
catenation is likely to still take place.

Forced Parameterization

In SQL Server 2008, if a SQL statement is executed without parameters, the Query
Optimizer parameterizes the statement internally to increase the possibility of matching it
against an existing execution plan. This process is called simple parameterization, some-
times referred to as auto-parameterization. Simple parameterization is somewhat limited in
that it can parameterize only a relatively small number of queries that match a small

 Download from www.wowebook.com

ptg

1286 CHAPTER 35 Understanding Query Optimization

number of very simple and strictly defined query templates. For example, simple parame-
terization is not possible for queries that contain any of the following query elements:

. References to more than one table

. IN clauses or OR expressions

. UNION

. Any query hints

. DISTINCT

. TOP

. Subqueries

. GROUP BY

. Not equal (<> or !=) comparisons

. References to functions

SQL Server 2008 enables you to override the default simple parameterization behavior of
SQL Server and provide parameterization for more complex queries by specifying that all
SELECT, INSERT, UPDATE, and DELETE statements in a database be implicitly parameterized
when they are compiled by the Query Optimizer. You enable this by setting the
PARAMETERIZATION option to FORCED in the ALTER DATABASE statement:

ALTER DATABASE dbname SET PARAMETERIZATION {FORCED | SIMPLE}

Setting the PARAMETERIZATION option is an online operation that can be issued at any time
and requires no database-level exclusive locks.

Forced parameterization may improve the performance of queries for certain databases by
reducing the frequency of query compilations and recompilations. Essentially, forced para-
meterization provides the query plan reuse benefits of parameterized queries without
requiring you to rewrite a single line of application code. The databases that may benefit
from forced parameterization generally support OLTP-type applications that experience
high volumes of concurrent queries, such as point-of-sale applications.

When the PARAMETERIZATION FORCED option is enabled, any literal value that appears in a
SELECT, INSERT, UPDATE, or DELETE statement, submitted in any form, is converted to a
parameter during query compilation. The exceptions are literals that appear in the follow-
ing query constructs:

. INSERT...EXECUTE statements

. Statements inside the bodies of stored procedures, triggers, or user-defined functions.
SQL Server already reuses query plans for these routines.

. Prepared statements that have already been parameterized by the client-side
application.

. Statements inside a T-SQL cursor.

 Download from www.wowebook.com

ptg

1287Managing the Optimizer
3

5

. Any statement run in a context where ANSI_PADDING or ANSI_NULLS is set to OFF.

. Statements that contain more than 2,097 literals eligible for parameterization.

. Statements that reference variables, such as WHERE st.state = @state.

. Statements that contain the RECOMPILE or OPTIMIZE FOR query hints.

. Statements that contain a COMPUTE clause.

. Statements that contain a WHERE CURRENT OF clause.

If an execution plan for a query is cached, you can determine whether the query is para-
meterized by referencing the sql column of the sys.syscacheobjects DMV. If a query is
parameterized, the names and data types of parameters are listed in this column before
the text of the submitted SQL (for example, @1 tinyint).

Guidelines for Using Forced Parameterization
Consider the following guidelines when determining whether to enable forced parameteri-
zation for a database:

. Forced parameterization, in effect, changes the literal constants in a query to para-
meters when the query is compiled, and thus, the Query Optimizer might choose
suboptimal plans for queries. For example, the Query Optimizer may be less likely to
match the query to an indexed view or an index on a computed column. It may also
choose suboptimal plans for queries posed on partitioned tables and distributed
partitioned views. Forced parameterization should not be used for environments that
rely heavily on indexed views and indexes on computed columns.

. Enabling the PARAMETERIZATION FORCED option causes all query plans for the data-
base to be flushed from the plan cache.

. Generally, the PARAMETERIZATION FORCED option should be used only by experienced
database administrators after determining that doing this does not adversely affect
performance.

If forced parameterization is enabled and you want to override this behavior and have
simple parameterization used for a single query and any others that are syntactically
equivalent but differ only in their parameter values, you can use plan guides and specify
PARAMETERIZATION SIMPLE when creating the plan guides. Conversely, rather than
enabling PARAMETERIZATION FORCED for an entire database, you can use plan guides and
specify the PARAMETERIZATION FORCED query option only for a specific set of syntactically
equivalent queries that you have determined would benefit from forced parameterization.

Using the USE PLAN Query Hint

The USE PLAN query hint in SQL Server 2008 can be used to encourage the Query
Optimizer to use the specified XML query plan for processing the query. This option
provides more control over influencing the execution of a query than is possible with the
other available query hints, such as FORCE ORDER, LOOP JOIN, and KEEP PLAN. None of
these options individually are powerful enough to influence the Query Optimizer to

 Download from www.wowebook.com

ptg

1288 CHAPTER 35 Understanding Query Optimization

consistently choose a particular query plan, especially when the referenced table row
counts, statistics, indexes, and other attributes of the environment change.

The USE PLAN query hint is specified in the OPTION clause, and you provide it with a query
plan in XML format. Listing 35.7 provides an example of the USE PLAN hint being speci-
fied for a merge join for a simple query that consists of a join between two tables. (Note:
For the sake of space, the full XML plan has been truncated.)

LISTING 35.7 Specifying the USE PLAN Query Option

select st.stor_name, s.ord_date

from sales s join stores st on s.stor_id = st.stor_id

WHERE st.state = ‘NY’

OPTION (USE PLAN N’

<?xml version=”1.0” encoding=”utf-16”?>

<ShowPlanXML xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema” Version=”1.1”

Build=”10.50.1352.12” xmlns=”http://schemas.microsoft.com/

sqlserver/2004/07/showplan”>

<BatchSequence>

<Batch>

<Statements>

<StmtSimple StatementCompId=”1” StatementEstRows=”10710.8”

StatementId=”1” StatementOptmLevel=”FULL” StatementSubTreeCost=”1.71032”

StatementText=”select st.stor_name, s.ord_date
 from sales s join

stores st on s.stor_id = st.stor_id
 WHERE st.state =

‘’NY’’
” StatementType=”SELECT” QueryHash=”0x35DE42B697A8BAAF

“ QueryPlanHash=”0x9F4AE50605763B05”>

<StatementSetOptions ANSI_NULLS=”true” ANSI_PADDING=”true”

ANSI_WARNINGS=”true” ARITHABORT=”true” CONCAT_NULL_YIELDS_NULL=”true”

NUMERIC_ROUNDABORT=”false” QUOTED_IDENTIFIER=”true” />

<QueryPlan DegreeOfParallelism=”1” CachedPlanSize=”16” CompileTime=”6”

CompileCPU=”6” CompileMemory=”232”>

<MissingIndexes>

<MissingIndexGroup Impact=”13.6636”>

<MissingIndex Database=”[bigpubs2008]” Schema=”[dbo]”

Table=”[stores]”>

<ColumnGroup Usage=”EQUALITY”>

<Column Name=”[state]” ColumnId=”5” />

</ColumnGroup>

<ColumnGroup Usage=”INCLUDE”>

<Column Name=”[stor_id]” ColumnId=”1” />

<Column Name=”[stor_name]” ColumnId=”2” />

</ColumnGroup>

</MissingIndex>

</MissingIndexGroup>

 Download from www.wowebook.com

ptg

1289Managing the Optimizer
3

5

</MissingIndexes>

<RelOp AvgRowSize=”39” EstimateCPU=”0.363144” EstimateIO=”0”

EstimateRebinds=”0” EstimateRewinds=”0” EstimateRows=”10710.8”

LogicalOp=”Inner Join” NodeId=”0” Parallel=”false” PhysicalOp=”Merge Join”

EstimatedTotalSubtreeCost=”1.71032”>

...

<Object Database=”[bigpubs2008]” Schema=”[dbo]” Table=”[sales]”

Index=”[UPKCL_sales]” Alias=”[s]” IndexKind=”Clustered” />

</IndexScan>

</RelOp>

</Merge>

</RelOp>

</QueryPlan>

</StmtSimple>

</Statements>

</Batch>

</BatchSequence>

</ShowPlanXML>

To obtain an XML-formatted query plan, which you can provide to the USE PLAN query
hint, SQL Server 2008 provides the following methods:

. Using the SET SHOWPLAN_XML and SET STATISTICS XML session options

. Querying the plan column of the sys.dm_exec_query_plan dynamic management
view for a cached query plan

. Using SQL Server Profiler and capturing either the Showplan XML, Showplan XML
Statistics Profile, or Showplan XML For Query Compile event classes

NOTE

When the XML query plan contains a character string in single quotation marks (‘), the
quotation marks must be escaped by a second quotation mark before using the plan
with the USE PLAN query hint. For example, a plan that contains WHERE A.varchar =
‘This is a string’ must be escaped by modifying the code to WHERE A.varchar
= ‘’This is a string’’; otherwise, it will generate a syntax error when submitted
for execution.

You may choose to use the USE PLAN hint for queries where the execution plan chosen
leads to slow execution times but for which you know a better plan exists. This scenario
may commonly occur for queries that might have executed well in an earlier version of
SQL Server but that perform poorly under an upgraded version. Another scenario could
be a complex query that involves multiple tables where the compiled or recompiled query
plan generated is occasionally not optimal, possibly as a result of out-of-date or missing
statistics in any of the underlying tables or because of complex constructs in the query

 Download from www.wowebook.com

ptg

1290 CHAPTER 35 Understanding Query Optimization

that cause the Query Optimizer to inaccurately estimate the size of the intermediate
query results.

The USE PLAN query hint can be specified only for SELECT and SELECT INTO statements.
Also, you can force only query plans that can be produced by the Query Optimizer’s
normal optimization strategy.

Because the USE PLAN option requires that the XML execution plan be hard-coded in the
SQL statement itself, it is not a viable solution for deployed or third-party applications
where it may not be possible or feasible to modify the queries directly. It’s really useful
only as a tool for troubleshooting poorly running queries. To force query plans to apply
query hints to queries when you cannot or do not want to directly change the application
or SQL code, you might consider using plan guides.

Using Plan Guides

At times, you might find it necessary to use query hints to improve the performance of
queries for a particular query or a small set of queries. Although this may be easy to do
when you have access to the application code, often the particular queries to be modified
are embedded within a third-party application, and alteration of the queries themselves is
virtually impossible. Also, if you start hard-coding query hints in your application code,
changing them as necessary when data volumes change or when upgrading to a new
version of SQL Server can be a difficult undertaking.

The plan guides feature in SQL Server 2008 provides an ideal solution for such scenarios
by offering another mechanism for injecting query hints into the original query without
having to modify the query itself. The plan guides mechanism uses an internal lookup
system table, based on information in the sys.plan_guides catalog view, to map the origi-
nal query to a substitute query or query template.

As described earlier in this chapter, when a SQL statement is submitted, it is first
compared against the cached plans to check for a match. If a match exists, the cached
query plan is used to execute the query. If no cached plan exists for the query, the Query
Optimizer next looks for a match against the set of existing plan guides, if any, stored in
the current database for a match. If an active plan guide that matches the SQL statement
is found, the original matching statement is substituted with the one from the plan guide,
the query plan is compiled and cached, and the query is executed using the plan gener-
ated from the plan guide.

Queries that can benefit from plan guides are generally those that are parameter based and
those that are likely performing poorly because they use cached query plans whose para-
meter values do not represent a more representative scenario.

The plan guides feature essentially consists of two stored procedures to create, drop,
enable, and disable plan guides and the sys.plan_guides metadata view that describes the
stored plan guides. Plan guides are created and administered by using the two system
stored procedures:

. sp_create_plan_guide

 Download from www.wowebook.com

ptg

1291Managing the Optimizer
3

5

. sp_control_plan_guide

The syntax for these procedures is as follows:

sp_create_plan_guide [@name =] N’plan_guide_name’

, [@stmt =] N’statement_text’

, [@type =] N’{ OBJECT | SQL | TEMPLATE }’

, [@module_or_batch =]

{

N’[schema_name.] object_name’

| N’batch_text’

| NULL

}

, [@params =] { N’@parameter_name data_type [,...n]’ | NULL }

, [@hints =] { N’OPTION (query_hint [,...n])’

| N’XML_execution plan’

| NULL }

sp_control_plan_guide [@operation =] N’<control_option>’

[, [@name =] N’plan_guide_name’]

<control_option>::=

{

DROP

| DROP ALL

| DISABLE

| DISABLE ALL

| ENABLE

| ENABLE ALL

}

Note that in SQL Server 2008, the sp_create_plan_guide stored procedure enables you to
pass an XML execution plan directly in the @hints parameter instead of embedding the
output in a USE PLAN hint. This capability simplifies the process of applying a fixed query
plan as a plan guide hint.

In addition, a new stored procedure, sp_create_plan_guide_from_handle, allows you to
create one or more plan guides from a query plan in the plan cache. The syntax for
sp_create_plan_guide_from_handle is as follows:

sp_create_plan_guide_from_handle [@name =] N’plan_guide_name’

, [@plan_handle =] plan_handle

, [[@statement_start_offset =] { statement_start_offset | NULL }]

Instead of specifying an actual XML execution plan, you pass the handle for a query plan
currently in the plan cache to the @plan_handle parameter. As shown previously in this
chapter, a plan_handle can be obtained from the sys.dm_exec_query_stats DMV. If the

 Download from www.wowebook.com

ptg

1292 CHAPTER 35 Understanding Query Optimization

cached plan contains multiple queries in a SQL batch, you can specify the starting posi-
tion of the statement within the batch via the @statement_start_offset parameter. The
statement offset corresponds to the statement_start_offset column in the
sys.dm_exec_query_stats dynamic management view. If no statement offset is specified,
a plan guide is created for each statement in the batch using the query plan for the speci-
fied plan handle. The resulting plan guides are equivalent to plan guides that use the USE
PLAN query hint to force the use of a specific plan.

Creating Plan Guides
Plan guides can be created to match queries executed in the following contexts:

. An OBJECT plan guide matches queries that execute in the context of T-SQL stored
procedures, scalar functions, or multistatement table-valued functions.

. A SQL plan guide matches queries that execute in the context of ad hoc T-SQL state-
ments and batches that are not part of a stored procedure or other compiled data-
base object.

. A TEMPLATE plan guide matches ad hoc queries that parameterize to a specified
form. These plan guides are used to override the current SET PARAMETERIZATION
database option.

In the sp_create_plan_guide statement, you specify the query that you want optimized
and provide the OPTION clause with the query hints necessary to optimize the query in the
manner desired, or an XML execution plan for the query plan you want the query to use.
When the query executes, SQL Server matches the query to the plan guide and applies the
forced query plan to the query at runtime.

The plan guide can specify any of the following query hints individually or combined
with others, when applicable:

. {HASH | ORDER} GROUP

. {CONCAT | HASH | MERGE} UNION

. {LOOP | MERGE | HASH} JOIN

. FAST n

. FORCE ORDER

. MAXDOP number_of_processors

. OPTIMIZE FOR (@variable_name = literal_constant) [,...n]

. OPTIMIZE FOR UNKNOWN

. RECOMPILE

. ROBUST PLAN

. KEEP PLAN

. KEEPFIXED PLAN

 Download from www.wowebook.com

ptg

1293Managing the Optimizer
3

5

. EXPAND VIEWS

. MAXRECURSION number

. TABLE HINT (object_name [, table_hint [[,]...n]])

. USE PLAN <xmlplan>

. PARAMETERIZATION { SIMPLE | FORCED }

The PARAMETERIZATION { SIMPLE | FORCED } query hint can be used only within a plan
guide, and it specifies whether a query is parameterized as part of compiling a query plan.
This option overrides the current setting of the PARAMETERIZATION option set at the data-
base level.

Listing 35.8 provides a sample plan guide created for a simple SQL statement.

LISTING 35.8 Creating a Plan Guide for a Simple SQL Statement

sp_create_plan_guide @name = N’PlanGuide1’,

@stmt = N’SELECT COUNT(*) AS Total

FROM dbo.sales s, dbo.titles t

WHERE s.title_id = t.title_id

and t.pubdate BETWEEN ‘’1/1/2004’’ AND ‘’1/1/2006’’

‘,

@type = N’SQL’,

@module_or_batch = NULL,

@params = NULL,

@hints = N’OPTION (HASH JOIN)’

For plan guides of type ’SQL’ or ’TEMPLATE’ to match a query successfully, the values for
batch_text and @parameter_name data_type [,...n] must be provided in exactly the
same format as their counterparts submitted by the application. Specifically, they must
match character for character, including comments and whitespaces.

TIP

When you are creating plan guides, be careful to specify the query in the @stmt para-
meter and any parameter names and values in the @params parameter exactly as they
are received from the application. The best way to ensure this is to capture the batch
or statement text from SQL Server Profiler. (See Chapter 6 for more information on
using SQL Server Profiler to capture SQL queries.) Also, as with the XML query plans
passed to the USE PLAN query hint, single-quoted literal values, such as ’1/1/2000’,
need to be delimited with single quotation marks escaped by additional single quota-
tion marks, as shown in Listing 35.6.

Managing Plan Guides
You use the sp_control_plan_guide stored procedure to enable, disable, or drop a plan
guide. The following example drops the plan guide created in Listing 35.8:

 Download from www.wowebook.com

ptg

1294 CHAPTER 35 Understanding Query Optimization

sp_control_plan_guide N’DROP’, N’PlanGuide1’

To execute sp_control_plan_guide on a plan guide of type OBJECT (for example, a plan
guide created for a stored procedure), you must have at least ALTER permission on the
object that is referenced by the plan guide. For all other plan guides, you must have at
least ALTER DATABASE permission. Attempting to drop or alter a function or stored proce-
dure that is referenced by a plan guide results in an error.

In SQL Server 2008, it is possible to define multiple plan guides for the same query.
However, only one plan guide can be active at a time. You can use
sp_control_plan_guide to enable and disable plan guides.

Validating Plan Guides
The new system function sys.fn_validate_plan_guide can be used to validate a plan
guide. Plan guides can become invalid after changes such as dropping an index are made
to the physical design of the database. By validating a plan guide, you can determine
whether the plan guide can be used unmodified by the query optimizer. The
sys.fn_validate_plan_guide function returns the first error message encountered when
the plan guide is applied to its query. If the plan guide is valid, an empty rowset is
returned.

The sys.plan_guides Catalog View
All plan guides are stored in the sys.plan_guides database system catalog view. You can
get information about the plan guides defined in a database by running a query against
the sys.plan_guides catalog view, as in the following example:

select name, is_disabled, scope_type_desc, scope_object_id,

parameters, hints, query_text from sys.plan_guides

Table 35.2 describes the columns in the sys.plan_guides catalog view.

TABLE 35.2 sys.plan_guides Columns

Column Name Description

plan_guide_id Unique identifier of the plan guide.

Name Name of the plan guide.

create_date Date and time the plan guide was created.

modify_date Date the plan guide was last modified.

is_disabled 1 = disabled and 0 = enabled.

query_text Text of the query on which the plan guide is created.

scope_type Scope of the plan guide: 1 = OBJECT, 2 = SQL, and 3 = TEMPLATE.

scope_type_desc Description of scope of the plan guide: OBJECT, SQL, or TEMPLATE.

 Download from www.wowebook.com

ptg

1295Managing the Optimizer
3

5

Plan Guide Best Practices
Following are some of the recommended best practices for using the USE PLAN query hint
and the plan guides feature:

. The USE PLAN query hint and plan guides should be used only when other standard
query tuning options, such as tuning indexes and ensuring the table has current
statistics, have been extensively tried and have failed to produce the necessary
results. When a query plan is forced by using either the USE PLAN query hint or a
plan guide, it prevents the Query Optimizer from adapting to changing data distrib-
utions, new indexes, or improved query execution algorithms in successive SQL
Server releases or service packs.

. You need to be sure to have a full understanding of query optimization and of the
implications and long-term ramifications of forcing query plans.

. You should try to force only a small fraction of the workload. If you find you are
forcing more than a few dozen queries, you should check whether other issues with
the configuration could be limiting performance, including insufficient system
resources, incorrect database configuration settings, missing indexes, poorly written
queries, and other factors.

. It is not advisable to attempt to code by hand or modify the XML execution plan
that is specified in the USE PLAN query hint. You should capture and use a plan
produced by SQL Server itself. The XML execution plan is a lengthy and complex
listing, and improper changes could prevent it from identically matching one of the
Query Optimizer–generated plans, which would result in the USE PLAN hint being
ignored.

. The USE PLAN query hint should not be directly embedded into the application code
because that would make the maintenance of the application across query plan and
SQL Server version changes difficult to manage. Also, embedding USE PLAN directly
into the query generally prevents the plan for the query from being cacheable. The
USE PLAN hint is intended primarily for ad hoc performance tuning and test
purposes, and for use with the plan guides feature.

. The plan guides created for an application should be well documented and regularly
backed up because they constitute an integral part of the application’s performance

scope_object_id If scope_type is OBJECT, the object_id of the object defining the scope of
the plan guide; otherwise, NULL.

scope_batch If scope_type is SQL, the text of the SQL batch. If NULL, either the batch
type is not SQL or scope_type is SQL, and the value of query_text applies.

parameters The string defining the list of parameters associated with the plan guide. If
NULL, no parameter list is associated with the plan guide.

hints The query OPTION hints associated with the plan guide.

 Download from www.wowebook.com

ptg

1296 CHAPTER 35 Understanding Query Optimization

tuning. You should also retain the scripts that you used to create plan guides and
treat them as you would other source code for an application.

. After creating a plan guide, you should test to make sure that it is being applied to
the intended queries.

Verifying That a Plan Guide Is Being Applied
When you have a plan guide defined, you might want to verify that the application query
is making use of the plan guide. You can follow these steps to confirm whether a plan
guide is being used:

1. After creating the plan guide, run SQL Server Profiler and configure it to capture the
query text and XML execution plan for the application and the query in question
and start the Profiler trace.

2. Run your application and cause it to invoke the query in question.

3. Stop the profiler trace and collect the query plan by right-clicking the Showplan
XML Statistics Profile event that corresponds to the query and then selecting the
Extract Event Data option.

4. Save the event data to a file.

5. Open the Showplan.xml file in any text file viewer or Internet Explorer to examine
the XML code.

6. If the plan guide was used to generate the query plan, the XML execution plan
output contains the PlanGuideDB and PlanGuideName tags, as shown in the follow-
ing example:

<ShowPlanXML xmlns=

“http://schemas.microsoft.com/sqlserver/2004/07/showplan”

Version=”1.0” Build=”9.00.1282.00”>

<BatchSequence>

<Batch>

<Statements>

<StmtSimple PlanGuideDB=”bigpubs2008”

PlanGuideName=”PlanGuide1”>

...

</StmtSimple>

</Statements>

</Batch>

</BatchSequence>

</ShowPlanXML>

As another option to help determine whether or not plan guides are being used, you can
use two new event classes available in the SQL Server 2008 Profiler: Plan Guide Successful
and Plan Guide Unsuccessful. These new event classes make it easier to verify whether
plan guides are being used by the Query Optimizer. For example, if SQL Server cannot
produce an execution plan for a query that contains a plan guide when the initial plan
guide compilation is performed, the query is automatically compiled without using the

 Download from www.wowebook.com

ptg

1297Managing the Optimizer
3

5

plan guide, and the Plan Guide Unsuccessful event is raised. For more information on
monitoring SQL Server using SQL Profiler, see Chapter 6.

NOTE

Note that the plan guide events are raised only during the initial compilation of a query
that contains a plan guide when the query plan gets loaded into the plan cache. If you
do not see either of these events, you may need to flush the plan cache using DBCC
FREEPROCCACHE.

In addition, there are two new Performance Monitor counters: Guided Plan
Executions/sec and Misguided Plan Executions/sec. These counters are available in the
SQL Server, SQL Statistics Object. They report the number of plan executions in which the
query plan has been successfully or unsuccessfully generated using a plan guide. For more
information on monitoring SQL Server performance using Performance Monitor, see
Chapter 39, “Monitoring SQL Server Performance.”

Creating and Managing Plan Guides in SSMS
SQL Server 2008 enables you to create, delete, enable, disable, or script plan guides within
SSMS. The plan guides options are available in the Programmability folder in Object
Explorer. To create a new plan guide in SSMS, right-click on Plan Guides and select the
New Plan Guide option. This brings up the dialog shown in Figure 35.30.

FIGURE 35.30 Creating a plan guide in SSMS.

 Download from www.wowebook.com

ptg

1298 CHAPTER 35 Understanding Query Optimization

To manage existing plan guides in SSMS, you can right-click on the plan guide name to
bring up the context menu that allows you to enable, disable, delete, script, or view the
properties of the plan guide, as shown in Figure 35.31.

Limiting Query Plan Execution with the Query Governor

Another tool for managing query plans in SQL Server 2008 is the query governor. Because
SQL Server uses a cost-based Query Optimizer, the cost of executing a given query is
always estimated before the query is actually executed. The query governor enables you to
set a cost threshold to prevent certain long-running queries from being executed. This is
not so much an optimization tuning tool as it is a performance problem prevention tool.

For example, if you have an application with an ad hoc reporting front end, you have no
way of controlling what the user is going to request from the database and the type of
query generated. The query governor allows you to prevent a runaway query from execut-
ing and using up valuable CPU and memory resources by processing a poorly formed
query. You can set the query governor cost limit for the current user session by setting the
session-level property QUERY_GOVERNOR_COST_LIMIT:

SET QUERY_GOVERNOR_COST_LIMIT value

The value specified is the maximum length of time, in seconds, a query is allowed to run.
If the Query Optimizer estimates the query would take longer than the specified value,
SQL Server does not execute it.

FIGURE 35.31 Managing a plan guide in SSMS.

 Download from www.wowebook.com

ptg

1299Managing the Optimizer
3

5

Although the option is specified in seconds, it is a relative value that corresponds to the
estimated subtree cost, as calculated by the Query Optimizer. In other words, if you set the
query governor cost limit to 100, it prevents the execution of any queries whose estimated
subtree cost is greater than 100 seconds. The estimated subtree cost time is based on the
query cost algorithm in SQL Server and might not map exactly to how long the query
actually takes to run on your own system. The actual runtime depends on a number of
factors: CPU speed, I/O speed, network speed, the number of rows returned over the
network, and so on. You need to correlate the Query Optimizer runtime estimate to how
long the query actually takes to run on your system to set the query governor cost limit to
a value related to actual query runtime.

The best way to figure out how to set the query governor is to run your queries with the
STATISTICS PROFILE and STATISTICS TIME session settings enabled. (These settings are
discussed in more detail in Chapter 36.) You then compare the values in the TotalSubtree
Cost column for the first row of the STATISTICS PROFILE output with the elapsed time
displayed by STATISTICS TIME for your query. If you do this for a number of your queries,
you might be able to come up with an average correlation of the actual runtimes with the
Query Optimizer’s estimated query cost. For example, if the average cost estimate is 30
seconds and the actual runtimes are 15 seconds, you may need to double the setting for
query governor cost limit to correspond to the actual execution time threshold; in other
words, if you want the threshold to be 60 seconds for this example, you would want to set
the query governor threshold to 120.

To configure a query governor threshold for all user connections, you can also set it at the
server level. In SSMS, right-click the server in the Object Browser and choose Properties
from the menu. In the Server Properties dialog, select the Connections page. Enable the
Use Query Governor to Prevent Long-Running Queries check box and specify the desired
cost threshold (see Figure 35.32). The cost threshold is specified in the same units as speci-
fied for the QUERY_GOVERNOR_COST_LIMIT session setting.

Alternatively, you can configure the server-wide query governor setting by using
sp_configure:

sp_configure query governor cost limit, 100

 Download from www.wowebook.com

ptg

1300 CHAPTER 35 Understanding Query Optimization

FIGURE 35.32 Configuring the query governor settings in the SQL Server Properties dialog.

Summary
The SQL Server Query Optimizer has improved over the years, taking advantage of new
techniques and algorithms to improve its capability to find the most efficient execution
plan. Understanding how queries are optimized and what information the Query
Optimizer uses to generate and select an execution plan will help you write more efficient
queries and choose better indexes. To help the Query Optimizer, you should at least try to
write queries that can be optimized effectively by avoiding the common query optimiza-
tion problems discussed in this chapter.

Most of the time, the Query Optimizer chooses the most efficient query plan. When it
doesn’t, the reason might be problems with the way the query itself is written, out-of-date
or unavailable statistics, poor index design, or other common query performance prob-
lems, as discussed in this chapter. Still, on occasion, the Query Optimizer may make the
wrong choice for an execution plan. When you suspect that the Query Optimizer is
making the wrong decision, you can use SQL Server’s table and Query Optimizer hints and
the plan guide feature to override the Query Optimizer’s decisions. However, before arbi-
trarily applying these hints, you should analyze the queries fully to try to determine why
the Query Optimizer is choosing a particular plan. To aid you in this effort, SQL Server
provides a number of tools to analyze the query plans generated and determine the source
of the problem. These tools are described in Chapter 36.

 Download from www.wowebook.com

ptg

CHAPTER 36

Query Analysis

IN THIS CHAPTER

. What’s New in Query Analysis

. Query Analysis in SSMS

. SSMS Client Statistics

. Using the SET SHOWPLAN
Options

. Using
sys.dm_exec_query_plan

. Query Statistics

. Query Analysis with SQL Server
Profiler

SQL Server’s cost-based Query Optimizer typically does a
good job of determining the best query plan for processing
a query. At times, however, you might be a little bit skepti-
cal about the plan the Query Optimizer generates or want
to understand why it is choosing a specific plan. At the
least, you will want to know the specifics about the query
plans the Query Optimizer is generating, such as the
following:

. Is the Query Optimizer using the indexes you have
defined, or is it performing table or index scans?

. Are work tables being used to process the query?

. What join strategy is being applied?

. What join order is the Query Optimizer using?

. What statistics and cost estimates is the Query
Optimizer using to make its decisions?

. How do the Query Optimizer’s estimates compare to
actual I/O costs and row counts?

Fortunately, SQL Server provides some tools to help you
answer these questions. The primary tool is SQL Server
Management Studio (SSMS). SSMS provides a number of
features for monitoring the estimated or actual execution
plan as well as viewing the actual runtime statistics for your
queries. This chapter describes how to display the graphical
execution plan as well as client statistics within SSMS.

Although SSMS is a powerful and useful tool for query
analysis, SQL Server still provides some text-based query

 Download from www.wowebook.com

ptg

1302 CHAPTER 36 Query Analysis

analysis utilities as well. These tools are also described in this chapter, along with tips on
how to use them most effectively.

NOTE

The examples presented in this chapter use the bigpubs2008 database because most
examples require sufficient data to demonstrate many of the more interesting query
plans. A copy of the bigpubs2008 database is available on on the CD included with
this book. Instructions on how to obtain and install the database are presented in the
Introduction.

What’s New in Query Analysis
There are not many significant changes or new features related to Query Analysis provided
in SQL Server 2008. The tools and commands are mostly unchanged from what was intro-
duced in SQL Server 2005. One new useful enhancement, however, is the Missing Index
Hints feature available when displaying the Execution Plan of a query in SSMS.

Query Analysis in SSMS
The main tool for query analysis in SQL Server 2008 is the Query Editor available in SSMS.
The SSMS Query Editor can produce a graphical execution plan that provides analysis
information in an intuitive and easy-to-view manner. You can display the execution plan
in one of two ways: the estimated execution plan or the actual execution plan.

You can display an estimated execution plan for the entire contents of the query window,
or for any highlighted SQL code in the query window, by choosing Display Estimated
Execution Plan from the Query menu. You can also invoke it by using the Ctrl+L keyboard
shortcut. This feature is useful for displaying and analyzing execution plans for long-
running queries or queries with large result sets without having to actually run the query
and wait for the results to be returned.

You can also display the actual execution plans for queries as they are executed by select-
ing the Include Actual Execution Plan option from the Query menu or by using the
Ctrl+M keyboard shortcut. This option is a toggle that remains on until you select it again
to disable it. When this option is enabled, your query results are displayed, along with an
Execution Plan tab in the Results panel. Click the Execution Plan tab to display the execu-
tion plan for the query or queries that are executed. This option is especially useful when
you want to execute commands and compare the actual runtime and I/O statistics with
the execution plan estimates. (These statistics can be displayed with the SET STATISTICS
options described in the “Query Statistics” section, later in this chapter.)

The graphical execution plans display a series of nodes connected by lines. Each node is
represented by an icon, which indicates the logical and physical operator executed for that
node. The execution plan flows from right to left and top to bottom, eventually ending at
a statement icon, which indicates the type of query that generated the execution plan.

 Download from www.wowebook.com

ptg

1303Query Analysis in SSMS

FIGURE 36.1 SSMS graphical execution plan.

This query might be a SELECT, INSERT, UPDATE, TABCREATE, and so on. The arrows between
the icons indicate the movement of rows between operators. If the query window contains
multiple statements, multiple query execution plans are displayed in the Execution Plan
tab. For each query in the batch that is analyzed and displayed, the relative cost of the
query is displayed as a percentage of the total cost of the batch.

To interpret and analyze the execution plan output, you start with the farthest icon on the
right and read each ToolTip as you move left and down through the tree. Each icon in the
query tree is called a node, and icons displayed under each other participate in the same
level of the execution tree.

NOTE

The displayed width of each of the arrowhead lines in the graphical execution plan can
indicate the relative cost, in estimated number of rows, and the row and data size of
the data moving through the query. The smaller the width of the arrow, the smaller the
estimated row count or row size. Moving the cursor over the line displays a ToolTip that
indicates the estimated row count and row and data size.

Figure 36.1 shows a sample SSMS graphical execution plan window.

3
6

The following sections describe the icons and information provided in the graphical
execution plan.

 Download from www.wowebook.com

ptg

1304

Execution Plan ToolTips

When a graphical execution plan is presented in the Query Analyzer, you can get more
information about each node in the execution plan by moving the mouse cursor over one
of the icons. ToolTips for estimated execution plans are slightly different from the
ToolTips displayed for an execution plan that is generated when a query is actually
executed. The ToolTip displayed for an estimated execution plan provides the following
information:

. Physical Operation—Lists the physical operation being performed for the node,
such as a Clustered Index Scan, Index Seek, Aggregate, Hash or Nested Loop Join,
and so on.

. Logical Operation—Lists the logical operation that corresponds with the physical
operation, such as the logical operation of a union being physically performed as a
merge join. The logical operator, if different from the physical operator, is listed in
parentheses below the physical operator in the icon text in the graphical execution
plan. Essentially, the logical operators describe the relational operation used to
process a statement, while the physical operation describes how it is being
performed.

. Estimated I/O Cost—Indicates the estimated relative I/O cost for the operation.
Preferably, this value should be as low as possible.

. Estimated CPU Cost—Lists the estimated relative CPU cost for the operation.

. Estimated Number of Executions—Lists the estimated number of times this oper-
ation will be executed.

. Estimated Operator Cost—Indicates the estimated cost to execute the physical
operation. For best performance, you want this value as low as possible.

. Estimated Number of Rows—Lists the estimated number of rows to be output by
the operation and passed on to the parent operation.

. Estimated Row Size—Indicates the estimated average row size of the rows being
passed through the operator.

. Estimated Subtree Cost—Lists the estimated cumulative total cost of this operation
and all child operations preceding it in the same subtree.

. Object—Indicates which database object is being accessed by the operation being
performed by the current node.

. Predicate—Indicates the search predicate specified for the object in the original
query.

. Seek Predicates—Indicates the search predicate being used in the seek against the
index when an index seek is being performed.

. Output List—Indicates which columns of data are being returned by the operation.

CHAPTER 36 Query Analysis

 Download from www.wowebook.com

ptg

1305Query Analysis in SSMS
3

6

. Ordered—Indicates whether the rows are being retrieved via an index in sorted
order.

. Node ID—Lists a unique identifier of the node within the execution plan.

Some operators may also include the Actual Rebinds and Actual Rewinds counts. When an
operator is on the outer side of a loop join, Actual Rebinds equals 1 and Actual Rewinds
equals 0. If an operator is on the inner side of a loop join, the sum of the number of
rebinds and rewinds should equal the number of rows returned by the table on the outer
side of the join. A rebind means that one or more of the correlated parameters of the join
changed and the inner side must be reevaluated. A rewind means that none of the corre-
lated parameters changed and the prior inner result set may be reused.

NOTE

Depending on the type of operator and other query characteristics, not all the preced-
ing items are displayed in the ToolTip.

The ToolTips for an execution plan generated when the query is actually executed display
the same information as the estimated execution plan, but the ToolTip also displays the
actual number of rows returned by the operation and the actual number of executions.
This information is useful in determining the effectiveness of the statistics on the column
or index because it helps you compare how closely the estimated row count matches the
actual row count. If a significant difference exists (significant being a relative term), you
might need to update the statistics and possibly increase the sample size used when the
statistics are updated to generate more accurate statistics.

Figure 36.2 displays a sample ToolTip. Notice the difference between the Estimated
Number of Rows value (8325.01) and the Actual Number of Rows value (160). This indi-
cates an obvious issue with missing or out-of-date statistics.

NOTE

To achieve the large difference between the actual row count and estimated row count
shown in Figure 36.2, we disabled the AUTO-CREATE STATISTICS option for the data-
base. If this option is not disabled, SQL Server automatically generates the missing
statistics on the ord_date column before generating the execution plan. With the col-
umn statistics generated, it would likely come up with a better row estimate.

In this example, the ToolTip displays the information for a Table Scan physical operation.
The Estimated I/O Cost and Estimated CPU Cost provide critical information about the
relative performance of this query. You want these numbers to be as low as possible.

The Estimated Subtree Cost displays cumulated costs for this node and any previous nodes
that feed into it. This number increases as you move from right to left in the execution
plan diagram. For the next-to-last icon for a query execution path (the icon leading into
the statement icon), the ToolTip displays the Total Estimated Subtree Cost for the entire
query.

 Download from www.wowebook.com

ptg

1306

FIGURE 36.2 A ToolTip example.

NOTE

The total Estimated Subtree Cost displayed for the statement icon is the cost com-
pared against the query governor cost limit setting, if enabled, to determine whether
the query will be allowed to run. For more information on configuring and setting the
query governor cost limit, see Chapter 35, “Understanding Query Optimization.”

The Predicate section outlines the predicates and parameters the query uses. This informa-
tion is useful in determining how the Query Optimizer is interpreting your search argu-
ments (SARGs) and if they are being interpreted as SARGs that can be optimized
effectively.

Putting all the ToolTip information together provides the key to understanding each oper-
ation and its potential cost. You can use this information to compare various incarnations
of a query to determine whether changes to the query result in improved query plans and
whether the estimated values are consistent with actual values.

CHAPTER 36 Query Analysis

 Download from www.wowebook.com

ptg

1307

FIGURE 36.3 An example of an execution plan with warnings.

Query Analysis in SSMS
3

6

NOTE

If the Query Optimizer has issued a warning about one of the execution plan operators,
such as missing column statistics or missing join predicates, the icon is displayed with
a yellow warning triangle (see Figure 36.3). These warnings indicate a condition that
can cause the Query Optimizer to choose a less efficient query plan than otherwise
expected. The ToolTip for the operation with the warning icon includes a Warnings item
that indicates why the warning was generated.

If you prefer to view the information about a node in an execution tree in more detail and
with something more stable than a ToolTip, you can right-click the node and select
Properties. This brings up the Properties window, as shown in Figure 36.4.

The Properties window provides all the same information available in the ToolTip and also
provides some more detailed information, along with descriptions of the types of informa-
tion provided.

NOTE

For more examples of graphical execution plans, see Chapter 35. The sections that dis-
cuss the different query strategies contain examples of the graphical showplans that
correspond to the strategies. Many of these showplans provide various examples of
the operator icons discussed in this section.

 Download from www.wowebook.com

ptg

1308 CHAPTER 36 Query Analysis

FIGURE 36.4 The query execution plan node properties.

Logical and Physical Operator Icons

If you want to better understand the graphical execution plans displayed in SSMS, it helps
to be able to recognize what each of the displayed icons represents. Recognizing them is
especially valuable when you need to quickly locate operations that appear out of place
for the type of query being executed. The following sections cover the more common
logical and physical operators displayed in the Query Analyzer execution plans.

Assert
Assert is used to verify a condition, such as referential integrity (RI) or check constraint, or
to ensure that a scalar subquery returns only a single row. It acts as sort of a roadblock,
allowing a result stream to continue only if the check being performed is satisfied. The
argument displayed in the Assert ToolTip spells out each check being performed.

For example, a deletion from the titles table in the bigpubs2008 database has to be veri-
fied to ensure that it doesn’t violate referential integrity with the sales and titleauthors
table. The reference constraints need to check that the title_id being deleted does not
exist in either the sales or titleauthors tables. If the result of the Assert returns a NULL,
the stream continues through the query. Figure 36.5 shows the estimated execution plan
and ToolTip of the Assert that appears for a delete on titles. The Predicate indicates that
the reference constraint rejects any case in which the matching foreign key expression
that returns from both child tables is NOT NULL. Notice that it returns a different value (0

 Download from www.wowebook.com

ptg

1309Query Analysis in SSMS
3

6

FIGURE 36.5 An Assert example.

or 1), depending on the table on which the foreign key violation occurs so that the
appropriate error message can be displayed.

Clustered Index Delete , Insert , and Update
The Clustered Index physical operators Delete, Insert, and Update indicate that one or
more rows in the specified clustered index are being deleted, inserted, or updated. The
index or indexes affected by the operation are specified in the Object item of the ToolTip.
The Predicate indicates which rows are being deleted or which columns are being updated.

Nonclustered Index Delete , Insert , and Update
Similar to the Clustered Index physical operators Delete, Insert, and Update, the
Nonclustered Index physical operators Delete, Insert, and Update indicate that one or
more rows in the specified nonclustered index are being deleted, inserted, or updated.

Clustered Index Scan and Seek
A Clustered Index Seek is a logical and physical operator that indicates the Query
Optimizer is using the clustered index to find the data rows via the index pointers. A
Clustered Index Scan (also a logical and physical operator) indicates whether the Query

 Download from www.wowebook.com

ptg

1310 CHAPTER 36 Query Analysis

FIGURE 36.6 Clustered Index Seek ToolTip example.

Optimizer is scanning all or a subset of the table or index rows. Note that a table scan
against a table with a clustered index displays as a Clustered Index Scan; the Query
Optimizer is performing a full scan against all data rows in the table, which are in clus-
tered key order.

Figure 36.6 shows a Clustered Index Seek ToolTip. The ToolTip indicates that the seek is
being performed against the UPK_Storeid index on the stores table. The Seek Predicates
item indicates the search predicate being used for the lookup against the clustered index,
and the Query Optimizer determines that the results will be output in clustered index
order, as indicated by the Ordered item indicating true.

Nonclustered Index Scan and Seek
A Nonclustered Index Seek is a logical and physical operator that indicates the Query
Optimizer is using the nonclustered index to find the data rows via the index pointers. A
Nonclustered Index Scan (also a logical and physical operator) indicates whether the
Query Optimizer is scanning all or a subset of the nonclustered index rows. The Seek
Predicates item in a Nonclustered Index Seek operator identifies the search predicate being
used for the lookup against the nonclustered index. The Ordered item in the ToolTip indi-
cates true if the rows will be returned in nonclustered index key order.

Collapse and Split
A Split physical and logical operator indicates that the Query Optimizer has decided to
break the rows’ input from the previous update optimization step into a separate delete
and insert operation. The Estimated Number of Rows in the Split icon ToolTips is
normally double the input row count, reflecting this two-step operation. If possible, the

 Download from www.wowebook.com

ptg

1311Query Analysis in SSMS
3

6

Query Optimizer might choose later in the plan to collapse those rows, grouping by a key
value. The collapse typically occurs if the query processor encounters adjacent rows that
delete and insert the same key values.

Compute Scalar
The Query Optimizer uses the Compute Scalar operator to output a computed scalar value.
This value might be returned in the result set or used as input to another operation in the
query, such as a Filter operator. You might see this operator when data values that are
feeding an input need to be converted to a different data type first.

Concatenation [
The Concatenation operator indicates that the result sets from two or more input sources
are being concatenated into a single output. You often see this when a UNION ALL is being
used. You can force a concatenation union strategy by using the OPTION clause in the
query and specifying a CONCAT UNION. Optimization of UNION queries, with examples of
the execution plan outputs, is covered in Chapter 35.

Constant Scan
The Constant Scan operator introduces one or more constant rows into a query. A
Compute Scalar operation sometimes is used to provide input to the Constant Scan opera-
tor. A Compute Scalar operator often follows a Constant Scan operator to add columns to
any rows produced by the Constant Scan operator.

Deleted Scan and Inserted Scan
The Deleted Scan and Inserted Scan icons in the execution plan indicate that a trigger is
being fired and that within that trigger, the Query Optimizer needs to scan either the
deleted or inserted tables.

Filter
The Filter icon indicates that the input rows are being filtered according to the predicate
indicated in the ToolTip. This operator is used primarily for intermediate operations that
the Query Optimizer needs to perform.

Hash Match
Hash joins are covered in more detail in Chapter 35, but to understand the Hash Match
physical operator, you must understand the basic concept of hash joins to some degree.

In a hash join, the keys common between the two tables are hashed into a hash bucket,
using the same hash function. This bucket usually starts out in memory and then moves
to disk as needed. The type of hashing that occurs depends on the amount of memory
required. Hashing is commonly used for inner and outer joins, intersections, unions, and
differences. The Query Optimizer often uses hashing for intermediate processing.

A hash join requires at least one equality clause in the predicate, which includes the
clauses used to relate a primary key to a foreign key. Usually, the Query Optimizer selects
a hash join when the input tables are unsorted or are different in size, when no appro-

 Download from www.wowebook.com

ptg

1312 CHAPTER 36 Query Analysis

priate indexes exist, or when specific ordering of the result is not required. Hash joins
help provide better query performance for large databases, complex queries, and distrib-
uted tables.

A hash match operator uses the hash join strategy and might also include other criteria to
be considered a match. The other criteria are indicated in the Probe Residual clause
shown in the Hash Match ToolTip.

Nonclustered Index Spool , Row Count Spool , and Table Spool
An Index Spool, Row Count Spool, or Table Spool icon indicates that the rows are being
stored in a hidden spool table in the tempdb database, which exists only for the duration
of the query. Generally, this spool is created to support a nested iteration operation
because the Query Optimizer might need to use the rows again. If the operator is rewound
(for example, by a Nested Loops operator) but no rebinding is needed, the spooled data is
used instead of rescanning the input data.

Often, you see a Spool icon under a Nested Loops icon in the execution plan. A Table
Spool ToolTip does not show a predicate because no index is used. An Index Spool ToolTip
shows a SEEK predicate. A temporary work table is created for an index spool, and then a
temporary index is created on that table. These temporary work tables are local to the
connection and live only as long as the query.

The Row Count Spool operator counts how many rows are present in the input and
returns just the number of rows. This operator is used when checking for the existence of
rows, rather than the actual data contained in the rows (for example, an existence
subquery or an outer join when the actual data from the inner side is not needed).

Eager Spool or Lazy Spool
The Query Optimizer selects to use either an Eager or Lazy method of filling the spool,
depending on the query. The Eager method means that the spool table is built all at once
upon the first request for a row from the parent operator. The Lazy method builds the
spool table as a row is requested by its parent operator.

Log Row Scan
The Log Row Scan icon indicates that the transaction log is being scanned.

Merge Join
The merge join is a strategy requiring that both the inputs be sorted on the common
columns, defined by the predicate. The Merge Join operator may be preceded by an
explicit sort operation in the query plan. A merge join performs one pass through each
input table, matching the columns defined in the WHERE or JOIN clause as it steps through
each input. A merge join looks similar to a simple nested loop but uses only a single pass
of each table. Occasionally, you might see an additional sort operation prior to the merge
join operation when the initial inputs are not sorted properly. Merge joins are often used
to perform inner joins, left outer joins, left semi-joins, left anti-semi-joins, right outer
joins, right semi-joins, right anti-semi-joins, and union logical operations.

 Download from www.wowebook.com

ptg

1313Query Analysis in SSMS
3

6

Nested Loops
Nested loop joins are also known as nested iteration. Basically, in a nested iteration, every
qualifying row in the outer table is compared to every qualifying row in the inner table.
This is why you may at times see a Spool icon of some sort providing input to a Nested
Loop icon. This allows the inner table rows to be reused (that is, rewound). When every
row in each table is being compared, it is called a naïve nested loops join. If an index is
used to find the qualifying rows, it is referred to as an index nested loops join. Nested
loops can be used to perform inner joins, left outer joins, left semi-joins, and left anti-
semi-joins.

The number of comparisons performed for a nested loop join is the calculation of the
number of outer rows times the estimated number of matching inner rows for each
lookup. This can become expensive. Generally, a nested loop join is considered to be most
effective when both input tables are relatively small.

Parameter Table Scan
The Parameter Table Scan icon indicates that a table is acting as a parameter in the current
query. Typically, this icon is displayed when INSERT queries exist in a stored procedure.

Remote Delete , Remote Insert , Remote Query , Remote Scan ,

and Remote Update
The Remote Delete, Remote Insert, Remote Query, Remote Scan, and Remote Update oper-
ators indicate that the operation is being performed against a remote object such as a
linked table.

RID Lookup
The RID Lookup operator indicates that a bookmark lookup is being performed on a heap
table using a row identifier (RID). The ToolTip indicates the bookmark label used to look up
the row and the name of the table in which the row is being looked up. The RID Lookup
operator is always accompanied by a Nested Loop Join operator.

Sequence
The Sequence operator executes each operation in its child node, moving from top to
bottom in sequence, and returns only the end result from the bottom operator. You see
this most often in the updates of multiple objects.

Sort
The Sort operator indicates that the input is being sorted. The sort order is displayed in
the ToolTip’s Order By item.

 Download from www.wowebook.com

ptg

1314 CHAPTER 36 Query Analysis

Stream Aggregate
You most often see the Stream Aggregate operation when you are aggregating a single input,
such as a DISTINCT clause or a SUM, COUNT, MAX, MIN, or AVG operator. The output of this oper-
ator may be referenced by later operators in the query, returned to the client, or both.

Because the Stream Aggregate operator requires input ordered by the columns within its
groups, a Sort operator often precedes the Stream Aggregate operator unless the data is
already sorted due to a prior Sort operator or due to an ordered index seek or scan.

Table Delete , Table Insert , Table Scan , and Table Update
You see the Table Delete, Table Insert, Table Scan, and Table Update operators when the
indicated operation is being performed against that table as a whole. The presence of these
operators does not always mean a problem exists, although a table scan can be an indica-
tor that you might need some indexes to support the query. A table scan may be
performed on small tables even if appropriate indexes exist, especially when the table is
only a single page or two in size.

Table-valued Function
The Table-valued Function operator is displayed for queries with calls to table-valued func-
tions. The Table-valued Function operator evaluates the table-valued function, and the
resulting rows are stored in the tempdb database. When the parent operators request the
rows, the Table-valued Function operator returns the rows from tempdb.

Top
The Top operator indicates a limit that is set, either by number of rows or a percentage, on
the number of results to be returned from the input. The ToolTip may also contain a list
of the columns being checked for ties if the WITH TIES option has been specified.

Parallelism Operators
The Parallelism operators indicate that parallel query processing is being performed. The
associated logical operator displayed is one of the Distribute Streams, Gather Streams, or
Repartition Streams logical operators.

Distribute Streams The Distribute Streams operator takes a single input stream of
records and produces multiple output streams. Each record from the input stream
appears in one of the output streams. Hashing is typically used to decide to which output
stream a particular input record belongs.

Gather Streams The Gather Streams operator consumes several input streams and
produces a single output stream of records by combining the input streams. If the output is
ordered, the ToolTip will contain an Order By item indicating the columns being ordered.

Repartition Streams The Repartition Streams operator consumes multiple streams
and produces multiple streams of records. Each record from an input stream is placed
into one output stream. If the output is ordered, the ToolTip contains an Order By item
indicating the columns being ordered.

 Download from www.wowebook.com

ptg

1315Query Analysis in SSMS
3

6

NOTE

Parallel query processing strategies are covered in more detail in Chapter 35.

Analyzing Stored Procedures

When displaying the estimated execution plan for a stored procedure, you see multiple
statement operators as inputs to the Stored Procedure operator, especially if you have any
conditional branching in the stored procedure. One operator exists for each statement
defined in the stored procedure. When conditional branching occurs in the stored proce-
dure, SQL Server does not know at query optimization time which statements in the
stored procedure will actually be executed, so it has to estimate a query plan for each indi-
vidual statement. An example is shown in Figure 36.7.

When you execute the stored procedure with the Show Execution Plan option enabled,
SSMS displays only the execution plans for the path or statements that are actually
executed, as shown in Figure 36.8.

FIGURE 36.7 Estimated execution plan for a stored procedure.

 Download from www.wowebook.com

ptg

1316 CHAPTER 36 Query Analysis

In addition, because stored procedures can become quite complex, with multiple SQL
statements, seeing the graphical execution plan in the SSMS Execution Plan window can
be difficult. You might find it easier to break up the stored procedure into smaller batches
or individual queries and analyze it a bit at a time.

Saving and Viewing Graphical Execution Plans

SQL Server Management Studio 2008 enables you to save an execution plan as an XML
file. To save a graphical execution plan in SSMS, you right-click anywhere on the graphical
execution plan and choose Save Execution Plan As to bring up the Save As dialog (alterna-
tively, you can choose the Save Execution Plan As option from the File menu).

When you save the execution plan to a file, the graphical execution plan is saved as an
XML, file with the .sqlplan file extension. To view a saved execution plan, click on the
File menu; select Open and then File. In the Open File dialog, select Execution Plan files
in the Files of Type drop-down to limit the files displayed to just Execution Plan Files (see
Figure 36.9). After you identify the file you want to load, click the Open button, and SSMS
opens a new window with the selected execution plan displayed. Just as when the execu-

FIGURE 36.8 Actual execution plan used for a stored procedure.

 Download from www.wowebook.com

ptg

1317Query Analysis in SSMS
3

6

tion plan was originally generated, you can mouse over the operators and display the
detailed information contained in the ToolTips.

Displaying Execution Plan XML

In addition to viewing the graphical execution plan in SSMS, you can also display the
XML generated by the Query Optimizer that is used to create the graphical execution
plan. Right-click on the execution plan and select the Show Execution Plan XML option
(see Figure 36.10).

Selecting this option opens a new XML editor window with the SHOWPLAN_XML output
generated by the query optimizer.

Missing Index Hints

One new feature in SQL Server Management Studio 2008 is Missing Index Hints when
displaying the execution plan of a query. You can use the Missing Index Hints feature to
help identify columns on which adding an index might help the query execute faster and
more efficiently. Missing Index Hints is a lightweight, server-side, always-on feature using
dynamic management objects and execution plans to provide information about missing
indexes that could enhance query performance.

FIGURE 36.9 Loading an execution plan into SSMS.

 Download from www.wowebook.com

ptg

1318 CHAPTER 36 Query Analysis

FIGURE 36.10 Generating execution plan XML in SSMS.

NOTE

The Missing Index Hints feature is separate from the Database Engine Tuning Advisor
available in SQL Server 2008. The Database Engine Tuning Advisor is a more compre-
hensive tool that assesses the physical database design and recommends new physi-
cal design structures for performance improvement. In addition to index
recommendations, it also considers whether indexed views or partitioning could be
used to improve query performance.

When the query optimizer generates an execution plan, it analyzes what are the best avail-
able indexes for a the specified search and join conditions. If a useful index is not found,
the query optimizer generates a suboptimal query plan but still stores information about
the missing indexes. The Missing Index Hints feature enables you to view information
about these indexes so you can decide whether they should be implemented.

If any missing indexes are identified by the Query Optimizer, the Execution Plan tab in
SSMS displays information related to all the missing indexes. If you put the mouse pointer
over the missing index text, it displays a ToolTip showing the T-SQL code required to
create the suggested missing index as suggested, as shown in Figure 36.11.

In addition to displaying a ToolTip with the T-SQL code, you can also generate the SQL
code to create the recommended index by right-clicking on the missing index text and
then selecting the Missing Index Details option from the drop-down list (see Figure 36.12).
SSMS generates the T-SQL code in a new query window. An example of the T-SQL code
generated is shown in Listing 36.1.

 Download from www.wowebook.com

ptg

1319Query Analysis in SSMS
3

6

FIGURE 36.11 Displaying missing indexes in SSMS.

FIGURE 36.12 Generating T-SQL code to create a missing index.

 Download from www.wowebook.com

ptg

1320 CHAPTER 36 Query Analysis

LISTING 36.1 SQL Generated by SSMS Missing Index Hints Feature

/*

Missing Index Details from multi_query.sqlplan

The Query Processor estimates that implementing the following index could improve

the query cost by 87.4584%.

*/

/*

USE [bigpubs2008]

GO

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]

ON [dbo].[sales] ([qty])

INCLUDE ([stor_id])

GO

*/

If you examine the SQL generated by SSMS, notice that it displays the estimated associated
cost benefit expected by adding the recommended index. Also note that the script does not
include an index name. You need to specify an index name based on your naming standards.

NOTE

If you decide to create a recommended index, be sure to review the subsequent query
plan to determine if the query is using the index and that it provides the expected per-
formance benefit.

Missing Index Dynamic Management Objects
The Missing Index Hints feature in SSMS draws information regarding missing indexes
from a set of new dynamic management objects introduced in SQL Server 2008:

. sys.dm_db_missing_index_group_stats—Returns summary information
about missing index groups, such as the performance improvements that could be
gained by implementing a specific group of missing indexes.

. sys.dm_db_missing_index_groups—Returns information about a specific group
of missing indexes, such as the group identifier and the identifiers of all missing
indexes contained in that group.

. sys.dm_db_missing_index_columns—Returns detailed information about a missing
index; for example, it returns the name and identifier of the table where the index is
missing, and the columns and column types that should make up the missing index.

. sys.dm_db_missing_index_details—Returns information about the database
table columns that are missing an index.

Although the missing indexes feature in SSMS is useful when analyzing individual queries,
it’s not convenient for analyzing missing indexes for a large set of SQL queries, like the set
of queries executed by an application. This is where the dynamic management objects

 Download from www.wowebook.com

ptg

1321Query Analysis in SSMS
3

6

come in handy. After running a typical workload on SQL Server, you can retrieve informa-
tion about missing indexes by querying the dynamic management functions directly. You
can use the information returned by these dynamic management objects in scripts and
use the information to generate CREATE INDEX statements to create the missing indexes.
Listing 36.2 provides a sample query that displays the missing index information for a
query on the sales table that was run between 10:30 and 10:40 p.m. on February 21,
2010.

LISTING 36.2 Querying the Missing Index Dynamic Management Objects

SELECT

mig.index_group_handle as handle,

convert(varchar(30), statement) AS table_name,

convert(varchar(12), column_name) AS Column_name,

convert(varchar(10), column_usage) as ColumnUsage,

avg_user_impact as avg_impact

FROM sys.dm_db_missing_index_details AS mid

CROSS APPLY sys.dm_db_missing_index_columns (mid.index_handle)

INNER JOIN sys.dm_db_missing_index_groups AS mig

ON mig.index_handle = mid.index_handle

inner join sys.dm_db_missing_index_group_stats AS migs

ON migs.group_handle = mig.index_group_handle

where mid.object_id = object_id(‘sales’)

and last_user_seek between ‘2010-02-21 22:30’ and ‘2010-02-21 22:40’

ORDER BY mig.index_group_handle, mig.index_handle, column_id;

GO

handle table_name Column_name ColumnUsage avg_impact

----------- ------------------------------ ------------ ----------- ----------

2 [bigpubs2008].[dbo].[sales] stor_id INCLUDE 87.46

2 [bigpubs2008].[dbo].[sales] qty INEQUALITY 87.46

If you view the output of this query, you see that the optimizer is recommending an index
on the qty column to support an inequality operator. It is also recommended that the
stor_id column be specified as an included column in the index. This index is estimated
to improve performance by 87.46%. When you use this information, the CREATE INDEX
statement for the recommended index would be the following:

CREATE INDEX qty_idx on [bigpubs2008].[dbo].[sales] (qty) INCLUDE (stor_id)

Missing Index Hints Features Limitations
The Missing Index Hints feature provides some helpful information for identifying poten-
tially missing indexes in your database, but it does have a few limitations:

 Download from www.wowebook.com

ptg

1322 CHAPTER 36 Query Analysis

. It is not intended to fine-tune the existing indexes, only to recommend additional
indexes when no useful index is found that can be used to satisfy a search or join
condition.

. It does not specify the order for columns to be specified in the index.

. For queries involving only inequality predicates, the cost information returned is less
accurate than for equality operators.

. It only recommends adding included columns to indexes for some queries instead of
creating composite indexes. You need to determine whether the included columns
should be specified as additional index key columns instead.

. It returns only raw information about columns on which indexes might be missing.

. It may return different costs for the same missing index group for different executions.

. It does not suggest filtered indexes.

. The dynamic management objects can store information from a maximum of 500
missing indexes.

. It is unable to provide recommendations for clustered indexes, indexed views, or
table partitioning. (Use the Database Engine Tuning Advisor instead for these
recommendations.)

. After the SQL Server is restarted, all the information related to missing indexes is
lost. To keep the information for later use, the DBA needs to back up all the data
available within all the missing index dynamic management objects prior to restart-
ing SQL Server.

NOTE

Although the Missing Index Hints feature is helpful for identifying indexes that may be
useful for you to define, it’s not a substitute for a well-thought-out index design. For
more information on index design, see Chapter 34, “Data Structures, Indexes, and
Performance.”

SSMS Client Statistics
You can use SSMS to get some additional information related to the client-side perfor-
mance of the query by toggling the Include Client Statistics option in the Query menu.
When turned on, the Client Statistics tab is added to the Results panel. This tab displays
useful performance statistics in a tabular format that is related to how much work the
client had to do to submit the query and process the results, including statistics about the
network packets and elapsed time of the query.

SSMS keeps track of the statistics for previous executions within a session so that you can
compare the statistics between different query executions. It also keeps track of the overall

 Download from www.wowebook.com

ptg

1323SSMS Client Statistics
3

6

average statistics across all executions. Figure 36.13 shows an example of the client statis-
tics displayed after three separate query executions.

The first line in the Client Statistics tab displays the actual time the query was executed.
The Time Statistics values are specified in number of milliseconds. Some of the most
useful pieces of information include the number of rows returned by SELECT statements,
total client processing time, total execution time, and number of bytes sent and received
across the network.

The Average column contains the cumulative average since the Include Client Statistics
option was enabled. Turning the option off and back on clears out all the historical statis-
tics and resets the averages. Alternatively, you can also reset the client statistics by select-
ing the Reset Client Statistics option from the Query menu.

One of the most helpful features of the client statistics is the arrow indicators provided for
the different executions, which makes it easy to identify which values increased,
decreased, or stayed this same. This feature makes it easy to compare the runtime statistics
between different queries or different executions of the same query.

FIGURE 36.13 SSMS client statistics.

 Download from www.wowebook.com

ptg

1324 CHAPTER 36 Query Analysis

TIP

Unlike the graphical execution plans, SSMS does not provide a way to save the client
statistics. Fortunately, the statistics are displayed using a standard grid control. You
can right-click the client statistics and choose Select All. Then you right-click and select
Copy. You can then paste the information into a spreadsheet program such as Excel,
which allows you to save the information or perform further statistical analysis on it.

Using the SET SHOWPLAN Options
In addition to the graphical execution plans available in SSMS, SQL Server 2008 provides
three SET SHOWPLAN options to display the execution plan information in a text or XML
format. These options are SET SHOWPLAN_TEXT, SET SHOWPLAN_ALL, and SET SHOWPLAN_XML.
When one of these options is enabled, SQL Server returns the execution plan generated
for the query, but no results are returned because the query is not executed. It’s similar to
the Display Estimated Execution Plan option in SSMS.

You can turn on the textual execution plan output in a couple of ways. One way is to
issue the SET SHOWPLAN_TEXT ON, SET SHOWPLAN_ALL ON, or SET SHOWPLAN_XML ON
command directly in the SSMS query window. These commands must be executed in a
separate batch by themselves before running a query.

TIP

Before enabling SHOWPLAN_TEXT or SHOWPLAN_ALL options in a Query Editor session in
SSMS, be sure to disable the Include Actual Execution Plan option; otherwise, the
SHOWPLAN options will have no effect.

SHOWPLAN_TEXT

Typing the following command in an SSMS query window turns on the SHOWPLAN_TEXT
option:

SET SHOWPLAN_TEXT ON

GO

Setting this option causes the textual showplan output to be displayed in the results panel
but does not execute the query. You can also enable the SHOWPLAN_TEXT option by choos-
ing the Query Options item from the Query menu. In the Query Options dialog, you click
the Advanced item and check the SET SHOWPLAN_TEXT option.

The SHOWPLAN_TEXT option displays a textual representation of the execution plan. Listing
36.3 shows an example for a simple inner join query.

TIP

When you are displaying the SHOWPLAN_TEXT information in SSMS, it is usually easiest
to view if you configure SSMS to return results to text rather than as a grid.

 Download from www.wowebook.com

ptg

1325Using the SET SHOWPLAN Options
3

6

LISTING 36.3 An Example of SHOWPLAN_TEXT Output

set showplan_text on

go

select st.stor_name, ord_date, qty

from stores st join sales_noclust s on st.stor_id = s.stor_id

where st.stor_id between ‘B100’ and ‘B199’

go

StmtText

select st.stor_name, ord_date, qty

from stores st join sales_noclust s on st.stor_id = s.stor_id

where st.stor_id between ‘B100’ and ‘B199’

(1 row(s) affected)

StmtText

|--Nested Loops(Inner Join, OUTER REFERENCES:([Bmk1002], [Expr1006]) WITH

UNORDERED PREFETCH)

|--Nested Loops(Inner Join, OUTER REFERENCES:([st].[stor_id]))

| |--Clustered Index

Seek(OBJECT:([bigpubs2008].[dbo].[stores].[UPK_storeid]

AS [st]), SEEK:([st].[stor_id] >= ‘B100’ AND [st].[stor_id] <= ‘B199’)

ORDERED FORWARD)

| |--Index Seek(OBJECT:([bigpubs2008].[dbo].[sales_noclust].[idx1] AS

[s]), SEEK:([s].[stor_id]=[bigpubs2008].[dbo].[stores].[stor_id] as

[st].[stor_id]), WHERE:([bigpubs2008].[dbo].[sales_noclust].[stor_id] as

[s].[stor_id]>=’B100’ AND [bigpubs

|--RID Lookup(OBJECT:([bigpubs2008].[dbo].[sales_noclust] AS [s]),

SEEK:([Bmk1002]=[Bmk1002]) LOOKUP ORDERED FORWARD)

(5 row(s) affected)

The output is read from right to left, similarly to the graphical execution plan. Each line
represents a physical/logical operator. The text displayed matches the logical and physical
operator names displayed in the graphical execution plan. If you can read the graphical
query plan, you should have no trouble reading the SHOWPLAN_TEXT output.

In the example in Listing 36.3, SQL Server performs a clustered index seek on the stores
table, using the UPK_storeid index, and a nonclustered index seek on sales_noclust,
using index idx1. The inputs are combined using a nested loop join. Finally, a RID lookup
is performed to retrieve the ord_date and qty information from the sales_noclust table.

 Download from www.wowebook.com

ptg

1326 CHAPTER 36 Query Analysis

When the SHOWPLAN_TEXT option is set to ON, execution plan information about all subse-
quent SQL Server 2008 statements is returned until the option is set to OFF. Also, all subse-
quent commands are optimized but not executed. To turn off the textual showplan output
and allow execution of commands again, type the following command:

SET SHOWPLAN_TEXT OFF

GO

TIP

To switch from one SET SHOWPLAN option to another, remember that no commands are
executed until the SET SHOWPLAN option is turned off. This includes setting the SET
SHOWPLAN options. For example, to switch from SHOWPLAN_TEXT to either
SHOWPLAN_ALL or SHOWPLAN_XML, you have to turn off SHOWPLAN_TEXT first with the SET
SHOWPLAN_TEXT OFF command.

SHOWPLAN_ALL

The SHOWPLAN_ALL option displays the same textual execution plan information as the
SHOWPLAN_TEXT option, and it also provides additional columns of output for each row of
textual showplan output. These columns provide much of the same information available
in the graphical execution ToolTips, and the column headings correspond to the ToolTip
items listed in the “Execution Plan ToolTips” section, earlier in this chapter. Table 36.1
describes the information provided in the data columns returned by the SHOWPLAN_ALL
option.

TABLE 36.1 Data Columns Returned by SHOWPLAN_ALL

Column Name Description

StmtText The text of the T-SQL statement and also each of the physical
operators in the execution plan. (It may optionally also contain the
logical operators.)

StmtId The number of the statement in the current batch.

NodeId The ID of the node in the current query.

Parent The node ID of the parent operator for the current operator.

PhysicalOp Physical operator description for the current node.

LogicalOp Logical operator description for the current node.

Argument Supplemental information about the operation being performed.

DefinedValues A comma-separated list of values introduced by this operator. These may
be either computed expressions present in the current query or internal
values introduced by the query processor to be able to process this
query.

 Download from www.wowebook.com

ptg

1327Using the SET SHOWPLAN Options
3

6

TIP

When you are displaying the SHOWPLAN_ALL information in SSMS, it is usually easiest
to view if you configure SSMS to return results to grid rather than as text.

SHOWPLAN_XML

When SET SHOWPLAN_XML is set to ON, SQL Server does not execute the query but returns
execution information for each T-SQL batch as an XML document. The execution plan
information for each T-SQL batch is contained in a single XML document. Each XML
document contains the text of the statements in the batch, followed by the details of the
execution steps and operators. The document includes the estimated costs, numbers of
rows, indexes used, join order, and types of operators performed.

The SHOWPLAN_XML option generates the same XML output as the Show Estimated
Execution Plan option in SSMS. In essence, you are looking at the same information, just
without the pretty pictures. As a matter of fact, you can save the output from the
SHOWPLAN_XML option to a file and open it back into SSMS as a SQL plan file. The recom-
mended approach is to configure the query window to return results to a grid. If you
return the results as text or to a file, the maximum output size for a character column in

TABLE 36.1 Data Columns Returned by SHOWPLAN_ALL

Column Name Description

EstimateRows Estimated number of rows of output produced by the operator.

EstimateIO Estimated I/O cost for the operator.

EstimateCPU Estimated CPU cost for the operator.

AvgRowSize Estimated average row size (in bytes) of the row being passed through
the operator.

TotalSubtreeCost Estimated (cumulative) cost of this operation and all child operations.

OutputList A comma-separated list of columns being projected by the current
operation.

Warnings A comma-separated list of warning messages relating to the current
operation (for example, missing statistics).

Type The type of node (either PLAN_ROW or the type of T-SQL statement).

Parallel Whether the operator is running in parallel (1) or not (0).

EstimateExecutions Estimated number of times this operator will be executed while running
the current query.

 Download from www.wowebook.com

ptg

1328 CHAPTER 36 Query Analysis

SSMS is 8,192 bytes. If the XML document exceeds this length, it is truncated and does
not load correctly. In the grid results, the maximum size of XML data is 2MB.

After you run the query and generate the grid results, you can right-click on the result row
and choose the Save Results As option to specify the file to save the results to. If all goes
well, you end up with a .sqlplan file that you can then load back into SSMS for further
analysis at a later date.

NOTE

The document containing the XML schema for the SET SHOWPLAN_XML output is available
in the same directory as the SQL Server installation, which by default is C:\Program
Files\Microsoft SQL Server\100\Tools\Binn\schemas\sqlserver\2004\07\

showplan\showplanxml.xsd.

Using sys.dm_exec_query_plan
Dynamic management views (DMVs) can return server state information that can be used
to monitor and diagnose database engine issues and help tune performance. The
sys.dm_exec_query_plan DMV returns the showplan information for a T-SQL batch whose
query execution plan resides in the plan cache. This can be any SQL batch, not just the
batch executed by the current user session. The sys.dm_exec_query_plan DMV also
provides the capability to retrieve the execution plan for currently long-running processes
to help diagnose why they may be running slowly.

The showplan information provided by sys.dm_exec_query_plan is returned in a column
called query_plan, which is of the xml data type. This column provides the same informa-
tion as SET SHOWPLAN XML. The syntax of sys.dm_exec_query_plan is

sys.dm_exec_query_plan (plan_handle)

In SQL Server 2008, the query plans for various types of T-SQL batches are cached in an
area of memory called the plan cache. Each cached query plan is identified by a unique
identifier called a plan handle. To view the showplan for one of these batches, you need to
provide the plan handle for the batch to the sys.dm_exec_query_plan DMV.

The tricky part about using sys.dm_exec_query_plan is determining the plan handle to
use. First, you need to determine the SPID for the process with the long-running query.
This is usually accomplished using sp_who2 or via the SSMS Activity Monitor.

When you have the SPID, you can use the sys.dm_exec_requests DMV to obtain the plan
handle (assume in this case that the SPID is 58):

select plan_handle from sys.dm_exec_requests where session_id = 58

go

 Download from www.wowebook.com

ptg

1329Using sys.dm_exec_query_plan
3

6

plan_handle

--

0x06000A00E96E6D2CB8A1F505000000000000000000000000

When you have the plan handle, you can pass it on to the sys.dm_exec_query_plan DMV
to return the query plan:

SELECT query_plan

FROM sys.dm_exec_query_plan (0x06000A00E96E6D2CB8A1F505000000000000000000000000)

Alternatively, to prevent having to copy and paste the plan handle from the
sys.dm_exec_requests query into the query against sys.dm_exec_query_plan, you can use
the CROSS APPLY clause, as in the following query:

SELECT query_plan FROM sys.dm_exec_requests cp

CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle)

where cp.session_id = 58

If you return the results to grid, you can right-click the data in the query_plan column
and save it to a file, which can then be loaded into SSMS to view the graphical execution
plan, just like the output from the SET SHOWPLAN_XML option.

To return the query plan for all currently running T-SQL batches, you can run the following:

SELECT query_plan FROM sys.dm_exec_requests cp

CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle)

In addition to returning the query plans for the currently running T-SQL batches, SQL
Server 2008 also provides the sys.dm_exec_query_stats and sys.dm_exec_cached_plans
DMVs. The sys.dm_exec_cached_plans DMV can be used to return information about all
query plans currently residing in the plan cache. For example, to retrieve a snapshot of all
query plans residing in the plan cache, you use the CROSS APPLY operator to pass the plan
handles from sys.dm_exec_cached_plans to sys.dm_exec_query_plan, as follows:

SELECT * FROM sys.dm_exec_cached_plans cp

CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle)

To retrieve a snapshot of all query plans that currently reside in the plan cache for which
the server has gathered statistics, use the CROSS APPLY operator to pass the plan handles
from sys.dm_exec_query_stats to sys.dm_exec_query_plan as follows:

SELECT * FROM sys.dm_exec_query_stats qs

CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle)

Because sys.dm_exec_query_plan provides the capability to view the query plan for any
session, a user must be a member of the sysadmin fixed server role or have the VIEW
SERVER STATE permission on the server to invoke it.

 Download from www.wowebook.com

ptg

1330 CHAPTER 36 Query Analysis

NOTE

The SET SHOWPLAN_ALL and SET SHOWPLAN_TEXT options are deprecated features and
may be removed in a future version of SQL Server. It is recommended that you switch
to using the SET SHOWPLAN_XML option instead.

Query Statistics
In addition to the new dynamic management objects, SQL Server 2008 still provides the
SET STATISTICS IO and SET STATISTICS TIME options, which display the actual logical
and physical page reads incurred by a query and the CPU and elapsed time, respectively.
These two SET options return actual execution statistics, as opposed to the estimates
returned by SSMS and the SHOWPLAN options discussed previously. These two tools can be
invaluable for determining the actual cost of a query.

In addition to the IO and TIME statistics, SQL Server also provides the SET STATISTICS
PROFILE and SET STATISTICS XML options. These options are provided to display execu-
tion plan information while still allowing the query to run.

STATISTICS IO

You can set the STATISTICS IO option for individual user sessions, and you can turn it on
in an SSMS query window by typing the following:

SET STATISTICS IO ON

GO

You can also set this option for the query session in SSMS by choosing the Options item
in the Query menu. In the Query Options dialog, click the Advanced item and check the
SET STATISTICS IO check box, as shown in Figure 36.14.

FIGURE 36.14 Enabling the STATISTICS IO option in SSMS.

 Download from www.wowebook.com

ptg

1331Query Statistics
3

6

The STATISTICS IO option displays the scan count (that is, the number of iterations), the
logical reads (from cached data), the physical reads (from physical storage), and the read-
ahead reads.

Listing 36.4 displays the STATISTICS IO output for the same query executed in Listing
36.3. (Note that the result set has been deleted to save space.)

LISTING 36.4 An Example of STATISTICS IO Output

set statistics io on

go

select st.stor_name, ord_date, qty

from stores st join sales_noclust s on st.stor_id = s.stor_id

where st.stor_id between ‘B100’ and ‘B199’

go

-- output deleted

(1077 row(s) affected)

Table ‘sales_noclust’. Scan count 100, logical reads 1383, physical reads 5,

read-ahead reads 8, lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table ‘stores’. Scan count 1, logical reads 3, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Scan Count
The scan count value indicates the number of times the corresponding table was accessed
during query execution. The outer table of a nested loop join typically has a scan count of
1. The scan count for the inner tables typically reflects the number of times the inner
table is searched, which is usually the same as the number of qualifying rows in the outer
table. The number of logical reads for the inner table is equal to the scan count multiplied
by the number of pages per lookup for each scan. Note that the scan count for the inner
table might sometimes be only 1 for a nested join if SQL Server copies the needed rows
from the inner table into a work table in cache memory and reads from the work table for
subsequent iterations (for example, if it uses the Table Spool operation). The scan count
for hash joins and merge joins is typically 1 for both tables involved in the join, but the
logical reads for these types of joins are usually substantially higher.

Logical Reads
The logical reads value indicates the total number of page accesses necessary to process
the query. Every page is read from cache memory, even if it first has to be read from disk.
Every physical read always has a corresponding logical read, so the number of physical
reads will never exceed the number of logical reads. Because the same page might be

 Download from www.wowebook.com

ptg

1332 CHAPTER 36 Query Analysis

accessed multiple times, the number of logical reads for a table could exceed the total
number of pages in the table.

Physical Reads
The physical reads value indicates the actual number of pages read from disk. The value
for physical reads can vary greatly and should decrease, or drop to zero, with subsequent
executions of the query because the data will be loaded into the data cache by the first
execution. The number of physical reads will also be lowered by pages brought into
memory by the read-ahead mechanism.

Read-Ahead Reads
The read-ahead reads value indicates the number of pages read into cache memory using
the read-ahead mechanism while the query was processed. Pages read by the read-ahead
mechanism will not necessarily be used by the query. When a page read by the read-ahead
mechanism is accessed by the query, it counts as a logical read, but not as a physical read.

The read-ahead mechanism can be thought of as an optimistic form of physical I/O,
reading the pages into cache memory that it expects the query will need before the query
needs them. When you are scanning a table or index, the table’s index allocation map
pages (IAMs) are looked at to determine which extents belong to the object. An extent
consists of eight data pages. The eight pages in the extent are read with a single read, and
the extents are read in the order that they are stored on disk. If the table is spread across
multiple files, the read-ahead mechanism attempts parallel reads from up to eight files at a
time instead of sequentially reading from the files.

LOB Reads
If the query retrieves text, ntext, image, or large value type (varchar(max), nvarchar(max),
varbinary(max)) data, the lob logical reads, lob physical reads, and lob read-ahead
reads values provide the logical, physical, and read-ahead read statistics for the large
object (LOB) I/Os.

Analyzing STATISTICS IO Output
The output shown in Listing 36.4 indicates that the sales_noclust table was scanned 100
times, with 5 physical reads (that is, 5 physical I/Os were performed). The stores table
was scanned once, with all reads coming from cache (physical reads = 0).

You can use the STATISTICS IO option to evaluate the effectiveness of the size of the data
cache and to evaluate, over time, how long a table will stay in cache. The lack of physical
reads is a good sign, indicating that memory is sufficient to keep the data in cache. If you
keep seeing many physical reads when you are analyzing and testing your queries, you
might want to consider adding more memory to the server to improve the cache hit ratio.
You can estimate the cache hit ratio for a query by using the following formula:

Cache hit ratio = (Logical reads – Physical reads) / Logical reads

The number of physical reads appears lower than it actually is if pages are preloaded by
read-ahead activity. Because read-ahead reads lower the physical read count, they give the
indication of a good cache hit ratio, when in actuality, the data is still being physically

 Download from www.wowebook.com

ptg

1333Query Statistics
3

6

read from disk. The system could still benefit from more memory so that the data remains
in cache and the number of read-ahead reads is reduced. STATISTICS IO is generally more
useful for evaluating individual query performance than for evaluating overall cache hit
ratio. The pages that reside and remain in memory for subsequent executions are deter-
mined by the data pages being accessed by other queries executing at the same time and
the number of data pages being accessed by the other queries. If no other activity is occur-
ring, you are likely to see no physical reads for subsequent executions of the query if the
amount of data being accessed fits in the available cache memory. Likewise, if the same
data is being accessed by multiple queries, the data tends to stay in cache, and the number
of physical reads for subsequent executions tends to be low. However, if other queries
executing at the same time are accessing large volumes of data from different tables or
ranges of values, the data needed for the query you are testing might end up being flushed
from cache, and the physical I/Os will increase. Depending on the other ongoing SQL
Server activity, the physical reads you see displayed by STATISTICS IO can be inconsistent.

When you are evaluating individual query performance, examining the logical reads value
is usually more helpful because the information is consistent across all executions, regard-
less of other SQL Server activity. Generally speaking, the queries with the fewest logical
reads are the fastest queries. If you want to monitor the overall cache hit ratio for all SQL
Server activity to evaluate the SQL Server memory configuration, use the Performance
Monitor, which is discussed in Chapter 39, “Monitoring SQL Server Performance.”

STATISTICS TIME

You can set the STATISTICS TIME option for individual user sessions. In an SSMS query
window, you type the following:

SET STATISTICS TIME ON

You can also set this option for the query session in SSMS by choosing the Options item
in the Query menu. In the Query Options dialog, you click the Advanced item and check
the SET STATISTICS TIME check box.

The STATISTICS TIME option displays the total CPU and elapsed time that it takes to actu-
ally execute a query. The STATISTICS TIME output for the query in Listing 36.3 returns
the output shown in Listing 36.5. (Again, the data rows returned have been deleted to
save space.)

LISTING 36.5 An Example of STATISTICS TIME Output

set statistics io on

set statistics time on

go

select st.stor_name, ord_date, qty

from stores st join sales_noclust s on st.stor_id = s.stor_id

 Download from www.wowebook.com

ptg

1334 CHAPTER 36 Query Analysis

where st.stor_id between ‘B100’ and ‘B199’

go

SQL Server parse and compile time:

CPU time = 0 ms, elapsed time = 0 ms.

--output deleted

(1077 row(s) affected)

Table ‘sales_noclust’. Scan count 100, logical reads 1383, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table ‘stores’. Scan count 1, logical reads 3, physical reads 0, read-ahead

reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

SQL Server Execution Times:

CPU time = 0 ms, elapsed time = 187 ms.

Here, you can see that the total execution time, denoted by the elapsed time, was relatively
low and not significantly higher than the CPU time. This is due to the lack of any physical
reads and the fact that all activity is performed in memory.

NOTE

In some situations, you might notice that the parse and compile time for a query is dis-
played twice. This happens when the query plan is added to the plan cache for possi-
ble reuse. The first set of information output is the actual parse and compile before
placing the plan in cache, and the second set of information output appears when SQL
Server retrieves the plan from cache. Subsequent executions still show the same two
sets of output, but the parse and compile time is 0 when the plan is reused because a
query plan is not being compiled.

If elapsed time is much higher than CPU time, the query had to wait for something, either
I/O or locks. If you want to see the effect of physical versus logical I/Os on the perfor-
mance of a query, you need to flush the pages accessed by the query from memory. You
can use the DBCC DROPCLEANBUFFERS command to clear all clean buffer pages out of
memory. Listing 36.6 shows an example of clearing the pages from cache and rerunning
the query with the STATISTICS IO and STATISTICS TIME options enabled.

 Download from www.wowebook.com

ptg

1335Query Statistics
3

6

TIP

To ensure that none of the table is left in cache, make sure all pages are marked as
clean before running the DBCC DROPCLEANBUFFERS command. A buffer is dirty if it con-
tains a data row modification that has either not been committed yet or has not been
written out to disk yet. To clear the greatest number of buffer pages from cache memo-
ry, make sure all work is committed, checkpoint the database to force all modified
pages to be written out to disk, and then execute the DBCC DROPCLEANBUFFERS
command.

CAUTION

The DBCC DROPCLEANBUFFERS command should be executed in a test or development
environment only. Flushing all data pages from cache memory in a production environ-
ment can have a significantly adverse impact on system performance.

LISTING 36.6 An Example of Clearing the Clean Pages from Cache to Generate Physical I/Os

USE bigpubs2008

go

CHECKPOINT

go

DBCC DROPCLEANBUFFERS

go

SET STATISTICS IO ON

SET STATISTICS TIME ON

go

select st.stor_name, ord_date, qty

from stores st join sales_noclust s on st.stor_id = s.stor_id

where st.stor_id between ‘B100’ and ‘B199’

go

SQL Server parse and compile time:

CPU time = 0 ms, elapsed time = 1 ms.

--output deleted

(1077 row(s) affected)

Table ‘sales_noclust’. Scan count 100, logical reads 1383, physical reads 6,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

 Download from www.wowebook.com

ptg

1336 CHAPTER 36 Query Analysis

reads 0.

Table ‘stores’. Scan count 1, logical reads 3, physical reads 2, read-ahead

reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

SQL Server Execution Times:

CPU time = 0 ms, elapsed time = 282 ms.

Notice that this time around, even though the reported CPU time was the same, the
elapsed time was 282 milliseconds due to the physical I/Os that had to be performed
during this execution.

You can use the STATISTICS TIME and STATISTICS IO options together in this way as a
useful tool for benchmarking and comparing performance when modifying queries or
indexes.

Using datediff() to Measure Runtime

Although the STATISTICS TIME option works fine for displaying the runtime of a single
query, it is not as useful for displaying the total CPU time and elapsed time for a stored
procedure. The STATISTICS TIME option generates time statistics for every command
executed within the stored procedure. This makes it difficult to read the output and deter-
mine the total elapsed time for the entire stored procedure.

Another way to display runtime for a stored procedure is to capture the current system
time right before it starts, capture the current system time as it completes, and display the
difference between the two, specifying the appropriate-sized datepart parameter to the
datediff() function, depending on how long your procedures typically run. For example,
if a procedure takes minutes to complete, you probably want to display the difference in
seconds or minutes, rather than milliseconds. If the time to complete is in seconds, you
likely want to specify a datepart of seconds or milliseconds. Listing 36.7 displays an
example of using this approach.

LISTING 36.7 Using datediff() to Determine Stored Procedure Runtime

set statistics time off

set statistics io off

go

declare @start datetime

select @start = getdate()

exec sp_help

select datediff(ms, @start, getdate()) as ‘runtime(ms)’

go

-- output deleted

 Download from www.wowebook.com

ptg

1337Query Statistics
3

6

runtime(ms)

3263

STATISTICS PROFILE

The SET STATISTICS PROFILE option is similar to the SET SHOWPLAN_ALL option but allows
the query to actually execute. It returns the same execution plan information displayed
with the SET SHOWPLAN_ALL statement, with the addition of two columns that display
actual execution information. The Rows column displays the actual number of rows
returned in the execution step, and the Executions column shows the actual number of
executions for the step. The Rows column can be compared to the EstimatedRows column,
and the Execution column can be compared to the EstimatedExecution column to deter-
mine the accuracy of the execution plan estimates.

You can set the STATISTICS PROFILE option for individual query sessions. In an SSMS
query window, you type the following statement:

SET STATISTICS PROFILE ON

GO

NOTE

The SET STATISTICS PROFILE option has been deprecated and may be removed in a
future version of SQL Server. It is recommended that you switch to using the SET STA-
TISTICS XML option instead.

STATISTICS XML

Similar to the STATISTICS PROFILE option, the SET STATISTICS XML option allows a query
to execute while also returning the execution plan information. The execution plan infor-
mation returned is similar to the XML document displayed with the SET SHOWPLAN_XML
statement.

To set the STATISTICS XML option for individual query sessions in SSMS or another query
tool, you type the following statement:

SET STATISTICS XML ON

GO

 Download from www.wowebook.com

ptg

1338 CHAPTER 36 Query Analysis

NOTE

With all the fancy graphical tools available, why would you want to use the text-based
analysis tools? Although the graphical tools are useful for analyzing individual queries
one at a time, they can be a bit tedious if you have to perform analysis on a number of
queries. As an alternative, you can put all the queries you want to analyze in a script
file and set the appropriate options to get the query plan and statistics output you
want to see. You can then run the script through a tool such as sqlcmd and route the
output to a file. You can then quickly scan the file or use an editor’s Find utility to look
for the obvious potential performance issues, such as table scans or long-running
queries. Next, you can copy the individual problem queries you identify from the output
file into SSMS, where you can perform a more thorough analysis on them.

You could also set up a job to run this SQL script periodically to constantly capture
and save performance statistics. This gives you a means to keep a history of the
query performance and execution plans over time. This information can be used to
compare performance differences as the data volumes and SQL Server activity levels
change over time.

Another advantage of the textual query plan output over the graphical query plans is
that for very complex queries, the graphical plan tends to get very big and spread out
so much that it’s difficult to read and follow. The textual output is somewhat more com-
pact and easier to see all at once.

Query Analysis with SQL Server Profiler
SQL Server Profiler serves as another powerful tool available for query analysis. When you
must monitor a broad range of queries and database activity and analyze the performance,
it is difficult to analyze all those queries manually. For example, if you have a number of
stored procedures to analyze, how would you know which ones to focus on as problem
procedures? You would have to identify sample parameters for all of them and manually
execute them individually to see which ones were running too slowly and then, after they
were identified, do some query analysis on them.

With SQL Server Profiler, you can simply define a trace to capture performance-related
statistics on the fly while the system is being used normally. This way, you can capture a
representative sample of the type of activity your database will receive and capture statis-
tics for the stored procedures as they are being executed with real data values. Also, to
avoid having to look at everything, you can set a filter on the Duration column so that it
displays only items with a runtime longer than the specified threshold.

The events you want to capture to analyze query performance are listed under the
Performance events. They include Showplan All, Showplan Statistics Profile, Showplan
Text, Showplan Text (Unencoded), Showplan XML, Showplan XML for Query Compile,

 Download from www.wowebook.com

ptg

1339Query Analysis with SQL Server Profiler
3

6

and Showplan XML Statistics Profile. The data columns that you want to be sure to
include when capturing the showplan events are TextData, CPU, StartTime, Duration, and
Reads and Writes. Also, for the Showplan Statistics and Showplan All events, you must
also select the BinaryData data column.

Capturing the showplan performance information with SQL Server Profiler provides you
with all the same information you can capture with all the other individual tools
discussed in this chapter. You can easily save the trace information to a file or table for
replaying the sequence to test index or configuration changes, or simply for historical
analysis. If you choose any of the Showplan XML options, you have the option of saving
the XML Showplan events separately from the overall trace file. You can choose to save all
XML Showplan events in a single file or separate file for each event (see Figure 36.15). You
can then load the Showplan XML file into SSMS to view the graphical execution plans and
perform your query analysis.

When you run a SQL Server Profiler trace with the Showplan XML event enabled, SQL
Server Profiler displays the graphical execution plans captured in the bottom display panel
of the Profiler window when you select a record with a Showplan XML EventClass. The
graphical execution plans displayed in SQL Server Profiler are just like the ones displayed
in SSMS, and they also include the same detailed information available via the ToolTips.
Figure 36.16 shows an example of a graphical execution plan being displayed in SQL
Server Profiler.

FIGURE 36.15 Saving XML Showplan events to a single file.

 Download from www.wowebook.com

ptg

1340 CHAPTER 36 Query Analysis

For more information on using SQL Server Profiler, see Chapter 6, “SQL Server Profiler.”

NOTE

Because of the capability to view the graphical execution plans in SQL Server Profiler
as well as the capability to save the XML Showplan events to a separate file, which you
can bring into SSMS for analysis, the XML Showplan events provide a significant bene-
fit over the other, older-style showplan events provided. As a matter of fact, these other
showplan events are provided primarily for backward-compatibility purposes. In a future
version of SQL Server, the Showplan All, Showplan Statistics Profile, Showplan Text,
and Showplan Text (Unencoded) event classes will be deprecated. It is recommended
that you switch to using the newer XML event classes instead.

Summary
Between the features of SSMS and the text-based query analysis tools, SQL Server 2008
provides a number of powerful utilities to help you analyze and understand how your
queries are performing and also help you develop a better understanding of how queries
in general are processed and optimized in SQL Server 2008. Such an understanding can
help ensure that the queries you develop will be optimized more effectively by SQL Server.

The tools discussed in this chapter are useful for analyzing individual query performance.
However, in a multiuser environment, query performance is often affected by more than just
how a single query is optimized. One of those factors is locking contention. Chapter 37,
“Locking and Performance,” delves into locking in SQL Server, its impact on query and appli-
cation performance, and ways to minimize locking performance issues in SQL Server systems.

FIGURE 36.16 Displaying an XML Showplan event in SQL Server Profiler.

 Download from www.wowebook.com

ptg

CHAPTER 37

Locking and
Performance

IN THIS CHAPTER

. What’s New in Locking and
Performance

. The Need for Locking

. Transaction Isolation Levels in
SQL Server

. The Lock Manager

. Monitoring Lock Activity in SQL
Server

. SQL Server Lock Types

. SQL Server Lock Granularity

. Lock Compatibility

. Locking Contention and
Deadlocks

. Table Hints for Locking

. Optimistic Locking

This chapter examines locking and its impact on transac-
tions and performance in SQL Server. It also reviews locking
hints that you can specify in queries to override SQL
Server’s default locking behavior.

What’s New in Locking and
Performance
SQL Server 2008 doesn’t provide any significant changes in
locking behavior or features over what was provided in SQL
Server 2005 (such as Snapshot Isolation and improved lock
and deadlock monitoring). The main new feature in SQL
Server 2008 is the capability to control lock escalation
behavior at the table level. The new LOCK_ESCALATION table
option allows you to enable or disable table-level lock esca-
lation. This new feature can reduce contention and improve
concurrency, especially for partitioned tables.

One other change for SQL Server 2008 is the deprecation of
the Locks configuration setting. This option, while still
visible and settable in sp_configure, is simply ignored by
SQL Server 2008. Also deprecated in SQL Server 2008 is the
timestamp data type. It has been replaced with the
rowversion data type. For more information on using the
rowversion data type, see the “Optimistic Locking” section
in this chapter.

 Download from www.wowebook.com

ptg

1342 CHAPTER 37 Locking and Performance

The Need for Locking
In any multiuser database, there must be a consistent set of rules for making changes to
the data. For a true transaction-processing database, the database management system
(DBMS) is responsible for resolving potential conflicts between two different processes that
are attempting to change the same piece of information at the same time. Such a situation
cannot occur because the consistency of a transaction cannot be guaranteed. For example,
if two users were to change the same data at approximately the same time, whose change
would be propagated? Theoretically, the results would be unpredictable because the
answer is dependent on whose transaction completed last. Because most applications try
to avoid “unpredictability” with data wherever possible (imagine a banking system return-
ing “unpredictable” results, and you get the idea), some method must be available to guar-
antee sequential and consistent data changes.

Any relational database must support the ACID properties for transactions, as discussed in
Chapter 31, “Transaction Management and the Transaction Log”:

. Atomicity

. Consistency

. Isolation

. Durability

These ACID properties ensure that data changes in a database are correctly collected
together and that the data is going to be left in a consistent state that corresponds with
the actions being taken.

The main role of locking is to provide the isolation that transactions need. Isolation
ensures that individual transactions don’t interfere with one another, that a given transac-
tion does not read or modify the data being modified by another transaction. In addition,
the isolation that locking provides helps ensure consistency within transactions. Without
locking, consistent transaction processing is impossible. Transactions are logical units of
work that rely on a constant state of data, almost a “snapshot in time” of what they are
modifying, to guarantee their successful completion.

Although locking provides isolation for transactions and helps ensure their integrity, it
can also have a significant impact on the performance of the system. To keep your system
performing well, you want to keep transactions as short, concise, and noninterfering as
possible. This chapter explores the locking features of SQL Server that provide isolation for
transactions. You’ll come to understand the performance impact of the various levels and
types of locks in SQL Server and how to define transactions to minimize locking perfor-
mance problems.

Transaction Isolation Levels in SQL Server
Isolation levels determine the extent to which data being accessed or modified in one
transaction is protected from changes to the data by other transactions. In theory, each
transaction should be fully isolated from other transactions. However, in practice, for prac-

 Download from www.wowebook.com

ptg

1343Transaction Isolation Levels in SQL Server

tical and performance reasons, this might not always be the case. In a concurrent environ-
ment in the absence of locking and isolation, the following four scenarios can happen:

. Lost update—In this scenario, no isolation is provided to a transaction from other
transactions. Multiple transactions can read the same copy of data and modify it.
The last transaction to modify the data set prevails, and the changes by all other
transactions are lost.

. Dirty reads—In this scenario, one transaction can read data that is being modified
by other transactions. The data read by the first transaction is inconsistent because
the other transaction might choose to roll back the changes.

. Nonrepeatable reads—In this scenario, which is somewhat similar to zero isola-
tion, a transaction reads the data twice, but before the second read occurs, another
transaction modifies the data; therefore, the values read by the first read are different
from those of the second read. Because the reads are not guaranteed to be repeatable
each time, this scenario is called nonrepeatable reads.

. Phantom reads—This scenario is similar to nonrepeatable reads. However, instead
of the actual rows that were read changing before the transaction is complete, addi-
tional rows are added to the table, resulting in a different set of rows being read the
second time. Consider a scenario in which Transaction A reads rows with key values
within the range of 1 through 5 and returns three rows with key values 1, 3, and 5.
Before Transaction A reads the data again within the transaction, Transaction B adds
two more rows with the key values 2 and 4 and commits the changes. Assuming that
Transaction A and Transaction B both can run independently without blocking each
other, when Transaction A runs the query a second time, it now gets five rows with
key values 1, 2, 3, 4, and 5. This phenomenon is called phantom reads because in the
second pass, you get records you did not expect to retrieve.

Ideally, a DBMS must provide levels of isolation to prevent these types of scenarios.
Sometimes, for practical and performance reasons, databases relax some of the rules. The
American National Standards Institute (ANSI) has defined four transaction isolation levels,
each providing a different degree of isolation to cover the previous scenarios. ANSI SQL-92
defines the following four standards for transaction isolation:

. Read Uncommitted (Level 0)

. Read Committed (Level 1)

. Repeatable Read (Level 2)

. Serializable (Level 3)

SQL Server 2008 supports all the ANSI isolation levels; in addition, SQL Server 2008 also
supports two additional transaction isolation levels that use row versioning. One is an
alternative implementation of Read Committed isolation called Read Committed
Snapshot, and the other is the Snapshot transaction isolation level.

You can set the default transaction isolation for a user session by using the SET TRANSAC-
TION ISOLATION LEVEL T-SQL command, or for individual SQL statements, you can specify

3
7

 Download from www.wowebook.com

ptg

1344 CHAPTER 37 Locking and Performance

table-level isolation hints within the query. Using table-level hints is covered later in this
chapter, in the section “Table Hints for Locking.”

Read Uncommitted Isolation

If you set the Read Uncommitted mode for a session, no isolation is provided to the
SELECT queries in that session. A transaction that is running with this isolation level is not
immune to dirty reads, nonrepeatable reads, or phantom reads.

To set the Read Uncommitted mode for a session, you run the following statements from
the client:

. T-SQL—Use SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED.

. ODBC—Use the function call SQLSetConnectAttr with Attribute set to
SQL_ATTR_TXN_ISOLATION and ValuePtr set to SQL_TXN_READ_UNCOMMITTED.

. OLE DB—Use the function call ITransactionLocal::StartTransaction with the
isoLevel set to ISOLATIONLEVEL_READUNCOMMITTED.

. ADO—Set the IsolationLevel property of the Connection object to
adXactReadUncommitted.

. ADO.NET—For applications using the System.Data.SqlClient managed namespace,
call the SqlConnection.BeginTransaction method and set the IsolationLevel
option to ReadUncommitted.

You need to be careful when running queries at Read Uncommitted isolation; it is possible
to read changes that have been made to data that are subsequently rolled back. In essence,
the accuracy of the results cannot be guaranteed. You should use this mode only when
you need to get information quickly from an online transaction processing (OLTP) data-
base, without affecting or being affected by the ongoing updates and when the accuracy of
the results is not critical.

Read Committed Isolation

The Read Committed mode is the default locking-isolation mode for SQL Server. With
Read Committed as the transaction isolation level, read operations can read pages only for
transactions that have already been committed. No “dirty reads” are allowed. Locks
acquired by update transactions are held for the duration of the transaction. However, in
this mode, read requests within the transaction release locks as soon as the query finishes
reading the data. Although this improves concurrent access to the data for updates, it does
not prevent nonrepeatable reads or phantom reads. For example, within a transaction, a
process could read one set of rows early in the transaction and then, before reading the
information again, another process could modify the result set, resulting in a different
result set being read the second time.

Because Read Committed is the default isolation level for SQL Server, you do not need to
do anything to set this mode. If you need to set the isolation level back to Read
Committed mode for a session, you run the following statements from the client:

. T-SQL—Use SET TRANSACTION ISOLATION LEVEL READ COMMITTED.

 Download from www.wowebook.com

ptg

1345Transaction Isolation Levels in SQL Server

. ODBC—Use the function call SQLSetConnectAttr with Attribute set to
SQL_ATTR_TXN_ISOLATION and ValuePtr set to SQL_TXN_READ_COMMITTED.

. OLE DB—Use the function call ITransactionLocal::StartTransaction with
isoLevel set to ISOLATIONLEVEL_READCOMMITTED.

. ADO—Set the IsolationLevel property of the Connection object to
adXactReadcommitted.

. ADO.NET—For applications using the System.Data.SqlClient managed namespace,
call the SqlConnection.BeginTransaction method and set the IsolationLevel
option to ReadCommitted.

Read Committed Snapshot Isolation

When the READ_COMMITTED_SNAPSHOT database option is set to ON, sessions running with
the Read Committed isolation mode use row versioning to provide statement-level read
consistency. When this database option is enabled and a transaction runs at the Read
Committed isolation level, all statements within the transaction see a snapshot of the data
as it exists at the start of the statement.

When the READ_COMMITTED_SNAPSHOT option is enabled for a database, SQL Server main-
tains versions of each row that is modified. Whenever a transaction modifies a row, an
image of the row before modification is copied into a page in the version store, which is a
collection of data pages in tempdb. If multiple transactions modify a row, multiple versions
of the row are linked in a version chain. Queries running with Read Committed Snapshot
isolation retrieve the last version of each row that had been committed when the state-
ment started, providing a statement-level snapshot of the data.

In the Read Committed Snapshot isolation mode, read operations do not acquire shared
page or row locks on the data. Therefore, readers using row versioning do not block other
processes modifying the same data, and, similarly, processes modifying the data do not
block the readers. In addition, because the read operations do not acquire locks, locking
overhead is reduced. However, processes modifying data still block other processes modify-
ing data because two operations cannot modify the same data at the same time. Exclusive
locks on modified data are still acquired and held until the end of the transaction.

While locking overhead is reduced for read operations when using Read Committed
Snapshot isolation, it does introduce overhead to maintain the row versions in tempdb. In
addition, tempdb must have sufficient space to hold the row versions in addition to the
space required for normal tempdb operations.

You might want to consider enabling the READ_COMMITTED_SNAPSHOT database option when
blocking that occurs between read and write operations affects performance to the point
that the overhead of creating and managing row versions is offset by the concurrency
benefits. You may also consider using Read Committed Snapshot isolation when an appli-
cation requires absolute accuracy for long-running aggregations or queries where data
values must be consistent to the point in time that the query starts.

3
7

 Download from www.wowebook.com

ptg

1346 CHAPTER 37 Locking and Performance

NOTE

You can use Read Committed Snapshot isolation mode with most existing SQL Server
applications without making any change to the application code itself if the applications
are written to use the default Read Committed isolation level. The behavior of Read
Committed, whether to use row versioning or not, is determined by the database
option setting, and this can be enabled or disabled without requiring any changes to
the application code.

Repeatable Read Isolation

In Repeatable Read mode, SQL Server provides the same level of isolation for updates as in
Read Committed mode, but it also allows the data to be read many times within the same
transaction and guarantees that the same values will be read each time. Repeatable Read
isolation mode prevents other users from updating data that has been read within the
transaction until the transaction in which it was read is committed or rolled back. This
way, the reading transaction does not pick up changes to the rows it read previously
within the transaction. However, this isolation mode does not prevent additional rows
(that is, phantom reads) from appearing in the subsequent reads.

Although preventing nonrepeatable reads is desirable for certain transactions, it requires
holding locks on the data that has been read until the transaction is completed. This
reduces concurrent access for multiple update operations and causes performance degrada-
tion due to lock waits and locking contention between transactions. It can also potentially
lead to deadlocks. (Deadlocking is discussed in more detail in the “Deadlocks” section,
later in this chapter.)

To set Repeatable Read mode for a session, you run the following statements from the client:

. T-SQL—Use SET TRANSACTION ISOLATION LEVEL REPEATABLE READ.

. ODBC—Use the function call SQLSetConnectAttr with Attribute set to
SQL_ATTR_TXN_ISOLATION and ValuePtr set to SQL_TXN_REPEATABLEREAD.

. OLE DB—Use the function call ITransactionLocal::StartTransaction with
isoLevel set to ISOLATIONLEVEL_REPEATABLEREAD.

. ADO—Set the IsolationLevel property of the Connection object to adXact REPEAT-
ABLEREAD.

. ADO.NET—For applications using the System.Data.SqlClient managed namespace,
call the SqlConnection.BeginTransaction method and set the IsolationLevel
option to RepeatableRead.

Serializable Read Isolation

Serializable Read mode is similar to repeatable reads but adds to it the restriction that rows
cannot be added to a result set that was read previously within a transaction. This prevents
phantom reads. In other words, Serializable Read locks the existing data being read as well
as rows that do not yet exist. It accomplishes this by locking the data being read. In addi-

 Download from www.wowebook.com

ptg

1347Transaction Isolation Levels in SQL Server

tion, SQL Server puts locks on the range of values being read so that additional rows cannot
be added to the range.

For example, say you run a query in a transaction that retrieves all records for the Sales
table in the bigpubs2008 database for a store with the stor_id of 7066. To prevent addi-
tional sales records from being added to the Sales table for this store, SQL Server locks the
range of values with stor_id of 7066. It accomplishes this by using key-range locks, which
are discussed in the “Serialization and Key-Range Locking” section, later in this chapter.

Although preventing phantom reads is desirable for certain transactions, Serializable Read
mode, like Repeatable Read, reduces concurrent access for multiple update operations and
can cause performance degradation due to lock waits and locking contention between
transactions, and it can potentially lead to deadlocks.

To set Serializable Read mode for a session, you run the following statements from the
client:

. T-SQL—Use SET TRANSACTION ISOLATION LEVEL SERIALIZABLE.

. ODBC—Use the function call SQLSetConnectAttr with Attribute set to
SQL_ATTR_TXN_ISOLATION and ValuePtr set to SQL_TXN_SERIALIZABLE.

. OLE DB—Use the function call ITransactionLocal::StartTransaction with
isoLevel set to ISOLATIONLEVEL_SERIALIZABLE.

. ADO—Set the IsolationLevel property of the Connection object to adXact
SERIALIZABLE.

. ADO.NET—For applications using the System.Data.SqlClient managed namespace,
call the SqlConnection.BeginTransaction method and set the IsolationLevel
option to Serializable.

Snapshot Isolation

Snapshot Isolation is an additional isolation level available in SQL Server 2008. Similar to
Read Committed Snapshot, Snapshot Isolation mode uses row versioning to take a point-
in-time snapshot of the data. However, unlike Read Committed Snapshot isolation, which
provides a statement-level snapshot of the data, Snapshot Isolation maintains a snapshot
of the data for the duration of the entire transaction. A data snapshot is taken when the
transaction starts and the snapshot remains consistent for the duration of the transaction.

Snapshot Isolation mode provides the benefit of repeatable reads without acquiring and
holding shared locks on the data that is read. This can help minimize locking and block-
ing problems between read operations and update operations. Read operations do not
have to wait for write operations and writes don’t have to wait for reads.

To set the Snapshot Isolation mode for a session, you run the following statement:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

3
7

 Download from www.wowebook.com

ptg

1348 CHAPTER 37 Locking and Performance

In addition, to be able to request the Snapshot Isolation mode in a session, you must
enable the database option ALLOW_SNAPSHOT_ISOLATION with the ALTER DATABASE
command:

ALTER DATABASE dbname SET ALLOW_SNAPSHOT_ISOLATION ON

When Snapshot Isolation mode is enabled, SQL Server assigns a transaction sequence
number to each transaction that manipulates data using row versioning. When either the
READ_COMMITTED_SNAPSHOT or ALLOW_SNAPSHOT_ISOLATION database option is set to ON, SQL
Server stores a version of the previously committed image of the data row in tempdb
whenever the row is modified by a transaction. Each of these versions is marked with the
transaction sequence number of the transaction that made the change. The versions of the
modified rows are linked together in a chain, with the most recent version of the row
always stored in the current database and the versioned rows stored in tempdb.

When a transaction requests a read of data, it searches the version chain to locate the last
committed version of the data row with a lower transaction sequence number than the
current transaction. Row versions are kept in tempdb only long enough to satisfy the
requirements of any transactions running under row versioning–based isolation levels. SQL
Server keeps track of the sequence number of the oldest outstanding transaction and period-
ically deletes all row versions stamped with transaction sequence numbers lower than that.

You might consider using snapshot isolation in the following instances:

. When you want optimistic concurrency control

. When it is unlikely that your transaction would have to be rolled back because of an
update conflict

. When an application generates reports based on long-running, multistatement
queries that must have point-in-time consistency

. With systems that are incurring a high number of deadlocks because of read/write
contention

There is a risk to using snapshot isolation, however. If two client applications both retrieve
the same data and then both attempt to write changes to the data back to the database,
the second application could potentially overwrite the first application’s changes. This is
called a lost update error. Fortunately, SQL Server 2008 resolves this problem by blocking
the second transaction’s writes. So, although snapshot isolation provides benefits for
resolving conflicts between read and write operations, there can still be conflicts between
multiple write operations. For systems with heavy read and insert activity and with little
concurrent updating of the same resource, snapshot isolation can provide a solution for
concurrency issues.

Another cost of snapshot isolation is that it can make heavy use of tempdb. For this
reason, you should locate tempdb on its own high-performance drive system.

 Download from www.wowebook.com

ptg

1349The Lock Manager

NOTE

Only one of the transaction isolation levels can be active at any given time for a user
session. The isolation level you set within an application is active for the duration of
the connection or until it is manually reset. To check the current transaction isolation
level settings, you run the DBCC USEROPTIONS command and examine the value for
isolation level, as in the following example:

DBCC USEROPTIONS

go

Set Option Value

---------------------------------- --------------

textsize 2147483647

language us_english

dateformat mdy

datefirst 7

lock_timeout -1

quoted_identifier SET

arithabort SET

ansi_null_dflt_on SET

ansi_warnings SET

ansi_padding SET

ansi_nulls SET

concat_null_yields_null SET

isolation level snapshot

Be aware that DBCC USEROPTIONS reports an isolation level of Read Committed
Snapshot when the database option READ_COMMITTED_SNAPSHOT is set to ON and the
current transaction isolation level is set to Read Committed. The actual isolation level
in effect for the user session is Read Committed.

The Lock Manager
The responsibility for ensuring lock conflict resolution between user processes falls on the
SQL Server Lock Manager. SQL Server automatically assigns locks to processes to guarantee
that the current user of a resource (for example, a data row or page, an index row or page,
a table, an index, or a database) has a consistent view of that resource, from the beginning
to the end of a particular operation. In other words, what you start with is what you work
with throughout your transaction. Nobody can change what you are working on in
midstate, thereby ensuring the consistency of your transaction.

3
7

 Download from www.wowebook.com

ptg

1350 CHAPTER 37 Locking and Performance

The Lock Manager is responsible for deciding the appropriate lock type (for example,
shared, exclusive, update) and the appropriate granularity of locks (for example, row, page,
table), according to the type of operation being performed and the amount of data being
affected. Based on the type of transaction, the SQL Server Lock Manager chooses different
types of lock resources. For example, a CREATE INDEX statement might lock the entire
table, whereas an UPDATE statement might lock only a specific row.

The Lock Manager also manages compatibility between lock types attempting to access the
same resources, resolves deadlocks, and escalates locks to a higher level, if necessary.

The Lock Manager manages locks for both shared data and internal system resources. For
shared data, the Lock Manager manages row locks, page locks, and table locks on tables, as
well as data pages, text pages, and leaf-level index pages. Internally, the Lock Manager uses
latches to manage locking on index rows and pages, controlling access to internal data
structures and, in some cases, for retrieving individual rows of data. Latches provide better
system performance because they are less resource intensive than locks. Latches also
provide greater concurrency than locks. Latches are typically used for operations such as
page splits, deletion of index rows, movement of rows in an index, and so on. The main
difference between a lock and a latch is that a lock is held for the duration of the transac-
tion, and a latch is held only for the duration of the operation for which it is required.
Locks are used to ensure the logical consistency of data, whereas latches are used to ensure
the physical consistency of the data and data structures.

The remainder of this chapter examines how the Lock Manager determines the type and
level of lock to assign, based on the type of command being executed, number of rows
affected, and lock isolation level in effect.

Monitoring Lock Activity in SQL Server
To monitor the performance of a system, you need to keep track of locking activity in SQL
Server. The following are the most commonly used methods to do so:

. Querying the sys.dm_tran_locks dynamic management view directly

. Viewing locking activity with SQL Server Profiler

. Monitoring locks with Performance Monitor

As you read through the rest of this chapter, you might want to examine or monitor the
locking activity for the examples presented. To assist you in that effort, the following
sections describe the methods of examining lock activity in SQL Server 2008.

Querying the sys.dm_tran_locks View

The sys.dm_tran_locks dynamic management view returns information about all the
locks currently granted or waiting to be granted in SQL Server. (The information is popu-
lated from the internal lock management structures in SQL Server 2008.) This view
provides no historical information; rather, the data in this view corresponds to live Lock

 Download from www.wowebook.com

ptg

1351Monitoring Lock Activity in SQL Server

Manager information. This data can change at any time for subsequent queries of the view
as locks are acquired and released.

The information returned by the view can be divided into two main groups: resource
information and lock request information. The resource information describes the
resource on which the lock request is being made, and the request information provides
details on the lock request itself. Table 37.1 describes the most useful data columns
returned by the sys.dm_tran_locks view.

3
7

TABLE 37.1 Useful Columns Returned by the sys.dm_tran_locks View

Column Name Description

resource_type Indicates the type of resource the lock is being
held or requested on.

resource_subtype Indicates a subtype of the resource_type, if any.

resource_database_id Indicates the database ID of the database where
the resource resides.

resource_description Provides information about the resource that is not
available from other resource columns.

resource_associated_entity_id Indicates the ID of the entity in a database that
the resource is associated with.

resource_lock_partition Indicates the ID of the associated partition for a
resource that is partitioned.

request_mode Indicates the lock mode of the request that has
been granted or is being waited on.

request_type Indicates the request type. (The only current value
is LOCK.)

request_status Indicates the current status of this request (GRANT,
CONVERT, or WAIT).

request_reference_count Returns an approximate number of times the same
requestor has requested this resource.

request_lifetime Specifies a code indicating when the lock on the
resource is released.

request_session_id Indicates the ID of the session that generated the
corresponding request.

request_exec_context_id Indicates the ID of the execution context of the
process that generated the lock request.

 Download from www.wowebook.com

ptg

1352 CHAPTER 37 Locking and Performance

Table 37.2 lists the possible lock request modes that can be displayed in the request_mode
column of the sys.dm_tran_locks view.

TABLE 37.1 Useful Columns Returned by the sys.dm_tran_locks View

Column Name Description

request_request_id Indicates the batch ID of the process that gener-
ated the request.

request_owner_type Indicates the type of entity that owns the request.
Possible values include, but are not limited to,
TRANSACTION, CURSOR, and SESSION.

request_owner_id Specifies the ID of the specific owner of this
request. This value is used for transactions for
which this is the transaction ID.

request_owner_guid Indicates the GUID of the specific owner of the
lock request. This value is used only by a distrib-
uted transaction where the value corresponds to
the MS DTC GUID for that transaction

request_owner_lockspace_id Represents the lockspace ID of the requestor. The
lockspace ID determines whether two requestors
are compatible with each other and can be granted
locks in modes that would otherwise conflict with
one another.

lock_owner_address Indicates the memory address of the internal data
structure used to track the request.

TABLE 37.2 Lock Request Modes

Value Lock Type Description Request Mode

1 N/A No access provided to the requestor NULL

2 Schema Schema stability lock Sch-S

3 Schema Schema modification lock Sch-M

4 Shared Acquisition of a shared lock on the resource S

5 Update Acquisition of an update lock on the resource U

6 Exclusive Exclusive lock granted on the resource X

7 Intent Intent for a shared lock IS

8 Intent Intent for an update lock IU

9 Intent Intent for an exclusive lock IX

 Download from www.wowebook.com

ptg

1353Monitoring Lock Activity in SQL Server
3

7

Listing 37.1 provides an example of a query against the sys.dm_tran_locks view.

LISTING 37.1 An Example of a Query Against the sys.dm_tran_locks View

select str(request_session_id, 4,0) as spid,

convert (varchar(12), db_name(resource_database_id)) As db_name,

case when resource_database_id = db_id() and resource_type = ‘OBJECT’

then convert(char(20), object_name(resource_Associated_Entity_id))

else convert(char(20), resource_Associated_Entity_id)

TABLE 37.2 Lock Request Modes

Value Lock Type Description Request Mode

10 Intent Shared lock with intent for an update lock on subordinate
resources

SIU

11 Intent Shared lock with intent for an exclusive lock on subordinate
resources

SIX

12 Intent Update lock with an intent for an exclusive lock on subordi-
nate resources

UIX

13 Bulk BULK UPDATE lock used for bulk copy operations BU

14 Key-Range Shared lock on the range between keys and shared lock on
the key at the end of the range; used for serializable range
scan

Range_S_S

15 Key-Range Shared lock on the range between keys, with an update lock
on the key at the end of the range

Range_S_U

16 Key-Range Exclusive lock used to prevent inserts into a range between
keys

RangeIn-N

17 Key-Range Key-range conversion lock created by overlap of RangeIn-N
and shared (S) locks

RangeIn-S

18 Key-Range Key-range conversion lock created by overlap of RangeIn-N
and update (U) locks

RangeIn-U

19 Key-Range Key-range conversion lock created by overlap of RangeIn-N
and exclusive (X) locks

RangeIn-X

20 Key-Range Key-range conversion lock created by overlap of RangeIn-N
and RangeS_S locks

RangeX-S

21 Key-Range Key-Range conversion lock created by overlap of RangeIn-N
and RangeS_U locks

RangeX-U

22 Key-Range Exclusive lock on range between keys, with an exclusive lock
on the key at the end of the range

RangeX-X

 Download from www.wowebook.com

ptg

1354

end as object,

convert(varchar(12), resource_type) as resrc_type,

convert(varchar(12), request_type) as req_type,

convert(char(1), request_mode) as mode,

convert(varchar(8), request_status) as status

from sys.dm_tran_locks

order by request_session_id, 3 desc

go

spid db_name object resrc_type req_type mode status

---- ---------- ---------------- ------------ -------- ---- --------

52 msdb 0 DATABASE LOCK S GRANT

55 bigpubs2008 titles OBJECT LOCK I GRANT

55 bigpubs2008 sales_qty_rollup OBJECT LOCK X GRANT

55 bigpubs2008 sales OBJECT LOCK X GRANT

55 bigpubs2008 679707671068672 PAGE LOCK I GRANT

55 bigpubs2008 679707671068672 KEY LOCK X GRANT

55 bigpubs2008 398232694358016 KEY LOCK X GRANT

55 bigpubs2008 398232694358016 PAGE LOCK I GRANT

55 bigpubs2008 0 DATABASE LOCK S GRANT

56 msdb 0 DATABASE LOCK S GRANT

58 bigpubs2008 sales OBJECT LOCK I WAIT

58 bigpubs2008 0 DATABASE LOCK S GRANT

Note that the query in Listing 37.1 contains a CASE expression for displaying the object
name. If the resource type is OBJECT and the database ID of the locked resource is the same
as the current database context, it returns the object name; otherwise, it returns the object
ID because the object_name() function operates only in the current database context.

TIP

To save yourself the trouble of having to type in the query listed in Listing 37.1, or hav-
ing to read it in from a file each time you want to run it, you might want to consider cre-
ating your own stored procedure or view that invokes this query.

NOTE

In SQL Server 2005, you could monitor lock activity via the Activity Monitor in SQL
Server Management Studio (SSMS). If you’re looking for this tool in SQL Server 2008,
you won’t find it. For some reason, this feature was removed from SSMS in SQL Server
2008. The only locking information provided by the SSMS Activity Monitor in SQL
Server 2008 is the indication of lock blocking and wait time provided by the Process
Monitor and the Lock Waits information provided by the Resource Waits Monitor. There
is no GUI-based lock monitoring tool provided with SQL Server 2008 to display the spe-
cific locks being held by processes or the locks being held on objects as there was in
SQL Server 2005.

CHAPTER 37 Locking and Performance

ptg

1355Monitoring Lock Activity in SQL Server
3

7

Viewing Locking Activity with SQL Server Profiler

Another tool to help you monitor locking activity in SQL Server 2008 is SQL Server
Profiler. SQL Server Profiler provides a number of lock events that you can capture in a
trace. The trace information can be viewed in real-time or saved to a file or database table
for further analysis at a later date. Saving the information to a table allows you to run
different reports on the information to help in the analysis.

NOTE

This chapter provides only a brief overview of how to capture and view locking informa-
tion using SQL Server Profiler. For more information on the features and capabilities of
SQL Server Profiler and how to use it, see Chapter 6, “SQL Server Profiler.”

SQL Profiler provides the following lock events that can be captured in a trace:

. Lock:Acquired—Indicates when a lock on a resource, such as a data page or row,
has been acquired.

. Lock:Cancel—Indicates when the acquisition of a lock on a resource has been
canceled (for example, as the result of a deadlock).

. Lock:Deadlock—Indicates when two or more concurrent processes have dead-
locked with each other.

. Lock:Deadlock Chain—Provides the information for each of the events leading up
to a deadlock. This information is similar to that provided by the 1204 trace flag,
which is covered in the “Deadlocks” section, later in this chapter.

. Lock:Escalation—Indicates when a lower-level lock has been converted to a
higher-level lock (for example, when page-level locks are escalated to table-level
locks).

. Lock:Released—Indicates that a process has released a previously acquired lock
on a resource.

. Lock:Timeout—Indicates that a lock request that is waiting on a resource has
timed out due to another transaction holding a blocking lock.

. Lock:Timeout (timeout >0)—Is similar to Lock:Timeout but does not include
any events where the lock timeout is 0 seconds.

. Deadlock Graph—Generates an XML description of a deadlock.

Figure 37.1 shows an example of choosing a set of locking events to monitor with SQL
Server Profiler.

ptg

1356

SQL Server Profiler also provides a number of data values to display for the events being
monitored. You might find the following data columns useful when monitoring locking
activity:

. spid—The process ID of the process that generated the event.

. EventClass—The type of event being captured.

. Mode—For lock monitoring, the type of lock involved in the captured event.

. ObjectID—The ID of the object involved in the locking event—that is, the object
that the lock is associated with.

. DatabaseID—The ID of the database involved in the locking event

. TextData—The query that generated the lock event.

. LoginName—The login name associated with the process.

. ApplicationName—The name of the application generating the lock event.

Keep in mind that many internal system processes also acquire locks in SQL Server. If you
want to filter out those processes and focus on specific processes, users, or applications,
you use the filters in SQL Server Profiler to include the information you want to trace or
exclude the information you don’t want to trace (see Figure 37.2).

After you set up your events, data columns, and filters, you can begin the trace. Figure
37.3 shows an example of the type of information captured.

CHAPTER 37 Locking and Performance

FIGURE 37.1 Choosing lock events in SQL Server Profiler.

ptg

1357Monitoring Lock Activity in SQL Server
3

7

FIGURE 37.2 Filtering out unwanted information in SQL Server Profiler.

Monitoring Locks with Performance Monitor

Another method of monitoring locking in SQL Server is through the Performance
Monitor. The sys.dm_tran_locks view and SSMS Activity Monitor provide a snapshot of
the actual locks currently in effect in SQL Server. If you want to monitor the locking
activity as a whole on a continuous basis, you can use the Windows Performance
Monitor and monitor the counters available for the SQLServer:Locks performance
object (see Figure 37.4).

FIGURE 37.3 Lock information captured in a SQL Server Profiler trace.

ptg

1358

FIGURE 37.4 Choosing counters for the SQLServer:Locks performance object in
Performance Monitor.

NOTE

If you are monitoring a SQL Server 2008 named instance rather than a default
instance of SQL Server 2008, the SQL Server performance counters are listed under
the name of the SQL Server instance rather than under the generic SQLServer perfor-
mance counters.

You can use the SQLServer:Locks object to help detect locking bottlenecks and contention
points in the system as well as to provide a summary of the overall locking activity in SQL
Server. You can use the information that Performance Monitor provides to identify
whether locking problems are the cause of any performance problems. You can then take
appropriate corrective actions to improve concurrency and the overall performance of the
system. The counters that belong to the SQLServer:Locks object are as follows:

. Average Wait Time—This counter represents the average wait time (in milliseconds)
for each lock request. A high value is an indication of locking contention that could
be affecting performance of concurrent processes.

. Lock Requests/sec—This counter represents the total number of new locks and lock
conversion requests made per second. A high value for this counter is not necessarily
a cause for alarm; it might simply indicate a system with a high number of concur-
rent users.

. Lock Timeouts (timeout > 0)/sec—This counter is similar to the LockTimeouts/sec
counter but does not include NOWAIT lock requests that time out immediately.

CHAPTER 37 Locking and Performance

ptg

1359SQL Server Lock Types
3

7

. Lock Timeouts/sec—This counter represents the total number of lock timeouts per
second that occur for lock requests on a resource that cannot be granted before the
lock timeout interval is exceeded. By default, a blocked process waits indefinitely
unless the application specifies a maximum timeout limit, using the SET
LOCK_TIMEOUT command. A high value for this counter might indicate that the
timeout limit is set to a low value in the application or that you are experiencing
excessive locking contention.

. Lock Wait Time—This counter represents the cumulative wait time for each lock
request. It is given in milliseconds. A high value here indicates that you might have
long-running or inefficient transactions that are causing blocking and locking
contention.

. Lock Waits/sec—This counter represents the total number of lock requests gener-
ated per second for which a process had to wait before a lock request on a resource
was granted. A high value might indicate inefficient or long-running transactions or
a poor database design that is causing a large number of transactions to block one
another.

. Number of Deadlocks/sec—This number represents the total number of lock
requests per second that resulted in deadlocks. Deadlocks and ways to avoid them
are discussed in the “Deadlocks” section, later in this chapter.

For more information on using Windows Performance Monitor for monitoring SQL Server
performance, see Chapter 39, “Monitoring SQL Server Performance.”

SQL Server Lock Types
Locking is handled automatically in SQL Server. The Lock Manager chooses the type of
lock, based on the type of transaction (such as SELECT, INSERT, UPDATE, or DELETE). Lock
Manager uses the following types of locks:

. Shared locks

. Update locks

. Exclusive locks

. Intent locks

. Schema locks

. Bulk update locks

In addition to choosing the type of lock, the Lock Manager in SQL Server 2008 automati-
cally adjusts the granularity of the locks (for example, row, page, table), based on the
nature of the statement that is executed and the number of rows that are affected.

ptg

1360 CHAPTER 37 Locking and Performance

Shared Locks

By default, SQL Server uses shared locks for all read operations. A shared lock is, by defini-
tion, not exclusive. Theoretically, an unlimited number of shared locks can be held on a
resource at any given time. In addition, shared locks are unique in that, by default, a
process locks a resource only for the duration of the read on the resource (row, page, or
table). For example, the query SELECT * from authors locks the first row in the authors
table when the query starts. After the first row is read, the lock on that row is released,
and a lock on the second row is acquired. After the second row is read, its lock is released,
and a lock on the third row is acquired, and so on. In this fashion, a SELECT query allows
other data rows that are not being read to be modified during the read operation. This
increases concurrent access to the data.

Shared locks are compatible with other shared locks as well as with update locks. A shared
lock does not prevent the acquisition of additional shared locks or an update lock by
other processes on a given row or page. Multiple shared locks can be held at any given
time, for a number of transactions or processes. These transactions do not affect the
consistency of the data. However, shared locks do prevent the acquisition of exclusive
locks. Any transaction attempting to modify data on a page or a row on which a shared
lock is placed is blocked until all the shared locks are released.

NOTE

It is important to note that within a transaction running at the default isolation level of
Read Committed, shared locks are not held for the duration of the transaction or even
the duration of the statement that acquires the shared locks. Shared lock resources
(row, page, table, and so on) are normally released as soon as the read operation on
the resource is completed. SQL Server provides the HOLDLOCK clause for the SELECT
statement, which you can use if you want to continue holding the shared lock for the
duration of the transaction. HOLDLOCK is explained later in this chapter, in the section
“Table Hints for Locking.” Another way to hold shared locks for the duration of a trans-
action is to set the isolation level for the session or the query to Repeatable Read or
Serializable Reads.

Update Locks

Update locks are used to lock rows or pages that a user process intends to modify. When a
transaction tries to update a row, it must first read the row to ensure that it is modifying
the appropriate record. If the transaction were to put a shared lock on the resource
initially, it would eventually need to get an exclusive lock on the resource to modify the
record and prevent any other transaction from modifying the same record. The problem is
that this could lead to deadlocks in an environment in which multiple transactions are
trying to modify data on the same resource at the same time. Figure 37.5 demonstrates
how deadlocks can occur if lock conversion takes place from shared locks to exclusive
locks. When both processes attempt to escalate the shared lock they both hold on a
resource to an exclusive lock, it results in a deadlock situation.

ptg

1361SQL Server Lock Types
3

7

Update locks in SQL Server are provided to prevent this kind of deadlock scenario. Update
locks are partially exclusive in that only one update lock can be acquired at a time on any
resource. However, an update lock is compatible with shared locks, in that both can be
acquired on the same resource simultaneously. In effect, an update lock signifies that a
process wants to change a record, and it keeps out other processes that also want to
change that record. However, an update lock allows other processes to acquire shared
locks to read the data until the UPDATE or DELETE statement is finished locating the records
to be affected. The process then attempts to escalate each update lock to an exclusive
lock. At this time, the process waits until all currently held shared locks on the same
records are released. After the shared locks are released, the update lock is escalated to an
exclusive lock. The data change is then carried out, and the exclusive lock is held for the
remainder of the transaction.

NOTE

Update locks are not used just for update operations. SQL Server uses update locks
any time a search for data is required prior to performing the actual modification, such
as with qualified updates and deletes (that is, when a WHERE clause is specified).
Update locks are also used for insertions into a table with a clustered index because
SQL Server must first search the data and clustered index to identify the correct posi-
tion at which to insert the new row to maintain the sort order. After SQL Server has
found the correct location and begins inserting the record, it escalates the update lock
to an exclusive lock.

Exclusive Locks

As mentioned earlier, an exclusive lock is granted to a transaction when it is ready to
perform data modifications. An exclusive lock on a resource makes sure no other transac-
tion can interfere with the data locked by the transaction that is holding the exclusive
lock. SQL Server releases the exclusive lock at the end of the transaction.

Transaction 1

Update T1 SET coll=Coll

Acquires SHARED
lock

Needs an
EXCLUSIVE lock

Waits for Lock
Release by
Transaction 2

Transaction 2

Update T1 SET coll=Coll + 1

Acquires SHARED
lock

Needs an
EXCLUSIVE lock

Waits for Lock
Release by
Transaction 1

FIGURE 37.5 A deadlock scenario with shared and exclusive locks.

ptg

1362 CHAPTER 37 Locking and Performance

Exclusive locks are incompatible with other lock types. If an exclusive lock is held on a
resource, any other read or data modification request for the same resource by other
processes is forced to wait until the exclusive lock is released. Likewise, if a resource
currently has read locks held on it by other processes, the exclusive lock request is forced
to wait in a queue for the resource to become available.

Intent Locks

Intent locks do not really constitute a locking mode; rather, they act as a mechanism to
indicate at a higher level of granularity the types of locks held at a lower level. The types
of intent locks mirror the lock types previously discussed: shared intent locks, exclusive
intent locks, and update intent locks. SQL Server Lock Manager uses intent locks as a
mechanism to indicate that a shared, update, or exclusive lock is held at a lower level. For
example, a shared intent lock on a table by a process signifies that the process currently
holds a shared lock on a row or page within the table. The presence of the intent lock
prevents other transactions from attempting to acquire a table-level lock that would be
incompatible with the existing row or page locks.

Intent locks improve locking performance by allowing SQL Server to examine locks at the
table level to determine the types of locks held on the table at the row or page level rather
than searching through the multiple locks at the page or row level within the table. Intent
locks also prevent two transactions that are both holding locks at a lower level on a
resource from attempting to escalate those locks to a higher level while the other transac-
tion still holds the intent lock. This prevents deadlocks during lock escalation.

You typically see three types of intent locks when monitoring locking activity: intent
shared (IS) locks, intent exclusive (IX) locks, and shared with intent exclusive (SIX) locks.
An IS lock indicates that the process currently holds, or has the intention of holding,
shared locks on lower-level resources (row or page). An IX lock indicates that the process
currently holds, or has the intention of holding, exclusive locks on lower-level resources.
An SIX (pronounced as the letters S-I-X, not like the number six) lock occurs under special
circumstances when a transaction is holding a shared lock on a resource, and later in the
transaction, an IX lock is needed. At that point, the IS lock is converted to an SIX lock.

In the following example, the SELECT statement running at the serializable level acquires a
shared table lock. It then needs an exclusive lock to update the row in the sales_big table:

SET TRANSACTION ISOLATION LEVEL serializable

go

BEGIN TRAN

select sum(qty) FROM sales_big

UPDATE sales_big

SET qty = 0

WHERE sales_id = 1001

COMMIT TRAN

ptg

1363SQL Server Lock Types
3

7

Because the transaction initially acquired a shared (S) table lock and then needed an
exclusive row lock, which requires an intent exclusive (IX) lock on the table within the
same transaction, the S lock is converted to an SIX lock.

NOTE

If only a few rows were in sales_big, SQL Server might acquire only individual row or
key locks rather than a table-level lock. SQL Server would then have an intent shared
(IS) lock on the table rather than a full shared (S) lock. In that instance, the UPDATE

statement would then acquire a single exclusive lock to apply the update to a single
row, and the X lock at the key level would result in the IS locks at the page and table
levels being converted to an IX lock at the page and table level for the remainder of the
transaction.

Schema Locks

SQL Server uses schema locks to maintain structural integrity of SQL Server tables. Unlike
other types of locks that provide isolation for the data, schema locks provide isolation for
the schema of database objects, such as tables, views, and indexes within a transaction.
The Lock Manager uses two types of schema locks:

. Schema stability locks—When a transaction is referencing either an index or a
data page, SQL Server places a schema stability lock on the object. This ensures that
no other process can modify the schema of an object—such as dropping an index or
dropping or altering a stored procedure or table—while other processes are still refer-
encing the object.

. Schema modification locks—When a process needs to modify the structure of an
object (for example, alter the table, recompile a stored procedure), the Lock Manager
places a schema modification lock on the object. For the duration of this lock, no
other transaction can reference the object until the changes are complete and com-
mitted.

Bulk Update Locks

A bulk update lock is a special type of lock used only when bulk copying data into a table
using the bcp utility or the BULK INSERT command. This special lock is used for these
operations only when either the TABLOCK hint is specified to bcp or the BULK INSERT
command or when the table lock on bulk load table option has been set for the table.
Bulk update locks allow multiple bulk copy processes to bulk copy data into the same

ptg

1364 CHAPTER 37 Locking and Performance

table in parallel, while preventing other processes that are not bulk copying data from
accessing the table. If there are any indexes on the table, or any other processes already
holding locks on the table, a bulk update lock cannot be granted.

SQL Server Lock Granularity
Lock granularity is essentially the amount of data locked as part of a query or update to
provide complete isolation and serialization for the transaction. The Lock Manager needs
to balance the concurrent access to resources versus the overhead of maintaining a large
number of lower-level locks. For example, the smaller the lock size, the greater the
number of concurrent users who can access the same table at the same time but the
greater the overhead in maintaining those locks. The greater the lock size, the less over-
head required to manage the locks, but concurrency is also less. Figure 37.6 demonstrates
the trade-offs between lock size and concurrency.

Currently, SQL Server balances performance and concurrency by locking at the row level
or higher. Based on a number of factors, such as key distribution, number of rows, row
density, search arguments (SARGs), and so on, the Query Optimizer makes lock granularity
decisions internally, and the programmer does not have to worry about such issues. SQL
Server provides a number of T-SQL extensions that give you better control over query
behavior from a locking standpoint. These Query Optimizer overrides are discussed in the
“Table Hints for Locking” section, later in this chapter.

SQL Server provides the following locking levels:

. DATABASE—Whenever a SQL Server process is using a database other than master,
the Lock Manager grants a database lock to the process. These are always shared
locks, and they are used to keep track of when a database is in use to prevent
another process from dropping the database, setting the database offline, or restoring
the database. Note that because master and tempdb cannot be dropped or set offline,
database locks are not required on those databases.

. FILE—A file lock is a lock acquired on a database file.

. EXTENT—Extent locks are used for locking extents, usually only during space allo-
cation and deallocation. An extent consists of eight contiguous data or index pages.
Extent locks can be shared extent or exclusive extent locks.

. ALLOCATION_UNIT—This type of lock is acquired on a database allocation unit.

Worse

Better

Concurrency

Performance

bit server
Lock Size

FIGURE 37.6 Trade-offs between performance and concurrency, depending on lock granularity.

ptg

1365SQL Server Lock Granularity
3

7

. TABLE—With this type of lock, the entire table, inclusive of data and indexes, is
locked. Examples of when table-level locks may be acquired include selecting all
rows from a large table at the serializable level and performing unqualified updates
or deletes on a table.

. Heap or B-Tree (HOBT)—This type of lock is acquired on a heap of data pages or
on the B-Tree structure of an index.

. PAGE—With a page lock, the entire page, consisting of 8KB of data or index infor-
mation, is locked. Page-level locks might be acquired when all rows on a page need
to be read or when page-level maintenance needs to be performed, such as updating
page pointers after a page split.

. Row ID (RID)—With an RID lock, a single row within a page is locked. RID locks
are acquired whenever efficient and possible to do so in an effort to provide
maximum concurrent access to the resource.

. KEY—SQL Server uses two types of key locks. The one that is used depends on the
locking isolation level of the current session. For transactions that run in Read
Committed or Repeatable Read isolation modes, SQL Server locks the actual index
keys associated with the rows being accessed. (If a clustered index is on the table, the
data rows are the leaf level of the index. You see key locks instead of row locks on
those rows.) When in Serializable Read isolation mode, SQL Server prevents
phantom rows by locking a range of key values so that no new rows can be inserted
into the range. These are referred to as key-range locks. Key-range locks associated
with a particular key value lock that key and the previous one in the index to indi-
cate that all values between them are locked. Key-range locks are covered in more
detail in the next section.

. METADATA—This type of lock is acquired on system catalog information

. APPLICATION—An application lock allows users to essentially define their own
locks by specifying a name for the resource, a lock mode, an owner, and a timeout
interval. Using application locks is discussed later in this chapter, in the section
“Using Application Locks.”

Serialization and Key-Range Locking

As mentioned in the previous section, SQL Server provides serialization (Isolation Level 3)
through the SET TRANSACTION ISOLATION SERIALIZABLE command. One of the isolations
provided by this isolation level is the prevention against phantom reads. Preventing
phantom reads means that the recordset that a query obtains within a transaction must
return the same result set when it is run multiple times within the same transaction. That
is, while a transaction is active, another transaction should not be allowed to insert new
rows that would appear in the recordset of a query that were not in the original recordset
retrieved by the transaction. SQL Server provides this capability though key-range locking.

As described earlier in this chapter, key-range locking in SQL Server provides isolation for
a transaction from data modifications made by other transactions. This means that a
transaction should return the same recordset each time. The following sections show how

ptg

1366 CHAPTER 37 Locking and Performance

key-range locking works with various lock modes. Key-range locking covers the scenarios
of a range search that returns a result set as well as searches against nonexistent rows.

Key-Range Locking for a Range Search
In a scenario that involves key-range locking for a range search, SQL Server places locks on
the index pages for the range of data covered in the WHERE clause of the query. (For a clus-
tered index, the rows would be the actual data rows in the table.) Because the range is
locked, no other transaction can insert new rows that fall within the range. In Figure 37.7,
for example, transaction A has issued the following SELECT statement:

Set transaction isolation level serializable

begin tran

select * from bigpubs2008..stores

where stor_id between ‘6000’ and ‘7500’

and state = ‘CA’

Transaction B is performing the following INSERT statement, attempting to insert a row
that falls within the range being retrieved by transaction A (stor_id >= ‘6000’ and
stor_id <= ‘7500’):

begin tran

insert bigpubs2008..stores

values (‘7200’, ‘Test Stores’, ‘2 Williams Ct’,’Lexington’, ‘MA’, ‘02154’)

Listing 37.2 shows the locks acquired when using the sys.dm_tran_locks catalog view. (In
this sample output, SPID 53 is executing the SELECT statement, and SPID 57 is attempting
the INSERT.)

5000

6000

…

…

…

7500

…..

Index:Stor_id

Transaction A

Set transaction isolation level serializable
begin tran
select * from bigpubs2008..stores
 where stor_id between '6000' and '7500'

Transaction B

Set transaction isolation level serializable
begin tran
insert bigpubs2008..stores
 values ('7200', 'Test Stores', '2 Williams Ct',

 'Lexington', 'MA', '02154')

RangeIn-Null
WAIT

Transaction A

Update bigpubs2008..stores set Zip = '90210'
 where stor_id between '6000' and '7500'
 and state = 'CA'

1

2

3

Range S_S
Lock

and state = 'CA'

FIGURE 37.7 Key-range locking with a range search.

ptg

1367SQL Server Lock Granularity
3

7

LISTING 37.2 Viewing Key-Range Locks Using the sys.dm_tran_locks View

select str(request_session_id, 4,0) as spid,

convert (varchar(12), db_name(resource_database_id)) As db_name,

case when resource_database_id = db_id() and resource_type = ‘OBJECT’

then convert(char(20), object_name(resource_Associated_Entity_id))

else convert(char(20), resource_Associated_Entity_id)

end as object,

convert(varchar(12), resource_type) as resource_type,

convert(varchar(10), request_mode) as mode,

convert(varchar(8), request_status) as status

from sys.dm_tran_locks

order by request_session_id, 3 desc

go

spid db_name object resource_type mode status

---- ------------ --------------- ------------- ---------- --------

52 msdb 0 DATABASE S GRANT

53 bigpubs2008 391941215944704 PAGE IS GRANT

53 bigpubs2008 391941215944704 KEY RangeS-S GRANT

53 bigpubs2008 391941215944704 KEY RangeS-S GRANT

53 bigpubs2008 391941215944704 KEY RangeS-S GRANT

53 bigpubs2008 391941215944704 KEY RangeS-S GRANT

53 bigpubs2008 391941215944704 KEY RangeS-S GRANT

53 bigpubs2008 1685581043 OBJECT IS GRANT

53 bigpubs2008 0 DATABASE S GRANT

57 bigpubs2008 673416192655360 PAGE IX GRANT

57 bigpubs2008 673416192655360 KEY X GRANT

57 bigpubs2008 391941215944704 PAGE IX GRANT

57 bigpubs2008 391941215944704 PAGE IX GRANT

57 bigpubs2008 391941215944704 KEY RangeI-N WAIT

57 bigpubs2008 391941215944704 KEY RangeI-N GRANT

57 bigpubs2008 391941215944704 KEY X GRANT

57 bigpubs2008 391941215944704 PAGE IX GRANT

57 bigpubs2008 1685581043 OBJECT IX GRANT

57 bigpubs2008 0 DATABASE S GRANT

To provide key-range isolation, SQL Server places RangeS-S locks (that is, a shared lock on
the key range and a shared lock on the key at the end of the range) on the index keys for
the rows with the matching values. It also places intent share (IS) locks on the page(s) and
the table that contain the rows. The insert process acquires intent exclusive (IX) locks on
the destination page(s) and the table. In this case, the insert process is waiting for a
RangeIn-Null lock on the key range until the RangeS-S locks in the key range are released.
The RangeIn-Null lock is an exclusive lock on the range between keys, with no lock on
the key. This lock is acquired because the insert process is attempting to insert a new store
ID that has no associated key value.

ptg

1368 CHAPTER 37 Locking and Performance

Key-Range Locking When Searching Nonexistent Rows
In a scenario that involves key-range locking when searching nonexistent rows, if a trans-
action is trying to delete or retrieve a row that does not exist in the database, it still
should not find any rows at a later stage in the same transaction with the same query. For
example, in Figure 37.8, Transaction A is trying to fetch a nonexistent row with the key
value 7200 using the following query:

SET TRANSACTION ISOLATION LEVEL serializable

go

BEGIN TRAN

select * FROM bigpubs2008..stores

where stor_id = ‘7200’

In another concurrent transaction, Transaction B is executing the following statement to
insert a record with the same key value (stor_id = 7200):

begin tran

insert bigpubs2008..stores

values (‘7200’, ‘Test Stores’, ‘2 Williams Ct’,’Lexington’, ‘MA’, ‘02154’)

In this mode, SQL Server prevents Transaction B (SPID 57) from inserting a new row by
using a RangeS-S lock for Transaction A (SPID 53). This lock is placed on the index key

5000

6000

7100.

Non Existent Row

7300

7500

…..

Index:Stor_id

Transaction A

Set transaction isolation level serializable
begin tran
select * from stores
 where stor_id = '7200'

Range S_S

Transaction B

Set transaction isolation level serializable
begin tran
insert stores values ('7200', 'Test Stores', '2 Williams Ct',
 'Lexington', 'MA', '02154')RangeIn-Null

WAIT

Transaction A

If @@rowcount = 0
begin
insert stores values ('7200', 'Test Stores', '2 Williams Ct',
 'Lexington', 'MA', '02154')
select * from stores
 where stor_id = '7200'

1

2

3

FIGURE 37.8 Key-range locking with a nonexistent data set.

ptg

1369SQL Server Lock Granularity
3

7

rows for the rows in the range between MAX(stor_id) < 7200 (key value 7100 in Figure
37.8) and MIN(stor_id) > 7200 (key value 7300 in Figure 37.8). Transaction B holds a
RangeIn-Null lock and waits for the RangeS-S lock to be released.

Listing 37.3 provides an example of the query against the sys.dm_tran_locks catalog view
for these two transactions.

LISTING 37.3 Viewing Key-Range Locks on Nonexistent Row

select str(request_session_id, 4,0) as spid,

convert (varchar(12), db_name(resource_database_id)) As db_name,

case when resource_database_id = db_id() and resource_type = ‘OBJECT’

then convert(char(20), object_name(resource_Associated_Entity_id))

else convert(char(20), resource_Associated_Entity_id)

end as object,

convert(varchar(12), resource_type) as resource_type,

convert(varchar(10), request_mode) as mode,

convert(varchar(8), request_status) as status

from sys.dm_tran_locks

order by request_session_id, 3 desc

go

spid db_name object resource_type mode status

---- ------------ --------------- ------------- ---------- --------

53 bigpubs2008 391941215944704 PAGE IS GRANT

53 bigpubs2008 391941215944704 KEY RangeS-S GRANT

53 bigpubs2008 1685581043 OBJECT IS GRANT

53 bigpubs2008 0 DATABASE S GRANT

57 bigpubs2008 391941215944704 PAGE IX GRANT

57 bigpubs2008 391941215944704 KEY RangeI-N WAIT

57 bigpubs2008 1685581043 OBJECT IX GRANT

57 bigpubs2008 0 DATABASE S GRANT

Using Application Locks

The SQL Server Lock Manager knows nothing about the object or the structure of the
object it is locking. The Lock Manager simply checks whether two processes are trying to
obtain incompatible locks on the same resource. If so, blocking occurs.

SQL Server allows you to extend the resources that can be locked beyond the ones auto-
matically provided. You can define your own custom locking resources and let the Lock
Manager control the access to those resources as it would for any resource in a database.
This essentially allows you to choose to lock anything you want. These user-defined lock

ptg

1370 CHAPTER 37 Locking and Performance

resources are called application locks. To define an application lock, you use the
sp_getapplock stored procedure and specify a name for the resource you are locking, a
mode, an optional lock owner, and an optional lock timeout interval. The syntax for
sp_getapplock is as follows:

sp_getapplock [@Resource =] ‘resource_name’,

[@LockMode =] ‘lock_mode’

[, [@LockOwner =] { ’transaction’ | ‘session’ }]

[, [@LockTimeout =] ‘value’]

[, [@DbPrincipal =] ‘database_principal’]

Two resources are considered to be the same resource and are subject to lock contention if
they have the same name and the same lock owner in the same database. The resource
name used in these procedures can be any identifier up to 255 characters long. The lock
owner can be specified as either transaction or session. Multiple requests for locks on
the same resource can be granted only if the locking modes of the requests are compatible.
(See the “Lock Compatibility” section, later in this chapter, for a lock compatibility
matrix.) The possible modes of the lock allowed are shared, update, exclusive, intent
exclusive, and intent shared. The database principal is the user, role, or application role
that has permissions to an object in a database. The default is public.

For what purpose can you use application locks, and how do you use them? Suppose you
have a table that contains a queue of items to be processed by the system. You need a way
to serialize the retrieval of the next item from the queue so that the multiple concurrent
processes do not grab the same item at the same time. In the past, one way this could be
accomplished was by forcing an exclusive lock on the table. (The use of table hints to
override default locking behavior is covered in the “Table Hints for Locking” section, later
in this chapter.) Only the first process to acquire the exclusive lock would be able to
retrieve the next item from the queue. The other processes would have to wait until the
exclusive lock was released. The problem with this approach is that the exclusive lock
would also block other processes that might need to simply retrieve data from the table.

You can use application locks to avoid having to place an exclusive lock on the entire
table. By using sp_getapplock, you can define and lock a custom lock resource for a trans-
action or session. Locks that are owned by the current transaction are released when the
transaction commits or rolls back. Locks that are owned by the session are released when
the session is closed. Locks can also be explicitly released at any time, with the
sp_releaseapplock stored procedure. The syntax for sp_releaseapplock is as follows:

sp_releaseapplock [@Resource =] ‘resource_name’

[, [@LockOwner =] { ‘transaction’ | ‘session’ }]

[, [@DbPrincipal =] ‘database_principal’]

ptg

1371SQL Server Lock Granularity
3

7

NOTE

If a process calls sp_getapplock multiple times for the same lock resource,
sp_releaseapplock must be called the same number of times to fully release the
lock. In addition, if sp_getapplock is called multiple times on the same lock resource
but specifies different lock modes each time, the resulting lock on the resource is a
union of the different lock modes. Generally, the lock mode ends up being promoted to
the more restrictive level of the existing lock mode and the newly requested mode. The
resulting lock mode is held until the last lock release call is made to fully release the
lock. For example, assume that a process initially called sp_getapplock requested a
shared lock. If it subsequently called sp_getapplock again and requested an exclusive
lock, an exclusive lock would be held on the resource until sp_releaseapplock was
executed twice.

In the following example, you first request an exclusive lock on an application lock called
’QueueLock’ by using sp_getapplock. You then invoke the procedure to get the next item
in the queue. After the procedure returns, you call sp_releaseapplock to release the appli-
cation lock called ’QueueLock’ to let another session acquire the application lock:

exec sp_getapplock ‘QueueLock’, ‘Exclusive’, ‘session’

exec get_next_item_from_queue

exec sp_releaseapplock ‘QueueLock’, ‘session’

As long as all processes that need to retrieve items from the queue execute this same
sequence of statements, no other process can execute the get_next_item_from_queue
process until the application lock is released. The other processes block attempts to
acquire the exclusive lock on the resource ’QueueLock’. For example, Listing 37.4 shows
an example of a query against the sys.dm_tran_locks view, showing one process (SPID
53) holding an exclusive lock on QueueLock, while another process (SPID 57) is waiting for
an exclusive lock on QueueLock. (The hash value generated internally for QueueLock is
shown as 18fb067e in the Resource_Desc field.)

LISTING 37.4 Viewing Application Locks Using sys.dm_tran_locks

select str(request_session_id, 4,0) as spid,

convert (varchar(12), db_name(resource_database_id)) As db_name,

case when resource_database_id = db_id() and resource_type = ‘OBJECT’

then convert(char(6), object_name(resource_Associated_Entity_id))

else convert(char(6), resource_Associated_Entity_id)

end as object,

convert(varchar(12), resource_type) as resource_type,

convert(varchar(4), request_mode) as mode,

convert(varchar(24), resource_description) as resource_desc,

ptg

1372 CHAPTER 37 Locking and Performance

convert(varchar(6), request_status) as status

from sys.dm_tran_locks

order by request_session_id, 3 desc

go

spid db_name object resource_type mode resource_desc status

---- ------------ ------ ------------- ---- ------------------------ ------

52 msdb 0 DATABASE S GRANT

53 bigpubs2008 0 DATABASE S GRANT

53 bigpubs2008 0 APPLICATION X 0:[QueueLock]:(18fb067e) GRANT

57 bigpubs2008 0 APPLICATION X 0:[QueueLock]:(18fb067e) WAIT

57 bigpubs2008 0 DATABASE S GRANT

CAUTION

This method of using application locks to control access to the queue works only if all
processes that are attempting to retrieve the next item in the queue follow the same
protocol. The get_next_item_from_queue procedure itself is not actually locked. If
another process attempts to execute the get_next_item_from_queue process without
attempting to acquire the application lock first, the Lock Manager in SQL Server does
not prevent the session from executing the stored procedure.

Index Locking

As with locks on data pages, SQL Server manages locks on index pages internally. There is
the opportunity for greater locking contention in index pages than in data pages.
Contention at the root page of the index is the highest because the root is the starting
point for all searches via the index. Contention usually decreases as you move down the
various levels of the B-tree, but it is still higher than contention at the data page level due
to the typically greater number of index rows per index page than data rows per data page.

If locking contention in the index becomes an issue, you can use ALTER INDEX to manage
the locking behavior at the index level. The syntax of this command is as follows:

ALTER INDEX { index_name | ALL } ON object

{ ALLOW_ROW_LOCKS = { ON | OFF }

| ALLOW_PAGE_LOCKS = { ON | OFF }

The default for both ALLOW_ROW_LOCKS and ALLOW_PAGE_LOCKS is ON. When both of these
options are enabled, SQL Server automatically makes the decision whether to apply row or
page locks on the indexes and can escalate locks from the row or page level to the table
level. When ALLOW_ROW_LOCKS is set to OFF, row locks on indexes are not used. Only page-
or table-level locks are applied. When ALLOW_PAGE_LOCKS is set to OFF, no page locks are
used on indexes, and only row- or table-level locks are applied. When ALLOW_ROW_LOCKS

ptg

1373SQL Server Lock Granularity
3

7

and ALLOW_PAGE_LOCK are both set to OFF, only a table-level lock is applied when the index
is accessed.

NOTE

When ALLOW_PAGE_LOCKS is set to OFF for an index, the index cannot be reorganized.

SQL Server usually makes good choices for the index locks, but based on the distribution
of data and nature of the application, you might want to force a specific locking option
on a selective basis. For example, if you are experiencing a high level of locking
contention at the page level of an index, you might want to force SQL Server to use row-
level locks by turning off page locks.

As another example, if you have a lookup table that is primarily read-only (for example,
one that is only refreshed by a weekly or monthly batch process), it may be more efficient
to turn off page and row locking so that all readers simply acquire shared table-level locks,
thereby reducing locking overhead. When the weekly or monthly batch update runs, the
update process acquires an exclusive table-level lock when refreshing the table.

To display the current locking option for a given index, you use the INDEXPROPERTY function:

select INDEXPROPERTY(object_ID , index_name,

{ ‘IsPageLockDisallowed’ | ‘IsRowLockDisallowed’ })

CAUTION

SQL Server generally makes the correct decision in choosing the appropriate locking
granularity for a query. It is generally not recommended that you override the locking
granularity choices that the Query Optimizer makes unless you have good reason to do
so and have evaluated all options first. Setting the inappropriate locking level can
adversely affect the concurrency for a table or index.

Row-Level Versus Page-Level Locking

For years, it was often debated whether row-level locking was better than page-level
locking. That debate still goes on in some circles. Many people argue that if databases and
applications are well designed and tuned, row-level locking is unnecessary. This is borne
out somewhat by the number of large and high-volume applications that were developed
when row-level locking wasn’t even an option. (Prior to SQL Server version 7, the smallest
unit of data that SQL Server could lock was the page.) However, at that time, the page size
in SQL Server was only 2KB. With page sizes expanded to 8KB, a greater number of rows
(four times as many) can be contained on a single page. Page-level locks on 8KB pages

ptg

1374 CHAPTER 37 Locking and Performance

could lead to greater page-level contention because the likelihood of the data rows being
requested by different processes residing on the same page is greater. Using row-level
locking increases the concurrent access to the data.

On the other hand, row-level locking consumes more resources (memory and CPU) than
page-level locks simply because there is a greater number of rows than pages in a table. If
a process needed to access all rows on a page, it would be more efficient to lock the entire
page than acquire a lock for each individual row. This would result in a reduction in the
number of lock structures in memory that the Lock Manager would have to manage.

Which is better—greater concurrency or lower overhead? As shown earlier, in Figure 37.6,
it’s a trade-off. As lock size decreases, concurrency improves, but performance degrades
due to the extra overhead. As the lock size increases, performance improves due to less
overhead, but concurrency degrades. Depending on the application, the database design,
and the data, either page-level or row-level locking can be shown to be better than the
other in different circumstances.

SQL Server makes the determination automatically at runtime—based on the nature of the
query, the size of the table, and the estimated number of rows affected—of whether to
initially lock rows, pages, or the entire table. In general, SQL Server attempts to first lock
at the row level more often than the page level, in an effort to provide the best concur-
rency. With the speed of today’s CPUs and the large memory support, the overhead of
managing row locks is not as expensive as in the past. However, as the query processes
and the actual number of resources locked exceed certain thresholds, SQL Server might
attempt to escalate locks from a lower level to a higher level, as appropriate.

At times, SQL Server might choose to do both row and page locking for the same query. For
example, if a query returns multiple rows, and if enough contiguous keys in a nonclustered
index page are selected to satisfy the query, SQL Server might place page locks on the index
while using row locks on the data. This reduces the need for lock escalation.

Lock Escalation

When SQL Server detects that the locks acquired by a query are using too much memory
and consuming too many system resources for the Lock Manager to manage the locks effi-
ciently, it automatically attempts to escalate row, key, or page locks to table-level locks.
For example, because a query on a table continues to acquire row locks and every row in
the table will eventually be accessed, it makes sense for SQL Server to escalate the row
locks to a table-level lock. After the table-level lock is acquired, the row-level locks are
released. This helps reduce locking overhead and keeps the system from running out of
available lock structures. Recall from earlier sections in this chapter that the potential
need for lock escalation is reflected in the intent locks that are acquired on the table by
the process locking at the row or page level. While the default behavior in SQL Server is to
escalate to table-level locks, SQL Server 2008 introduces the capability to escalate row or
page locks to a single partition via the LOCK_ESCALATION setting in ALTER TABLE. This new
option allows you to specify whether escalation is always to the table or partition level.
The LOCK_ESCALATION setting can also be used to prevent lock escalation entirely.

ptg

1375SQL Server Lock Granularity
3

7

NOTE

SQL Server never escalates row locks to page locks, only to table or partition-level
locks. Also, multiple partition-level locks are never escalated to a single table-level
lock.

What are the lock escalation thresholds in SQL Server? Currently, SQL Server attempts
lock escalation under the following conditions:

. Whenever a single T-SQL statement acquires at least 5,000 locks on a single reference
of a table, table partition, or index (this value is subject to change in subsequent
service packs). Note that lock escalation does not occur if the locks are spread across
multiple objects in the same statement—for example, 4,000 locks on one index and
2,500 locks on another.

. When the amount of memory required by lock resources exceeds 40% of the avail-
able Database Engine memory pool

NOTE

Generally, if more memory is required for lock resources than is currently available in
the Database Engine memory pool, the Database Engine allocates additional memory
dynamically to satisfy the request for locks as long as more computer memory is avail-
able and the max server memory threshold has not been reached. However, if allocat-
ing additional memory would cause paging at the operating system level, more lock
space is not allocated. If no more memory is available, or the amount of memory allo-
cated to lock resources reaches 60% of the memory acquired by an instance of the
Database Engine, further requests for locks generate an out-of-lock memory error.

If locks cannot be escalated because of lock conflicts, SQL Server reattempts lock escalation
when every 1,250 additional locks are acquired. For example, if another process is also
holding locks at the page or row level on the same table (indicated by the presence of that
process’s intent lock on the table), lock escalation cannot take place if the lock types are
not compatible until the lower-level locks are released by the other processes. In this case,
SQL Server continues acquiring locks at the row or page level until the table lock becomes
available.

Controlling Lock Escalation
Escalating locks to the table or partition level can lead to locking contention or blocking
for other transactions attempting to access a row or page in the same table. Under certain
circumstances, you might want to disable lock escalation.

As mentioned previously, lock escalation can be enabled or disabled at the table level
using the ALTER TABLE command:

ALTER TABLE tablename set (LOCK_ESCALATION ={ AUTO | TABLE | DISABLE })

ptg

1376 CHAPTER 37 Locking and Performance

Setting the option to AUTO allows SQL Server to escalate to the table or partition level.
Setting the option to DISABLE prevents escalation to the table or partition level.

SQL Server 2008 also supports disabling lock escalation for all tables in all databases
within a SQL Server instance using either the 1211 or 1224 trace flags. Trace flag 1211
completely disables lock escalation, regardless of the memory required for lock resources.
However, when the amount of memory required for lock resources exceeds 60% of the
maximum available Database Engine memory, an out-of-lock memory error is generated.
Alternatively, trace flag 1224 disables the built-in lock escalation based on the number of
locks acquired, but lock escalation is still possible when the 40% of available Database
Engine memory threshold is reached. However, as noted previously, if the locks cannot be
escalated, SQL Server could still run out of available memory for locks.

NOTE

You should be extremely careful when considering disabling lock escalation via the
trace flags. A poorly designed application could potentially exhaust the available SQL
Server memory with excessive lock structures and seriously degrade SQL Server perfor-
mance. It is usually preferable to control lock escalation at the object level via the
ALTER TABLE command.

Lock Compatibility
If a process has already locked a resource, the granting of lock requests by other transac-
tions on the same resource is governed by the lock compatibility matrix within SQL
Server. Table 37.3 shows the lock compatibility matrix for the locks most commonly
acquired by the SQL Server Lock Manager, indicating which lock types are compatible and
which lock types are incompatible when requested on the same resource.

TABLE 37.3 SQL Server Lock Compatibility Matrix

Requested Lock Type Existing Lock Type

IS S U IX SIX X Sch-S SCH-M BU

Intent shared Yes Yes Yes Yes Yes No Yes No No

Shared Yes Yes Yes No No No Yes No No

Update Yes Yes No No No No Yes No No

Intent exclusive Yes No No Yes No No Yes No No

Shared with intent exclusive Yes No No No No No Yes No No

Exclusive No No No No No No Yes No No

Schema stability Yes Yes Yes Yes Yes Yes Yes No Yes

Schema modify No No No No No No No No No

Bulk update No No No No No No Yes No Yes

ptg

1377Locking Contention and Deadlocks
3

7

For example, if a transaction has acquired a shared lock on a resource, the possible lock
types that can be acquired on the resource by other transactions are intent shared, shared,
update, and schema stability locks. Intent exclusive, SIX, exclusive, schema modification,
and bulk update locks are incompatible with a shared lock and cannot be acquired on the
resource until the shared lock is released.

Locking Contention and Deadlocks
In the grand scheme of things, the most likely culprits of SQL Server application perfor-
mance problems are typically poorly written queries, poor database and index design, and
locking contention. Whereas the first two problems result in poor application perfor-
mance, regardless of the number of users on the system, locking contention becomes
more of a performance problem as the number of users increases. It is further
compounded by increasingly complex or long-running transactions.

Locking contention occurs when a transaction requests a lock type on a resource that is
incompatible with an existing lock type on the resource. By default, the process waits
indefinitely for the lock resource to become available. Locking contention is noticed in
the client application through the apparent lack of response from SQL Server.

Figure 37.9 demonstrates an example of locking contention. Process 1 has initiated a
transaction and acquired an exclusive lock on page 1:325. Before Process 1 can acquire the
lock that it needs on page 1:341 to complete its transaction, Process 2 acquires an exclu-
sive lock on page 1:341. Until Process 2 commits or rolls back its transaction and releases
the lock on Page 1:341, the lock continues to be held. Because this is not a deadlock
scenario (which is covered in the “Deadlocks” section, later in this chapter), by default,
SQL Server takes no action. Process 1 simply waits indefinitely.

Process 1 Process 2

Page 1:325

Page 1:341

Locks

Requests Locks

1

23

X

XLock
Wait

X

FIGURE 37.9 Locking contention between two processes.

ptg

1378 CHAPTER 37 Locking and Performance

Identifying Locking Contention

When a client application appears to freeze after submitting a query, this is often due to
locking contention. To identify locking contention between processes, you can use the
SSMS Activity Monitor, as discussed earlier in this chapter, in the “Monitoring Lock
Activity in SQL Server” section; use the sp_who2 stored procedure; or query the
sys.dm_tran_locks system catalog view. Figure 37.10 shows an example of a blocking lock
as viewed in the SSMS Activity Monitor.

To identify whether a process is being blocked using sp_who2, examine the BlkBy column.
If any value besides ‘-’ is displayed, it is the SPID of the process that is holding the block-
ing lock. In the following output of sp_who2 (edited for space), you can see that process 57
is SUSPENDED, waiting on a lock held by process 53:

exec sp_who2

go

SPID Status Login HostName BlkBy DBName Command

----- ---------- --------- --------------- ----- ----------- ----------------

*** info for internal processes deleted ***

51 sleeping rrankins LATITUDED830-W7 . master AWAITING COMMAND

52 sleeping SQLADMIN LATITUDED830-W7 . msdb AWAITING COMMAND

53 sleeping rrankins LATITUDED830-W7 . bigpubs2008 AWAITING COMMAND

54 sleeping rrankins LATITUDED830-W7 . tempdb AWAITING COMMAND

FIGURE 37.10 Examining locking contention between two processes in SSMS Activity Monitor.

ptg

1379Locking Contention and Deadlocks
3

7

55 sleeping rrankins LATITUDED830-W7 . master AWAITING COMMAND

56 sleeping SQLADMIN LATITUDED830-W7 . msdb AWAITING COMMAND

57 SUSPENDED rrankins LATITUDED830-W7 53 bigpubs2008 INSERT

58 sleeping rrankins LATITUDED830-W7 . bigpubs2008 AWAITING COMMAND

59 RUNNABLE rrankins LATITUDED830-W7 . master SELECT INTO

To determine what table, page, or rows are involved in blocking and at what level the
blocking is occurring, you can query the sys.dm_tran_locks catalog view, as shown in
Listing 37.5.

LISTING 37.5 Viewing Locking Contention by Using the sys.dm_tran_locks View

use bigpubs2008

go

select str(request_session_id, 4,0) as spid,

convert (varchar(12), db_name(resource_database_id)) As db_name,

case when resource_database_id = db_id() and resource_type = ‘OBJECT’

then convert(char(12), object_name(resource_Associated_Entity_id))

else convert(char(16), resource_Associated_Entity_id)

end as object,

convert(varchar(12), resource_type) as resource_type,

convert(varchar(8), request_mode) as mode,

convert(varchar(14), resource_description) as resource_desc,

convert(varchar(6), request_status) as status

from sys.dm_tran_locks

order by request_session_id, 3 desc

go

spid db_name object resource_type mode resource_desc status

---- ------------ ---------------- ------------- -------- -------------- ------

52 msdb 0 DATABASE S GRANT

53 bigpubs2008 673416192655360 PAGE IX 1:608 GRANT

53 bigpubs2008 673416192655360 KEY X (928195c101b1) GRANT

53 bigpubs2008 391941215944704 KEY X (59d1a826552c) GRANT

53 bigpubs2008 391941215944704 PAGE IX 1:280 GRANT

53 bigpubs2008 stores OBJECT IX GRANT

53 bigpubs2008 0 DATABASE S GRANT

56 msdb 0 DATABASE S GRANT

57 bigpubs2008 391941215944704 PAGE IS 1:280 GRANT

57 bigpubs2008 391941215944704 KEY S (59d1a826552c) WAIT

57 bigpubs2008 stores OBJECT IS GRANT

57 bigpubs2008 0 DATABASE S GRANT

From this output, you can see that Process 57 is waiting for a shared (S) lock on key
59d1a826552c of page 1:280 of the stores table. Process 53 has an intent exclusive (IX)

ptg

1380 CHAPTER 37 Locking and Performance

lock on that page because it has an exclusive (X) lock on a key on that page. (Both have
the same resource_Associated_Entity_id of 59d1a826552c.)

As an alternative to sp_who and the sys.dm_tran_locks view, you can also get specific
information on any blocked processes by querying the sys.dm_os_waiting_tasks system
catalog view, as shown in Listing 37.6.

LISTING 37.6 Viewing Blocked Processes by Using the sys.dm_os_waiting_tasks View

select convert(char(4), session_id) as spid,

convert(char(8), wait_duration_ms) as duration,

convert(char(8), wait_type) as wait_type,

convert(char(3), blocking_session_id) as blk,

resource_description

from sys.dm_os_waiting_tasks

where blocking_session_id is not null

go

spid duration wait_type blk resource_description

---- -------- --------- ---- ---

--

57 134118 LCK_M_S 53 keylock hobtid=391941215944704 dbid=8 id=lockfd43800

mode=X associatedObjectId=391941215944704

Setting the Lock Timeout Interval

If you do not want a process to wait indefinitely for a lock to become available, SQL Server
allows you to set a lock timeout interval by using the SET LOCK_TIMEOUT command. You
specify the timeout interval in milliseconds. For example, if you want your processes to
wait only 5 seconds (that is, 5,000 milliseconds) for a lock to become available, you
execute the following command in the session:

SET LOCK_TIMEOUT 5000

If your process requests a lock resource that cannot be granted within 5 seconds, the state-
ment is aborted, and you get the following error message:

Server: Msg 1222, Level 16, State 52, Line 1

Lock request time out period exceeded.

To examine the current LOCK_TIMEOUT setting, you can query the system function
@@lock_timeout:

select @@lock_timeout

go

5000

ptg

1381Locking Contention and Deadlocks
3

7

If you want processes to abort immediately if the lock cannot be granted (in other words,
no waiting at all), you set the timeout interval to 0. If you want to set the timeout interval
back to infinity, execute the SET_LOCK_TIMEOUT command and specify a timeout interval
of -1.

Minimizing Locking Contention

Although setting the lock timeout prevents a process from waiting indefinitely for a lock
request to be granted, it doesn’t address the cause of the locking contention. In an effort
to maximize concurrency and application performance, you should minimize locking
contention between processes as much as possible. Some general guidelines to follow to
minimize locking contention include the following:

. Keep transactions as short and concise as possible. The shorter the period of time
locks are held, the less chance for lock contention. Keep commands that are not
essential to the unit of work being managed by the transaction (for example, assign-
ment selects, retrieval of updated or inserted rows) outside the transaction.

. Keep statements that comprise a transaction in a single batch to eliminate unneces-
sary delays caused by network input/output (I/O) between the initial BEGIN TRAN
statement and the subsequent COMMIT TRAN commands.

. Consider coding transactions entirely within stored procedures. Stored procedures
typically run faster than commands executed from a batch. In addition, because
they are server resident, stored procedures reduce the amount of network I/O that
occurs during execution of the transaction, resulting in faster completion of the
transaction.

. Commit updates in cursors frequently and as soon as possible. Cursor processing is
much slower than set-oriented processing and causes locks to be held longer.

NOTE

Even though cursors might run more slowly than set-oriented processing, cursors can
sometimes be used to minimize locking contention for updates and deletions of a large
number of rows from a table, which might result in a table lock being acquired. The
UPDATE or DELETE statement itself might complete faster; however, if it is running with
an exclusive lock on the table, then no other process can access the table until it com-
pletes. By using a cursor to update a large number of rows one row at a time and com-
mitting the changes frequently, the cursor uses page- or row-level locks rather than a
table-level lock. It might take longer for the cursor to complete the actual update or
delete, but while the cursor is running, other processes are still able to access other
rows or pages in the table that the cursor doesn’t currently have locked.

. Use the lowest level of locking isolation required by each process. For example, if
dirty reads are acceptable and accurate results are not imperative, consider using
transaction Isolation Level 0. Use the Repeatable Read or Serializable Read isolation
levels only if absolutely necessary.

ptg

1382 CHAPTER 37 Locking and Performance

. Never allow user interaction between a BEGIN TRAN statement and a COMMIT TRAN
statement because doing so may cause locks to be held for an indefinite period of
time. If a process needs to return rows for user interaction and then update one or
more rows, consider using optimistic locking or Snapshot Isolation in your applica-
tion. (Optimistic locking is covered in the “Optimistic Locking” section, later in this
chapter.)

. Minimize “hot spots” in a table. Hot spots occur when the majority of the update
activity on a table occurs within a small number of pages. For example, hot spots
occur for concurrent insertions to the last page of a heap table or the last pages of a
table with a clustered index on a sequential key. You can often eliminate hot spots
by creating a clustered index in a table on a column or columns to order the rows in
the table in such a way that insert and update activity is spread out more evenly
across the pages in the table.

Deadlocks

A deadlock occurs when two processes are each waiting for a locked resource that the other
process currently holds. Neither process can move forward until it receives the requested
lock on the resource, and neither process can release the lock it is currently holding until
it can receive the requested lock. Essentially, neither process can move forward until the
other one completes, and neither one can complete until it can move forward.

Two primary types of deadlocks can occur in SQL Server:

. Cycle deadlocks—A cycle deadlock occurs when two processes acquire locks on
different resources, and then each needs to acquire a lock on the resource that the
other process has. Figure 37.11 demonstrates an example of a cycle deadlock.

In Figure 37.11, Process 1 acquires an exclusive lock on page 1:201 in a transaction.
At the same time, Process 2 acquires an exclusive lock on page 1:301 in a transac-

Process 1 Process 2

Page 1:201

Page 1:301

Locks

Requests

Requests

Locks

1

2

4

3

Lock
WaitX X

XLock
Wait

X

FIGURE 37.11 An example of a cycle deadlock.

ptg

1383Locking Contention and Deadlocks
3

7

tion. Process 1 then attempts to acquire a lock on page 1:301 and begins waiting for
the lock to become available. Simultaneously, Process 2 requests an exclusive lock on
page 1:201, and a deadlock, or “deadly embrace,” occurs.

. Conversion deadlocks—A conversion deadlock occurs when two or more processes
each hold a shared lock on the same resource within a transaction and each wants
to promote the shared lock to an exclusive lock, but neither can do so until the
other releases the shared lock. An example of a conversion deadlock is shown in
Figure 37.12.

It is often assumed that deadlocks happen at the data page or data row level. In fact, dead-
locks often occur at the index page or index key level. Figure 37.13 depicts a scenario in
which a deadlock occurs due to contention at the index key level.

SQL Server automatically detects when a deadlock situation occurs. A separate process in
SQL Server, called LOCK_MONITOR, checks the system for deadlocks roughly every 5 seconds.
In the first pass, this process detects all the processes that are waiting on a lock resource.
The LOCK_MONITOR thread checks for deadlocks by examining the list of waiting lock
requests to see if any circular lock requests exist between the processes holding locks and
the processes waiting for locks. When the LOCK_MONITOR detects a deadlock, SQL Server
aborts the transaction of one of the involved processes. How does SQL Server determine
which process to abort? It attempts to choose as the deadlock victim the transaction that
it estimates would be least expensive to roll back. If both processes involved in the dead-
lock have the same rollback cost and the same deadlock priority, the deadlock victim is
chosen randomly.

Process 1 Process 2

Page 1:201Locks

Requests

Locks

Locks

1

4

2

3

Lock
Wait

XX

S S

FIGURE 37.12 An example of a conversion deadlock.

ptg

1384 CHAPTER 37 Locking and Performance

Table 1

103 AAA BBB

102 CCC DDD

104 EEE FFF

Page1

600 TTT UUU

602 XXX YY Y

605 VVV XXX

Page2

Non-Clustered
Index on Col2

AAA

CCC

EEE

TTT

VVV

XXX

Page2

Page1

Transaction 1

Begin Tran
Insert into Table 1 values (104,’EEE’, ‘FFF’)
Select * from Table 1 where col2 > ‘T’

SELECT Blocked by
lock on index key ‘XXX’
acquired by INSERT

Transaction 2

Begin Tran
Insert into Table 1 values (602, ‘XXX’, ‘YYY’)
Select * from Table 1 where col2 > ‘A’

SELECT Blcoked by
lock on index key ‘EEE’
acquired by INSERT

Locks Index Key ‘XXX’
during INSERT

Locks Index Key ‘EEE’
during INSERT

FIGURE 37.13 Deadlock scenario due to locks on index keys.

NOTE

As deadlocks occur, SQL Server begins reducing the deadlock detection interval and
can potentially go as low as 100ms. In addition, the first few lock requests that cannot
be satisfied after a deadlock is detected immediately trigger a deadlock search instead
of waiting for the next deadlock detection interval. When deadlock frequency declines,
the deadlock detection interval begins to increase back to 5 seconds.

You can influence which process will be the deadlock victim by using the >SET DEAD-
LOCK_PRIORITY statement. DEADLOCK_PRIORITY can be set to LOW, NORMAL, or HIGH.
Alternatively, DEADLOCK_PRIORITY can also be set to any integer value from -10 to 10. The
default deadlock priority is NORMAL. When two sessions deadlock, and the deadlock priority
has been set to something other than the default, the session with the lower priority is
chosen as the deadlock victim. If you have lower-priority processes that you would prefer
always be chosen as the deadlock victims, you might want to set the process’s deadlock
priority to LOW. Alternatively, for critical processes, you might want to set the deadlock
priority to HIGH to specify processes that should always come out as the winners in a dead-
lock scenario.

Avoiding Deadlocks
Although SQL Server automatically detects and handles deadlocks, you should try to avoid
deadlocks in your applications. When a process is chosen as a deadlock victim, it has to

ptg

1385Locking Contention and Deadlocks
3

7

resubmit its work because it has been rolled back. Frequent deadlocks create performance
problems if you have to keep repeating work.

You can follow a number of guidelines to minimize, if not completely eliminate, the
number of deadlocks that occur in your application(s). Following the guidelines presented
earlier to minimize locking contention and speed up your transactions also helps to elimi-
nate deadlocks. The less time for which a transaction is holding locks, the less likely the
transition will be around long enough for a conflicting lock request to be requested at the
same time. In addition, you might want to follow this list of additional guidelines when
designing applications:

. Be consistent about the order in which you access the data from tables to avoid
cycle deadlocks.

. Minimize the use of HOLDLOCK or queries that are running using Repeatable Read or
Serializable Read isolation levels. This helps avoid conversion deadlocks. If possible,
perform UPDATE statements before SELECT statements so that your transaction
acquires an update or exclusive lock first. This eliminates the possibility of a conver-
sion deadlock. (Later, in the “Table Hints for Locking” section in this chapter, you
see how to use table-locking hints to force SELECT statements to use update or exclu-
sive locks as another strategy to avoid conversion deadlocks.)

. Choose the transaction isolation level judiciously. You might be able to reduce dead-
locks by choosing lower isolation levels.

Handling and Examining Deadlocks
SQL Server returns error number 1205 to the client when it aborts a transaction as a result
of deadlock. The following is an example of a 1205 error message:

Msg 1205, Level 13, State 51, Line 1

Transaction (Process ID 53) was deadlocked on lock resources with another process

and has been chosen as the deadlock victim. Rerun the transaction.

Because a deadlock is not a logical error but merely a resource contention issue, the client
can resubmit the entire transaction. To handle deadlocks in applications, be sure to trap
for message 1205 in the error handler. When a 1205 error occurs, the application can
simply resubmit the transaction automatically. It is considered bad form to allow end
users of an application to see the deadlock error message returned from SQL Server.

Earlier in this chapter, you learned how to use sp_who2 and the sys.dm_tran_locks and
sys.dm_os_waiting_tasks system catalog views to monitor locking contention between
processes. However, when a deadlock occurs, one transaction is rolled back, and one is
allowed to continue. If you examine the output from sp_who2 or the system catalog views
after a deadlock occurs, the information likely will not be useful because the locks on the
resources involved will have since been released.

Fortunately, SQL Server provides a couple of trace flags to monitor deadlocks within SQL
Server. They are trace flag 1204 and trace flag 1222. When enabled, they print deadlock
information to the SQL Server error log. Trace flag 1204 provides deadlock information

ptg

1386 CHAPTER 37 Locking and Performance

generated by each process involved in the deadlock. Trace flag 1222 provides deadlock
information by processes and by resources. Both trace flags can be enabled to capture a
complete representation of a deadlock event.

You use the DBCC TRACEON command to turn on the trace flags and DBCC TRACEOFF to turn
them off. The 1204 and 1222 trace flags are global trace flags. Global trace flags are set at
the server level and are visible to every connection on the server. They cannot be set for a
specific session only. They enable or disable a global trace flag, and the -1 option must be
specified as the second argument to the DBCC TRACEON and DBCC TRACEOFF commands. The
following example shows how to globally enable the 1204 trace flag:

dbcc traceon(1204, -1)

If possible, it is best to set global trace flags whenever SQL Server is started up by adding
the -T option with the appropriate trace flag value to the SQL Server startup parameters.
For example, to have SQL Server turn on the 1204 trace flag automatically on startup, you
use the SQL Server Configuration Manager. In the SQL Server Configuration Manager
window, you click SQL Server 2005 Services; in the right pane, right-click the SQL Server
service for the appropriate SQL Server instance name and then click Properties. On the
Advanced tab, expand the Startup Parameters box and type a semicolon (;) and -T1204
after the last startup parameter listed (see Figure 37.14); then click OK to save the changes.
You then need to stop and restart SQL Server for the trace flag to take effect.

FIGURE 37.14 Setting the 1204 trace flag to be enabled on SQL Server startup.

ptg

1387Locking Contention and Deadlocks
3

7

CAUTION

The 1204 and 1222 trace flags may incur some additional processing overhead in SQL
Server. They should be used only when you are debugging and tuning SQL Server per-
formance, and they should not be left on indefinitely in a production environment. You
should turn them off after you have diagnosed and fixed the problems.

The 1204 Trace Flag Trace flag 1204 prints useful information to the SQL Server error log
when a deadlock is detected. The following output is from the error log for this trace flag:

2010-02-14 18:44:36.27 spid6s Deadlock encountered Printing deadlock

information

2010-02-14 18:44:36.27 spid6s Wait-for graph

2010-02-14 18:44:36.27 spid6s

2010-02-14 18:44:36.27 spid6s Node:1

2010-02-14 18:44:36.33 spid6s KEY: 8:391941215944704 (59d1a826552c) CleanCnt:3

Mode:S Flags: 0x1

2010-02-14 18:44:36.33 spid6s Grant List 0:

2010-02-14 18:44:36.33 spid6s Owner:0x0FE274C0 Mode: S Flg:0x40

Ref:0 Life:02000000 SPID:53 ECID:0XactLockInfo: 0x05626F00

2010-02-14 18:44:36.33 spid6s SPID: 53 ECID: 0 Statement Type: DELETE

Line #: 1

2010-02-14 18:44:36.33 spid6s Input Buf: Language Event: delete

bigpubs2008..stores

where stor_id = ‘7066’

2010-02-14 18:44:36.33 spid6s Requested by:

2010-02-14 18:44:36.33 spid6s ResType:LockOwner Stype:’OR’Xdes:0x06136280

Mode: X SPID:57 BatchID:0 ECID:0 TaskProxy:(0x062DE354) Value:0xfe27580 Cost:(0/0)

2010-02-14 18:44:36.33 spid6s

2010-02-14 18:44:36.33 spid6s Node:2

2010-02-14 18:44:36.33 spid6s KEY: 8:391941215944704 (59d1a826552c)

CleanCnt:3 Mode:S Flags: 0x1

2010-02-14 18:44:36.33 spid6s Grant List 0:

2010-02-14 18:44:36.33 spid6s Owner:0x0FE27480 Mode: S

Flg:0x40 Ref:0 Life:02000000 SPID:57 ECID:0 XactLockInfo: 0x061362A8

2010-02-14 18:44:36.33 spid6s SPID: 57 ECID: 0 Statement Type: DELETE

Line #: 1

2010-02-14 18:44:36.33 spid6s Input Buf: Language Event: delete

bigpubs2008..stores

where stor_id = ‘7066’

ptg

1388 CHAPTER 37 Locking and Performance

2010-02-14 18:44:36.33 spid6s Requested by:

2010-02-14 18:44:36.33 spid6s ResType:LockOwner Stype:’OR’Xdes:0x05626ED8

Mode: X SPID:53 BatchID:0 ECID:0 TaskProxy:(0x06892354) Value:0xfe27240 Cost:(0/0)

2010-02-14 18:44:36.33 spid6s

2010-02-14 18:44:36.33 spid6s Victim Resource Owner:

2010-02-14 18:44:36.33 spid6s ResType:LockOwner Stype:’OR’Xdes:0x06136280

Mode: X SPID:57 BatchID:0 ECID:0 TaskProxy:(0x062DE354) Value:0xfe27580 Cost:(0/0)

Although the 1204 output is somewhat cryptic, it is not too difficult to read if you know
what to look for. If you look through the output, you can see where it lists the SPIDs of
the processes involved in the deadlock (in this example, SPIDs 53 and 57) and indicates
which process was chosen as the deadlock victim (SPID:57). The type of statement
involved is indicated by Statement Type. In this example, both processes were attempting
a DELETE statement. You can also examine the actual text of the query (Input Buf) that
each process was executing at the time the deadlock occurred. The output also displays
the locks granted to each process (Grant List), the lock types (Mode:) of the locks held,
and the lock resources requested by the deadlock victim.

The 1222 Trace Flag Trace flag 1222 provides deadlock information, first by processes
and then by resources. The information is returned in an XML-like format that does not
conform to an XML schema definition. The output has three major sections:

. The first section declares the deadlock victim.

. The second section describes each process involved in the deadlock

. The third section describes the resources involved

The following example shows the 1222 trace flag output for the same deadlock scenario
displayed by the 1204 trace flag output in the previous section:

2010-02-14 18:50:38.95 spid19s deadlock-list

2010-02-14 18:50:38.95 spid19s deadlock victim=process2e4be40

2010-02-14 18:50:38.95 spid19s process-list

2010-02-14 18:50:38.95 spid19s process id=process2e4be40 taskpriority=0

logused=0 waitresource=KEY: 8:391941215944704 (59d1a826552c) waittime=4719

ownerId=3060410 transactionname=user_transaction lasttranstarted=

2010-02-14T18:50:19.863 XDES=0x5626ed8 lockMode=X schedulerid=1 kpid=

8316 status=suspended spid=57 sbid=0 ecid=0 priority=0 trancount=2

lastbatchstarted=2010-02-14T18:50:34.170 lastbatchcompleted=

2010-02-14T18:50:19.867 lastattention=2010-02-14T18:40:55.483 clientapp=

Microsoft SQL Server Management Studio - Query hostname=LATITUDED830-W7

hostpid=940 loginname=LATITUDED830-W7\rrankins isolationlevel=serializable

(4) xactid=3060410 currentdb=8 lockTimeout=4294967295 clientoption1=671090784

clientoption2=390200

2010-02-14 18:50:38.95 spid19s executionStack

2010-02-14 18:50:38.95 spid19s frame procname=adhoc line=1 stmtstart=36

sqlhandle=0x0200000091375f0a4f39d6bfb1addf384048ee0fa211d85f

ptg

1389Locking Contention and Deadlocks
3

7

2010-02-14 18:50:38.95 spid19s DELETE [bigpubs2008]..[stores] WHERE

[stor_id]=@1

2010-02-14 18:50:38.95 spid19s frame procname=adhoc line=1

sqlhandle=0x02000000748e4d288370bb86daf8048c94f6402aeacee742

2010-02-14 18:50:38.95 spid19s delete bigpubs2008..stores

2010-02-14 18:50:38.95 spid19s where stor_id = ‘7066’

2010-02-14 18:50:38.95 spid19s inputbuf

2010-02-14 18:50:38.95 spid19s delete bigpubs2008..stores

2010-02-14 18:50:38.95 spid19s where stor_id = ‘7066’

2010-02-14 18:50:38.95 spid19s process id=process2e4b390 taskpriority=0

logused=0 waitresource=KEY: 8:391941215944704 (59d1a826552c) waittime=9472

ownerId=3060605 transactionname=user_transaction lasttranstarted=

2010-02-14T18:50:24.447 XDES=0x6136280 lockMode=X schedulerid=1 kpid=7384

status=suspended spid=53 sbid=0 ecid=0 priority=0 trancount=2

lastbatchstarted=2010-02-14T18:50:29.413 lastbatchcompleted=

2010-02-14T18:50:24.447 clientapp=Microsoft SQL Server Management Studio -

Query hostname=LATITUDED830-W7 hostpid=940 loginname=LATITUDED830-W7\rrankins

isolationlevel=serializable (4) xactid=3060605 currentdb=8 lockTimeout=4294967295

clientoption1=671090784 clientoption2=390200

2010-02-14 18:50:38.95 spid19s executionStack

2010-02-14 18:50:38.95 spid19s frame procname=adhoc line=1 stmtstart=36

sqlhandle=0x0200000091375f0a4f39d6bfb1addf384048ee0fa211d85f

2010-02-14 18:50:38.95 spid19s DELETE [bigpubs2008]..[stores] WHERE

[stor_id]=@1

2010-02-14 18:50:38.95 spid19s frame procname=adhoc line=1

sqlhandle=0x02000000748e4d288370bb86daf8048c94f6402aeacee742

2010-02-14 18:50:38.95 spid19s delete bigpubs2008..stores

2010-02-14 18:50:38.95 spid19s where stor_id = ‘7066’

2010-02-14 18:50:38.95 spid19s inputbuf

2010-02-14 18:50:38.95 spid19s delete bigpubs2008..stores

2010-02-14 18:50:38.95 spid19s where stor_id = ‘7066’

2010-02-14 18:50:38.95 spid19s resource-list

2010-02-14 18:50:38.95 spid19s keylock hobtid=391941215944704 dbid=8

objectname=bigpubs2008.dbo.stores indexname=UPK_storeid id=lockfd432c0 mode=S

associatedObjectId=391941215944704

2010-02-14 18:50:38.95 spid19s owner-list

2010-02-14 18:50:38.95 spid19s owner id=process2e4b390 mode=S

2010-02-14 18:50:38.95 spid19s waiter-list

2010-02-14 18:50:38.95 spid19s waiter id=process2e4be40 mode=X

requestType=convert

2010-02-14 18:50:38.95 spid19s keylock hobtid=391941215944704 dbid=8

objectname=bigpubs2008.dbo.stores indexname=UPK_storeid id=lockfd432c0 mode=S

associatedObjectId=391941215944704

2010-02-14 18:50:38.95 spid19s owner-list

2010-02-14 18:50:38.95 spid19s owner id=process2e4be40 mode=S

2010-02-14 18:50:38.95 spid19s waiter-list

ptg

1390 CHAPTER 37 Locking and Performance

2010-02-14 18:50:38.95 spid19s waiter id=process2e4b390 mode=X

requestType=convert

Monitoring Deadlocks with SQL Server Profiler
If you still find the 1204 and 1222 trace flag output too difficult to interpret, you’ll be
pleased to know that SQL Server Profiler provides a much more user-friendly way of
capturing and examining deadlock information. As discussed in the “Monitoring Lock
Activity in SQL Server” section, earlier in this chapter, SQL Profiler provides three dead-
lock events that can be monitored:

. Lock:Deadlock

. Lock:Deadlock Chain

. Deadlock Graph

The Lock:Deadlock and Lock:Deadlock Chain events aren’t really very useful in SQL
Server 2008. The Lock:Deadlock event generates a simple trace record that indicates when
a deadlock occurs between two processes. The SPID column indicates what process was
chosen as the deadlock victim. The Lock:Deadlock Chain event generates a trace record
for each process involved in the deadlock. Unfortunately, neither of these trace events
provides any detailed information, such as the queries involved in the deadlock. (You
would need to also trace the T-SQL commands executed to capture this information, but
you would then be capturing all SQL statements, not just those involved in the deadlock.)

Fortunately, SQL Server Profiler provides the new Deadlock Graph event. When this event
is enabled, SQL Server Profiler populates the TextData data column in the trace with XML
data about the process and objects involved in the deadlock. This XML data can then be
used to display a Deadlock Graph in SQL Server Profiler itself, or the XML can be extracted
to a file, which can be read in and viewed in SSMS. Figure 37.15 shows an example of a
Deadlock Graph being displayed in SQL Server Profiler.

The Deadlock Graph displays the processes, resources, and relationships between the
processes and resources. The following components make up a Deadlock Graph:

. Process node—An oval containing information about each thread that performs a
task involved in the deadlock (for example, INSERT, UPDATE, or DELETE).

. Resource node—A rectangle containing information about each database object
being referenced (for example, a table, an index, a page, a row, or a key).

. Edge—A line representing a relationship between a process and resource. A request
edge occurs when a process waits for a resource. An owner edge occurs when a
resource waits for a process. The lock mode is included in the edge description.

Figure 37.15 displays the deadlock information for the processes involved in the deadlocks
displayed by the 1204 and 1222 trace flag output listed in the previous sections. You can
see that it displays the resource(s) involved in the deadlock in the Resource node (Key
Lock), the lock type held on the resource by each process (Owner Mode: S), the lock type
being requested by each process (Request Mode: X), and general information about each

ptg

1391Locking Contention and Deadlocks
3

7

FIGURE 37.15 Displaying a Deadlock Graph in SQL Server Profiler.

process (for example, SPID, deadlock priority) displayed in each process node. The process
node of the process chosen as the deadlock victim has an X through it. If you place the
mouse pointer over a process node, a ToolTip displays the SQL statement for that process
involved in the deadlock. If the graph appears too large or too small for the profiler
window, you can right-click anywhere within the graph to bring up a context menu that
allows you to increase or decrease the size of the graph.

To save a Deadlock Graph to a file for further analysis at a later date, you can right-click
the Deadlock Graph event in the top panel and choose the Extract Event Data option. To
save all Deadlock Graph events contained in a SQL Server trace to one or more files, you
select File, Export, Extract SQL Server Events and then choose the Extract Deadlock Events
option. In the dialog that appears, you have the option to save all Deadlock Graphs
contained in the trace to a single file or to save each to a separate file.

SQL Server Profiler can also save all Deadlock Graphs to a file automatically. When you are
configuring a trace with the Deadlock Graph event selected, you go to the Events
Extraction Settings tab and click Save Deadlock XML Events Separately. Then you specify
the file where you want the deadlock events to be saved. You can select to save all
Deadlock Graph events in a single XML file or to create a new XML file for each Deadlock
Graph. If you choose to create a new XML file for each Deadlock Graph, SQL Server
Profiler automatically appends a sequential number to the filename. Figure 37.16 shows
an example of the Events Extraction Settings tab to have a Profiler trace automatically
generate a separate file for each deadlock trace.

ptg

1392 CHAPTER 37 Locking and Performance

You can use SSMS to open and analyze any SQL Server Profiler Deadlock Graphs that you
have saved to a file. To do so, in SSMS you choose File, Open and then click File. In the
Open File dialog box, you select the .xdl file type as the type of file. You now have a
filtered list of only deadlock files (see Figure 37.17). After you select the file or files, you
are able to view them in SSMS.

FIGURE 37.16 Configuring SQL Server Profiler to export Deadlock Graphs to individual files.

FIGURE 37.17 Opening a Deadlock Graph file in SSMS.

ptg

1393Table Hints for Locking
3

7

Table Hints for Locking
As mentioned previously in this chapter, in the “Transaction Isolation Levels in SQL
Server” section, you can set an isolation level for your connection by using the SET
TRANSACTION ISOLATION LEVEL command. This command sets a global isolation level for
an entire session, which is useful if you want to provide a consistent isolation level for an
application. However, sometimes you might want to specify different isolation levels for
specific queries or for different tables within a single query. SQL Server allows you to do
this by supporting table hints in the SELECT, MERGE, UPDATE, INSERT, and DELETE state-
ments. In this way, you can override the isolation level currently set at the session level.

In this chapter, you have seen that locking is dynamic and automatic in SQL Server. Based
on certain factors (for example, SARGs, key distribution, data volume), the Query
Optimizer chooses the granularity of the lock (that is, row, page, or table level) on a
resource. Although it is usually best to leave such decisions to the Query Optimizer, you
might encounter certain situations in which you want to force a different lock granularity
on a resource than what the optimizer has chosen. SQL Server provides additional table
hints that you can use in the query to force lock granularity for various tables participat-
ing in a join.

SQL Server also automatically determines the lock type (SHARED, UPDATE, EXCLUSIVE) to use
on a resource, depending on the type of command being executed on the resource. For
example, a SELECT statement uses a shared lock. SQL Server also provides additional table
hints to override the default lock type.

The table hints to override the lock isolation, granularity, or lock type for a table can be
provided using the WITH operator of the SELECT, UPDATE, INSERT, and DELETE statements.

The following sections discuss the various locking hints that can be passed to an optimizer
to manage isolation levels and the lock granularity of a query.

NOTE

Although many of the table-locking hints can be combined, you cannot combine more
than one isolation level or lock granularity hint at a time on a single table. Also, the
NOLOCK, READUNCOMMITTED, and READPAST hints described in the following sections
cannot be used on tables that are the target of INSERT, UPDATE, MERGE, or DELETE
queries.

Transaction Isolation–Level Hints

SQL Server provides a number of hints that you can use in a query to override the default
transaction isolation level:

. HOLDLOCK—HOLDLOCK maintains shared locks for the duration of the entire state-
ment or for the entire transaction, if the statement is in a transaction. This option is

ptg

1394 CHAPTER 37 Locking and Performance

equivalent to the Serializable Read isolation level. The following hypothetical
example demonstrates the usage of the HOLDLOCK statement within a transaction:

declare @seqno int

begin transaction

-- get a UNIQUE sequence number from sequence table

SELECT @seqno = isnull(seq#,0) + 1

from sequence WITH (HOLDLOCK)

-- in the absence of HOLDLOCK, shared lock will be released

-- and if some other concurrent transaction ran the same

-- command, both of them could get the same sequence number

UPDATE sequence

set seq# = @seqno

--now go do something else with this unique sequence number

commit tran

NOTE

As discussed earlier in this chapter, in the “Deadlocks” section, using HOLDLOCK in this
manner leads to potential deadlocks between processes executing the transaction at
the same time. For this reason, the HOLDLOCK hint, as well as the REPEATABLEREAD
and SERIALIZABLE hints, should be used sparingly, if at all. In this example, it might be
better for the SELECT statement to use an update or an exclusive lock on the
sequence table, using the hints discussed later in this chapter, in the section “Lock
Type Hints.” Another option would be to use an application lock, as discussed previous-
ly in this chapter, in the section “Using Application Locks.”

. NOLOCK—You can use this option to specify that no shared lock be placed on the
resource. This option is similar to running a query at Isolation Level 0 (Read
Uncommitted), which allows the query to ignore exclusive locks and read uncom-
mitted changes. The NOLOCK option is a useful feature in reporting environments,
where the accuracy of the results is not critical.

. READUNCOMMITTED—This is the same as specifying the Read Uncommitted mode
when using the SET TRANSACTION ISOLATION LEVEL command, and it is the same as
the NOLOCK table hint.

. READCOMMITTED—This is the same as specifying the Read Committed mode when
you use the SET TRANSACTION ISOLATION LEVEL command. The query waits for
exclusive locks to be released before reading the data. This is the default locking
isolation mode for SQL Server. If the database option READ_COMMITTED_SNAPSHOT is
ON, SQL Server does not acquire shared locks on the data and uses row versioning.

ptg

1395Table Hints for Locking
3

7

. READCOMMITTEDLOCK—This option specifies that read operations acquire shared
locks as data is read and release those locks when the read operation is completed,
regardless of the setting of the READ_COMMITTED_SNAPSHOT database option.

. REPEATABLEREAD—This is the same as specifying Repeatable Read mode with the
SET TRANSACTION ISOLATION LEVEL command. It prevents nonrepeatable reads
within a transaction and behaves similarly to the HOLDLOCK hint.

. SERIALIZABLE—This is the same as specifying Serializable Read mode with the SET
TRANSACTION ISOLATION LEVEL command. It prevents phantom reads within a trans-
action and behaves similarly to using the HOLDLOCK hint.

. READPAST—This hint specifies that the query skip over the rows or pages locked by
other transactions, returning only the data that can be read. Read operations specify-
ing READPAST are not blocked. When specified in an UPDATE or DELETE statement,
READPAST is applied only when reading data to identify which records to update.
READPAST can be specified only in transactions operating at the Read Committed or
Repeatable Read isolation levels. This lock hint is useful when reading information
from a SQL Server table used as a work queue. A query using READPAST skips past
queue entries locked by other transactions to the next available queue entry, without
having to wait for the other transactions to release their locks.

Lock Granularity Hints

You can use to override lock granularity:

. ROWLOCK—You can use this option to force the Lock Manager to place a row-level
lock on a resource instead of a page-level or a table-level lock. You can use this
option in conjunction with the XLOCK lock type hint to force exclusive row locks.

. PAGLOCK—You can use this option to force a page-level lock on a resource instead of
a row-level or table-level lock. You can use this option in conjunction with the XLOCK
lock type hint to force exclusive page locks.

. TABLOCK—You can use this option to force a table-level lock instead of a row-level
or page-level lock. You can use this option in conjunction with the HOLDLOCK table
hint to hold the table lock until the end of the transaction.

. TABLOCKX—You can use this option to force a table-level exclusive lock instead of a
row-level or page-level lock. No shared or update locks are granted to other transac-
tions as long as this option is in effect. If you are planning maintenance on a SQL
Server table and you don’t want interference from other transactions, using this
option is one of the ways to essentially put a table into a single-user mode.

Lock Type Hints

You can use the following optimizer hints to override the lock type that SQL Server uses:

. UPDLOCK—This option is similar to HOLDLOCK except that whereas HOLDLOCK uses a
shared lock on the resource, UPDLOCK places an update lock on the resource for the

ptg

1396 CHAPTER 37 Locking and Performance

duration of the transaction. This allows other processes to read the information, but
not acquire update or exclusive locks on the resource. This option provides read
repeatability within the transaction while preventing deadlocks that can result when
using HOLDLOCK.

. XLOCK—This option places an exclusive lock on the resource for the duration of the
transaction. This prevents other processes from acquiring locks on the resource.

Optimistic Locking
With many applications, clients need to fetch the data to browse through it, make modifi-
cations to one or more rows, and then post the changes back to the database in SQL
Server. These human-speed operations are slow in comparison to machine-speed opera-
tions, and the time lag between the fetch and post might be significant. (Consider a user
who goes to lunch after retrieving the data.)

For these applications, you would not want to use normal locking schemes such as
SERIALIZABLE or HOLDLOCK to lock the data so it can’t be changed from the time the user
retrieves it to the time he or she applies any updates. This would violate one of the key
rules for minimizing locking contention and deadlocks that you should not allow user
interaction within transactions. You would also lose all control over the duration of the
transaction. In a multiuser OLTP environment, the indefinite holding of the shared locks
could significantly affect concurrency and overall application performance due to blocking
on locks and locking contention.

On the other hand, if the locks are not held on the rows being read, another process could
update a row between the time it was initially read and when the update is posted. When
the first process applies the update, it would overwrite the changes made by the other
process, resulting in a lost update.

So how do you implement such an application? How do you allow users to retrieve infor-
mation without holding locks on the data and still ensure that lost updates do not occur?

Optimistic locking is a technique used in situations in which reading and modifying data
processes are widely separated in time. Optimistic locking helps a client avoid overwriting
another client’s changes to a row without holding locks in the database.

One approach for implementing optimistic locking is to use the rowversion data type.
Another approach is to take advantage of the optimistic concurrency features of snapshot
isolation.

Optimistic Locking Using the rowversion Data Type

SQL Server 2008 provides a special data type called rowversion that can be used for opti-
mistic locking purposes within applications. The purpose of the rowversion data type is to
serve as a version number in optimistic locking schemes. SQL Server automatically gener-
ates the value for a rowversion column whenever a row that contains a column of this
type is inserted or updated. The rowversion data type is an 8-byte binary data type, and

ptg

1397Optimistic Locking
3

7

other than guaranteeing that the value is unique and monotonically increasing, the value
is not meaningful; you cannot look at the individual bytes and make any sense of them.

NOTE

In previous versions of SQL Server, the rowversion data type was also referred to as
the timestamp data type. While this data type synonym still exists in SQL Server 2008,
it has been deprecated and the rowversion data type name should be used instead to
ensure future compatibility.

In an application that uses optimistic locking, the client reads one or more records from
the table, being sure to retrieve the primary key and current value of the rowversion

column for each row, along with any other desired data columns. Because the query is not
run within a transaction, any locks acquired for the SELECT are released after the data has
been read. At some later time, when the client wants to update a row, it must ensure that
no other client has changed the same row in the intervening time. The UPDATE statement
must include a WHERE clause that compares the rowversion value retrieved with the origi-
nal query, with the current rowversion value for the record in the database. If the
rowversion values match—that is, if the value that was read is the same as the value
currently in the database—no changes to that row have occurred since it was originally
retrieved. Therefore, the change attempted by the application can proceed. If the
rowversion value in the client application does not match the value in the database, that
particular row has been changed since the original retrieval of the record. As a result, the
state of the row that the application is attempting to modify is not the same as the row
that currently exists in the database. As a result, the transaction should not be allowed to
take place, to avoid the lost update problem.

To ensure that the client application does not overwrite the changes made by another
process, the client needs to prepare the T-SQL UPDATE statement in a special way, using
the rowversion column as a versioning marker. The following pseudocode represents the
general structure of such an update:

UPDATE theTable

SET theChangedColumns = theirNewValues

WHERE primaryKeyColumns = theirOldValues

AND rowversion = itsOldValue

Because the WHERE clause includes the primary key, the UPDATE can apply only to exactly
one row or to no rows; it cannot apply to more than one row because the primary key is
unique. The second part of the WHERE clause provides the optimistic “locking.” If another
client has updated the row, the rowversion no longer has its old value (remember that the
server changes the rowversion value automatically with each update), and the WHERE clause
does not match any rows. The client needs to check whether any rows were updated. If the
number of rows affected by the update statement is zero, the row has been modified since

ptg

1398 CHAPTER 37 Locking and Performance

it was originally retrieved. The application can then choose to reread the data or do what-
ever recovery it deems appropriate. This approach has one problem: how does the applica-
tion know whether it didn’t match the row because the rowversion was changed, because
the primary key had changed, or because the row had been deleted altogether?

In SQL Server 2000, there was an undocumented tsequal() function (which was docu-
mented in prior releases) that could be used in a WHERE clause to compare the rowversion
value retrieved by the client application with the rowversion value in the database. If the
rowversion values matched, the update would proceed. If not, the update would fail, with
error message 532, to indicate that the row had been modified. Unfortunately, this func-
tion is no longer provided in SQL Server 2005 and later releases. Any attempt to use it
now results in a syntax error. As an alternative, you can programmatically check whether
the update modified any rows, and if not, you can check whether the row still exists and
return the appropriate message. Listing 37.7 provides an example of a stored procedure
that implements this strategy.

LISTING 37.7 An Example of a Procedure for Optimistic Locking

create proc optimistic_update

@id int, -- provide the primary key for the record

@data_field_1 varchar(10), -- provide the data value to be updated

@rowversion rowversion -- pass in the rowversion value retrieved with

-- the initial data retrieval

as

-- Attempt to modify the record

update data_table

set data_field_1 = @data_field_1

where id = @id

and versioncol = @rowversion

-- Check to see if no rows updated

IF @@ROWCOUNT=0

BEGIN

if exists (SELECT * FROM data_table WHERE id=@id)

-- The row exists but the rowversions don’t match

begin

raiserror (‘The row with id “%d” has been updated since it was read’,

10, 1, @id)

return -101

end

else -- the row has been deleted

begin

raiserror (‘The row with id “%d” has been deleted since it was read’,

10, 2, @id)

return -102

end

end

ptg

1399Optimistic Locking
3

7

ELSE

PRINT ‘Data Updated’

return 0

Using this approach, if the update doesn’t modify any rows, the application receives an
error message and knows for sure that the reason the update didn’t take place is that
either the rowversion value didn’t match or the row was deleted. If the row is found and
the rowversion values match, the update proceeds normally.

Optimistic Locking with Snapshot Isolation

SQL Server 2008’s Snapshot Isolation mode provides another mechanism for implement-
ing optimistic locking through its automatic row versioning. If a process reads data within
a transaction when Snapshot Isolation mode is enabled, no locks are acquired or held on
the current version of the data row. The process reads the version of the data at the time
of the query. Because no locks are held, it doesn’t lead to blocking, and another process
can modify the data after it has been read. If another process does modify a data row read
by the first process, a new version of the row is generated. If the original process then
attempts to update that data row, SQL Server automatically prevents the lost update
problem by checking the row version. In this case, because the row version is different,
SQL Server prevents the original process from modifying the data row. When it attempts
to modify the data row, the following error message appears:

Msg 3960, Level 16, State 4, Line 2

Snapshot isolation transaction aborted due to update conflict. You cannot use

snapshot isolation to access table ‘dbo.data_table’ directly or indirectly in

database ‘bigpubs2008’ to update, delete, or insert the row that has been modified

or deleted by another transaction. Retry the transaction or change the isolation

level for the update/delete statement.

To see how this works, you can create the following table:

use bigpubs2008

go

--The first statement is used to disable any previously created

--DDL triggers in the database which would prevent creating a new table.

DISABLE TRIGGER ALL ON DATABASE

go

create table data_table

(id int identity,

data_field_1 varchar(10),

timestamp timestamp)

go

insert data_table (data_field_1) values (‘foo’)

go

Next, you need to ensure that bigpubs2008 is configured to allow snapshot isolation:

ptg

1400 CHAPTER 37 Locking and Performance

ALTER DATABASE bigpubs2008 SET ALLOW_SNAPSHOT_ISOLATION ON

In one user session, you execute the following SQL statements:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

go

begin tran

select * from data_table

go

id data_field_1 timestamp

---------- ------------ ----------------

1 foo 0x0000000000000BC4

Now, in another user session, you execute the following UPDATE statement:

update data_table set data_field_1 = ‘bar’

where id = 1

Then you go back to the original session and attempt the following update:

update data_table set data_field_1 = ‘fubar’

where id = 1

go

Msg 3960, Level 16, State 4, Line 2

Snapshot isolation transaction aborted due to update conflict. You cannot use

snapshot isolation to access table ‘dbo.data_table’ directly or indirectly in

database ‘bigpubs2008’ to update, delete, or insert the row that has been modified

or deleted by another transaction. Retry the transaction or change the isolation

level for the update/delete statement.

Note that for the first process to hold on to the row version, the SELECT and UPDATE state-
ments must be run in the same transaction. When the transaction is committed or rolled
back, the row version acquired by the SELECT statement is released. However, because the
SELECT statement run at the Snapshot Isolation level does not hold any locks, there are no
locks being acquired or held by that SELECT statement within the transaction, so it avoids
the problems that would normally be encountered by using HOLDLOCK or the Serializable
Read isolation level. Because no locks were held on the data row, the other process was
allowed to update the row after it was retrieved, generating a new version of the row. The
automatic row versioning provided by SQL Server’s Snapshot Isolation mode prevented
the first process from overwriting the update performed by the second process, thereby
preventing a lost update.

ptg

1401Summary
3

7

CAUTION

Locking contention is prevented in the preceding example only because the transaction
performed only a SELECT before attempting the UPDATE. A SELECT run with Snapshot
Isolation mode enabled reads the current version of the row and does not acquire or
hold locks on the actual data row. However, if the process were to perform any other
modification on the data row, the update or exclusive locks acquired would be held
until the end of the transaction, which could lead to locking contention, especially if
user interaction is allowed within the transaction after the update or exclusive locks are
acquired.

Also, be aware of the overhead generated in tempdb when Snapshot Isolation mode is
enabled for a database, as described in the section “Transaction Isolation Levels in
SQL Server,” earlier in this chapter.

Because of the overhead incurred by snapshot isolation and the cost of having to roll
back update conflicts, you should consider using Snapshot Isolation mode only to pro-
vide optimistic locking for systems where there is little concurrent updating of the
same resource so that it is unlikely that your transactions have to be rolled back
because of an update conflict.

Summary
Locking is critical in a multiuser environment for providing transaction isolation. SQL
Server supports all ANSI-defined transaction isolation levels, including the Snapshot
Isolation level for applications that can benefit from optimistic concurrency. The Lock
Manager in SQL Server automatically locks data at the row level or higher, as necessary, to
provide the appropriate isolation while balancing the locking overhead with concurrent
access to the data. It is important to understand how locking works and what its effect is
on application performance to develop efficient queries and applications.

SQL Server provides a number of tools for monitoring and identifying locking problems
and behavior. In addition, SQL Server provides a number of table-locking hints that give the
developer better control over the default lock types and granularity used for certain queries.

Although following the guidelines to minimize locking contention in applications is
important, another factor that affects locking behavior and query performance is the
actual database design. Chapter 38, “Database Design and Performance,” discusses data-
base design and its effect on database performance and provides guidelines to help ensure
that transactions and T-SQL code run efficiently.

ptg

This page intentionally left blank

ptg

CHAPTER 38

Database Design and
Performance

IN THIS CHAPTER

. What’s New in Database
Design and Performance

. Basic Tenets of Designing for
Performance

. Logical Database Design Issues

. Denormalizing a Database

. Database Filegroups and
Performance

. RAID Technology

. SQL Server and
SAN Technology

Various factors contribute to the optimal performance of
a database application. Some of these factors include logical
database design (rules of normalization), physical database
design (denormalization, indexes, data placement), choice
of hardware (SMP servers/multiprocessor servers), network
bandwidth (LAN versus WAN), client and server configura-
tion (memory, CPU), data access techniques (ODBC, ADO,
OLEDB), and application architecture (two-tier versus n-
tier). This chapter helps you understand some of the key
database design issues to ensure that you have a reliable
high-performance application.

NOTE

Index design is often considered part of physical data-
base design. Because index design guidelines and the
impact of indexes on query and update performance
are covered in detail in Chapter 34, “Data Structures,
Indexes and Performance,” this chapter does not dis-
cuss index design. It focuses instead on other aspects
of database design and performance.

What’s New in Database Design
and Performance
Many of the database design and performance considera-
tions that applied to previous versions of SQL Server still
apply to SQL Server 2008. These principles are basic in

ptg

1404 CHAPTER 38 Database Design and Performance

nature and are not affected by the version of the database management system. This
chapter focuses on those relatively unchanged principles.

There are, however, some new features in SQL Server 2008 that will augment these basic
principles. Filtered indexes, new query and table hints, plus other table-oriented features
are just a few things you should consider when designing your database for performance.
These features are discussed in detail in Chapter 24, “Creating and Managing Tables,”
Chapter 34, “Data Structures, Indexes, and Performance,” and other chapters in Part V,
“SQL Server Performance and Optimization.”

Basic Tenets of Designing for Performance
Designing for performance requires making trade-offs. For example, to get the best write
performance out of a database, you must sacrifice read performance. Before you tackle
database design issues for an application, it is critical to understand your goals. Do you
want faster read performance? Faster write performance? A more understandable design?

Following are some basic truths about physical database design for SQL Server 2008 and
the performance implications of each:

. It’s important to keep table row sizes as small as possible. Doing so is not about
saving disk space. Having smaller rows means more rows fit on a single 8KB page,
which means fewer physical disk reads are required to read a given number of rows.

. You should use indexes to speed up read access. However, the more indexes a table
has, the longer it takes to insert, update, and delete rows from the table.

. Using triggers to perform any kind of work during an insert, an update, or a delete
exacts a performance toll and decreases concurrency by lengthening transaction
duration.

. Implementing declarative referential integrity (via primary and foreign keys) helps
maintain data integrity, but enforcing foreign key constraints requires extra lookups
on the primary key table to ensure existence.

. Using ON DELETE CASCADE referential integrity constraints helps maintain data
integrity but requires extra work on the server’s part.

Keeping tables as narrow as possible—that is, ensuring that the row size is as small as
possible—is one of the most important things you can do to ensure that a database
performs well. To keep your tables narrow, you should choose column data types with size
in mind. You shouldn’t use the bigint data type if the int will do. If you have zero-to-one
relationships in tables, you should consider vertically partitioning the tables. (See the
“Vertical Data Partitioning” section, later in this chapter, for details on this scenario.)

Cascading deletes (and updates) cause extra lookups to be done whenever a delete runs
against the parent table. In many cases, the optimizer uses worktables to resolve delete
and update queries. Enforcing these constraints manually, from within stored procedures,
for example, can give better performance. This is not a wholehearted endorsement against

ptg

1405Logical Database Design Issues
3

8

referential integrity constraints. In most cases, the extra performance hit is worth the
saved aggravation of coding everything by hand. However, you should be aware of the
cost of this convenience.

Logical Database Design Issues
A good database design is fundamental to the success of any application. Logical database
design for relational databases follows rules of normalization. As a result of normalization,
you create a data model that is usually, but not necessarily, translated into a physical data
model. A logical database design does not depend on the relational database you intend to
use. The same data model can be applied to Oracle, Sybase, SQL Server, or any other rela-
tional database. On the other hand, a physical data model makes extensive use of the
features of the underlying database engine to yield optimal performance for the applica-
tion. Physical models are much less portable than logical models.

TIP

If portability is a big concern to you, consider using a third-party data modeling tool,
such as ERwin or ERStudio. These tools have features that make it easier to migrate
your logical data models to physical data models on different database platforms. Of
course, using these tools just gets you started; to get the best performance out of your
design, you need to tweak the physical design for the platform you have chosen.

Normalization Conditions

Any database designer must address two fundamental issues:

. Designing the database in a simple, understandable way that is maintainable and
makes sense to its developers and users

. Designing the database such that data is fetched and saved with the fastest response
time, resulting in high performance

Normalization is a technique used on relational databases to organize data across many
tables so that related data is kept together based on certain guidelines. Normalization
results in controlled redundancy of data; therefore, it provides a good balance between
disk space usage and performance. Normalization helps people understand the relation-
ships between data and enforces rules to ensure that the data is meaningful.

TIP

Normalization rules exist, among other reasons, to make it easier for people to under-
stand the relationships between data. But a perfectly normalized database sometimes
doesn’t perform well under certain circumstances, and it may be difficult to under-
stand. There are good reasons to deviate from a perfectly normalized database.

ptg

1406 CHAPTER 38 Database Design and Performance

Normalization Forms

Five normalization forms exist, represented by the symbol 1NF for first normal form, 2NF
for second normal form, and so on. If you follow the rules for the first rule of normaliza-
tion, your database can be described as “in first normal form.”

Each rule of normalization depends on the previous rule for successful implementation, so
to be in second normal form (2NF), your database must also follow the rules for first
normal form.

A typical relational database used in a business environment falls somewhere between
second and third normal forms. It is rare to progress past the third normal form because
fourth and fifth normal forms are more academic than practical in real-world environments.

Following is a brief description of the first three rules of normalization.

First Normal Form
The first rule of normalization requires removing repeating data values and specifies that
no two rows in a table can be identical. This means that each table must have a logical
primary key that uniquely identifies a row in the table.

Consider a table that has four columns—PublisherName, Title1, Title2, and Title3—for
storing up to three titles for each publisher. This table is not in first normal form due to
the repeating Title columns. The main problem with this design is that it limits the
number of titles associated with a publisher to three.

Removing the repeating columns so there is just a PublisherName column and a single
Title column puts the table in first normal form. A separate data row is stored in the
table for each title published by each publisher. The combination of PublisherName and
Title becomes the primary key that uniquely identifies each row and prevents duplicates.

Second Normal Form
A table is considered to be in second normal form if it conforms to the first normal form
and all nonkey attributes of the table are fully dependent on the entire primary key. If
the primary key consists of multiple columns, nonkey columns should depend on the
entire key and not just on a part of the key. A table with a single column as the primary
key is automatically in second normal form if it satisfies first normal form as well.

Assume that you need to add the publisher address to the database. Adding it to the table
with the PublisherName and Title column would violate second normal form. The
primary key consists of both PublisherName and Title, but the PublisherAddress attribute
is an attribute of the publisher only. It does not depend on the entire primary key.

To put the database in second normal form requires adding an additional table for storing
publisher information. One table consists of the PublisherName column and
PublisherAddress. The second table contains the PublisherName and Title columns. To

ptg

1407Logical Database Design Issues
3

8

retrieve the PublisherName, Title, and PublisherAddress information in a single result
would require a join between the two tables on the PublisherName column.

Third Normal Form
A table is considered to be in third normal form if it already conforms to the first two
normal forms and if none of the nonkey columns are dependent on any other nonkey
columns. All such attributes should be removed from the table.

Let’s look at an example that comes up often during database architecture. Suppose that
an employee table has four columns: EmployeeID (the primary key), salary, bonus, and
total_salary, where total_salary = salary + bonus. Existence of the total_salary
column in the table violates the third normal form because a nonkey column
(total_salary) is dependent on two other nonkey columns (salary and bonus).
Therefore, for the table to conform to the third rule of normalization, you must remove
the total_salary column from the employee table.

Benefits of Normalization

Following are the major advantages of normalization:

. Because information is logically kept together, normalization provides improved
overall understanding of the system.

. Because of controlled redundancy of data, normalization can result in fast table
scans and searches (because less physical data has to be processed).

. Because tables are smaller with normalization, index creation and data sorts are
much faster.

. With less redundant data, it is easier to maintain referential integrity for the system.

. Normalization results in narrower tables. Because you can store more rows per page,
more rows can be read and cached for each I/O performed on the table. This results
in better I/O performance.

Drawbacks of Normalization

One result of normalization is that data is stored in multiple tables. To retrieve or modify
information, you usually have to establish joins across multiple tables. Joins are expensive
from an I/O standpoint. Multitable joins can have an adverse impact on the performance
of the system. The following sections discuss some of the denormalization techniques you
can use to improve the performance of a system.

ptg

1408 CHAPTER 38 Database Design and Performance

TIP

An adage for normalization is “Normalize ’til it hurts; denormalize ’til it works.” To put
this maxim into use, try to put your database in third normal form initially. Then, when
you’re ready to implement the physical structure, drop back from third normal form,
where excessive table joins are hurting performance. A common mistake is that devel-
opers make too many assumptions and over-denormalize the database design before
even a single line of code has been written to even begin to assess the database
performance.

Denormalizing a Database
After a database has been normalized to the third form, database designers intentionally
backtrack from normalization to improve the performance of the system. This technique
of rolling back from normalization is called denormalization. Denormalization allows you
to keep redundant data in the system, reducing the number of tables in the schema and
reducing the number of joins to retrieve data.

TIP

Duplicate data is more helpful when the data does not change very much, such as in
data warehouses. If the data changes often, keeping all “copies” of the data in sync
can create significant performance overhead, including long transactions and excessive
write operations.

Denormalization Guidelines

When should you denormalize a database? Consider the following points:

. Be sure you have a good overall understanding of the logical design of the system.
This knowledge helps in determining how other parts of the application are going to
be affected when you change one part of the system.

. Don’t attempt to denormalize the entire database at once. Instead, focus on the
specific areas and queries that are accessed most frequently and are suffering from
performance problems.

. Understand the types of transactions and the volume of data associated with specific
areas of the application that are having performance problems. You can resolve
many such issues by tuning the queries without denormalizing the tables.

. Determine whether you need virtual (computed) columns. Virtual columns can be
computed from other columns of the table. Although this violates third normal
form, computed columns can provide a decent compromise because they do not
actually store another exact copy of the data in the same table.

. Understand data integrity issues. With more redundant data in the system, main-
taining data integrity is more difficult, and data modifications are slower.

ptg

1409Denormalizing a Database
3

8

. Understand storage techniques for the data. You may be able to improve perfor-
mance without denormalization by using RAID, SQL Server filegroups, and table
partitioning.

. Determine the frequency with which data changes. If data is changing too often, the
cost of maintaining data and referential integrity might outweigh the benefits
provided by redundant data.

. Use the performance tools that come with SQL Server (such as SQL Server Profiler) to
assess performance. These tools can help isolate performance issues and give you
possible targets for denormalization.

TIP

If you are experiencing severe performance problems, denormalization should not be
the first step you take to rectify the problem. You need to identify specific issues that
are causing performance problems. Usually, you discover factors such as poorly written
queries, poor index design, inefficient application code, or poorly configured hardware.
You should try to fix these types of issues before taking steps to denormalize data-
base tables.

Essential Denormalization Techniques

You can use various methods to denormalize a database table and achieve desired perfor-
mance goals. Some of the useful techniques used for denormalization include the following:

. Keeping redundant data and summary data

. Using virtual columns

. Performing horizontal data partitioning

. Performing vertical data partitioning

Redundant Data
From an I/O standpoint, joins in a relational database are inherently expensive. To avoid
common joins, you can add redundancy to a table by keeping exact copies of the data in
multiple tables. The following example demonstrates this point. This example shows a
three-table join to get the title of a book and the primary author’s name:

select c.title,

a.au_lname,

a.au_fname

from authors a join titleauthor b on a.au_id = b.au_id

join titles c on b.title_id = c.title_id

where b.au_ord = 1

order by c.title

You could improve the performance of this query by adding the columns for the first and
last names of the primary author to the titles table and storing the information in the

ptg

1410 CHAPTER 38 Database Design and Performance

titles table directly. This would eliminate the joins altogether. Here is what the revised
query would look like if this denormalization technique were implemented:

select title,

au_lname,

au_fname

from titles

order by title

As you can see, the au_lname and au_fname columns are now redundantly stored in two
places: the titles table and authors table. It is obvious that with more redundant data in
the system, maintaining referential integrity and data integrity is more difficult. For
example, if the author’s last name changed in the authors table, to preserve data integrity,
you would also have to change the corresponding au_lname column value in the titles
table to reflect the correct value. You could use SQL Server triggers to maintain data
integrity, but you should recognize that update performance could suffer dramatically. For
this reason, it is best if redundant data is limited to data columns whose values are rela-
tively static and are not modified often.

Computed Columns
A number of queries calculate aggregate values derived from one or more columns of a
table. Such computations can be CPU intensive and can have an adverse impact on perfor-
mance if they are performed frequently. One of the techniques to handle such situations
is to create an additional column that stores the computed value. Such columns are called
virtual columns, or computed columns. Since SQL Server 7.0, computed columns have been
natively supported. You can specify such columns in create table or alter table
commands. The following example demonstrates the use of computed columns:

create table emp (

empid int not null primary key,

salary money not null,

bonus money not null default 0,

total_salary as (salary+bonus)

)

go

insert emp (empid, salary, bonus) values (100, $150000.00, $15000)

go

select * from emp

go

empid salary bonus total_salary

----------- ------------- -------------------- ---------------

100 150000.0000 15000.0000 165000.0000

By default, virtual columns are not physically stored in SQL Server tables. SQL Server inter-
nally maintains a column property named iscomputed that can be viewed from the
sys.columns system view. It uses this column to determine whether a column is computed.
The value of the virtual column is calculated at the time the query is run. All columns

ptg

1411Denormalizing a Database
3

8

referenced in the computed column expression must come from the table on which the
computed column is created. You can, however, reference a column from another table by
using a function as part of the computed column’s expression. The function can contain a
reference to another table, and the computed column calls this function.

Since SQL Server 2000, computed columns have been able to participate in joins to other
tables, and they can be indexed. Creating an index that contains a computed column
creates a physical copy of the computed column in the index tree. Whenever a base
column participating in the computed column changes, the index must also be updated,
which adds overhead and may possibly slow down update performance.

In SQL Server 2008, you also have the option of defining a computed column so that its
value is physically stored. You accomplish this with the ADD PERSISTED option, as shown
in the following example:

--Alter the computed SetRate column to be PERSISTED

ALTER TABLE Sales.CurrencyRate

alter column SetRate ADD PERSISTED

SQL Server automatically updates the persisted column values whenever one of the
columns that the computed column references is changed. Indexes can be created on
these columns, and they can be used just like nonpersisted columns. One advantage of
using a computed column that is persisted is that it has fewer restrictions than a nonper-
sisted column. In particular, a persisted column can contain an imprecise expression,
which is not possible with a nonpersisted column. Any float or real expressions are
considered imprecise. To ensure that you have a precise column you can use the
COLUMNPROPERTY function and review the IsPrecise property to determine whether the
computed column expression is precise.

Summary Data
Summary data is most helpful in a decision support environment, to satisfy reporting
requirements and calculate sums, row counts, or other summary information and store it
in a separate table. You can create summary data in a number of ways:

. Real-time—Every time your base data is modified, you can recalculate the summary
data, using the base data as a source. This is typically done using stored procedures
or triggers.

. Real-time incremental—Every time your base data is modified, you can recalculate
the summary data, using the old summary value and the new data. This approach is
more complex than the real-time option, but it could save time if the increments are
relatively small compared to the entire dataset. This, too, is typically done using
stored procedures or triggers.

. Delayed—You can use a scheduled job or custom service application to recalculate
summary data on a regular basis. This is the recommended method to use in an
OLTP system to keep update performance optimal.

ptg

1412 CHAPTER 38 Database Design and Performance

JanBill
1000000
records

DecBill
1000000
records

FebBill

Monthly
Billing Charges

90000000
records

Attributes

Acct#
BillDate
Balance

FIGURE 38.1 Horizontal partitioning of data.

Horizontal Data Partitioning
As tables grow larger, data access time also tends to increase. For queries that need to
perform table scans, the query time is proportional to the number of rows in the table.
Even when you have proper indexes on such tables, access time slows as the depth of the
index trees increases. The solution is splitting the table into multiple tables such that
each table has the same table structure as the original one but stores a different set of
data. Figure 38.1 shows a billing table with 90 million records. You can split this table
into 12 monthly tables (all with the identical table structure) to store billing records for
each month.

You should carefully weigh the options when performing horizontal splitting. Although a
query that needs data from only a single month gets much faster, other queries that need
a full year’s worth of data become more complex. Also, queries that are self-referencing do
not benefit much from horizontal partitioning. For example, the business logic might
dictate that each time you add a new billing record to the billing table, you need to check
any outstanding account balance for previous billing dates. In such cases, before you do
an insert in the current monthly billing table, you must check the data for all the other
months to find any outstanding balance.

ptg

1413Denormalizing a Database
3

8

TIP

Horizontal splitting of data is useful where a subset of data might see more activity
than the rest of the data. For example, say that in a healthcare provider setting, 98% of
the patients are inpatients, and only 2% are outpatients. In spite of the small percent-
age involved, the system for outpatient records sees a lot of activity. In this scenario, it
makes sense to split the patient table into two tables—one for the inpatients and one
for the outpatients.

When splitting tables horizontally, you must perform some analysis to determine the
optimal way to split the table. You need to find a logical dimension along which to split
the data. The best choice takes into account the way your users use your data. In the
example that involves splitting the data among 12 tables, date was mentioned as the
optimal split candidate. However, if the users often did ad hoc queries against the billing
table for a full year’s worth of data, they would be unhappy with the choice to split that
data among 12 different tables. Perhaps splitting based on a customer type or another
attribute would be more useful.

NOTE

You can use partitioned views to hide the horizontal splitting of tables. The benefit of
using partitioned views is that multiple horizontally split tables appear to the end users
and applications as a single large table. When this is properly defined, the optimizer
automatically determines which tables in the partitioned view need to be accessed,
and it avoids searching all tables in the view. The query runs as quickly as if it were
run only against the necessary tables directly. For more information on defining and
using partitioned views, see Chapter 27, “Creating and Managing Views.”

In SQL Server 2008, you also have the option of physically splitting the rows in a single
table over more than one partition. This feature, called partitioned tables, utilizes a par-
titioning function that splits the data horizontally and a partitioning scheme that
assigns the horizontally partitioned data to different filegroups. When a table is creat-
ed, it references the partitioned schema, which causes the rows of data to be physical-
ly stored on different filegroups. No additional tables are needed, and the table is still
referenced with the original table name. The horizontal partitioning happens at the
physical storage level and is transparent to the user.

Vertical Data Partitioning
As you know, a database in SQL Server consists of 8KB pages, and a row cannot span
multiple pages. Therefore, the total number of rows on a page depends on the width of
the table. This means the wider the table, the smaller the number of rows per page. You
can achieve significant performance gains by increasing the number of rows per page,

ptg

1414 CHAPTER 38 Database Design and Performance

Au_id

Au_Iname

Au_fname

SocialSec#

BirthDate

Homephone

Workphone

Cellphone

Addr1

Addr2

City

Zip

State

Authors

Au_id

Au_Iname

Au_fname

SocialSec#

Author_primary

Au_id

BirthDate

Homephone

Workphone

Cellphone

Addr1

Addr2

City

Zip

State

Author_secondary

FIGURE 38.2 Vertical partitioning of data.

which in turn reduces the number of I/Os on the table. Vertical splitting is a method of
reducing the width of a table by splitting the columns of the table into multiple tables.
Usually, all frequently used columns are kept in one table, and others are kept in the other
table. This way, more records can be accommodated per page, fewer I/Os are generated,
and more data can be cached into SQL Server memory. Figure 38.2 illustrates a vertically
partitioned table. The frequently accessed columns of the authors table are stored in the
author_primary table, whereas less frequently used columns are stored in the
author_secondary table.

TIP

Make the decision to split data very carefully, especially when the system is already in
production. Changing the data structure might have a system-wide impact on a large
number of queries that reference the old definition of the object. In such cases, to min-
imize risks, you might want to use SQL Server views to hide the vertical partitioning of
data. Also, if you find that users and developers are frequently joining between the ver-
tically split tables because they need to pull data together from the two tables, you
might want to reconsider the split point or the splitting of the table itself. Doing fre-
quent joins between split tables with smaller rows requires more I/Os to retrieve the
same data than if the data resided in a single table with wider rows.

ptg

1415Database Filegroups and Performance
3

8

Performance Implications of Zero-to-One Relationships
Suppose that one of the development managers in your company, Bob, approaches you to
discuss some database schema changes. He is one of several managers whose groups all use
the central User table in your database. Bob’s application makes use of about 5% of the
users in the User table. Bob has a requirement to track five yes/no/undecided flags associ-
ated with those users. He would like you to add five one-character columns to the User

table to track this information. What do you tell Bob?

Bob has a classic zero-to-one problem. He has some data he needs to track, but it applies
to only a small subset of the data in the table. You can approach this problem in one of
three ways:

. Option 1: Add the columns to the User table—In this case, 95% of your users
will have NULL values in those columns, and the table will become wider for every-
body.

. Option 2: Create a new table with a vertical partition of the User table—The
new table will contain the User primary key and Bob’s five flags. In this case, 95% of
your users will still have NULL data in the new table, but the User table is protected
against these effects. Because other groups don’t need to use the new partition table,
this is a nice compromise.

. Option 3: Create a new vertically partitioned table as in Option 2 but popu-
late it only with rows that have at least one non-NULL value for the columns in
the new partition—This option is great for database performance, and searches in
the new table will be wonderfully fast. The only drawback to this approach is that
Bob’s developers will have to add additional logic to their applications to determine
whether a row exists during updates. Bob’s folks will need to use an outer join to the
table to cover the possibility that a row doesn’t exist.

Depending on the goals of the project, any one of these options can be appropriate.
Option 1 is simple and is the easiest to code for and understand. Option 2 is a good
compromise between performance and simplicity. Option 3 gives the best performance in
certain circumstances but impacts performance in certain other situations and definitely
requires more coding work to be done.

Database Filegroups and Performance
Filegroups allow you to decide where on disk a particular object should be placed. You can
do this by defining a filegroup within a database, extending the database onto a different
drive or set of drives, and then placing a database object on the new filegroup.

Every database, by default, has a primary filegroup that contains the primary data file.
There can be only one primary filegroup. This primary filegroup contains all the pages

ptg

1416 CHAPTER 38 Database Design and Performance

assigned to system tables. It also contains any additional database files created without
specifying filegroup. Initially, the primary filegroup is also the default file group. There
can be only one default filegroup, and indexes and tables that are created without specify-
ing a filegroup are placed in the default filegroup. You can change the default filegroup to
another filegroup after it has been created for a database.

In addition to the primary filegroup, you can add one or more additional filegroups to the
database that are named user-defined filegroups. Each of those filegroups can contain one
or more files. The main purpose of using filegroups is to provide more control over the
placement of files and data on the server. When you create a table or an index, you can
map it to a specific filegroup, thus controlling the placement of data. A typical SQL Server
database installation generally uses a single RAID array to spread I/O across disks and
create all files in the primary filegroup; more advanced installations or installations with
very large databases spread across multiple array sets can benefit from the finer level of
control of file and data placement afforded by additional filegroups.

For example, for a simple database such as AdventureWorks2008, you can create just one
primary file that contains all data and objects and a log file that contains the transaction
log information. For a larger and more complex database, such as a securities trading
system, where large data volumes and strict performance criteria are the norm, you might
create the database with one primary file and four secondary files. You can then set up
filegroups so you can place the data and objects within the database across all five files. If
you have a table that itself needs to be spread across multiple disk arrays for performance
reasons, you can place multiple files in a filegroup, each of which resides on a different
disk, and create the table on that filegroup. For example, you can create three files
(Data1.ndf, Data2.ndf, and Data3.ndf) on three disk arrays and then assign them to the
filegroup called spread_group. Your table can then be created specifically on the
spread_group filegroup. Queries for data from the table are then spread across the three
disk arrays, thereby improving I/O performance.

Filegroups are most often used in high-performance environments to isolate key tables or
indexes on their own set of disks, which are in turn typically part of a high-performance
RAID array. Assuming that you start with a database that has just a PRIMARY filegroup (the
default), the following example shows how you would add an index filegroup on a new
drive and move some nonclustered indexes to it:

-- add the filegroup

alter database Grocer

add filegroup FG_INDEX

-- Create a new database file and add it to the FG_INDEX filegroup

alter database Grocer

add file(

NAME = Grocer_Index,

FILENAME = ‘g:\Grocer_Index.ndf’,

SIZE = 2048MB,

MAXSIZE = 8192MB,

ptg

1417RAID Technology
3

8

FILEGROWTH = 10%

) to filegroup FG_INDEX

create nonclustered index xOrderDetail_ScanDT

on OrderDetail(ScanDT)

on FG_INDEX

Moving the indexes to a separate RAID array minimizes I/O contention by spreading out
the I/O generated by updates to the data that affect data rows and require changes to
index rows as well.

NOTE

Because the leaf level of a clustered index is the data page, if you create a clustered
index on a filegroup, the entire table moves from the existing filegroup to the new file-
group. If you want to put indexes on a separate filegroup, you should reserve that
space for nonclustered indexes only.

Having your indexes on a separate filegroup gives you the following advantages:

. Index scans and index page reads come from a separate disk, so they need not
compete with other database processes for disk time.

. Inserts, updates, and deletes on the table are spread across two separate disk arrays.
The clustered index, including all the table data, is on a separate array from the
nonclustered indexes.

. You can target your budget dollars more precisely because the faster disks improve
system performance more if they are given to the index filegroup rather than the
database as a whole.

The next section gives specific recommendations on how to architect a hardware solution
based on using separate filegroups for data and indexes.

RAID Technology
Redundant array of inexpensive disks (RAID) is used to configure a disk subsystem to
provide better performance and fault tolerance for an application. The basic idea behind
using RAID is that you spread data across multiple disk drives so that I/Os are spread
across these drives. RAID has special significance for database-related applications, where
you want to spread random I/Os (data changes) and sequential I/Os (for the transaction

ptg

1418 CHAPTER 38 Database Design and Performance

log) across different disk subsystems to minimize disk head movement and maximize I/O
performance.

The four significant levels of RAID implementation that are of most interest in database
implementations are as follows:

. RAID 0 is data striping with no redundancy or fault tolerance.

. RAID 1 is mirroring, where every disk in the array has a mirror (copy).

. RAID 5 is striping with parity, where parity information for data on one disk is
spread across the other disks in the array. The contents of a single disk can be re-
created from the parity information stored on the other disks in the array.

. RAID 10, or 1+0, is a combination of RAID 1 and RAID 0. Data is striped across all
drives in the array, and each disk has a mirrored duplicate, offering the fault toler-
ance of RAID 1 with the performance advantages of RAID 0.

RAID Level 0

RAID Level 0 provides the best I/O performance among all other RAID levels. A file has
sequential segments striped across each drive in the array. Data is written in a round-
robin fashion to ensure that data is evenly balanced across all drives in the array.
However, if a media failure occurs, no fault tolerance is provided, and all data stored in
the array is lost. RAID 0 should not be used for a production database where data loss or
loss of system availability is not acceptable. RAID 0 is occasionally used for tempdb to
provide the best possible read and (especially) write performance. RAID 0 is helpful for
random read requirements, such as those that occur on tempdb and in data segments.

TIP

Although the data stored in tempdb is temporary and noncritical data, failure of a RAID
0 stripeset containing tempdb results in loss of system availability because SQL Server
requires a functioning tempdb to carry out many of its activities. If loss of system avail-
ability is not an option, you should not put tempdb on a RAID 0 array. You should use
one of the RAID technologies that provides redundancy.

If momentary loss of system availability is acceptable in exchange for the improved I/O
and reduced cost of RAID 0, recovery of tempdb is relatively simple. The tempdb data-
base is re-created each time the SQL Server instance is restarted. If the disk that con-
tained your tempdb was lost, you could replace the failed disk, restart SQL Server, and
the files would automatically be re-created. This scenario is complicated if the failed
disk with the tempdb file also contains your master database or other system databas-
es. See Chapter 14, “Database Backup and Restore,” for a more detailed discussion
of restoring system databases.

ptg

1419RAID Technology
3

8

RAID 0 is the least expensive of the RAID configurations because 100% of the disks in the
array are available for data, and none are used to provide fault tolerance. Performance is
also the best of the RAID configurations because there is no overhead required to main-
tain redundant data.

Figure 38.3 depicts a RAID 0 disk array configuration.

RAID Level 1

With RAID 1, known as disk mirroring, every write to the primary disk is written to the
mirror set. Either member of the set can satisfy a read request. RAID 1 devices provide
excellent fault tolerance because in the event of a media failure, either on the primary disk
or mirrored disk, the system can still continue to run. Writes are much faster than with
RAID 5 arrays because no parity information needs to be calculated first. The data is
simply written twice.

RAID 1 arrays are best for transaction logs and index filegroups. RAID 1 provides the best
fault tolerance and best write performance, which is critical to log and index performance.
Because log writes are sequential write operations and not random access operations, they
are best supported by a RAID 1 configuration.

RAID 1 arrays are the most expensive RAID configurations because only 50% of total disk
space is available for actual storage. The rest is used to provide fault tolerance.

Figure 38.4 shows a RAID 1 configuration.

Array
Controller

D1
D5
D9

D2

D6
D10

D3
D7
D11

D4

D8
D12

FIGURE 38.3 RAID Level 0.

ptg

1420 CHAPTER 38 Database Design and Performance

Disk 1

Disk 2

Disk 3

Disk 4

Disk 1

Disk 2

Disk 3

Disk 4

Array
Controller

FIGURE 38.4 RAID Level 1.

Because RAID 1 requires that the same data be written to two drives at the same time,
write performance is slightly less than when writing data to a single drive because the
write is not considered complete until both writes have been done. Using a disk controller
with a battery-backed write cache can mitigate this write penalty because the write is
considered complete when it occurs to the battery-backed cache. The actual writes to the
disks occur in the background.

RAID 1 read performance is often better than that of a single disk drive because most
controllers now support split seeks. Split seeks allow each disk in the mirror set to be read
independently of each other, thereby supporting concurrent reads.

RAID Level 10

RAID 10, or RAID 1+0, is a combination of mirroring and striping. It is implemented as a
stripe of mirrored drives. The drives are mirrored first, and then a stripe is created across
the mirrors to improve performance. This should not be confused with RAID 0+1, which
is different and is implemented by first striping the disks and then mirroring.

Many businesses with high-volume OLTP applications opt for RAID 10 configurations. The
shrinking cost of disk drives and the heavy database demands of today’s business applica-
tions are making this a much more viable option. If you find that your transaction log or
index segment is pegging your RAID 1 array at 100% usage, you can implement a RAID 10
array to get better performance. This type of RAID carries with it all the fault tolerance
(and cost!) of a RAID 1 array, with all the performance benefits of RAID 0 striping.

ptg

1421RAID Technology
3

8

RAID Level 5

RAID 5 is most commonly known as striping with parity. In this configuration, data is
striped across multiple disks in large blocks. At the same time, parity bits are written across
all the disks for a given block. Information is always stored in such a way that any one disk
can be lost without any information in the array being lost. In the event of a disk failure,
the system can still continue to run (at a reduced performance level) without downtime by
using the parity information to reconstruct the data lost on the missing drive.

Some arrays provide “hot-standby” disks. The RAID controller uses the standby disk to
rebuild a failed drive automatically, using the parity information stored on all the other
drives in the array. During the rebuild process, performance is markedly worse.

The fault tolerance of RAID 5 is usually sufficient, but if more than one drive in the array
fails, you lose the entire array. It is recommended that a spare drive be kept on hand in
the event of a drive failure, so the failed drive can be replaced quickly before any other
drives fail.

NOTE

Many of the RAID solutions available today support “hot-spare” drives. A hot-spare
drive is connected to the array but doesn’t store any data. When the RAID system
detects a drive failure, the contents of the failed drive are re-created on the hot-spare
drive, and it is automatically swapped into the array in place of the failed drive. The
failed drive can then be manually removed from the array and replaced with a working
drive, which becomes the new hot spare.

RAID 5 provides excellent read performance but expensive write performance. A write oper-
ation on a RAID 5 array requires two writes: one to the data drive and one to the parity
drive. After the writes are complete, the controller reads the data to ensure that the infor-
mation matches (that is, that no hardware failure has occurred). A single write operation
causes four I/Os on a RAID 5 array. For this reason, putting log files or tempdb on a RAID 5
array is not recommended. Index filegroups, which suffer worse than data filegroups from
bad write performance, are also poor candidates for RAID 5 arrays. Data filegroups where
more than 10% of the I/Os are writes are also not good candidates for RAID 5 arrays.

Note that if write performance is not an issue in your environment—for example, in a
DSS/data warehousing environment—you should, by all means, use RAID 5 for your data
and index segments.

In any environment, you should avoid putting tempdb on a RAID 5 array. tempdb typically
receives heavy write activity, and it performs better on a RAID 1 or RAID 0 array.

RAID 5 is a relatively economical means of providing fault tolerance. No matter how
many drives are in the array, only the space equivalent to a single drive is used to support

ptg

1422 CHAPTER 38 Database Design and Performance

Array
Controller

D1
D5

Parity

D2

Parity
D6

Parity
D3
D7

D4

D8
Parity

FIGURE 38.5 RAID Level 5.

fault tolerance. This method becomes more economical with more drives in the array. You
must have at least three drives in a RAID 5 array. Three drives would require that 33% of
available disk space be used for fault tolerance, four would require 25%, five would require
20%, and so on.

Figure 38.5 shows a RAID 5 configuration.

NOTE

Although the recommendations for using the various RAID levels presented here can
help ensure that your database performance will be optimal, reality often dictates that
your optimum disk configuration might not be available. You may be given a server with
a single RAID 5 array and told to make it work. Although RAID 5 is not optimal for
tempdb or transaction logs, the write performance can be mitigated by using a
controller with a battery-backed write cache.

If possible, you should also try to stripe database activity across multiple RAID 5 arrays
rather than a single large RAID 5 array to avoid overdriving the disks in the array.

SQL Server and SAN Technology
With to the increased use of storage area networks (SANs) in SQL Server environments, it
is important to understand the design and performance implications of implementing
SQL Server databases on SANs. SANs are becoming increasingly more common in SQL
Server environments these days for a number of reasons:

ptg

1423SQL Server and SAN Technology
3

8

. Increasing database sizes

. The increasing prevalence of clustered environments

. The performance advantages and storage efficiencies and flexibilities of SANs

. The increasing needs of recoverability and disaster recovery

. Simplified disk administration

In large enterprises, a SAN can be used to connect multiple servers to a centralized pool of
disk storage. Compared to managing hundreds of servers, each with its own separate disk
arrays, SANs help simplify disk administration by treating all the company’s storage as a
single resource. Disk allocation, maintenance, and routine backups are easier to manage,
schedule, and control. In some SANs, the disks themselves can copy data to other disks for
backup without any processing overhead at the host computers.

What Is a SAN?

A SAN contains multiple high-performance hard drives coupled with high-performance
caching controllers. The hard drives are often configured into various RAID configura-
tions. These drive configurations are virtualized so that the consumer does not know
which hard drives a SQL Server or other device connected to the SAN will access.
Essentially, the SAN presents blocks of storage to servers that can consist of a single hard
drive, multiple hard drives, or portions of hard drives in a logical unit called a Logical
Unit Number (LUN). Connection to a SAN is typically through fiber channel, a high-speed
optical network.

SANS can provide advantages over locally attached storage. Most SANs provide features
that allow you to clone, snapshot, or rapidly move data (replicate) from one location to
another, much faster than file copies or data transfers over your network. This increases
the usefulness of SANs for disaster recovery. SANs also provide a shared disk resource for
building server clusters, even allowing a cluster or server to boot off a SAN.

Another reason for the increased use of SANs is that they offer increased utilization of
storage. With locally attached storage, large amounts of disk space can end up being
wasted. With a SAN, you can expand or contract the amount of disk space allocated to a
server or cluster as needed.

Due to their cost and complexity, however, SANs are not for everybody. They only really
make sense in large enterprises. They are not a good choice for small environments with
relatively small databases, for companies with limited budgets (SANs are expensive), or for
companies that require disaster recovery on only one or a few SQL Servers.

SAN Considerations for SQL Server

Before you rush out and purchase a SAN or two for your SQL Server environments, there
are some considerations to keep in mind when using SANs with SQL Server.

ptg

1424 CHAPTER 38 Database Design and Performance

Cache Performance
One of the reasons SANs can offer superior performance to locally attached storage is they
typically are configured with a significant amount of cache space. This is normally a good
thing. However, because the SAN provides storage services to multiple servers, the avail-
able cache space is shared as well. If there is significant activity against the SAN, there can
be extensive cache turnover. This means that the large cache space may not always be
available to SQL Server, so some of the performance gains provided by the large cache are
not realized.

NOTE

Cache turnover in a SAN can lead to widely varying physical I/O response times. When
SQL Server performs I/O against the SAN, it’s considered a physical I/O whether or not
the data resides in the SAN cache. When the physical I/O performance for SQL Server
is measured, the performance can be orders of magnitude faster when the data is
residing in the SAN cache than when the data has to be physically read from the disks
in the SAN. It is important that you perform benchmarking with your SAN vendor to
ensure that your SAN cache will be adequate to provide optimal database performance.

Avoid Disk Drive Contention
SAN storage is divided into LUNs. Servers attached to the SAN recognize one or more of
these units as a disk partition or drive. However, these LUNs may share the same disk
drives. For example, consider six 100GB drives in the SAN. Theoretically, this could be
divided into two LUNs of 300GB each. Although each LUN may be allocated to different
SQL Servers, some of the drives shared between the two LUNs could experience twice the
I/O from both servers than if the drives were dedicated to a single server. To avoid this
situation, most SANs support zoning, which allows the SAN administrator to dedicate
entire disks in the SAN to your LUN to isolate the I/O on the drives in the LUN to your
SQL Server.

In addition, you should try to ensure that your database log files are on a LUN consisting
of dedicated drives separate from the LUN (or LUNs) used for your SQL Server data files.
Log files typically are written sequentially, unlike data files where data access tends to
consist more of random reads and writes. Sharing a LUN between data files and log files
generally does not provide optimal IO performance. Unfortunately, your SAN administrator
may not permit you to dedicate a separate disk or set of disks to your log files. An alterna-
tive may be to place your log files on a local RAID 1 or RAID 10 array. However, you might
want to benchmark to determine which solution provides better performance because the
caching capabilities of the SAN may offset the potential drive contention in the SAN.

Additional SAN Performance Considerations
Some SAN administrators may attempt to convince you to use RAID 5 for all data and log
files. Before following their advice, you should benchmark the system using a representa-
tive load to ensure that RAID 5 will offer the best performance for your log files, tempdb,
and any write-intensive filegroups.

ptg

1425Summary
3

8

You should also ensure that the hardware your SQL Server system uses to connect to the
SAN provides optimal performance. Make sure that you have the correct and most up-to-
date drivers for your SAN components. If you can, consider using multiple high-speed
host bus adapters (HBAs) to connect your servers to your SAN to avoid the I/O contention
that can occur with a single HBA. If you do use multiple HBAs, try to ensure they are on
different buses to prevent bus saturation and that the HBAs are plugged into the PCI slots
offering the highest speed.

SANs are complex, and delivering optimal performance for a SQL Server solution using a
SAN is challenging. Benchmark your SQL Server to determine if bottlenecks exist with
your SAN. Be willing to work with your SAN administrator or vendor to fine-tune your
SAN configuration and carefully consider and benchmark any recommendations they may
make to ensure optimal performance.

Summary
A good database design is the best place to start to ensure that your database application
runs smoothly. This chapter outlined some of the fundamental aspects a database design
that you should consider. If you have the luxury of designing the database system from the
ground up, be sure to use what you learned in this chapter in the early stages of develop-
ing your database system. If you inherit a database with an inadequate design, the design
principles described in this chapter still apply, but they may be a bit harder to implement.

The next chapter, “Monitoring SQL Server Performance,” delves into the tools and tech-
niques you can use to evaluate the performance of your SQL Server instance. Monitoring is
tightly linked to database design and is essential in achieving optimal database performance.

ptg

This page intentionally left blank

ptg

CHAPTER 39

Monitoring SQL Server
Performance

IN THIS CHAPTER

. What’s New in Monitoring SQL
Server Performance

. Performance Monitoring Tools

. A Performance Monitoring
Approach

No SQL Server implementation is perfect out of the box.
As you build and add SQL Server–based applications to your
server, you should take an active approach to monitoring
performance. You also need to keep reevaluating as more
and more load is placed on your servers and data volumes
grow. This chapter focuses on SQL Server monitoring and
leaves monitoring of the other types of servers (including
application servers, backup servers, domain controllers, file
and print servers, mail/messaging servers, and web servers)
for the specialists in those areas.

You can monitor many things on your SQL Server platform,
ranging from physical and logical I/O to the network
packets passing between the server and your client applica-
tions. To make this monitoring task a little cleaner, this
chapter classifies the key monitoring elements into
network, processors, memory/cache, and disk systems.
Figure 39.1 shows how these key elements interrelate with
SQL Server 2008 and Windows. The aspect of utilization—
whether CPU utilization, memory utilization, or something
else—is at the center of most of the discussions in this
chapter. The important concept to remember is how to
monitor or measure utilization and how to make changes to
improve this utilization because you are still not in a perfect
world of infinite CPU power, infinite disk space, infinite
network load capability, and infinite memory.

It is essential that you know which tools you can use to get
this valuable information. These tools include SQL Server
Management Studio (SSMS) Activity Monitor, Data
Collector, Extended Events, Windows Performance Monitor
and its various counters, a few SQL Server DBCC options,
SQL Server Profiler, and a variety of SQL Server dynamic

ptg

1428 CHAPTER 39 Monitoring SQL Server Performance
N

et
w

or
k

Windows Server

SQL Server 2008

P
ro

ce
ss

or
s

M
em

or
y/

C
ac

he

D
is

k
S

ys
te

m

FIGURE 39.1 Key elements of SQL Server 2008 performance monitoring: network, proces-
sors, memory/cache, and disks.

management views (DMVs). Although many other third-party products are available for
performance monitoring, some of which do a fantastic job of gathering and aggregating
performance data from a number of sources, there is just not enough space in this chapter
to cover all the various third-party tools and their features. Instead, this chapter focuses
on the performance monitoring tools provided out of the box with SQL Server 2008.

What’s New in Monitoring SQL Server Performance
Performance tuning and troubleshooting are time-consuming tasks for the administrator.
To help provide insights quickly into performance issues, SQL Server 2008 provides a
number of new and enhanced features for monitoring SQL Server performance.

In SQL Server 2005, the Activity Monitor in SSMS showed only the current running
processes and the locks currently being held in the system. In SQL Server 2008, the
Activity Monitor has been enhanced and now provides a graphical overview of SQL Server
activity, as well as information on active user tasks, resource waits, data file I/O, and the
recent most expensive queries. Unfortunately, the new information and fancier interface
come with the loss of the useful lock monitor that was available in SQL Server 2005
Activity Monitor.

SQL Server 2008 also introduced a new performance monitoring tool called the Data
Collector. The Data Collector gathers performance data from multiple sources and stores
the data in the management data warehouse (MDW). The MDW is simply a database
setup within a SQL Server instance where the data is collected for subsequent viewing
and reporting.

SQL Server Extended Events is a general event-handling system for the server. The
Extended Events infrastructure is a lightweight mechanism that supports capturing, filter-
ing, and acting on events generated by the server process. Extended Events is designed to
be a foundation that users can configure to monitor and capture different types of data,
including performance data. It’s a flexible and powerful way to provide a low granular
level of information about the server system. Events can be used to diagnose runtime

ptg

1429Performance Monitoring Tools
3

9

problems by adding contextual data, such as Transact-SQL (T-SQL) call stacks or query
plan handles, to any event. Events can be captured into several different output types,
including Event Tracing for Windows (ETW), which enables you to correlate events with
operating system and application events and performance counters.

SQL Server 2008 also introduces a number of new dynamic management views to simplify
retrieval of information that can be helpful with memory troubleshooting. These new
DMVs are described in more detail later in this chapter.

Performance Monitoring Tools
In prior versions of SQL Server, the tools available for monitoring SQL Server performance
were somewhat limited. Yes, you had the Windows Performance Monitor, Activity
Monitor, SQL Server Profiler, and SQL Trace, but performing in-depth performance moni-
toring usually required the purchase of third-party tools to collect, monitor, and view
performance information in a useful way.

SQL Server 2008 provide a number of tools you can use to collect, analyze, monitor, and
report performance-related data. The usual old-timers such as SQL Server Profiler and
Database Engine Tuning Advisor still exist and are available to you, but SQL Server 2008
also includes a new Activity Monitor, the Data Collector and management data ware-
house, SQL Utility, and SQL Server Extended Events.

NOTE

For a discussion on using SQL Server Profiler for monitoring and analyzing perfor-
mance, see Chapter 6, “SQL Server Profiler.” For more information on the Database
Engine Tuning Advisor, see Chapter 55, “Configuring, Tuning, and Optimizing SQL Server
Options.” In addition, the Activity Monitor is already covered in detail in Chapter 4,
“SQL Server Management Studio,” so detailed information on Activity Monitor is not
provided in this chapter.

The Data Collector and the MDW

As mentioned previously, SQL Server 2008 introduces a new performance monitoring tool
called the Data Collector. The Data Collector is designed to collect performance-related
data from multiple sources from one or more SQL Servers, store it in a central data ware-
house, and present the data through reports in SQL Server Management Studio. The main
purpose of the Data Collector is to provide an easy way to automate the collection of criti-
cal performance data. The Data Collector gathers information from Windows performance
counters, snapshots of data grabbed from dynamic management views, and details on disk
utilization.

Data collection can be configured to run continuously or on a user-defined schedule. You
can adjust the scope of data collection to suit the needs of your test and production envi-
ronments. The Data Collector provides a single central point for data collection across

ptg

1430 CHAPTER 39 Monitoring SQL Server Performance

SQL Agent

SSIS

Data Collection
Sets and Items

MDW

SQL Server Mgmt
Studio

SSMS
Reports

msdb

Monitored SQL Server

Client Workstation

SSIS
Pack
Job

Definitions
Audit and
History

Temporary
File Cache

Data Collector
Runtime

FIGURE 39.2 Data Collector architecture.

your database servers and applications and, unlike SQL Trace, is not limited to collecting
performance data only.

The Data Collector feature consists of the following components:

. Data collection sets—These are the definitions and scheduled jobs for collecting
performance data. They are stored in the msdb system database.

. The Data Collector runtime component—This standalone process, called
Dcexec.exe, is responsible for loading and executing the SSIS packages that are part
of a collection set.

. SQL Server Integration Services (SSIS) packages—These packages are used to
collect and upload the data.

. The management data warehouse database—This is a relational database where
the collected data is stored. It also contains the views and stored procedures needed
for collection management.

. MDW Reports—These reports are built in to SSMS for viewing the collected perfor-
mance data.

Figure 39.2 provides an overview of the Data Collector architecture and how the various
components interact.

ptg

1431Performance Monitoring Tools
3

9

NOTE

The Data Collector is not a zero-impact monitoring solution. It incurs approximately a
2% to 5% performance hit on the servers where it’s collecting data. This performance
hit is mainly on the CPU.

Data Collection Sets
A data collection set is group of collection items. A collection set is the unit of data collection
that a user can interact with through the user interface. Data collection sets are defined
and deployed on a SQL Server 2008 instance and can be run independently of each other.
Each collection set is run by a SQL Server Agent job or jobs, and data is uploaded to the
management data warehouse on a predefined schedule.

Out of the box, SQL Server 2008 provides the following built-in system data collection sets
and reports:

. Disk Usage—Collects local disk usage information for all the databases of the SQL
Server instance. This information can help you determine current space utilization
and future disk space requirements for disk capacity planning.

. Server Activity—Collects SQL Server instance-level resource usage information like
CPU, memory, and I/O. This information can help you monitor short-term to long-
term resource usage trends and identify potential resource bottlenecks on the
system. It can also be used for resource capacity planning.

. Query Statistics—Collects individual statement-level query statistics, including
query text and query plans. This information can help you identify the top resource-
consuming queries that may need performance tuning.

The definition of the system collection sets cannot be modified. However, you can define
your own collection sets or define your own custom reports for this data.

Data Collector Runtime Component
The Data Collector runtime component is invoked by a standalone process called
Dcexec.exe. This component manages data collection based on the definitions provided
in a collection set. The Data Collector runtime component is responsible for loading and
executing the SSIS packages that are part of a collection set.

A collection set can be run in one of the following collection and upload modes:

. Noncached mode—Data collection and upload are executed on the same schedule.
The packages collect data as scheduled and then immediately upload data.

. Cached mode—Data collection and upload are performed on different schedules.
The collection package continues to collect and cache data until stopped. Data is
uploaded from the local cache according to the schedule specified by the user.

ptg

1432 CHAPTER 39 Monitoring SQL Server Performance

NOTE

The Data Collector runtime component can perform only data collection or data upload.
It cannot run these tasks concurrently.

SSIS Packages
The Data Collector is implemented as SSIS packages that are invoked by the Data Collector
runtime component. These packages can be configured to run manually, continuously, or
scheduled as SQL Server Agent jobs to periodically collect and upload data to the manage-
ment data warehouse.

The two most important tasks for the SSIS packages are data collection and data upload.
These tasks are carried out by separate packages. A collection package gathers data from a
data provider and keeps it in temporary storage. An upload package reads the data in
temporary storage, processes the data as required (for example, removing unnecessary data
points, normalizing the data, and data aggregation) and then uploads the data to the
management data warehouse. The upload is done as a bulk insert to minimize the impact
on server performance.The separation of data collection and data upload into separate
packages provides more flexibility and efficiency. This design supports scenarios in which
snapshots of the data are captured at frequent intervals (for example, every 15 seconds),
but the collected data needs to be uploaded only every hour. Data collection and upload
frequency should be determined by the monitoring requirements of a particular SQL
Server installation.

The Management Data Warehouse
The management data warehouse is a relational database where the Data Collector stores
its data. A single MDW database can serve as the central repository for data collectors
running on one or more target SQL Server instances. A data collector is configured on
each target server, and it collects and uploads data to the MDW database, which may be
on a remote server. Between the time the data is captured and the time it is uploaded, the
Data Collector may write temporary data into cache files on the target server.

NOTE

You can install the MDW on the same instance of SQL Server that is running the Data
Collector. However, if server resources or performance are an issue on the server that
is being monitored, you might want to install the management data warehouse on a dif-
ferent computer to avoid additional CPU and I/O contention.

The MDW can become quite large, growing at approximately 250–500MB per day. This is
roughly around 2GB of database storage per server each week. You need to decide how
long you want to retain the data based on on your performance monitoring needs and
your storage availability. For the most part, you can probably stick with the default reten-
tion settings, which are 14 days for Query Statistics and Server Activity History data collec-
tions and two years for Disk Usage Summary collections.

ptg

1433Performance Monitoring Tools
3

9

The required schemas and the objects to support the predefined system collection sets are
created when you run the wizard to create the MDW. Two schemas are created: core and
snapshots. The core schema describes the tables, stored procedures, and views used to
organize and identify collected data. These tables are shared among all the data tables
created for individual collector types. The snapshots schema describes the objects needed
to store and maintain the data collected by the collector types that are provided.

A third schema, custom_snapshots, is created if you create your own user-defined collec-
tion sets that include collection items that use the Generic T-SQL Query collector type.

CAUTION

You should not directly modify any data stored in the management data warehouse.
Changing the data that you have collected invalidates the legitimacy of the collected
data. Also, instead of directly accessing the MDW tables, you should always use the
documented stored procedures and functions provided with the Data Collector to
access instance and application data.

MDW Reports
The MDW reports included in SSMS present the information gathered by the Data
Collector in the following areas:

. Query performance statistics and use of indexes

. Server activity information, including waiting processes, memory usage, CPU/sched-
uler usage, and disk I/O

. Disk usage information

Each of the reports present a summary of the data at a high level, with the capability to
drill down into the details. Sometimes the reports can provide information to help direct
you to a solution for a performance problem. For example, if the query performance statis-
tics report shows an extremely slow-running query, you can drill down through the report
to expose more details on the query, right down to the query plan. The query plan could
indicate that there is a missing index on that table, and creating that index could make a
major difference in the query performance.

Installing and Configuring the Data Collector
Before you can use the Data Collector, you must complete the following tasks:

. Create logins and map them to Data Collector roles.

. Configure the management data warehouse.

NOTE

The management data warehouse can be installed only on a server running SQL Server
2008 or SQL Server 2008 R2.

ptg

1434 CHAPTER 39 Monitoring SQL Server Performance

FIGURE 39.3 The Configure Management Data Warehouse Wizard’s Select Configuration Task
window.

The Data Collector has specific roles for data collection and management data warehouse
tasks. The logins and roles required for data collection need to be created on the server
that performs the data collection. Logins and roles for the MDW need to be created in the
server that hosts the MDW. These logins and the MDW are created using the Configure
Management Data Warehouse Wizard, which performs the following tasks:

. Creates the management data warehouse

. Installs the predefined System Data collection sets

. Maps logins to management data warehouse roles

. Enables data collection

. Starts the System Data collection sets

To invoke the Configure Management Data Warehouse Wizard, perform the following
tasks on the SQL Server instance where you want to host the MDW:

1. Ensure that SQL Server Agent is running (for information on starting SQL Server
Agent, see Chapter 16, “SQL Server Scheduling and Notification”).

2. In Object Explorer in SSMS, expand the server instance that will host the MDW and
expand the Management node for that server.

3. Right-click Data Collection and then click Configure Management Data Warehouse.
This starts the Configure Management Data Warehouse Wizard.

4. Click on Next to display the Select Configuration Task window, as shown in
Figure 39.3.

ptg

1435Performance Monitoring Tools
3

9

TIP

If you’ve already created a repository database for the SQL Server Utility (see the “SQL
Server Utility” section later in this chapter), you must use this same database as the
MDW for the Data Collector. You can skip the process of creating the MDW and jump
right to the configuration of the Data Collector. On the Configure Management Data
Warehouse Storage screen (look ahead to Figure 39.6), you specify the name of the
server that was set up as the utility control point (UCP) and specify the name of the
utility data warehouse database that was set up to collect the SQL Server Utility perfor-
mance statistics.

In the Select Configuration Task window, make sure the radio button for Create or
Upgrade a Management Data Warehouse is selected and click Next. Specify the name of
the server instance that will host the MDW and click on New to create the MDW data-
base. This brings up the standard New Database dialog. Enter the name you want to use
for the MDW database and specify the location of the database files if you want the data-
base created in different drive or directory than the default data file directory.

TIP

If you are creating the MDW on a server that you will also be monitoring with the Data
Collector, it’s a good idea to put the MDW on drives separate from where your produc-
tion databases reside to avoid the potential for any I/O contention between the MDW
and your production databases.

Also, because of the anticipated growth of the MDW, you might want to change the
default autogrow size of the MDW from 50MB to possibly 250 or 500MB and set the
initial size to at least 500MB or 1GB.

Before saving your settings and creating the MDW database, display the Options page and
make sure that the database is configured for Simple recovery mode. For the current
release of the Data Collector, the management data warehouse should be created using the
Simple recovery model, to minimize logging.

When you are satisfied with the database configuration, click on OK to create the MDW
database. After the database is created and you are brought back to the Configure
Management Data Warehouse Storage screen (see Figure 39.4), click Next to continue to
the Map Logins and Users screen. On this screen, assign the appropriate MDW roles to
your SQL Server users (see Figure 39.5). Any users who need to view the Data Collector
reports need the mdw_reader role.

ptg

1436 CHAPTER 39 Monitoring SQL Server Performance

FIGURE 39.4 The Configure Management Data Warehouse Storage screen.

FIGURE 39.5 The Map Logins and Users screen.

By default, no user is a member of the MDW database roles. User membership in these
roles must be granted explicitly. Members of the mdw_admin role have Read, Write, Update,
and Delete access to the management data warehouse. Members of this role can change
the management data warehouse schema when required (for example, adding a new table
when a new collection type is installed) and run maintenance jobs on the management
data warehouse, such as archive or cleanup. Members of the mdw_writer role can upload
and write data to the management data warehouse; any Data Collector that stores data in
the management data warehouse has to be a member of this role. Members of the
mdw_reader role have Read access to the management data warehouse primarily for the
purpose of supporting troubleshooting by providing access to historical data.

ptg

1437Performance Monitoring Tools
3

9

It is recommended that you create a new login for data collection and map it as shown in
Figure 39.5.

After you map the users, click on Next to bring up the Complete the Wizard screen, which
provides a summary of the tasks to be performed. If everything looks okay, click Finish to
perform the configuration of the MDW, which includes running the installation script to
install the required schema objects in the MDW.

After you have created the MDW and made it available, the next step is to begin data
collection for one or more of your SQL Server 2008 instances. Right-click on the Data
Collection node in Object Explorer and select the Configure Management Data
Warehouse option again. On the Select Configuration Task screen (refer to Figure 39.3),
select the Set Up Data Collection radio button and click Next. On the Configure
Management Data Warehouse Storage screen (see Figure 39.6), specify the name of the
server that hosts the MDW and the name of the MDW database created previously. When
specifying the server, you can also specify which directory you want the Data Collector to
use for its local file cache (again, if possible, this should be on a different drive than where
your database data files reside to minimize I/O contention). If you leave the value blank, it
uses the default SQL Agent TEMP directory.

FIGURE 39.6 The Configure Management Data Warehouse Storage screen when configuring
data collection.

When you finish making your selections, click Next to bring up the Complete the Wizard
screen, which provides a summary of the tasks to be performed. If everything looks okay,
click Finish to have the wizard perform the configuration of the system collection sets and
enable data collection.

The System Data Collectors
When the Configure Management Data Warehouse Wizard is finished, you should see
three additional nodes under the Data Collector node: Disk Usage, Query Statistics,

ptg

1438 CHAPTER 39 Monitoring SQL Server Performance

FIGURE 39.7 Data Collection Set Properties window for the Disk Usage Data Collector.

and Server Activity. You can double-click each node, or right-click and select Properties,
to open the Properties window. The Properties window for the Disk Usage Data Collector
is shown in Figure 39.7.

The main item you may want to change in the Data Collection Set Properties window is
the data collection and upload schedule. By default, the wizard configures the Disk Usage
Collection set to run in noncached mode every six hours. Depending on how active your
server is, you might want to increase or decrease the frequency that it runs. You can also
configure how long it should retain data in the MDW. By default, it is configured to retain
data for two years (730 days). This is probably fine for keeping track of disk usage, but for
more active Data Collector Sets, you might want to reduce the retention period to reduce
the size of the MDW. For example, the default retention period for the Query Statistics and
Server Activity Data Collectors is 14 days.

Both the Query Statistics and Server Activity Data Collectors are configured to cache data
and upload to the MDW on a separate schedule. If you look in the General page of the
Data Collection Set Properties window for these Data Collectors, you see that the schedule
Query Statistics Data Collector is to gather information every 10 seconds, and the Server
Activity collector gathers information every 60 seconds. To view the upload schedule, click
on the Uploads page (see Figure 39.8). Both Data Collectors, by default, are configured to

ptg

1439Performance Monitoring Tools
3

9

upload the cached data to the MDW every 15 minutes. To change the upload schedule,
you can either pick from an existing schedule or create a new one (Figure 39.8 shows the
Pick Schedule list). The Upload Properties page also displays the last time the cached data
was uploaded to the MDW.

In very active servers, the Data Collector can generate a lot of data, and its storage tables
can fill up with millions of rows within hours. You might want to modify the collector job
schedules and decrease the frequency of data collections depending on the use of each
server and your monitoring requirements.

NOTE

Data collection for the built-in system collection sets begins automatically after the
Configure Management Data Warehouse completes. Depending on how active your
servers are, it likely will take awhile for some meaningful data to accumulate. You
might want to wait an hour or so before looking at the reports.

Data Collector Reports
After you set up data collection, SQL Server Management Studio provides three new
reports for viewing data accumulated by the Data Collector: Server Activity History, Disk

FIGURE 39.8 Data Collection Set upload schedule.

ptg

1440 CHAPTER 39 Monitoring SQL Server Performance

FIGURE 39.9 Disk Usage Summary report.

Usage Summary and Query Statistics History. You can view these reports by right-clicking
on the Data Collection node and selecting Reports, and then select Management Data
Warehouse. From there, you can choose one of the three built-in reports:

. Disk Usage Summary—Displays data and log file sizes (starting size and current
size) and average daily growth

. Query Statistics History—Displays query execution statistics including the top 10
queries by CPU, Duration, Total I/O, Physical Reads, and Logical Writes

. Server Activity History—Displays performance statistics in four general areas: CPU
%, Disk I/O Usage, Memory Usage, and Network Usage, plus SQL Server Wait statis-
tics by wait type and SQL Server activity

Figure 39.9 displays an example of the Disk Usage Summary Report. All the data collection
reports provide drill-down capabilities on just about every data element and widget
displayed in the main report. For example, in the Disk Usage Summary report, you can
click on the database name to display a more detailed breakdown of the disk usage for
that specific database. Figure 39.10 shows the Disk Usage details for the
AdventureWorks2008R2 database. If you click on the Trend graph or the current database
or log size, it displays a more detailed graph showing the growth trends for the database
over time since the data collection session started.

ptg

1441Performance Monitoring Tools
3

9

FIGURE 39.10 Disk Usage report for AdventureWorks2008R2 database.

If you want to run reports for any of the monitored servers without having navigate to the
Data Collection node for each server instance, you can open the server instance that
hosts the MDW. Browse to the MDW database in the SSMS Object Browser and right-click
on that database. Then select Reports and select the the Management Data Warehouse
Overview report (see Figure 39.11).

The Management Data Warehouse Overview report lists which servers the data collection
is running on and shows the most recent times data was uploaded for each of the collec-
tion sets. You can click on the hyperlinks below each of the listed collection sets to bring
up that corresponding report for that server. For example, if you click on the link below
Server Activity for the LATITUDED830-W7 server, it displays the Server Activity History
report, as shown in Figure 39.12.

FIGURE 39.11 Management Data Warehouse Overview report.

ptg

1442 CHAPTER 39 Monitoring SQL Server Performance

FIGURE 39.12 The Server Activity History report.

Like the Disk Usage report, most of the data elements in the Server Activity History report
are hyperlinks that let you drill down into more detail. For example, you can click in the
line in the Disk I/O Usage graph to bring up additional detail by disk of the Disk
Response Time, Average Disk Queue Length, Disk Transfer Rate, as well as the average,
minimum, and maximum I/O reads and writes for the processes running during the data
collection session.

If you want to narrow down the report to a specific time frame, you can click on a point
in the timeline shown on the report to set the end time of the data displayed. You can
click on the magnifying glass to increase or decrease the size of the interval displayed and
click the arrow buttons to move to the next or previous interval. For finer control over the
time period displayed, click on the calendar icon to bring up the dialog shown in Figure
39.13. Here, you can set the specific start time and choose an interval (15 minutes or 1, 4,
12, or 24 hours) to display from that start time.

The Data Collector reports contain a lot of data, especially if you drill down into the
details. There are more details than we have space to get into in this chapter. You should
plan to spend some time examining each of these reports by drilling down into the
various details and selecting different time frames and so on to get familiar with what
they have to offer. For example, you can drill from the Query Statistics History report to
the individual query details, including the graphical execution plan.

ptg

1443Performance Monitoring Tools
3

9

FIGURE 39.13 Defining the time frame to display in a data collection report.

Managing the Data Collector
To stop collecting performance data for a SQL Server instance, right-click on Data
Collection in the Management node and click Disable Data Collection. If you want to stop
a specific data collection set, expand the Data Collection node and then expand the
System Data Collection Sets folder. Right-click on the data collection set you want to
stop and select Stop Data Collection Set.

You can also force a collection set to gather data and upload statistics manually by right-
clicking on the data collection set and selecting Collect and Upload Now.

To check on the status and history of the Data Collectors, you can right click on the Data
Collection node and select View Logs. This launches the log viewer that displays the
activity that has occurred for each of the data collection sets, such as which collection sets
are active and the collection and upload history of each of the collection sets.

Managing the Data Collector in T-SQL
Much of the Data Collector can be managed effectively within SSMS. However, if you have
to perform a number of tasks repeatedly, using the wizards and SSMS dialogs can some-
times become tedious. Fortunately, the Data Collector provides an extensive collection of
stored procedures that you can use to perform any data collection task. In addition, you
can use functions and views to retrieve configuration data from the msdb and manage-
ment data warehouse databases, execution log data, as well as the performance data stored
in the management data warehouse.

TIP

As with most tools in SSMS, when using the GUI, you can click the Script buttion to
generate a script for the actions being performed. This is a great way to become more
familiar with the T-SQL commands and procedures for managing the Data Collector.

For example, to enable or disable the Data Collector in a SQL Server instance, you can use
the sp_syscollector_enable_collector and sp_syscollector_disable_collector stored
procedures:

ptg

1444 CHAPTER 39 Monitoring SQL Server Performance

USE msdb;

GO

EXEC dbo.sp_syscollector_disable_collector;

GO

EXEC dbo.sp_syscollector_enable_collector;

GO

To force the running of a noncached collection set and have it upload to the MDW for
collection sets configured in noncached collection mode, use the
sp_syscollector_run_collection_set system procedure:

sp_syscollector_run_collection_set

[[@collection_set_id =] collection_set_id]

, [[@name =] ‘name’]

You can pass either the collection set ID or the collection name. When you are passing
one, the other parameter can be NULL:

USE msdb;

GO

EXEC sp_syscollector_run_collection_set @name = ‘Disk Usage’

go

To force a manual update of a cached mode Data Collector, you can use the
sp_syscollector_upload_collection_set procedure:

USE msdb;

GO

EXEC sp_syscollector_upload_collection_set @name = ‘Server Activity’

go

To stop or start a specific collector set, you can use the
sp_syscollector_start_collection_set and sp_syscollector_stop_collection set
stored procedures:

USE msdb;

GO

EXEC dbo.sp_syscollector_stop_collection_set @name = ‘Disk Usage’

GO

EXEC dbo.sp_syscollector_start_collection_set @name = ‘Disk Usage’

GO

To modify a collection set, you can use the sp_syscollector_update_collection_set
procedure. The syntax is as follows:

sp_syscollector_update_collection_set

[[@collection_set_id =] collection_set_id]

, [[@name =] ‘name’]

, [[@new_name =] ‘new_name’]

ptg

1445Performance Monitoring Tools
3

9

, [[@target =] ‘target’]

, [[@collection_mode =] collection_mode]

, [[@days_until_expiration =] days_until_expiration]

, [[@proxy_id =] proxy_id]

, [[@proxy_name =] ‘proxy_name’]

, [[@schedule_uid =] ‘schedule_uid’]

, [[@schedule_name =] ‘schedule_name’]

, [[@logging_level =] logging_level]

, [[@description =] ‘description’]

If the collection set is running, the only options you can modify are the schedule_uid and
description. You need to stop the collection set with sp_syscollector_stop_collection_set

first to change other options like the collection-mode or days_until_expiration. For
example, the following code changes the number of days to retain collection set data to
seven days for the Server Activity collection set:

USE msdb;

GO

EXEC dbo.sp_syscollector_stop_collection_set @name = ‘Disk Usage’

GO

EXEC dbo.sp_syscollector_update_collection_set

@name = N’Server Activity’,

@days_until_expiration = 7;

GO

EXEC dbo.sp_syscollector_start_collection_set @name = ‘Disk Usage’

GO

To view information about the configured collection sets, you can run a query on the
syscollector_collection_sets table similar to the following:

select collection_set_id as ID,

cast (scs.name as varchar(20)) as name,

is_running as ‘running’,

case collection_mode when 0 then ‘cached’

else ‘noncached’ end as coll_mode,

days_until_expiration as retntn,

cast (s.name as varchar(30)) as schedule

from syscollector_collection_sets scs

inner join

sysschedules s

on scs.schedule_uid = s.schedule_uid

go

ID name running coll_mode retntn schedule

-- -------------------- ------- --------- ------ -----------------------------

2 Server Activity 1 cached 7 CollectorSchedule_Every_15min

3 Query Statistics 1 cached 14 CollectorSchedule_Every_15min

ptg

1446 CHAPTER 39 Monitoring SQL Server Performance

4 Utility Information 1 noncached 1 CollectorSchedule_Every_30min

1 Disk Usage 1 noncached 730 CollectorSchedule_Every_6h

There are other informational views you can use to view the data collection configuration:

-- To display the location of the temporary cache and the MDW

select * From syscollector_config_store

go

parameter_name parameter_value

------------------ -----------------------

CacheDirectory D:\SQL2008\DCTemp

CacheWindow 1

CollectorEnabled 1

MDWDatabase UnleashedMDW

MDWInstance LATITUDED830-W7\PERFDW

-- To display the data collection capture and upload

-- information from the execution log

select * From syscollector_config_store

go

select csc.name as collection_set, start_time

From syscollector_execution_log sel

inner join

syscollector_collection_sets csc

on sel.collection_set_id = csc.collection_set_id

order by csc.name, start_time

go

You can also use the stored procedures, functions, and views that are provided to create
your own end-to-end data collection scenarios.

Creating a Customized Data Collection Set
Although you cannot change or delete the built-in system Data Collectors, you can define
your own custom data collection sets. However, currently, you can define them only in T-
SQL. There are four different collector types that you can use to build a collector set:

. T-SQL query—Executes a user-provided T-SQL statement as an input parameter,
saves the output from the query, and then uploads the output to the management
data warehouse.

. SQL Trace—Uses SQL Trace to monitor the SQL Server Relational Engine, with trace
data coming from the system default trace or from one or more custom traces.

. Performance counters—Collects specific performance counter information from
Windows Performance Monitor on the computer running SQL Server 2008.

. Query activity—Collects query statistics and query activity information along with
the query plan and query text for queries that meet predefined criteria. Essentially,
this collector type collects the same information as the Query Statistics collection

ptg

1447Performance Monitoring Tools
3

9

set, so it is recommended that you simply use the predefined Query Statistics
collection set.

One of the reasons you might create a customized data collection set is that the default
system Data Collector for Query Statistics does not store all the statements. It captures
only the worst-performing queries based on the algorithms specified in the collection set.
You might want to collect more queries than the top three worst performing ones.
However, if you create your own data collection for query statistics, you should probably
disable the default system collector to reduce data collection overhead.

This chapter shows how to create a custom collection set to monitor a few Performance
Monitor counters.

TIP

To see an example of a collection set based on performance counters, DMVs, and T-
SQL queries, you can look at the definition of the default Server Activity collection set.
You can easily see this definition by right-clicking on Server Activity in the System Data
Collection Sets folder in SSMS and selecting Script Data Collection.

There is also GUI support for creating a collection set based on a SQL Server Profiler
trace. After you define a trace in SQL Server Profiler with the events you want to cap-
ture, select Export from the File menu; then choose Script Trace Definition and select
For SQL Trace Collection Set. Doing so generates a T-SQL script that you can use to
create a custom Data Collector Set based on a SQL Server Profiler Trace definition.

Assuming you’ve already set up your MDW, you can begin by creating the data collection
set and adding the collection items you want it to contain. To create the data collection
set, use the sp_syscollector_create_collection_set procedure. Next, you need to create
the collection_items to indicate what information you want the collection set to collect.
If you are creating collection items for Performance Monitor counters, The Performance
Counter collector type takes three input parameters:

. Objects—The SQL Server objects running in an instance of SQL Server

. Counters—The counters associated with a SQL Server object

. Instances—The instances of the specified object

Some input parameters support wildcard characters, which enable you to include multiple
counters in a single statement. However, you can use wild cards only at the Counters and
Instances levels and, even then, only at the beginning of the string (for example, ’*
Processor’) or at the end of the string (for example, ’Memory *’).

An example of the creation of custom collection set for capturing information for the
Logical Disk and Process Performance Monitor counters is shown in Listing 39.1.

ptg

1448 CHAPTER 39 Monitoring SQL Server Performance

LISTING 39.1 Creating a Custom Collection Set

Use msdb

go

Declare @collection_set_id_1 int

Declare @collection_set_uid_2 uniqueidentifier

EXEC [dbo].[sp_syscollector_create_collection_set]

@name=N’Disk I/O Perf and SQL CPU’,

@collection_mode=1, — non-cached

@description=

N’Collects logical disk performance counters and SQL Process CPU’,

@target=N’’,

@logging_level=0,

@days_until_expiration=7,

@proxy_name=N’’,

@schedule_name=N’CollectorSchedule_Every_5min’,

@collection_set_id=@collection_set_id_1 OUTPUT,

@collection_set_uid=@collection_set_uid_2 OUTPUT

Select collection_set_id_1=@collection_set_id_1,

collection_set_uid_2=@collection_set_uid_2

/**

** Now, create the desired collection items

***/

Declare @collector_type_uid_3 uniqueidentifier

Select @collector_type_uid_3 = collector_type_uid

From [dbo].[syscollector_collector_types]

Where name = N’Performance Counters Collector Type’;

Declare @collection_item_id_4 int

EXEC [dbo].[sp_syscollector_create_collection_item]

@name=N’Logical Disk Collection and SQL Server CPU’,

@parameters=N’<ns:PerformanceCountersCollector xmlns:ns=”DataCollectorType”>

<PerformanceCounters Objects=”LogicalDisk”

Counters=”Avg. Disk Bytes/Read”

Instances=”*” />

<PerformanceCounters Objects=”LogicalDisk”

Counters=”Avg. Disk Bytes/Write”

Instances=”*” />

<PerformanceCounters Objects=”LogicalDisk”

Counters=”Avg. Disk sec/Read”

Instances=”*” />

<PerformanceCounters Objects=”LogicalDisk”

ptg

1449Performance Monitoring Tools
3

9

Counters=”Avg. Disk sec/Write”

Instances=”*” />

<PerformanceCounters Objects=”LogicalDisk”

Counters=”Disk Read Bytes/sec”

Instances=”*” />

<PerformanceCounters Objects=”LogicalDisk”

Counters=”Disk Write Bytes/sec”

Instances=”*” />

<PerformanceCounters Objects=”Process”

Counters=”% Privileged Time”

Instances=”sqlservr” />

<PerformanceCounters Objects=”Process”

Counters=”% Processor Time”

Instances=”sqlservr” />

</ns:PerformanceCountersCollector>’,

@collection_item_id=@collection_item_id_4 OUTPUT,

@frequency=5,

@collection_set_id=@collection_set_id_1,

@collector_type_uid=@collector_type_uid_3

Select @collection_item_id_4

Go

After you create the collection set, you can start this data collection, either through SSMS
(your user-defined collection sets will be listed directly within the Data Collection node)
or with the following stored procedure call:

Declare @collection_set_id int

select @collection_set_id = collection_set_id

from syscollector_collection_sets

where name = ‘Disk I/O Perf and SQL CPU’

EXEC sp_syscollector_start_collection_set

@collection_set_id = @collection_set_id

go

Because there aren’t any custom reports available for displaying the results of the custom
collection set just defined, you need to run a query in the MDW database to view the
collected Performance Monitor counter values. A sample query (which could serve as the
basis for a customer report) is provided in Listing 39.2.

ptg

1450 CHAPTER 39 Monitoring SQL Server Performance

LISTING 39.2 Querying the MDW for Custom Data Collection Values

Use UnleashedMDW

Go

select spci.path as ‘Counter Path’, spci.object_name as ‘Object Name’,

spci.counter_name as ‘counter Name’, spci.instance_name,

spcv.formatted_value as ‘Formatted Value’,

spcv.collection_time as ‘Collection Time’,

sii.instance_name as ‘SQL Server Instance’

from snapshots.performance_counter_values spcv

inner join

snapshots.performance_counter_instances spci

on spcv.performance_counter_instance_id = spci.performance_counter_id

inner join

core.snapshots_internal si

on si.snapshot_id = spcv.snapshot_id

inner join

core.source_info_internal sii

on sii.source_id = si.source_id

where

sii.collection_set_uid = ‘5D9849BE-1526-4159-99EB-6B0E690C31EA’

order by spcv.collection_time desc

It is possible to create your own custom reports using SQL Server Reporting Services that
query the information for your custom collection sets in the MDW database. For more infor-
mation on creating custom reports, see Chapter 53, “SQL Server 2008 Reporting Services.”

Data Collector Limitations and Recommendations
Although the Data Collector is a great start to a built-in performance monitoring tool, it
does have some limitations still, which are not wholly unexpected in a product that’s still
early in its release cycle. One key limitation is the limited number of built-in data
providers and the reports available. It is hoped that future versions will make it easier to
extend the Data Collector to add additional collection sets and reports.

If you are defining your own custom Data Collectors, consider these recommendations:

. Combine multiple performance counter or query collection items into a single
collection item wherever possible.

. Combine collection items into a single collection set whenever possible unless you
need separate data retention periods or different collection schedules for the collec-
tion items.

. If you collect data frequently, it is more efficient to run the collection set in cached
collection mode than starting and stopping a new process every time new data must
be collected. In cached collection mode, the collection process runs continuously. As
a general rule, if you will be capturing data every five minutes or less, consider using
a collection set that runs in cached collection mode.

ptg

1451Performance Monitoring Tools
3

9

. If you are collecting data less frequently than every five minutes, using noncached
mode is more efficient than leaving a generally idle process running all the time.

. Although the collection frequency for cached collection sets can be set to run as fre-
quently as every five seconds, be aware that more frequent collection has corre-
spondingly high overhead. Always choose the lowest collection frequency that will
meet your needs.

Currently, removing data collection after it has been configured is not supported. You can
disable data collections but cannot remove them or the SSIS packages and jobs associated
with them after they have been defined. Attempting to manually remove data collection
may lead to errors if you try to re-implement data collection in the future. In addition,
you should not drop or change the name of the MDW database because all the jobs are
based on the original database name.

Another key limitation in the Data Collector is the lack of built-in alerting in the event
that certain performance thresholds are crossed while monitoring the system. In contrast,
the SQL Server Utility, which performs more limited monitoring and data capture than
the Data Collector, does provide a threshold and alerting mechanism.

SQL Server Utility

SQL Server 2008 R2 introduces a new multiserver management tool named the SQL Server
Utility. This new tool takes performance monitoring in SQL Server to the next level by
providing the capability to monitor specific performance metrics for one or more SQL
Server instances in a single view from a single SQL Server instance. The performance infor-
mation is captured in a database, and you can view this information in one convenient
place from within the SSMS environment.

Some basic setup is required to start using the SQL Utility. You accomplish this basic setup
by using the new Utility Explorer available in SSMS. You click View on the SSMS menu bar
and then select Utility Explorer. This Utility Explorer has a tree-like structure similar to the
Object Explorer, and it integrates into the SSMS environment in much the same way.

NOTE

The option to view the Utility Explorer is not available if you are running a version of
SQL Server prior to SQL Server 2008 R2.

The first page displayed when you launch the Utility Explorer is shown in Figure 39.14.
This screen outlines all the utility configuration steps and is a handy launch point into
wizards that guide you through the setup process. You can also click on the Video link
next to each step to obtain further help on configuring that step.

ptg

1452 CHAPTER 39 Monitoring SQL Server Performance

These steps and the details related to configuring the Utility Explorer are covered in more
depth in Chapter 4. This chapter focuses on the performance monitoring capabilities of the
SQL Server Utility and the specific metrics available for collection. To enable these capabili-
ties, you only need to do the following:

1. Create a utility control point.

2. Connect to an existing UCP.

3. Enroll instances of SQL Server into the UCP.

The UCP is a central repository for storing configuration information and performance
data for all the instances that have been enrolled in the SQL Server Utility. Each SQL
Server Utility has only one UCP that you define by clicking on the first link listed in the
Utility Configurations Steps. A wizard guides you through the creation.

NOTE

The SQL Server Utility collection set can work side by side with non–SQL Server Utility
collection sets, such as those set up for data collection in the MDW. In other words, a
managed instance of SQL Server can be monitored by other collection sets while it is a
member of a SQL Server Utility. However, you must disable data collection while the
instance of SQL Server is being enrolled into the SQL Server Utility.

FIGURE 39.14 Utility Configuration Steps.

ptg

1453Performance Monitoring Tools
3

9

In addition, after the instance is enrolled with the UCP, when you restart the non–SQL
Server Utility collection sets, all collection sets on the managed instance upload their
data to the utility management data warehouse (UMDW), sysutility_mdw.

After you create the UCP, a new tab named Utility Explorer Content is displayed within the
Utility Explorer (see Figure 39.15). This Utility Explorer window is also called the SQL
Server Utility dashboard. This dashboard is the main window for viewing performance
metrics captured by the SQL Server Utility. The information displayed on this screen imme-
diately after creating the UCP is the performance information for the UCP itself. Each UCP
is automatically a managed instance and thus has performance data collected for it.

The following four performance utilization metrics are captured by the SQL Server Utility
and displayed on the Utility Explorer Content screen:

. CPU utilized by the SQL Server instance

. Database file utilization

. Storage volume utilization

FIGURE 39.15 SQL Server Utility dashboard.

ptg

1454 CHAPTER 39 Monitoring SQL Server Performance

. CPU utilized by the computer running the instance

This performance data is broken down based on utilization thresholds and displayed in
the dashboard window based on whether the specific metric is overutilized, underutilized,
or well utilized. This breakdown is created for each managed instance as well as data-tier
applications, a discussion of which is beyond the scope of this chapter.

The key to making this performance information valuable for you is defining the thresholds
for each one of these metrics. Overutilization or underutilization, to some degree, is a
matter of personal preference. A CPU that is at 70% utilization may be considered overuti-
lized for some but not for others. The thresholds for these metrics can be defined using the
Utility Administration node in the Utility Explorer. Figure 39.16 shows the policy screen
where the global policies for the managed instances can be defined. These policies are essen-
tially the thresholds for each of the four performance categories displayed in the SQL Server
Utility dashboard.

The real power of the SQL Server Utility lies in its capability to collect the kind of perfor-
mance data that we have been talking about for other SQL Server instances. This multi-
server management capability is easy to implement and simply requires that you enroll
the other SQL Server instances with a UCP. As mentioned earlier, you can do this by using
the third link on the Utility Configuration Steps page. You can also right-click on the
Managed Instances node in the Utility Explorer and select Enroll Instance. The Enroll
Instance Wizard guides you through the enrollment steps. Upon completion of the wizard,
the new instance appears in the Utility Explorer Content tab, as shown in Figure 39.17.

FIGURE 39.16 Global policies for managed instances.

ptg

1455Performance Monitoring Tools
3

9

The performance data collected by the SQL Server Utility is stored in the utility manage-
ment data warehouse. The UMDW is a database named sysutility_mdw that is automati-
cally created on the UCP instance when the UCP is created. It can be viewed in the list of
databases in Object Explorer. By default, each managed instance enrolled in the UCP sends
configuration and performance data to the UCP database every 15 minutes. The frequency
of data collections provides for a comprehensive set of historical information. This data
can be viewed in the Utility Explorer across different intervals, including daily, weekly,
monthly, and yearly views. These views provide a sound foundation for identifying prob-
lems or identifying trends that can lead to problems in the enrolled SQL Server instances.

CAUTION

The frequency of collection of data in the UMDW database can also lead to a large
database. Make sure that you monitor the size of the sysutility_mdw database over
time. You can manage the data retention period through the SQL Server Utility Explorer.
Click on Utility Administration and then select the Data Warehouse tab. You can drag
the slider to change the retention period from the default value of one year to one,
three, or six months if the UMDW database is becoming too large.

SQL Server Extended Events

SQL Server Extended Events (SSEE) are truly the future event-oriented framework that all
SQL Server–based systems and applications will be using going forward. Extended Events
are highly flexible to define, are able to capture almost any action or event within your

FIGURE 39.17 Managed instances.

ptg

1456 CHAPTER 39 Monitoring SQL Server Performance

reach, are lightweight in their implementation, and are flexible enough to create simple or
complex monitoring across multiple systems and environments. In other words, SSEE is a
unified approach to handling events across SQL Server systems, while at the same time
enabling users to isolate specific events for troubleshooting purposes.

The Extended Events framework can be utilized to help SQL Server implementations in
many ways. Some approaches might include the following:

. Isolating excessive CPU utilization

. Looking for deadlocks/locking

. Locating long-running SQL queries

One of the key features of Extended Events is that events are not bound to a general set of
output columns like SQL Trace events. Instead, each Extended Event publishes its data
using its own unique schema. This makes the system as flexible as possible for what can
be returned from Extended Events. The Extended Event system was engineered from the
ground up with performance in mind, so events should have minimal impact on system
performance.

SSEE currently is T-SQL based (there is no GUI tool available for SSEE yet). However, it has
several predefined SQL Server catalog and dynamic management views and also is inte-
grated with the Event Tracing for Windows (ETW) tools. Figure 39.18 shows the overall
makeup of the new SSEE framework.

SQL Server

Applications

E
ve

n
t

T
ra

ci
n

g
 f

o
r

W
in

d
o

w
s

(E
T

W
)

O
p

er
at

in
g

 S
ys

te
m

E
xt

en
d

ed
E

ve
n

ts

Catalog Views

Dynamic Management Views

Viewing Metadata

Viewing Session data

XYZ

EE Session
TheMostLocks

EE Session
TheMostLocks

SQL Events

App Events

OS events

N
et

w
o

rk

EE Registered
Packages

Events

Targets

Actions

Types

Predicates

Maps

FIGURE 39.18 SQL Server Extended Event framework.

ptg

1457Performance Monitoring Tools
3

9

There is basically an Extended Event engine that runs within SQL Server and drives the
event gathering for active sessions. This capability essentially provides a standard and
powerful way to dynamically monitor active processes, while at the same time having
minimal effect on those processes.

Looking a little closer at Figure 39.18, you can see the concept of Extended Events pack-
ages (a package), which contain one or more Extended Events objects. The Extended
Events engine allows any event to be bound to any target. In other words, events can
push their results to any location for consumption (like the ETW) or can be exposed via
Views in SMSS, and so on.

Predicates are used to filter what events (that are firing) get pushed to the target (consumer).
This capability greatly adds to the flexibility of the Extended Events infrastructure.

The next sections examine the main elements of Extended Events.

Packages
A package is a container for SQL Server Extended Events objects. It is the basic unit within
which all other Extended Event objects ship. Four kinds of Extended Events packages are
included in SQL Server 2008:

. package0—Extended Events system objects. This is the default package.

. sqlserver—SQL Server–related objects.

. sqlos—SQL Server Operating System (SQLOS)–related objects.

. SecAudit—Security Audit events.

You can see these four packages by running the following query:

select * from sys.dm_xe_packages

Packages can interact with one another to avoid having to provide the same code in
multiple contexts. In other words, if one package exposes an action that can be bound to
an event, any number of other events in other packages can also use it. For example, the
package0 package that ships with SQL Server 2008 contains objects designed to be used by
all the other packages.

A package can contain any or all of the following objects:

. Events

. Targets

. Actions

. Types

. Predicates

. Maps

ptg

1458 CHAPTER 39 Monitoring SQL Server Performance

Events
Events are monitoring points of interest in the execution path of a program, such as SQL
Server. An event firing indicates that the point of interest was reached and provides state
information from the time the event was fired. Events can be used solely for tracing
purposes or for triggering actions. These actions can either be synchronous or asynchro-
nous. There can be one or more events in an event session package.

To see a list of the events provided with SQL Server, you can run the following query:

select * from sys.dm_xe_objects where object_type = ‘event’

As stated previously, events have a schema that defines their contents. This schema is
composed of event columns with well-defined types. You can view the event schema by
querying sys.dm_xe_object_columns, as in the following example:

select name, column_id, type_name, column_type

from sys.dm_xe_object_columns

where object_name = ‘page_split’

go

name column_id type_name column_type

------- ----------- ------------ -----------

ID 0 uint16 readonly

UUID 1 guid_ptr readonly

VERSION 2 uint8 readonly

CHANNEL 3 etw_channel readonly

KEYWORD 4 keyword_map readonly

file_id 0 uint16 data

page_id 1 uint32 data

Columns marked with column_type data are the values that will be filled in at runtime.
The read-only columns provide metadata about the event. Notice that one of the columns
in the output is the channel for the event; this indicates the category of the event. The
available event channels in SQL Server 2008 are as follows:

. Admin—Admin events are primarily targeted to the end users, administrators, and
support. They include events such as error reports and deprecation announcements.

. Operational—Operational events are used for analyzing and diagnosing a problem
or occurrence. They can be used to trigger tools or tasks based on the problem or
occurrence. An example of an operational event is one in which a database is
attached or detached.

. Analytic—Analytic events are those that fire on a regular basis, often in high
volume. They describe program operation such as lock acquisition and SQL Server
statement execution. They are typically aggregated to support performance analysis.

. Debug—Debug events are used solely by DBAs and support engineers to help diag-
nose and solve engine-related problems.

ptg

1459Performance Monitoring Tools
3

9

Targets
Targets are event session consumers and indicate where output is located, such as a file,
ring buffer, or a bucket with aggregation. Targets can process events synchronously or
asynchronously. Extended Events provides several predefined targets you can use as appro-
priate for directing event output. An example of one of our favorites is provided later in
this chapter.

You can find a list of available targets in SQL Server 2008 by running the following query:

select * from sys.dm_xe_objects where object_type =’target’

Predicates
Predicates are a set of logical evaluation rules for events when they are processed that serve
to filter events. They help reduce the volume of captured data and tailor down the output
for analysis. In effect, they enable the Extended Events user to selectively capture event
data based on specific criteria.

There are two different types of predicates in SQL Server 2008: pred_compare and
pred_source. The pred_compare predicates are comparison functions, such as >=.

To view a list of the pred_compare predicates available in SQL Server 2008, you can run
the following query:

select * from sys.dm_xe_objects where object_type = ‘pred_compare’

If you run this query, you’ll notice that there are a number of similar pred_compare predi-
cates with the same comparison function but for different data types (for example,
greater_than_int64 and greater_than_float64).

The pred_source predicates are extended attributes that can be used within predicates to
filter on attributes not carried by the event’s own schema (such as transaction_id or
database_id). The available pred_source predicates can be listed by using the following
query:

select * from sys.dm_xe_objects where object_type = ‘pred_source’

Actions
Actions are programmatic responses or series of responses to an event. Actions are bound
to an event, and each event may have a unique set of actions. Actions are performed
synchronously in association with bound events. They can be used to accomplish certain
tasks or simply provide more information relevant to the events.

There are many types of actions, and they have a wide range of capabilities:

. Receive a stack dump and inspect data.

. Store state information in a variable.

. Bring event data from multiple places together.

ptg

1460 CHAPTER 39 Monitoring SQL Server Performance

. Append new data to existing event data.

To view a list of the actions available in SQL Server 2008, you can run the following query:

select * from sys.dm_xe_objects where object_type = ‘action’

Types and Maps
Two kinds of data types can be defined in an event: scalar types and maps. Scalar types are
single values, like integers. Maps are tables that map internal object values to static, prede-
fined, user-friendly descriptions. They help you see what the internal values stand for
(making them human consumable) but allow the event to more efficiently store the
integer map value rather than the actual text.

Like all the other elements discussed thus far, types and maps can also be viewed by
querying the sys.dm_xe_objects catalog view:

select * from sys.dm_xe_objects

where object_type in (‘type’, ‘map’)

Although types are relatively self-explanatory, maps require a lookup to expose the associ-
ated human-readable text when appropriate. The map values are stored in the DMV called
sys.dm_xe_map_values. To list the map_keys and map_values for lock types, for example,
you can run the following query:

select * from sys.dm_xe_map_values where name = ‘lock_mode’

Extended Events Catalog Views and DMVs
To get metadata information about what events, actions, fields, and targets have been
defined, you can use the catalog views supplied with SQL Server.

NOTE

Examples of the queries presented in this section are provided in the file named
Extended Events Views.sql on the CD for this book.

For catalog views, the following short list shows the SELECT statements and their purposes
(that use the predefined SSEE catalog views).

To see event sessions, you use the following:

SELECT * FROM sys.server_event_sessions;

To see actions on each event (of an event session), run this:

SELECT * FROM sys.server_event_session_actions;

To see events in an event session, run the following:

SELECT * FROM sys.server_event_session_events;

ptg

1461Performance Monitoring Tools
3

9

To see columns of events and targets, use this statement:

SELECT * FROM sys.server_event_session_fields;

And, to see event targets for an event session, you use the following:

SELECT * FROM sys.server_event_session_targets;

You use the dynamic management views to obtain session metadata and session data itself
(as it is being gathered during execution). The metadata is obtained from the catalog
views, and the session data is created when you start and run an event session.

To see session dispatcher pools, you use the following statement:

SELECT * FROM sys.dm_os_dispatcher_pools;

To see event package objects, use this:

SELECT * FROM sys.dm_xe_objects;

To see the schema for all objects, run this statement:

SELECT * FROM sys.dm_xe_object_columns;

To see the registered packages in the Extended Events engine, use this:

SELECT * FROM sys.dm_xe_packages;

To see the active Extended Events sessions, run the following:

SELECT * FROM sys.dm_xe_sessions;

To see session targets, run this statement:

SELECT * FROM sys.dm_xe_session_targets;

To see session events, use this:

SELECT * FROM sys.dm_xe_session_events;

To see event session actions, use this:

SELECT * FROM sys.dm_xe_session_event_actions;

To see the mapping of internal keys to readable text, use the following:

SELECT * FROM sys.dm_xe_map_values;

Specific variations might be as follows:

SELECT map_value Keyword from sys.dm_xe_map_values

where name = ‘keyword_map’;

ptg

1462 CHAPTER 39 Monitoring SQL Server Performance

SELECT map_key, map_value from sys.dm_xe_map_values

where name = ‘lock_mode’;

And finally, to see the configuration values for objects bound to a session, you use the
following:

SELECT * FROM sys.dm_xe_session_object_columns;

Creating an Extended Events Session
Microsoft uses the same common paradigm (CREATE, ALTER, DROP) for most of its newer
capabilities, such as Create Audit.. (for SQL Auditing), Create Endpoint.. (for database
mirroring), and many others. SSEE follows the same path in that you basically create an
Extended Events session, alter it to start the monitoring session, alter it again to stop the
monitoring, and then leverage the catalog and dynamic management views before,
during, and after the session monitoring to view the event information.

Creating events (event sessions) is fairly easy to do using the CREATE, ALTER and DROP

EVENT statements. These Data Definition Language (DDL) statements completely control
the creation and activation of Extended Events. All the SSEE objects are created in the
msdb database. Only those users with CONTROL SERVER permissions can create, alter, or
drop SSEE objects. To use the catalog and dynamic management views, you need at least
VIEW SERVER STATE permission.

In this section, you quickly set up and define a new Extended Events session object that
includes operating system IO requests and SQL Server lock-acquired counts. The purpose is
to isolate the database objects (tables) that are being hit hardest with locks to better
understand the behavior of the database design.

Included on the CD for this book is a SQL script file named TheMostLocks.sql. Locate this
SQL script now; then start SSMS and open a new query connection with the CREATE EVENT

SESSION script in it. Figure 39.19 shows a current connection to SQL Server with
TheMostLocks.sql file open and the event session named TheMostLocks ready to be created.

As you examine the CREATE EVENT SESSION T-SQL code, notice that two events are being
created with the ADD EVENT statements. One will gather async IO requests, and the other
will retrieve SQL Server–acquired locks on an object’s information. Also, notice the TARGET

statement, which uses a predefined target location that allows you to retrieve the results
within SQL Server during execution and that filters on showing only the lock’s acquired
information.

The CREATE EVENT SESSION T-SQL code is as follows:

IF EXISTS(SELECT * FROM sys.server_event_sessions WHERE name=’TheMostLocks’)

DROP EVENT session TheMostLocks ON SERVER;

CREATE EVENT SESSION TheMostLocks

ON SERVER

ptg

1463Performance Monitoring Tools
3

9

FIGURE 39.19 SSMS creating an event session named TheMostLocks.

Alternatively, you can direct the TARGET output to a file by using the following TARGET
statement, for example:

ADD TARGET package0.etw_classic_sync_target

(SET default_etw_session_logfile_path = N’C:\TEMP\EESessionFile.etl’)

You could then use the resulting file with the ETW to assemble this and other events from
other portions of your environment.

After the event session is created, you are able to start it by using the ALTER EVENT
SESSION command, generate some activity on your server that will be captured by the
event session, view the dynamic results during the execution of the activity, and then stop
the event session.

Go ahead and create the event session as it is listed now. Simply highlight the CREATE EVENT

SESSION T-SQL statements shown previously and execute this code from SSMS. When it is
complete, you are ready to start the event session by using the following command:

-- START EVENT SESSION

ALTER EVENT SESSION TheMostLocks ON SERVER STATE=start;

ADD EVENT sqlos.async_io_requested,

ADD EVENT sqlserver.lock_acquired

ADD TARGET package0.synchronous_bucketizer (

SET filtering_event_name=’sqlserver.lock_acquired’,

source_type=0, source=’resource_0’)

WITH (MAX_MEMORY=4MB, MAX_EVENT_SIZE=4MB);

ptg

1464 CHAPTER 39 Monitoring SQL Server Performance

Using the AdventureWorks2008 database, you can generate some simple activity that is
known to acquire share locks on tables. Use the following T-SQL that references the
[Sales].[vSalesPersonSalesByFiscalYears] view:

--

-- Generate some lock acquiring workload

--

USE AdventureWorks2008;

SELECT TOP 1 * FROM [Sales].[vSalesPersonSalesByFiscalYears];

As soon as the preceding SELECT statement is generated, the Extended Event begins doing
its job of collecting information. As you can see in Figure 39.20, this fairly complex join
statement grabs the results of this Extended Event and displays them in a very nice read-
able fashion. This SELECT statement uses the dynamic management views previously iden-
tified in this chapter during the Extended Events active session.

As you can see, this session isolates the table objects that have the most acquired locks on
them during execution. This capability is very powerful.

The T-SQL code is as follows:

-- The following query turns the xml data that is accumulating --

-- from the Extended Event Session and displays it more clearly --

-- TableName, TableObjectID, and number of AcquiredLocks --

SELECT name AS TableName,

FIGURE 39.20 Displaying the results of acquired locks from the Extended Events session.

ptg

1465Performance Monitoring Tools
3

9

object_id AS TableObjectID,

LocksX AS AcquiredLocks

FROM (SELECT objstats.value(‘.’,’bigint’) AS ObjectX,

objstats.value(‘@count’, ‘bigint’) AS LocksX

FROM (SELECT CAST(xest.target_data AS XML)

LockData

FROM sys.dm_xe_session_targets xest

JOIN sys.dm_xe_sessions xes ON xes.address = xest.event_session_address

JOIN sys.server_event_sessions ses ON xes.name = ses.name

WHERE xest.target_name = ‘synchronous_bucketizer’

AND xes.name = ‘TheMostLocks’

) Locks

CROSS APPLY LockData.nodes(‘//BucketizerTarget/Slot’) AS T(objstats)

) LockedObjects

INNER JOIN sys.objects o

ON LockedObjects.ObjectX = o.object_id

WHERE o.type != ‘S’

AND o.type = ‘U’

ORDER BY LocksX desc;

To turn off the Extended Events session, you simply issue another ALTER EVENT SESSION
command with the STATE equal to stop, as shown here:

-- STOP EVENT SESSION

ALTER EVENT SESSION TheMostLocks

ON SERVER STATE=stop ;

Various Extended Events can be defined for monitoring purposes within the SQL Server
environment, your application environment, and at the operating system level. You will
likely build up a complete library of Extended Events that represent what you are most
interested in monitoring about your environment. They will then become valuable tools
for years to come. We also expect forums and Microsoft to create many templates of
Extended Events to aid you in creating this extensive library of monitoring capability.

Windows Performance Monitor

Windows Performance Monitor is a graphical tool that provides a visual display of built-in
Windows performance counters, either in real-time or as a way to review historical data. It
is supplied as part of the installation of any Windows server or workstation (in Windows
Server 2008 it is called Reliability and Performance Monitor). Hundreds of performance coun-
ters are available. These counters can be monitored on the local machine or remotely over
the network, and they can be set up to monitor any object and counter on multiple
systems at once from one session. A small subset of performance information is also avail-
able via the Windows Task Manager Performance tab. However, all this information and
more is available using the Performance Monitor facility.

ptg

1466 CHAPTER 39 Monitoring SQL Server Performance

NOTE

This chapter covers the version of Performance Monitor available in Windows Server
2008, Windows Server 2008 R2, Windows Vista, and Windows 7. If you are running on
Windows XP, Windows Server 2003, or earlier versions of Windows, the interface and
functionality of Performance Monitor are a bit more limited than the version presented
here. However, many of the concepts of using Performance Monitor and performance
counters are still similar.

Performance Monitor features multiple graph views that enable you to visually review
performance log data. You can add performance counters to Performance Monitor individ-
ually or by creating custom Data Collector Sets. The recent version of Windows
Performance Monitor combines the functionality of previous standalone tools including
Performance Logs and Alerts (PLA), Server Performance Advisor (SPA), and System Monitor.

You can use Windows Performance Monitor to examine how programs you run affect your
computer’s performance, both in real-time and by collecting log data for later analysis.
When you install SQL Server, additional performance counters are installed that you can
use to monitor SQL Server performance elements such as cache utilization, locking, wait
states, and I/O performance. Performance Monitor can be launched from many different
points. From SQL Profiler, choose the Tools menu option and choose the Performance
Monitor item. Figure 39.21 shows this menu option from SQL Profiler. You can also
launch it from the Administrative Tools folder in the Windows Start menu.

Performance Monitor Views
When you first launch Performance Monitor, you are presented with the welcome screen
(in Windows 2008, the welcome screen is the Resource Overview). Click on Performance
Monitor in the Monitoring Tools folder to bring up the Performance Monitor main
display. In the Performance Monitor main display, you can view the performance informa-
tion in one of three different modes:

. Graphic chart—This view, the default, shows the selected counters as colored lines
over a timeline with the y-axis representing the value and the x-axis representing

FIGURE 39.21 Launching Performance Monitor from SQL Profiler.

ptg

1467Performance Monitoring Tools
3

9

time. You can also add gridlines (horizontal and vertical). This view lets you view
performance trends over time.

. Histogram chart—This view shows the selected counters as colored horizontal bars
(as in a histogram). These histogram bars change dynamically to reflect the data
sampling values. With this view, you see a current snapshot of the performance
counters rather than the trend of activity over time.

. Report display—In this mode, you see the current values for counters collected
under their parent object in a textual display format. Like the histogram view, this
view does not show you the activity trends, just the current sampling value, but it is
great for showing what counters you are collecting data with.

Figure 39.22 shows the basic graphic chart view interface for Performance Monitor
displaying several useful system counters that are explained later in this chapter. These
counters are added to Performance Monitor through the creation of Performance Monitor
Data Collector Sets.

When you open the Performance Monitor view, depending on the OS version you are
running, you see up to three default performance counters: Memory: Pages/sec,
PhysicalDisk:Avg.Disk Queue Length, and Processor:% Processor Time. These counters
provide a good start, but you really want to see many other counters that reflect the
complete picture of how your server is behaving. This chapter explains the recommended
ones to use for SQL Server in the “SQL Server Performance Counters” section.

FIGURE 39.22 Performance Monitor chart view, with various counters.

ptg

1468 CHAPTER 39 Monitoring SQL Server Performance

You add a counter by clicking the large plus sign toolbar button near the top. The Add
Counters dialog that appears (see Figure 39.23) allows you to select the computer to
monitor (this can be a remote server), a performance object, any specific counters, and an
instance of the counter, if applicable. You can select the Show Description check box to
get a simple explanation of the currently selected counter. When you are done making
your selections of counters to add, click OK to return to the Performance Monitor screen.

You can customize the look of the lines in the chart view by right-clicking and selecting
Properties. On the Data tab of the System Monitor Properties dialog, you can specify the
color, width, and style of line for each of your counters. You can also change the scale of a
counter’s value as well so that the line appears within the graph’s scale of 1 to 100.

TIP

To quickly rescale all the counters, select all the counters in the bottom panel of the
Chart view window, right-click, and select Scale Selected Counters. Performance
Monitor automatically selects a scale for each counter such that all lines appear within
the display.

To remove a counter, you simply highlight the line in the bottom area of the Chart view
window and press the Delete key or click on the X button in the toolbar. If you just want

FIGURE 39.23 Adding a counter in Performance Monitor.

ptg

1469Performance Monitoring Tools
3

9

to temporarily hide a counter to make the display a little less busy, you can right-click a
counter in the bottom area of the Chart view and select Hide Selected Counters.

The Chart view also provides a way to make a specific counter or set of counters stand out
in the display by making the line or lines black and bold. This capability can help you
focus on the trend of a specific counter. To turn on highlighting, select one or more coun-
ters in the bottom area of the Chart view and click on the Highlight button on the toolbar
(the one that looks like highlighter pen just to the right of the big red X).

Adding counters like this in an ad hoc manner is fine for a quick monitoring session.
However, after you close the Performance Monitor tool, you lose the counters you have
selected, so they are not available the next time you open Performance Monitor. Typically,
you need to set up those counters you want to reuse or to have running continuously or
on a schedule that captures the performance counters to a log file. To do this, you create
one or more Data Collector Sets.

Creating Data Collector Sets in Performance Monitor
A Data Collector Set is the building block of performance monitoring and reporting in
Windows Performance Monitor. It organizes multiple data collection points into a single
component that can be used for review or to log performance counters. A Data Collector
Set can be created and then recorded individually, grouped with other Data Collector Sets
and incorporated into logs, viewed in Performance Monitor, or configured to generate
alerts when thresholds are reached. You can set up schedules on your Data Collector Sets
to have them run the data collection at specific times.

Data collector sets can contain the following types of Data Collectors:

. Performance counters

. Event trace data

. System configuration information (Registry key values)

Performance counters are measurements of system state or activity. They can be included
in the operating system or can be part of individual applications. When you install SQL
Server, a number of SQL Server–specific performance counters are installed (a number of
the more useful ones are described later in this chapter). Windows Performance Monitor
requests the current value of performance counters at specified time intervals.

Event trace data is collected from trace providers, which are components of the operating
system or of individual applications that report actions or events. Output from multiple
trace providers can be combined into a trace session.

Configuration information is collected from key values in the Windows Registry. Windows
Performance Monitor can record the value of a Registry key at a specified time or interval
as part of a log file.

The easiest way to created a Data Collector Set is to create a custom view of counters in
Performance Monitor (similar to what was shown in the previous section). When you are
satisfied with the counters and settings you have configured, right-click on the
Performance Monitor node in the Monitoring Tools folder, select New, and then select

ptg

1470 CHAPTER 39 Monitoring SQL Server Performance

Data Collector Set. This starts the Create Data Collector Set Wizard, which walks you
through the following steps:

1. The wizard prompts for a name for the Data Collector Set. Enter a name and click
Next.

2. Specify the root directory where the Performance Monitor log files will be written
and click Next.

3. Specify if you want the Data Collector to run under a different user ID and if you
want to start the Data Collector immediately or to just save the Data Collector Set.
Click Finish to return to Performance Monitor.

The newly created Data Collector Set is listed under the User Defined folder in the Data
Collector Sets node in Performance Monitor.

You can also create a Data Collector Set manually or from a template by right-clicking on
the User Defined folder in the Data Collector Sets node and selecting New, Data
Collector Set. This launches a modified version of the Create New Data Collector Set
Wizard, as shown in Figure 39.24.

You first specify a name for the collector set and then choose whether to create it from a
template or manually. Then you click Next.

If you choose to create from a template, the next screen displays the built-in templates
provided with Windows; these standard templates focus on general system performance
or diagnostics. You can also choose to import your own templates by clicking on the
Browse button.

FIGURE 39.24 The Create New Data Collector Set Wizard.

ptg

1471Performance Monitoring Tools
3

9

NOTE

Creating your own Data Collector Set templates in Performance Monitor is relatively
easy. If you have a Data Collector Set that you’ve set up with the performance coun-
ters and settings that you would like to reuse, simply right-click the Data Collector Set
you want to export and click Save Template. Select a directory in which to store the
collector set as an XML file and click Save. You can now copy this template for use on
other computers.

After selecting the template, navigate to the next screen to specify the root directory for
the log files. On the final screen, you have the option again to start the collector immedi-
ately, save it, or open the properties for the Data Collector Set so you can make further
modifications to it, such as specifying a schedule or how it should handle.

If you choose to create a new Data Collector Set manually instead of using a template, you
are presented with the screen shown in Figure 39.25. You have the option to create a Data
Collector Set that generates data logs or to create a Performance Counter Alert. If you are
creating data logs, you can specify what sort of information you want to include in the
collector set (in this example, we’re logging performance counters only).

Depending on the Data Collector types you select, you are presented with dialogs to add
Data Collectors to your Data Collector Set. In this example, you are presented with the
dialog to add performance counters, as shown in Figure 39.25.

After defining the counters, and so on, you are presented with the familiar options to
specify the root directory and whether to save, run, or edit the properties of the Data
Collector Set.

FIGURE 39.25 Creating a new Data Collector Set manually to capture performance counters.

ptg

1472 CHAPTER 39 Monitoring SQL Server Performance

After you create a Data Collector Set, you can add additional Data Collectors to it as
desired. They can be additional performance counter event traces, configuration Data
Collectors, or performance counter alerts.

Running a Data Collector Set in Performance Monitor
The easiest way to run a Data Collector Set is to right-click on it and choose Start. When
you are done capturing, right-click again and choose Stop. However, this is probably not
the most effective way to execute your Data Collector Sets. A more effective approach is to
set up a schedule for data collection.

During Data Collector Set creation, you can configure the schedule by selecting Open
Properties for this Data Collector Set at the end of the Create New Data Collector Set
Wizard. After a Data Collector Set is created, you can access the schedule options by right-
clicking the Data Collector Set name in the Microsoft Management Console (MMC) navi-
gation pane and selecting Properties. When the Properties dialog is displayed, click the
Schedule tab to specify the schedule when you want the Data Collector to run. You can
specify the start date, time, or day for data collection. If you do not want to collect new
data after a certain date, select Expiration Date and choose a date from the calendar. You
can create multiple schedules for a single Data Collector Set.

The Data Collector runs continuously unless you specify a Stop condition for a Data
Collector Set. The Stop condition can be set in the Stop Condition tab. To stop collecting
data after a period of time, select Overall Duration and choose the quantity and units. On
the Stop Condition tab, you can also specify limits to segment data collection into sepa-
rate logs. Select the Restart the Data Collector Set at Limits option to continue running
the Data Collector after the limit is reached. You can select Duration to configure a time
period for data collection to write to a single log file, or select Maximum Size to restart the
Data Collector Set or to stop collecting data when the log file reaches a specific size. If you
select both limits, data collection stops or restarts when the first limit is reached.

TIP

If you are running a Data Collector continuously, you should set a limit so that the Data
Collector breaks the log file into multiple segments. In addition to preventing the file
from becoming exceedingly large, breaking up the log file also enables you to view the
log file segments prior to the current one while the Data Collector Set is running.
Unfortunately, you cannot directly open the currently active log file for a Data Collector
Set to view the live data collection. However, if you have a previous report available,
you can open the report in the Performance Monitor window. When this report is open,
click the View Current Activity button (or press Ctrl+T) and you can view the current
activity in real-time as it’s being captured.

Viewing Data Collector Set Results in Performance Monitor
To view a Data Collector Set report in Windows Performance Monitor, expand Reports and
click User Defined or System. Then expand the Data Collector Set that you want to view
as a report. Simply click the report that you want to view from the list of available reports.
The report opens in the console pane.

ptg

1473Performance Monitoring Tools
3

9

If you want to open one or more log files in Performance Monitor (perhaps you have a set
of log files copied from another server), in the Windows Performance Monitor navigation
pane, expand Monitoring Tools and click Performance Monitor. In the console pane
toolbar, click the Add Log Data button (or press Ctrl+L). The Performance Monitor
Properties page opens with the Source tab active (see Figure 39.26). In the Data Source
section, follow these steps:

FIGURE 39.26 Importing log files into Performance Monitor.

1. Select Log Files and click Add.

2. Browse to the log file you want to view and click Open.

3. To add multiple log files to the Performance Monitor view, click Add again.

4. Click Time Range to see times included in the log or logs you selected.

5. When you are finished selecting log files, click OK.

6. Right-click in the Performance Monitor display and click Add Counters to select the
counters you want to display in Performance Monitor. Only the counters included in
the log file or files you selected in step 4 are made available.

For a single log file, you can move the beginning and ending time sliders to view only a
portion of the log file in Performance Monitor.

For multiple log files, you can move the beginning and ending time sliders to choose the
time period (from all the selected log files) to view in Performance Monitor. If a log has
data from the time period you select, it is available in the display.

Why Use Performance Monitor?
You might be asking, “With all the new performance monitoring tools provided with SQL
Server, is there a need to continue to use Performance Monitor?”

ptg

1474 CHAPTER 39 Monitoring SQL Server Performance

Even though many of the performance counters and relevant information are now avail-
able in the SQL Server Data Collector, as mentioned previously, the Data Collector does
incur some overhead on SQL Server. Performance Monitor, on the other hand, incurs
significantly less impact on SQL Server performance.

In addition, the SQL Server Data Collector currently doesn’t have a built-in alerting capa-
bility. As mentioned previously, you can set up performance counter alerts in Performance
Monitor. In addition, Performance Monitor enables you to monitor more than what is
provided with SQL Server Data Collector, including all aspects of the operating system as
well as other applications.

One other feature that’s very useful with Performance Monitor logs is the capability to
import performance counter logs into SQL Server Profiler.

NOTE

For more information on importing and viewing performance counter logs in SQL Server
Profiler, see Chapter 6.

SQL Server Performance Counters
For each SQL Server instance installed, Performance Monitor has a number of SQL
Server–specific performance objects added to it, each with a number of associated coun-
ters. Each SQL Server instance has its own set of monitoring objects because you certainly
wouldn’t want to mix monitoring values across multiple instances. Performance counters
for named instances use the naming convention MSSQL$ followed by the instance name
(for example, MSSQL$SQL2008DEV:General Statistics). Performance counters for the
default instance of SQL Server use the naming convention of SQLSERVER followed by the
counter name (for example, SQLServer:General Statistics).

Table 39.1 provides a list of the SQL Server performance counters available for SQL
Server 2008

TABLE 39.1 SQL Server Performance Objects

Performance Object Description

SQLServer:Access Methods Information on searches and allocations of SQL
Server database objects (for example, the number
of index searches or number of pages allocated to
indexes and data).

SQLServer:Backup Device Information about backup devices, such as the
throughput of the backup device.

SQLServer:Buffer Manager Information about the memory buffers used by SQL
Server.

SQLServer:Buffer Partition Information about buffer free page accesses.

ptg

1475Performance Monitoring Tools
3

9

TABLE 39.1 SQL Server Performance Objects

Performance Object Description

SQLServer:CLR Information about common language runtime (CLR)

SQLServer:Cursor Manager by Type

SQLServer:Cursor Manager Total

Information about cursors.

SQLServer:Database Mirroring Information about database mirroring.

SQLServer:Databases Database-specific information such as the amount
of free log space available or the number of active
transactions in the database.

SQL Server:Deprecated Features Information on the number of times deprecated
features are used.

SQLServer:Exec Statistics Execution statistics information.

SQLServer:General Statistics General server-wide activity, such as the number of
logins per second.

SQLServer:Latches Information about the latches on internal resources,
such as database pages.

SQLServer:Locks Information about the individual lock requests made
by SQL Server, such as lock timeouts and dead-
locks.

SQLServer:Memory Manager Information about SQL Server memory usage, such
as the total number of lock structures currently allo-
cated.

SQLServer:Plan Cache Information about the SQL Server cache used to
store objects such as stored procedures, triggers,
and query plans.

SQLServer: Resource Pool Stats Information about Resource Governor resource pool
statistics.

SQLServer:SQL Errors Information about SQL Server errors.

SQLServer:SQL Statistics Query statistics, such as the number of batches of
T-SQL statements received by SQL Server.

SQLServer:Transactions Transaction statistics, such as the overall number
of transactions and the number of snapshot trans-
actions.

SQLServer:User Settable Custom counters that can be a custom stored
procedure or any T-SQL statement that returns a
value to be monitored.

ptg

1476 CHAPTER 39 Monitoring SQL Server Performance

User-Defined Counters
You can extend the range of information that Performance Monitor displays by creating
up to 10 of your own counters. These user-defined counters appear under the
SQLServer:User Settable:Query object, which contains the 10 counters as instances,
starting with User Counter 1. You define your own counters by calling stored procedures
with the names sp_user_counter1 through sp_user_counter10, which are located in the
master database.

These counters work differently than they did under previous versions of SQL Server and
require you to call the stored procedures to update the information they return to
Performance Monitor. To make any real use of these stored procedures, you now need to
call them within a loop or as part of a job that is scheduled on some recurring basis.

Using these counters allows you to monitor any information you want, whether it is
system, database, or even object specific. The only restriction is that the stored procedure
can take only a single integer value argument.

The following sample user-defined counter procedure sets the counter value to the average
connection time for all user connections. Processes that have a session_id less than 50
are internal system processes (checkpoint, Lazy Writer, and so on):

DECLARE @value INT

SELECT @value = AVG(DATEDIFF(mi, login_time, GETDATE()))

FROM sys.dm_exec_sessions

WHERE session_id > 50

EXEC sp_user_counter1 @value

TABLE 39.1 SQL Server Performance Objects

Performance Object Description

SQLServer: Wait Statistics Information about waits.

SQLAgent:Alerts Information about SQL Server Agent alerts.

SQLAgent:Jobs Information about SQL Server Agent jobs.

SQLAgent:JobSteps Information about SQL Server Agent job steps.

SQLAgent:Statistics General information about SQL Server Agent.

SQLServer:Replication Agents

SQLServer:Replication Snapshot

SQLServer:Replication Logreader

SQLServer:Replication Dist.

SQLServer:Replication Merge

Information about replication agent activity.

ptg

1477A Performance Monitoring Approach
3

9

You could further extend this information by creating additional user procedures for return-
ing the minimum and maximum times connected, as well as database usage. Your only limi-
tation is that you can monitor only a maximum of 10 pieces of information at one time.

Accessing Performance Counters via T-SQL
Most of the SQL Server–oriented performance counter values can also be seen at any point
in time via the system catalog view named sys.sysperfinfo:

SELECT * from sys.sysperfinfo

This view shows the performance object name, counter name, and current counter value
as of the time the system view is executed.

You should keep in mind that many of the performance counters are accumulation coun-
ters, and you have to run them at intervals and determine the difference (change) from
one interval to the next. Others are current values of aspects such as transaction rates,
memory usage, and hit ratios.

A Performance Monitoring Approach
If you take a closer look at the performance monitoring areas depicted in Figure 39.1, you
can see that SQL Server spans them all. SQL Server must process requests submitted to it
via the network, service those requests with one or more processors, and rely on accessing
a request’s data from both memory/cache and the disk system. If you maximize utilization
on these resources from the point of view of SQL Server and the operating system, you
end up with a well-tuned database server. However, an optimally tuned system doesn’t
guarantee good performance. It’s still important to have a good database design and to
implement optimal index strategies. The whole picture is important to tuning your SQL
Server implementation, but the database, table designs, indexing strategy, and SQL state-
ment tuning are described in much more detail in other chapters. This section focuses on
the SQL Server instance as it sits on the OS and the hardware, along with the major moni-
toring capabilities available to you.

One area of interest is the amount of network traffic handled by SQL Server and the size
of these network requests. Another area of interest is the capability of the available proces-
sors to service the load presented to them by SQL Server without exceeding the CPU
capacity of the system. This section also looks at SQL Server memory utilization of the
available system memory and how effectively SQL Server is utilizing the disk system.

In general, you want to start from the bottom, with the network, and work your way up
into the SQL Server–specific elements. This allows you to quickly isolate certain issues that
are paramount in performance tuning. In each of these areas, this section provides a list of
minimum detail performance handles or counters that can be examined. This approach
can be summarized into the following steps:

1. Understand and monitor network request characteristics as they relate to SQL
Server and the machine on which SQL Server has been installed. This means a

ptg

1478 CHAPTER 39 Monitoring SQL Server Performance

complete profile of what is coming into and being sent back out over the network
from SQL Server.

2. Understand processor utilization. Processing power might be the biggest issue affect-
ing performance. You need to get a handle on this aspect of performance early.

3. Understand and monitor memory and cache utilization. This is the next step,
monitoring the overall memory usage from the operating system level point of
view and monitoring the memory that SQL Server is using for data buffers, plan
cache, and so on.

4. Understand and monitor disk system utilization. You are often rewarded for imple-
menting a simple (and less expensive) disk configuration or data storage approach.
However, a simple configuration may not provide the best performance for your sys-
tem. And you often don’t know you have a problem unless you look for it.
Techniques that are often used to alleviate disk performance issues include disk strip-
ing, isolation of logs from data, and so on.

You need to repeat steps 1 through 4 on a regular basis. Your continued success (and, it is
hoped, salary increases) will reflect your diligence here. For each step, certain tools and
facilities are available for you to use that gather the information needed to identify and
monitor performance issues. Let’s look now at how to use these tools to monitor and
analyze the network, processor, memory, and disk utilization and performance.

Monitoring the Network Interface

One area of possible congestion is the network card or network interface; it does not
matter how fast the server’s work is if it has to queue up to go out through a small pipe.
Remember that any activity on the server machine might be consuming some of the
bandwidth of the network interface card. With the increasing implementations of gigabit
networks and the increases in network bandwidth over wide area networks (WANs),
network throughput is not as much of a bottleneck as it used to be. That’s not to say
network performance issues do not arise. For example, a bad or misconfigured router can
cause all sorts of network performance issues, especially if your users and your SQL Server
are on different sides of the router. If you are not detecting query performance issues in
SQL Server but users are still complaining about slow query performance, the network is a
likely culprit.

You can monitor network activity via Performance Monitor. Table 39.2 shows the typical
network performance object and counters you can use to monitor network interface activity.

TABLE 39.2 Network Interface Performance Objects and Counters

Performance Monitor Object Description

Network Interface: Bytes

Received

The rate at which bytes are received on the interface.

Network Interface: Bytes

Sent

The rate at which bytes are sent on the interface.

ptg

1479A Performance Monitoring Approach
3

9

In general, if the SQL Server packet sends or receives are grossly lower than the overall
server’s packet sends and receives, other activity on the server is occurring that is poten-
tially bogging down this server or not allowing SQL Server to be used optimally. The rule of
thumb here is to isolate all other functionality to other servers if you can and let SQL
Server be the main application on a machine.

The sp_monitor system stored procedure, as well as several SQL Server system variables,
can be used to see how many requests are queuing up, waiting to make use of the network
interface. The following SELECT statement retrieves a current picture of what is being
handled by SQL Server from a network packet’s point of view:

SELECT @@connections as Connections,

@@pack_received as Packets_Received,

@@pack_sent as Packets_Sent,

getdate() as ‘As of datetime’

go

Connections Packets_Received Packets_Sent As of datetime

----------- ---------------- ------------ -----------------------

39407 395569 487258 2010-05-16 22:34:19.650

TABLE 39.2 Network Interface Performance Objects and Counters

Performance Monitor Object Description

Network Interface: Bytes

Total

The rate at which all bytes are sent and received on the
interface.

Network Interface:

Current Bandwidth

The bits per second (bps) of the interface card.

Network Interface: Output

Queue Length

The length of the output packet queue (in packets). If this is
longer than two, delays are occurring, and a bottleneck exists.

Network Interface:

Packets Received

The rate at which packets are received on the network interface.

Network Interface:

Packets Sent

The rate at which packets are sent on the network interface.

Network Interface:

Packets

The rate at which packets are sent and received on the network
interface.

Server: Bytes Received The number of bytes the server has received from the network.
This is the big-picture indicator of how busy the server is.

Server: Bytes Transmitted The number of bytes the server has sent/transmitted to the
network. Again, this is a good overall picture of how busy the
server is.

ptg

1480 CHAPTER 39 Monitoring SQL Server Performance

The sp_monitor system stored procedure provides packets sent and received as a running
total and since the last time it was run (difference in seconds). Here’s an example of what
would result (the network- and packets-related results):

EXEC sp_monitor

GO

last_run current_run seconds

----------------------- ----------------------- -----------

2010-04-02 17:34:58.817 2010-05-16 22:35:08.940 3819610

cpu_busy io_busy idle

------------ ---------- ------------------

318(318)-0% 62(62)-0% 182952(182928)-4%

packets_received packets_sent packet_errors

---------------- --------------- --------------

395781(395753) 487483(487455) 1(1)

total_read total_write total_errors connections

------------ ------------- ------------ -------------

8084(8084) 69921(69921) 0(0) 39432(39418)

The values within the parentheses are the amounts since the last time sp_monitor was
run, and the seconds column shows how long that period was. You can actually see the
rate at which traffic is coming into and out of SQL Server.

Monitoring the Processors

The main processors of a server do the majority of the hard work, executing the operating
system code and all applications. This is the next logical place to start looking at the
performance of a system. With SQL Server 2008, you can identify the number of CPUs
you want to utilize on your physical machine. If your physical machine has 32 CPUs, you
might not necessarily want to make all 32 CPUs available to SQL Server. In fact, in some
cases, this would be a detriment; some CPU processing should be reserved for the OS and
the network management on heavily loaded servers (5% of the CPUs). SQL Server allows
you to identify how many CPUs it can use from what is available on the physical
machine. In Figure 39.27, you can see the number of CPUs available to SQL Server on a
typical server from the SSMS Server Properties page. In this example, all CPUs are being
made available to SQL Server.

In a 32-CPU server example and using the 5% number just mentioned, you should let SQL
Server use 30 of the CPUs and reserve 2 CPUs for dedicated network- and OS-related activ-
ity (0.05 × 32 = 1.6, rounded up to 2 CPUs). This also allows SQL Server to utilize SQL
parallelism effectively.

ptg

1481A Performance Monitoring Approach
3

9

FIGURE 39.27 Processor (CPU) properties of a SQL Server instance.

Keep in mind that from a multitasking point of view, Windows servers often move
process threads among different processors. This process thread movement activity can
reduce Microsoft SQL Server performance under heavy system loads because each proces-
sor cache is repeatedly reloaded with data. It is possible to assign processors to specific
threads, which can improve performance under these types of conditions by eliminating
processor reloads. This association between a thread and processor is called processor affin-
ity. SQL Server 2008 supports processor affinity by means of two affinity mask options:
affinity mask (also known as CPU affinity mask) and affinity I/O mask. If you do nothing,
SQL Server is allowed to use each CPU for all its processing, with no affinity whatsoever.
The operating system distributes threads from instances of SQL Server evenly among
these CPUs.

The affinity I/O mask option binds SQL Server disk I/O to a specified subset of CPUs. In
high-end SQL Server online transaction processing (OLTP) environments, this extension
can enhance the performance of SQL Server threads issuing a high number of I/Os. This
enhancement does not support hardware affinity for individual disks or disk controllers,
though. Perhaps this will be a future enhancement to SQL Server.

ptg

1482 CHAPTER 39 Monitoring SQL Server Performance

NOTE

A side effect of specifying the affinity mask option is that the operating system does
not move threads from one CPU to another. Most systems obtain optimal performance
by letting the operating system schedule the threads among the available CPUs, but
there are exceptions to this approach. The only time we have used this affinity setting
was to isolate CPUs to specific SQL Server instances on the same box that had numer-
ous CPUs to utilize. Typically, you should leave the settings to have SQL Server auto-
matically set processor and I/O affinity as needed unless your processor monitoring
indicates manually configuring the affinity may be necessary.

Monitoring Processors in Performance Monitor
From a Performance Monitor point of view, the emphasis is on seeing if the processors
that are allocated to the server are busy enough to maximize performance but not so satu-
rated as to create a bottleneck. The rule of thumb here is to see whether your processors
are working at between 20% and 50%. If this usage is consistently above 80% to 95%, you
should consider splitting off some of the workload or adding processors. Table 39.3 indi-
cates some of the key Performance Monitor objects and counters for measuring processor
utilization.

The counters System: % Total Processor Time, System: Processor Queue Length, and
Processor: % Processor Time are the most critical to watch. If the percentages are
consistently high (above that 80% to 95% level), you need to identify which specific

TABLE 39.3 Processor-Related Performance Objects and Counters

Performance Monitor
Object

Description

Processor: %

Processor Time

The rate at which bytes are received on the interface.

System: Processor

Queue Length

The number of threads in the processor queue. A sustained
processor queue of greater than two threads indicates a
processor bottleneck.

System: Threads The number of threads executing on the machine. A thread is the
basic executable entity that can execute instructions in a processor.

System: Context

Switches

The rate at which the processor and SQL Server has to change from
executing on one thread to executing on another. This costs CPU
resources.

Processor: %

Interrupt Time

The percentage of time that the processor spends receiving and
servicing hardware interrupts.

Processor:

Interrupts/sec

The average number of hardware interrupts the processor is receiv-
ing and servicing.

ptg

1483A Performance Monitoring Approach
3

9

processes and threads are consuming so many CPU cycles. The ideal Windows setup is to
run SQL Server on a standalone member server to the Windows domain. You should not
install SQL Server on a primary domain controller (PDC) or backup domain controller
(BDC) because the PDC and BDC run additional services that consume memory, CPU, and
network resources.

Before you upgrade to the latest processor just because the % Processor Time counter is
constantly high, you might want to check the load placed on the CPU by your other
devices. By checking Processor: % Interrupt Time and Processor: Interrupts/Sec,
you can tell whether the CPU is interrupted more than normal by devices such as disk
controllers.

The % Interrupt Time value should be as close to 0 as possible; controller cards should
handle any processing requirements.

The System: Context Switches counter can reveal when excessive context switching
occurs, which usually directly affects overall performance. In addition, the System:
Threads counter can give a good picture of the excessive demand on the CPU of having to
service huge numbers of threads. In general, you should look at these counters only if
processor queuing is happening.

By upgrading inefficient controllers to bus-mastering controllers, you can take some of the
load from the CPU and put it back on the adapter. You should also keep the controller
patched with the latest drivers from the hardware vendor.

Monitoring Processor Performance in SSMS
The Activity Monitor in SSMS provides some basic information on processor performance,
such as the % Processor Time that SQL Server is consuming and a list of the current user
connections into SQL Server.

If you’ve enabled the SQL Server Utility for your SQL Server instance, you can get a high-
level view of CPU utilization on the CPU Utilization page of the Utility Explorer (see
Figure 39.28). This view displays CPU utilization for the SQL Server instance and the
overall CPU utilization for the server.

If you are collecting performance data into the MDW using the Data Collector for a SQL
Server instance, you can view more detailed CPU utilization and CPU wait information in
the Server Activity History report (refer to Figure 39.12). If you see high CPU utilization,
you can click on the CPU Usage graph to drill down and examine the details of the top 10
processes consuming CPU resources.

If there is an indication of excessive CPU waits, you can click on the SQL Server Waits
graph to drill down into the details regarding the queries experiencing high CPU waits.

Dynamic Management Views or System Views for Monitoring Processor Items
Within SQL Server, you can execute a simple SELECT statement that yields the SQL Server
processes and their corresponding threads:

ptg

1484 CHAPTER 39 Monitoring SQL Server Performance

FIGURE 39.28 Viewing CPU utilization in the Utility Explorer.

SELECT top 10 spid, lastwaittype, dbid, uid, cpu, physical_io, memusage,status,

loginame, program_name

from sys.sysprocesses

ORDER BY cpu desc

This statement lists the top 10 CPU resource hogs active in SQL Server. After you identify which
processes are causing a burden on the CPU, you can check whether they can be either turned
off or moved to a different server. If they cannot be turned off or moved, you might want to
consider upgrading the processor. The same information is available via the new DMV:

SELECT top 10 session_id, command, database_id, user_id,

cpu_time, reads, writes, logical_reads

from sys.dm_exec_requests

order by cpu_time desc

Taking a peek at the SQL Server schedulers (using the sys.dm_os_schedulers DMV) also
shows whether the number of runnable tasks is getting bogged down. If the
runnable_tasks_count values are nonzero, there aren’t enough CPU time slices available
to run the current SQL Server workload. The following example shows how you query the
dm_os_schedulers view for this information:

SELECT scheduler_id, current_tasks_count, runnable_tasks_count

FROM Sys.dm_os_schedulers

And finally, to get an idea of the top CPU hogs in SQL Server cached SQL and stored
procedures, you can query the sys.dm_exec_query_stats DMV and aggregate on
total_worker_time to get the total CPU consumption, as follows:

ptg

1485A Performance Monitoring Approach
3

9

SELECT top 50 sum(total_worker_time) as Total_CPU,

sum(execution_count) as Total_Count,

count(*) as Total_Statements,

plan_handle

FROM sys.dm_exec_query_stats

GROUP BY plan_handle

Order by 1 desc

GO

To actually see the SQL code that is behind the plan_handle, you can execute the
dm_exec_sql_text function to get your “hog” list:

SELECT total_worker_time, b.text

FROM sys.dm_exec_query_stats A

CROSS APPLY sys.dm_exec_sql_text (A.plan_handle) AS B

order by 1 desc

Monitoring Memory
Memory, like a processor, is divided into segments for each process running on the server.
If there is a demand for more memory than is available, the operating system has to use
virtual memory to supplement the physical memory. Virtual memory is storage allocated
on the hard disk; it is named PAGEFILE.SYS under Windows.

It is important to remember that when the operating system or SQL Server isn’t able to use
memory to find something and has to use virtual memory stored on the disk, performance
degrades. You need to work on minimizing this situation, known as swapping or page faulting.

Monitoring Memory with Performance Monitor
Table 39.4 reflects the main performance objects and counters that are best utilized to
monitor memory for SQL Server.

TABLE 39.4 Memory-Related Performance Objects and Counters

Performance Monitor Object Description

Process: Working Set|sqlservr The set of memory pages touched recently by the threads
in the process (SQL Server, in this case).

SQLSERVER:Buffer Manager:

Buffer cache hit ratio

The percentage of pages that were found in the buffer
pool without having to incur a read from disk.

SQLSERVER:Buffer Manager:

Total Pages

The total number of pages in the buffer pool, including
database pages, free pages, and stolen pages.

SQLSERVER:Memory Manager:

Total Server Memory(KB)

The total amount of dynamic memory the server is
currently consuming.

SQLSERVER:Memory Manager: SQL

Cache Memory(KB)

The total amount of dynamic memory the SQL Server
cache is currently consuming.

ptg

1486 CHAPTER 39 Monitoring SQL Server Performance

To observe the level of the page faulting, you can look at the Memory: Page Faults/sec
and Process: Page Faults (for a SQL Server instance) counters. Next in line are the
MSSQL Buffer Manager: Buffer Cache hit ratio and MSSQL Buffer Manager: Total

Pages counters. They directly indicate how well SQL Server is finding data in its controlled
memory (cache). You want to achieve a near 90% or higher ratio here.

If the Memory: Pages/sec counter is greater than 0 or the Memory: Page Reads/sec
counter is greater than 5, the operating system is being forced to use the disk to resolve
memory references. These are called hard faults. The Memory: Pages/sec counter is one of
the best indicators of the amount of paging that Windows is doing and the adequacy of
SQL Server’s current memory configuration.

Because the memory used by SQL Server 2008 dynamically grows and shrinks, you might
want to track the exact usage by using either Process: Working Set: SQLServer or
MSSQL: Memory Manager: Total Server Memory (KB) counters. These counters indicate
the current size of the memory used by the SQL Server process. If these numbers are
consistently high, compared to the amount of physical memory in the machine, you are
probably ready to install more memory on the server. If you see a performance degrada-
tion because SQL Server must continually grow and shrink its memory, you should either
remove some of the other services or processes running or configure SQL Server to use a
fixed memory allocation.

Monitoring Memory in SSMS
If you are collecting performance data into the MDW using the Data Collector for a SQL
Server instance, you can view more detailed memory usage and memory wait information
in the Server Activity History report (refer to Figure 39.12). You can click on the Memory
Usage graph to drill down and examine the details of the total memory usage in SQL

TABLE 39.4 Memory-Related Performance Objects and Counters

Performance Monitor Object Description

SQLSERVER:Plan Cache: Cache

hit ratio

The ratio between lookups and cache hits for query plans
in the plan cache.

SQLSERVER:Buffer Manager:

Total Pages

The total number of pages in the plan cache.

Memory: Pages/sec The number of pages read from or written to disk to
resolve hard page faults. This value usually gives a direct
indication of memory issues.

Memory: Pages Read/sec The number of times the disk was read to resolve hard
page faults.

Memory: Page Faults/sec The overall rate at which faulted pages are handled by the
processor.

Process: Page

Faults/sec|sqlservr
The rate of page faults occurring in the threads associ-
ated with a process (SQL Server, in this case).

ptg

1487A Performance Monitoring Approach
3

9

Server and the cache and page ratios. It also displays a list of all processes in the server
and the total working set size. You can use this information to see if other running
processes may be using memory that should be left available for SQL Server.

DMVs or System Views for Monitoring Memory
The DMVs associated with memory are numerous. The ones you’ll most likely utilize are
memory clerks, memory pools, and cache counters.

You can find memory allocations by type by using the sys.dm_os_memory_clerks DMV
view:

SELECT type, sum(multi_pages_kb) from sys.dm_os_memory_clerks

WHERE multi_pages_kb <> 0

GROUP BY type

order by 2 desc

To see how the cache is being used, you can query sys.dm_os_memory_cache_counters:

SELECT substring(name,1,25) AS Name, single_pages_kb,

single_pages_in_use_kb

FROM sys.dm_os_memory_cache_counters

order by single_pages_kb desc

Finally, when you want to see the total pages allocated to the different objects in memory,
you use the sys.dm_os_memory_objects DMV:

SELECT substring(type,1,25) as Type,

sum(pages_allocated_count) as Total_Memory_Allocated

FROM sys.dm_os_memory_objects

group by type

order by 2 desc

Several new DMVs were introduced in SQL Server 2008 to simplify retrieval of informa-
tion that can be helpful with memory troubleshooting. In some cases, the newly intro-
duced DMVs provide information that was previously available only in DBCC

MEMORYSTATUS output. Table 39.5 provides a summary of the new DMVs available for
memory troubleshooting.

TABLE 39.5 New Memory-Related DMVs in SQL Server 2008

DMV Description

sys.dm_os_memory_brokers Provides information about memory alloca-
tions using the internal SQL Server memory
manager. The information provided can be
useful in determining very large memory
consumers.

ptg

1488 CHAPTER 39 Monitoring SQL Server Performance

TABLE 39.5 New Memory-Related DMVs in SQL Server 2008

DMV Description

sys.dm_os_memory_nodes and
sys.dm_os_memory_node_access_stats

Provide information about physical nonuniform
memory access (NUMA) memory nodes and
node access statistics grouped by the type of
the page.
(sys.dm_os_memory_node_access_stats is
populated only if dynamic trace flag 842 is
enabled due to its performance impact.)

sys.dm_os_nodes Provides information about CPU node configu-
ration for SQL Server. This DMV also reflects
software NUMA (soft-NUMA) configuration.

sys.dm_os_process_memory Provides overview information about SQL
Server memory usage, including the total
physical memory in use and the memory
utilization percentage

sys.dm_os_sys_memory Provides overview information about the
system memory usage including total physical
memory on the system and the available
physical memory.

sys.dm_resource_governor_configuration,
sys.dm_resource_governor_resource_pools,
and
sys.dm_resource_governor_workload_groups

Provide information about the state of the
Resource Governor feature of SQL Server
2008. Some of the configuration parameters
of Resource Governor affect how SQL Server
allocates memory; you should check these
parameters during memory troubleshooting.
For more information on using Resource
Governor and its impact on memory alloca-
tion, see Chapter 40, “Managing Workloads
with the Resource Governor.”

Monitoring the Disk System

SQL Server performance depends heavily on the I/O subsystem. SQL Server is constantly
reading pages from and writing pages to disk via the data cache. It is also constantly
writing to disk via the transaction log. Focusing on the database data files, transaction log
files, and especially tempdb can yield great performance for your SQL Server platform.
Table 39.6 lists the essential performance objects and counters related to monitoring the
disk system.

ptg

1489A Performance Monitoring Approach
3

9

Slow disk I/O causes a reduction in the transaction throughput. To identify which disks
are receiving all the attention, you should monitor both the Physical Disk and Logical

Disk performance objects. You have many more opportunities to tune at the disk level
than with other components, such as processors. This has long been the area where data-
base administrators and system administrators have been able to get better performance.
You can start by looking at the behavior of the Physical Disk: Current Disk Queue
Length and Physical Disk: Avg. Disk Queue Length counters for all disks or for each
particular disk. This way, you can identify where most of the activity is, from a disk-usage
point of view.

As you monitor each individual disk, you might see that some drives are not as busy as
others. You can relocate heavily used resources to minimize these long queue lengths that
you have uncovered and spread out the disk activity. Common techniques for this are to
relocate indexes away from tables, isolate read-only tables away from volatile tables, and
so on. You need to take special care with tempdb. The best practice is to isolate it away
from all other disk I/O processing.

TABLE 39.6 Disk Usage-Related Performance Objects and Counters

Performance Monitor Object Description

Physical Disk: Current Disk

Queue Length

The number of outstanding requests (read/write) for a disk.

Physical Disk: Avg. Disk

Queue Length

The average number of both read and write requests queued
for disks.

Physical Disk: Disk Read

Bytes

The rate at which bytes are transferred from the disk during
read operations.

Physical Disk: Disk Write

Bytes

The rate at which bytes are transferred to the disk during
write operations.

Physical Disk: % Disk Time The percentage of elapsed time that the selected disk drive
is busy servicing read or write requests.

Logical Disk: Current Disk

Queue Length

The number of outstanding requests (read/write) for a disk.

Logical Disk: Avg. Disk

Queue Length

The average number of both read and write requests queued
for disks.

Logical Disk: Disk Read

Bytes

The rate at which bytes are transferred from the disk during
read operations.

Logical Disk: Disk Write

Bytes

The rate at which bytes are transferred to the disk during
write operations.

Logical Disk: % Disk Time The percentage of elapsed time that the selected disk drive
is busy servicing read or write requests.

ptg

1490 CHAPTER 39 Monitoring SQL Server Performance

The Physical Disk: % Disk Time counter for each physical disk drive shows the percent-
age of time that the disk is active; a continuously high value could indicate an underper-
forming disk subsystem.

Of course, the monitoring up to this point shows only half the picture if drives are parti-
tioned into multiple logical drives. To see the work on each logical drive, you need to
examine the logical disk counters; in fact, you can monitor read and write activity separately
with Logical Disk: Disk Write Bytes/sec and Logical Disk: Disk Read Bytes/sec.
You should be looking for average times below 20ms. If the averages are over 50ms, the disk
subsystem is in serious need of replacement, reconfiguration, or redistribution.

If you use RAID, you need to know how many physical drives are in each RAID array to
figure out the monitored values of disk queuing for any one disk. In general, you just
divide the disk queue value by the number of physical drives in the disk array. This calcu-
lation gives you a fairly accurate number for each physical disk’s queue length.

Monitoring SQL Server’s Disk Activity

In the preceding section, we looked at monitoring overall disk activity. In this section, we
examine what SQL Server’s contribution is to all this disk activity. Disk activity can be
categorized into reads and writes. SQL Server carries out writes to the disk for the follow-
ing processes:

. Logging records

. Writing dirty cache pages at the end of a transaction

. Freeing space in the page cache

Logging is a constant occurrence in any database that allows modifications, and SQL Server
attempts to optimize this process by batching a number of writes together. To see how much
work is done on behalf of the database logs, you can examine the SQLServer:Databases:Log

Bytes Flushed and SQLServer:Databases:Log Flushes/sec counters. The first tells you the
quantity of the work, and the second tells you the frequency.

The third kind of write occurs to make space within the page cache. This is carried out by
the Lazy Writer process, which you can track with the counter SQLServer:Buffer
Manager:Lazy Writes.

You also can easily monitor the amount of reading SQL Server is doing by using the
counter SQLServer:Buffer Manager:Page Reads.

Monitoring Disk Performance in SSMS
If you are collecting performance data into the MDW using the Data Collector for a SQL
Server instance, you can view more detailed disk performance in the Server Activity
History report (refer to Figure 39.12). You can click on the Disk Usage graph to drill down
and examine the details on Disk Response Time, Average Disk Queue Length, and Disk

ptg

1491A Performance Monitoring Approach
3

9

Transfer Rate. In addition, the System Disk Usage detail report also lists the top 20
processes with the highest I/O writes or highest I/O reads per second. This information
can help you determine which processes besides SQL Server are performing a large number
of disk reads and/or writes that could be affecting the I/O performance of SQL Server.

DMVs or System Views for Monitoring Disk System Items
There are several I/O-related DMVs and functions. They cover backup tape I/O, pending
I/O requests, I/O on cluster shared drives, and virtual file I/O statistics.

The best of these is the sys.dm_io_virtual_file_stats function, which allows you to see
the file activity within a database allocation. You supply the database ID as the first para-
meter, along with the file ID of the database file as the second parameter. This yields an
accumulating set of statistics that can be used to isolate and characterize heavy I/O:

SELECT cast(db_name(database_id) as varchar(12)) as dbname,

file_id,

num_of_reads as numreads,

num_of_bytes_read as bytesread,

num_of_bytes_written as byteswritten,

size_on_disk_bytes as size

FROM sys.dm_io_virtual_file_stats (5,1)

GO

dbname file_id numreads bytesread byteswritten size

------------ ------- -------- --------- ------------ ----------

UnleashedMDW 1 7022 411140096 759291904 1048576000

In addition, the OS wait stats for I/O latch waits are great for identifying when reading or
writing of a page is not available from the data cache. These latch waits account for the
physical I/O waits when a page is accessed for reading or writing. When the page is not
found in the cache, an asynchronous I/O gets posted. If there is any delay in the I/O, the
PAGEIOLATCH_EX or PAGEIOLATCH_SH latch waits are affected. An increased number of latch
waits indicates that an I/O bottleneck exists. The following query reveals this latch wait
information:

SELECT substring(wait_type,1,15) AS Latch_Waits, waiting_tasks_count, wait_time_ms

FROM sys.dm_os_wait_stats

WHERE wait_type like ‘PAGEIOLATCH%’

ORDER BY wait_type

GO

Latch_Waits waiting_tasks_count wait_time_ms

------------- -------------------- --------------------

PAGEIOLATCH_DT 0 0

PAGEIOLATCH_EX 2871 61356

PAGEIOLATCH_KP 0 0

PAGEIOLATCH_NL 0 0

PAGEIOLATCH_SH 7305 98120

PAGEIOLATCH_UP 1372 7318

ptg

1492 CHAPTER 39 Monitoring SQL Server Performance

Monitoring Other SQL Server Performance Items

In addition to the main system items that affect performance which have been covered
already, there are other items in SQL Server that affect system performance that you
should include in your performance monitoring approach.

Monitoring Locks
One of the often-overlooked areas of performance degradation is locking. You need to
ensure that the correct types of locks are issued and that the worst kind of lock, a blocking
lock, is kept to a minimum. A blocking lock, as its name implies, prevents other users from
continuing their own work. An easy way to identify the level of blocking locks is to use
the counter SQLServer:Memory Manager:Lock Blocks. If this counter frequently indicates
a value greater than 0, you need to examine the queries being executed or even revisit the
database design.

For a more detailed discussion on monitoring locking in SQL Server and minimizing
locking contention, see Chapter 37, “Locking and Performance.”

Monitoring Users
Even though you cannot always trace performance problems directly to the number of
users connected, it is a good idea to occasionally monitor how this number fluctuates. It is
fairly easy to trace one particular user who is causing a massive performance problem.

The leverage point here is to see the current number of user connections with the
SQLServer:General Statistics:User Connections counter in conjunction with other
objects and counters. It is easy to say that the disk subsystem is a bottleneck, but how
many users is SQL Server supporting at the time?

Summary
Attacking SQL Server performance is not a simple task because so many variables are
involved. Tuning queries and proper database design are a huge part of this, but dealing
with SQL Server as an engine that consumes resources and the physical machine is equally
important. This is why it is so critical to take an orderly, methodical approach when
undertaking this task. As pointed out in this chapter, you need to basically peel apart the
box on which SQL Server has been installed, one component at a time (network, CPU,
memory, and disk). This way, you can explore the individual layer or component in a
clear and concise manner. Within a short amount of time, you will be able to identify the
biggest performance offenders and resolve them.

The next chapter, “Managing Workloads with Resource Governor,” discusses the new
feature in SQL Server 2008 that lets you control the allocation of resources to SQL Server
sessions. This feature can help avoid situations in which a runaway query consumes exces-
sive resources in SQL Server.

ptg

CHAPTER 40

Managing Workloads
with the Resource

Governor

IN THIS CHAPTER

. Overview of Resource Governor

. Resource Governor
Components

. Configuring Resource Governor

. Monitoring Resource Usage

. Modifying Your Resource
Governor ConfigurationIf you have ever had a user kick off a runaway report that

brought the system to its knees, effectively halting your
production online transaction processing (OLTP) activity,
you might have wished for a mechanism in SQL Server that
would limit the amount of hardware resources allocated to
ad hoc reporting requests so that normal production activ-
ity was not affected. Such a mechanism could prevent
certain processes from consuming too many of the available
SQL Server resources, ensuring that your more critical,
higher-priority processes would consistently have access to
the resources they need.

Fortunately, SQL Server 2008 now provides such a mecha-
nism: Resource Governor. Resource Governor allows you to
classify different types of sessions on your server, which in
turn allows you to control how server resources are assigned
to a given activity. In SQL Server 2005 and earlier, queries
fought among themselves to decide which one would grab
the necessary resources first, and it was hard to predict who
would win out. By using Resource Governor, you are able to
instruct SQL Server to limit the resources a particular
session can access. This capability can help ensure that your
OLTP processes continue to provide predictable perfor-
mance that isn’t adversely affected by unpredictable activ-
ity. For example, with Resource Governor, you can specify
that no more than 20% of CPU and/or memory resources
should be allocated to running reports. When this feature is
enabled, no matter how many reports are run, they can
never exceed their designated resource allocation. Of
course, this reduces the performance of the reports, but at
least your production OLTP performance isn’t as negatively
affected by runaway reports anymore.

ptg

1494 CHAPTER 40 Managing Workloads with the Resource Governor

Reporting
Sessions

OLTP
Sessions

Classification
(Classifier
Function)

Internal
Group

Internal
Pool

Group 1
Default
Group

Default
PoolPool 1

Group 2

Pool 2

Group 3 Group 4

Query Optimizer

FIGURE 40.1 Overview of the Resource Governor.

NOTE

Resource Governor is available only in the Enterprise, Datacenter, and Developer
Editions of SQL Server 2008 and SQL Server 2008 R2.

Overview of Resource Governor
Resource Governor works by controlling the allocation of resources according to work-
loads. When a connection request is submitted to the Database Engine, the request is clas-
sified based on a classification function. The classification function is a scalar function
that you define via T-SQL. The classification function evaluates information about the
connection (for example, login ID, application name, hostname, server role) to determine
how it should be classified. After the connection request is classified, it is routed to a
workload group defined for that classification (or if the connection cannot be classified, it
is routed to the default workload group). Each workload group is associated with a
resource pool. A resource pool represents the physical resources of SQL Server (currently in
SQL Server 2008, the only physical resources available for configuration are CPU and
memory) and specifies the maximum amount of CPU and/or memory resources that are to
be allocated to a specific type of workload. When a connection is classified and put into
the correct workload group, the connection is allocated the CPU and memory resources
assigned to it, and then the query is passed on to the query optimizer for execution. This
process is illustrated in Figure 40.1.

ptg

1495Resource Governor Components

Resource Governor is designed to address the following types of resource issues, which are
commonly found in a database environment:

. Runaway queries—These resource-intensive queries can take up most or all of the
server resources.

. Unpredictable workload execution—This situation occurs when you have
concurrent applications on the same server that are not isolated from each other,
and the resulting resource contention causes unpredictable performance.

. Workload prioritization—You might want to ensure that a critical workload is
given priority to the system resources so it can process faster than other workloads
or is guaranteed to complete if there is resource contention.

In addition to enabling you to classify incoming connections and route their workloads to
a specific group, Resource Governor also enables you to do the following:

. Monitor resource usage for each workload in a group

. Pool resources and set pool-specific limits on CPU usage and memory allocation,
which can prevent or minimize the probability of runaway queries

. Associate grouped workloads with a specific pool of resources

. Identify and set priorities for workloads

The current release of Resource Governor has the following limitations:

. Resource allocation is only for CPU and memory usage. There is no support for
managing network and disk I/O resource utilization.

. Resource Governor manages only resource consumption of the Database Engine. You
cannot use Resource Governor to manage workloads within SSAS, SSIS, or SSRS.

In the following sections, you learn how to set up and configure Resource Governor for
use, how Resource Governor works under the hood, and how you can use Resource
Governor to better prioritize and manage a SQL Server’s workload.

Resource Governor Components
Resource Governor consists of three main components: classification, workload groups,
and resource pools. Understanding these three components and how they interact is
important to understanding and using Resource Governor.

Classification

Classification is the process of evaluating incoming user connections and assigning them
to a workload group. Classification is performed by logic contained in a user-defined func-
tion. The function returns the workload group name, which Resource Governor uses to
route the sessions into the appropriate workload groups.

4
0

ptg

1496 CHAPTER 40 Managing Workloads with the Resource Governor

When Resource Governor is configured, the login process for a session consists of the
following steps:

1. Login authentication

2. LOGON trigger execution

3. Classification

Workload Groups

Workload groups are the containers for similar connections, which are grouped together as
similar according to the classification criteria applied to each connection. A workload
group also provides the mechanism for aggregate monitoring of resource consumption.

Resource Governor has two predefined workload groups: the internal group and default
group. The internal workload group is used solely by internal Database Engine processes.
You cannot change the classification criteria for the internal group, and you also cannot
classify any user requests for assignment to the internal group. You can, however, monitor
the internal group.

Connection requests are automatically classified into the default group when the follow-
ing conditions exist:

. There are no criteria to classify a request.

. There is an attempt to classify the request into a nonexistent group.

. There is a general classification failure.

Resource governor supports a total of 20 workload groups. Because two of them are
reserved for the internal and default workload groups, a total of 18 user-defined workload
groups can be defined.

Resource Pools

A resource pool, or pool, represents the allocation of physical resources of the SQL Server. A
resource pool has two parts:

. The first part specifies the minimum resource reservation. This part of the resource
pool does not overlap with other pools.

. The other part specifies the maximum possible resource reservation for the pool. The
resource allocation is shared with other pools.

In SQL Server 2008 and SQL Server 2008 R2, the pool resources are set by specifying a MIN
or MAX allocation for CPU and a MIN or MAX allocation for memory. The MIN setting specifies
the minimum guaranteed resource availability of the pool. The MAX setting sets the
maximum size of the pool for each of the resources.

Because there cannot be any overlap in the minimum resource reservation, the sum of the
MIN values across all pools cannot exceed 100% of the total server resources. The ensures
that each pool is guaranteed the specified resource allocation.

ptg

1497Resource Governor Components

The MAX value can be set anywhere in the range between the MIN value and 100% inclu-
sive. The MAX setting represents the maximum amount of resources a session can consume,
as long as the resources are available and not in use by another pool that is configured
with a nonzero MIN value. When a pool has a nonzero MIN percentage defined, the effec-
tive MAX value of other pools is readjusted down, as necessary, to the existing MAX value
minus the sum total of the MIN values of other pools.

For example, consider you have two user-defined pools. One pool, Pool1, is defined with a
MIN setting of 20% and a MAX setting of 100%. The other pool, Pool2, is defined with a MIN
setting of 50% and a MAX setting of 70%. The resulting effective MAX setting for Pool1 is
50% (100% minus the MIN 50% of Pool2). The effective MAX setting of Pool2, however,
remains at 70% rather than 80% because 70% is the configured MAX value of Pool2.

The shared part of the pool (the amount between the MIN and effective MAX values) is used
to determine the amount of resources that can be consumed by the pool if the resources
are available and not being consumed by another pool. When resources are consumed by
a pool, they are assigned to the specified pool and are not shared until processing
completes in that pool.

To illustrate this further, consider a scenario in which there are three user-defined
resource pools:

. PoolA is defined with a MIN % of 10 and MAX % of 100.

. PoolB is defined with a MIN % of 35 and a MAX % of 90.

. PoolC is defined with a MIN % of 30 and a MAX % of 80.

The effective MAX of PoolA would be calculated as follows:

MAX % of PoolA 100

minus MIN % of PoolB 35

minus MIN % of PoolC 30

equals EFF MAX of PoolA 35

The total Shared % of resources of PoolA would then be calculated as follows:

Effective MAX % of PoolA 35

minus MIN % of PoolA 10

equals Shared % of PoolA 25

Table 40.1 illustrates the calculated effective MAX and Shared % values for all pools in this
configuration.

4
0

ptg

1498 CHAPTER 40 Managing Workloads with the Resource Governor

To coincide with the predefined workload groups, Resource Governor also has two prede-
fined resource pools: the internal pool and default pool.

The internal pool represents the resources consumed by the internal processes of the
Database Engine. This pool always contains only the internal group, and the pool is not
alterable in any way. The Internal Pool has a fixed MIN % of 0 and a MAX % of 100, and
resource consumption by the internal pool is not restricted or reduced by any settings in
other pools. In other words, the effective MAX of the Internal Pool is always 100%. Any
workloads in the internal pool are considered critical for server function, and Resource
Governor allows the internal pool to consume 100% of available resources if necessary,
even if it means the violation of the resource requirements of the other pools.

The default pool is the first predefined user pool. Prior to any configuration, the default pool
contains only the default group. The default pool cannot be created or dropped, but it can be
altered. The default pool can contain user-defined groups in addition to the default group.

Now that you have an understanding of the Resource Governor components, let’s put
them into use by enabling and setting up some resource groups.

Configuring Resource Governor
To begin using Resource Governor for managing the resources of your workloads, follow
these steps:

1. Enable Resource Governor.

2. Create your user-defined resource pools.

3. Define your workload groups and assign them to pools.

4. Create the classifier function.

5. Register the classifier function with the Resource Governor.

NOTE

Resource Governor can be set up and managed using either SQL Server Management
Studio (SSMS) or via T-SQL commands. In the following sections, we first show you
how to perform the tasks in SSMS and how the same actions can be implemented
using T-SQL.

TABLE 40-1 Effective MAX and Shared % Values for Multiple Pools

ResourcePool MIN % MAX % Effective MAX % Shared %

Internal 0 100 100 100

Default 0 100 25 25

PoolA 10 100 35 25

PoolB 35 90 50 15

PoolC 30 80 35 5

ptg

1499Configuring Resource Governor

FIGURE 40.2 Enabling Resource Governor in SSMS.

Enabling Resource Governor

Before you can begin creating your resource pools, you need to enable the Resource
Governor first. To enable Resource Governor in SSMS, in Object Explorer, expand the
Management node, right-click on the Resource Governor node, and select Enable (see
Figure 40.2).

4
0

Alternatively, you can also enable Resource Governor by using the ALTER RESOURCE
GOVERNOR command in T-SQL:

ALTER RESOURCE GOVERNOR RECONFIGURE

When Resource Governor is not enabled, the RECONFIGURE option enables Resource
Governor. Enabling Resource Governor has the following results:

. The classifier function, if defined, is executed for new connections so that their
workload can be assigned to workload groups.

. The resource limits specified in the Resource Governor configuration are honored
and enforced.

. Any connections that existed before Resource Governor was enabled are now affect-
ed by any configuration changes made when Resource Governor was disabled.

When Resource Governor is already enabled, the RECONFIGURE option must be executed to
apply any configuration changes made using the CREATE|ALTER|DROP WORKLOAD GROUP or
CREATE|ALTER|DROP RESOURCE POOL statements.

ptg

1500 CHAPTER 40 Managing Workloads with the Resource Governor

To determine whether Resource Governor is currently enabled, you can run a SELECT state-
ment against the sys.resource_governor_configuration system catalog table to view the
is_enabled column:

select is_enabled from sys.resource_governor_configuration

go

is_enabled

1

To determine whether any RESOURCE GOVERNOR configuration changes are pending, you can
use the sys.dm_resource_governor_configuration dynamic management view (DMV):

select is_reconfiguration_pending

from sys.dm_resource_governor_configuration

go

is_reconfiguration_pending

0

To disable Resource Governor, right-click on the Resource Governor node and select
Disable or execute the following command in T-SQL:

ALTER RESOURCE GOVERNOR DISABLE

Defining Resource Pools

When setting up a Resource Pool, you have to specify a name for the pool and set its
properties. The properties available for a resource pool are

. Name—The name used to refer to the resource pool

. Minimum CPU %—The guaranteed average CPU bandwidth for all requests to the
resource pool when there is CPU contention

. Maximum CPU %—The maximum average CPU bandwidth for all requests to the
resource pool when there is CPU contention

. Min Memory %—The guaranteed minimum amount of memory reserved for the
resource pool that cannot be shared with other resource pools

. Max Memory %—The total server memory that can be used by requests to the
resource pool

Creating a Resource Pool in SSMS
The following steps walk you through using SSMS to create a resource pool named
ReportPool that you’ll configure for handling report query workloads:

ptg

1501Configuring Resource Governor
4

0

FIGURE 40.3 Creating a resource pool in SSMS.

1. In Object Explorer, expand the Management node for a SQL Server Instance and
expand the Resource Governor node.

2. Right-click on Resource Pools and select New Resource Pool to open the Resource
Governor Properties page (see Figure 40.3).

3. In the Resource Pools grid, click the first column in the empty row. This row is
labeled with an asterisk (*).

NOTE

If the Resource Pools grid does not have a row labeled with an asterisk, Resource
Governor has not been enabled yet. You can enable Resource Governor without leaving
the Resource Governor Properties page by putting a check mark in the Enable
Resource Governor check box.

4. Double-click the empty cell in the Name column. Type in the name that you want to
use for the resource pool. For this example, use the name ReportPool.

5. Set the CPU and Memory resource values. In this example, leave the Min CPU % and
Min Memory % values at 0 and configure the Max CPU % and Max Memory % values at
20 and 30, respectively.

6. To create the pool and exit the dialog, click OK.

To verify that the new pool was created, you expand the Resource Pools folder under the
Resource Governor node and look for a node named ReportPool. Alternatively, you can

ptg

1502 CHAPTER 40 Managing Workloads with the Resource Governor

run a query against the sys.resource_governor_resource_pools dynamic management
view, similar to the following, which also displays the resource pool configuration:

select name,

min_cpu_percent as MinCPU,

max_cpu_percent as MaxCPU,

min_memory_percent as ‘MinMEM%’ ,

max_memory_percent as ‘MaxMEM%’

from sys.resource_governor_resource_pools

go

name MinCPU MaxCPU MinMEM% MaxMEM%

---------- ------ ------ ------- -------

internal 0 100 0 100

default 0 100 0 100

ReportPool 0 20 0 30

Creating a Resource Pool in T-SQL
Now that you’ve set up the ReportPool resource pool in SSMS, you are able to set up a
second resource pool, OLTPPool, using T-SQL. The command to create a resource pool,
CREATE RESOURCE POOL, takes four arguments: MIN_CPU_PERCENT, MAX_CPU_PERCENT,
MIN_MEMORY_PERCENT, and MAX_MEMORY_PERCENT. After creating the resource pool, you need
to run ALTER RESOURCE GOVERNOR RECONFIGURE to apply the new resource pool:

CREATE RESOURCE POOL OLTPPool

WITH

(min_cpu_percent=80,

max_cpu_percent=100,

min_memory_percent=75,

max_memory_percent=100)

GO

ALTER RESOURCE GOVERNOR RECONFIGURE;

GO

Now that you’ve defined the resource pools needed, the next step is to define your work-
load groups and associate them with a resource pool.

Defining Workload Groups

After you define your resource pools, the next step is to create the workload groups and
associate them with the appropriate resource pools. Multiple workgroups can be assigned
to that same pool, but a workgroup cannot be assigned to multiple resource pools.

ptg

1503Configuring Resource Governor
4

0

Creating Workload Groups in SSMS
To create a workload group in SSMS, perform the following steps:.

1. In Object Explorer, expand the Management node, right-click the Resource Governor
node, and then click Properties to bring up the Resource Governor Properties page.

2. In the Resource Pools grid, click the row for the resource pool you want to create a
workload group for (in this example, the ReportPool resource pool). This creates a
new empty row in the Workload Groups for Resource Pool grid for that pool.

3. Double-click the empty cell in the Name column for the empty workload group row
and type in the name you want to use for the workload group (for this example,
ReportWG1) and any other properties you want to specify (see Figure 40.4)

4. Click OK to exit the Properties page and create the workload group.

The additional, optional properties available for workload groups let you set a finer level
of control over the execution of queries within a workload group. The options available
are

. Importance—Specifies the relative importance (LOW, MEDIUM, or HIGH) of the work-
load group within the resource pool. If you define multiple workload groups in a

FIGURE 40.4 Creating a Workload Group in SSMS.

ptg

1504 CHAPTER 40 Managing Workloads with the Resource Governor

resource pool, this setting determines whether requests within one workload group
run at a higher or lower priority than other workload groups within the same
resource pool. MEDIUM is the default setting. Currently, the weighting factors for each
setting is LOW=1, MEDIUM=3, and HIGH=9. This means that the scheduler will attempt to
execute sessions in workgroups with importance of HIGH three times more often than
workgroups with MEDIUM importance, and nine times more often workgroups with
LOW importance.

NOTE

Try to avoid having too many sessions in groups with high importance or assigning high
importance to too many groups because the sessions will likely end up getting only
equal time on the scheduler as your medium and low priority sessions.

. Maximum Requests—Specifies the maximum number of simultaneous requests
allowed to execute in the workload group. The default setting, 0, allows unlimited
requests.

. CPU Time—Specifies the maximum amount of CPU time, in seconds, that a request
within the workload group can use. The default setting is 0, which means unlimited.

. Memory Grant %—Specifies, as a percentage, the maximum amount of execution
grant memory that a single request can take from the resource pool. This percentage
is relative to the amount of memory allocated to the resource pool. The allowed
range of values is from 0 through 100. The default setting is 25. Execution grant
memory is the amount of memory used for query execution, not for data buffers or
cached plans, which can be shared by many sessions, regardless of resource pool or
workload group. Note that setting this value to 0 prevents queries with SORT and
HASH JOIN operations in user-defined workload groups from running. It is also not
recommended that this value be set greater than 70 because the server may be
unable to set aside enough free memory if other concurrent queries are running.

. Grant Time-out—Specifies the maximum time, in seconds, that a query waits for a
resource to become available. If the resource does not become available, the process
may fail with a time-out error. Note that a query does not always fail when the grant
time-out is reached. A query fails only if there are too many concurrent queries
running. Otherwise, the query may run with reduced resources, resulting in reduced
query performance. The default setting is 0, which means the server calculates the
time-out using an internal calculation based on query cost to determine the
maximum time.

. Degree of Parallelism—Specifies the maximum degree of parallelism (DOP) for
parallel queries. This values takes precedence over the global max degree of paral-
lelism configuration setting, as well as any query hints. The allowed range of values
is from 0 through 64. The default setting is 0, which means that processes use the
global setting. Be aware that MAX_DOP specifies an upper limit only. The actual degree

ptg

1505Configuring Resource Governor
4

0

of parallelism is determined by the server based on the actual number of schedulers
and available number of parallel threads, which may be less than the specified
MAX_DOP. To better understand how the MAX_DOP setting is handled, consider the
following:

. MAX_DOP as a query hint is considered only if it does not exceed the workload
group MAX_DOP setting.

. MAX_DOP as a query hint always overrides the max degree of parallelism server
configuration option.

. Workload group MAX_DOP always overrides the max degree of parallelism server
configuration option

. If a query is marked as serial at compile time, it cannot be changed back to paral-
lel at runtime regardless of the workload group or server configuration setting.

. When the degree of parallelism is decided, it can be lowered only when
memory pressure occurs. Workload group reconfiguration is not seen for tasks
already waiting in the grant memory queue.

To verify that the new workload group was created, in SSMS Object Explorer, expand the
Resource Governor node, expand the Resource Pools folder, expand the ReportPool
node, and finally, expand the Workload Groups folder. You should then see a folder
named ReportWG1.

Creating Workload Groups in T-SQL
Now that you’ve set up the ReportWG1 workload group in SSMS, you are able to set up a
second workload group, OLTPWG1, using T-SQL. The command to create a resource pool,
CREATE RESOURCE POOL, takes five optional arguments:
REQUEST_MAX_MEMORY_GRANT_PERCENT, REQUEST_MAX_CPU_TIME_SEC, GROUP_MAX_REQUESTS,
REQUEST_MEMORY_GRANT_TIMEOUT_SEC, and MAX_DOP, which were described in the preceding
section.

CREATE WORKLOAD GROUP OLTPWG1

WITH (IMPORTANCE = HIGH)

USING OLTPPool

ALTER RESOURCE GOVERNOR RECONFIGURE

GO

To view the workload groups in T-SQL, you can run a query against the
sys.resource_governor_workload_groups system catalog view, similar to the following,
which also displays the workload group settings:

select wg.name,

p.name as ‘pool’,

group_max_requests as max_req,

request_max_cpu_time_sec as max_cpu,

request_max_memory_grant_percent as max_mem,

ptg

1506 CHAPTER 40 Managing Workloads with the Resource Governor

request_memory_grant_timeout_sec as grant_timeout,

max_dop

from sys.resource_governor_workload_groups wg

inner join

sys.resource_governor_resource_pools p

on wg.pool_id = p.pool_id

go

name pool max_req max_cpu max_mem grant_timeout max_dop

--------- ---------- ------- ------- ------- ------------- -------

internal internal 0 0 25 0 0

default default 0 0 25 0 0

ReportWG1 ReportPool 0 0 25 0 0

OLTPWG1 OLTPPool 0 0 25 0 0

Creating a Classification Function

After you define your resource pools and workload groups, you need to create a classifica-
tion function that contains the logic to evaluate the connections and assign them to the
appropriate workload group. The classification function applies to each new session
connection to SQL Server. Each session stays in the assigned workload group until it termi-
nates, unless is it reassigned explicitly to a different group. There can be only one classifi-
cation function active at any given time. If no classifier function is defined or active, all
connections are assigned to the default workload group.

The classification function is a scalar function created with the CREATE FUNCTION state-
ment, which must return a workgroup name as value of type SYSNAME (SYSNAME is a data
type alias for nvarchar(128)). If the user-defined function returns NULL, ’default’, or the
name of nonexistent group, the session is assigned to the default workload group. The
session is also assigned to the default context if the function fails for any reason.

The logic of the classification function is typically based on connection properties and
often determines the workload_group the connection should be assigned to based on
values returned by system functions such as SUSER_NAME(), SUSER_SNAME(),
IS_SRVROLEMEMBER(), IS_MEMBER(), HOST_NAME(), or APP_NAME().In addition to these func-
tions, you can use other available property functions when making classification deci-
sions. The LOGINPROPERTY() function now includes two properties (DefaultDatabase and
DefaultLanguage) that can be used in classification functions. In addition, the
CONNECTIONPROPERTY() function provides access to the network transport and protocol
being used for the connection, as well as details of the authentication scheme, the local IP
address and TCP port, and the client’s IP address. For example, you could assign a connec-
tion to a workload group based on which subnet a connection is coming in from.

ptg

1507Configuring Resource Governor
4

0

TIP

If you decide to use either HOST_NAME() or APP_NAME() in your classifier function, be
aware that it’s possible for the values returned by these functions to be altered by users.
In general, however, the APP_NAME() function tends to work very well for classifying
connections.

TIP

A client session may time out if the classification function does not complete within
the specified time-out for the login. Login time-out is a client property, and as such, the
server is unaware of a time-out. A long-running classifier function can leave the server
with orphaned connections for long periods. It is important that you create efficient
classifier functions that finish execution before a connection time-out.

If you are using the Resource Governor, it is recommended that you enable the dedi-
cated administrator connection (DAC) on the server. The DAC is not subject to
Resource Governor classification and can be used to monitor and troubleshoot a
classification function.

For simplicity, the example presented in this chapter uses the SUSER_NAME() function.
Listing 40.1 first creates a couple of SQL Server logins (report_user and oltp_user),
which will be used within the classification function to identify which workload group
session connections should be assigned to. After adding the logins as users in the
AdventureWorks2008R2 database, it then creates the classification function in the master
database.

LISTING 40.1 Classification Function Example

use master;

create login report_user with password=’Rep0rter1’

create login oltp_user with password=’01tPus3r1’

go

use AdventureWorks2008R2;

create user report_user

create user oltp_user

EXEC sp_addrolemember N’db_datawriter’, N’report_user’

EXEC sp_addrolemember N’db_datareader’, N’report_user’

EXEC sp_addrolemember N’db_datawriter’, N’oltp_user’

EXEC sp_addrolemember N’db_datareader’, N’oltp_user’

go

ptg

1508 CHAPTER 40 Managing Workloads with the Resource Governor

use master

go

CREATE FUNCTION dbo.WorkgroupClassifier ()

RETURNS SYSNAME WITH SCHEMABINDING

AS

BEGIN

DECLARE @WorkloadGroup SYSNAME = N’Unidentified’;

SET @WorkloadGroup = CASE suser_name()

WHEN N’report_user’ THEN

N’ReportWG1’

WHEN N’oltp_user’ THEN

N’OLTPWG1’

ELSE N’Unidentified’

END;

RETURN @WorkloadGroup;

END;

Go

GRANT EXECUTE on dbo.WorkgroupClassifier to public

go

Before you put the classification function into use, it’s a good idea to test it. A poorly
written classification function could cause your system to become unresponsive. For
example, you can test the WorkgroupClassifier() function in SSMS by executing the
following commands under different login IDs:

-- Executed logged in as report_user

select dbo.WorkgroupClassifier()

go

ReportWG1

-- Executed logged in as report_user

select dbo.WorkgroupClassifier()

go

OLTPWG1

-- Executed Logged in as another user

select dbo.WorkgroupClassifier()

go

Unidentified

After you verify the classification function works as expected, you can then configure it as
the classification function using the ALTER RESOURCE GOVERNOR command:

ptg

1509Monitoring Resource Usage
4

0

ALTER RESOURCE GOVERNOR

WITH (CLASSIFIER_FUNCTION = dbo.WorkgroupClassifier);

ALTER RESOURCE GOVERNOR RECONFIGURE;

After you create the function and apply the configuration changes, the Resource Governor
classifier will use the workload group name returned by the function to send new requests
to the appropriate workload group.

NOTE

You can also set the classification function for Resource Governor on the Resource
Governor Properties page, as shown in Figure 40.4. Click the Classifier Function Name
drop-down list and choose from the list of available functions presented. Click OK to
save the changes and reconfigure Resource Governor.

You can verify which classification function Resource Governor is currently using by
running the following query against the sys.resource_governor_configuration system
catalog view:

select object_name(classifier_function_id) AS ‘Classifier UDF name’,

is_enabled

from sys.resource_governor_configuration

go

Classifier UDF name is_enabled

-------------------- ----------

WorkgroupClassifier 1

At this point, your Resource Governor configuration is complete. You then should
monitor the system to make sure it’s working as it should.

TIP

To help make setting up and configuring Resource Governor easy and make sure you
get all the pieces together in the right sequence, you can configure Resource Governor
by using a template provided in SQL Server Management Studio. From the View menu
in SSMS, select Template Explorer to display the Template Explorer. In the Template
Explorer, expand Resource Governor and then double-click Configure Resource
Governor. Provide the connection information, and the template Configure Resource
Governor.sql opens in a query editor window. This template contains template code
to create and configure a resource pool, workload group, and classifier function.

Monitoring Resource Usage
SQL Server provides three dynamic management views you can use to view and monitor
your Resource Governor configuration:

. sys.dm_resource_governor_workload_groups—Returns workload group
statistics along with the current in-memory configuration of the workload groups.

ptg

1510 CHAPTER 40 Managing Workloads with the Resource Governor

. sys.dm_resource_governor_resource_pools—Returns information about
current state of your resource pools and resource pool statistics.

. sys.dm_resource_governor_configuration—Returns the in-memory configu-
ration state of the Resource Governor. Output is the same as the
sys.resource_governor_configuration system catalog view.

For example, the following query against the sys.dm_resource_governor_resource_pools
DMV returns the configuration settings for each of the pools along with the actual
memory allocated:

select name,

min_cpu_percent as MinCPU,

max_cpu_percent as MaxCPU,

min_memory_percent as ‘MinMEM%’ ,

max_memory_percent as ‘MaxMEM%’,

max_memory_kb as ‘MaxMemKB’,

used_memory_kb as ‘UsedMemKB’,

target_memory_kb as ‘TgtMemKB’

from sys.dm_resource_governor_resource_pools

GO

name MinCPU MaxCPU MinMEM% MaxMEM% MaxMemKB UsedMemKB TgtMemKB

---------- ------ ------ ------- ------- -------- --------- --------

internal 0 100 0 100 1556232 8296 1556232

default 0 100 0 100 389064 8336 389064

ReportPool 0 20 0 30 389064 280 389064

OLTPPool 80 100 75 100 1556232 40 1556232

The following example displays statistics on the requests received within the defined
workgroups:

select

cast(g.name as nvarchar(10)) as wg_name,

cast(p.name as nvarchar(10)) as pool_name,

total_request_count as totreqcnt,

active_request_count as actreqcnt,

g.total_cpu_usage_ms as tot_cpu_use,

total_cpu_limit_violation_count as tot_clvc,

g.request_max_cpu_time_sec as req_mcts,

g.total_reduced_memgrant_count as tot_rmc

from sys.dm_resource_governor_workload_groups g

inner join

sys.dm_resource_governor_resource_pools p

on p.pool_id = g.pool_id

go

ptg

1511Monitoring Resource Usage
4

0

wg_name pool_name totreqcnt actreqcnt tot_cpu_use tot_clvc req_mcts tot_rmc

--------- ---------- --------- --------- ----------- -------- -------- -------

internal internal 0 0 37314 0 0 0

default default 784 2 97938 0 0 0

ReportWG1 ReportPool 170 1 476016 0 0 0

OLTPWG1 OLTPPool 161 0 1834 0 0 0

Six other DMVs in SQL Server 2008 contain information related to Resource Governor:

. sys.dm_exec_query_memory_grants—Returns information about the queries
that have acquired a memory grant or that still require a memory grant to execute.
Resource Governor–related columns in this table are the group_id, pool_id,
is_small, and ideal_memory_kb columns.

. sys.dm_exec_query_resource_semaphores—Returns information about the
current query_resource semaphore status, providing general query-execution
memory status information. The pool_id column provides a link to Resource
Governor information.

. sys.dm_exec_session—Returns one row per session on SQL Server. The group_id
column relates the information to Resource Governor workload groups.

. sys.dm_exec_requests—Returns information about each request currently
executing within SQL Server. The group_id column relates the information to
Resource Governor workload groups.

. sys.dm_exec_cached_plans—Returns a row for each query plan cached by SQL
Server in the plan cache. The pool_id column relates the information to Resource
Governor resource pools.

. sys.dm_os_memory_brokers—Returns information about internal allocations
within SQL Server that use the Memory Manager. This information includes the fol-
lowing columns for the Resource Governor: pool_id, allocations_db_per_sec,
predicted_allocations_kb, and overall_limit_kb.

The following query joins between sys.dm_exec_session and
sys.dm_resource_governor_workload_groups to display which sessions are in which
workload group:

SELECT

CAST(g.name as nvarchar(10)) as poolname,

s.session_id as ‘session’,

s.login_time,

CAST(s.host_name as nvarchar(15)) as host_name,

CAST(s.program_name AS nvarchar(20)) as program_name

FROM sys.dm_exec_sessions s

INNER JOIN sys.dm_resource_governor_workload_groups g

ON g.group_id = s.group_id

where g.name in (‘default’, ‘ReportWG1’, ‘OLTPWG1’)

ptg

1512 CHAPTER 40 Managing Workloads with the Resource Governor

go

poolname session login_time host_name program_name

---------- ------- ----------------------- --------------- --------------------

default 51 2010-05-02 14:31:18.530 LATITUDED830-W7 Microsoft SQL Server

default 52 2010-05-02 14:31:21.990 LATITUDED830-W7 SQLAgent - Generic R

default 53 2010-05-02 14:31:23.533 LATITUDED830-W7 SQLAgent - TSQL JobS

default 55 2010-05-02 14:47:27.250 LATITUDED830-W7 Microsoft SQL Server

ReportWG1 60 2010-05-02 19:06:21.100 LATITUDED830-W7 Microsoft SQL Server

OLTPWG1 54 2010-05-02 21:03:03.020 LATITUDED830-W7 Microsoft SQL Server

You can also monitor CPU and memory resources allocated by the Resource Governor
through the Windows Performance Monitor via a couple of new performance counters:

. SQLServer: Resource Pool Stats

. SQLServer: Workload Stats

An instance of the SQLServer: Resource Pool Stats counter is available for each of the
configured resource pools. Likewise, an instance of the SQLServer: Workload Stats
counter is available for each of the configured workload groups (see Figure 40.5). These
performance counters return the same information as that returned by the
sys.dm_resource_governor_workload_groups and
sys.dm_resource_governor_resource_pools DMVs but enable you to monitor these
statistics over time.

FIGURE 40.5 Monitoring resource pool and workload group statistics in Performance Monitor.

ptg

1513Modifying Your Resource Governor Configuration
4

0

Modifying Your Resource Governor Configuration
You can modify settings for resource pools or workload groups in SQL Server Management
Studio via the Resource Governor Properties page, as shown previously in Figure 40.4. You
simply make the changes desired (for example, a Resource Pool Maximum CPU% or
Workload Group Importance) and click OK to save the changes.

Alternatively, you can modify the resource pool using the ALTER RESOURCE POOL
command. With this command, you can modify the minimum and maximum CPU and
memory percentages for a resource pool. The syntax is as follows:

ALTER RESOURCE POOL { pool_name | “default” }

[WITH

([MIN_CPU_PERCENT = value]

[[,] MAX_CPU_PERCENT = value]

[[,] MIN_MEMORY_PERCENT = value]

[[,] MAX_MEMORY_PERCENT = value])

]

You can modify workload group settings using the ALTER WORKLOAD GROUP command. You
can change the workload group settings as well as move the workload group to another
resource pool. The syntax is as follows:

ALTER WORKLOAD GROUP { group_name | ”default” }

[WITH

([IMPORTANCE = { LOW | MEDIUM | HIGH }]

[[,] REQUEST_MAX_MEMORY_GRANT_PERCENT = value]

[[,] REQUEST_MAX_CPU_TIME_SEC = value]

[[,] REQUEST_MEMORY_GRANT_TIMEOUT_SEC = value]

[[,] MAX_DOP = value]

[[,] GROUP_MAX_REQUESTS = value])

]

[USING { pool_name | ”default” }]

NOTE

After executing your ALTER WORKLOAD GROUP or ALTER RESOURCE POOL commands,
you need to run the ALTER RESOURCE GOVERNOR RECONFIGURE command to apply
the changes.

The following example moves the ReportWG1 workload group from the ReportPool
resource pool to the default resource pool:

ALTER WORKLOAD GROUP ReportWG1

USING [default];

GO

ptg

1514 CHAPTER 40 Managing Workloads with the Resource Governor

ALTER RESOURCE GOVERNOR RECONFIGURE

GO

You can also move a workload group to another resource pool in SSMS using the Resource
Governor Properties page. Click the Resource Pool name in the Resource Pools grid; then
right-click on Workload Group in the Workload Groups grid and select Move To (see Figure
40.6). This brings up the Move Workload Group dialog, which lists the available resource
pools the workload group can be moved to. Select the desired resource pool and click OK.

Why move a workload group to a different resource pool? You might decide that a work-
load group should be in a resource pool that has different configuration settings, or you
might want to move workload groups out of a resource pool so that you can drop the
resource pool.

Deleting Workload Groups

You can delete a workload group or resource pool by using SQL Server Management Studio
or T-SQL. To drop a workload group in SSMS, follow these steps:

1. Expand the Management node in Object Explorer and expand the Resource Governor
node to display the Resource Pools folder.

2. Expand the node of the resource pool where the workload group is defined to
display the Workload Groups folder.

FIGURE 40.6 Moving a workload group in SSMS.

ptg

1515Modifying Your Resource Governor Configuration
4

0

3. Expand the Workload Groups folder to list the workload groups.

4. Right-click the workload group you want to drop and select Delete.

5. In the Delete Object window, the Workload Group is listed in the Object to Be
Deleted list. Click OK to confirm the deletion.

To drop a workload group using T-SQL, use the DROP WORKLOAD GROUP command:

DROP WORKLOAD GROUP OLTPWG1

ALTER RESOURCE GOVERNOR RECONFIGURE

go

You cannot drop a workload group if there are any active sessions assigned to it. If a work-
load group contains active sessions, deleting the workload group or moving it to a differ-
ent resource pool will fail when the ALTER RESOURCE GOVERNOR RECONFIGURE statement is
called to apply the change. The following options provide a way to work around this
problem:

. Wait until all the sessions from the affected group have disconnected and then rerun
the ALTER RESOURCE GOVERNOR RECONFIGURE statement.

. Explicitly stop sessions in the affected group by using the KILL command and then
rerun the ALTER RESOURCE GOVERNOR RECONFIGURE statement.

. Restart SQL Server. When the restart process is complete, the deleted group will
not be created, and a moved group will automatically use the new resource pool
assignment.

NOTE

If an attempt to reconfigure Resource Governor fails after dropping a workload group
because of active sessions and you change your mind about dropping the workload
group, you can restore it by rerunning the CREATE WORKLOAD GROUP command for that
workgroup. After re-creating the workload group, run the ALTER RESOURCE GROUP
RECONFIGURE command again, and the workload group is restored.

Deleting Resource Pools

To drop a resource pool in SSMS, follow these steps:

1. Expand the Management node in Object Explorer and expand the Resource Governor
node to display the Resource Pools folder.

2. Expand the Resource Pools folder to list the resource pools defined.

3. Right-click the resource pool you want to drop and select Delete.

4. In the Delete Object window, the resource pool is listed in the Object to Be Deleted
list. Click OK to confirm the deletion.

ptg

1516 CHAPTER 40 Managing Workloads with the Resource Governor

To drop a workload group using T-SQL, use the DROP RESOURCE POOL command:

DROP RESOURCE POOL OLTPPOOL

ALTER RESOURCE GOVERNOR RECONFIGURE

go

You cannot drop a resource pool if any workload groups are still assigned to the resource
pool. You need to drop the workload group or move it to another resource pool first.

Modifying a Classification Function

If you need to make a change to the classification function, it’s important to note that the
function cannot be dropped or altered while it is marked as the classification function for
the Resource Governor. Before you can modify or drop the classification function, you first
need to disable Resource Governor. Alternatively, you can replace the classification func-
tion with another by running the ALTER RESOURCE GOVERNOR command and passing it a
different CLASSIFIER_FUNCTION name. You can also simply disable the current classifier
function by executing the following command:

ALTER RESOURCE GOVERNOR

WITH (CLASSIFIER_FUNCTION = NULL);

ALTER RESOURCE GOVERNOR RECONFIGURE;

The sample classification function shown in Listing 40.1 uses a simple case expression to
determine the workload group based on only two login IDs. If you have a more complex
set of rules to apply or want to be able to make changes more dynamically than having to
replace the classification function each time you need to make a change, you can define
your classifier function to look up the workload group names from a database table, rather
than hard-coding the workload group names and matching criteria into the function.
Performance should not be greatly affected when accessing the table to look up the work-
load group. The reason is that the table likely won’t be very large and should remain
cached in the buffer pool because it’s being accessed repeatedly every time a connection is
made to SQL Server.

ptg

1517Summary
4

0

Summary
Resource Governor offers many potential benefits, primarily the capability to prioritize SQL
Server resources for critical applications and users and preventing “runaway” or unexpected
queries from adversely impacting SQL Server performance significantly. It fits in with
Microsoft’s goal of providing predictable performance for your SQL Server applications.

Resource Governor also offers some potential pitfalls, however. For example, a misconfig-
ured Resource Governor can not only hurt a server’s overall performance, but can poten-
tially lock up your server, requiring you to use the dedicated administrator connection to
attach to the locked-up SQL Server to troubleshoot and fix the problem. Therefore, it is
recommended that you implement Resource Governor only if you are an experienced DBA
and have a good understanding of, and familiarity with, the workloads executed against
your SQL Server databases. Even then, it’s imperative that you test your configuration on a
test server before rolling it out into production.

Also, after implementing a Resource Governor configuration, you should monitor your
SQL Server performance to make sure the configuration has the desired effect. The next
chapter, “A Performance and Tuning Methodology,” provides guidelines for monitoring
and tuning the performance of your SQL Server environment.

ptg

This page intentionally left blank

ptg

CHAPTER 41

A Performance and
Tuning Methodology

IN THIS CHAPTER

. The Full Architectural
Landscape

. Primary Performance and
Tuning Handles

. A Performance and Tuning
Methodology

. Performance and Tuning Design
Guidelines

. Tools of the Performance and
Tuning Trade

Yes, you can tune your SQL Server implementation to
perform optimally for you. However, random jabs at bleed-
ing arteries may stop immediate bleeding, but the patient
will die before too long. Forgive the graphic analogy, but all
too often, performance and tuning is crudely attempted
with extremely serious oversights and very often extremely
poor results. Usually, you can avoid this outcome if you
follow basic, orderly steps when tuning your SQL Server
platform and understand the complete SQL Server ecosys-
tem. This chapter describes a repeatable performance and
tuning methodology that has been refined over the past
decade during hundreds of performance and tuning
consulting engagements on SQL Server implementations
running at some of the largest companies on the planet.

Good performance really starts when you design it into
your implementation from the beginning. Even the best-
designed applications require fine-tuning over time.
Unfortunately, dealing with performance is very often put
off or not considered at all until it becomes a problem in
production!

As a part of introducing a formal performance and tuning
approach, we describe the overall architectural landscape of
most applications and how SQL Server sits within this envi-
ronment. You should keep in mind that addressing perfor-
mance and tuning of your SQL Server implementation is a
layered exercise and all layers must be considered; all layers
factor into your results. We also discuss an assortment of
design considerations (guidelines) that you should incorpo-
rate into your designs from the beginning. And lastly, we
outline several tools of the trade when focusing on perfor-
mance and tuning. Some are out-of-the-box from Microsoft;

ptg

1520 CHAPTER 41 A Performance and Tuning Methodology

Data Structures (DB, TBL, IDX)

Files

Application Layer

Client/Browser Layer

File Systems Volumes

Operating Systems

E
nc

ry
pt

io
n

M
es

sa
ge

/D
at

a
B

us
es

External Communication Layer
 (Internet, EDI, FTP, WS)

S
ec

ur
ity

Services Layer (WS, DS)

Architecture Layers

Web Tier

N
et

w
or

k

Memory/RAM

S
Q

L
S

er
ve

r

Physical Disk/Sectors
Partitions/Devices

Physical Machine
(or Virtual Machine)

FIGURE 41.1 The overall architectural landscape of a SQL Server implementation.

others are from third-party providers that allow you to visualize and rapidly isolate your
performance issues as they are happening. A number of other chapters in this book are
dedicated to the actual performance tuning of a SQL Server instance, SQL tables, and SQL
statements. This chapter provides you with a framework and ordered process to attack a
SQL Server–based environment from top to bottom that will yield thorough and complete
results. No more just stopping the bleeding artery. We want to cure the patient!

The Full Architectural Landscape
As mentioned previously, understanding all layers of your implementation is critical to
performance and tuning of your SQL Server application. Even the smallest aspect, such as
locking, could be at the heart of your poor performing system. You just don’t truly know
until you have evaluated all layers and all interactions that come into play in your SQL
Server application. Figure 41.1 provides an overall perspective of all the layers of the archi-
tecture that you need to better understand and potentially tune.

As you can see in Figure 41.1, your SQL Server environment sits at the heart of many
different layers. They include the hardware (either physical or virtual footprint), memory,
physical disks/devices, operating system, file systems, and database, to name a few. Quite
often, a combined effort is needed between the infrastructure, application, database, and
network teams to deliver the final, well-tuned SQL Server environment. If you can under-

ptg

1521Primary Performance and Tuning Handles
4

1

stand that you have not just a database problem or just an application design problem,
you will likely be more successful at delivering “optimal” results when tuning your envi-
ronment. You can treat Figure41.1 as a checklist that you make sure you cover when doing
performance and tuning. Then, when you make a change in one layer, you can make sure
you test the full impact throughout all the other layers. Often, when you solve one issue
in one layer, other issues bubble up to the surface of another layer.

Primary Performance and Tuning Handles
Now, let’s peel the onion a little more into the core architecture of SQL Server itself. Figure
41.2 shows the primary components within a SQL Server instance. The major issues to
worry about at the instance level are the caches that comprise the memory pool and the
number of CPUs available for processing to SQL Server itself (shown as white boxes, not
dark ones). Of course, the disk I/O subsystem and files have to be carefully evaluated and
used effectively as well. All other darker boxed items such as the SQL Server kernel are not
within your control.

The rule of thumb here is to treat these instance-level resources as “scarce” resources and
monitor the CPU and disk I/O for their saturation levels (never exceeding 80%) and
memory for its hit ratio and capability to service the desired amount of concurrent work

SQL Server Architecture

S
er

ve
r

N
et

-li
bs

 D
LL

s

S
Q

L
S

er
ve

r
K

er
ne

l (
co

de
)

O
pe

n
D

at
a

S
er

vi
ce

s

S
ta

ck
 S

pa
ce

V
ar

ia
bl

e
co

de

BufferPool

User Connection Structures

System Data Structures

Plan Cache

Buffer
Cache

Other
Servers

Web-Based
Clients

Windows
Clients

Windows
Clients

Windows
Clients

CPU

CPU

.

.

.

Disk/Files

Log Cache

FIGURE 41.2 SQL Server instance architecture (memory, CPU, I/O).

ptg

1522 CHAPTER 41 A Performance and Tuning Methodology

CacheO
pt

im
iz

er

SQLOS

Devices/Files

Partitions

T
ab

le
s

M
at

er
ia

liz
ed

 V
ie

w
s

In
de

xe
s

S
Q

L
S

ta
te

m
en

ts

C
P

U
 (

s)

FIGURE 41.3 SQL Server handles available for performance tuning.

at or better than the service-level requirements of your end users (even during peak
usage times).

Figure 41.3 shows a more readily recognizable combination of “handles” that are the
major areas a human can adjust to achieve optimal performance.

We’ve already mentioned CPU, cache/memory, and disk I/O; these and all the other
handles listed in Figure 41.3 work together and must be considered together when doing
performance and tuning. A change in a SQL statement affects what the optimizer (which
makes decisions regarding how data is accessed in SQL Server) will do to satisfy the query.
The correct index allows the query to get data the most effective way. The correct table
design drastically affects updates, deletes, inserts, and reads. The number of CPUs available
to SQL Server can invoke parallelism. What work is done in tempdb (and where tempdb is
located) can improve performance by 1000%. The index and table level fill factor (free
space), number of page splits, and page allocations being done within your databases can
hurt you by 1000%. Hints to the optimizer can change the way execution is handled. And
other issues such as materialized views, partitions, and file placement (at the disk subsys-
tem level) directly contribute to the overall performance of every SQL execution. Even
something as simple as locking (or deadlocks) and the consistent order of update opera-
tions within transactions can make or break an entire SQL Server implementation.

We explain a bit more of what to look for with the primary handles in the guideline
section later. For most development or production support teams, tackling performance
and tuning for SQL Server can truly be overwhelming. The next section describes an
orderly performance and tuning methodology that most should be able to follow and use
to yield great results.

A Performance and Tuning Methodology
A methodology is a process or procedure, for example, designed for repeatability that has
been proven to work for a certain paradigm. In our case, it is a repeatable and thorough
SQL Server–focused performance and tuning process. We generalized this focused process
into a repeatable methodology and identified two possible paths that can be taken
through it: one for a new SQL Server implementation that will have performance and
tuning designed into it from the start and another for performance and tuning of an

ptg

1523A Performance and Tuning Methodology
4

1

Performance & Tuning
Methodology

Code & Test

ImplementationDeploy

Development
Life Cycle

Phases

Close

Construct

Design

Initiate
Isolate &
Monitor

New

New

Existing

Existing

System Test &
Acceptance

Identify &
Design

Prototype

Assessment

FIGURE 41.4 Generalized performance and tuning methodology for SQL Server.

existing SQL Server implementation (one that needs to be scaled out or rescued—or in
other words, “optimized”).

Figure 41.4 illustrates this overall performance and tuning methodology within a tradi-
tional waterfall development methodology context. But, as you will see, it is very iterative
in nature and can be followed within any organization’s formal development methodology.

Notice the two distinct paths labeled “New” and “Existing” indicated by the dashed
arrowed lines. As mentioned earlier, one path is for new implementations, and the other is
for existing implementations. The following sections describe each of these distinct paths
through the methodology.

Designing In Performance and Tuning from the Start

If you are just starting to design and develop a new SQL Server–based implementation, it
would be great to factor in all possible performance and tuning considerations from the
beginning. In real life, this is rarely done primarily because much is unknown from a data
access, number of users, and table design point of view. However, you are not precluded
from designing in certain common performance and tuning considerations, nor are you
precluded from incorporating a performance and tuning “prototyping” step in your
methodology so that you have known and predictable results of what you are building “as
you go” and not “at the end.” As you have no doubt experienced (or heard many times),
changing something after it is built is more expensive than if you had considered it much

ptg

1524 CHAPTER 41 A Performance and Tuning Methodology

earlier in the development process. In fact, such changes are likely at least 10 or more
times more expensive from both a monetary point of view and from a time point of view.

As you can see in Figure 41.4, each path begins with an assessment step. For new develop-
ment, this step covers the traditional “initiation” type of activities, such as project sizing,
scheduling, scope refinement, and resourcing. As you identify project sizing, scheduling,
and resourcing, you should add in 5% to each subsequent phase of your traditional devel-
opment life cycle for performance and tuning activities. We outline these activities shortly.
In general, they include capturing performance goals, having performance and tuning
design reviews, building prototypes optimized to meet these performance goals, and
setting final checkpoints that demonstrate full compliance of performance achievement
under full loads. Our performance and tuning methodology for new implementations
focuses on six major steps along the way to deployments. We don’t list all the tasks or
activities around your programming or user interface activities. Instead, we just focus on
the SQL Server–oriented items that pertain to optimal performance and tuning.

The six development methodology steps are

. Assessment

. Identify and Design

. Prototype

. Code and Test

. System Test and Acceptance

. Implementation

Assessment
During this project initiation phase, a complete picture of the effort is usually identified
and assessed at a high level. This includes

. Project sizing—Determines if this is a small, medium, or larger project.

. Project scope clarifications—Describe the intent and application scope to be
created.

. Deliverables identified—Identifies deliverables for all subsequent phases of the
project. This should also include new tasks for performance and tuning activities.

. Schedules/milestones—Reflect what is needed to build this application, when it
must be delivered, and everything along the way.

. Resources identified and committed to project—Includes some specialized
resources that enable your performance and tuning tasks and reviews.

All organizations have their own version of this step/phase, but you should note that you
need to plan in time for performance and tuning from the beginning. We suggest at least
adding 5% to the number of hours to performance and tuning tasks for each subsequent
step in the development life cycle. That 5% will save you enormous heartache and grief
later and will ensure the success of your implementation.

ptg

1525A Performance and Tuning Methodology
4

1

Identify and Design
The identification and design step is centered around the clear identification of what
must be built, what service-level agreements are needed, and what performance goals
must be met. The performance and tuning-oriented tasks are as follows:

. Identify the primary service-level agreements (SLAs)/performance goals—
This task is critical and must be stated clearly and realistically. Sub-second response
rates are likely not realistic for every element of an application. You will be measured
against these goals.

. Estimate work load/use profiles—These profiles are the general volumes of major
activity this application must support, such as 68% online activity, 32% reporting
activity, and availability such as 24×7×365. These profiles should also include any
known growth estimates for different increments of time such as 6-month growth
numbers, 12-month growth numbers, so on.

. Generalize to major access patterns—This task quantifies the major data access
patterns that must be supported by the application. Knowing these patters is essen-
tial in order to design in performance from the start. Examples of data access
patterns are a shopping cart access pattern and an ATM access pattern. They would
be vastly different in their table, indexing, and transactional designs.

. Design for all layers of the architecture—Based on the performance goals, work-
loads, and major data access patterns, your initial designs should not only cover the
SQL Server objects (such as table designs, index designs, and so on), but must also
reach out to each other’s architectural layer previously identified. Now is the time to
design on the correct partitioning scheme, correct transactional model, correct file
placement approach, correct disk subsystem to use, correct servers needed, and
memory management needs of your application. You should include a task in your
project plan for a complete performance and design review.

Prototype
We added a formal prototyping step into this methodology to stress how important it is to
fully evaluate and understand the performance expectations of the application you are
building. This very iterative process can help greatly in refining the designs being consid-
ered. Go ahead and build a prototyping environment where you can thoroughly try out
what you have designed in the preceding “Identify and Design” step. Your prototype
should illustrate (and implement) the major data access patterns you must support, show
how they are achieving planned performance goals, and indicate whose results must be
signed off on to pass to the next development phase step. You may have to iterate back
through this and the preceding step several times to narrow in on a more optimal design
solution. Use this time now to ensure success later.

. In a prototype environment, prototype possible solutions—This is for a gener-
alized design and does not have to include every column of data or functionality of
the application. There may be one or more possible solutions that you must proto-
type. The prototype is at the generic “pattern” level. Often we use tables that have
artificial columns as placeholders of known unusual data types along with the

ptg

1526 CHAPTER 41 A Performance and Tuning Methodology

minimal known columns needed to implement a data access pattern and table
design.

. Dissect trouble areas—During the prototyping, you will have issues around your
design and the performance results you are getting. Now is the right time to solve
these types of issues. Not later.

. Ramp up for load/stress testing—Your prototypes should include some level of
volume or peak stress testing results so you can have a good understanding of what
to expect at peak times. In addition, it is beneficial to prototype and test with data
volumes that are representative of your expected production data volumes. This
helps to identify ahead of time any performance issues that may arise when query-
ing and processing larger data volumes.

NOTE

Very large volumes of data may require modifications to the database design to provide
good performance. The earlier this need is determined in the design/testing process,
the less expensive it will be to implement these changes in the system while code is
still being developed rather than having to make changes after the system has been
put into production.

. Iterate back to the “Identify and Design” step (as needed)—Design and
redesign as much as is needed. Prototyping helps you narrow in on an optimized
solution quickly. In general, shoot for a 90% solution (one that meets performance
within 10% of stated goals).

You should also have the right tools available to you during this prototyping step. This
includes monitoring tools, performance and tuning tools, and other instrumentation
needed to better understand and resolve any early issues that surface. Later in this chapter,
we outline several tools of the trade for performance and tuning in a SQL Server platform
and performance and tuning guidelines that you can follow.

Code and Test
In the “Code and Test” stage, you fully code all elements of your application. This
includes all table designs, index designs, application coding, and complete testing prior to
the system test and user acceptance.

. Perform full coding and unit/load testing—At this point, perform complete
coding of your application and database. Each unit test must also include a step to
determine how it is meeting performance goals/SLAs. Most programmers are not
accustomed to this checkpoint. The code does not go forward unless the goals/SLAs
are fully met. No exceptions. Again, whenever possible, testing should be done with
data volumes and values that are representative of the expected production data
after the system has been running for an extended period of time. Doing so is very
important to help avoid future performance issues when the system is in production,

ptg

1527A Performance and Tuning Methodology
4

1

because as data volumes grow, queries may optimize differently. Queries that run
quickly with small data volumes may optimize differently and run slowly with larger
data volumes. However, if you can optimize the database design and queries to
provide good performance when you have large data volumes, performance should
be just as good or even better with smaller data volumes as well.

. Perform regression testing if desired—Utilize full regression testing if you desire.
This step usually requires complex testing harnesses and dedicated quality assurance
resources.

. Iterate back to the “Prototype” step (as needed)—Don’t be afraid to iterate back
into the prototyping mode to flesh out a serious issue. You need to solve issues now,
not later in production or in acceptance testing.

. Assess if service levels have been met—Create a formal checkpoint that must be
passed around the service levels and performance goals being met. You cannot pro-
ceed to the next step unless they are met!

System Test and Acceptance
The “System Test and Acceptance” stage is the full-blown integrated system test in a
production-like environment. You do final user acceptance and full system-level stress
tests here. All your performance goals must be fully met! Again, you need to have a formal
checkpoint identified here that requires signoff of the SLAs/performance goals and fully
document the results for the system stress tests.

In the full system/stress test/user acceptance, your fully loaded application and database
are thoroughly tested by your users, and a full stress test is done to reflect peak system
usage. The users should not sign off on this step unless the performance goals are met,
and the application’s functional test is successful.

If possible, this stage should reflect what the complete production hardware and software
stack will look like. By now, you should also be able to set expectations for both current
and future scalability of this application.

Implementation
By design, the implementation should be merely a formality. Certainly, all performance
concerns should have been met, documented, and verified even under peak processing
scenarios. It is also recommended that any production implementation include a certain
amount of performance and tuning instrumentation and monitoring. This should be a
standard part of any production implementation environment now.

. Production build/implementation—You should perform a complete buildout of
your application in production.

. Production performance and monitoring—You need to have complete perfor-
mance and tuning instrumentation and monitoring in place and tied to your system
monitoring services (SMS) environment. There is usually a proactive monitoring
following a new implementation for an extended amount of time. Don’t just imple-
ment and walk away. There is likely something that must be adjusted.

ptg

1528 CHAPTER 41 A Performance and Tuning Methodology

Across All Layers of Your Systems
Network

Application

Middleware

Database

Operating System HARDWARE
Network Components

Servers
Disk Systems

Memory

FIGURE 41.5 The many interrelated layers of your system.

. Final documentation/results—In this step, you create a set of documents that
reflect what you built and also the current performance levels being achieved. These
documents will be valuable later as the application changes and workloads increase.

Figure 41.5 shows a holistic picture of the different layers that you have been building on
and how these different layers depend on each other and are built on each other. Make
sure you have checked off and considered each of them in your pursuit of optimizing your
SQL Server–based implementation.

Starting at the hardware footprint, to the operating systems that sit on top of the hard-
ware, to the database and middleware implemented on top of the OS, to the application
itself (however many application tiers), and the network supporting the communication
to the users—all have a part in delivering an optimal implementation.

The next section describes our formal performance and tuning methodology applied to an
existing implementation.

Performance and Tuning for an Existing Implementation

Many of you may have just skipped down to this section because you have already built
something and are trying to get to some serious performance and tuning for your existing
implementation. Regardless of your situation, the essence of this section is describing the
methodology for isolation, identification, and migration to get your existing implementa-
tion to a well-performing and tuned implementation. We use isolation in the sense that
you must isolate the major performance issues quickly, identification in the sense of locat-
ing the exact issues to focus on, and migration in the sense of having to get from the
current issues to a new issue-free implementation. This last part is often incredibly hard to
do—like changing tires on a car while it is still moving. With this in mind, a different
path through the performance and tuning methodology is needed—one that starts with
an assessment, but an assessment of what issues or shortcomings exist, and then a sepa-

ptg

1529A Performance and Tuning Methodology
4

1

rate branch (path) that includes isolation, monitoring, and identification of the issues
rapidly. This is then followed by rapid prototyping and further isolation and monitoring
and eventual full system testing and rolling out the changes into your production
implementation.

One big advantage of doing performance and tuning on an existing implementation is
that you have live transactional information, live data, and other production execution
history to work from. From all of these, you should be able to piece together a good
execution profile, all the major data access patterns, and other major characteristics criti-
cal to tuning what you have. You also are able to include new information or scalability
needs as well.

Another initial decision you need to make is whether you want only transparent changes
(ones that have no application changes whatsoever, such as index changes, server instance
changes, file placement changes, some stored procedure changes, and so on) or if you can
tolerate making nontransparent changes (ones that force you to also make schema, struc-
ture, and SQL statement changes, and even application changes). Of course, your decision
depends on how much trouble you are in.

Now, let’s look back at Figure 41.4 and focus on the far right-most path through this
methodology. We start by recasting the traditional “initiation” type of activities such as
project sizing, scheduling, scope refinement, and resourcing to focus on just the perfor-
mance and tuning tasks at hand. Again, we don’t list all the tasks or activities around your
programming or user interface activities; we just focus on the SQL Server–oriented items
that pertain to optimal performance and tuning.

Performance and tuning methodology steps for an existing implementation are as follows:

. Assessment

. Isolation and Monitor

. Prototype

. Code and Test

. System Test and Acceptance

. Implementation

Assessment
For this first step, assessment, a complete picture of the performance issues or expectations
must be outlined. This includes

. Project sizing—Determines if the performance and tuning effort you are about to
engage in will be a small, medium, or large project. Although it is not a full-blown
development project, it could certainly be bigger than you realize.

. Project scope clarifications—Identify mostly whether you can tolerate only trans-
parent changes versus nontransparent changes to resolve your performance issues.

ptg

1530 CHAPTER 41 A Performance and Tuning Methodology

. Deliverables identified—Focuses mostly on performance and tuning activities but
may be expanded to application activities if the changes needed must extend into
the application itself.

. Schedules/milestones—Reflect what is needed to monitor, isolate, identify, and
roll out the changes needed.

. Resources identified and committed to project—Identifies resources centered
around your best performance and tuning folks. Don’t scrimp here. Even if you have
to hire some experts to help with this effort, this is money well invested.

Isolate and Monitor
Now comes the specialized path down the performance and tuning methodology for exist-
ing implementations. It is time to monitor, isolate, and identify exactly where your prob-
lems are. In addition, you must not lose sight of the complete stack and all the layers that
will potentially be a part of your performance issues.

You also need to revisit (or define for the first time) what service-level agreements are
needed and what performance goals must be met. The performance and tuning-oriented
tasks are as follows:

. Identify the primary service-level agreements (SLAs)/performance goals—If
you haven’t performed this task yet, the time is now. If you did it previously, it is
time to revisit what these SLAs should be realistically. Again, subsecond response
rates are likely not realistic for every element of an application. You should also add
new or emerging scalability and growth needs to your goals now. This may have
some very significant impact to new design decisions or performance and tuning
approaches that would be different if all you needed to do was tune for an existing,
unchanging workload.

. Set up your execution capture and monitoring capabilities—You should
perform this task at each of the layers in your architecture if you can. Remember,
many performance issues often are spread across multiple areas. Our preference is to
get peak production monitoring. This includes basic monitoring using Perfmon
counters, SQL Server Profiler tracing, and even third-party monitoring tools that can
help you see major issues graphically as they are happening. We talk about tools of
the trade later in the chapter.

. Isolate hottest issues—We like to use the 90/10 rule such that 10% of your execu-
tion transactions or implementation configurations are likely causing 90% of your
problems. If you solve that 10%, you have a well-performing platform. These issues
must be isolated layer by layer (network, hardware, OS, application server/applica-
tion, SQL Server instance, database, SQL statements, and so on).

. Create workloads/use profiles—Utilizing the tracing/capture tools, you need to
capture and organize where the problem issues are located at each layer. For SQL
statements, this means capturing and ordering the worst-performing SQL into the
top 100 worst by I/O and CPU consumption usually. You also need to identify
concurrency issues (locking/deadlocks), disk/file utilization queues, cache utilization,

ptg

1531A Performance and Tuning Methodology
4

1

and many other handles. It is from these issues that you must create repeatable
execution patterns so that you can tune to support them. You must also execute all
activities such as batch processes and so on that might not normally come into play
until scheduled events have occurred. For new growth or scalability increases, add
the appropriate workloads, use profiles, and SQL statements into the mix.

. Identify issues and possible solutions for all layers of the architecture—Based
on the performance goals, workloads, and major data access patterns, you need to
come up with a series of performance changes prioritized by the biggest impact.
These changes may include SQL Server objects changes (such as table changes, new
or different indexes, and so on) but could also reach out to other architectural layers
previously identified. These changes can also affect adding or changing a partition-
ing scheme, fixing a transactional model, correcting the file placements, changing
the disk subsystem or server configurations, and adjusting the memory requirements
of your application. Before you make any changes, you should have a comprehen-
sive performance review that outlines all issues identified and proposes solutions to
each.

Prototype
You now enter an iterative cycle between isolate, monitor, prototype, isolate, monitor, and
prototype. This cycle may repeat for any number of iterations as you deem necessary. You
should set your overall goals to achieve at least 95% of your performance goals. It isn’t too
hard to get to that point. However, it is hard to squeeze out that last 5%, though. Often,
getting those last few yards isn’t really going to buy you that much more relief.

When you want to get good performance and tuning results, it’s always best to utilize a
prototyping environment that is very much like your production environment (or at least
as close to the same as possible in all aspects—memory, CPU, disk subsystems, data
volumes, and so on). Optimizer decisions and I/O times, for example, vary greatly from
one configuration to another. If your prototyping system is completely different from your
production system or configuration, you will likely be able to achieve only 80% of your
performance goals and SLAs. Often, we are able to use a company’s QA/User Acceptance
Testing environment, which is a mirror image of the production system, including a very
current and complete production database backup image being used for the system
testing. You need to negotiate time with this type of environment. Some prototyping can
be accomplished on smaller environments (such as testing new partitioning schemes, new
SQL query statements, and so on). But you need to run this all on a full-blown produc-
tion-like environment before it is all said and done.

Again, your prototype should illustrate (and implement) the major data access patterns
you must support, show how they are achieving planned performance goals, and indicate
whose results must be signed off on to pass to the next development phase step. You may
have to iterate back through this and the preceding step several times to narrow in on a
more optimal design solution. You need to have full execution monitoring and tracing set
up in this prototyping environment.

. Create a complete prototype environment—Remember that you have to test
existing and new solutions, not just one or the other. A change in something new

ptg

1532 CHAPTER 41 A Performance and Tuning Methodology

may adversely affect something that was fine before, but becomes slow performing
with the new solution. There may be one or more possible solutions that you must
prototype to get the best results. You will be using “live” patterns based on produc-
tion queries for the most part now. Any new functionality or solutions will be added
to this mix.

. Ramp up for load/stress testing—Your prototypes should include some full level
of volume or peak stress testing results so you can have a good understanding of
what to expect at peak times and the potential impact of performance changes to
one aspect of the system on another, such as increased locking contention.

. Iterate back to the “Isolate and Monitor” step (as needed)—Change, enhance,
and try out new solutions in this iterative circle. Using a prototyping approach
allows you to narrow down to what works best rather quickly.

Remember that you should have the right tools available to you during this prototyping
step. They include monitoring tools, performance and tuning tools, and other instrumen-
tation needed to better understand and resolve any early issues that surface. Again, later in
this chapter we outline several tools of the trade for performance and tuning in a SQL
Server platform and performance and tuning guidelines that you can follow.

Code and Test
The “Code and Test” step takes on a more formal process after the prototyping of all possi-
ble performance and tuning enhancements has been completed. In this step, you fully
code all elements of your application with any changes that have resulted from the proto-
typing effort. This includes all table designs, index designs, and application coding prior
to the final system test and user acceptance. Remember, if you are doing only the trans-
parent changes, this part should be fairly easy; but if your changes are nontransparent,
this will be a full-blown code and test phase of your entire application.

. Perform full coding and unit/load testing—Perform complete coding of the
application and database. Each unit test must also include a step determining how
they are meeting performance goals/SLAs. Most programmers are not accustomed to
this checkpoint. The code does not go forward unless the goals/SLAs are fully met.
No exceptions.

. Perform regression testing if desired—Utilize full regression testing if you desire.
This step usually requires complex testing harnesses and dedicated quality assurance
resources.

. Iterate back to the “Prototype” step (as needed)—Don’t be afraid to iterate back
into the prototyping mode to flesh out a serious issue. You need to solve issues now,
not later in production or in acceptance testing.

. Assess if service levels have been met—Create a formal checkpoint that must be
passed around the service levels and performance goals being met. You cannot pro-
ceed to the next step unless these goals are met!

ptg

1533A Performance and Tuning Methodology
4

1

System Test and Acceptance
The next step is the full-blown integrated system test in a production-like environment.
You do final user acceptance and full system-level stress tests here. All your performance
goals must be fully met! Again, you need to have a formal checkpoint identified here that
requires signoff of the SLAs/performance goals and fully document the results for the
system stress tests.

In the full system/stress test/user acceptance, your fully loaded application is thoroughly
tested by your users, and a full stress test is done to reflect peak system usage. The users
should not sign off on this step unless the performance goals are met, and the applica-
tion’s functional test is successful.

If possible, this stage should reflect what the complete production hardware and software
stack will look like. By now, you should also be able to set expectations for both current
and future scalability of this application.

Implementation
The biggest issues now are migrating your new changes into the existing production
implementation. This may include complex data structure changes and data migrations
from old structures to new structures, or may simply involve dropping and re-creating
indexes. You should plan all steps of your changes to the nth degree and test the upgrades
on your QA platform a few times. You may have to schedule downtime for extensive
nontransparent changes. You should make full backups at all layers prior to your live
upgrade in production. Be sure to have a set of performance benchmark operations ready
to run in production to verify the results you intended.

. Production build/implementation—You should perform a complete buildout of
your application in production and full migration upgrade scripts/data conversions.

. Production performance and monitoring—You need to have complete perfor-
mance and tuning instrumentation and monitoring in place and running. Run a
series of performance testing scripts/queries as a part of your production upgrade
process. Don’t just implement and walk away. There is likely something that must be
adjusted even at this late stage.

. Final documentation/results—In this step, you create a set of documents that
reflect what you built and also the current performance levels being achieved.

In theory, you should now be in an optimized execution implementation. You should be
prepared to monitor, monitor, and monitor some more. We traditionally keep a close
monitoring eye for about five days of execution and then switch back to a normal amount
of proactive monitoring after that.

The following sections highlight some common design techniques, approaches, and
guidelines you should consider or utilize as you tune your SQL Server implementation.

ptg

1534 CHAPTER 41 A Performance and Tuning Methodology

Performance and Tuning Design Guidelines
We outline some of the major performance and tuning design guidelines here. There are,
of course, many more, but if you a least consider and apply the ones outline here, you
should end up with a decently performing SQL Server implementation. As we have
described previously, performance and tuning should first be “designed in” to your SQL
Server implementation. Many of the guidelines discussed here can be adopted easily in
this way. However, when you put off the performance and tuning until later, you have
fewer options to apply and less performance improvement when you do make changes.
Remember, addressing performance and tuning is like peeling an onion. And, for this
reason, we present our guidelines in that way—layer by layer. This approach helps provide
you with a great reference point for each layer and a list you can check off as you develop
your SQL Server–based implementation. Just ask yourself whether you have considered the
specific layer guidelines when you are dealing with that layer. Also, several chapters take
you through the full breadth and depth of options and techniques introduced in many of
these guidelines. We point you to those chapters as we outline the guidelines.

Hardware and Operating System Guidelines

Let’s start with the salient hardware and operation system guidelines that you should be
considering:

Hardware/Physical Server:

. Server sizing/CPUs—Physical (or virtual) servers that will host a SQL Server
instance should be roughly sized to handle the maximum processing load plus 35%
more CPUs (and you should always round up). As an example, for a workload that
you anticipate may be fully handled by a four-CPU server configuration, we recom-
mend automatically increasing the number of CPUs to six. We also always leave at
least one CPU for the operating system. So, if six CPUs are on the server, you should
allocate only five to SQL Server to use. You can find details on configuring CPUs in
Chapter 55, “Configuring, Tuning, and Optimizing SQL Server Options,” and details
on monitoring CPU utilization in Chapter 39, “Monitoring SQL Server
Performance.”

. Memory—The amount of memory you might need is often directly related to the
amount of data you need to be in the cache to achieve 100% or near 100% cache hit
ratios. This, of course, yields higher overall performance. We don’t believe there is
too much memory for SQL Server, but we do recognize that some memory must be
left to the operating system to handle OS-level processing, connections, and so on.
So, in general, you should make 90% of memory available to SQL Server and 10% to
the OS. You can find details on configuring memory in Chapter 49 and details on
monitoring memory utilization in Chapter 39.

. Disk/SAN/NAS/RAID—Your disk subsystem can be a major contributor to perfor-
mance degradation if not handled properly. We recognize that there are many differ-
ent options available here. We generally try to have some separate devices on

ptg

1535Performance and Tuning Design Guidelines
4

1

different I/O channels so that disk I/O isolation techniques can be used. This means
that you isolate heavy I/O away from other heavy I/O activity; otherwise, disk head
contention causes massive slowdowns in physical I/O. When you use SAN/NAS stor-
age, much of the storage is just logical drives that are heavily cached. This type of
situation limits the opportunity to spread out heavy I/O, but the caching layers
often alleviate that problem. In general, RAID 10 is great for high update activity,
and RAID 5 is great for mostly read-only activity. You can find more information on
RAID and storage options in Chapter 38, “Database Design and Performance.”

Operating System:

. Page file location—When physical memory is exceeded, paging occurs to the page
file. You need to make sure that the page file is not located on one of your database
disk locations; otherwise, performance of the whole server degrades rapidly.

. Processes’ priority—You should never lower the SQL Server processes in priority or
to the background. You should always have them set as high as possible.

. Memory—As mentioned earlier, you should make sure that at least 10% of memory
is available to the OS for all its housekeeping, connection handling, process threads,
and so on.

. OS version—You should make sure you are using the most recent version of the
operating systems as you can and have updated with the latest patches or service
packs. Also, often you must remove other software on your server, such as special-
ized virus protection. We have lost track of the number of SQL Server implementa-
tions we have found that had some third-party virus software installed (and enabled)
on it, and all files and communication to the server were interrupted by the virus
scans. Rely on Microsoft Windows and your firewalls for this protection rather than
a third-party virus solution that gets in the way of SQL Server. If your organization
requires some type of virus protection on the server, at least disable scanning of the
database device files.

Network:

. Packet sizes/traffic—With broader bands and faster network adapters (typically at
least 1GB now), we recommend you utilize the larger packet sizes to accommodate
your heavier-traffic SQL Server instances. Packets of 8KB and larger are easily
handled now. Information on configuring the SQL Server packet size is available in
Chapter 49.

. Routers/switches/balancers—Depending on if you are using SQL clustering or
have multitiered application servers, you likely should utilize some type of load bal-
ancing at the network level to spread out connections from the network and avoid
bottlenecks.

ptg

1536 CHAPTER 41 A Performance and Tuning Methodology

SQL Server Instance Guidelines

Next comes the SQL Server instance itself and the critical items that must be considered:

. SQL Server configuration—We do not list many of the SQL Server instance
options here, but many of the default options are more than sufficient to deal with
most SQL Server implementations. See Chapter 49 for information on all the avail-
able options.

. SQL Server device allocations—Devices should be treated with care and not over-
allocated. SQL databases utilize files and devices as their underlying allocation from
the operating system. You do not want dozens and dozens of smaller files or devices
for each database. Having all these files or devices becomes harder to administer,
move, and manipulate. We often come into a SQL Server implementation and
simplify the device allocations before we do any other work on the database. At a
minimum, you should create data devices and log devices so that you can easily
isolate (separate) them.

. tempdb database—Perhaps the most misunderstood SQL Server shared resource is
tempdb. General guidelines for tempdb is to minimize explicit usage (overusage) of it
by limiting temp table creation, sorts, queries using DISTINCT clause, so on. You are
creating a hot spot in your SQL Server instance that is mostly not in your control.
You might find it hard to believe, but indexing, table design, and even not executing
certain SQL statements can have a huge impact on what gets done in tempdb and
have a huge effect on performance. And, of course, you need to isolate tempdb away
from all other databases. For additional information on placing and monitoring
tempdb, see Chapters 38 and 39.

. master database—There is one simple guideline here: protect the master database at
all costs. This means frequent backups and isolation of master away from all other
databases.

. model database—It seems harmless enough, but all databases in SQL Server utilize
the model database as their base allocation template. We recommend you tailor this
for your particular environment.

. Memory—The best way to utilize and allocate memory to SQL Server depends on a
number of factors. One is how many other SQL Server instances are running on the
same physical server. Another is what type of SQL Server–based application it is:
heavy update versus heavy reads. And yet another is how much of your application
has been written with stored procedures, triggers, and so on. In general, you want to
give as much of the OS memory to SQL Server as you can. But this amount should
never exceed 90% of the available memory at the OS level. You don’t want SQL
Server or the OS to start thrashing via the page file or competing against each other
for memory. Also, when more than one SQL Server instance is on the same physical
server, you need to divide the memory correctly for each. Don’t pit them against

ptg

1537Performance and Tuning Design Guidelines
4

1

each other. More information on configuring and monitoring SQL Server memory is
available in Chapters 39 and 49.

Database-Level Guidelines

. Database allocations—We like to use an approach of putting database files for
heavily used databases on the same drives as lightly used databases when more than
one database is being managed by a single SQL Server instance. In other words, pair
big with small, not big with big. This approach is termed reciprocal database pairing.

You should also not have too many databases on a single SQL Server instance. If the
server fails, so do all the applications that were using the databases managed by this
one SQL Server instance. It’s all about risk mitigation. Remember the adage “never
put all your eggs in one basket.”

Databases have two primary file allocations: one for their data portion and the other
for their transaction log portion. You should always isolate these file allocations
from each other onto separate disk subsystems with separate I/O channels if possi-
ble. The transaction log is a hot spot for highly volatile applications (that have
frequent update activity). Isolate, isolate, and isolate some more. There is also a
notion of something called reciprocal database device location. More information is
available on this issue in Chapters 38 and 39.

You need to size your database files appropriately large enough to avoid database file
fragmentation. Heavily fragmented database files can lead to excessive file I/O
within the operating system and poor I/O performance. For example, if you know
your database is going to grow to 500GB, size your database files at 500GB from the
start so that the operating system can allocate a contiguous 500GB file. In addition,
be sure to disable the Auto-Shrink database option. Allowing your database files to
continuously grow and shrink also leads to excessive file fragmentation as file space
is allocated and deallocated in small chunks.

. Database backup/recovery/administration—You should create a database back-
up and recovery schedule that matches the database update volatility and recovery
point objective. All too often a set schedule is used when, in fact, it is not the sched-
ule that drives how often you do backups or how fast you must recover from failure.

Table Design Guidelines

. Table designs—Given the massively increased CPU, memory, and disk I/O speeds
that now exist, you should use a general guideline to create as “normalized” a table
design as is humanly possible. No longer is it necessary to massively denormalize for
performance. Most normalized table designs are easily supported by SQL Server.
Normalized table designs ensure that data has high integrity and low overall redun-
dant data maintenance. See Dr. E. F. Codd’s original work on relational database
design (The Relational Model for Database Management: Version 2, Addison Wesley,

ptg

1538 CHAPTER 41 A Performance and Tuning Methodology

1990). Denormalize for performance as a last resort! For more information on
normalization and denormalization techniques, see Chapter 38.

NOTE

Too often, we have seen attempts by developers and database designers to guess at
the performance problems they expect to encounter denormalizing the database design
before any real performance testing has even been done, This, more often than not,
results in an unnecessarily, and sometimes excessively, denormalized database design.
Overly denormalized databases require creating additional code to maintain the denor-
malized data, and this often ends up creating more performance problems than it
attempts to solve, not to mention the greater potential for data integrity issues when
data is heavily denormalized. It is always best to start with as normalized a database
as possible, and begin testing early in the development process with real data volumes
to identify potential areas where denormalization may be necessary for performance
reasons. Then, and only when absolutely necessary, you can begin to look at areas in
your table design where denormalization may provide a performance benefit.

. Data types—You must be consistent! In other words, you need to take the time to
make sure you have the same data type definitions for columns that will be joined
and/or come from the same data domain—Int to Int, and so on. Often the use of
user-defined data types goes a long way to standardize the underlying data types
across tables and databases. This is a very strong method of ensuring consistency.

. Defaults—Defaults can help greatly in providing valid data values in columns that
are common or that have been specified as mandatory (not NULL). Defaults are tied
to the column and are consistently applied, regardless of the application that
touches the table.

. Check constraints—Check constraints can also be useful if you need to have
checks of data values as part of your table definition. Again, it is a consistency capa-
bility at the column level that guarantees that only correct data ends up in the
column. Let us add a word of warning, though: you have to be aware of the insert
and update errors that can occur in your application from invalid data values that
don’t meet the check constraints.

. Triggers—Often triggers are used to maintain denormalized data, custom audit logs,
and referential integrity. Triggers are often used when you want certain behavior to
occur when updates, inserts, and deletes occur, regardless of where they are initiated
from. Triggers can result in cascading changes to related (dependent) tables or fail-
ures to perform modifications because of restrictions. Keep in mind that triggers add
overhead to even the simplest of data modification operations in your database and
are a classic item to look at for performance issues. You should implement triggers
sparingly and implement only triggers that are “appropriate” for the level of
integrity or activity required by your applications, and no more than is necessary.
Also, you need to be careful to keep the code within your triggers as efficient as

ptg

1539Performance and Tuning Design Guidelines
4

1

possible so the impact on your data modifications is kept to a minimum. For more
information on coding and using triggers, see Chapter 30, “Creating and Managing
Triggers.”

. Primary keys/foreign keys—For OLTP and normalized table designs, you need to
utilize explicit primary key and foreign key constraints where possible. For many
read-only tables, you may not even have to specify a primary key or foreign key at
all. In fact, you will often be penalized with poorer load times or bulk updates to
tables that are used mostly as lookup tables. SQL Server must invoke and enforce
integrity constraints if they are defined. If you don’t absolutely need them (such as
with read-only tables), don’t specify them.

. Table allocations—When creating tables, you should consider using the fill factor
(free space) options (when you have a clustered index) to correspond to the volatil-
ity of the updates, inserts, and deletes that will be occurring in the table. Fill factor
leaves free space in the index and data pages, allowing room for subsequent inserts
without incurring a page split. You should avoid page splits as much as possible
because they increase the I/O cost of insert and update operations. For more infor-
mation on fill factor and page splits, see Chapter 34, “Data Structures, Indexes, and
Performance.”

. Table partitioning—It can be extremely powerful to segregate a table’s data into
physical partitions that are naturally accessed via some natural subsetting such as
date or key range. Queries that can take advantage of partitions can help reduce I/O
by searching only the appropriate partitions rather than the entire table. For more
information on table partitioning, see Chapters 24, “Creating and Managing Tables,”
and 34.

. Purge/archive strategy—You should anticipate the growth of your tables and
determine whether a purge/archive strategy will be needed. If you need to archive or
purge data from large tables that are expected to continue to grow, it is best to plan
for archiving and purging from the beginning. Many times, your archive/purge
method may require modifications to your table design to support an efficient
archive/purge method. In addition, if you are archiving data to improve perfor-
mance of your OLTP applications, but the historical data needs to be maintained for
reporting purposes, this also often requires incorporating the historical data into
your database and application design. It is much easier to build in an archive/purge
method to your database and application from the start than have to retrofit some-
thing back into an existing system. Performance of the archive/purge process often is
better when it’s planned from the beginning as well.

Indexing Guidelines

In general, you need to be sure not to overindex your tables, especially for tables that
require good performance for data modifications! Common mistakes include creating
redundant indexes on primary keys that already have primary key constraints defined or
creating multiple indexes with the same set of leading columns. You should understand
when an index is required based on need, not just the desire to have an index. Also, you

ptg

1540 CHAPTER 41 A Performance and Tuning Methodology

should make sure that the indexes you define have sufficient cardinality to be useful for
your queries. In most performance and tuning engagements that we do, we spend a good
portion of our time removing indexes or redefining them correctly to better support the
queries being executed against the tables. For more information on defining useful
indexes and how queries are optimized, see Chapters 34, and 35, “Understanding Query
Optimization.”

Following are some indexing guidelines:

. Have an indexing strategy that matches the database/table usages; this is paramount.
Do not index OLTP tables with a DSS indexing strategy and vice versa.

. For composite indexes, try to keep the more selective columns leftmost in the index.

. Be sure to index columns used in joins. Joins are processed inefficiently if no index
on the column(s) is specified in a join.

. Tailor your indexes for your most critical queries and transactions. You cannot index
for every possible query that might be run against your tables. However, your appli-
cations will perform better if you can identify your critical and most frequently
executed queries and design indexes to support them.

. Avoid indexes on columns that have poor selectivity. The Query Optimizer is not
likely to use the indexes, so they would simply take up space and add unnecessary
overhead during inserts, updates, and deletes.

. Use clustered indexes when you need to keep your data rows physically sorted in a
specific column order. If your data is growing sequentially or is primarily accessed in
a particular order (such as range retrievals by date), the clustered index allows you to
achieve this more efficiently.

. Use nonclustered indexes to provide quicker direct access to data rows than a table
scan when searching for data values not defined in your clustered index. Create
nonclustered indexes wisely. You can often add a few other data columns in the
nonclustered index (to the end of the index definition) to help satisfy SQL queries
completely in the index (and not have to read the data page and incur some extra
I/O). This is termed “covering your query.” All query columns can be satisfied from
the index structure.

. Consider specifying a clustered index fill factor (free space) value to minimize page
splits for volatile tables. Keep in mind, however, that the fill factor is lost over time
as rows are added to the table and pages fill up. You might need to implement a
database maintenance job that runs periodically to rebuild your indexes and reapply
the fill factor to the data and index pages.

. Be extremely aware of the table/index statistics that the optimizer has available to it.
When your table has changed by more than 20% from updates, inserts, or deletes,
the data distribution can be affected quite a bit, and the optimizer decisions can
change greatly. You’ll often want to ensure that the Auto-Update Statistics option is
enabled for your databases to help ensure that index statistics are kept up-to-date as
your data changes.

ptg

1541Performance and Tuning Design Guidelines
4

1

View Design Guidelines

In general, you can have as many views as you want. Views are not tables and do not take
up any storage space (unless you create an index on the view). They are merely an abstrac-
tion for convenience. Except for indexed views, views do not store any data; the results of
a view are materialized at the time the query is run against the view and the data is
retrieved from the underlying tables. Views can be used to hide complex queries, can be
used to control data access, and can be used in the same place as a table in the FROM state-
ment of any SQL statement.

Following are some view design guidelines:

. Use views to hide tables that change their structure often. By using views to
provide a stable data access view to your application, you can greatly reduce
programming changes.

. Utilize views to control security and control access to table data at the data value level.

. Be careful of overusing views containing complex multitable queries, especially code
that joins such views together. When the query is materialized, what may appear as
a simple join between two or three views can result in an expensive join between
numerous tables, sometimes including joins to a single table multiple times.

. Use indexed views to dramatically improve performance for data accesses done via
views. Essentially, SQL Server creates an indexed lookup via the view to the underly-
ing table’s data. There is storage and overhead associated with these views, so be
careful when you utilize this performance feature. Although indexed views can help
improve the performance of SELECT statements, they add overhead to INSERT,
UPDATE, and DELETE statements because the rows in the indexed view need to be
maintained as data rows are modified, similar to the maintenance overhead of
indexes.

For more information on creating and using views, see Chapter 27, “Creating and
Managing Views.”

Transact-SQL Guidelines

Overall, how you write your Transact-SQL (T-SQL) code can have one of the greatest
impacts on your SQL Server performance. Regardless of how well you’ve optimized your
server configuration and database design, poorly written and inefficient SQL code still
results in poor performance. The following sections list some general guidelines to help
you write efficient, faster-performing code.

General T-SQL Coding Guidelines
. Use IF EXISTS instead of SELECT COUNT(*) when checking only for the existence of

any matching data values. IF EXISTS stops the processing of the SELECT query as
soon as the first matching row is found, whereas SELECT COUNT(*) continues search-
ing until all matches are found, wasting I/O and CPU cycles.

ptg

1542 CHAPTER 41 A Performance and Tuning Methodology

. Using Exists/Not Exists in a sub-query is preferable to IN/ NOT IN for sets that are
queried. As the potential target size of the set used in the IN gets larger, the perfor-
mance benefit increases.

. Avoid unnecessary ORDER BY or DISTINCT clauses. Unless the Query Optimizer deter-
mines that the rows will be returned in sorted order or all rows are unique, these
operations require a worktable for processing the results, which incurs extra over-
head and I/O. Avoid these operations if it is not imperative for the rows to be
returned in a specific order or if it’s not necessary to eliminate duplicate rows.

. Use UNION ALL instead of UNION if you do not need to eliminate duplicate result rows
from the result sets being combined with the UNION operator. The UNION statement
has to combine the result sets into a worktable to remove any duplicate rows from
the result set. UNION ALL simply concatenates the result sets together, without the
overhead of putting them into a worktable to remove duplicate rows.

. Use table variables instead of temporary tables whenever possible or feasible. Table
variables are memory resident and do not incur the I/O overhead and system table
and I/O contention that can occur in tempdb with normal temporary tables.

. If you need to use temporary tables, keep them as small as possible so they are created
and populated more quickly and use less memory and incur less I/O. Select only the
required columns rather than using SELECT *, and retrieve only the rows from the
base table that you actually need to reference. The smaller the temporary table, the
faster it is to create and access the table.

. If a temporary table is of sufficient size and will be accessed multiple times, it is
often cost effective to create an index on it on the column(s) that will be referenced
in the search arguments (SARGs) of queries against the temporary table. Do this only
if the time it takes to create the index plus the time the queries take to run using the
index is less than the sum total of the time it takes the queries against the temporary
table to run without the index.

. Avoid unnecessary function executions. If you call a SQL Server function (for
example, getdate()) repeatedly within T-SQL code, consider using a local variable to
hold the value returned by the function and use the local variable repeatedly
throughout your SQL statements rather than repeatedly executing the SQL Server
function. This saves CPU cycles within your T-SQL code.

. Try to use set-oriented operations instead of cursor operations whenever possible and
feasible. SQL Server is optimized for set-oriented operations, so they are almost
always faster than cursor operations performing the same task. However, one poten-
tial exception to this rule is if performing a large set-oriented operation lead to
locking concurrency issues. Even though a single update runs faster than a cursor,
while it is running, the single update might end up locking the entire table, or large
portions of the table, for an extended period of time. This would prevent other users
from accessing the table during the update. If concurrent access to the table is more
important than the time it takes for the update itself to complete, you might want
to consider using a cursor.

ptg

1543Performance and Tuning Design Guidelines
4

1

. Consider using the MERGE statement introduced in SQL Server 2008 when you need
to perform multiple updates against a table (UPDATE, INSERT, or DELETE) because it
enables you to perform these operations in a single pass of the table rather than
perform a separate pass for each operation.

. Consider using the OUTPUT clause to return results from INSERT, UPDATE, or DELETE
statements rather than having to perform a separate lookup against the table.

. Use search arguments that can be effectively optimized by the Query Optimizer. Try
to avoid using any negative logic in your SARGs (for example, !=, <>, not in) or
performing operations on, or applying functions to, the columns in the SARG. Avoid
using expressions in your SARGs where the search value cannot be evaluated until
runtime (such as local variables, functions, and aggregations in subqueries) because
the optimizer cannot accurately determine the number of matching rows because it
doesn’t have a value to compare against the histogram values during query optimiza-
tion. Consider putting the queries into stored procedures and passing in the value of
the expression as a parameter. The Query Optimizer evaluates the value of a parame-
ter prior to optimization. SQL Server evaluates the expression prior to optimizing the
stored procedure.

. Avoid data type mismatches on join columns.

. Avoid writing large complex queries whenever possible. Complex queries with a
large number of tables and join conditions can take a long time to optimize. It may
not be possible for the Query Optimizer to analyze the entire set of plan alternatives,
and it is possible that a suboptimal query plans could be chosen. Typically, if a query
involves more than 12 tables, it is likely that the Query Optimizer will have to rely
on heuristics and shortcuts to generate a query plan and may miss some optimal
strategies.

For more tips and information on coding effective and efficient queries, see Chapters 43,
“Transact-SQL Programming Guidelines, Tips, and Tricks,” and 35.

Stored Procedure Guidelines
. Use stored procedures for SQL execution from your applications. Stored procedure

execution can be more efficient that ad hoc SQL due to reduced network traffic and
query plan caching for stored procedures.

. Use stored procedures to make your database sort of a “black box” as far as the as
your application code is concerned. If all database access is managed through stored
procedures, the applications are shielded from possible changes to the underlying
database structures. You can simply modify the existing stored procedures to reflect
the changes to the database structures without requiring any changes to the front-
end application code.

. Ensure that your parameter data types match the column data types they are being
compared against to avoid data type mismatches and poor query optimization.

ptg

1544 CHAPTER 41 A Performance and Tuning Methodology

. Avoid transaction nesting issues in your stored procedures by developing a consis-
tent error-handling strategy for failed transactions or other errors that occur in trans-
actions within your stored procedures. Implement that strategy consistently across
all procedures and applications. Within stored procedures that might be nested, you
need to check whether the procedure is already being called from within a transac-
tion before issuing another BEGIN TRAN statement. If a transaction is already active,
you can issue a SAVE TRAN statement so that the procedure can roll back only the
work that it has performed and allow the calling procedure that initiated the trans-
action to determine whether to continue or abort the overall transaction.

. Break up large, complex stored procedures into smaller, more manageable stored pro-
cedures. Try to create very modular pieces of code that are easily reused and/or
nested.

For more information on using and optimizing stored procedures, see Chapter 28,
“Creating and Managing Stored Procedures.”

Coding Efficient Transactions and Minimizing Locking Contention
Poorly written or inefficient transactions can have a detrimental effect on concurrency of
access to data and overall application performance. To reduce locking contention for
resources, you should keep transactions as short and efficient as possible. During develop-
ment, you might not even notice that a problem exists; the problem might become
noticeable only after the system load is increased and multiple users are executing transac-
tions simultaneously.

Following are some guidelines to consider when coding transactions to minimize locking
contention and improve application performance:

. Do not return result sets within a transaction. Doing so prolongs the transaction
unnecessarily. Perform all data retrieval and analysis outside the transaction.

. Never prompt for user input during a transaction. If you do, you lose all control over
the duration of the transaction. (Even the best programmers miss this one on occa-
sion.) On the failure of a transaction, be sure to issue the rollback before putting up
a message box telling the user that a problem occurred.

. Use optimistic locking or snapshot isolation. If user input is unavoidable between
data retrieval and modification and you need to handle the possibility of another
user modifying the data values read, leverage the necessary locking strategy (or isola-
tion) to guarantee that no other user corrupts this data. Simple things like re-read
and compare, as opposed to holding the resource.

. Keep statements that comprise a transaction in a single batch to eliminate unneces-
sary delays caused by network input/output between the initial BEGIN TRAN state-
ment and the subsequent COMMIT TRAN commands. Additionally, keeping the BEGIN
TRAN and COMMIT/ROLLBACK statements within the same batch helps avoid the possi-
bility of leaving transactions open should the COMMIT/ROLLBACK statement not be
issued in a subsequent batch.

ptg

1545Performance and Tuning Design Guidelines
4

1

. Consider coding transactions entirely within stored procedures. Stored procedures
typically run faster than commands executed from a batch. In addition, because
they are server resident, stored procedures reduce the amount of network I/O that
occurs during execution of the transaction, resulting in faster completion of the
transaction.

. Keep transactions as short and concise as possible. The shorter the period of time
locks are held, the less chance for lock contention. Keep commands that are not
essential to the unit of work being managed by the transaction (for example, assign-
ment selects, retrieval of updated or inserted rows) outside the transaction.

. Use the lowest level of locking isolation required by each process. For example, if
dirty reads are acceptable and accurate results are not imperative, consider using
transaction Isolation Level 0. Use the Repeatable Read or Serializable Read isolation
levels only if absolutely necessary.

For more information on managing transactions and minimizing locking contention, see
Chapters 37, “Locking and Performance,” and 31, “Transaction Management and the
Transaction Log.”

Application Design Guidelines

. Locking/deadlock considerations—These considerations are often the most
misunderstood part of SQL Server implementations. Start by standardizing on
update, insert, and delete order for all applications that modify data. You do not
want to design in locking or deadlocking issues because of inconsistent resource
locking orders that result in a “deadly embrace.” For a more in-depth discussion on
locking and deadlocking and recommendations for avoiding locking performance
issues, see Chapter 37.

. Stateless application design—To scale out, your application needs to take advan-
tage of load-balancing tiers, application server clustering, and other scaleout options.
If you don’t force the application or database to carry state, you will have much
more success in your scaleout plans.

. Remote Procedure Calls/linked servers—Often data can be accessed via linked
server connections rather than by redundantly copying or replicating data into a
database. You can take advantage of this capability with SQL Server to reduce the
redundant storage of data and eliminate synchronization issues between redundant
data stores. Because Remote Procedure Calls are being deprecated in SQL Server, you
should stay away from them.

. Transactional integrity—There is no excuse for sacrificing transactional integrity
for performance. The extra overhead (and possible performance impact) comes with
holding resources (and locks) until the transaction commit point to ensure data
integrity. However, if you keep the logical unit of work (the business transaction) as
small as possible, you can usually minimize the impact. In other words, you should
keep your transaction sizes small and tight.

ptg

1546 CHAPTER 41 A Performance and Tuning Methodology

Distributed Data Guidelines

. Distribute for disaster recovery—Those organizations that have a disaster recov-
ery requirement that they would like to fulfill with distributed data can use several
options. One is traditional bit-level stretch clustering (using third-party products
such as from Symantec) to your disaster recovery site. Another is simple log shipping
to a secondary data center at some interval. Keep in mind, though, that log shipping
will be deprecated at some point. Other options include database mirroring (asyn-
chronous mode), periodic full database backups that are sent to another site and
restored to a standby server, and a few variations of data replication.

. Distribute to satisfy partitioned data accesses—If you have very discrete and
separate data access by some natural key such as geography or product types, it is
often easy to have a huge performance increase by distributing or partitioning your
tables to serve these accesses. Data replication options such as peer-to-peer and
multiple publishers fit this well when you also need to isolate the data to separate
servers and even on separate continents. Chapter 19, “Replication,” describes all
replication variations.

. Distribute for performance—Taking the isolation approach a bit further, you can
devise a variety of SQL Server configurations that greatly isolate entire classes of data
access, such as reporting access isolated away from online transactional processing,
and so on. Classic SQL Server–based methods for this now include the use of data-
base mirroring and snapshots on the mirror, a few of the data replication options,
and others. Check in both Chapters 20, “Database Mirroring,” and 32, “Database
Snapshots,” for details.

High-Availability Guidelines

. Understand your high-availability (HA) needs first—More important than
applying a single technical solution to achieve high availability is to actually decide
what you really need. You should evaluate exactly what your HA requirements
might be with a formal assessment and a cost to the company if you do not have HA
for your application. See Chapter 18, “SQL Server High Availability,” for a complete
depiction of your needs and options.

. Know your options for different levels of HA achievement—With SQL Server,
there are several ways to achieve nearly the same level of high availability, including
SQL clustering, data replication, database mirroring, log shipping, so on. But decid-
ing on the right one often depends on many other variables. Again, refer to Chapter
18 for details or pick up Microsoft SQL Server High Availability by Sams Publishing as
soon as you can to see how to do a complete HA assessment and technology deploy-
ment. This book covers it all!

. Be aware of sacrifices for HA at the expense of performance—High availability
often comes at the expense of performance. As an example, if you use database mir-

ptg

1547Tools of the Performance and Tuning Trade
4

1

roring in its high availability/automatic failover configuration, you actually end up
with slower transaction processing. This can hurt if your SLAs are for subsecond
transactions. Be extremely careful here. Apply the HA solution that matches your
entire application’s service-level agreements.

We have listed many guidelines for you to consider. Our hope is that you run through
them for every SQL Server–based system you build. Use them as a checklist so that you
catch the big design issues early and that you are designing in performance from the start.

Tools of the Performance and Tuning Trade
If you are going off to war (Performance and Tuning war), you should not come empty
handed. Bring all your heaviest artillery. In other words, make sure you have plenty of
performance and tuning tools to help you diagnose and resolve your issues (to fight your
war). One tool we are providing you is this formal performance and tuning methodology
outlined in this chapter. But methodologies are only part of the process. There are tools
you can use out of the box from Microsoft as well as plenty of third-party tools that will
help you shed much light on any issues you may be having. In the following sections, we
outline a few of both so you can see various methods of getting to the heart of your
performance and tuning problems. Some tools are highly graphic and easy to use; others
are more text-based and require much more effort and organizing. But you need to come
prepared to fight the war. Do not wait until you have a performance problem in your
production environment to learn how to use one of these tools or to have bought a
performance and tuning tool. Get what you need upfront.

Microsoft Out-of-the-Box

Microsoft continues to offer some built-in capabilities around performance and tuning
with tools such as SQL Server Profiler, Data Collection Services, Performance Monitor
counters that monitor many of the execution aspects of SQL Server, and plenty of SQL
options at the server level to ensure optimal execution. We mention a few here, but other
chapters in this book describe these offerings in greater detail:

. SQL Server Profiler—This rock-solid Microsoft-bundled offering is slowly getting
better and better. As you can see in Figure 41.6, the SQL statements across a SQL
Server instance are captured along with the execution statistics and other perfor-
mance handles. You can save your traces and even import them into SQL Server
tables for analysis by sorting the raw SQL code into the Top 10 (or 100) worst-
performing queries. We include SQL statements on the CD of this book to help you
manipulate the raw queries and organize them into a usable order (such as the top
100 worst queries).

ptg

1548 CHAPTER 41 A Performance and Tuning Methodology

. Other Microsoft tools—As mentioned previously, you can also use other tools such
as Perfmon counters to isolate locking, deadlocking, memory utilization, CPU uti-
lization, cache hit ratios, physical and logical disk I/Os, disk queue lengths, and a
host of others. This includes counters for database mirroring execution, data replica-
tion execution, and many others. Even DBCC is still a viable tool for helping track
down pesky things like excessive page splits that play havoc on performance.
Chapters 39 and 49 take you deep into these out-of-the-box capabilities for SQL
Server.

Third-Party Performance and Tuning Tools

There are a number of performance monitoring and tuning tools available for third-party
vendors. Here, we list a few that we have some personal experience with:

. Precise 8.5—For database and other tier monitoring in one package, Precise TPM
(formerly Precise i3 from Symantec but spun out a few years ago) is one of the best
out there. It’s a bit pricey, but for larger organizations that have vast implementa-
tions, investing in this type of holistic toolset can pay dividends. See www.precise.
com for a current release of database and J2EE monitoring capabilities.

. SQL Shot—This tool uses a different approach from Microsoft. In particular, SQL
Shot bubbles up all SQL Server–based execution information into a cockpit of visuals
(or graphics). Figure 41.7 shows how easy it is to see trouble spots in your SQL
Server–based system by using SQL Shot’s main GUI. See www.dbarchitechs.com for a
current release of the SQL Server 2008 R2 version.

FIGURE 41.6 SQL Server Profiler tracing SQL statements.

www.precise.com
www.precise.com
www.dbarchitechs.com

ptg

1549Tools of the Performance and Tuning Trade
4

1

FIGURE 41.7 Graphic depiction of SQL Server performance issues using SQL Shot.

. Proactive DBA SQL Capture—This tool provides no-impact database monitoring
of end-user response times and SQL activity. SQL Capture works by “sniffing”
network SQL conversations between clients and SQL Server, gathering a wide variety
of metrics on the SQL executed by clients. Capturing can occur right on the target
server for convenient, low-impact monitoring or on a separate machine for true, no-
impact capturing of database activity. You can log all or only selected SQL details to
a repository database of your choice and/or to operating system flat files for later
viewing and analysis. See www.proactivedba.com for more detailed information on
the current release.

. Idera SQL Diagnostic Monitor SQL—This performance monitoring and diagnos-
tics solution can proactively alert administrators to health, performance, or availabil-
ity problems within their SQL Server environment, all from a central console. In
addition to real-time monitoring and analysis, current versions also provide the
History Browser, which allows you to diagnose historical SQL Server performance
problems by selecting a historical point-in-time to view. See www.idera.com for
information on the current release.

Again, come to the war with all your weapons. This is critical work, and you need to make
great performance and tuning decisions, be able to isolate issues quickly, and uncover
even the most complex problems.

www.proactivedba.com
www.idera.com

ptg

1550 CHAPTER 41 A Performance and Tuning Methodology

Summary
In this chapter, you saw the difference a formal performance and tuning methodology can
make when applied to completely new SQL Server–based implementations. We also
showed you a modified version for attacking performance issues you might have with
your existing SQL Server deployment. You should use the one that fits your needs best and
guarantees you a great-running SQL Server implementation. But you need to use some-
thing that you can follow to the letter so that nothing falls between the cracks. We also
outlined a series of performance and tuning guidelines for you that correspond with all
the major layers of your SQL Server environment. You should take these along with you to
every design review, code walkthrough, or solution architecture checkpoint. Make sure
you consider these guidelines and factor them into all you do. Designing in performance
takes deliberate actions and attention to the bigger picture. You have to know what ques-
tions to ask and what guidelines to follow. The guidelines presented in this chapter should
serve you well. And lastly, we highlighted some of the tools by Microsoft and others to
help you with the daunting task of tuning your SQL Server–based implementation. If you
always come to the war with heavy artillery, you’ll get great results!

Chapter 42, “What’s New for Transact-SQL in SQL Server 2008,” highlights new features
and changes to some existing ones to help you stay current with the ever-expanding
Transact-SQL offering.

ptg

CHAPTER 42

What’s New for
Transact-SQL in SQL

Server 2008

IN THIS CHAPTER

. MERGE Statement

. Insert over DML

. GROUP BY Clause
Enhancements

. Variable Assignment in
DECLARE Statement

. Compound Assignment
Operators

. Row Constructors

. New date and time Data
Types and Functions

. Table-Valued Parameters

. Hierarchyid Data Type

. Using FILESTREAM Storage

. Sparse Columns

. Spatial Data Types

. Change Data Capture

. Change Tracking

Although SQL Server 2008 introduces some new features
and changes to the Transact-SQL (T-SQL) language that
provide additional capabilities, there is not a significant
number of new features over what was available in 2005.
T-SQL does offer the following new features:

. MERGE statement

. Insert over DML

. GROUP BY clause enhancements

. Variable assignment in DECLARE statement

. Compound assignment operators

. Row Constructors

. date and time data types

. Table-valued parameters

. Hierarchyid data type

. FILESTREAM Storage

. Sparse Columns

. Spatial Data Types

. Change Data Capture

. Change Tracking

ptg

1552 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

NOTE

If you are making the leap from SQL Server 2000 (or earlier) to SQL Server 2008 or
SQL Server 2008 R2, you may not be familiar with a number of T-SQL enhancements
introduced in SQL Server 2005. Some of these enhancements are used in the exam-
ples in this chapter. If you are looking for an introduction to the new T-SQL features
introduced in SQL Server 2005, check out the “In Case you Missed It...” section in
Chapter 43, “Transact-SQL Programming Guidelines, Tips, and Tricks,” which is provided
on the CD included with this book.

NOTE

Unless stated otherwise, all examples in this chapter use tables in the bigpubs2008
database.

MERGE Statement
In versions of SQL Server prior to SQL Server 2008, if you had a set of data rows in a
source table that you wanted to synchronize with a target table, you had to perform at
least three operations: one scan of the source table to find matching rows to update in the
target table, another scan of the source table to find nonmatching rows to insert into the
target table, and a third scan to find rows in the target table not contained in the source
table that needed to be deleted. SQL Server 2008, however, introduces the MERGE
statement. With the MERGE statement, you can synchronize two tables by inserting, updat-
ing, or deleting rows in one table based on differences found in the other table, all in just
a single statement, minimizing the number of times that rows in the source and target
tables need to be processed. The MERGE statement can also be used for performing condi-
tional inserts or updates of rows in a target table from a source table.

The MERGE syntax consists of the following primary clauses:

. The MERGE clause specifies the table or view that is the target of the insert, update, or
delete operations.

. The USING clause specifies the data source being joined with the target.

. The ON clause specifies the join conditions that determine how the target and
source match.

. The WHEN MATCHED clause specifies either the update or delete operation to perform
when rows of target table match rows in the source table and any additional search
conditions.

. WHEN NOT MATCHED BY TARGET specifies the insert operation when a row in the
source table does not have a match in the target table.

ptg

1553MERGE Statement
4

2

. WHEN NOT MATCHED BY SOURCE specifies the update or delete operation to perform
when rows of the target table do not have matches in the source table.

. The OUTPUT clause returns a row for each row in the target that is inserted, updated,
or deleted.

The basic syntax of the MERGE statement is as follows:

[WITH common_table_expression [,...n]]

MERGE

[TOP (N) [PERCENT]]

[INTO] target_table [[AS] table_alias]

USING table_or_view_name [[AS] table_alias]

ON merge_search_condition

[WHEN MATCHED [AND search_condition]

THEN { UPDATE SET set_clause | DELETE }] [...n]

[WHEN NOT MATCHED [BY TARGET] [AND search_condition]

THEN { INSERT [(column_list)] { VALUES (values_list) | DEFAULT VALUES

}}]

[WHEN NOT MATCHED BY SOURCE [AND search_condition]

THEN { UPDATE SET set_clause | DELETE }] [...n]

[OUTPUT column_name | scalar_expression

INTO { @table_variable | output_table } [(column_list)]]

[OUTPUT column_name | scalar_expression [[AS] column_alias_identifier] [

,...n]] ;

The WHEN clauses specify the actions to take on the rows identified by the conditions speci-
fied in the ON clause. The conditions specified in the ON clause determine the full result set
that will be operated on. Additional filtering to restrict the affected rows can be specified
in the WHEN clauses. Multiple WHEN clauses with different search conditions can be speci-
fied. However, if there is a MATCH clause that includes a search condition, it must be speci-
fied before all other WHEN MATCH clauses.

Note that the MERGE command must be terminated with a semicolon (;). Otherwise, you
receive a syntax error.

When you run a MERGE statement, rows in the source are matched with rows in the target
based on the join predicate that you specify in the ON clause. The rows are processed in a
single pass, and one insert, update, or delete operation is performed per input row
depending on the WHEN clauses specified. The WHEN clauses determine which of the follow-
ing matches exist in the result set:

. A matched pair consisting of one row from the target and one from the source as a
result of matching condition in the WHEN MATCHED clause

. A row from the source that has no matching row in the target as a result of the
condition specified the WHEN NOT MATCHED BY TARGET clause

. A row from the target that has no corresponding row in the source as a result of the
condition specified in the WHEN NOT MATCHED BY SOURCE clause

ptg

1554 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

TABLE 42.1 Join Methods Used for WHEN Clauses

Specified WHEN Clauses Join Method

WHEN MATCHED clause only INNER JOIN

WHEN NOT MATCHED BY TARGET clause, but not the WHEN NOT

MATCHED BY SOURCE clause
LEFT OUTER JOIN from
source to target

WHEN MATCHED clause and the WHEN NOT MATCHED BY SOURCE
clause, but not the WHEN NOT MATCHED BY TARGET clause

RIGHT OUTER JOIN from
source to target

WHEN NOT MATCHED BY TARGET clause and the WHEN NOT
MATCHED BY SOURCE clause

FULL OUTER JOIN

WHEN NOT MATCHED BY SOURCE clause only ANTI SEMI JOIN

The combination of WHEN clauses specified in the MERGE statement determines the join
method that SQL Server will use to process the query (see Table 42.1).

To improve the performance of the MERGE statement, you should make sure you have
appropriate indexes to support the join columns between the source table and target table.
Any additional columns in the source table index that will help to cover the query may
help improve performance even more (for information on index covering, see Chapter 34,
“Data Structures, Indexes, and Performance”). The indexes should ensure that the join
keys are unique and, if possible, sort the data in the tables in the order it will be processed
so additional sort operations are not necessary. Unique indexes supporting the join condi-
tions for the MERGE statement will improve query performance because the query optimizer
does not need to perform extra validation processing to locate and update duplicate rows.

To better understand how the MERGE statement works, let’s look at an example. First, you
need to set up some data in a source table. In the bigpubs2008 database, there is a table
called stores. For this example, let’s assume you want to set up a new table that keeps
track of each store’s inventory to support an application that can monitor each store’s
inventory and send notifications when certain items run low, as well as to support the
ability of each store to search other store inventories to locate rare and out-of-print books
that other stores may have available. On a daily basis, each store uploads a full refresh of
its current inventory to a staging table (inventory_load), which is the source table for the
MERGE. You then use the inventory_load table to modify the store’s inventory in the
store_inventory table (which is the target table for the MERGE operation).

First, let’s create the new store_inventory table (see Listing 42.1). Just for sake of the
example, you can create and populate it with the existing data from the sales table for
stor_id ‘A011’ and create a primary key constraint on the stor_id and title_id

columns. The next step is to load the inventory_load table. Normally, in a real-world
scenario, this table would likely be populated via a BULK INSERT statement or SQL Server
Integration Services. However, for the sake of this example, you simply are going to create

ptg

1555MERGE Statement
4

2

some test data by creating and populating the inventory_load table using SELECT INTO
with data merged from the sales data for both stor_id ‘A011’ and ’A017’.

When the inventory_load table is created and populated, you can create a primary key
on the stor_id and title_id columns as well to support the join with the
store_inventory table.

The next step is to build out the MERGE statement. Following are the rules to be applied:

. If there is a matching row between the source and target tables and the qty value is
different, update the qty value in the target table to the value in the source table.

. If a row in the source table doesn’t have a match in the target table, this is a new
inventory item, so insert the new row to the target table.

. If a row in the target table doesn’t have a matching row in the source table, that
inventory item no longer exists, so delete it from the target table.

Also for the sake of the example so that you can see just what the MERGE statement ends
up doing, the OUTPUT clause has been added with the $action column included. The
$action column displays what operation (INSERT, UPDATE, DELETE) was performed on each
row, and displays the title_id and qty values for both the source and target tables for
each row processed (note that if the title_id and qty columns are NULL, that was a
nonmatching row).

LISTING 42.1 A MERGE Example

use bigpubs2008

go

if OBJECT_ID(‘store_inventory’) is not null

drop table store_inventory

go

-- Create and populate the store_inventory table

select stor_id, title_id, qty = SUM(qty), update_dt = GETDATE()

into store_inventory

from sales s

where stor_id = ‘A011’

group by stor_id, title_id

go

-- add primary key on store_inventory to support the join to source table

alter table store_inventory add constraint PK_store_inventory primary key

(stor_id, title_id)

Go

if OBJECT_ID(‘inventory_load’) is not null

drop table inventory_load

go

-- Now, create and populate the inventory_load table

select stor_id = ‘A011’,

ptg

1556 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

title_id,

qty = SUM(qty)

into inventory_load

from sales s

where stor_id like ‘A01[17]’

and title_id not like ‘%8’

group by title_id

go

— add primary key on store_inventory to support the join to target table

alter table inventory_load add constraint PK_inventory_load primary key

(stor_id, title_id)

go

select * from store_inventory

go

-- perform the marge, updating any matching rows with different quantities

-- adding any rows in source not in the target, and deleting any rows from the

-- target that are not in the source.

-- Output clause is specified to display the results of the MERGE

MERGE

INTO store_inventory as s

USING inventory_load as i

ON s.stor_id = i.stor_id

and s.title_id = i.title_id

WHEN MATCHED and s.qty <> i.qty

THEN UPDATE

SET s.qty = i.qty,

update_dt = getdate()

WHEN NOT MATCHED

THEN INSERT (stor_id, title_id, qty, update_dt)

VALUES (i.stor_id, i.title_id, i.qty, getdate())

WHEN NOT MATCHED BY SOURCE

THEN DELETE

OUTPUT $action,

isnull(inserted.title_id, ‘’) as src_titleid, isnull(str(inserted.qty, 5),

‘’) as src_qty,

isnull(deleted.title_id, ‘’) as tgt_titleid, isnull(str(deleted.qty, 5),

‘’) as tgt_qty

;

go

select * from store_inventory

go

If you run the script in Listing 42.1, you should see output like the following.

ptg

1557MERGE Statement
4

2

stor_id title_id qty update_dt

------- -------- ----------- -----------------------

A011 CH0741 1452 2010-03-25 00:34:25.597

A011 CH3348 24 2010-03-25 00:34:25.597

A011 FI0324 1392 2010-03-25 00:34:25.597

A011 FI0392 1176 2010-03-25 00:34:25.597

A011 FI1552 1476 2010-03-25 00:34:25.597

A011 FI1872 540 2010-03-25 00:34:25.597

A011 FI3484 1428 2010-03-25 00:34:25.597

A011 FI3660 984 2010-03-25 00:34:25.597

A011 FI4020 1704 2010-03-25 00:34:25.597

A011 FI4970 1140 2010-03-25 00:34:25.597

A011 FI4992 180 2010-03-25 00:34:25.597

A011 FI5832 1632 2010-03-25 00:34:25.597

A011 NF8918 1140 2010-03-25 00:34:25.597

A011 PC9999 1272 2010-03-25 00:34:25.597

A011 TC7777 1692 2010-03-25 00:34:25.597

(15 row(s) affected)

$action

---------- ------ ----- ------ -----

INSERT BU2075 1536

DELETE CH3348 24

INSERT CH5390 888

INSERT CH7553 540

INSERT FI1950 1308

INSERT FI2100 1104

INSERT FI3822 996

UPDATE FI4970 1632 FI4970 1140

INSERT FI7040 1596

INSERT LC8400 732

DELETE NF8918 1140

(11 row(s) affected)

stor_id title_id qty update_dt

------- -------- ----------- -----------------------

A011 BU2075 1536 2010-03-25 00:54:54.547

A011 CH0741 1452 2010-03-25 00:34:25.597

A011 CH5390 888 2010-03-25 00:54:54.547

A011 CH7553 540 2010-03-25 00:54:54.547

A011 FI0324 1392 2010-03-25 00:34:25.597

A011 FI0392 1176 2010-03-25 00:34:25.597

A011 FI1552 1476 2010-03-25 00:34:25.597

ptg

1558 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

A011 FI1872 540 2010-03-25 00:34:25.597

A011 FI1950 1308 2010-03-25 00:54:54.547

A011 FI2100 1104 2010-03-25 00:54:54.547

A011 FI3484 1428 2010-03-25 00:34:25.597

A011 FI3660 984 2010-03-25 00:34:25.597

A011 FI3822 996 2010-03-25 00:54:54.547

A011 FI4020 1704 2010-03-25 00:34:25.597

A011 FI4970 1632 2010-03-25 00:54:54.547

A011 FI4992 180 2010-03-25 00:34:25.597

A011 FI5832 1632 2010-03-25 00:34:25.597

A011 FI7040 1596 2010-03-25 00:54:54.547

A011 LC8400 732 2010-03-25 00:54:54.547

A011 PC9999 1272 2010-03-25 00:34:25.597

A011 TC7777 1692 2010-03-25 00:34:25.597

(21 row(s) affected)

If you examine the results and compare the before and after contents of the
store_inventory, you see that eight new rows were inserted to store_inventory, two
rows were deleted, and one row was updated.

MERGE Statement Best Practices and Guidelines

The MERGE statement is a great addition to the T-SQL language. It provides a concise and effi-
cient mechanism to perform multiple operations on a table based on contents in a source
table without having to resort to using a cursor or running multiple set-oriented operations
against the table. However, there are some guidelines and best practices you should keep in
mind to help ensure you get the best performance from your MERGE statements.

First, you should try to reduce the number of rows accessed by the MERGE statement early
in the process by specifying any additional search condition to the ON clause that filters
out rows that do not need to be processed. You should avoid using the conditions in the
WHEN clauses as row filters. However, you need to be careful if you are using any of the
WHEN NOT MATCHED clauses because the elimination of rows via the ON clause may cause
unexpected and incorrect results. Because the additional search conditions specified in the
ON clause are not used for matching the source and target data, they can be misapplied.

To ensure correct results are obtained, you should specify only search conditions in the ON

clause that determine the criteria for matching data in the source and target tables. That is,
specify only columns from the target table that are compared to the corresponding columns
of the source table. Do not include comparisons to other values such as a constant.

To filter out rows from the source or target tables, you should consider using one of the
following methods.

. Specify the search condition for row filtering in the appropriate WHEN clause. For
example, WHEN NOT MATCHED AND qty > 0 THEN INSERT....

ptg

1559Insert over DML
4

2

. Define a view on the source or target that returns the filtered rows and reference the
view as the source or target table. If the view is used as the target, make sure the
view is updateable (for more information about updating data by using a view, see
Chapter 27, “Creating and Managing Views”).

. Use the WITH <common table expression> clause to filter out rows from the source
or target tables. However, if you are not careful, this method is similar to specifying
additional search criteria in the ON clause and may produce incorrect results. You
should test this approach thoroughly before implementing it (for information on
using common table expressions, see Chapter 43, “Transact-SQL Programming
Guidelines, Tips, and Tricks”).

Insert over DML
Another T-SQL enhancement in SQL Server 2008 applies to the use of the OUTPUT clause.
The OUTPUT clause allows you to return data from a modification statement (INSERT,
UPDATE, MERGE, or DELETE) as a result set or into a table variable or an output table. In SQL
Server 2008, you can include one of these Data Manipulation Language (DML) statements
with an OUTPUT clause within the context of an INSERT...SELECT statement.

In the MERGE statement in Listing 42.1, the OUTPUT clause was used to display the rows
affected by the statement. Suppose that you want the output of this to be put into a sepa-
rate audit or processing table. In SQL Server 2008, you can do so by allowing the MERGE
statement with the OUTPUT clause to be incorporated as a derived table in the SELECT
clause of an INSERT statement.

To demonstrate this approach, you first need to create a table for storing that data:

if OBJECT_ID(‘inventory_audit’) is not null

drop table inventory_audit

go

CREATE TABLE inventory_audit

(

Action varchar(10) not null,

Src_title_id varchar(6) null,

Src_qty int null,

Tgt_title_id varchar(6) null,

Tgt_qty int null,

Loginname varchar(30) null default suser_name(),

Action_DT datetime2 null default sysdatetime()

)

Now it is possible to be put a SELECT statement atop the MERGE command as the values
clause for an INSERT into the inventory_audit table (see Listing 42.2).

ptg

1560 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

LISTING 42.2 Insert over DML Example

-- NOTE: to see the results for this example

-- you first need to clear out and repopulate

-- the store_inventory table

Truncate table store_inventory

Insert store_inventory (stor_id, title_id, qty, update_dt)

select stor_id, title_id, qty = SUM(qty), update_dt = GETDATE()

from sales s

where stor_id = ‘A011’

group by stor_id, title_id

go

insert inventory_audit

(action,

Src_title_id,

Src_qty ,

Tgt_title_id,

Tgt_qty ,

Loginname,

Action_DT

)

select *, SUSER_NAME(), SYSDATETIME()

from (

MERGE

INTO store_inventory as s

USING inventory_load as i

ON s.stor_id = i.stor_id

and s.title_id = i.title_id

WHEN MATCHED and s.qty <> i.qty

THEN UPDATE

SET s.qty = i.qty,

update_dt = getdate()

WHEN NOT MATCHED

THEN INSERT (stor_id, title_id, qty, update_dt)

VALUES (i.stor_id, i.title_id, i.qty, getdate())

WHEN NOT MATCHED BY SOURCE

THEN DELETE

OUTPUT $action,

isnull(inserted.title_id, ‘’) as src_titleid,

isnull(str(inserted.qty, 5), ‘’) as src_qty,

isnull(deleted.title_id, ‘’) as tgt_titleid,

isnull(str(deleted.qty, 5), ‘’) as tgt_qty

) changes (action,

Src_title_id,

Src_qty ,

Tgt_title_id,

ptg

1561GROUP BY Clause Enhancements
4

2

Tgt_qty);

go

select * from inventory_audit

go

Action Src_title_id Src_qty Tgt_title_id Tgt_qty Loginname Action_DT

------ ------------ ------- ------------ ------- --------- ----------------------

INSERT BU2075 1536 0 rrankins 2010-04-02 22:20:59.48

DELETE 0 CH3348 24 rrankins 2010-04-02 22:20:59.48

INSERT CH5390 888 0 rrankins 2010-04-02 22:20:59.48

INSERT CH7553 540 0 rrankins 2010-04-02 22:20:59.48

INSERT FI1950 1308 0 rrankins 2010-04-02 22:20:59.48

INSERT FI2100 1104 0 rrankins 2010-04-02 22:20:59.48

INSERT FI3822 996 0 rrankins 2010-04-02 22:20:59.48

UPDATE FI4970 1632 FI4970 1140 rrankins 2010-04-02 22:20:59.48

INSERT FI7040 1596 0 rrankins 2010-04-02 22:20:59.48

INSERT LC8400 732 0 rrankins 2010-04-02 22:20:59.48

DELETE 0 NF8918 1140 rrankins 2010-04-02 22:20:59.48

GROUP BY Clause Enhancements
SQL Server 2008 introduces a number of enhancements and changes to the grouping
aggregate relational result set. These changes include the following:

. ROLLUP and CUBE operator syntax changes

. New GROUPING SETS operator

. New GROUPING_ID() function

ROLLUP and CUBE Operator Syntax Changes

The ROLLUP and CUBE operators produce additional aggregate groupings and are appended
to the GROUP BY clause. Prior to SQL Server 2008, to include ROLLUP or CUBE groupings,
you had to specify the WITH ROLLUP or WITH CUBE options in the GROUP BY clause after the
list of grouping columns. In SQL Server 2008, the syntax now follows the ANSI standard
for ROLLUP and CUBE; you first designate the ROLLUP or CUBE option and then provide the
grouping columns to these operators as a comma-separated list enclosed in parentheses.
The new syntax is

GROUP BY [ROLLUP | CUBE (non-aggregate_column_list)]

Following are examples using the pre-2008 syntax:

SELECT type, pub_id, AVG(price) AS average

FROM titles

ptg

1562 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

GROUP BY type, pub_id

WITH CUBE

SELECT pub_id, type, SUM(ytd_sales) as ytd_sales

FROM dbo.titles

where type like ‘%cook%’ or type = ‘business’

GROUP BY type, pub_id

WITH ROLLUP

An example of the new ANSI standard syntax supported in SQL Server 2008 is as follows:

SELECT type, pub_id, AVG(price) AS average

FROM titles

GROUP BY CUBE (type, pub_id)

SELECT pub_id, type, SUM(ytd_sales) as ytd_sales

FROM dbo.titles

where type like ‘%cook%’ or type = ‘business’

GROUP BY ROLLUP (type, pub_id)

NOTE

The old-style CUBE and ROLLUP syntax is still supported for backward-compatibility pur-
poses but is being deprecated. You should convert any existing queries using the pre-
2008 WITH CUBE or WITH ROLLUP syntax to the new syntax to ensure future
compatibility.

GROUPING SETS

The CUBE and ROLLUP operators allow you to run a single query and generate multiple sets
of groupings. However, the sets of groupings are fixed. For example, if you use GROUP BY
ROLLUP (A, B, C), you get aggregates generated for the following groupings of nonaggre-
gate columns:

. GROUP BY A, B, C

. GROUP BY A, B

. GROUP BY A

. A super-aggregate for all rows

If you use GROUP BY CUBE (A, B, C), you get aggregates generated for the following
groupings of nonaggregate columns:

. GROUP BY A, B, C

. GROUP BY A, B

. GROUP BY A, C

ptg

1563GROUP BY Clause Enhancements
4

2

. GROUP BY B, C

. GROUP BY A

. GROUP BY B

. GROUP BY C

. A super-aggregate for all rows

SQL Server 2008 introduces the GROUPING SETS operator in addition to the CUBE and
ROLLUP operators for performing several groupings in a single query. With GROUPING SETS,
only the specified groups are aggregated instead of the full set of aggregations generated
by CUBE or ROLLUP. GROUPING SETS enables you to generate results with multiple groupings
in a single query, without having to resort to writing multiple GROUP BY queries and
combining the results using a UNION ALL statement.

The GROUPING SETS operator supports concatenating column groupings and an optional
super aggregate row. The syntax for defining grouping sets is as follows:

GROUP BY [GROUPING SETS (() | grouping_set_item | grouping_set_item_list

[, ...n])]

The GROUPING SETS items can be single columns or a list of columns. The null field list ”(
)” can also be used to generate a super-aggregate (that is, a grand total for the entire result
set). A non-nested list of columns works as separate simple GROUP BY statements, which
are then combined in an implied UNION ALL. A nested list of columns in parentheses
within the GROUPING SETS item list works as a GROUP BY on that set of columns. Table 42.2
demonstrates examples of GROUPING SETS clauses and the corresponding groupings that
the query generates.

TABLE 42.2 Grouping Sets Examples

GROUPING SETS Clause Equivalent Statement

GROUP BY GROUPING SETS (A,B,C) GROUP BY A

UNION ALL

GROUP BY B

UNION ALL

GROUP BY C

GROUP BY GROUPING SETS ((A,B,C)) GROUP BY A,B,C

GROUP BY GROUPING SETS (A,(B,C)) GROUP BY A

UNION ALL

GROUP BY B,C

GROUP BY GROUPING SETS ((A,C),(B,C)) GROUP BY A,C

UNION ALL

GROUP BY B,C

ptg

1564 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

Listing 42.3 demonstrates how to use the GROUPING SETS operator to perform three group-
ings on three individual columns in a single query.

LISTING 42.3 GROUPING SETS Example

/***

** Perform a grouping by type, grouping by pub_id, and grouping by price

***/

SELECT type, pub_id, price, sum(isnull(ytd_sales, 0)) AS ytd_sales

FROM titles

where pub_id < ‘9’

GROUP BY GROUPING SETS (type, pub_id, price)

go

type pub_id price ytd_sales

------------ ------ --------------------- -----------

NULL NULL NULL 0

NULL NULL 0.0006 111

NULL NULL 0.0017 750

NULL NULL 14.3279 4095

NULL NULL 14.595 18972

NULL NULL 14.9532 14294

NULL NULL 14.9611 4095

NULL NULL 15.894 40968

NULL NULL 15.9329 3336

NULL NULL 17.0884 2045

NULL NULL 17.1675 8780

NULL 0736 NULL 28286

NULL 0877 NULL 44219

NULL 1389 NULL 24941

business NULL NULL 30788

mod_cook NULL NULL 24278

popular_comp NULL NULL 12875

psychology NULL NULL 9939

trad_cook NULL NULL 19566

In the output in Listing 42.3, the first 11 rows are the results grouped by price, the next 3
rows are grouped by pub_id, and the bottom 5 rows are grouped by type. Now, you can
modify this query to include a super-aggregate for all rows by adding a null field list, as
shown in Listing 42.4.

ptg

1565GROUP BY Clause Enhancements
4

2

LISTING 42.4 GROUPING SETS Example with Null Field List to Generate Super-Aggregate

SELECT type, pub_id, price, sum(isnull(ytd_sales, 0)) AS ytd_sales

FROM titles

where pub_id < ‘9’

GROUP BY GROUPING SETS (type, pub_id, price, ())

go

type pub_id price ytd_sales

------------ ------ --------------------- -----------

NULL NULL NULL 0

NULL NULL 0.0006 111

NULL NULL 0.0017 750

NULL NULL 14.3279 4095

NULL NULL 14.595 18972

NULL NULL 14.9532 14294

NULL NULL 14.9611 4095

NULL NULL 15.894 40968

NULL NULL 15.9329 3336

NULL NULL 17.0884 2045

NULL NULL 17.1675 8780

NULL NULL NULL 97446

NULL 0736 NULL 28286

NULL 0877 NULL 44219

NULL 1389 NULL 24941

business NULL NULL 30788

mod_cook NULL NULL 24278

popular_comp NULL NULL 12875

psychology NULL NULL 9939

trad_cook NULL NULL 19566

If you look closely at the results in Listing 42.4, you see there are two rows with NULL values
for all three columns for type, pub_id, and price. How can you determine definitively
which row is the super-aggregate of all three rows, and which is a row grouped by price
where the value of price is NULL? This is where the new grouping_id() function comes in.

The grouping_id() Function

The grouping_id() function, new in SQL Server 2008, can be used to determine the level
of grouping in a query using GROUPING SETS or the CUBE and ROLLUP operators. Unlike the
GROUPING() function, which takes only a single column expression as an argument and
returns a 1 or 0 to indicate whether that individual column is being aggregated, the
grouping_id() function accepts multiple column expressions and returns a bitmap to
indicate which columns are being aggregated for that row.

ptg

1566 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

For example, you can add the grouping_id() and grouping() functions to the query in
Listing 42.4 and examine the results (see Listing 42.5).

LISTING 42.5 Using the grouping_id() Function

SELECT type, pub_id, price, sum(isnull(ytd_sales, 0)) AS ytd_sales,

grouping_id(type, pub_id, price) as grping_id,

grouping(type) type_rlp,

grouping(pub_id) pub_id_rlp,

grouping(price) price_rlp

FROM titles

where pub_id < ‘9’

GROUP BY GROUPING SETS (type, pub_id, price, ())

go

type pub_id price ytd_sales grping_id type_rlp pub_id_rlp price_rlp

------------ ------ ------- --------- --------- -------- ---------- ---------

NULL NULL NULL 0 6 1 1 0

NULL NULL 0.0006 111 6 1 1 0

NULL NULL 0.0017 750 6 1 1 0

NULL NULL 14.3279 4095 6 1 1 0

NULL NULL 14.595 18972 6 1 1 0

NULL NULL 14.9532 14294 6 1 1 0

NULL NULL 14.9611 4095 6 1 1 0

NULL NULL 15.894 40968 6 1 1 0

NULL NULL 15.9329 3336 6 1 1 0

NULL NULL 17.0884 2045 6 1 1 0

NULL NULL 17.1675 8780 6 1 1 0

NULL NULL NULL 97446 7 1 1 1

NULL 0736 NULL 28286 5 1 0 1

NULL 0877 NULL 44219 5 1 0 1

NULL 1389 NULL 24941 5 1 0 1

business NULL NULL 30788 3 0 1 1

mod_cook NULL NULL 24278 3 0 1 1

popular_comp NULL NULL 12875 3 0 1 1

psychology NULL NULL 9939 3 0 1 1

trad_cook NULL NULL 19566 3 0 1 1

Unlike the grouping() function, which takes only a single column name as an argument,
the grouping_id() function accepts all columns that participate in any grouping set. The
grouping_id() function produces an integer result that is a bitmap, where each bit repre-
sents a different column, producing a unique integer for each grouping set. The bits in the
bitmap indicate whether the columns are being aggregated in the grouping set (bit value is
1) or if the column is used to determine the grouping set (bit value is 0) used to calculate
the aggregate value.

ptg

1567GROUP BY Clause Enhancements
4

2

The bit values are assigned to columns from right to left in the order the columns are
listed in the grouping_id() function. For example, in the query in Listing 42.5, price is
the rightmost bit value, bit 1; pub_id is assigned the next bit value, bit 2, and type is
assigned the leftmost bit value, bit 3. When the grouping_id() value equals 6, that means
the bits 2 and 3 are turned on (4 + 2 + 0 = 6). This indicates that the type and pub_id

columns are being aggregated in the grouping set, and the price column defines the
grouping set.

The grouping_id() column can thus be used to determine which of the two rows where
type, pub_id, and price are all NULL is the row with the super-aggregate of all three
columns (grouping_id = 7), and which row is an aggregate rolled up where the value of
price is NULL (grouping_id = 6).

The values returned by the grouping_id() function can also be used for further filtering
your grouping set results or for sorting your grouping set results, as shown in Listing 42.6.

LISTING 42.6 Using the grouping_id() Function to Sort Results

SELECT type, pub_id, price, sum(isnull(ytd_sales, 0)) AS ytd_sales,

grouping_id(type, pub_id, price) as grping_id

FROM titles

where pub_id < ‘9’

GROUP BY GROUPING SETS (type, pub_id, price, ())

order by grping_id

go

type pub_id price ytd_sales grping_id

------------ ------ -------- ----------- -----------

business NULL NULL 30788 3

mod_cook NULL NULL 24278 3

popular_comp NULL NULL 12875 3

psychology NULL NULL 9939 3

trad_cook NULL NULL 19566 3

NULL 0736 NULL 28286 5

NULL 0877 NULL 44219 5

NULL 1389 NULL 24941 5

NULL NULL NULL 0 6

NULL NULL 0.0006 111 6

NULL NULL 0.0017 750 6

NULL NULL 14.3279 4095 6

NULL NULL 14.595 18972 6

NULL NULL 14.9532 14294 6

NULL NULL 14.9611 4095 6

NULL NULL 15.894 40968 6

NULL NULL 15.9329 3336 6

ptg

1568 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

NULL NULL 17.0884 2045 6

NULL NULL 17.1675 8780 6

NULL NULL NULL 97446 7

Variable Assignment in DECLARE Statement
In SQL Server 2008, you can now set a variable’s initial value at the same time you declare
it. For example, the following line of code declares a variable named @ctr of type int and
set its value to 100:

DECLARE @ctr int = 100

Previously, this functionality was only possible with stored procedure parameters.
Assigning an initial value to a variable required a separate SET or SELECT statement. This
new syntax simply streamlines the process of assigning an initial value to a variable. The
value specified can be a constant or a constant expression, as in the following:

DECLARE @start_time datetime = getdate()

You can even assign the initial value via a subquery, as long as the subquery returns only a
single value, as in the following example:

declare @max_price money = (select MAX(price) from titles)

The value being assigned to the variable must be of the same type as the variable or be
implicitly convertible to that type.

Compound Assignment Operators
Another new feature that streamlines and improves the efficiency of your T-SQL code is
compound operators. This is a concept that has been around in many other programming
languages for a long time, but has now finally found its way into T-SQL. Compound oper-
ators are used when you want to apply an arithmetic operation on a variable and assign
the value back into the variable.

For example, the += operator adds the specified value to the variable and then assigns the
new value back into the variable. For example,

SET @ctr += 1

is functionally the same as

SET @ctr = @ctr + 1

ptg

1569Row Constructors
4

2

The compound operators are a quicker to type, and they offer a cleaner piece of finished
code. Following is the complete list of compound operators provided in SQL Server 2008:

+= Add and assign

-= Subtract and assign

*= Multiply and assign

/= Divide and assign

%= Modulo and assign

&= Bitwise AND and assign

^= Bitwise XOR and assign

|= Bitwise OR and assign

Row Constructors
SQL Server 2008 provides a new method to insert data to SQL Server tables, referred to as
row constructors. Row constructors are a feature that can be used to simplify data insertion,
allowing multiple rows of data to be specified in a single DML statement. Row construc-
tors are used to specify a set of row value expressions to be constructed into a data row.

Row constructors can be specified in the VALUES clause of the INSERT statement, in the
USING clause of the MERGE statement, and in the definition of a derived table in the FROM
clause. The general syntax of the row constructor is as follows:

VALUES ({ expression | DEFAULT | NULL |} [,...n]) [,...n]

Each column of data defined in the VALUES clause is separated from the next using a
comma. Multiple rows (which may also contain multiple columns) are separated from
each other using parentheses and a comma. When multiple rows are specified, the corre-
sponding column values must be of the same data type or implicitly convertible data
type. The following example shows the row constructor VALUES clause being used within a
SELECT statement to define a set of rows and columns with explicit values:

SELECT a, b FROM (VALUES (1, 2), (3, 4), (5, 6), (7, 8), (9, 10))

AS MyTable(a, b);

GO

a b

----------- -----------

1 2

3 4

ptg

1570 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

5 6

7 8

9 10

The VALUES clause is commonly used in this manner to populate temporary tables but can
also be used in a view, as shown in Listing 42.7.

LISTING 42.7 Using the VALUES Clause in a View

create view book_types

as

SELECT type, description

FROM (VALUES (‘mod_cook’, ‘Modern Cooking’),

(‘trad_cook’, ‘Traditional Cooking’),

(‘popular_comp’, ‘Popular Computing’),

(‘biography’, ‘Biography’),

(‘business’, ‘Business Development’),

(‘children’, ‘Children’’s Literature’),

(‘fiction’, ‘Fiction’),

(‘nonfiction’, ‘NonFiction’),

(‘psychology’, ‘Psychology and Self Help’),

(‘drama’, ‘Drama and Theater’),

(‘lit crit’, ‘Literay Criticism’)

) AS type_lookup(type, description)

go

Defining a view in this manner can be useful as a code lookup table:

select top 10

convert(varchar(50), title) as title, description

from titles t

inner join

book_types bt

on t.type = bt.type

order by title_id desc

go

title description

————————————————————————— ————————————

Sushi, Anyone? Traditional Cooking

Fifty Years in Buckingham Palace Kitchens Traditional Cooking

Onions, Leeks, and Garlic: Cooking Secrets of the Traditional Cooking

Emotional Security: A New Algorithm Psychology and Self Help

Prolonged Data Deprivation: Four Case Studies Psychology and Self Help

Life Without Fear Psychology and Self Help

Is Anger the Enemy? Psychology and Self Help

ptg

1571Row Constructors
4

2

Computer Phobic AND Non-Phobic Individuals: Behavi Psychology and Self Help

Net Etiquette Popular Computing

Secrets of Silicon Valley Popular Computing

The advantage of this approach is that unlike a permanent code table, the view with the
VALUES clause doesn’t really take up any space; it’s materialized only when it’s referenced.
Maintaining it involves simply dropping and re-creating the view rather than having to
perform inserts, updates, and deletes as you would for a permanent table.

The primary use of row constructors is to insert multiple rows of data in a single INSERT
statement. Essentially, if you have multiple rows to insert, you can specify multiple rows
in the VALUES clause. The maximum number of rows that can be specified in the VALUES
clause is 1000. The following example shows how to use the row constructor VALUES
clause in a single INSERT statement to insert five rows:

insert sales (stor_id, ord_num, ord_date, qty, payterms, title_id)

VALUES (‘6380’, ‘1234’, ‘3/26/2010’, 50, ‘Net 30’, ‘BU1032’),

(‘6380’, ‘1234’, ‘3/26/2010’, 150, ‘Net 30’, ‘PS2091’),

(‘6380’, ‘1234’, ‘3/26/2010’, 25, ‘Net 30’, ‘CH2480’),

(‘6380’, ‘1234’, ‘3/26/2010’, 30, ‘Net 30’, ‘FI2046’),

(‘6380’, ‘1234’, ‘3/26/2010’, 10, ‘Net 30’, ‘FI6318’)

As you can see, this new syntax is much more concise and simple than having to issue
five individual INSERT statements as you would have had to do in versions of SQL Server
prior to SQL Server 2008.

The VALUES clause can also be used in the MERGE statement as the source table. Listing 42.8
uses the VALUES clause to define five rows as the source data to perform INSERT/UPDATE
operations on the store_inventory table defined in Listing 42.1.

LISTING 42.8 Using the VALUES Clause in a MERGE Statement

MERGE

INTO store_inventory as s

USING

(VALUES

(‘A011’, ‘CH3348’, 41 , getdate()),

(‘A011’, ‘CH2480’, 125 , getdate()),

(‘A011’, ‘FI0392’, 1100 , getdate()),

(‘A011’, ‘FI2046’, 1476 , getdate()),

(‘A011’, ‘FI1872’, 520 , getdate())

) as i (stor_id, title_id, qty, update_dt)

ON s.stor_id = i.stor_id

and s.title_id = i.title_id

WHEN MATCHED and s.qty <> i.qty

THEN UPDATE

SET s.qty = i.qty,

update_dt = getdate()

ptg

1572 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

WHEN NOT MATCHED

THEN INSERT (stor_id, title_id, qty, update_dt)

VALUES (i.stor_id, i.title_id, i.qty, getdate())

OUTPUT $action,

isnull(inserted.title_id, ‘’) as src_titleid,

isnull(str(inserted.qty, 5), ‘’) as src_qty,

isnull(deleted.title_id, ‘’) as tgt_titleid,

isnull(str(deleted.qty, 5), ‘’) as tgt_qty

;

go

$action src_titleid src_qty tgt_titleid tgt_qty

---------- ----------- ------- ----------- -------

INSERT CH2480 125

UPDATE CH3348 41 CH3348 24

UPDATE FI0392 1100 FI0392 1176

UPDATE FI1872 520 FI1872 540

INSERT FI2046 1476

New date and time Data Types and Functions
SQL Server 2008 introduces four new date and time data types:

. date

. time (precision)

. datetime2 (precision)

. datetimeoffset (precision)

Two of the most welcome of these new types are the new date and time data types. These
new data types allow you to store date-only and time-only values. In previous versions of
SQL Server, the datetime and smalldatetime data types were the only available types for
storing date or time values, and they always store both the date and time. This made date-
only or time-only comparisons tricky at times because you always had to account for the
other component (for more detailed examples on working with datetime values in SQL
Server, see Chapter 43). In addition, the datetime stored date values range only from
1/1/1753 to 12/31/9999, with accuracy only to 3.33 milliseconds. The smalldatetime
stored date values range only from 1/1/1900 to 6/6/2079, with accuracy of only 1 minute.

The new date data type stores only the date component without the time component,
and stores date values ranging from 1/1/0001 to 12/31/9999.

The new time data type stores only the time component with accuracy that can be specified
down to seven decimal places (100 nanoseconds). The default is seven decimal places.

ptg

1573New date and time Data Types and Functions
4

2

The datetime2 data type stores both date and time components, similar to datetime,
increases the range of allowed values to 1/1/0001 to 12/31/9999, also with accuracy down
to seven decimal places (100 ns). The default precision is seven decimal places.

The datetimeoffset data type also stores both date and time components just like
datetime2, but includes the time zone offset from Universal Time Coordinates (UTC). The
time zone offset ranges from -14:00 to +14:00.

Along with the new date and time data types, SQL Server 2008 also introduces some new
date and time functions for returning the current system date and time in different formats:

. SYSDATETIME()—Returns the current system datetime as a DATETIME2(7) value

. SYSDATETIMEOFFSET()—Returns the current system datetime as a DATETIMEOFFSET(7)

value

. SYSUTCDATETIME—Returns the current system datetime as a DATETIME2(7) value
representing the current UTC time

. SWITCHOFFSET (DATETIMEOFFSET,time_zone)—Changes the DATETIMEOFFSET value
from the stored time zone offset to the specified time zone

. TODATETIMEOFFSET (datetime, time_zone)—Applies the specified time zone to the
datetime value that does not reflect time zone difference from UTC

Listing 42.9 demonstrates the use of some of the new data types and functions. Notice the
difference in the specified decimal precision returned for the time values.

LISTING 42.9 Using the new date and time Data Types and Functions

declare @date date,

@time time,

@time3 time(3),

@datetime2 datetime2(7),

@datetimeoffset datetimeoffset,

@datetime datetime,

@utcdatetime datetime2(7)

select @datetime = getdate(),

@date = getdate(),

@time = sysdatetime(),

@time3 = sysdatetime(),

@datetime2 = SYSDATETIME(),

@datetimeoffset = SYSDATETIMEOFFSET(),

@utcdatetime = SYSUTCDATETIME()

select @datetime as ‘datetime’,

@date as ‘date’,

@time as ‘time’,

ptg

1574 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

@time3 as ‘time3’

select

@datetime2 as ‘datetime2’,

@datetimeoffset as ‘datetimeoffset’,

@utcdatetime as ‘utcdatetime’

select SYSDATETIMEOFFSET() as sysdatetimeoffset,

SYSDATETIME() as sysdatetime

go

datetime date time time3

----------------------- ---------- ---------------- -----------------

2010-03-28 23:18:30.490 2010-03-28 23:18:30.4904294 23:18:30.492

datetime2 datetimeoffset utcdatetime

---------------------- ---------------------------------- ----------------------

2010-03-28 23:18:30.49 2010-03-28 23:18:30.4924295 -04:00 2010-03-29 03:18:30.49

sysdatetimeoffset sysdatetime

---------------------------------- ----------------------

2010-03-28 23:24:10.7485902 -04:00 2010-03-28 23:24:10.74

Be aware that retrieving the value from getdate() or sysdatetime() into a
datetimeoffset variable or column does not capture the offset from UTC, even if you
store the returned value in a column or variable defined with the datetimeoffset data
type. To do so, you need to use the SYSDATETIMEOFFSET() function:

declare @datetimeoffset1 datetimeoffset,

@datetimeoffset2 datetimeoffset

select

@datetimeoffset1 = SYSDATETIME(),

@datetimeoffset2 = SYSDATETIMEOFFSET()

select @datetimeoffset1, @datetimeoffset2

go

---------------------------------- ----------------------------------

2010-03-28 23:36:39.7271831 +00:00 2010-03-28 23:36:39.7271831 -04:00

Note that in the output, SQL Server Management Studio (SSMS) trims the time values
down to two decimal places when it displays the results in the Text Results tab. However,
this is just for display purposes (and applies only with text results; grid results display the
full decimal precision). The actual value does store the precision down to the specified
number of decimal places, which can be seen if you convert the datetime2 value to a
string format that displays all the decimal places:

ptg

1575New date and time Data Types and Functions
4

2

select SYSDATETIME() as datetime2_trim,

convert(varchar(30), SYSDATETIME(), 121) as datetime2_full

go

datetime2_trim datetime2_full

---------------------- ------------------------------

2010-03-30 23:52:30.68 2010-03-30 23:52:30.6851262

The SWITCHOFFSET() function can be used to convert a datetimeoffset value into a differ-
ent time zone offset value:

select SYSDATETIMEOFFSET(), SWITCHOFFSET (SYSDATETIMEOFFSET(), ‘-07:00’)

go

---------------------------------- ----------------------------------

2010-03-29 00:07:21.1335738 -04:00 2010-03-28 21:07:21.1335738 -07:00

When you are specifying a time zone value for the SWITCHOFFSET or TODATETIMEOFFSET
offset functions, the value can be specified as an integer value representing the number of
minutes of offset or as a time value in hh:mm format. The range of allowed values is +14
hours to -13 hours.

select TODATETIMEOFFSET (SYSDATETIME(), -300)

select TODATETIMEOFFSET (SYSDATETIME(), ‘-05:00’)

go

2010-03-29 00:23:05.5773288 -05:00

2010-03-29 00:23:05.5773288 -05:00

Date and Time Conversions

If an existing CONVERT style includes the time part, and the conversion is from
datetimeoffset to a string, the time zone offset (except for style 127) is included. If you
do not want the time zone offset, you need to use cast or convert the datetimeoffset
value to datetime2 first and then to a string:

select convert(varchar(35), SYSDATETIMEOFFSET(), 121) as datetime_offset,

CONVERT(varchar(30), cast(SYSDATETIMEOFFSET() as datetime2),121) as datetime2

go

datetime_offset datetime2

----------------------------------- ------------------------------

2010-03-30 23:57:36.1015950 -04:00 2010-03-30 23:57:36.1015950

ptg

1576 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

When you convert from datetime2 or datetimeoffset to date, there is no rounding and
the date part is extracted explicitly. For any implicit conversion from datetimeoffset to
date, time, datetime2, datetime, or smalldatetime, conversion is based on the local date
and time value (to the persistent time zone offset). For example, when the
datetimeoffset(3) value, 2006-10-21 12:20:20.999 -8:00, is converted to time(3), the
result is 12:20:20.999, not 20:20:20.999(UTC).

If you convert from a higher-precision time value to a lower-precision value, the conversion
is permitted, and the higher-precision values are truncated to fit the lower precision type.

If you are converting a time(n), datetime2(n), or datetimeoffset(n) value to a string,
the number of digits depends on the type specification. If you want a specific precision in
the resulting string, convert to a data type with the appropriate precision first and then to
a string, as follows:

select

convert(varchar(35), sysdatetime(), 121) as datetime_offset,

CONVERT(varchar(30), cast(sysdatetime() as datetime2(3)), 121) as datetime2

go

datetime_offset datetime2

----------------------------------- ------------------------------

2010-03-31 00:04:37.3306880 2010-03-31 00:04:37.331

If you attempt to cast a string literal with a fractional seconds precision that is more than
that allowed for smalldatetime or datetime, Error 241 is raised:

declare @datetime datetime

select @datetime = ‘2010-03-31 00:04:37.3306880’

go

Msg 241, Level 16, State 1, Line 2

Conversion failed when converting date and/or time from character string.

Table-Valued Parameters
In previous versions of SQL Server, it was not possible to share the contents of table vari-
ables between stored procedures. SQL Server 2008 changes that with the introduction of
table-valued parameters, which allow you to pass table variables to stored procedures as
input parameters. Table-valued parameters provide more flexibility and, in many cases,
better performance than temporary tables as a means to pass result sets between stored
procedures.

ptg

1577Table-Valued Parameters
4

2

To create and use table-valued parameters, you must first create a user-defined table type
as a TABLE data type and define the table structure. This is done using the CREATE TYPE
command, as shown in Listing 42.10.

LISTING 42.10 Defining a User-Defined Table Type

if exists (select * from sys.systypes t where t.name = ‘ytdsales_tabletype’

and t.uid = USER_ID(‘dbo’))

drop type ytdsales_tabletype

go

CREATE TYPE ytdsales_tabletype AS TABLE

(title_id char(6),

title varchar(50),

pubdate date,

ytd_sales int)

go

After creating the user-defined table data type, you can use it for declaring local table vari-
ables and for stored procedure parameters. To use the table-valued parameter in a proce-
dure, you create a procedure to receive and access data through a table-valued parameter,
as shown in Listing 42.11.

LISTING 42.11 Defining a Stored Procedure with a Table-Valued Parameter

/* Create a procedure to receive data for the table-valued parameter. */

if OBJECT_ID(‘tab_parm_test’) is not null

drop proc tab_parm_test

go

create proc tab_parm_test

@pubdate datetime = null,

@sales_minimum int = 0,

@ytd_sales_tab ytdsales_tabletype READONLY

as

set nocount on

if @pubdate is null

-- if no date is specified, set date to last year

set @pubdate = dateadd(month, -12, getdate())

select * from @ytd_sales_tab

where pubdate > @pubdate

and ytd_sales >= @sales_minimum

return

go

ptg

1578 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

Then, when calling that stored procedure, you declare a local table variable using the table
data type defined previously, populate the table variable with data, and then pass the table
variable to the stored procedure (see Listing 42.12).

LISTING 42.12 Executing a Stored Procedure with a Table-Valued Parameter

/* Declare a variable that references the table type. */

declare @ytd_sales_tab ytdsales_tabletype

/* Add data to the table variable. */

insert @ytd_sales_tab

select title_id, convert(varchar(50), title), pubdate, ytd_sales

from titles

/* Pass the table variable populated with data to a stored procedure. */

exec tab_parm_test ‘6/1/2001’, 10000, @ytd_sales_tab

go

title_id title ytd_sales

-------- -- -----------

BU2075 You Can Combat Computer Stress! 18722

MC3021 The Gourmet Microwave 22246

TC4203 Fifty Years in Buckingham Palace Kitchens 15096

The scope of a table-valued parameter is limited to only the stored procedure to which it is
passed. To access the contents of a table-valued parameter in a procedure called by
another procedure that contains a table-valued parameter, you need to pass the table-
valued parameter to the subprocedure. Listing 42.13 provides an example of a subproce-
dure and alters the procedure created in Listing 42.6 to call the subprocedure.

LISTING 42.13 Passing a Table-Valued Parameter to a Subprocedure

/* Create the sub-procedure */

create proc tab_parm_subproc

@pubdate datetime = null,

@sales_minimum int = 0,

@ytd_sales_tab ytdsales_tabletype READONLY

as

select * from @ytd_sales_tab

where ytd_sales <= @sales_minimum

and ytd_sales <> 0

ptg

1579Table-Valued Parameters
4

2

go

/* modify the tab_part_test proc to call the sub-procedure */

alter proc tab_parm_test

@pubdate datetime = null,

@sales_minimum int = 0,

@ytd_sales_tab ytdsales_tabletype READONLY

as

set nocount on

if @pubdate is null

-- if no date is specified, set date to last year

set @pubdate = dateadd(month, -12, getdate())

select * from @ytd_sales_tab

where pubdate > @pubdate

and ytd_sales >= @sales_minimum

exec tab_parm_subproc @pubdate,

@sales_minimum,

@ytd_sales_tab

return

go

/* Declare a variable that references the type. */

declare @ytd_sales_tab ytdsales_tabletype

/* Add data to the table variable. */

insert @ytd_sales_tab

select title_id, convert(varchar(50), title), pubdate, ytd_sales

from titles

where type = ‘business’

/* Pass the table variable populated with data to a stored procedure. */

exec tab_parm_test ‘6/1/2001’, 10000, @ytd_sales_tab

go

title_id title pubdate ytd_sales

-------- -- ---------- -----------

BU2075 You Can Combat Computer Stress! 2004-06-30 18722

title_id title pubdate ytd_sales

-------- -- ---------- -----------

BU1032 The Busy Executive’s Database Guide 2004-06-12 4095

ptg

1580 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

BU1111 Cooking with Computers: Surreptitious Balance Shee 2004-06-09 3876

BU7832 Straight Talk About Computers 2004-06-22 4095

Table-Valued Parameters Versus Temporary Tables

Table-valued parameters offer more flexibility and in some cases better performance than
temporary tables or other ways to pass a list of values to a stored procedure. One benefit is
table-valued parameters do not acquire locks for the initial population of data from a
client. Also, table-valued parameters are memory resident and do not incur physical I/O
unless they grow too large to remain in cache memory.

However, table-valued parameters do have some restrictions:

. SQL Server does not create or maintain statistics on columns of table-valued parame-
ters.

. Table-valued parameters can be passed only as READONLY input parameters to T-SQL
routines. You cannot perform UPDATE, DELETE, or INSERT operations on a table-valued
parameter within the body of the stored procedure to which it is passed.

. Like table variables, a table-valued parameter cannot be specified as the target of a
SELECT INTO or INSERT EXEC statement. They can only be populated using an
INSERT statement.

Hierarchyid Data Type
The Hierarchyid data type introduced in SQL Server 2008 is actually a system-supplied
common language runtime (CLR) user-defined type (UDT) that can be used for storing and
manipulating hierarchical structures (for example, parent-child relationships) in a rela-
tional database. The Hierarchyid type is stored as a varbinary value that represents the
position of the current node in the hierarchy (both in terms of parent-child position and
position among siblings). You can perform manipulations on the type in Transact-SQL by
invoking methods exposed by the type.

Creating a Hierarchy

First, let’s define a hierarchy in a table using the Hierarchyid data type. For example, this
section uses the Parts table example used in Chapter 28, “Creating and Managing Stored
Procedures,” to demonstrate how a stored procedure could be used to traverse a hierarchy
stored in a table. There is also an example in Chapter 52 using a recursive common table
expression (CTE) to perform a similar action. Let’s see how to implement an alternative
solution by adding a Hierarchyid column to the Parts table. First, you create a version of
the Parts table using the Hierarchyid data type (see Listing 42.14).

ptg

1581Hierarchyid Data Type
4

2

LISTING 42.14 Creating the Parts Table with a Hierarchyid Data Type

Use bigpubs2008

Go

CREATE TABLE PARTS_hierarchy(

partid int NOT NULL,

hid hierarchyid not null,

lvl as hid.GetLevel() persisted,

partname varchar(30) NOT NULL,

PRIMARY KEY NONCLUSTERED (partid),

UNIQUE NONCLUSTERED (partname)

)

Note the hid column defined with the Hierarchyid data type. Notice also how the lvl
column is defined as a compute column using the GetLevel method of the hid column to
define the persisted computed column level. The GetLevel method returns the level of the
current node in the hierarchy.

The Hierarchyid data type provides topological sorting, meaning that a child’s sort value is
guaranteed to be greater than the parent’s sort value. This guarantees that a node’s sort value
will be higher than all its ancestors. You can take advantage of this feature by creating an index
on the Hierarchyid column because the index will sort the data in a depth-first manner. This
ensures that all members of the same subtree are close to each other in the leaf level of the
index, which makes the index useful as an efficient mechanism for returning all descendents of
a node. To take advantage of this, you can create a clustered index on the hid column:

CREATE UNIQUE CLUSTERED INDEX idx_hid_first ON Parts_hierarchy (hid);

You can also use another indexing strategy called breadth-first, in which you organize all
nodes from the same level close to each other in the leaf level of the index. This is done by
building the index such that the leading column is level in the hierarchy. Queries that need
to get all nodes from the same level in the hierarchy can benefit from this type of index:

CREATE UNIQUE INDEX idx_lvl_first ON Parts_hierarchy(lvl, hid);

Populating the Hierarchy
Now that you’ve created the hierarchy table, the next step is to populate it. To insert a
new node into the hierarchy, you must first produce a new Hierarchyid value that repre-
sents the correct position in the hierarchy. There are two methods available with the
Hierarchyid data type to do this: the HIERARCHYID::GetRoot() method and
GetDescendant method. You use the HIERARCHYID::GetRoot() method to produce the
value for the root node of the hierarchy. This method simply produces a Hierarchyid
value that is internally an empty binary string representing the root of the tree.

You can use the GetDescendant method to produce a value below a given parent. The
GetDescendant method accepts two optional Hierarchyid input values that represent the
two nodes between which you want to position the new node. If both values are not NULL,
the method produces a new value positioned between the two nodes. If the first parameter

ptg

1582 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

is not NULL and the second parameter is NULL, the method produces a value greater than
the first parameter. Finally, if the first parameter is NULL and the second parameter is not
NULL, the method produces a value smaller than the second parameter. If both parameters
are NULL, the method produces a value simply below the given parent.

NOTE

The GetDescendant method does not guarantee that Hierarchyid values are unique.
To enforce uniqueness, you must define either a primary key, unique constraint, or
unique index on the Hierarchyid column.

The code in Listing 42.15 uses a cursor to loop through the rows currently in the Parts
table and populates the Parts_hierarchy table. If the part is the first node in the hierar-
chy, the procedure uses the HIERARCHYID::GetRoot() method to assign the hid value for
the root node of the hierarchy. Otherwise, the code in the cursor looks for the last child
hid value of the new part’s parent part and uses the GetDescendant method to produce a
value that positions the new node after the last child of that parent part.

NOTE

Listing 42.15 also makes use of a recursive common table expression to traverse the
existing Parts table in hierarchical order to add in the rows at the proper level, starting
with the top-most parent part. If you are unfamiliar with CTEs (which were introduced in
SQL Server 2005), you may want to review the “In Case you Missed it…” section in
Chapter 43.

LISTING 42.15 Populating the Parts_hierarchy Table

DECLARE

@hid AS HIERARCHYID,

@parent_hid AS HIERARCHYID,

@last_child_hid AS HIERARCHYID,

@partid int,

@partname varchar(30),

@parentpartid int

declare parts_cur cursor for

WITH PartsCTE(partid, partname, parentpartid, lvl)

AS

(

SELECT partid, partname, parentpartid, 0

FROM PARTS

WHERE parentpartid is null

ptg

1583Hierarchyid Data Type
4

2

UNION ALL

SELECT P.partid, P.partname, P.parentpartid, PP.lvl+1

FROM Parts as P

JOIN PartsCTE as PP

ON P.parentpartid = PP.Partid

)

SELECT PartID, Partname, ParentPartid

FROM PartsCTE

order by lvl

open parts_cur

fetch parts_cur into @partid, @partname, @parentpartid

while @@FETCH_STATUS = 0

begin

if @parentpartid is null

set @hid = HIERARCHYID::GetRoot()

else

begin

select @parent_hid = hid from PARTS_hierarchy

where partid = @parentpartid

select @last_child_hid = MAX(hid) from PARTS_hierarchy

where hid.GetAncestor(1) = @parent_hid

select @hid = @parent_hid.GetDescendant(@last_child_hid, NULL)

end

insert PARTS_hierarchy (partid, hid, partname)

values (@partid, @hid, @partname)

fetch parts_cur into @partid, @partname, @parentpartid

end

close parts_cur

deallocate parts_cur

go

Querying the Hierarchy

Now that you’ve populated the hierarchy, you should query it to view the data and verify
the hierarchy was populated correctly. However, If you query the hid value directly, you
see only its binary representation, which is not very meaningful. To view the Hierarchyid
value in a more useful manner, you can use the ToString method, which returns a logical
string representation of the Hierarchyid. This string representation is shown as a path

ptg

1584 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

with a slash sign used as a separator between the levels. For example, you can run the
following query to get both the binary and logical representations of the hid value:

select cast(hid as varbinary(6)) as hid,

substring(hid.ToString(), 1, 12) as path,

lvl,

partid,

partname

From parts_hierarchy

go

hid path lvl partid partname

-------------- ------------ ------ ----------- ------------------

0x / 0 22 Car

0x58 /1/ 1 1 DriveTrain

0x68 /2/ 1 23 Body

0x78 /3/ 1 24 Frame

0x5AC0 /1/1/ 2 2 Engine

0x5B40 /1/2/ 2 3 Transmission

0x5BC0 /1/3/ 2 4 Axle

0x5C20 /1/4/ 2 12 Drive Shaft

0x5B56 /1/2/1/ 3 9 Flywheel

0x5B5A /1/2/2/ 3 10 Clutch

0x5B5E /1/2/3/ 3 16 Gear Box

0x5AD6 /1/1/1/ 3 5 Radiator

0x5ADA /1/1/2/ 3 6 Intake Manifold

0x5ADE /1/1/3/ 3 7 Exhaust Manifold

0x5AE1 /1/1/4/ 3 8 Carburetor

0x5AE3 /1/1/5/ 3 13 Piston

0x5AE5 /1/1/6/ 3 14 Crankshaft

0x5AE358 /1/1/5/1/ 4 21 Piston Rings

0x5AE158 /1/1/4/1/ 4 11 Float Valve

0x5B5EB0 /1/2/3/1/ 4 15 Reverse Gear

0x5B5ED0 /1/2/3/2/ 4 17 First Gear

0x5B5EF0 /1/2/3/3/ 4 18 Second Gear

0x5B5F08 /1/2/3/4/ 4 19 Third Gear

0x5B5F18 /1/2/3/5/ 4 20 Fourth Gear

As stated previously, the values stored in a Hierarchyid column provide topological sorting
of the nodes in the hierarchy. The GetLevel method can be used to produce the level in the
hierarchy (as it was to store the level in the computed lvl column in the Parts_hierarchy

table). Using the lvl column or the GetLevel method, you can easily produce a graphical
depiction of the hierarchy by simply sorting the rows by hid and generating indentation
for each row based on the lvl column, as shown in the following example:

ptg

1585Hierarchyid Data Type
4

2

SELECT

REPLICATE(‘--’, lvl)

+ right(‘>’,lvl)

+ partname AS partname

FROM Parts_hierarchy

order by hid

go

partname

Car

-->DriveTrain

---->Engine

------>Radiator

------>Intake Manifold

------>Exhaust Manifold

------>Carburetor

-------->Float Valve

------>Piston

-------->Piston Rings

------>Crankshaft

---->Transmission

------>Flywheel

------>Clutch

------>Gear Box

-------->Reverse Gear

-------->First Gear

-------->Second Gear

-------->Third Gear

-------->Fourth Gear

---->Axle

---->Drive Shaft

-->Body

-->Frame

To return only the subparts of a specific part, you can use the IsDescendantOf method.
The parameter passed to this method is a node’s Hierarchyid value. The method returns 1
if the queried node is a descendant of the input node. For example, the following query
returns all subparts of the engine:

select child.partid, child.partname, child.lvl

from

parts_hierarchy as parent

inner join

parts_hierarchy as child

on parent.partname = ‘Engine’

and child.hid.IsDescendantOf(parent.hid) = 1

ptg

1586 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

go

partid partname lvl

----------- ------------------------------ ------

2 Engine 2

5 Radiator 3

6 Intake Manifold 3

7 Exhaust Manifold 3

8 Carburetor 3

13 Piston 3

14 Crankshaft 3

21 Piston Rings 4

11 Float Valve 4

You can also use the IsDescendantOf method to return all parent parts of a given part:

select parent.partid, parent.partname, parent.lvl

from

parts_hierarchy as parent

inner join

parts_hierarchy as child

on child.partname = ‘Piston’

and child.hid.IsDescendantOf(parent.hid) = 1

go

partid partname lvl

----------- ------------------------------ ------

22 Car 0

1 DriveTrain 1

2 Engine 2

13 Piston 3

To return a specific level of subparts for a given part, you can use the GetAncestor
method. You pass this method an integer value indicating the level below the parent you
want to display. The function returns the Hierarchyid value of the ancestor n levels above
the queried node. For example, the following query returns all the subparts two levels
down from the drivetrain:

select child.partid, child.partname

from

parts_hierarchy as parent

inner join

parts_hierarchy as child

on parent.partname = ‘Drivetrain’

and child.hid.GetAncestor(2) = parent.hid

go

ptg

1587Hierarchyid Data Type
4

2

partid partname lvl

----------- ------------------------------ ------

9 Flywheel 3

10 Clutch 3

16 Gear Box 3

5 Radiator 3

6 Intake Manifold 3

7 Exhaust Manifold 3

8 Carburetor 3

13 Piston 3

14 Crankshaft 3

Modifying the Hierarchy

The script in Listing 42.15 performs the initial population of the Parts_hierarchy table.
What if you need to add additional records into the table? Let’s look at how to use the
GetDescendant method to add new records at different levels of the hierarchy.

For example, to add a child part to the Body node (node /2/), you can use the
GetDescendant method without any arguments to add the new row below Body node at
node /2/1/:

INSERT Parts_hierarchy (hid, partid, partname)

select hid.GetDescendant(null, null), 25, ‘left front fender’

from Parts_hierarchy

where partname = ‘Body’

To add a new row as a higher descendant node at the same level as the left front fender
inserted in the previous example, you use the GetDescendant method again, but this time
passing the Hierarchyid of the existing child node as the first parameter. This specifies
that the new node will follow the existing node, becoming /2/2/. There are a couple of
ways to specify the Hierarchyid of the existing child node. You can retrieve it from the
table as a Hierarchyid data type, or if you know the string representation of the node,
you can use the Parse method. The Parse method converts a canonical string representa-
tion of a hierarchical value to Hierarchyid. Parse is also called implicitly when a conver-
sion from a string type to Hierarchyid occurs, as in CAST (input AS hierarchyid). Parse is
essentially the opposite of the ToString method.

INSERT Parts_hierarchy (hid, partid, partname)

select hid.GetDescendant(hierarchyid::Parse(‘/2/1/’), null), 26, ‘right

front fender’

from Parts_hierarchy

where partname = ‘Body’

ptg

1588 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

Now, what if you need to add a new node between the two existing nodes you just added?
Again, you use the GetDescendant methods, but this time, you pass it the hierarchy IDs of
both existing nodes between which you want to insert the new node:

declare @child1 hierarchyid,

@child2 hierarchyid

select @child1 = hid from Parts_hierarchy where partname = ‘left front fender’

select @child2 = hid from Parts_hierarchy where partname = ‘right front fender’

INSERT Parts_hierarchy (hid, partid, partname)

select hid.GetDescendant(@child1, @child2), 27, ‘front bumper’

from Parts_hierarchy

where partname = ‘Body’

Now, let’s run a query of the Body subtree to examine the newly inserted child nodes:

select child.partid, child.partname, child.lvl,

substring(child.hid.ToString(), 1, 12) as path

from

parts_hierarchy as parent

inner join

parts_hierarchy as child

on parent.partname = ‘Body’

and child.hid.IsDescendantOf(parent.hid) = 1

order by child.hid

go

partid partname lvl path

----------- ------------------------------ ------ ------------

23 Body 1 /2/

25 left front fender 2 /2/1/

27 front bumper 2 /2/1.1/

26 right front fender 2 /2/2/

Notice that the first child added (left front fender) has a node path of /2/1/, and the
second row added (right front fender) has a node path of /2/2/. The new child node
inserted between these two nodes (front bumper) was given a node path of /2/1.1/ so
that it maintains the designated topological ordering of the nodes.

What if you need to make other types of changes within hierarchies? For example, you
might need to move a whole subtree of parts from one part to another (that is, move a
part and all its subordinates). To move nodes or subtrees in a hierarchy, you can use the
GetReparentedValue method of the Hierarchyid data type. You invoke this method on
the Hierarchyid value of the node you want to reparent and provide as inputs the value
of the old parent and the value of the new parent.

Note that this method doesn’t change the Hierarchyid value for the existing node that
you want to move. Instead, it returns a new Hierarchyid value that you can use to update

ptg

1589Hierarchyid Data Type
4

2

the target node’s Hierarchyid value. Logically, the GetReparentedValue method simply
substitutes the part of the existing node’s path that represents the old parent’s path with
the new parent’s path. For example, if the path of the existing node is /1/2/1/, the path
of the old parent is /1/2/, and the path of the new parent is /2/1/3/, the
GetReparentedValue method would return /2/1/3/1/.

You have to be careful, though. If the target parent node already has child nodes, the
GetReparentedValue method may not produce a unique hierarchy path. If you reparent
node /1/2/1/ from old parent /1/2/ to new parent /2/1/3/, and /2/1/3/ already has a
child /2/1/3/1/, you generate a duplicate value. To avoid this situation when moving a
single node from one parent to another, you should not use the GetReparentedValue
method but instead use the GetDescendant method to produce a completely new value for
the single node. For example, let’s assume you want to move the Flywheel part from the
Transmission node to the Engine node. A sample approach is shown in Listing 42.16. This
example uses the GetDescendant method to generate a new Hierarchyid under the Engine
node following the last child node and updates the hid column for the Flywheel record to
the new Hierarchyid generated.

LISTING 42.16 Moving a Single Node in a Hierarchy

declare @newhid hierarchyid,

@maxchild hierarchyid

-- first, find the max child node under the Engine node

-- this is the node we will move the Flywheel node after

select @maxchild = max(child.hid)

from

parts_hierarchy as parent

inner join

parts_hierarchy as child

on parent.partname = ‘Engine’

and child.hid.GetAncestor(1) = parent.hid

select ‘Child to insert after’ = @maxchild.ToString()

-- Now, generate a new descendant hid for the Engine node

-- after the max child node

select @newhid = hid.GetDescendant(@maxchild, null)

from Parts_hierarchy

where partname = ‘Engine’

-- Update the hid for the Flywheel node to the new hid

update Parts_hierarchy

set hid = @newhid

where partname = ‘Flywheel’

go

Child to insert after

/1/1/6/

ptg

1590 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

If you need to move an entire subtree within a hierarchy, you can use the
GetReparentedValue method in conjunction with the GetDescendant method. For
example, suppose you want to move the whole Engine subtree from its current parent node
of Drivetrain to the new parent node of Car. The Car node obviously already has children.
If you want to avoid conflicts, the best approach is to generate a new Hierarchyid value for
the root node of the subtree. You can achieve this with the following steps:

1. Use the GetDescendant method to produce a completely new Hierarchyid value for
the root node of the subtree.

2. Update the Hierarchyid value of all nodes in the subtree to the value returned by
the GetReparentedValue method.

Because you are generating a completely new Hierarchyid value under the target parent,
this new child node has no existing children, which avoids any duplicate Hierarchyid
values. Listing 42.17 provides an example for changing the parent node of the Engine
subtree from Drivetrain to Car.

LISTING 42.17 Reparenting a Subtree in a Hierarchy

DECLARE

@old_root AS HIERARCHYID,

@new_root AS HIERARCHYID,

@new_parent_hid AS HIERARCHYID,

@max_child as hierarchyid

-- Get the hid of the new parent

select @new_parent_hid = hid

FROM dbo.parts_hierarchy

WHERE partname = ‘Car’

-- Get the hid of the current root of the subnode

Select @old_root = hid

FROM dbo.parts_hierarchy

WHERE partname = ‘Engine’

-- Get the max hid of child nodes of the new parent

select @max_child = MAX(hid)

FROM parts_hierarchy

WHERE hid.GetAncestor(1) = @new_parent_hid

-- get a new hid for the moving child node

-- that is after the current max child node of the new parent

SET @new_root = @new_parent_hid.GetDescendant (@max_child, null)

-- Next, reparent the moving child node and all descendants

UPDATE dbo.parts_hierarchy

ptg

1591Hierarchyid Data Type
4

2

SET hid = hid.GetReparentedValue(@old_root, @new_root)

WHERE hid.IsDescendantOf(@old_root) = 1

Now, let’s reexamine the hierarchy after the updates made in Listings 42.16. and 42.17:

SELECT

left(REPLICATE(‘--’, lvl)

+ right(‘>’,lvl)

+ partname, 30) AS partname,

hid.ToString() AS path

FROM Parts_hierarchy

order by hid

go

partname path

------------------------------ ------------

Car /

-->DriveTrain /1/

---->Transmission /1/2/

------>Clutch /1/2/2/

------>Gear Box /1/2/3/

-------->Reverse Gear /1/2/3/1/

-------->First Gear /1/2/3/2/

-------->Second Gear /1/2/3/3/

-------->Third Gear /1/2/3/4/

-------->Fourth Gear /1/2/3/5/

---->Axle /1/3/

---->Drive Shaft /1/4/

-->Body /2/

---->left front fender /2/1/

---->front bumper /2/1.1/

---->right front fender /2/2/

-->Frame /3/

-->Engine /4/

---->Radiator /4/1/

---->Intake Manifold /4/2/

---->Exhaust Manifold /4/3/

---->Carburetor /4/4/

------>Float Valve /4/4/1/

---->Piston /4/5/

------>Piston Rings /4/5/1/

---->Crankshaft /4/6/

---->Flywheel /4/7/

ptg

1592 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

As you can see from the results, the Flywheel node is now under the Engine node, and the
entire Engine subtree is now under the Car node.

Using FILESTREAM Storage
In versions of SQL Server prior to SQL Server 2008, there were two ways of storing
unstructured data: as a binary large object (BLOB) in an image or varbinary(max) column,
or in files outside the database, separate from the structured relational data, storing a refer-
ence or pathname to the file in a varchar column. Neither of these methods is ideal for
handling unstructured data. Storing the data outside the database makes managing the
unstructured data and keeping it associated with structured data more complex. This
approach lacks transactional consistency, coordinating backups and restores with the
structured data in the database is difficult, and implementing proper data security can be
quite cumbersome.

Storing the unstructured data in the database solves the transactional consistency,
backup/restore, and security issues, but BLOBs have different usage patterns than rela-
tional data. SQL Server’s storage engine is primarily concerned with doing I/O on rela-
tional data stored in pages and extents, not streaming large BLOBs. I/O performance
typically degrades dramatically if the size of the BLOB data increases beyond 1MB.
Accessing BLOB data stored inside a SQL Server database is generally slower than storing it
externally in a location such as the NTFS file system. In addition, BLOB storage is not as
efficient as the file system for storing large data values, so more storage space is required.

FILESTREAM storage, introduced in SQL Server 2008, helps to solve the issues with using
unstructured data by integrating the SQL Server Database Engine with the NTFS file
system for storing unstructured data such as documents and images on the file system
with a pointer to the data in the database. The file pointer is implemented in SQL Server
as a varbinary(max) column, and the actual data is stored in files in the file system.

In addition to enabling client applications to leverage the rich NTFS streaming APIs and
the performance of the file system for storing and retrieving unstructured data, other
advantages of FILESTREAM storage include the following:

. You are able to use T-SQL statements to insert, update, query, and back up
FILESTREAM data even though the actual data resides outside the database in the
NTFS file system.

. You are able to maintain transactional consistency between the unstructured data
and corresponding structured data.

. You are able to enforce the same level of security on the unstructured data as with
your relational data using built-in SQL Server security mechanisms.

ptg

1593Using FILESTREAM Storage
4

2

. FILESTREAM uses the NT system cache for caching file data rather than caching the
data in the SQL Server buffer pool, leaving more memory available for query
processing.

. FILESTREAM storage also eliminates the size limitation of BLOBS stored in the data-
base. Whereas standard image and varbinary(max) columns have a size limitation of
2GB, the sizes of the FILESTREAM BLOBs are limited only by the available space of
the file system.

Columns with the FILESTREAM attribute set can be managed just like any other BLOB
column in SQL Server. Administrators can use the manageability and security capabilities
of SQL Server to integrate FILESTREAM data management with the rest of the data in the
relational database—without needing to manage the file system data separately. This
includes maintenance operations such as backup and restore, complete integration with
the SQL Server security model, and full-transaction support to ensure data-level consis-
tency between the relational data in the database and the unstructured data physically
stored on the file system. The database administrator does not need to manage the file
system data separately

Whether you should use database storage or file system storage for your BLOB data is
determined by the size and use of the unstructured data. If the following conditions are
true, you should consider using FILESTREAM:

. The objects being stored as BLOBS are, on average, larger than 1MB.

. Fast read access is important.

. You are developing applications that use a middle tier for application logic.

Enabling FILESTREAM Storage

If you decide to use FILESTREAM storage, it first needs to be enabled at both the Windows
level as well as at the SQL Server Instance level. FILESTREAM storage can be enabled auto-
matically during SQL Server installation or manually after installation.

If you are enabling FILESTREAM during SQL Server installation, you need to provide the
Windows share location where the FILESTREAM data will be stored. You can also choose
whether to allow remote clients to access the FILESTREAM data. For more information on
how to enable FILESTREAM storage during installation, see Chapter 8, “Installing SQL
Server 2008.”

If you did not enable the FILESTREAM option during installation, you can enable it for a
running instance of SQL Server 2008 at any time using SQL Server Configuration Manager
(SSCM). In SSCM, right-click on the SQL Server Service and select Properties. Then select
the FILESTREAM tab, which provides similar options as those displayed during SQL Server
installation (see Figure 42.1). This enables SQL Server to work directly with the Windows

ptg

1594 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

FIGURE 42.1 Setting FILESTREAM options in SQL Server Configuration Manager.

file system for storing FILESTREAM data. You have three options for how FILESTREAM
functionality will be enabled:

. Allowing only T-SQL access (by checking only the Enable FILESTREAM for Transact-
SQL Access option).

. Allowing both T-SQL and Win32 access to FILESTREAM data (by checking the Enable
FILESTREAM for File I/O Streaming Access option and providing a Windows share
name to be used to access the FILESTREAM data). This allows Win32 file system
interfaces to provide streaming access to the data.

. Allowing remote clients to have access to the FILESTREAM data that is stored on this
share (by selecting the Allow Remote Clients to Have Streaming Access to
FILESTREAM Data option).

NOTE

You need to be Windows Administrator on a local system and have sysadmin rights to
enable FILESTREAM for SQL Server.

After you enable FILESTREAM in SQL Server Configuration Manager, a new share is
created on the host system with the name specified. This share is intended only to allow
very low-level streaming interaction between SQL Server and authorized clients. It is
recommended that only the service account used by the SQL Server instance should have
access to this share. Also, because this change takes place at the OS level and not from
within SQL Server, you need to stop and restart the SQL Server instance for the change to
take effect.

ptg

1595Using FILESTREAM Storage
4

2

After restarting the SQL Server instance to enable FILESTREAM at the Windows OS level,
you next need to enable FILESTREAM for the SQL Server Instance. You can do this either
through SQL Server Management Studio or via T-SQL. To enable FILESTREAM for the SQL
Server instance using SQL Server Management Studio, right-click on the SQL Server
instance in the Object Explorer, select Properties, select the Advanced page, and set the
Filestream Access Level property as shown in Figure 42.2. The available options are

. Disabled (0)—FILESTREAM access is not permitted.

. Transact SQL Access Enabled (1)—FILESTREAM data can be accessed only by T-
SQL commands.

. Full Access Enabled (2)—Both T-SQL and Win32 access to FILESTREAM data are
permitted.

You can also optionally enable FILESTREAM for the SQL Server instance using the
sp_Configure system procedure, specifying the ’filestream access level’ as the setting
and passing the option of 0 (disabled), 1 (T-SQL access), or 2 (Full access). The following
example shows full access being enabled for the current SQL Server instance:

EXEC sp_configure ‘filestream access level’, 2

GO

RECONFIGURE

GO

FIGURE 42.2 Enabling FILESTREAM for a SQL Server Instance in SSMS.

ptg

1596 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

After you configure the SQL Server instance for FILESTREAM access, the next step is to set
up a database to store FILESTREAM data.

Setting Up a Database for FILESTREAM Storage

After you enable FILESTREAM for the SQL Server instance, you can store FILESTREAM data
in a database by creating a FILESTREAM filegroup. You can do this when creating the data-
base or by adding a new filegroup to an existing database. The filegroup designated for
FILESTREAM storage must include the CONTAINS FILESTREAM clause and be defined. The
code in Listing 42.18 creates the Customer database and then adds a FILESTREAM filegroup.

LISTING 42.18 Setting Up a Database for FILESTREAM Storage

CREATE DATABASE Customer

ON (NAME=’Customer_Data’,

FILENAME=’C:\SQLData\Customer_Data1.mdf’,

SIZE=50,

MAXSIZE=100,

FILEGROWTH=10)

LOG ON (NAME=’Customer_Log’,

FILENAME=’C:\SQLData\Customer_Log.ldf’,

SIZE=50,

FILEGROWTH=20%)

GO

ALTER DATABASE Customer

ADD FILEGROUP Cust_FSGroup CONTAINS FILESTREAM

GO

ALTER DATABASE Customer

ADD FILE (NAME=custinfo_FS,

FILENAME = ‘G:\SQLData\custinfo_FS’)

TO FILEGROUP Cust_FSGroup

GO

Notice in Listing 42.18 the FILESTREAM filegroup points to a file system folder rather than
an actual file. This folder must not exist already (although the path up to the folder must
exist); SQL Server creates the FILESTREAM folder (for example, in Listing 42.18, the
custinfo_FS folder is created automatically by SQL Server in the G:\SQLData folder). The
FILESTREAM files and file data actually end up being stored in the created folder. A
FILESTREAM filegroup is restricted to referencing only a single file folder.

ptg

1597Using FILESTREAM Storage
4

2

Using FILESTREAM Storage for Data Columns

Once FILESTREAM storage is enabled for a database, you can specify the FILESTREAM
attribute on a varbinary(max) column to indicate that a column should store data in the
FILESTREAM filegroup on the file system. When columns are defined with the FILESTREAM
attribute, the Database Engine stores all data for that column on the file system instead of
in the database file. In addition to a varbinary(max) column with the FILESTREAM
attribute, tables used to store FILESTREAM data also require the existence of a UNIQUE
ROWGUIDCOL, as shown in Listing 42.19, which creates a custinfo table on the FILESTREAM
filegroup. CUSTDATA is defined as the FILESTREAM column, and ID is defined as the unique
ROWGUID column.

LISTING 42.19 Creating a FILESTREAM-Enabled Table

CREATE TABLE CUSTINFO

(ID UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL UNIQUE,

CUSTDATA VARBINARY (MAX) FILESTREAM NULL)

FILESTREAM_ON Cust_FSGroup

Each table created with a FILESTREAM column(s) creates a new subfolder in the FILESTREAM
filegroup folder, and each FILESTREAM column in the table creates a separate subfolder
under the table folder. These column folders are where the actual FILESTREAM files are
stored. Initially, these folders are empty until you start adding rows into the table. A file is
created in the column subfolder for each row inserted into the table with a non-NULL value
for the FILESTREAM column.

NOTE

For more detailed information on how FILESTREAM data is stored and managed, see
Chapter 34.

To ensure that SQL Server creates a new, blank file within the FILESTREAM storage folder
for each row inserted in the table, you can specify a default value of 0x for the
FILESTREAM column:

alter table CUSTINFO add constraint custdata_def default 0x for CUSTDATA

Creating a default is not required if all access to the FILESTREAM data is going to be done
through T-SQL. However, if you will be using Win32 streaming clients to upload file
contents into the FILESTREAM column, the file needs to exist already. Without the default
to ensure creation of a “blank” file for each row, new files would have to be created first
by inserting contents directly through T-SQL before they could be accessed via Win32
client streaming applications.

ptg

1598 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

To insert data into a FILESTREAM column, you use a normal INSERT statement and provide
a varbinary(max) value to store into the FILESTREAM column:

INSERT CUSTINFO (ID, CUSTDATA)

VALUES (NEWID(), CONVERT(VARBINARY(MAX), REPLICATE (‘CUST DATA’, 100000)))

To retrieve FILESTREAM data, you can use a simple T-SQL SELECT statement, although you
may need to convert the varbinary(max) to varchar to be able to display text data:

select ID, CONVERT(varchar(40), CUSTDATA) as CUSTDATA

from CUSTINFO

go

ID CUSTDATA

------------------------------------ --

FA67BF05-51B5-4BA7-A383-7F88DAAE9C49 CUST DATACUST DATACUST DATACUST DATACUST

The preceding examples work fine if the FILESTREAM data is essentially text data;
however, neither SQL Server Management Studio nor SQL Server itself really has any user
interface, or native way, to let you stream the contents of an actual file into a table that’s
been marked with the FILESTREAM attribute on one of your varbinary(max) columns. In
other words, if you have a .jpg or .mp3 file that you want to store within SQL Server,
there’s no native functionality to convert that image’s byte stream into something that
you could put, for example, into a simple INSERT statement. To read or store this type of
data, you need to use Win32 to read and write data to a FILESTREAM BLOB. Following are
the steps you need to perform in your client applications:

1. Read the FILESTREAM file path.

2. Read the current transaction context.

3. Obtain a Win32 handle and use the handle to read and write data to the
FILESTREAM BLOB.

Each cell in a FILESTREAM table has a file path associated with it. You can use the PATHNAME

property to retrieve the file path of a varbinary(max) column in a T-SQL statement:

DECLARE @filePath varchar(max)

SELECT @filePath = CUSTDATA.PathName()

FROM CUSTINFO

WHERE ID = ‘FA67BF05-51B5-4BA7-A383-7F88DAAE9C49’

PRINT @filepath

go

\\LATITUDED830-W7\FILESTREAM\v1\Customer\dbo\CUSTINFO\CUSTDATA

\FA67BF05-51B5-4BA7-A383-7F88DAAE9C49

ptg

1599Using FILESTREAM Storage
4

2

Next, to obtain the current transaction context and return it to the client application, use
the GET_FILESTREAM_TRANSACTION_CONTEXT() T-SQL function:

BEGIN TRAN

SELECT GET_FILESTREAM_TRANSACTION_CONTEXT()

After you obtain the transaction context, the next step in your application code is to
obtain a Win32 file handle to read or write the data to the FILESTREAM column. To obtain
a Win32 file handle, you call the OpenSqlFilestream API. The returned handle can then be
passed to any of the following Win32 APIs to read and write data to a FILESTREAM BLOB:

. ReadFile

. WriteFile

. TransmitFile

. SetFilePointer

. SetEndOfFile

. FlushFileBuffers

To summarize, the steps you perform to upload a file to a FILESTREAM column are as follows:

1. Start a new transaction and obtain the transaction context ID that can be used to
initiate the Win32 file-streaming process.

2. Execute a SqlDataReader connection to pull back the full path (in SQL Server) of the
FILESTREAM file to which you will be uploading data.

3. Initiate a straight file-streaming operation using the
System.Data.SqlTypes.SqlFileStream class.

4. Create a new System.IO.FileStream object to read the file locally and buffer bytes
along to the SqlFileStream object until there are no more bytes to transfer.

5. Close the transaction.

NOTE

Because you’re streaming file contents via a Win32 process, you need to use integrat-
ed security to connect to SQL Server because native SQL logins can’t generate the
needed security tokens to access the underlying file system where the FILESTREAM
data is stored.

To retrieve data from a FILESTREAM column to a file on the client, you primarily follow the
same steps as you do for inserting data; however, instead you pull data from a
SqlFileStream object into a buffer and push it into a local FILESTREAM object until there
are no more bytes left to retrieve.

ptg

1600 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

TIP

Refer to the “Managing FILESTREAM Data by Using Win32” topic in SQL Server 2008
R2 Books Online for specific C#, Visual Basic, and Visual C++ application code exam-
ples showing how to obtain a Win32 file handle and use it to read and write data to a
FILESTREAM column.

Sparse Columns
SQL Server 2008 provides a new space-saving storage option referred to as sparse columns.
Sparse columns can provide optimized and efficient storage for columns that contain
predominately NULL values. The NULL values require no storage space, but these space
savings come at a cost of increased space for storing non-NULL values (an additional 2–4
bytes of space is needed for non-NULL values). For this reason, Microsoft recommends
using sparse columns only when the space saved is at least 20% to 40%. However, the
consensus rule of thumb that is emerging from experience with sparse columns is that it is
best to use them only when more than 90% of the values are NULL.

There are a number of restrictions and limitations regarding the use of sparse columns,
including the following:

. Sparse columns cannot be defined with the ROWGUIDCOL or IDENTITY properties.

. Sparse columns cannot be defined with a default value.

. Sparse columns cannot be used in a user-defined table type.

. Although sparse columns allow up to 30,000 columns per table, the total row size is
reduced to 8,018 bytes due to the additional overhead for sparse columns.

. If a table has sparse columns, you can’t compress it at either the row or page level.

. Columns defined with the geography, geometry, text, ntext, timestamp, image, or
user-defined data types cannot be defined as sparse columns.

. You can’t define varbinary(max) fields that use FILESTREAM storage as sparse
columns.

. You can’t define a computed column as sparse, but you can use a sparse column in
the calculation of a computed column.

. A table cannot have more than 1,024 non-sparse columns.

Column Sets

Column sets provide an alternative way to view and work with all the sparse columns in a
table. The sparse columns are aggregated into a single untyped XML column, which
simplifies working with many sparse columns in a table. The XML column used for a
column set is similar to a calculated column in that it is not physically stored, but unlike
calculated columns, it is updateable.

ptg

1601Sparse Columns
4

2

There are some restrictions on column sets:

. You cannot add a column set to a table that already has sparse columns.

. You can define only one column set per table.

. Constraints or default values cannot be defined on a column set.

. Computed columns cannot contain column set columns.

. A column set cannot be changed; you must delete and re-create the column set.
However, sparse columns can be added to the table after a column set has been
defined and is automatically included in the column set.

. Distributed queries, replication, and Change Data Capture do not support column sets.

. A column set cannot be part of any kind of index, including XML indexes, full-text
indexes, and indexed views.

NOTE

Sparse columns and column sets are defined by using the CREATE TABLE or ALTER
TABLE statements. This chapter focuses on using and working with sparse columns.
For more information on defining sparse columns and column sets, see Chapter 24,
“Creating and Managing Tables.”

Working with Sparse Columns

Querying and manipulation of sparse columns is the same as for regular columns, with
one exception described later in this chapter. There’s nothing functionally different about
a table that includes sparse columns, except the way the sparse columns are stored. You
can still use all the standard INSERT, UPDATE, and DELETE statements on tables with sparse
columns just like a table that doesn’t have sparse columns. You can also wrap operations
on a table with sparse columns in transactions as usual.

To work with sparse columns, let’s first create a table with sparse columns. Listing 42.20
creates a version of the Product table in the AdventureWorks2008R2 database and then
populates the table with data from the Production.Product table. The Color, Weight, and
SellEndDate columns are defined as sparse columns (the source data contains a significant
number of NULL values for these columns). These columns are also defined as part of the
column set, ProductInfo.

LISTING 42.20 Creating a Table with Sparse Columns

USE AdventureWorks2008R2

GO

CREATE TABLE Product_sparse

(

ProductID INT NOT NULL PRIMARY KEY,

ProductName NVARCHAR(50) NOT NULL,

ptg

1602 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

Color NVARCHAR(15) SPARSE NULL,

Weight DECIMAL(8,2) SPARSE NULL,

SellEndDate DATETIME SPARSE NULL,

ProductInfo XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

)

GO

INSERT INTO Product_sparse

(ProductID, ProductName, Color, Weight, SellEndDate)

SELECT ProductID, Name, Color, Weight, SellEndDate

FROM Production.Product

GO

You can reference the sparse columns in your queries just as you would any type of column:

SELECT productID, productName, Color, Weight, SEllEndDate

FROM Product_sparse

where ProductID < 320

go

productID productName Color Weight SEllEndDate

--------- --------------------- ------------ ------------- -----------

1 Adjustable Race NULL NULL NULL

2 Bearing Ball NULL NULL NULL

3 BB Ball Bearing NULL NULL NULL

4 Headset Ball Bearings NULL NULL NULL

316 Blade NULL NULL NULL

317 LL Crankarm Black NULL NULL

318 ML Crankarm Black NULL NULL

319 HL Crankarm Black NULL NULL

Note, however, that if you use SELECT * in a query and the table has a column set defined
for the sparse columns, the column set is returned as a single XML column instead of the
individual columns:

SELECT *

FROM Product_sparse

where ProductID < 320

go

ProductID ProductName ProductInfo

----------- ---------------------- ----------------------------------

1 Adjustable Race NULL

2 Bearing Ball NULL

3 BB Ball Bearing NULL

4 Headset Ball Bearings NULL

ptg

1603Sparse Columns
4

2

316 Blade NULL

317 LL Crankarm <Color>Black</Color>

318 ML Crankarm <Color>Black</Color>

319 HL Crankarm <Color>Black</Color>

You need to explicitly list the columns in the SELECT clause to have the result columns
returned as relational columns.

When the column set is defined, you can also operate on the column set by using XML
operations instead of relational operations. For example, the following code inserts a row
into the table by using the column set and specifying a value for Weight as XML:

INSERT Product_sparse(ProductID, ProductName, ProductInfo)

VALUES(5, ‘ValveStem’, ‘<Weight>.12</Weight>’)

go

SELECT productID, productName, Color, Weight, SEllEndDate

FROM Product_sparse

where productID = 5

go

productID productName Color Weight SEllEndDate

----------- ----------- ----- ------ -----------

5 ValveStem NULL 0.12 NULL

Notice that NULL is assumed for any column omitted from the XML value, such as Color
and SellEndDate in this example.

When updating a column set using an XML value, you must include values for all the
columns in the column set you want to set, including any existing values. Any values not
specified in the XML string are set to NULL. For example, the following query sets both
Color and Weight where ProductID = 5:

Update Product_sparse

set ProductInfo = ‘<Color>black</Color><Weight>.20</Weight>’

where productID = 5

SELECT productID, productName, Color, Weight, SEllEndDate

FROM Product_sparse

where productID = 5

go

productID productName Color Weight SEllEndDate

----------- ----------- ----- ------ -----------

5 ValveStem black 0.20 NULL

ptg

1604 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

Now, if you run another update but only specify a value for Weight in the XML string, the
Color column is set to NULL:

Update Product_sparse

set ProductInfo = ‘<Weight>.10</Weight>’

where productID = 5

SELECT productID, productName, Color, Weight, SEllEndDate

FROM Product_sparse

where productID = 5

go

productID productName Color Weight SEllEndDate

----------- ----------- ----- ------ -----------

5 ValveStem NULL 0.10 NULL

However, if you reference the sparse columns explicitly in an UPDATE statement, the other
values remain unchanged:

Update Product_sparse

set Color = ‘silver’

where ProductID = 5

SELECT productID, productName, Color, Weight, SEllEndDate

FROM Product_sparse

where productID = 5

go

productID productName Color Weight SEllEndDate

----------- ----------- ------ ------ -----------

5 ValveStem silver 0.10 NULL

Column sets are most useful when you have many sparse columns in a table (for example,
hundreds) and operating on them individually is cumbersome. Your client applications
may more easily and efficiently generate the appropriate XML string to populate the
column set rather than your having to build an UPDATE statement dynamically to deter-
mine which of the sparse columns need to be included in the SET clause. Applications
might actually see some performance improvement when they select, insert, or update
data by using column sets on tables that have lots of columns.

Sparse Columns: Good or Bad?

There is some disagreement in the SQL Server community whether or not sparse columns
are appropriate. A number of professionals are of the opinion that any table design that
requires sparse columns is a bad design that does not follow good relational design guide-
lines. Sparse columns, by their nature, are heavily denormalized. On the other hand,
many times you have to live in the real world and make the best of a bad database design

ptg

1605Spatial Data Types
4

2

that you’ve inherited. Sparse columns can help solve performance and storage issues in
databases that may have been poorly designed.

Although sparse columns can solve certain kinds of problems with database design, you
should never use them as an alternative to proper database and table design. As cool as
sparse columns are, they aren’t appropriate for every scenario, particularly when you’re
tempted to violate normalization rules to be able to cram more fields into a table.

Spatial Data Types
SQL Server’s support of SQLCLR allows for very rich user-defined types to be utilized. For
example, a developer could create a single object that contains multiple properties and
can also perform calculations internally (methods), yet still store it in a single column in a
single row in a database table. This allows multiple complex types of data to be stored and
queried in the database, instead of just strings and numbers.

SQL Server 2008 makes use of SQLCLR to support two new .NET CLR data types for
storing spatial data: GEOMETRY and GEOGRAPHY. These types support methods and properties
that allow for the creation, comparison, analysis, and retrieval of spatial data. Spatial data
types provide a comprehensive, high-performance, and extensible data storage solution for
spatial data, enabling organizations of any scale to integrate geospatial features into their
applications and services.

The GEOMETRY data type is a .NET CLR data type that supports the planar model/data,
which assumes a flat projection and is therefore sometimes called flat earth. Geometry
data represents information in a uniform two-dimensional plane as points, lines, and
polygons on a flat surface, such as maps and interior floor plans where the curvature of
the earth does not need to be taken into account. For example, perhaps your user-defined
coordinate space is being used to represent a warehouse facility. Within that coordinate
space, you can use the GEOMETRY data type to define areas that represent storage bays
within the warehouse. You can then store data in your database that tracks which inven-
tory is located in which area. You could then query the data to determine which forklift
driver is closest to a certain type of item, for example.

The GEOGRAPHY data type provides a storage structure for geodetic data, sometimes referred
to as round-earth data because it assumes a roughly spherical model of the world. It
provides a storage structure for spatial data that is defined by latitude and longitude coor-
dinates using an industry standard ellipsoid such as WGS84, the projection method used
by Global Positioning System (GPS) applications. The SQL Server GEOGRAPHY data type uses
latitude and longitude angles to identify points on the earth. Latitude measures how far
north (or south) of the equator a point is, while longitude measures how far east (or west)
of a prime meridian a point is. Note that this coordinate system can be used to identify
points on any spherical object, be it a baseball, the earth, or even the moon.

The GEOMETRY and GEOGRAPHY data types support seven instance types that you can create
and work with in a database:

. POINT—A POINT is an exact location and is defined in terms of an X and Y pair of
coordinates, as well as optionally by Z (elevation) and M (measure) coordinates. It

ptg

1606 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

does not have a length or any area associated with it. These instance types are used
as the fundamental building blocks of more complex spatial types.

. MULTIPOINT—A MULTIPOINT is a collection of zero or more points.

. LINESTRING—A LINESTRING is the path between a sequence of points (that is, a series
of connected line segments). It is considered simple if it does not cross over itself and
is considered a ring if the starting point is the same as the ending point. A
LINESTRING is always considered to be a one-dimensional object; it has length but
does not have area (even if it is a ring).

. MULTILINESTRING—A MULTILINESTRING is a collection of zero or more GEOMETRY or
GEOGRAPHY LINESTRING instances.

. POLYGON—A POLYGON is a closed two-dimensional shape defined by a ring. It has both
length and area and has at least three distinct points. A POLYGON may also have holes
in its interior (a hole is defined by another POLYGON). Area within a hole is consid-
ered to be exterior to the POLYGON itself.

. MULTIPOLYGON—A MULTIPOLYGON instance is a collection of zero or more POLYGON
instances.

. GEOMETRYCOLLECTION—A GEOMETRYCOLLECTION is a collection of zero or more
GEOMETRY or GEOGRAPHY instances. A GEOMETRYCOLLECTION can be empty. This is simi-
lar to a list or an array in most programming languages. The most generic type of
collection is the GEOMCOLLECTION, whose members can be of any type.

Representing Spatial Data

The Open Geospatial Consortium, Inc. (OGC) is a nonprofit, international, voluntary
consensus standards organization that is leading the development of standards for
geospatial and location-based services. The OGC defines different ways to represent
geospatial information as bytes of data that can then be interpreted by the GEOMETRY or
GEOGRAPHY types as being POINTS, LINESTRINGS, and so on. SQL Server 2008 supports three
such formats:

. Well-Known Text (WKT)

. Well-Known Binary (WKB)

. Geography Markup Language (GML)

For the purposes of this chapter, we stick to WKT examples because they are both concise
and somewhat readable. The syntax of WKT is not too difficult to understand, so let’s look
at some examples:

. POINT(10 100)—Here, 10 and 100 represent X and Y values of the point.

. POINT(10 100 10 1)—This example shows Z and M values in addition to X and Y.

. LINESTRING(0 0, 10 100)—The first two values represent the starting point, and
the last two values represent the end point of the line.

ptg

1607Spatial Data Types
4

2

. POLYGON((0 0, 0 10, 10 10, 10 0, 0 0))—Each pair of numbers represents a
point on the edge of the polygon. Note that the end point is the same as the starting
point.

Working with Geometry Data

As mentioned previously, the geometry data type is implemented as a common language
runtime (CLR) data type in SQL Server and is used to represent data in a Euclidean (flat)
coordinate system. The GEOMETRY type is predefined and available in each database. Any
variable, parameter, or table column can be declared with the GEOMETRY data type, and you
can operate on geometry data in the same manner as you would use other CLR types
using the built-in methods to create, validate, and query geometry data.

NOTE

SQL Server provides a number of methods for the GEOMETRY and GEOGRAPHY data types.
Covering all the available methods is beyond the scope of this chapter. The examples
provided here touch on some of the more common methods. For more information on
other GEOMETRY and GEOGRAPHY methods, refer to SQL Server 2008 Books Online.

To assign a value to a column or variable of type GEOMETRY, you must use one of the
static methods to parse the representation of the data into the spatial data type. For
example, to parse geometry data provided in a valid WKT syntax, you can use the
STGeomFromText method:

Declare @geom GEOMETRY

Declare @geom2 GEOMETRY

SET @geom = geometry::STGeomFromText(‘LINESTRING (100 100, 20 180, 180 180)’, 0)

SET @geom2 = geometry::STGeomFromText

(‘POLYGON ((0 0, 150 0, 150 150, 0 150, 0 0))’, 0)

NOTE

The last parameter passed to the method is the spatial reference ID (SRID) parameter.
The SRID is required. SQL Server 2008 does not perform calculations on pieces of
spatial information that belong to separate spatial reference systems (for example, if
one system uses centimeters and another uses miles, SQL Server simply does not
have the means to automatically convert units). For the GEOMETRY type, the default
SRID value is 0. The default SRID for GEOGRAPHY is 4326, which maps to the WGS 84
spatial reference system.

If you are declaring a LINESTRING specifically, you can use the STLineFromText static
method that accepts only valid LINESTRINGs as input:

ptg

1608 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

Declare @geom GEOMETRY

SET @geom = geometry::STLineFromText(‘LINESTRING (100 100, 20 180, 180 180)’, 0)

The GEOMETRY type, like other SQLCLR UDTs, supports implicit conversion to and from a
string. The string format supported by the GEOMETRY type for implicit conversion is WKT.
Due to this feature, all the following SET statements are functionally equivalent (the last
two SET statements use an implicit SRID of 0):

DECLARE @geom GEOMETRY

SET @geom = geometry::STLineFromText(‘LINESTRING (100 100, 20 180, 180 180)’, 0)

set @geom = Geometry::Parse(‘LINESTRING (100 100, 20 180, 180 180)’)

set @geom = ‘LINESTRING (100 100, 20 180, 180 180)’

After defining a GEOMETRY instance, you can use the CLR UDT dot notation to access other
properties and methods of the GEOGRAPHY instance. For example, the following code uses
the STLength() method to return the length of the LINESTRING:

DECLARE @geom GEOMETRY

SET @geom = geometry::STLineFromText(‘LINESTRING (100 100, 20 180, 180 180)’, 0)

select @geom.STLength() as “Length”

go

Length

273.137084989848

The following example uses the STIntersection() method to return the points where two
GEOMETRY instances intersect:

DECLARE @geom1 GEOMETRY;

DECLARE @geom2 GEOMETRY;

DECLARE @result GEOMETRY;

SET @geom1 = geometry::STGeomFromText(‘LINESTRING (100 100, 20 180, 180 180)’, 0)

SET @geom2 = geometry::STGeomFromText(‘POLYGON ((0 0, 150 0, 150 150, 0 150, 0

0))’, 0)

SELECT @result = @geom1.STIntersection(@geom2);

SELECT @result.STAsText();

go

LINESTRING (50 150, 100 100)

All the preceding examples use local variables in a batch. You also can declare columns in
a table with the GEOMETRY type, and you can use the instance properties and methods
against the columns as well:

ptg

1609Spatial Data Types
4

2

CREATE TABLE #geom_demo

(

GeomID INT IDENTITY NOT NULL,

GeomCol GEOMETRY

)

INSERT INTO #geom_demo (GeomCol)

VALUES (‘LINESTRING (100 100, 20 180, 180 180)’),

(‘POLYGON ((0 0, 150 0, 150 150, 0 150, 0 0))’),

(‘POINT(10 10)’)

SELECT

GeomID,

GeomCol.ToString() AS WKT,

GeomCol.STLength() AS LENGTH,

GeomCol.STArea() as Area

FROM #geom_demo

drop table #geom_demo

go

GeomID WKT LENGTH Area

----------- -- ----------------- ------

1 LINESTRING (100 100, 20 180, 180 180) 273.137084989848 0

2 POLYGON ((0 0, 150 0, 150 150, 0 150, 0 0)) 600 22500

3 POINT (10 10) 0 0

Working with Geography Data

The GEOGRAPHY data type is also implemented as a .NET common language runtime data
type in SQL Server. Unlike the GEOMETRY data type in which locations are defined in terms
of X and Y coordinates that can conceivably extend to infinity, the GEOGRAPHY type repre-
sents data in a round-earth coordinate system. Whereas flat models do not “wrap around,”
the round-earth coordinate system does wrap around such that if you start at a point on
the globe and continue in one direction, you eventually return to the starting point.

Because defining points on a ball using X and Y is not very practical, the GEOGRAPHY data
type instead defines points using angles. The SQL Server GEOGRAPHY data type stores ellip-
soidal (round-earth) data as GPS latitude and longitude coordinates. Longitude represents
the horizontal angle and ranges from -180 degrees to 180 degrees, and latitude represents
the vertical angle and ranges from -90 degrees to 90 degrees.

The GEOGRAPHY data type provides similar built-in methods as the GEOMETRY data type that
you can use to create, validate, and query geography instances.

ptg

1610 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

To assign a value to a geography column or variable, you can use the STGeogFromText
methods to parse the parse geometry data provided in a valid WKT syntax into a valid
geography value:

Declare @geog GEOGRAPHY

Declare @geog2 GEOGRAPHY

SET @geog =

geography::STGeomFromText(‘LINESTRING(-122.360 47.656,

-122.343 47.656)’, 4326)

SET @geog2 =

geography::STGeomFromText(‘POLYGON((-122.358 47.653,

-122.348 47.649,

-122.348 47.658,

-122.358 47.658,

-122.358 47.653))’, 4326)

As with the GEOMETRY data type, you can also use the STLineFromText static method that
accepts only valid LINESTRINGS as input, or you can take advantage of the support for
implicit conversion of WKT strings:

DECLARE @geog GEOGRAPHY

SET @geog = Geography::STLineFromText(‘LINESTRING (-122.360 47.656,

-122.343 47.656)’, 4326)

set @geog = Geography::Parse(‘LINESTRING (-122.360 47.656,

-122.343 47.656)’)

set @geog = ‘LINESTRING (-122.360 47.656, -122.343 47.656)’

The following code uses the STLength() and STArea() methods to return the length of the
LINESTRING:

DECLARE @geom GEOMETRY

SET @geom = geometry::STLineFromText(‘LINESTRING (100 100, 20 180, 180 180)’, 0)

select @geom.STLength() as “Length”

go

Length

273.137084989848

The preceding examples use local variables in a batch. You also can declare columns in a
table using the geography data type, and you can use the instance properties and methods
against the columns as well:

CREATE TABLE #geog

(id int IDENTITY (1,1),

ptg

1611Spatial Data Types
4

2

GeogCol1 GEOGRAPHY,

GeogCol2 AS GeogCol1.STAsText());

GO

INSERT INTO #geog (GeogCol1)

VALUES (geography::STGeomFromText

(‘LINESTRING(-122.360 47.656, -122.343 47.656)’, 4326));

INSERT INTO #geog (GeogCol1)

VALUES (geography::STGeomFromText

(‘POLYGON((-122.358 47.653,

-122.348 47.649,

-122.348 47.658,

-122.358 47.658,

-122.358 47.653))’, 4326));

GO

DECLARE @geog1 GEOGRAPHY;

DECLARE @geog2 GEOGRAPHY;

DECLARE @result GEOGRAPHY;

SELECT @geog1 = GeogCol1 FROM #geog WHERE id = 1;

SELECT @geog2 = GeogCol1 FROM #geog WHERE id = 2;

SELECT @result = @geog1.STIntersection(@geog2);

SELECT Intersection = @result.STAsText();

go

Intersection

LINESTRING (-122.3479999999668 47.656000260658459

, -122.35799999998773 47.656000130309728)

Spatial Data Support in SSMS

When querying spatial data in SSMS, you’ll find that SSMS has a built-in capability to plot
and display some basic maps of your spatial data.

To demonstrate this, you can run the following query in the AdventureWorks2008R2 or
AdventureWorks2008 database in SSMS:

select SpatialLocation

from person.Address a

inner join

person.StateProvince sp

on a.StateProvinceID = sp.StateProvinceID

and sp.CountryRegionCode = ‘US’

ptg

1612 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

After the query runs, you should see a Spatial Results tab next to the Results tab (see
Figure 42.3). Click on this tab, and the location points are plotted on a map. Select the
Bonne Projection. If you look closely, you can see that the geographical points plotted
roughly provide an outline of the United States. If you mouse over one of the points,
SSMS displays the associated address information displayed in the Person.Address table.

In addition to displaying maps of geography data values, SSMS can also display geometry
data, showing lines, points, and polygons in an X-Y grid. For example, if you run the
following query and click on the Spatial Results tab, it should display a box like the one
shown in Figure 42.4:

declare @smallBox GEOMETRY = ‘polygon((0 0, 0 2, 2 2, 2 0, 0 0))’;

select @smallbox

If you want to display multiple polygons, points, or lines together at the same time, they
have to be returned as multiple rows in a single table. If you return them as multiple
columns, SSMS displays only one column at a time in the Spatial Results tab. For example,
if you run the following query, SSMS displays two boxes, the polygon defined by the inter-
section of the two boxes, as well as the overlapping line defined by the LineString, as
shown in Figure 42.5:

FIGURE 42.3 Displaying a map of Person.Address records in SSMS.

ptg

1613Spatial Data Types
4

2

FIGURE 42.4 Displaying a polygon in SSMS.

FIGURE 42.5 Displaying intersecting polygons and an overlapping Line in SSMS.

ptg

1614 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

declare @smallBox GEOMETRY = ‘polygon((0 0, 0 2, 2 2, 2 0, 0 0))’;

declare @largeBox GEOMETRY = ‘polygon((1 1, 1 4, 4 4, 4 1, 1 1))’;

declare @line GEOMETRY = ‘linestring(0 2, 4 4)’;

select @smallBox

union all

select @largeBox

union all

select @smallBox.STIntersection(@largeBox)

union all

select @line

Spatial Data Types: Where to Go from Here?

The preceding sections provide only a brief introduction to spatial data types and how to
work with geometry and geography data. For more information on working with spatial
data, in addition to Books Online, you might want to visit the Microsoft SQL Server 2008
Spatial Data page at http://www.microsoft.com/sqlserver/2008/en/us/spatial-data.aspx.
This page provides links to whitepapers and other technical documents related to working
with spatial data in SQL Server 2008.

In addition, all examples here deal with spatial data only as data values and coordinates.
Spatial data is often most useful when it can be displayed visually, such as on a map. SQL
Server 2008 R2 Reporting Services provides new map controls and a map wizard for
creating map reports based on spatial data. For more information, see Chapter 53, “SQL
Server 2008 Reporting Services.”

Change Data Capture
In SQL Server 2008, Microsoft introduced a new feature called Change Data Capture
(CDC), which is designed to make it much easier and less resource intensive to identify
and retrieve changed data from tables in an online transaction processing (OLTP) data-
base. In a nutshell, CDC captures and records INSERT, UPDATE, and DELETE activity in an
OLTP database and stores it in a form that is easily consumed by an application, such as a
SQL Server Integration Services (SSIS) package.

In the past, capturing data changes for your tables for auditing or extract, transform, and
load (ETL) purposes required using replication, time stamp columns, triggers, complex
queries, or expensive third-party tools. None of these other methods are easy to imple-
ment, and many of them use a lot of server resources, negatively affecting the perfor-
mance of the OLTP server.

Change Data Capture provides for a more efficient mechanism for capturing the data
changes in a table.

http://www.microsoft.com/sqlserver/2008/en/us/spatial-data.aspx

ptg

1615Change Data Capture
4

2

NOTE

Change Data Capture is available only in the SQL Server 2008 Developer, Enterprise,
and Datacenter Editions.

The source of change data for Change Data Capture is the SQL Server transaction log. As
inserts, updates, and deletes are applied to tables, entries that describe those changes are
added to the transaction log. When Change Data Capture is enabled for a database, a SQL
Server Agent capture job is created to invoke the sp_replcmds system procedure. This
procedure is an internal server function and is the same mechanism used by transactional
replication to harvest changes from the transaction log.

NOTE

If replication is already enabled for the database, the transactional log reader used for
replication is also used for CDC. This strategy significantly reduces log contention when
both replication and Change Data Capture are enabled for the same database.

The principal task of the Change Data Capture process is to scan the log and identify
changes to data rows in any tables configured for Change Data Capture. As these changes
are identified, the process writes column data and transaction-related information to the
Change Data Capture tables. The changes can then be read from these change tables to be
applied as needed.

The Change Data Capture Tables

When CDC is enabled for a database and one or more tables, an associated Change Data
Capture table is created for each table being monitored. The Change Data Capture tables
are used to store the changes made to the data in corresponding source tables, along with
some metadata used to track the changes. By default, the name of the CDC change table is
schemaname_tablename_CT and is based on the name of the source table.

The first five columns of a Change Data Capture change table are metadata columns and
contain additional information relevant to the recorded change:

. __$start_lsn—Identifies the commit log sequence number (LSN) assigned to the
change. This value can be used to determine the order of the transactions.

. __$end_lsn—Is currently not used and in SQL Server 2008 is always NULL.

. __$seqval—Can be used to order changes that occur within the same transaction.

ptg

1616 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

. __$operation—Records the operation associated with the change: 1 = delete, 2 =
insert, 3 = update before image(delete), and 4 = update after image(insert)

. __$update_mask—Is a variable bit mask with one defined bit for each captured col-
umn to identify what columns were changed. For insert and delete entries, the
update mask always has all bits set. Update rows have the bits set only for the
columns that were modified.

The remaining columns in the Change Data Capture change table are identical to the
columns from the source table in name and type and are used to store the column data
gathered from the source table when an insert, update, or delete operation is performed
on the table.

For every row inserted into the source table, a single row a single row is inserted into the
change table, and this row contains the column values inserted into the source table.
Every row deleted from the source table is also inserted as a single row into the change
table but contains the column values in the row before the delete operation. An update
operation is captured as a delete followed by an insert, so two rows are captured for each
update: one row entry to capture the column values before the update, and a second row
entry to capture the column values after the update.

In addition to the Change Data Capture tables, the following Change Data Capture meta-
data tables are also created:

. cdc.change_tables—Contains one row for each change table in the created when
Change Data Capture is enabled on a source table.

. cdc.index_columns—Contains one row for each index column used by Change Data
Capture to uniquely identify rows in the source table. By default, this is the column
of the primary key of the source table, but a different unique index on the source
table can be specified when Change Data Capture is enabled on the source table. A
primary key or unique index is required on the source table only if Net Change
Tracking is enabled.

. cdc.captured_columns—Contains one row for each column tracked in each source
table. By default, all columns of the source table are captured, but you can include or
exclude columns when enabling Change Data Capture for a table by specifying a
column list.

. cdc.ddl_history—Contains a row for each Data Definition Language (DDL) change
made to any table enabled for Change Data Capture. You can use this table to deter-
mine when a DDL change occurred on a source table and what the change was.

. cdc.lsn_time_mapping—Contains a row for each transaction stored in a change
table and is used to map between log sequence number (LSN) commit values and the
actual time the transaction was committed.

Although you can query the Change Data Capture tables directly, it is not recommended.
Instead, you should use the Change Data Capture functions, which are discussed later.

ptg

1617Change Data Capture
4

2

All these objects associated with a CDC instance are created in the special schema called
cdc when Change Data Capture is enabled for a database.

Enabling CDC for a Database

Before you can begin capturing data changes for a table, you must first enable the data-
base for Change Data Capture. You do this by running the stored procedure
sys.sp_cdc_enable_db within the desired database context. When a database is enabled
for Change Data Capture, the cdc schema, cdc user, metadata tables, as well as the system
functions, are used to query for change data.

NOTE

To determine whether a database is already enabled for CDC, you can check the value
in the is_cdc_enabled column in the sys.databases catalog view. A value of 1 indi-
cates that CDC is enabled for the specified database.

The following SQL code enables CDC for the AdventureWorks2008R2 database and then
checks that CDC is enabled by querying the sys.databases catalog view:

use AdventureWorks2008R2

go

exec sys.sp_cdc_enable_db

go

select is_cdc_enabled

from sys.databases

where name = ‘AdventureWorks2008R2’

go

is_cdc_enabled

1

NOTE

Although the examples presented here are run against the AdventureWorks2008R2 data-
base, they can also be run against the AdventureWorks2008 database. However, you
should be aware that some of the column values displayed may not be exactly the same.

Enabling CDC for a Table

When the database is enabled for Change Data Capture, you can use the
sys.sp_cdc_enable_table stored procedure to enable a Change Data Capture instance for
any tables in that database. The sp_cdc_enable_Table stored procedure supports the
following parameters:

ptg

1618 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

. @source_schema—Specifies the name of the schema in which the source table
resides.

. @source_name—Specifies the name of the source table.

. @role_name—Indicates the name of the database role used to control access to
Change Data Capture tables. If this parameter is set to NULL, no role is used to limit
access to the change data. If the specified role does not exist, SQL Server creates a
database role with the specified name.

. @capture_instance—Specifies the name of the capture instance used to name the
instance-specific Change Data Capture objects. By default, this is the source schema
name plus the source table name in the format schemaname_sourcename. A source
table can have a maximum of two capture instances.

. @supports_net_changes—Is set to 1 or 0 to indicate whether support for querying
for net changes is to be enabled for this capture instance. If this parameter is set to 1,
the source table must have a defined primary key, or an alternate unique index must
be specified for the @index_name parameter.

. @index_name—Specifies the name of a unique index to use to uniquely identify rows
in the source table.

. @captured_column_list—Specifies the source table columns to be included in the
change table. By default, all columns are included in the change table.

. @filegroup_name—Specifies the filegroup to be used for the change table created for
the capture instance. If this parameter is NULL or not specified, the default filegroup
is used. If possible, it is recommended you create a separate filegroup from your
source tables for the Change Data Capture change tables.

. @allow_partition_switch—Indicates whether the SWITCH PARTITION command of
ALTER TABLE can be executed against a table that is enabled for Change Data
Capture. The default is 1 (enabled). If any partition switches occur, Change Data
Capture does not track the changes resulting from the switch. This causes data
inconsistencies when the change data is consumed.

The @source_schema, @source_name, and @role_name parameters are the only required
parameters. All the others are optional and apply default values if not specified.

To implement basic change data tracking for a table, let’s first create a copy of the
Customer table to play around with:

select * into MyCustomer from Sales.Customer

alter table MyCustomer add Primary key (CUstomerID)

Now, to enable CDC on the MyCustomer table, you can execute the following:

EXEC sys.sp_cdc_enable_table

@source_schema = N’dbo’,

@source_name = N’MyCustomer’,

@role_name = NULL

ptg

1619Change Data Capture
4

2

NOTE

If this is the first time you are enabling CDC for a table in the database, you may see
the following messages, which indicate that SQL Server is enabling the SQL Agent jobs
to begin capturing the data changes in the database:

Job ‘cdc.AdventureWorks2008R2_capture’ started successfully.

Job ‘cdc.AdventureWorks2008R2_cleanup’ started successfully.

The Capture job that is created generally runs continuously and is used to move
changed data to the CDC tables from the transaction log. The Cleanup job runs on a
scheduled basis to remove older data from the CDC tables so that they don’t grow too
large. By default, it automatically removes data that is more than three days old. The
properties of these jobs can be viewed and modified using the sys.sp_cdc_help_jobs
and sys.sp_cdc_change_job procedures, respectively.

To determine whether or not a source table has been enabled for Change Data Capture, you
can query the is_tracked_by_cdc column in the sys.tables catalog view for that table:

select is_tracked_by_cdc

from sys.tables

where name = ‘MyCustomer’

go

is_tracked_by_cdc

1

TIP

To get information on which tables are configured for CDC and what the settings for
each are, you can execute the sys.sp_cdc_help_change_data_capture stored proce-
dure. It reports the name and ID of the source and Change Tracking tables, the CDC
table properties, the columns included in the capture, and the date the CDC was
enabled/created for the source table.

Querying the CDC Tables

After you enable change data tracking for a table, SQL Server begins capturing any data
changes for the table in the Change Data Capture tables. To identify the data changes, you
need to query the Change Data Capture tables. Although you can query the Change Data
Capture tables directly, it is recommended that you use the CDC functions instead. The
main CDC table-valued functions (TVFs) are

. cdc.fn_cdc_get_all_changes_capture_instance

ptg

1620 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

. cdc.fn_cdc_get_net_changes_capture_instance

NOTE

The Change Data Capture change table and associated CDC table-valued functions
created along with it constitute what is referred to as a capture instance. A capture
instance is created for every source table that is enabled for CDC.

Each capture instance is given a unique name based on the schema and table names.
For example, if the table named sales.products is CDC enabled, the capture instance
created is named sales_products. The name of the CDC change table within the cap-
ture instance is sales_products_CT, and the names of the two associated CDC query
functions are cdc.fn_cdc_get_all_changes_sales_products and
cdc.fn_cdc_get_net_changes_sales_products.

Both of the CDC table-valued functions require two parameters to define the range of log
sequence numbers to use as the upper and lower bounds to determine which records are
to be included in the returned result set. A third required parameter, the
row_filter_option, specifies the content of the metadata columns as well as the rows to
be returned in the result set. Two values can be specified for the row_filter for the
cdc.fn_cdc_get_all_changes_capture_instance function: ”all” and ”all update old”.

If ”all” is specified, the function returns all changes within the specified log sequence
number (LSN) range. For changes due to an update operation, only the row containing the
new values after the update are returned. If ”all update old” is specified, the function
returns all changes within the specified LSN range. For changes due to an update opera-
tion, this option returns both the before and after update copies of the row.

For the cdc.fn_cdc_get_net_changes_capture_instance function, three values can be
specified for the row_filter parameter: ”all”, ”all with mask”, and ”all with merge”.
If ”all” is specified, the function returns the LSN of the final change to the row, and the
operation needed to apply the change to the row is returned in the __$start_lsn and
__$operation metadata columns. The __$update_mask column is always NULL. If ”all
with mask” is specified, the function returns the LSN of the final change to the row and
the operation needed to apply the change to the row. Plus, if the __$operation equals 4
(that is, it contains the after update row values), the columns actually modified in the
update are identified by the bit mask returned in the __$update_mask column.

If the ”all with merge” option is passed, the function returns the LSN of the final change
to the row and the operation needed to apply the change to the row. The __$operation
column will have one of two values: 1 for delete and 5 to indicate that the operation
needed to apply the change is either an insert or update. The column __$update_mask is
always NULL.

ptg

1621Change Data Capture
4

2

So how do you determine what LSNs to specify to return the rows you need? Fortunately,
SQL Server provides several functions to help determine the appropriate LSN values for use
in querying the TVFs:

. sys.fn_cdc_get_min_lsn—Returns the smallest LSN associated with a capture
instance validity interval. The validity interval is the time interval for which change
data is currently available for its capture instances.

. sys.fn_cdc_get_max_lsn—Returns the largest LSN in the validity interval.

. sys.fn_cdc_map_time_to_lsn and sys.fn_cdc_map_lsn_to_time—Are used to corre-
late LSN values with a standard time value.

. sys.fn_cdc_increment_lsn and sys.fn_cdc_decrement_lsn—Can be used to make
an incremental adjustment to an LSN value. This adjustment is sometimes necessary
to ensure that changes are not duplicated in consecutive query windows.

So, before you can start querying the CDC tables, you need to generate some records in
them by running some data modifications against the source tables. First, you need to run
the statements in Listing 42.21 against the MyCustomer table to generate some records in
the dbo_MyCustomer_CT Change Data Capture change table.

LISTING 42.21 Some Data Modifications to Populate the MyCustomer CDC Capture Table

delete MyCustomer where CustomerID = 22

Insert MyCustomer (PersonID, StoreID, TerritoryID,

AccountNumber, rowguid, ModifiedDate)

Values (20778, null, 9,

‘AW’ + RIGHT(‘00000000’

+ convert(varchar(8), IDENT_Current(‘MyCustomer’)), 8),

NEWID(),

GETDATE())

declare @ident int

select @ident = SCOPE_IDENTITY()

update MyCustomer

set TerritoryID = 3,

ModifiedDate = GETDATE()

where CustomerID = @ident

Now that you have some rows in the CDC capture table, you can start retrieving them.
First, you need to identify the min and max LSN values to pass to the

ptg

1622 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

cdc.fn_cdc_get_all_changes_dbo_MyCustomer function. This can be done using the
sys.fn_cdc_get_min_lsn and sys.fn_cdc_get_max_lsn functions. Listing 42.22 puts all
these pieces together to return the records stored in the CDC capture table.

LISTING 42.22 Querying the MyCustomer CDC Capture Table

USE AdventureWorks2008R2

GO

--declare variables to represent beginning and ending lsn

DECLARE @from_lsn BINARY(10), @to_lsn BINARY(10)

-- get the first LSN for table changes

SELECT @from_lsn = sys.fn_cdc_get_min_lsn(‘dbo_MyCustomer’)

-- get the last LSN for table changes

SELECT @to_lsn = sys.fn_cdc_get_max_lsn()

-- get all changes in the range using “all update old” parameter

SELECT *

FROM cdc.fn_cdc_get_all_changes_dbo_MyCustomer

(@from_lsn, @to_lsn, ‘all update old’);

GO

__$start_lsn __$seqval __$operation

__$update_mask CustomerID PersonID StoreID TerritoryID

AccountNumber rowguid

ModifiedDate

---------------------- ---------------------- ------------

-------------- ----------- ----------- ----------- -----------

------------- ------------------------------------

0x00000039000014400004 0x00000039000014400002 1

0x7F 22 NULL 494 3

AW00000022 9774AED6-D673-412D-B481-2573E470B478

2008-10-13 11:15:07.263

0x00000039000014410004 0x00000039000014410003 2

0x7F 30119 20778 NULL 9

AW00030119 2385A86E-6FD2-4815-8BFE-B3F4DF4AEA74

2010-04-27 22:38:44.267

0x000000390000144C0004 0x000000390000144C0002 3

0x48 30119 20778 NULL 9

AW00030119 2385A86E-6FD2-4815-8BFE-B3F4DF4AEA74

2010-04-27 22:38:44.267

ccc0x000000390000144C0004 0x000000390000144C0002 4

ptg

1623Change Data Capture
4

2

ccc0x48 30119 20778 NULL 3

cccAW00030119 2385A86E-6FD2-4815-8BFE-B3F4DF4AEA74

ccc2010-04-27 22:38:48.263

Because the option ”all update old” is specified in Listing 42.22, all the rows in the
dbo_MyCustomer_CT capture table are returned, including the deleted row, inserted row,
and both the before and after copies of the row updated.

If you want to return only the final version of each row within the LSN range (and the
@supports_net_changes was set to 1 when CDC was enabled for the table), you can use
the cdc.fn_cdc_get_net_changes_capture_instance function, as shown in Listing 42.23.

LISTING 42.23 Querying the MyCustomer CDC Capture Table for Net Changes

USE AdventureWorks2008R2

GO

--declare variables to represent beginning and ending lsn

DECLARE @from_lsn BINARY(10), @to_lsn BINARY(10)

-- get the first LSN for table changes

SELECT @from_lsn = sys.fn_cdc_get_min_lsn(‘dbo_MyCustomer’)

-- get the last LSN for table changes

SELECT @to_lsn = sys.fn_cdc_get_max_lsn()

-- get all changes in the range using “all with_merge” parameter

SELECT *

FROM cdc.fn_cdc_get_net_changes_dbo_MyCustomer

(@from_lsn, @to_lsn, ‘all with merge’);

GO

__$start_lsn __$operation __$update_mask CustomerID

PersonID StoreID TerritoryID AccountNumber

rowguid ModifiedDate

---------------------- ------------ -------------- -----------

----------- ----------- ----------- -------------

------------------------------------ -----------------------

0x00000039000014400004 1 NULL 22

NULL 494 3 AW00000022

9774AED6-D673-412D-B481-2573E470B478 2008-10-13 11:15:07.263

ccc0x000000390000144C0004 5 NULL 30119

ccc20778 NULL 3 AW00030119

ccc2385A86E-6FD2-4815-8BFE-B3F4DF4AEA74 2010-04-27 22:38:48.263

ptg

1624 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

For typical ETL-type applications, querying for change data is an ongoing process, making
periodic requests for all the changes that occurred since the last request which need to be
applied to the target. For these types of queries, you can use the
sys.fn_cdc_increment_lsn function to determine the next lowest LSN boundary that is
greater than the max LSN boundary of the previous query. To demonstrate this, let’s first
execute some additional data modifications against the MyCustomer table:

Insert MyCustomer (PersonID, StoreID, TerritoryID,

AccountNumber, rowguid, ModifiedDate)

Values (20779, null, 12,

‘AW’ + RIGHT(‘00000000’

+ convert(varchar(8), IDENT_Current(‘MyCustomer’)), 8),

NEWID(),

GETDATE())

delete MyCustomer where CustomerID = 30119

The max LSN from the previous examples is 0x000000390000144C0004. We want to incre-
ment from this LSN to find the next set of changes. In Listing 42.24, you pass this value
to the sys.fn_cdc_increment_lsn to set the min LSN value you’ll use with the
cdc.fn_cdc_get_net_changes_dbo_MyCustomer function as the lower bound.

LISTING 42.24 Using sys.fn_cdc_increment_lsn to Return the Net Changes to the
MyCustomer CDC Capture Table Since the Last Retrieval

--declare variables to represent beginning and ending lsn

DECLARE @from_lsn BINARY(10), @to_lsn BINARY(10)

-- get the Next lowest LSN after the previous Max LSN

SELECT @from_lsn = sys.fn_cdc_increment_lsn(0x000000390000144C0004)

-- get the last LSN for table changes

SELECT @to_lsn = sys.fn_cdc_get_max_lsn()

-- get all changes in the range using “all with_merge” parameter

SELECT *

FROM cdc.fn_cdc_get_net_changes_dbo_MyCustomer

(@from_lsn, @to_lsn, ‘all with merge’);

GO

__$start_lsn __$operation __$update_mask CustomerID

PersonID StoreID TerritoryID AccountNumber

rowguid ModifiedDate

---------------------- ------------ -------------- -----------

ptg

1625Change Data Capture
4

2

----------- ----------- ----------- ------------- ---------------------------------

--- -----------------------

0x00000039000017D30004 5 NULL 30120

20779 NULL 12 AW00030120

CE8BBAA1-04C0-4A81-9A7E-85B4EDB5C36D 2010-04-27 23:52:36.477

ccc0x00000039000017E50004 1 NULL 30119

ccc20778 NULL 3 AW00030119

ccc2385A86E-6FD2-4815-8BFE-B3F4DF4AEA74 2010-04-27 22:38:48.263

If you want to retrieve the changes captured during a specific time period, you can use the
sys.fn_cdc_map_time_to_lsn function, as shown in Listing 42.25.

LISTING 42.25 Retrieving all Changes to MyCustomer During a Specific Time Period

DECLARE @begin_time datetime,

@end_time datetime,

@begin_lsn binary(10),

@end_lsn binary(10);

SET @begin_time = ‘2010-04-27 22:38:48.250’

SET @end_time = ‘2010-04-27 23:52:36.500’

SELECT @begin_lsn = sys.fn_cdc_map_time_to_lsn

(‘smallest greater than’, @begin_time);

SELECT @end_lsn = sys.fn_cdc_map_time_to_lsn

(‘largest less than or equal’, @end_time);

SELECT *

FROM cdc.fn_cdc_get_net_changes_dbo_MyCustomer

(@begin_lsn, @end_lsn, ‘all’);

Go

__$start_lsn __$operation __$update_mask CustomerID

PersonID StoreID TerritoryID AccountNumber

rowguid ModifiedDate

---------------------- ------------ -------------- -----------

----------- ----------- ----------- -------------

------------------------------------ -----------------------

0x000000390000144C0004 4 NULL 30119

20778 NULL 3 AW00030119

2385A86E-6FD2-4815-8BFE-B3F4DF4AEA74 2010-04-27 22:38:48.263

ccc0x00000039000017D30004 2 NULL 30120

ptg

1626 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

ccc20779 NULL 12 AW00030120

cccCE8BBAA1-04C0-4A81-9A7E-85B4EDB5C36D 2010-04-27 23:52:36.477

CDC and DDL Changes to Source Tables

One of the common challenges when capturing data changes from your source tables is
how to handle DDL changes to the source tables. This can be an issue if the downstream
consumer of the changes has not reflected the same DDL changes for its destination tables.

Enabling Change Data Capture on a source table in SQL Server 2008 does not prevent
DDL changes from occurring. However, Change Data Capture does help to mitigate the
effect on the downstream consumers by allowing the delivered result sets that are returned
from the CDC capture tables to remain unchanged even as the column structure of the
underlying source table changes. Essentially, the capture process responsible for populat-
ing the change table ignores any new columns not present when the source table was
enabled for Change Data Capture. If a tracked column is dropped, NULL values are supplied
for the column in the subsequent change entries.

However, if the data type of a tracked column is modified, the data type change is also
propagated to the change table to ensure that the capture mechanism does not introduce
data loss in tracked columns as a result of mismatched data types. When a column is
modified, the capture process posts any detected changes to the cdc.ddl_history table.
Downstream consumers of the change data from the source tables that may need to be
alerted of the column changes (and make similar adjustments to the destination tables)
can use the stored procedure sys.sp_cdc_get_ddl_history to identify any modifications
to the source table columns.

So how do you modify the capture instance to recognize any added or dropped columns
in the source table? Unfortunately, the only way to do this is to disable CDC on the table
and re-enable it. However, in an active source environment where it’s not possible to
suspend processing while CDC is being disabled and re-enabled, there is the possibility of
data loss between when CDC is disabled and re-enabled.

Fortunately, CDC allows two capture instances to be associated with a single source table.
This makes it possible to create a second capture instance for the table that reflects the
new column structure. The capture process then captures changes to the same source table
into two distinct change tables having two different column structures. While the original
change table continues to feed current operational programs, the new change table feeds
environments that have been modified to incorporate the new column data. Allowing the
capture mechanism to populate both change tables in tandem provides a mechanism for
smoothly transitioning from one table structure to the other without any loss of change
data. When the transition to the new table structure has been fully effected, the obsolete
capture instance can be removed.

ptg

1627Change Tracking
4

2

Change Tracking
In addition to Change Data Capture, SQL Server 2008 also introduces Change Tracking.
Change Tracking is a lightweight solution that provides an efficient change tracking
mechanism for applications. Although they are similar in name, the purposes of Change
Tracking and Change Data Capture are different.

Change Data Capture is an asynchronous mechanism that uses the transaction log to
record all the changes to a data row and store them in change tables. All intermediate
versions of a row are available in the change tables. The information captured is stored in
a relational format that can be queried by client applications such as ETL processes.

Change Tracking, in contrast, is a synchronous mechanism that tracks modifications to a
table but stores only the fact that a row has been modified and when. It does not keep
track of how many times the row has changed or the values of any of the intermediate
changes. However, having a mechanism that records that a row has changed, you can
check to see whether data has changed and obtain the latest version of the row directly
from the table itself rather than querying a change capture table.

NOTE

Unlike Change Data Capture, which is available only in the Enterprise, Datacenter, and
Developer Editions of SQL Server, Change Tracking is available in all editions.

Change Tracking operates by using tracking tables that store a primary key and version
number for each row in a table that has been enabled for Change Tracking. Applications
can then check to see whether a row has changed by looking up the row in the tracking
table by its primary key and see if the version number is different from when the row was
first retrieved.

One of the common uses of Change Tracking is for applications that have to synchronize
data with SQL Server. Change Tracking can be used as a foundation for both one-way and
two-way synchronization applications.

One-way synchronization applications, such as a client or mid-tier caching application,
can be built to use Change Tracking. The caching application, which requires data from a
SQL Server database to be cached in other data stores, can use Change Tracking to deter-
mine when changes have been made to the database tables and refresh the cache store by
retrieving data from the modified rows only to keep the cache up-to-date.

Two-way synchronization applications can also be built to use Change Tracking. A typical
example of a two-way synchronization application is the occasionally connected applica-
tion—for example, a sales application that runs on a laptop and is disconnected from the
central SQL Server database while the salesperson is out in the field. Initially, the client

ptg

1628 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

application queries and updates its local data store from the SQL Server database. When it
reconnects with the database later, the application synchronizes with the database, and
data changes will flow from the laptop to the database and from the database to the
laptop. Because data changes happen in both locations while the client application is
disconnected, the two-way synchronization application must be able to detect conflicts. A
conflict occurs if the same data is changed in both data stores in the time between
synchronizations. The client application can use Change Tracking to detect conflicts by
identifying rows whose version number has changed since the last synchronization. The
application can implement a mechanism to resolve the conflicts so that the data changes
are not lost.

Implementing Change Tracking

To use Change Tracking, you must first enable it for the database and then enable it at the
table level for any tables for which you want to track changes. Change Tracking can be
enabled via T-SQL statements or through SQL Server Management Studio.

To enable Change Tracking for a database in SSMS, right-click on the database in Object
Explorer to bring up the Properties dialog and select the Change Tracking page. To enable
Change Tracking, set the Change Tracking option to True (see Figure 42.6). Also on this
page, you can configure the retention period for how long SQL Server retains the Change
Tracking information for each data row and whether to automatically clean up the
Change Tracking information when the retention period has been exceeded.

FIGURE 42.6 Enabling Change Tracking for a database.

ptg

1629Change Tracking
4

2

Change Tracking can also be enabled with the ALTER DATABASE command:

ALTER DATABASE AdventureWorks2008R2

SET CHANGE_TRACKING = ON

(CHANGE_RETENTION = 2 DAYS, AUTO_CLEANUP = ON)

After enabling Change Tracking at the database level, you can then enable Change
Tracking for the tables for which you want to track changes. To enable Change Tracking
for a table in SSMS, right-click on the table in Object Explorer to bring up the Properties
dialog and select the Change Tracking page. Set the Change Tracking option to True to
enable Change Tracking (see Figure 42.7). The TRACK_COLUMNS_UPDATED option specifies
whether SQL Server should store in the internal Change Tracking table any extra informa-
tion about which specific columns were updated. Column tracking allows an application
to synchronize only when specific columns are updated. This capability can improve the
efficiency and performance of the synchronization process, but at the cost of additional
storage overhead. This option is set to OFF by default.

Change Tracking can also be enabled via T-SQL with the ALTER TABLE command:

FIGURE 42.7 Enabling Change Tracking for a table.

ptg

1630 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

USE [AdventureWorks2008R2]

GO

ALTER TABLE [dbo].[MyCustomer]

ENABLE CHANGE_TRACKING WITH(TRACK_COLUMNS_UPDATED = ON)

TIP

To determine which tables and databases have Change Tracking enabled, you can use the
sys.change_tracking_databases and sys.change_tracking_tables catalog views.

Identifying Tracked Changes

After Change Tracking is enabled for a table, any data modification statements that affect
rows in the table cause Change Tracking information for each modified row to be
recorded. To query for the rows that have changed and to obtain information about the
changes, you can use the built-in Change Tracking functions.

Unless you enabled the TRACK_COLUMNS_UPDATED option, only the values of the primary key
column are recorded with the change information to allow you to identify the rows that
have been changed. To identify the changed rows, use the CHANGETABLE (CHANGES ...)

Change Tracking function. The CHANGETABLE (CHANGES ...) function takes two parame-
ters: the first is the table name, and the second is the last synchronization version number.

If you pass 0 for the last synchronization version parameter, you get a list of all the rows
that have been modified since version 0, which means all the changes to the table since
first enabling Change Tracking. Typically, however, you do not want all the rows that have
changed from the beginning of Change Tracking, but only those rows that have changed
since the last time you retrieved the changed rows.

Rather than having to keep track of the version numbers, you can use the
CHANGE_TRACKING_CURRENT_VERSION() function to obtain the current version that will be
used the next time you query for changes. The version returned represents the version of
the last committed transaction.

Before an application can obtain changes for the first time, the application must first
execute a query to obtain the initial data from the table and a query to retrieve the initial
synchronization version using CHANGE_TRACKING_CURRENT_VERSION() function. The version
number that is retrieved is passed to the CHANGETABLE(CHANGES ...) function the next
time it is invoked.

The following example illustrates how to obtain the initial synchronization version and
initial data set:

USE AdventureWorks2008R2

Go

declare @synchronization_version bigint

Select change_tracking_version = CHANGE_TRACKING_CURRENT_VERSION();

ptg

1631Change Tracking
4

2

-- Obtain initial data set.

select CustomerID, TerritoryID, @synchronization_version as version

from MyCustomer

where CustomerID <= 5

go

change_tracking_version

0

CustomerID TerritoryID

----------- -----------

1 1

2 1

3 4

4 4

5 4

As you can see, because no updates have been performed since Change Tracking was
enabled, the initial version is 0.

Now let’s perform some updates on these rows to effect some changes:

update MyCustomer

set TerritoryID = 5

where CustomerID = 4

update MyCustomer

set TerritoryID = 4

where CustomerID = 5

Now you can use the CHANGETABLE(CHANGES ...) function to find the rows that have
changed since the last version (0):

declare @last_synchronization_version bigint

set @last_synchronization_version = 0

SELECT

CT.CustomerID as CustID, CT.SYS_CHANGE_OPERATION,

CT.SYS_CHANGE_COLUMNS, CT.SYS_CHANGE_CONTEXT

FROM

CHANGETABLE(CHANGES MyCustomer, @last_synchronization_version) AS CT

Go

CustID SYS_CHANGE_OPERATION SYS_CHANGE_COLUMNS SYS_CHANGE_CONTEXT

------ -------------------- ------------------ ------------------

ptg

1632 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

4 U 0x0000000004000000 NULL

5 U 0x0000000004000000 NULL

You can see in these results that this query returns the CustomerIDs of the two rows that
were changed. However, most applications also want the data from these rows as well. To
return the data, you can join the results from CHANGETABLE(CHANGES ...) with the data in
the user table. For example, the following query joins with the MyCustomer table to obtain
the values for the PersonID, StoredID, and TerritoryID columns. Note that the query
uses an OUTER JOIN to make sure that the change information is returned for any rows
that may have been deleted from the user table. Also, at the same time you are retrieving
the data rows, you also want to retrieve the current version as well to use the next time
the application comes back to retrieve the latest changes:

declare @last_synchronization_version bigint

set @last_synchronization_version = 0

select current_version = CHANGE_TRACKING_CURRENT_VERSION()

SELECT

CT.CustomerID as CustID,

C.PersonID,

C.StoreID,

C.TerritoryID,

CT.SYS_CHANGE_OPERATION,

CT.SYS_CHANGE_COLUMNS, CT.SYS_CHANGE_CONTEXT

FROM

MyCustomer C

RIGHT OUTER JOIN

CHANGETABLE(CHANGES MyCustomer, @last_synchronization_version) AS CT

on C.CustomerID = CT.CustomerID

go

current_version

2

CustID PersonID StoreID TerritoryID

SYS_CHANGE_OPERATION SYS_CHANGE_COLUMNS SYS_CHANGE_CONTEXT

----------- ----------- ----------- -----------

-------------------- ------------------ -------------------

4 NULL 932 5

U 0x0000000004000000 NULL

5 NULL 1026 4

U 0x0000000004000000 NULL

You can see in the output from this query that the current version is now 2. The next time
the application issues a query to identify the rows that have been changed since this

ptg

1633Change Tracking
4

2

query, it will pass the value of 2 as the @last_synchronization_version to the
CHANGETABLE(CHANGES ...) function.

CAUTION

The version number is NOT specific to a table or user session. The Change Tracking
version number is maintained across the entire database for all users and change
tracked tables. Whenever a data modification is performed by any user on any table that
has Change Tracking enabled, the version number is incremented.

For example, immediately after running an update on change tracked table A in the cur-
rent application and incrementing the version to 3, another application could run an
update on change tracked table B and increment the version to 4, and so on. This is
why you should always capture the current version number whenever you are retrieving
the latest set of changes from the change tracked tables.

If an application has not synchronized with the database in a while, the stored version
number could no longer be valid if the Change Tracking retention period has expired for
any row modifications that have occurred since that version. To validate the version
number, you can use the CHANGE_TRACKING_MIN_VALID_VERSION() function. This function
returns the minimum valid version that a client can have and still obtain valid results
from CHANGETABLE(). Your client applications should check the last synchronization
version obtained against the value returned by this function and if the last synchroniza-
tion version is less than the version returned by this function, that version is invalid. The
client application has to reinitialize all the data rows from the table. The following T-SQL
code snippet can be used to validate the last_synchronization_version:

-- Check individual table.

IF (@last_synchronization_version <

CHANGE_TRACKING_MIN_VALID_VERSION(OBJECT_ID(‘MyCustomer’)))

BEGIN

-- Handle invalid version and do not enumerate changes.

-- Client must be reinitialized.

END

Identifying Changed Columns

In addition to information about which rows were changed and the operation that caused
the change (insert, update, or delete—reported as I, U, or D in the SYS_CHANGE_OPERATION),
the CHANGETABLE(CHANGES ...) function also provides information on which columns
were modified if you enabled the TRACK_COLUMNS_UPDATED option. You can use this infor-
mation to determine whether any action is needed in your client application based on
which columns changed.

To identify whether a specific column has changed, you can use the
CHANGE_TRACKING_IS_COLUMN_IN_MASK (column_id, change_columns) function. This func-

ptg

1634 CHAPTER 42 What’s New for Transact-SQL in SQL Server 2008

tion interprets the SYS_CHANGE_COLUMNS bitmap value returned by the CHANGETABLE(CHANGES
...) function and returns a 1 if the column was modified or 0 if it was not:

declare @last_synchronization_version bigint

set @last_synchronization_version = 0

SELECT

CT.CustomerID as CustID,

TerritoryChanged = CHANGE_TRACKING_IS_COLUMN_IN_MASK

(COLUMNPROPERTY(OBJECT_ID(‘MyCustomer’),

‘TerritoryID’, ‘ColumnId’),

CT.SYS_CHANGE_COLUMNS),

CT.SYS_CHANGE_OPERATION,

CT.SYS_CHANGE_COLUMNS

FROM

CHANGETABLE(CHANGES MyCustomer, @last_synchronization_version) AS CT

go

CustID TerritoryChanged SYS_CHANGE_OPERATION SYS_CHANGE_COLUMNS

----------- ---------------- -------------------- ------------------

4 1 U 0x0000000004000000

5 1 U 0x0000000004000000

In the query results, you can see that both update operations (SYS_CHANGE_OPERATION =
‘U’) modified the TerritoryID column (TerritoryChanged = 1).

Change Tracking Overhead

Although Change Tracking has been optimized to minimize the performance overhead on
DML operations, it is important to know that there are some performance overhead and
space requirements within the application databases when implementing Change Tracking.

The performance overhead associated with using Change Tracking on a table is similar to
the index maintenance overhead incurred for insert, update, and delete operations. For
each row changed by a DML operation, a row is added to the internal Change Tracking
table. The amount of overhead incurred depends on various factors, such as

. The number of primary key columns

. The amount of data being changed in the user table row

. The number of operations being performed in a transaction

. Whether column Change Tracking is enabled

Change Tracking also consumes some space in the databases where it is enabled as well.
Change Tracking data is stored in the following types of internal tables:

. Internal change tables—There is one internal change table for each user table that
has Change Tracking enabled.

ptg

1635Summary
4

2

. Internal transaction table—There is one internal transaction table for the
database.

These internal tables affect storage requirements in the following ways:

. For each change to each row in the user table, a row is added to the internal change
table. This row has a small fixed overhead plus a variable overhead equal to the size
of the primary key columns. The row can contain optional context information set
by an application. In addition, if column tracking is enabled, each changed column
requires an additional 4 bytes per row in the tracking table.

. For each committed transaction, a row is added to an internal transaction table.

If you are concerned about the space usage requirements of the internal Change Tracking
tables, you can determine the space they use by executing the sp_spaceused stored proce-
dure. The internal transaction table is called sys.syscommittab. The names of the internal
change tables for each table are in the form change_tracking_object_id. The following
example returns the size of the internal transaction table and internal change table for the
MyCustomer table:

exec sp_spaceused ‘sys.syscommittab’

declare @tablename varchar(128)

set @tablename = ‘sys.change_tracking_’

+ CONVERT(varchar(16), object_id(‘MyCustomer’))

exec sp_spaceused @tablename

Summary
Transact-SQL has always been a powerful data access and data modification language,
providing additional features, such as functions, variables, and commands, to control
execution flow. SQL Server 2008 further expands the power and capabilities of T-SQL with
the addition of a number of new features. These new T-SQL features can be incorporated
into the building blocks for creating even more powerful SQL Server database compo-
nents, such as views, stored procedures, triggers, and user-defined functions.

In addition to the powerful features available in T-SQL for developing SQL code and stored
procedures, triggers, and user-defined functions, SQL Server 2008 also enables you to
define custom-managed database objects such as stored procedures, triggers, functions,
data types, and custom aggregates using .NET code. The next chapter, “Creating .NET CLR
Objects in SQL Server 2008,” provides an overview of using the .NET common language
runtime (CLR) to develop these custom-managed objects.

ptg

This page intentionally left blank

ptg

CHAPTER 43

Transact-SQL
Programming

Guidelines, Tips, and
Tricks

IN THIS CHAPTER

. General T-SQL Coding
Recommendations

. General T-SQL Performance
Recommendations

. T-SQL Tips and Tricks

. In Case You Missed It: New
T-SQL Features in SQL Server
2005

. The xml Data Type

. The max Specifier

. TOP Enhancements

. The OUTPUT Clause

. Common Table Expressions

. Ranking Functions

. PIVOT and UNPIVOT

. The APPLY Operator

. TRY...CATCH Logic for
Error Handling

. The TABLESAMPLE Clause

One of the things you’ll discover with Transact-SQL (T-
SQL) is that there are a number of different ways to write
queries to get the same results, but some approaches are
more efficient than others. This chapter provides some
general guidelines and best practices for programming in
the T-SQL language to ensure robust code and optimum
performance. Along the way, it provides tips and tricks to
help you solve various T-SQL problems as well.

NOTE

This chapter is not intended to be a comprehensive
list of guidelines, tips, and tricks. The intent of this
chapter is to provide a collection of some of our
favorite guidelines, tips, and tricks that are not pre-
sented elsewhere in this book. A number of other T-
SQL guidelines, tips, and tricks are provided
throughout many of the other chapters in this book.
For example, a number of performance-related T-SQL
coding guidelines and tips are presented in Chapter
35, “Understanding Query Optimization,” and addition-
al T-SQL coding guidelines can be found in Chapter 28,
“Creating and Managing Stored Procedures,” and 44,
“Advanced Stored Procedure Programming and
Optimization.

ptg

1638 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

General T-SQL Coding Recommendations
Writing good T-SQL code involves establishing and following T-SQL best practices and
guidelines. The following sections provide some common recommendations for general T-
SQL coding guidelines to help ensure reliable, robust SQL code.

Provide Explicit Column Lists

When writing SELECT or INSERT statements in application code or stored procedures, you
should always provide the full column lists for the SELECT or INSERT statement. If you use
SELECT * in your code or in a stored procedure, the column list is resolved each time the
SELECT statement is executed. If the table is altered to add or remove columns, the SELECT
statement returns a different set of columns. This can cause your application or SQL code
to generate an error if the number of columns returned is different than expected. For
example, consider the following sample table:

create table dbo.explicit_cols (a int, b int)

insert explicit_cols (a, b) values (10, 20)

Now, suppose there is a stored procedure with a cursor that references the explicit_cols
table, using SELECT * in the cursor declaration, similar to the following:

create proc dbo.p_fetch_explicit_cols

as

declare @a int, @b int

declare c1 cursor for select * from explicit_cols

open c1

fetch c1 into @a, @b

while @@fetch_Status = 0

begin

print ‘the proc works!!’

fetch c1 into @a, @b

end

close c1

deallocate c1

return

If you run the p_fetch_explicit_cols procedure, it runs successfully:

exec dbo.p_fetch_explicit_cols

go

the proc works!!

Now, if you add a column to the explicit_cols table and rerun the procedure, it fails:

alter table explicit_cols add c int null

go

ptg

1639General T-SQL Coding Recommendations
4

3

exec dbo.p_fetch_explicit_cols

go

Msg 16924, Level 16, State 1, Procedure p_fetch_explicit_cols, Line 7

Cursorfetch: The number of variables declared in the INTO list must match that of

selected columns.

The p_fetch_explicit_cols procedure fails this time because the cursor is now returning
three columns of data, and the FETCH statement is set up to handle only two columns. If
the cursor in the p_fetch_explicit_cols procedure were declared with an explicit list of
columns a and b instead of SELECT *, this error would not occur.

Not providing an explicit column list for INSERT statements can lead to similar problems.
Consider the following stored procedure:

create proc p_insert_explicit_cols (@a int, @b int, @c int)

as

insert explicit_cols

output inserted.*

values (@a, @b, @c)

return

go

exec dbo.p_insert_explicit_cols 10, 20, 30

go

a b c

----------- ----------- -----------

10 20 30

With three columns currently on the explicit_cols table, this procedure works fine.
However, if you alter the explicit_cols table to add another column, the procedure fails:

alter table explicit_cols add d int null

go

exec dbo.p_insert_explicit_cols 10, 20, 30

go

Msg 213, Level 16, State 1, Procedure p_insert_explicit_cols, Line 4

Insert Error: Column name or number of supplied values does not match table

definition.

If the procedure were defined with an explicit column list for the INSERT statement, it
would still execute successfully:

alter proc p_insert_explicit_cols (@a int, @b int, @c int)

as

insert explicit_cols (a, b, c)

ptg

1640 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

output inserted.*

values (@a, @b, @c)

return

go

exec dbo.p_insert_explicit_cols 11, 12, 13

go

a b c d

----------- ----------- ----------- -----------

11 12 13 NULL

NOTE

If a procedure specifies fewer columns for an INSERT statement than exist in the table,
the INSERT statement succeeds only if the columns not specified allow NULL values or
have default values associated with them. Notice in the previous example that column
d allows nulls, and the OUTPUT clause used in the procedure shows that the INSERT
statement inserted a NULL value into that column.

Qualify Object Names with a Schema Name

In SQL Server 2005, the behavior of schemas was changed from earlier versions of SQL
Server. SQL Server 2005 introduced definable schemas, which means schemas are no
longer limited to database usernames only. Each schema is now a distinct namespace that
exists independently of the database user who created it. Essentially, a schema is now
simply a container for objects. A schema can be owned by any user, and the ownership of
a schema is transferable to another user. This new feature provides greater flexibility in
creating schemas and assigning objects to schemas that are not simply related to a specific
database user. At the same time, it can create confusion if objects with the same name
exist in multiple schemas.

By default, if a user has CREATE permission (or has the db_ddladmin role) in a database and
that user creates an object without explicitly qualifying it with a schema name, the object
is created in that user’s default schema. If a user is added to a database with the CREATE
USER command and a specific default schema is not specified, the default schema is the
dbo schema.

NOTE

To further complicate matters, if you use the old sp_adduser system procedure to add
a user to a database, sp_adduser also creates a schema that has the name of the
user and makes that the user’s default schema. However, sp_adduser is a deprecated
feature that will be dropped in a future release of SQL Server. You should therefore
instead use the CREATE USER command.

ptg

1641General T-SQL Coding Recommendations
4

3

For example, consider the following SQL commands that create a user called testuser43
in the bigpubs2008 database:

use bigpubs2008

go

sp_addlogin testuser43, ‘TestUser#43’, bigpubs2008

go

create user testuser43

go

exec sp_addrolemember ‘db_ddladmin’, testuser43

exec sp_addrolemember ‘db_datareader’, testuser43

exec sp_addrolemember ‘db_datawriter’, testuser43

go

If you then log in and create a table under the testuser43 account without qualifying the
table with a schema name, it is created in the default dbo schema:

--Verify name of current schema

select schema_name()

go

dbo

create table test43(a varchar(10) default schema_name() null)

go

insert test43 (a) values (DEFAULT)

go

select * from test43

go

a

dbo

From these commands, you can see that the default schema for the testuser43 user is
dbo, and the test43 table gets created in the dbo schema.

Now, if you create a schema43 schema and want to create the test43 table in the schema43
schema, you need to fully qualify it or change the default schema for testuser43 to
schema43. To demonstrate this, you run the following commands while logged in as the
testuser43 user:

create schema schema43

go

alter user testuser43 with default_schema = schema43

go

ptg

1642 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

create table test43(a varchar(10) default schema_name() null)

go

insert test43 (a) values (DEFAULT)

go

select * from test43

go

a

schema43

As you can see from this example, now the same CREATE TABLE and INSERT commands as
entered before create and insert into a table in the schema43 schema.

When the user testuser43 runs a query against the test43 table, which table the SELECT
statement runs against depends on the current default schema for testuser43. The first
query runs in the schema43 schema:

alter user testuser43 with default_schema = schema43

go

select * from test43

go

a

schema43

The next query runs from the dbo schema:

alter user testuser43 with default_schema = dbo

go

select * from test43

go

a

dbo

You can see that the current schema determines which table is queried when the table
name is not fully qualified in the query. There are two ways to avoid this ambiguity. The
first is to create objects only in the dbo schema and not to have additional schemas
defined in the database. If you are working with a database that has multiple schemas, the
only other way to avoid ambiguity is to always fully qualify your object names with the
explicit schema name. In the following example, because you fully qualify the table name,
it doesn’t matter what the current schema is for user testuser43; the query always
retrieves from the dbo.test43 table:

alter user testuser43 with default_schema = dbo

ptg

1643General T-SQL Coding Recommendations
4

3

go

select * from dbo.test43

go

a

dbo

alter user testuser43 with default_schema = schema43

go

select * from dbo.test43

go

a

dbo

Along these same lines, when you are creating objects in a database, it is recommended
that you specify the schema name in the CREATE statement to ensure that the object is
created in the desired schema, regardless of the user’s current schema.

Avoid SQL Injection Attacks When Using Dynamic SQL

The EXEC () (or EXECUTE ()) command in SQL Server enables you to execute queries built
dynamically into a character string. This is a great feature for building queries on the fly
in your T-SQL code when it may not be possible to account for all possible search criteria
in a stored procedure or when static queries may not optimize effectively.

However, when coding dynamic SQL, it’s important to make sure your code is protected
from possible SQL injection attacks. A SQL injection attack is, as its name suggests, an
attempt by a hacker to inject T-SQL code into the database without permission. Typically,
the hacker’s goal is to retrieve confidential data such as Social Security or credit card
numbers or to possibly vandalize or destroy data in the database.

SQL injection is usually the result of faulty application design—usually an unvalidated
entry field in the application user interface. For example, this could be a text box where
the user would enter a search value. A hacker may attempt to inject SQL statements into
this entry field to try to gain access to information in the database.

Although SQL injection is essentially an application flaw, you can minimize the possibility
of SQL injection attacks by following some coding practices in your stored procedures that
make use of the EXEC() statement to dynamically build and execute a query. For example,
consider the stored procedure shown in Listing 43.1, which might support a search page in
a web application where the user is able to enter one or more optional search parameters.

ptg

1644 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

LISTING 43.1 Sample Procedure to Demonstrate SQL Injection

use bigpubs2008

go

create proc dbo.get_titles @type varchar(12) = null,

@pubdate varchar(10) = null,

@price varchar(6) = null,

@title varchar(80) = null

as

declare @where varchar(4000)

set @where = ‘ WHERE 1 = 1 ‘

if @type is not null

set @where = @where + ‘ AND type = ‘’’ + @type + ‘’’’

if @pubdate is not null

set @where = @where + ‘ AND pubdate = ‘’’ + @pubdate + ‘’’’

if @price is not null

set @where = @where + ‘ AND price = ‘ + @price

if @title is not null

set @where = @where + ‘ AND title like ‘’’ + @title + ‘’’’

exec (‘select left(title, 60) as title,

convert (char(10), pubdate, 101) as pubdate from dbo.titles ‘ + @where)

return

Following is an example of a typical execution of this procedure if the end user enters
business in the book type search field:

exec dbo.get_titles @type = ‘business’

go

title pubdate

-- ----------

The Busy Executive’s Database Guide 06/12/2004

Cooking with Computers: Surreptitious Balance Sheets 06/09/2004

You Can Combat Computer Stress! 06/30/2004

Straight Talk About Computers 06/22/2004

To understand how to prevent SQL injection attacks, let’s look at a way that a hacker
might attempt a SQL injection attack. What a hacker attempting a SQL injection attack
might typically do with a web application is to seek out a search field and try to inject
some SQL code into it to see if the application is susceptible to an attack. This would typi-
cally be done by inserting a single quotation mark into the search field to close out the
string and appending a SQL statement after it. For example, the hacker may enter the
string ’ OR 1 = 1 -- into the search field. This search condition contains a single quota-
tion mark and an end comment marker (--). The quotation mark would have the effect of
closing the search string, and the comment marker would comment out the rest of the
query to prevent syntax errors caused by the SQL injection. The additional search condi-

ptg

1645General T-SQL Coding Recommendations
4

3

tion appended to the query would cause the query to return all rows from the table, and
the hacker would know he’s found a susceptible text box:

exec dbo.get_titles @title = ‘’’ OR 1 = 1 --’

go

title pubdate

-- ----------

Samuel Johnson 09/19/2008

Freud, Dora, and Vienna 1900 02/25/2008

Freud: A Life for Our Time 06/21/2008

For Love of the World 01/06/2006

Freud: A Life for Our Time 10/16/2007

The Riddle of Anna Anderson 02/21/2007

Final Analysis 05/31/2006

...

When the hacker sees the results of this query, he knows he’s found a susceptible text field
and may try to query the system catalogs. Typically, this is done with a UNION ALL state-
ment because the application would likely generate an error if multiple result sets were
returned. With UNION, the hacker’s SQL injection statement would have to return the same
number of columns as the original query, and the columns would need to be of compati-
ble data types. It might take the hacker some trial and error, but eventually, he might
come up with a query string such as

UNION ALL select TABLE_NAME, NULL from INFORMATION_SCHEMA.TABLES --

to append to the following search value:

exec dbo.get_titles @title = ‘’’ UNION ALL select TABLE_NAME, NULL

from INFORMATION_SCHEMA.TABLES --’

go

title pubdate

-------------------------------- -----------

sales_big NULL

roysched NULL

titleauthor NULL

PARTS NULL

titleview NULL

publishers NULL

top_sales NULL

sales_archive NULL

authors NULL

jobs NULL

ptg

1646 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

pub_info NULL

sales NULL

sales_qty_rollup NULL

stores NULL

titles NULL

discounts NULL

employee NULL

sales_noclust NULL

With this information, the hacker has a list of all the tables defined in the database. At
this point, the hacker might try to probe deeper into the database to look for sensitive
data. For example, the hacker might decide to try to query the authors table to see if there
is any sensitive data, such as Social Security numbers, in it. To do so, the hacker would use
a trial-and-error approach of entering various SQL injection queries against the system
catalogs to get column information, possibly eventually coming up with the SQL injection
statements used in the following queries:

exec dbo.get_titles @title = ‘’’ UNION ALL select name, str(id) from sysobjects

where name = ‘’authors’’--’

go

title pubdate

-------------------------------- ----------

authors 1253579504

exec dbo.get_titles @title = ‘’’ UNION ALL select name, null from syscolumns

where id = 1253579504--’

go

title pubdate

-------------------------------- ----------

au_id NULL

au_lname NULL

au_fname NULL

phone NULL

address NULL

city NULL

state NULL

zip NULL

contract NULL

At this point, the hacker has an idea what fields are in the authors table and could
attempt to view data in those columns to try to uncover personal information such as
Social Security numbers, credit card numbers, addresses, and so on:

exec dbo.get_titles @title = ‘’’ UNION ALL select au_id + au_lname,

au_fname from authors--’

ptg

1647General T-SQL Coding Recommendations
4

3

go

title pubdate

-- --------------------

681-61-9588Ahlberg Allan

739-35-5165Ahlberg Janet

499-84-5672Alexander Lloyd

969-00-7063Amis Martin

263-46-4600Arendt Hannah

626-03-3836Arnosky Jim

432-31-3829Bate W. Jackson

437-99-3329Bauer Caroline Feller

378-33-9373Benchley Nathaniel

409-56-7008Bennet Abraham

648-92-1872Blotchet-Halls Reginald

...

The hacker could continue the SQL injection attack by attempting to view data in other
tables. Or, worse, he could attempt to destroy data by attempting updates, deletes, or
inserts of his own data, or, even worse, truncate tables or drop tables entirely. Depending
on the account that the application runs under and the rights assigned to that account,
the hacker might even be able to run system stored procedures or extended stored proce-
dures such as xp_cmdshell.

So what can be done to help avoid SQL injection attacks? The best solution is to make
sure the application itself performs validation on the user input fields to prevent the
injection of SQL commands. Also, the application should keep any input fields as small
as possible to reduce the likelihood of a hacker being able to squeeze SQL code into the
field without it being truncated (which usually leads to a T-SQL syntax error). In addi-
tion, there are precautions you can take in your databases and T-SQL code as a secondary
mechanism to prevent SQL injection.

On the database side, one thing you can do is to make sure the application runs under a
user account with the minimal permissions necessary. You should avoid giving the appli-
cation user account either dbo or, worse, sa permissions. (It’s frightening how many appli-
cations are out there running under the dbo or sa account!) Restricting the permissions
restricts the amount of damage a hacker might possibly inflict on a database.

Another way you can help avoid SQL injection is to check for common SQL injection
methods in your stored procedure code. For example, you could recode the procedure
shown in Listing 43.1 to look for the UNION statement (one common method used in SQL
injection attacks) and to strip out any text from an input string from the point where the
UNION statement is found. Listing 43.2 shows an example of this.

ptg

1648 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

LISTING 43.2 Stripping Out the UNION Clause to Help Avoid SQL Injection

alter proc get_titles @type varchar(12) = null,

@pubdate varchar(10) = null,

@price varchar(6) = null,

@title varchar(80) = null

as

declare @where varchar(4000),

@query varchar(8000)

set @query = ‘select left(title, 60) as title,

convert (char(10), pubdate, 101) as pubdate from dbo.titles ‘

set @where = ‘ WHERE 1 = 1 ‘

if @type is not null

set @where = @where + ‘ AND type = ‘’’ + @type + ‘’’’

if @pubdate is not null

set @where = @where + ‘ AND pubdate = ‘’’ + @pubdate + ‘’’’

if @price is not null

set @where = @where + ‘ AND price = ‘ + @price

if @title is not null

set @where = @where + ‘ AND title like ‘’’ + @title + ‘’’’

-- The following statement truncates the @where clause at the point where

-- it finds the UNION statement

select @query = @query + left(@where, charindex(‘UNION’, @where) - 1)

exec (@query)

return

When this query is executed, the UNION statement is stripped out. The WHERE clause ends
up looking like the following:

WHERE 1 = 1 AND title like ‘’

With the UNION stripped out, leaving only an empty string, the query now returns an
empty result set:

exec dbo.get_titles @title = ‘’’ UNION ALL select name,null from syscolumnswhere id

= 1253579504--’

title pubdate

-- ----------

In addition to having the stored procedure code look for the UNION clause, you could
further expand on this to look for other common SQL injection methods. One other,
possibly more reliable, way to help avoid SQL injection attacks is to parameterize your
dynamic queries by using sp_executesql. When you embed parameters in the dynamic
SQL string rather than build it on the fly, it is much harder for a hacker to insert SQL
statements into the dynamic query. Listing 43.3 shows an example of this approach.

ptg

1649General T-SQL Coding Recommendations
4

3

LISTING 43.3 Using sp_executsql to Help Avoid SQL Injection

alter proc get_titles @type varchar(12) = null,

@pubdate varchar(10) = null,

@price varchar(6) = null,

@title varchar(80) = null

as

declare @where nvarchar(2000),

@query nvarchar(2000)

set @query = ‘select left(title, 60) as title,

convert (char(10), pubdate, 101) as pubdate from dbo.titles ‘

set @where = ‘ WHERE 1 = 1 ‘

if @type is not null

set @where = @where + ‘ AND type = @type ‘

if @pubdate is not null

set @where = @where + ‘ AND pubdate = @pubdate ‘

if @price is not null

set @where = @where + ‘ AND price = convert(money, @price) ‘

if @title is not null

set @where = @where + ‘ AND title like @title ‘

-- Build the final query

select @query = @query + @where

exec sp_executesql @query,

N’@type varchar(12), @pubdate varchar(10),

@price varchar(6), @title varchar(80)’,

@type, @pubdate, @price, @title

return

With this version of the procedure, the query that gets built looks like the following:

select left(title, 60) as title,

convert (char(10), pubdate, 101) as pubdate from dbo.titles

WHERE 1 = 1 AND title like @title

With the query written this way, the value passed in for @title when sp_executesql is
invoked is the following:

’’ UNION ALL select name, null from syscolumns where id = 1253579504--

With this value passed in as the argument to the @title variable in the where clause, the
search condition eventually becomes this:

AND title like

“‘’ UNION ALL select name, null from syscolumns where id = 1253579504--”

ptg

1650 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

As you might surmise, this string matches no actual titles in the titles tables, so an
empty result set is returned.

There is another alternative approach to preventing SQL injection attacks. Instead of
searching for possible injection methods within the parameters used to build the query,
you can make sure the dynamic SQL code fragments contain only allowable keywords and
values. For example, consider a variation of the stored procedure in Listing 43.3 that
allows for the specification of a dynamic sort on the query:

alter proc get_titles @type varchar(12) = null,

@pubdate varchar(10) = null,

@price varchar(6) = null,

@title varchar(80) = null,

@sort varchar(1000) = ‘’

as

declare @where nvarchar(2000),

@query nvarchar(2000)

set @query = ‘select left(title, 60) as title,

convert (char(10), pubdate, 101) as pubdate from dbo.titles ‘

set @where = ‘ WHERE 1 = 1 ‘

if @type is not null

set @where = @where + ‘ AND type = @type ‘

if @pubdate is not null

set @where = @where + ‘ AND pubdate = @pubdate ‘

if @price is not null

set @where = @where + ‘ AND price = convert(money, @price) ‘

if @title is not null

set @where = @where + ‘ AND title like @title ‘

-- Build the final query

select @query = @query + @where

+ case when @sort <> ‘’ then ‘ORDER BY ‘ + @sort

else ‘’ end

exec sp_executesql @query,

N’@type varchar(12), @pubdate varchar(10),

@price varchar(6), @title varchar(80)’,

@type, @pubdate, @price, @title

Return

Although the use of parameterized SQL with sp_executesql avoids issues with SQL injec-
tion via the @type, @pubdate, @price, and @title parameters, the code opens itself up
again to SQL injection with the @sort variable being tacked onto the end of the query.
Instead of trying to find all the possible commands that could be embedded in the @sort
variable, and alternative approach is to make sure it contains only allowable keywords and

ptg

1651General T-SQL Coding Recommendations
4

3

columns. The ORDER BY clause is reasonably simple; the only allowable values are the
keywords DESC and ASC, column position numbers, and column names. In this example,
you set up the code in the procedure to allow only the DESC and ASC keywords and a
limited set of column names. The code strips out all the allowable values, and if anything
else is left, you know that the @sort parameter contains something that it shouldn’t and
can disallow it. An example using this approach is shown in Listing 43.4.

LISTING 43.4 Checking for Only Allowable Values to Prevent SQL Injection

alter proc get_titles @type varchar(12) = null,

@pubdate varchar(10) = null,

@price varchar(6) = null,

@title varchar(80) = null,

@sort varchar(1000) = ‘’

as

declare @where nvarchar(2000),

@query nvarchar(2000) ,

@sort_check varchar(1000)

set @query = ‘select left(title, 60) as title,

convert (char(10), pubdate, 101) as pubdate from dbo.titles ‘

-- Replace all allowable terms/syntax in @sort with empty strings

-- Allowable terms are ASC, DESC, title, pubdate, price, type and comma (,)

Set @sort_check = replace(@sort, ‘ASCENDING’, ‘’)

Set @sort_check = replace(@sort_check, ‘DESCENDING’, ‘’)

Set @sort_check = replace(@sort, ‘ASC’, ‘’)

Set @sort_check = replace(@sort_check, ‘DESC’, ‘’)

Set @sort_check = replace(@sort_check, ‘,’, ‘’)

Set @sort_check = replace(@sort_check, ‘title’, ‘’)

Set @sort_check = replace(@sort_check, ‘pubdate’, ‘’)

Set @sort_check = replace(@sort_check, ‘price’, ‘’)

Set @sort_check = replace(@sort_check, ‘type’, ‘’)

If @sort_check <> ‘’ -- the @sort column contains a disallowed term

Begin

Raiserror (‘Invalid sort specified’, 16, 1)

Return -101

end

set @where = ‘ WHERE 1 = 1 ‘

if @type is not null

set @where = @where + ‘ AND type = @type ‘

if @pubdate is not null

set @where = @where + ‘ AND pubdate = @pubdate ‘

if @price is not null

ptg

1652 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

set @where = @where + ‘ AND price = convert(money, @price) ‘

if @title is not null

set @where = @where + ‘ AND title like @title ‘

-- Build the final query

select @query = @query + @where

+ case when @sort <> ‘’ then ‘ORDER BY ‘ + @sort

Else ‘’ end

exec sp_executesql @query,

N’@type varchar(12), @pubdate varchar(10),

@price varchar(6), @title varchar(80)’,

@type, @pubdate, @price, @title

return

go

-- execute with a valid @sort value

exec get_titles @pubdate = ‘2/21/2007’,

@sort = ‘type ASC, price DESC’

-- execute with an attempted SQL injection in @sort parameter

exec get_titles @pubdate = ‘2/21/2007’,

@sort = ‘type ASC, price DESC; select * from sysobjects’

go

title pubdate

-- ----------

The Riddle of Anna Anderson 02/21/2007

Zuckerman Unbound 02/21/2007

Later the Same Day 02/21/2007

(3 row(s) affected)

Msg 50000, Level 16, State 1, Procedure get_titles, Line 26

Invalid sort specified

Dynamic SQL is a great feature in SQL Server that provides considerable flexibility in
building queries in stored procedures. However, it also presents a risk if you are not careful
to prevent possible SQL injection attacks.

Comment Your T-SQL Code

Anyone who has ever had to review or change some code recognizes the importance of
comments. Even if it seems obvious what the code does when you’re writing it, the
meaning will most certainly not be as obvious later, especially if someone other than the
original author is looking at it.

ptg

1653General T-SQL Performance Recommendations
4

3

When you are working with large code blocks, a good technique to follow is to add a
comment at the beginning and end of the code block:

while (...) /* Begin loop1 */

begin

...

end /* End loop1 */

...

if (@price > 1) /* if (@price > 1) */

begin

...

end /* if (@price > 1) */

Another recommendation is to include a comment header at the beginning of compiled
objects such as stored procedures, functions, and triggers. Following is a sample comment
header you might want to use as a template:

/***/

-- Procedure Name: p_proc_name

--

-- Purpose: Describe the purpose of the procedure here. Include any

-- special notes on usage or code logic

--

-- Input Parameters:

-- @param1 numeric(12,0) Not Required

-- @param2 tinyint Not required

--

-- Output Parameters:

-- None

--

-- Return Values: 0 Success

-- Other Error

--

-- Written By: Joe Developer, 7/1/08

-- Modified By: Joe Developer, 7/5/08

-- Describe changes made to the proc here

-- Reviewed By:

--

/***/

General T-SQL Performance Recommendations
How you write T-SQL queries can often have an effect on the performance of those
queries. The following sections provide some general guidelines to keep in mind to help
ensure that you are getting optimal performance from your queries.

ptg

1654 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

UNION Versus UNION ALL Performance

You should use UNION ALL instead of UNION if there is no need to eliminate duplicate result
rows from the result sets being combined with the UNION operator. The UNION statement
has to combine the result sets into a worktable to remove any duplicate rows from the
result set. UNION ALL simply concatenates the result sets together, without the overhead of
putting them into a worktable to remove duplicate rows.

Use IF EXISTS Instead of SELECT COUNT(*)

You should use IF EXISTS instead of SELECT COUNT(*) when checking only for the exis-
tence of any matching data values and when determining the number of matching rows is
not required. IF EXISTS stops the processing of the select query as soon as the first
matching row is found, whereas SELECT COUNT(*) continues searching until all matches
are found, wasting I/O and CPU cycles. For example, you could replace

if (SELECT count(*) FROM dbo.sales WHERE stor_id = ‘6380’) > 0

with an IF EXISTS check similar to

if exists (SELECT * FROM dbo.sales WHERE stor_id = ‘6380’)

Avoid Unnecessary ORDER BY or DISTINCT Clauses

When a T-SQL query contains an ORDER BY or DISTINCT clause, a worktable is often
required to process the final result of the query if it cannot determine that the rows will
already be retrieved in the desired sort order or that a unique key in the result makes the
rows distinct. If a query requires a worktable, that adds extra overhead and I/O to put the
results into the worktable in tempdb and do the sorting necessary to order the results or to
eliminate duplicate rows. This can result in extended processing time for the query, which
can delay the time it takes for the final result to be returned to the client application.

If it is not absolutely necessary for the rows returned to the application to be in a specific
order (for example, returning rows to a grid control where the contents can be re-sorted
by any column in the grid control itself), you should leave off the ORDER BY clause in
your queries.

Likewise, you should not arbitrarily include the DISTINCT clause in all your queries unless
it is absolutely necessary to eliminate any duplicate rows from the result set.

Temp Tables Versus Table Variables Versus Common Table
Expressions

SQL Server 2008 provides multiple options for working with temporary result sets in T-
SQL code:

. Temporary tables

. Table variables

ptg

1655General T-SQL Performance Recommendations
4

3

. Derived tables

. Common table expressions

One of the questions you may consider is “Which method should I use and when?”
Whether you use a temporary table, table variable, derived table, or common table expres-
sion depends, in part, on how often and for how long you intend to use it. This section
provides some general recommendations to consider.

You should use table variables instead of temporary tables in stored procedures whenever
possible or feasible. Table variables are memory resident and do not incur the I/O over-
head and system table and I/O contention that can occur in tempdb with normal tempo-
rary tables. However, remember that table variables exist only for the duration of the SQL
batch or stored procedure in which they are defined.

In SQL Server 2005 and later, you also have the option of using derived tables or common
table expressions in your queries to generate and hold intermediate result sets that can be
further processed by the main query. A derived table is a subquery contained in a FROM

clause that can be referred to by an alias and used as a table in the query. Derived tables
and common table expressions can be thought of as sort of dynamic views that exist only
for the duration of the query. Derived tables are handy if you don’t need to use a result
set more than once in multiple queries. You should consider using derived tables or
common table expressions when possible to completely avoid the use of table variables or
temporary tables, especially if the temporary table or table variable is used only once by a
single query.

NOTE

For more information on common table expressions and how to use them, see the sec-
tion “Common Table Expressions” later in this chapter.

You should generally consider using temporary tables only when you need to share data
between an application and stored procedures or between stored procedures. Also, if the
temporary result set is going to be very large (that is, larger than can be held in SQL
Server cache memory), you should consider storing it in a temporary table rather than a
table variable.

NOTE

In SQL Server 2008, you can define table data types, which makes it possible to pass
table variables to stored procedures as table parameters, so temp tables aren’t the
only way to share data between stored procedures. However, there are some limita-
tions: primarily, the contents of a table parameter passed to a stored procedure are
read only and cannot be modified within the stored procedure. If you want to share
data between stored procedures and have the ability to add, remove, or modify rows in
any of the stored procedures, temporary tables are still the best solution.

ptg

1656 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

If you need to use temporary tables, you can follow these general guidelines to help
improve their performance:

. Select only the columns actually required by the subsequent SQL statements into the
temp table (that is, avoid using select *). This helps reduce the size of the temp
table, thereby reducing the number of writes to tempdb and also speeding up access
of the data within the temp table because more rows will fit on a data page, reduc-
ing the number of data pages that need to be accessed by the query.

. Select only the rows needed by the subsequent queries, again to help limit the size
of the temp table and reduce the amount of I/O in tempdb.

. If the temporary table will be accessed multiple times by queries using search argu-
ments (SARGs), consider creating an index on the temporary table if it can be used
to speed up the queries against the temp table and reduce I/O. Of course, this option
should be considered only if the time and I/O saved by having an index on the tem-
porary table significantly exceeds the time and I/O required to create the index.

Avoid Unnecessary Function Executions

If you call a SQL Server function (for example, suser_name(), getdate()) repeatedly
within a procedure or in T-SQL code, you should consider using a local variable to hold
the value returned by the function and use the local variable repeatedly throughout your
SQL statements rather than repeatedly executing the SQL Server function. This saves CPU
cycles within your stored procedure and T-SQL code.

NOTE

For additional performance-related query recommendations related specifically to how
queries are optimized, see Chapter 35.

Cursors and Performance

In contrast to most other programming languages, SQL is a set-based processing language.
You retrieve sets of rows, update sets of rows, and delete sets of rows. The set of rows
affected is determined by the search conditions specified in the query. Unfortunately,
most programmers are used to doing record-oriented operations on data and often want to
apply the same technique to SQL Server data. Admittedly, at times, processing rows as a
single result set with a single query can seem difficult or impossible. However, because of
the performance implications, cursors should not be used just because it’s easier to
program that way.

NOTE

SQL Server 2008 introduces the new MERGE statement, which provides another set-ori-
ented option for processing a set of input rows and making a row-by-row determination
which rows to ignore or which to insert, update, or delete in the target table. For more
information on using the MERGE statement, see Chapter 42, “What’s New for Transact-
SQL in SQL Server 2008.”

ptg

1657General T-SQL Performance Recommendations
4

3

When to Use Cursors
Application performance can sometimes be slow due to the improper use of cursors. You
should always try to write your T-SQL code so SQL Server can perform what it is good at:
set-based operations. It makes little sense to have an advanced relational database manage-
ment system (RDBMS) and use it only for one-row-at-a-time retrievals. For example, many
update operations performed using cursors can be performed with a single UPDATE state-
ment using the CASE expression. Consider the cursor shown in Listing 43.5.

LISTING 43.5 Updating the titles Table by Using a Cursor

/* This is a SQL script to update book prices dependent on current price and

ytd_sales */

/*declare cursor*/

declare titles_curs cursor for

select ytd_sales, price from dbo.titles

for update of price

declare @ytd_sales int, @price money

open titles_curs

fetch next from titles_curs into @ytd_sales, @price

if (@@fetch_status = -1)

begin

print ‘No books found’

close titles_curs

deallocate titles_curs

return

end

while (@@fetch_status = 0)

begin

if @ytd_sales < 500

update titles set price = @price * .75

where current of titles_curs

else

if @price > $15

update titles set price = @price * .9

where current of titles_curs

else

update titles set price = @price * 1.15

where current of titles_curs

fetch next from titles_curs into @ytd_sales, @price

end

if (@@fetch_status = -2)

raiserror (‘Attempt to fetch a row failed’, 16, 1)

close titles_curs

deallocate titles_curs

ptg

1658 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

This cursor can be replaced with a simple, single UPDATE statement, using the CASE expres-
sion, as shown in Listing 43.6

LISTING 43.6 The titles Cursor Example Performed with a Single UPDATE Statement Using
the CASE Expression

update titles

set price = case when ytd_sales < 500 then price *.75

when price > $15 then price * .90

else price * 1.15

end

The advantages with this approach are significant performance improvement and much
cleaner and simpler code. In testing the performance of the single update versus the cursor
using the bigpubs2008 database, the cursor required on average around 100 milliseconds
(ms) to complete. The single update statement required, on average, about 10 ms. (Your
results may vary depending on hardware capabilities.) Although both of these completed
within a subsecond response time, consider that the cursor took 10 times longer to
complete than the single update. Factor that out over hundreds of thousands or millions
of rows, and you could be looking at a significant performance difference.

Why is the cursor so much slower? Well, for one thing, a table scan performed by an
UPDATE, a DELETE, or a SELECT uses internal, compiled C code to loop through the result
set. A cursor uses interpreted SQL code. In addition, with a cursor, you are performing
multiple lines of code per row retrieved. The titles cursor example is a relatively simple
one; it performs one or two conditional checks and a single update per row, but it is still
three or four times slower. Because of the overhead required to process cursors, set-oriented
operations typically run much faster, even if multiple passes of the table are required.

Although set-oriented operations are almost always faster than cursor operations, the one
possible disadvantage of using a single update is locking concurrency. Even though a
single update runs faster than a cursor, while it is running, the single update might end up
locking the entire table for an extended period of time. This would prevent other users
from accessing the table during the update. If concurrent access to the table is more
important than the time it takes for the update to complete, you might want to consider
using a cursor. A cursor locks the data only a row at a time instead of locking the entire
table (as long as each row is committed individually and the entire cursor is not in a
transaction).

Another situation in which you might want to consider using cursors is for scrolling appli-
cations when the result sets can be quite large. Consider a customer service application.
The customer representative might need to pull up a list of cases and case contacts associ-
ated with a customer. If the result sets are small, you can just pull the entire result set
down into a list box and let the user scroll through them and not need to use a cursor.

ptg

1659General T-SQL Performance Recommendations
4

3

However, if thousands of rows of information are likely, you might want to pull back only
a block of rows at a time, especially if the user needs to look at only a few of the rows to
get the information he or she needs. It probably wouldn’t be worth pulling back all that
data across the network just for a few rows.

In this type of situation, you might want to use a scrollable API server cursor. This way,
you can retrieve the appropriate number of rows to populate the list box and then use the
available scrolling options to quickly fetch to the bottom of the list, using the LAST or
ABSOLUTE n options, or you can go backward or forward by using the RELATIVE option.

NOTE

You need to be careful using the scrollable API server cursor approach in a multitier
environment. Many multitier architectures include a middle data layer that often uses
connection sharing for multiple clients, and the users are typically assigned any avail-
able connection when they need to access SQL Server. Users do not necessarily use
the same connection each time. Therefore, if a user created a cursor in one connec-
tion, the next time the user submitted a fetch through the data layer, he or she might
get a different connection, and the cursor will not be available.

One solution for this problem is to go back to retrieving the entire result set down to
the client application. Another possible solution is to use a global temp table as a
type of homemade insensitive cursor to hold the result set and grab the data from the
global temp table in chunks, as needed. With the temp table approach, you need to
make sure a sequential key is on the table so you can quickly grab the block of rows
you need. You need to be aware of the potential impact on tempdb performance and
the size requirements of tempdb if the result sets are large and you have many concur-
rent users.

As a general rule, you should use cursors only as a last resort when no set-oriented solu-
tion is feasible. If you have decided that a cursor is the appropriate solution, you should
try to make it as efficient as possible by limiting the number of commands to be executed
within the cursor loop as much as possible. Also, you should try to keep the cursor
processing on the server side within stored procedures. If you will be performing multiple
fetches over the network (for example, to support a scrolling application), you should use
an API server cursor. You should avoid using client-side cursors that will be performing
many cursor operations in the client application; otherwise, you will find your application
making excessive requests to the server, and the volume of network roundtrips will make
for a sloth-like application.

Variable Assignment in UPDATE Statements

One commonly overlooked feature in T-SQL is the ability to assign values to local vari-
ables in the SET clause of the UPDATE statement. This capability can help improve query
performance by reducing locking and CPU contention and reducing the number of state-
ments required in a T-SQL batch.

ptg

1660 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

The simplified syntax of the SET clause for assigning values to variables is as follows:

SET

{ column_name = { expression | DEFAULT | NULL }

| @variable = expression

| @variable = column = expression [,...n]

} [,...n]

One common use of variable assignment in UPDATE statements is when you have a table
that is used for storing and generating unique key values. To demonstrate this, you can
create the keygen table and populate it as shown in Listing 43.7.

LISTING 43.7 Creating and Populating the keygen Table

create table keygen (keytype char(1), keyval int)

go

insert keygen(keytype, keyval) values (‘x’, 1)

go

The typical approach often used to perform the task of retrieving a key value and updating
the keygen table to generate the next key is to issue a SELECT statement and UPDATE state-
ment within a transaction. Listing 43.8 shows an example of this.

LISTING 43.8 Retrieving and Updating keyval with SELECT and UPDATE

begin tran

declare @newkey int

-- Select current keyval into @newkey

select @newkey = keyval

from keygen (XLOCK)

where keytype = ‘x’

update keygen

set keyval = keyval + 1

where keytype = ‘x’

commit

select @newkey as newkey

go

newkey

1

ptg

1661General T-SQL Performance Recommendations
4

3

TIP

In Listing 43.8, the XLOCK hint is specified in the SELECT statement. This prevents two
separate user processes from running this T-SQL batch at the same time and both
acquiring the same keyval. With the XLOCK hint, only one of the processes can acquire
an exclusive lock, and the other process waits until the lock is released and acquires
the next keyval.

The use of XLOCK is definitely preferable to HOLDLOCK because the use of HOLDLOCK in
this type of scenario often leads to a deadlock situation.

By using variable assignment in an UPDATE statement, you can eliminate the SELECT state-
ment altogether and capture the keyval in the same statement you use to update the
keygen table, as shown in Listing 43.9.

LISTING 43.9 Using Variable Assignment in an UPDATE to Update and Retrieve keyval

declare @newkey int

update keygen

set keyval = keyval + 1,

@newkey = keyval

where keytype = ‘x’

select @newkey as newkey

go

newkey

2

Notice that the value assigned to the local variable using the syntax shown in Listing 43.9
is the value of the keyval column prior to the update. If you prefer to assign the value of
the column after the column is updated, you use the @variable = column = expression
syntax, as shown in Listing 43.10.

LISTING 43.10 Using Variable Assignment in an UPDATE to Update and Retrieve keyval
After Update

declare @newkey int

update keygen

set @newkey = keyval = keyval + 1

where keytype = ‘x’

select @newkey as newkey

go

ptg

1662 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

newkey

4

You need to be aware that the variable assignment is performed for every row that qualifies
in the update. The resulting value of the local variable is the value of the last row updated.

Another use for variable assignment in UPDATE statements is to accumulate the sum of a
column into a local variable for all the rows being updated. The alternative approach
would be to use a cursor, as shown in Listing 43.11.

LISTING 43.11 Using a Cursor to Accumulate a Sum of a Column for Each Row Updated

declare c1 cursor for

select isnull(ytd_sales, 0)

from titles where type = ‘business’

for update of price

go

declare @ytd_sales_total int,

@ytd_sales int

select @ytd_sales_total = 0

open c1

fetch c1 into @ytd_sales

while @@fetch_status = 0

begin

update titles

set price = price

where current of c1

select @ytd_sales_total = @ytd_sales_total + @ytd_sales

fetch c1 into @ytd_sales

end

select @ytd_sales_total as ytd_sales_total

close c1

deallocate c1

go

ytd_sales_total

30788

By using variable assignment in an UPDATE statement, you can replace the cursor in Listing
43.11 with a single UPDATE statement, as shown in Listing 43.12.

ptg

1663T-SQL Tips and Tricks
4

3

LISTING 43.12 Using Variable Assignment in an UPDATE Statement to Accumulate a Sum of
a Column for Each Row Updated

declare @ytd_sales_total int

set @ytd_sales_total = 0

update titles

set price = price,

@ytd_sales_total = @ytd_sales_total + isnull(ytd_sales, 0)

where type = ‘business’

select @ytd_sales_total as ytd_sales_total

go

ytd_sales_total

30788

As you can see from the examples presented in this chapter, using variable assignment in
UPDATE statements results in much more concise and efficient T-SQL code than using
cursors or other alternatives. When your code is more concise and consistent, it will run
faster, requiring fewer CPU resources. Also, faster, more efficient code reduces the amount
of time locks are held, which reduces the chance for locking contention, which also helps
improve overall application performance.

T-SQL Tips and Tricks
The following sections provide some general tips and tricks to help you get the most from
your T-SQL code.

Date Calculations

Occasionally, you may find that you need to start with a date value and use it to calculate
some other date. For example, your SQL code might need to determine what date is the
first day of the month or last day of the month. As you may know, working with the
datetime data type in SQL Server can be a bit of a challenge. You probably already know
how to use the datepart() function to extract specific components of a date (for example,
year, month, day). You can then use those components along with a number of functions
to calculate a date that you might need. This section provides some examples of algo-
rithms you can use to generate some commonly needed date values.

The DATEDIFF function calculates the difference between two dates, where the difference is
based on an interval, such as hours, days, weeks, months, years, and so on. The DATEADD
function calculates a date by adding an interval of time to a date. In this case, the inter-
vals of time are the same as those used by the DATEDIFF function. Using the DATEADD and
DATEDIFF functions to calculate specific dates requires thinking outside the box a bit to

ptg

1664 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

convert the date value into a date you need. You need to start thinking in terms of date
intervals—for example, how many date intervals it is from the current date to the date
you want to calculate, or how many date intervals it is from today to some other date,
such as ”2000-01-01”, and so on. You use the DATEADD and DATEDIFF functions to calculate
your desired date by determining the appropriate date intervals from the current date and
then adding or subtracting intervals to arrive at the desired calculated date. Understanding
how to use the various date intervals helps you more easily understand how to calculate
the desired dates.

Calculating the First Day of Month
Let’s look at a method for determining the first day of the month for a given date. To do
this, you start out with the initial date. (In this example, you can use getdate() to work
with the current system date and time.) The next step is to figure out the number of
months between the given date and the date ”1/1/1900”.

NOTE

The value “1/1/1900” is the default for a date if an empty string (’’) is used to repre-
sent a date.

You can use the DATEDIFF function to determine the number of months from ”1/1/1900”:

select DATEDIFF(mm,’’,getdate())

go

1321

Now, using the number of months, you can add that result to ”1/1/1900” to obtain the
first day of the month for the given date:

select DATEADD(mm, DATEDIFF(mm,’’,getdate()), ‘’)

By adding the number of months between the given date and ”1/1/1900” to ”1/1/1900”,
you are able to arrive at the first day of the current month. In addition, the time portion
of the calculated date is set to ”00:00:00.000”.

This technique for calculating a date interval between the current date and the year,
”1900-01-01”, and then adding the calculated number of intervals to ”1900-01-01” can be
used to calculate many different dates. The next four examples use the same technique to
generate different dates based on the current date.

Calculating the First Day of the Year
You can use the year interval (yy) to display the first day of the year:

select DATEADD(yy, DATEDIFF(yy,’’,getdate()), ‘’)

ptg

1665T-SQL Tips and Tricks
4

3

Calculating the First Day of the Quarter
To calculate the first day of the current quarter, you use the quarter (qq) interval:

select DATEADD(qq, DATEDIFF(qq,’’,getdate()), ‘’)

Calculating Midnight for the Current Day
If you need to truncate the time portion for a datetime value so it reflects the current date
at midnight, you can use the date interval (dd) to get the midnight time stamp for the
desired date:

select DATEADD(dd, DATEDIFF(dd,’’,getdate()), ‘’)

Calculating Monday of the Current Week
You can use the week interval (wk) to calculate what date is Monday of the current week:

select DATEADD(wk, DATEDIFF(wk,’’,getdate()), ‘’)

Calculating Other Dates
As you have seen, by using simple DATEADD and DATEDIFF calculations, you can come up
with many different dates that might be valuable. All the examples so far have only calcu-
lated the number of date intervals between the current date and ”1/1/1900” and then
added the appropriate number of intervals to ”1900-01-01” to arrive at the calculated
date. If you have to calculate other date values, you can use this calculation as the basis
and then add or subtract additional intervals to come up with other useful dates.

For example, to calculate the last day of the previous month for a given date, you can use
the following calculation to determine the first day of the current month and subtract a
day from it:

select DATEADD(dd, -1, DATEADD(mm, DATEDIFF(mm,’’,getdate()), ‘’))

You can perform a similar calculation to determine the last day of the previous year, based
on the formula to calculate the first date of the current year for the given date:

select DATEADD(dd, -1, DATEADD(yy, DATEDIFF(yy,’’,getdate()), ‘’))

What if you need to determine the last day of the current month for a given date? One way
to do this is to calculate the first date of the next month and subtract one day from that. To
calculate the first day of the next month, you can use the formula to calculate the first day
of the current month and add one to the number of intervals returned by DATEDIFF when
comparing the given date to ”1/1/1900” to get the first day of the next month:

select DATEADD(mm, DATEDIFF(mm,’’,getdate()) + 1, ‘’)

Now that you have the first date of the next month, you simply subtract one day from it
to get the last day of the current month:

select DATEADD(dd, -1, DATEADD(mm, DATEDIFF(mm,’’,getdate()) + 1, ‘’))

ptg

1666 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

Similarly, you can modify the formula to calculate the first day of the year to return the
last day of the previous year:

select DATEADD(dd, -1, DATEADD(yy, DATEDIFF(yy,’’,getdate()) + 1, ‘’))

Now, let’s try a little more advanced calculation: the first Monday of the current month.
To find this, you start with the calculation for the Monday of the current week and
modify it slightly. Rather than use getdate() as the date value, you use the calculation to
get the first day of the month and add five days to it. Adding five days to the first day of
the month ensures that you are in the first full week of the month (SQL Server treats
Sunday as the first day of the week, so if the first day of the month was on a Monday,
adding 5 days keeps you in the same week. If the first day is Tuesday or later, adding 5
days puts you into the next week). You can use the following calculation to get the first
day of the month and add five days to it:

select DATEADD(dd, 5, DATEADD(mm, DATEDIFF(mm,’’,getdate()), ‘’))

Now, you use this expression in place of the getdate() function in the calculation to get
the date for Monday of the current week:

select DATEADD(wk, DATEDIFF(wk,’’,

DATEADD(dd, 5, DATEADD(mm, DATEDIFF(mm,’’,getdate()), ‘’))), ‘’)

The examples presented in this chapter should give you some insight into using the
DATEADD and DATEDIFF functions for calculating dates using date intervals. You can use
them as a basis for calculating other dates that your applications might need.

TIP

If you find yourself using any of these date calculations frequently, it might be a good
idea to create one or more user-defined functions to encapsulate these calculations. It
would save your having to reenter the sometimes complex formulas, which can be easi-
ly mistyped, leading to incorrect calculations. For information on creating user-defined
functions, see Chapter 29, “Creating and Managing User-Defined Functions.”

Converting Dates for Comparison
Because the datetime data type contains both time and date components, searching for
data rows matching a specific date only, excluding the time component, can sometimes be
a bit tricky—especially when you consider that SQL Server stores time values only down to
3/1,000 second. For example, if you want to find all rows where the date is for a certain
day, you have to perform a range search for all times within that day. Because a date
without a time specified defaults to a time of midnight (00:00:00.000) for that date, the
following query doesn’t return all matching rows if any of the data values contain a time
other than midnight:

ptg

1667T-SQL Tips and Tricks
4

3

select title_id, pubdate from dbo.titles where pubdate = ‘2006-01-14’

To be sure to include all rows for a particular date, regardless of the time component
stored, you could run a query similar to the following:

select title_id, pubdate from dbo.titles

where pubdate between ‘2006-01-14 00:00:00.0’ and ‘2006-01-14 23:59:59.997’

go

title_id pubdate

-------- -----------------------

FI3599 2006-01-14 00:00:00.000

Now you might be wondering, why use a time of ”2006-01-14 23:59:59.997” as the last
time of the day? You do so because SQL Server stores datetime values only down to
3/1,000 second. If you enter a time of ”2006-01-14 23:59:59.999”, SQL Server rounds it
up to ”2006-01-15 00:00:00.000”, and it actually matches any rows with that datetime
value, as in this example:

select title_id, pubdate from dbo.titles

where pubdate between ‘2006-01-14 00:00:00.0’ and ‘2006-01-14 23:59:59.999’

title_id pubdate

-------- -----------------------

FI3599 2006-01-14 00:00:00.000

FI5162 2006-01-15 00:00:00.000

This is one reason you have to be careful when performing date searches. Now you might
be wondering why not just use the DATEDIFF function as in the following example:

select title_id, pubdate from dbo.titles

where datediff(day, pubdate, ‘2006-01-14’) = 0

go

title_id pubdate

-------- -----------------------

FI3599 2006-01-14 00:00:00.000

Although this query returns the correct result, the use of the function on the pubdate
column may prevent SQL Server from using any indexes that exist on the pubdate column
to optimize the query, and it is likely to end up performing a table scan. (For more infor-
mation on query optimization and optimizable search arguments, see Chapter 35.) To
help ensure that your queries are optimized effectively, you need to try to avoid using any
functions or expressions on the column in the search argument, and you need to search
against constant expressions.

ptg

1668 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

Another way to write the preceding query would be to use the date calculations discussed
previously in this section. For example, you could use the calculation to determine
midnight of the desired date and use that as the inclusive lower bound, and you could use
the calculation of midnight of the next day as the noninclusive upper bound and write a
query similar to the following:

declare @date datetime

set @date = ‘2006-01-14’

select title_id, pubdate from dbo.titles

where pubdate >= DATEADD(dd, DATEDIFF(dd,’’,@date), ‘’)

and pubdate < DATEADD(dd, DATEDIFF(dd,’’,@date) + 1, ‘’)

go

title_id pubdate

-------- -----------------------

FI3599 2006-01-14 00:00:00.000

SQL Server 2008 introduces the date and time data types, as well as the datetime2 data
type. The long-awaited date and time data types store just a date value or time value,
respectively, making date-only or time-only comparisons much simpler. For example, the
previous solution for finding all books published on a specific day can be simplified a bit
using the date data type because there is no need to consider a time component:

declare @date date

set @date = ‘2006-01-14’

select title_id, pubdate from dbo.titles

where pubdate >= @date

and pubdate < DATEADD(dd, 1, @date)

go

If the pubdate column were defined using the date data type instead of datetime (reason-
able because the time of publication of a book is irrelevant), the comparison becomes
even simpler:

alter table titles drop constraint DF__titles__pubdate__103673A0

drop statistics titles.pubdate

alter table titles alter column pubdate date null

alter table titles

add constraint DF__titles__pubdate__103673A0

default getdate() for pubdate

go

declare @date date

set @date = ‘2006-01-14’

select title_id, pubdate from dbo.titles

where pubdate = @date

go

ptg

1669T-SQL Tips and Tricks
4

3

title_id pubdate

-------- -----------------------

FI3599 2006-01-14 00:00:00.000

The datetime2 data type stores the time value down to microseconds and avoids the
3/1,000 second rounding issue that was present with the datetime data type. For example,
if you redefine the pubdate column using the datetime2 data type, you avoid the round-
ing issue and get a single row as expected by the following query:

alter table titles drop constraint DF__titles__pubdate__103673A0

alter table titles alter column pubdate datetime2 null

alter table titles

add constraint DF__titles__pubdate__103673A0

default sysdatetime() for pubdate

go

select title_id, pubdate from dbo.titles

where pubdate between ‘2006-01-14 00:00:00.0’ and ‘2006-01-14 23:59:59.999999’

go

title_id pubdate

-------- -----------------------

FI3599 2006-01-14 00:00:00.000

Sorting Results with the GROUPING Function

When working with the CUBE or ROLLUP operator, SQL Server generates NULL values for the
columns that are being rolled up to generate the aggregate values. When you are viewing
the results, however, it can be difficult to determine whether the NULL value shown for a
nonaggregate column is the result of a rollup or because the column itself contains a NULL
value. Fortunately, SQL Server provides the GROUPING function, which you can use to
distinguish between real NULL values and NULL values that represent a rollup of all values
for a column in the result set.

The GROUPING function returns 1 when the value is grouped and 0 when the column
contains a NULL value.

In Listing 43.13, the GROUPING function is used to replace NULL values for the rolled-up
columns with ALL.

LISTING 43.13 Using the GROUPING Function

SELECT CASE when GROUPING(type) = 1 then ‘ALL’

else isnull(type, ‘Other’)

END AS type,

cast(CASE when (grouping(advance) = 1) then ‘ALL’

else isnull(convert(varchar(10), advance), ‘Unknown’)

ptg

1670 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

END as varchar(10)) as advance,

count(*) AS number

FROM DBO.titles

where type like ‘%cook%’ or type like ‘p%’

GROUP BY type, advance

WITH rollup

go

type advance number

------------ ---------- -----------

mod_cook 0.00 1

mod_cook 15000.00 1

mod_cook ALL 2

popular_comp Unknown 1

popular_comp 7000.00 1

popular_comp 8000.00 1

popular_comp ALL 3

psychology 2000.00 1

psychology 2275.00 1

psychology 4000.00 1

psychology 6000.00 1

psychology 7000.00 1

psychology ALL 5

trad_cook 4000.00 1

trad_cook 7000.00 1

trad_cook 8000.00 1

trad_cook ALL 3

ALL ALL 13

You can also use the GROUPING function to order the result sets to move all the rollups
toward the bottom, as shown in Listing 43.14.

LISTING 43.14 Using the GROUPING Function to Order the Result Sets

SELECT CASE when GROUPING(type) = 1 then ‘ALL’

else isnull(type, ‘Other’)

END AS type,

cast(CASE when (grouping(advance) = 1) then ‘ALL’

else isnull(convert(varchar(10), advance), ‘Unknown’)

END as varchar(10)) as advance,

count(*) AS number

FROM DBO.titles

where type like ‘%cook%’ or type like ‘p%’

GROUP BY type, advance

WITH rollup

ptg

1671T-SQL Tips and Tricks
4

3

ORDER by GROUPING(type), GROUPING(advance)

go

type advance number

------------ ---------- -----------

popular_comp Unknown 1

popular_comp 7000.00 1

popular_comp 8000.00 1

psychology 2000.00 1

psychology 2275.00 1

psychology 4000.00 1

psychology 6000.00 1

psychology 7000.00 1

trad_cook 4000.00 1

trad_cook 7000.00 1

trad_cook 8000.00 1

mod_cook 0.00 1

mod_cook 15000.00 1

mod_cook ALL 2

trad_cook ALL 3

psychology ALL 5

popular_comp ALL 3

ALL ALL 13

Using CONTEXT_INFO

Although SQL Server enables you to define local variables within a T-SQL batch or stored
procedure, local variables do not retain values between batches or stored procedures.
Unfortunately, SQL Server 2008 does not enable you to create user-defined global vari-
ables. However, you can simulate global variables by using the CONTEXT_INFO setting,
which allows you to store information in the context_info column in the
sys.sysprocesses catalog view. A row in sys.sysprocesses exists for every connection to
SQL Server, so the data remains there until you disconnect from SQL Server.

The context_info column is a binary (128) column. You can store any data value in it
with the SET CONTEXT_INFO command, but you have to deal with hexadecimal data when
retrieving it. If you are handy at manipulating hexadecimal data, you can store multiple
values in the context_info column. The following example stores the average price from
the titles table in the context_info column:

declare @avg_price money

select @avg_price = avg(price) from dbo.titles

set context_info @avg_price

You can retrieve the value stored in context_info by using a SELECT statement. You need
to convert the binary data back to money when you retrieve it. Because avg(price) is the

ptg

1672 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

only value stored in context_info, you can retrieve it by performing a substring on the
first 8 bytes of the context_info column. (The money data type is 8 bytes in size.) Because
SQL Server assigns a unique server process ID (SPID) to each connection, you use the
@@SPID function to retrieve the information for the current connection:

select convert(money, substring(context_info, 1, 8)) as AVG_PRICE

from master..sysprocesses

where spid = @@spid

go

AVG_PRICE

0.3751

If you don’t use a substring to specify only the first 8 bytes of the context_info column,
SQL Server assumes that the money data is stored in the last 8 bytes and returns a result of 0:

select convert(money, context_info) as AVG_PRICE

from master..sysprocesses

where spid = @@spid

go

AVG_PRICE

0.00

Because money can be implicitly converted to binary, you don’t need to convert it when
setting context_info. For some other data types, such as char or datetime, you need to
explicitly convert the data to binary because implicit conversions from those data types to
binary is not supported. In the following example, you append a datetime value to the
average price value already stored in context_info. You explicitly convert the datetime
value to binary and append it to the 8 bytes you have already stored in context_info:

declare @max_date datetime,

@context_info binary(128)

select @max_date = max(pubdate) from dbo.titles

select @context_info = substring(context_info, 1, 8)

+ convert(binary(8), @max_date)

from master..sysprocesses

where spid = @@spid

set context_info @context_info

You now have two values stored in context_info. Using the appropriate substring, you
can retrieve either the average price or the maximum pubdate from context_info:

declare @avg_price money,

@max_pubdate datetime

ptg

1673T-SQL Tips and Tricks
4

3

select @avg_price = substring(context_info, 1, 8),

@max_pubdate = substring(context_info, 9, 8)

from master..sysprocesses

where spid = @@spid

select @avg_price as ‘Avg Price’, @max_pubdate as ‘Max PubDate’

go

Avg Price Max PubDate

--------------------- -----------------------

0.3751 2009-05-31 00:00:00.000

Note that the binary data converts implicitly to money and datetime.

Working with Outer Joins

An outer join is used to return all the rows from the specified outer table (specified with
LEFT OUTER, RIGHT OUTER, or FULL OUTER), even if the other table has no match. Rows
returned from the outer table that have no corresponding match in the inner table display
the value NULL for any columns retrieved from the inner table. For example, you might
want to display the names of all authors along with the average royalty paid, if available:

select au_lname, au_fname, avg(royaltyper) as avg_royalty

from dbo.authors a left outer join dbo.titleauthor ta on a.au_id = ta.au_id

group by au_lname, au_fname

order by 3

go

au_lname au_fname avg_royalty

-- -------------------- -----------

Greene Morningstar NULL

Greenfield Tom NULL

McBadden Heather NULL

Smith Meander NULL

Stringer Dirk NULL

Gringlesby Burt 30

O’Leary Michael 35

Ringer Anne 37

Yokomoto Akiko 40

MacFeather Stearns 42

Hunter Sheryl 50

Dull Ann 50

Bennet Abraham 60

Green Marjorie 70

DeFrance Michel 75

Karsen Livia 75

Ringer Albert 75

ptg

1674 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

Panteley Sylvia 100

White Johnson 100

Straight Dean 100

Locksley Charlene 100

Carson Cheryl 100

Blotchet-Halls Reginald 100

del Castillo Innes 100

Note that no real difference exists between left and right outer joins except for specifying
which table on which side of the join condition is to be the controlling, or outer, table.
For example, the previous query would provide the same result if you reversed the tables
in the join clause and made it a right outer join:

select au_lname, au_fname, avg(royaltyper)

from dbo.titleauthor ta right outer join dbo.authors a on ta.au_id = a.au_id

group by au_lname, au_fname

order by 3

A full outer join returns all matching rows from both tables, along with all rows from each
table, without a corresponding match in the other table:

select a.au_fname, p.pub_name

from dbo.authors a full outer join dbo.publishers p on a.state = p.state

go

au_fname pub_name

-------------------- --

James A. NULL

Francine du Plessix Kumquat Technical Publishing

Jean NULL

E.L. Nordome Titles

Justin Algodata Infosystems

April Sidney’s Books and More

Ron Algodata Infosystems

Jack NULL

Matt NULL

Josef NULL

...

Albert Ramona Publishers

NULL Gooseberry Titles

NULL Binnet & Hardley

NULL GGG&G

NULL Lucerne Publishing

NULL Tomato Books

NULL Significant Titles Company

ptg

1675T-SQL Tips and Tricks
4

3

OUTER JOIN Versus WHERE Clause Matching
With the ANSI join syntax, you specify the join condition in the FROM clause. Additional
search conditions can be specified in either the JOIN clause or WHERE clause. It’s important
to remember that in a left or right outer join, search conditions specified in the ON clause
work differently than search conditions in the WHERE clause:

. Search conditions in the WHERE clause always exclude nonmatching rows.

. Search conditions in the ON clause sometimes exclude rows and sometimes do not.

Needless to say, it can be somewhat confusing to figure out which rows and data values
will be returned. To demonstrate the use of search conditions in the WHERE clause versus
the ON clause, the examples presented in this section make use of the two views shown in
Listing 43.15.

LISTING 43.15 CREATE VIEW Statements for Outer Join Examples

CREATE VIEW dbo.STORES_V1 AS

SELECT STOR_ID, CITY FROM DBO.STORES WHERE STOR_ID BETWEEN ‘A001’ AND ‘A005’

go

CREATE VIEW dbo.STORES_V2 AS

SELECT STOR_ID, STATE FROM DBO.STORES WHERE STOR_ID BETWEEN ‘A002’ AND ‘A007’

UNION ALL

SELECT ‘A004’, ‘MA’

go

select * from dbo.stores_v1

select * from dbo.stores_v2

STOR_ID CITY

------- --------------------

A001 Dublin

A002 Oakland

A003 Bisbee

A004 White Plains

A005 Thomaston

(5 row(s) affected)

STOR_ID STATE

------- -----

A002 NJ

A003 AZ

A004 NY

ptg

1676 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

A005 GA

A006 CA

A007 CA

A004 MA

Listing 43.16 provides an example of a left outer join query that includes the search
condition in the ON clause. All rows are returned from STORES_V1, and NULL values are
returned for STORES_V2 where there isn’t a matching STOR_ID or where there is a matching
STOR_ID but STATE is not equal to ’GA’.

LISTING 43.16 Specifying the Search Condition in the ON Clause

SELECT * FROM DBO.STORES_V1 V1

LEFT OUTER JOIN DBO.STORES_V2 V2

ON V1.STOR_ID = V2.STOR_ID

AND V2.STATE <> ‘GA’

ORDER BY V1.STOR_ID ,V2.STATE

go

STOR_ID CITY STOR_ID STATE

------- -------------------- ------- -----

A001 Dublin NULL NULL

A002 Oakland A002 NJ

A003 Bisbee A003 AZ

A004 White Plains A004 MA

A004 White Plains A004 NY

A005 Thomaston NULL NULL

Now, if you put the search condition in the WHERE clause, as shown in Listing 43.17, the
nonmatching rows from STORES_V2 are filtered out because the NULL value returned for
STATE does not match the WHERE clause search criteria WHERE V2.STATE <> ‘GA’.
(Remember that NULL values are neither equal to nor not equal to other values.)

LISTING 43.17 Specifying a Search Condition in a WHERE Clause

SELECT * FROM DBO.STORES_V1 V1

LEFT OUTER JOIN DBO.STORES_V2 V2

ON V1.STOR_ID = V2.STOR_ID

WHERE V2.STATE <> ‘GA’

ORDER BY V1.STOR_ID ,V2.STATE

go

STOR_ID CITY STOR_ID STATE

------- -------------------- ------- -----

A002 Oakland A002 NJ

ptg

1677T-SQL Tips and Tricks
4

3

A003 Bisbee A003 AZ

A004 White Plains A004 MA

A004 White Plains A004 NY

To include the nonmatching rows from STORES_V2, you need to add a check for NULL to
the WHERE clause, as shown in Listing 43.18.

LISTING 43.18 Including Nonmatching Inner Table Rows That Do Not Match a WHERE Clause
Search Condition

SELECT * FROM DBO.STORES_V1 V1

LEFT OUTER JOIN DBO.STORES_V2 V2

ON V1.STOR_ID = V2.STOR_ID

WHERE (V2.STATE <> ‘GA’ or V2.STATE is NULL)

ORDER BY V1.STOR_ID ,V2.STATE

go

STOR_ID CITY STOR_ID STATE

------- -------------------- ------- -----

A001 Dublin NULL NULL

A002 Oakland A002 NJ

A003 Bisbee A003 AZ

A004 White Plains A004 MA

A004 White Plains A004 NY

Notice that the row where STOR_ID = ‘A005’ is still not included in the result set. The
query shown in Listing 43.18 also demonstrates another difference between specifying a
search condition in the WHERE clause and the ON clause. In this case, the outer join is
performed first, so that all rows and selected column values are returned from
STORES_V2, including the row where STOR_ID = ‘A005’, without considering the WHERE

clause condition:

SELECT * FROM DBO.STORES_V1 V1

LEFT OUTER JOIN DBO.STORES_V2 V2

ON V1.STOR_ID = V2.STOR_ID

go

STOR_ID CITY STOR_ID STATE

------- -------------------- ------- -----

A001 Dublin NULL NULL

A002 Oakland A002 NJ

A003 Bisbee A003 AZ

A004 White Plains A004 NY

A004 White Plains A004 MA

A005 Thomaston A005 GA

ptg

1678 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

After the join result is returned, because the STATE value is equal to ’GA’, the search condi-
tion in the WHERE clause (V2.STATE <> ‘GA’) filters out that row.

In a left or right outer join, a search condition in the ON clause also works differently,
depending on whether it refers to a field in the inner or outer table. If the ON clause search
condition refers to a field in the outer table, it determines whether the related row finds a
match. (The outer row is returned regardless.) For example, Listing 43.19 demonstrates a
search condition in the ON clause that restricts which rows in STORES_V1 (the outer table)
join to STORES_V2. The join is performed only for those rows in STORES_V1 where CITY is
greater than N. However, all rows from STORES_V1 are still returned.

LISTING 43.19 Specifying an ON Clause Search Condition on the Outer Table

SELECT * FROM DBO.STORES_V1 V1

LEFT OUTER JOIN DBO.STORES_V2 V2

ON V1.STOR_ID = V2.STOR_ID

AND V1.CITY > ‘N’

ORDER BY V1.STOR_ID ,V2.STATE

go

STOR_ID CITY STOR_ID STATE

------- -------------------- ------- -----

A001 Dublin NULL NULL

A002 Oakland A002 NJ

A003 Bisbee NULL NULL

A004 White Plains A004 MA

A004 White Plains A004 NY

A005 Thomaston A005 GA

If the ON clause search condition refers to a field in the inner table, it determines
whether the related row matches the join. Listing 43.20 shows an example of specifying
the ON clause search condition on the inner table. Again, notice that all rows from
STORES_V1 are returned, but only the matching rows are returned from STORES_V2, where
STOR_ID is less than A004.

LISTING 43.20 Specifying an ON Clause Search Condition on the Inner Table

SELECT * FROM DBO.STORES_V1 V1

LEFT OUTER JOIN DBO.STORES_V2 V2

ON V1.STOR_ID = V2.STOR_ID

AND V2.STOR_ID < ‘A004’

ORDER BY V1.STOR_ID ,V2.STATE

go

STOR_ID CITY STOR_ID STATE

------- -------------------- ------- -----

ptg

1679T-SQL Tips and Tricks
4

3

A001 Dublin NULL NULL

A002 Oakland A002 NJ

A003 Bisbee A003 AZ

A004 White Plains NULL NULL

A005 Thomaston NULL NULL

When you perform a left or right outer join, a search condition against the outer table in
the ON clause works differently from the same search condition specified in the WHERE
clause. As shown in Listing 43.19, when the search condition in the ON clause filters on a
field in the outer table, the outer row is returned, regardless, with no matching rows
returned from the inner table. However, if the search condition on the OUTER table is spec-
ified in the WHERE clause, the outer row is eliminated from the result set, as shown in
Listing 43.21.

LISTING 43.21 Specifying an Outer Table Search Condition in the WHERE Clause

SELECT * FROM DBO.STORES_V1 V1

LEFT OUTER JOIN DBO.STORES_V2 V2

ON V1.STOR_ID = V2.STOR_ID

WHERE V1.CITY > ‘N’

ORDER BY V1.STOR_ID ,V2.STATE

go

STOR_ID CITY STOR_ID STATE

------- -------------------- ------- -----

A002 Oakland A002 NJ

A004 White Plains A004 MA

A004 White Plains A004 NY

A005 Thomaston A005 GA

Nested Outer Joins
When using the ANSI JOIN syntax, you must be careful about mixing outer joins with
inner joins because the query may not generate the desired result if the outer join is not
continued down to the lowest level. For example, consider the query shown in Listing
43.22. The intent of this query is to list all authors whose state equals NE and, for those
authors, display the titles of their associated books, if any.

LISTING 43.22 An Outer Join Nested in an Inner Join

select left(au_lname, 20) as au_lname, au_fname, left(title, 20) as title

from dbo.authors a

left join dbo.titleauthor ta on a.au_id = ta.au_id

join dbo.titles t on ta.title_id = t.title_id

where a.state = ‘NE’

ptg

1680 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

go

au_lname au_fname title

-------------------- -------------------- --------------------

Patterson Richard North The Lasko Tangent

Patterson Richard North The Outside Man

Patterson Richard North Private Screening

Patterson Richard North Eyes of a Child

Patterson Richard North Degree of Guilt

Patterson Richard North Escape the Night

However, because the outer join is not carried to the titles table, the author with no
matching row in the titleauthor table ends up getting filtered from the result set. The
reason is that when the outer join is performed between authors and titleauthor,
because no matching row is found, NULL is returned for title_id. Because a normal inner
join is performed on the titles table, the NULL value for title_id does not match any
rows in the titles table, so the author with no matching rows in titleauthor ends up
getting filtered out. To see those authors, you need to modify the query in Listing 43.22 to
carry the outer join down to the join between titleauthor and authors:

select left(au_lname, 20) as au_lname, au_fname, left(title, 20) as title

from dbo.authors a

left join dbo.titleauthor ta on a.au_id = ta.au_id

left join dbo.titles t on ta.title_id = t.title_id

where a.state = ‘NE’

go

au_lname au_fname title

-------------------- -------------------- --------------------

Patterson Richard North The Lasko Tangent

Patterson Richard North The Outside Man

Patterson Richard North Private Screening

Patterson Richard North Eyes of a Child

Patterson Richard North Degree of Guilt

Patterson Richard North Escape the Night

McBadden Heather NULL

Working with Full Outer Joins
A full outer join selects rows from both tables and joins those rows that match on the join
fields. In addition to the matching rows, one copy of each nonmatching row from each
table is returned. Listing 43.23 shows an example of a full outer join.

ptg

1681T-SQL Tips and Tricks
4

3

LISTING 43.23 Full Outer Join Example

SELECT * FROM DBO.STORES_V1 V1

FULL OUTER JOIN DBO.STORES_V2 V2

ON V1.STOR_ID = V2.STOR_ID

ORDER BY V1.STOR_ID ,V2.STOR_ID ,V2.STATE

go

STOR_ID CITY STOR_ID STATE

------- -------------------- ------- -----

NULL NULL A006 CA

NULL NULL A007 CA

A001 Dublin NULL NULL

A002 Oakland A002 NJ

A003 Bisbee A003 AZ

A004 White Plains A004 MA

A004 White Plains A004 NY

A005 Thomaston A005 GA

As you can see from the results in Listing 43.23, all rows are returned from both
STORES_V1 and STORES_V2.

In a full outer join, a search condition in the ON clause is handled differently from a search
condition in the WHERE clause in that it never results in a row being excluded from the result
set. All it does is categorize the input row as being either matching or nonmatching. In
Listing 43.24, a search condition (V1.STOR_ID > ‘A003’) is specified in the ON clause. As you
can see, any rows that do not meet that search condition are returned as nonmatching rows.

LISTING 43.24 Specifying a Search Condition in a Full Outer Join ON Clause

SELECT * FROM DBO.STORES_V1 V1

FULL OUTER JOIN DBO.STORES_V2 V2

ON V1.STOR_ID = V2.STOR_ID

AND V1.STOR_ID > ‘A003’

ORDER BY V1.STOR_ID ,V2.STOR_ID ,V2.STATE

go

STOR_ID CITY STOR_ID STATE

------- -------------------- ------- -----

NULL NULL A002 NJ

NULL NULL A003 AZ

NULL NULL A006 CA

NULL NULL A007 CA

A001 Dublin NULL NULL

A002 Oakland NULL NULL

A003 Bisbee NULL NULL

A004 White Plains A004 MA

A004 White Plains A004 NY

A005 Thomaston A005 GA

ptg

1682 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

As you can see, when you work with full outer joins, search arguments in the ON clause
serve only to define which rows are used as matching rows for a join. Search arguments
specified in the WHERE clause define which rows are returned. It’s important to note that
the WHERE clause conditions behave as if the join is an inner join and are applied after the
join is done. Listing 43.25 shows an example.

LISTING 43.25 Specifying a Search Condition in a Full Outer Join WHERE Clause

SELECT * FROM dbo.STORES_V1 V1

FULL OUTER JOIN dbo.STORES_V2 V2

ON V1.STOR_ID = V2.STOR_ID

WHERE V1.STOR_ID > ‘A003’

ORDER BY V1.STOR_ID ,V2.STOR_ID ,V2.STATE

go

STOR_ID CITY STOR_ID STATE

------- -------------------- ------- -----

A004 White Plains A004 MA

A004 White Plains A004 NY

A005 Thomaston A005 GA

Generating T-SQL Statements with T-SQL

The system catalogs in SQL Server 2008 contain a wealth of information you can use to
save a lot of time and effort when generating SQL statements that need to be run repeat-
edly on a large number of database objects or when trying to build a column list for a
query. You can use T-SQL code to select information from the system catalogs, system
tables, and system views to generate SELECT statements and the like. For example, say you
want to grant EXECUTE permission to the user fred on each stored procedure in the
bigpubs2008 database. This can be a tedious task to perform using SSMS because in the
Securables dialog for the user fred, you have to select each procedure, one at a time, and
click the Grant Execute check box. If there were a large number of procedures, this could
be pretty time-consuming, and your mouse-clicking finger would probably get pretty tired.

The quicker and easier way would be to build the SQL statements necessary to grant
EXECUTE permission to fred on all the stored procedures. The following SELECT statement
can be used to generate a SQL script with those commands:

select ‘grant execute on ‘ + name + ‘ to fred’

from sys.procedures

order by name

go

--

grant execute on byroyalty to fred

ptg

1683T-SQL Tips and Tricks
4

3

grant execute on cursor_proc to fred

grant execute on error_handler to fred

grant execute on find_books_by_type2 to fred

grant execute on gen_sequence to fred

grant execute on get_authors to fred

grant execute on get_next_item_from_queue to fred

grant execute on get_titles to fred

grant execute on p_explicit_cols to fred

grant execute on p_fetch_explicit_cols to fred

grant execute on p_insert_explicit_cols to fred

grant execute on reptq1 to fred

grant execute on reptq2 to fred

grant execute on reptq3 to fred

grant execute on SHOW_PARTS_LIST to fred

grant execute on title_authors to fred

grant execute on trantest to fred

grant execute on ytd_sales to fred

grant execute on ytd_sales2 to fred

You can copy and paste the output from this statement into a query window in SSMS and
execute it to grant the desired permissions. When you get to know your system catalog
views, you can begin to automate the generation of a number of SQL operations in this
manner, freeing up your time to spend on more interesting projects.

Working with @@ERROR and @@ROWCOUNT

When you are writing T-SQL code that needs to check for both errors and the number of
rows affected after your SQL statements, one of the common pitfalls is trying to get both
the error status and the number of rows after a SQL statement runs. You have to remem-
ber that all SQL statements except the DECLARE statement reset the value of @@ROWCOUNT
and @@ERROR to the status of the last command executed.

If after a SQL statement you check the value of @@ERROR, the statement used to check
@@ERROR resets @@ROWCOUNT. If you check @@ROWCOUNT first, it resets the value of @@ERROR. To
check both values, you need to use an assignment SELECT immediately after the SQL state-
ment you are checking and capture both values into local variables. Note that you cannot
accomplish this with the SET statement because the SET statement allows setting a value
to only a single variable at a time.

The example in Listing 43.26 provides a way to capture and check both @@ROWCOUNT and
@@ERROR after an UPDATE statement in a T-SQL batch.

LISTING 43.26 Capturing Both @@ROWCOUNT and @@ERROR After an UPDATE Statement

declare @rowcnt int,

@error int

UPDATE dbo.titles set price = price * 1.10

where type = ‘fiction’

ptg

1684 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

select @rowcnt = @@ROWCOUNT, @error = @@ERROR

if @rowcnt = 0

print ‘no rows updated’

if @error <> 0

raiserror (‘Update of titles failed’, 16, 1)

return

NOTE

Error processing was improved in SQL Server 2005 with the introduction of the
TRY...CATCH construct in T-SQL. It provides a much more robust method of error han-
dling than checking @@ERROR for error conditions. The TRY...CATCH construct is dis-
cussed in more detail later in this chapter.

De-Duping Data with Ranking Functions

One common problem encountered with imported data is unexpected duplicate data rows,
especially if the data is being consolidated from multiple sources. In previous versions of
SQL Server, de-duping the data often involved the use of cursors and temp tables. Since
the introduction of the ROW_NUMBER ranking function and common table expressions in
SQL Server 2005, you are able to de-dupe data with a single statement.

To demonstrate this approach, Listing 43.26 shows how to create an authors_import table
and populate it with some duplicate rows.

LISTING 43.27 Script to Create and Populate the authors_import Table

USE bigpubs2008

GO

CREATE TABLE dbo.authors_import(

au_id dbo.id NOT NULL,

au_lname varchar(30) NOT NULL,

au_fname varchar(20) NOT NULL)

go

INSERT INTO dbo.authors_import(au_id, au_lname, au_fname)

VALUES(‘681-61-9588’, ‘Ahlberg’, ‘Allan’)

INSERT INTO dbo.authors_import(au_id, au_lname, au_fname)

VALUES(‘739-35-5165’, ‘Ahlberg’, ‘Janet’)

INSERT INTO dbo.authors_import(au_id, au_lname, au_fname)

VALUES(‘499-84-5672’, ‘Alexander’, ‘Lloyd’)

INSERT INTO dbo.authors_import(au_id, au_lname, au_fname)

VALUES(‘499-84-5672’, ‘Alexander’, ‘Lloyd’)

INSERT INTO dbo.authors_import(au_id, au_lname, au_fname)

VALUES(‘432-31-3829’, ‘Bate’, ‘W. Jackson’)

ptg

1685T-SQL Tips and Tricks
4

3

INSERT INTO dbo.authors_import(au_id, au_lname, au_fname)

VALUES(‘432-31-3829’, ‘Bate’, ‘W. Jackson’)

INSERT INTO dbo.authors_import(au_id, au_lname, au_fname)

VALUES(‘432-31-3829’, ‘Bate’, ‘W. Jackson’)

INSERT INTO dbo.authors_import(au_id, au_lname, au_fname)

VALUES(‘437-99-3329’, ‘Bauer’, ‘Caroline Feller’)

INSERT INTO dbo.authors_import(au_id, au_lname, au_fname)

VALUES(‘378-33-9373’, ‘Benchley’, ‘Nathaniel’)

INSERT INTO dbo.authors_import(au_id, au_lname, au_fname)

VALUES(‘378-33-9373’, ‘Benchley’, ‘Nate’)

INSERT INTO dbo.authors_import(au_id, au_lname, au_fname)

VALUES(‘409-56-7008’, ‘Bennet’, ‘Abraham’)

GO

You can see in the data for Listing 43.27 that there are two duplicates for au_id 499-84-
5672 and three for au_id 432-31-3829. To start identifying the duplicates, you can write a
query using the ROW_NUMBER() function to generate a unique row ID for each data row, as
shown in Listing 43.28.

LISTING 43.28 Using the ROW_NUMBER() Function to Generate Unique Row IDs

SELECT ROW_NUMBER() OVER (ORDER BY au_id, au_lname, au_fname) AS ROWID, *

FROM dbo.authors_import

go

ROWID au_id au_lname au_fname

-------------------- ----------- ------------------------------ ----------------

1 378-33-9373 Benchley Nate

2 378-33-9373 Benchley Nathaniel

3 409-56-7008 Bennet Abraham

4 432-31-3829 Bate W. Jackson

5 432-31-3829 Bate W. Jackson

6 432-31-3829 Bate W. Jackson

7 437-99-3329 Bauer Caroline Feller

8 499-84-5672 Alexander Lloyd

9 499-84-5672 Alexander Lloyd

10 681-61-9588 Ahlberg Allan

11 739-35-5165 Ahlberg Janet

Now you can use the query shown in Listing 43.28 to build a common table expression to
find the duplicate rows. In this case, we keep the first row found. To make sure it works
correctly, write the query first as a SELECT statement to verify that it is identifying the
correct rows, as shown in Listing 43.29.

ptg

1686 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

LISTING 43.29 Using a Common Table Expression to Identify Duplicate Rows

WITH authors_import AS

(SELECT ROW_NUMBER() OVER (ORDER BY au_id, au_lname, au_fname) AS ROWID, *

FROM dbo.authors_import)

select * FROM authors_import WHERE ROWID NOT IN

(SELECT MIN(ROWID) FROM authors_import

GROUP BY au_id,au_fname, au_lname);

GO

ROWID au_id au_lname au_fname

-------------------- ----------- ------------------------------ -----------------

5 432-31-3829 Bate W. Jackson

6 432-31-3829 Bate W. Jackson

9 499-84-5672 Alexander Lloyd

Now you simply change the final SELECT statement in Listing 43.29 into a DELETE state-
ment, and it removes the duplicate rows from authors_import:

WITH authors_import AS

(SELECT ROW_NUMBER() OVER (ORDER BY au_id, au_lname, au_fname) AS ROWID, *

FROM dbo.authors_import)

delete FROM authors_import WHERE ROWID NOT IN

(SELECT MIN(ROWID) FROM authors_import

GROUP BY au_id,au_fname, au_lname);

GO

select * from authors_import

go

au_id au_lname au_fname

----------- ------------------------------ --------------------

681-61-9588 Ahlberg Allan

739-35-5165 Ahlberg Janet

499-84-5672 Alexander Lloyd

432-31-3829 Bate W. Jackson

437-99-3329 Bauer Caroline Feller

378-33-9373 Benchley Nathaniel

378-33-9373 Benchley Nate

409-56-7008 Bennet Abraham

If you want to retain the last duplicate record and delete the previous ones, you can
replace the MIN function with the MAX function in the DELETE statement.

Notice that the uniqueness of the duplication is determined by the columns specified in
the GROUP BY clause of the subquery. Notice that there are still two records for au_id 378-
33-9373 remaining in the final record set. The duplicates removed were based on au_id,

ptg

1687The xml Data Type
4

3

au_lname, and au_fname. Because the first name is different for each of the two instances
of au_id 378-33-9373, both Nathaniel Benchley and Nate Benchley remain in the
authors_import table. If you remove au_fname from the GROUP BY clause, the earlier record
for Nathaniel Benchley would remain, and Nate Benchley would be removed. However,
this result may or may not be desirable. You would probably want to resolve the disparity
between Nathaniel and Nate and confirm manually that they are duplicate rows before
deleting them. Running the query in Listing 43.27 with au_fname removed from the GROUP
BY clause helps you better determine what your final record set would look like.

In Case You Missed It: New Transact-SQL Features
in SQL Server 2005
SQL Server 2005 introduced some new features and changes to the Transact-SQL (T-SQL)
language:

. The xml data type

. The max specifier for the varchar and varbinary data types

. TOP enhancements

. The OUTPUT clause

. Common table expressions (CTEs)

. Ranking functions

. PIVOT and UNPIVOT

. The APPLY operator

. TRY-CATCH logic for error handling

. The TABLESAMPLE clause

NOTE

Unless stated otherwise, all examples in this chapter make use of tables in the
bigpubs2008 database.

The xml Data Type
SQL Server 2005 introduced a new xml data type that supports storing XML documents
and fragments in database columns or variables. The xml data type can be used with local
variable declarations, as the output of user-defined functions, as input parameters to
stored procedures and functions, and much more. The results of a FOR XML statement can
easily be stored in a column, stored procedure parameter, or local variable. XML data is
stored in an internal binary format and can be up to 2GB in size. XML instances stored in
xml columns can contain up to 128 levels of nesting.

ptg

1688 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

xml columns can also be used to store code files such as XSLT, XSD, XHTML, and any
other well-formed content. These files can then be retrieved by user-defined functions
written in managed code hosted by SQL Server. (See Chapter 45, “SQL Server and the .NET
Framework,” for a full review of SQL Server managed hosting.)

For more information and detailed examples on using the xml data type, see Chapter 47,
“Using XML in SQL Server 2008.”

The max Specifier
In SQL Server 2000, the most data that could be stored in a varchar, nvarchar, or
varbinary column was 8,000 bytes. If you needed to store a larger value in a single
column, you had to use the large object (LOB) data types: text, ntext, or image. The main
disadvantage of using the LOB data types is that they cannot be used in many places
where varchar or varbinary data types can be used (for example, as local variables, as
arguments to SQL Server string manipulation functions such as REPLACE, and in string
concatenation operations).

SQL Server 2005 introduced the max specifier for varchar and varbinary data types. This
specifier expands the storage capabilities of the varchar and varbinary data types to store
up to 231-1 bytes of data, which is the same maximum size of text and image data types.
The main difference is that these large value data types can be used just like the smaller
varchar, nvarchar, and varbinary data types. The large value data types can be used in
functions where LOB objects cannot (such as the REPLACE function), as data types for
Transact-SQL variables, and in string concatenation operations. They can also be used in
the DISTINCT, ORDER BY, and GROUP BY clauses of a SELECT statement as well as in aggre-
gates, joins, and subqueries.

The following example shows a local variable being defined using the varchar(max) data
type:

declare @maxvar varchar(max)

go

However, a similar variable cannot be defined using the text data type:

declare @textvar text

go

Msg 2739, Level 16, State 1, Line 2

The text, ntext, and image data types are invalid for local variables.declare

@maxvar varchar(max)

The remaining examples in this section make use of the following table to demonstrate
the differences between a varchar(max) column and text column:

create table maxtest (maxcol varchar(max),

textcol text)

ptg

1689TOP Enhancements
4

3

go

-- populate the columns with some sample data

insert maxtest

select replicate(‘1234567890’, 1000), replicate(‘1234567890’, 1000)

go

In the following example, you can see that the substring function works with both
varchar(max) and text data types:

select substring (maxcol, 1, 10),

substring (textcol, 1, 10)

from maxtest

go

maxcol textcol

---------- ----------

1234567890 1234567890

However, in this example, you can see that while a varchar(max) column can be used for
string concatenation, the text data type cannot:

select substring(‘xxx’ + maxcol, 1, 10) from maxtest

go

xxx1234567

select substring(‘xxx’ + textcol, 1, 10) from maxtest

go

Msg 402, Level 16, State 1, Line 1

The data types varchar and text are incompatible in the add operator.

With the introduction of the max specifier, the large value data types are able to store data
with the same maximum size as the LOB data types, but with the ability to be used just as
their smaller varchar, nvarchar, and varbinary counterparts. It is recommended that the
max data types be used instead of the LOB data types because the LOB data types will be
deprecated in future releases of SQL Server.

TOP Enhancements
The TOP clause allows you to specify the number or percentage of rows to be returned by a
SELECT statement. SQL Server 2005 introduced the capability for the TOP clause to also be
used in INSERT, UPDATE, and DELETE statements. The syntax was also enhanced to allow
the use of a numeric expression for the number value rather than having to use a hard-
coded number.

ptg

1690 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

The syntax for the TOP clause is as follows:

SELECT [TOP (numeric_expression) [PERCENT] [WITH TIES]]

FROM table_name ...[ORDER BY...]

DELETE [TOP (numeric_expression) [PERCENT]] FROM table_name ...

UPDATE [TOP (numeric_expression) [PERCENT]] table_name SET ...

INSERT [TOP (numeric_expression) [PERCENT]] INTO table_name ...

numeric_expression must be specified in parentheses. Specifying constants without paren-
theses is supported in SELECT queries only for backward compatibility. The parentheses
around the expression are always required when TOP is used in UPDATE, INSERT, or DELETE
statements.

If you do not specify the PERCENT option, the numeric expression must be implicitly
convertible to the bigint data type. If you specify the PERCENT option, the numeric
expression must be implicitly convertible to float and fall within the range of 0 to 100.
The WITH TIES option with the ORDER BY clause is supported only with SELECT statements.

The following example shows the use of a local variable as the numeric expression for the
TOP clause to limit the number of rows returned by a SELECT statement:

declare @rows int

select @rows = 5

select top (@rows) * from sales

go

stor_id ord_num ord_date qty payterms title_id

------- -------------------- ----------------------- ------ ------------ --------

6380 6871 2007-09-14 00:00:00.000 5 Net 60 BU1032

6380 722a 2007-09-13 00:00:00.000 3 Net 60 PS2091

6380 ONFFFFFFFFFFFFFFFFFF 2007-08-09 00:00:00.000 852 Net 30 FI1980

7066 A2976 2006-05-24 00:00:00.000 50 Net 30 PC8888

7066 ONAAAAAAAAAA 2007-01-13 00:00:00.000 948 Net 60 CH2480

Allowing the use of a numeric expression rather than a constant for the TOP command is
especially useful when the number of requested rows is passed as a parameter to a stored
procedure or function. When you use a subquery as the numeric expression, it must be
self-contained; it cannot refer to columns of a table in the outer query. Using a self-
contained subquery allows you to more easily develop queries for dynamic requests, such
as “calculate the average number of titles published per week and return that many titles
which were most recently published”:

SELECT TOP(SELECT COUNT(*)/DATEDIFF(month, MIN(pubdate), MAX(pubdate))

FROM titles)

title_id, pub_id, pubdate

FROM titles

ORDER BY pubdate DESC

go

ptg

1691TOP Enhancements
4

3

title_id pub_id pubdate

-------- ------ -----------------------

CH9009 9903 2009-05-31 00:00:00.000

PC9999 1389 2009-03-31 00:00:00.000

FI0375 9901 2008-09-24 00:00:00.000

DR4250 9904 2008-09-21 00:00:00.000

BI4785 9914 2008-09-20 00:00:00.000

BI0194 9911 2008-09-19 00:00:00.000

BI3224 9905 2008-09-18 00:00:00.000

FI0435 9917 2008-09-17 00:00:00.000

FI0792 9907 2008-09-13 00:00:00.000

NOTE

Be aware that the TOP keyword does not speed up a query if the query also contains
an ORDER BY clause. The reason is that the entire result set is selected into a work-
table and sorted before the top N rows in the ordered result set are returned.

When using the TOP keyword, you can also add the WITH TIES option to specify that addi-
tional rows should be returned from the result set if duplicate values of the columns speci-
fied in the ORDER BY clause exist within the last values returned. The WITH TIES option
can be specified only if an ORDER BY clause is specified. The following query returns the
top four most expensive books:

SELECT TOP 4 price, title

FROM titles

ORDER BY price DESC

go

price title

--------------------- --------------------------------------

17.1675 But Is It User Friendly?

17.0884 Is Anger the Enemy?

15.9329 Emotional Security: A New Algorithm

15.894 You Can Combat Computer Stress!

If you use WITH TIES, you can see that there is an additional row with the same price
(15.894) as the last row returned by the previous query:

SELECT TOP 4 WITH TIES price, title

FROM titles

ORDER BY price DESC

go

ptg

1692 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

price title

--------------------- ---------------------------------------

17.1675 But Is It User Friendly?

17.0884 Is Anger the Enemy?

15.9329 Emotional Security: A New Algorithm

15.894 The Gourmet Microwave

15.894 You Can Combat Computer Stress!

In versions of SQL Server prior to 2005, if you wanted to limit the number of rows affected
by an UPDATE statement or a DELETE statement, you had to use the SET ROWCOUNT statement:

set rowcount 100

DELETE sales where ord_date < (select dateadd(year, 1, min(ord_date)) from sales)

set rowcount 0

SET ROWCOUNT often was used in this way to allow backing up and pruning of the transaction
log during a purge process and also to prevent lock escalation. The problem with SET ROWCOUNT

is that it applies to the entire current user session. You have to remember to set the rowcount
back to 0 to be sure you don’t limit the rows affected by subsequent statements. With TOP, you
can more easily specify the desired number of rows for each individual statement:

DELETE top (100) sales

where ord_date < (select dateadd(year, 1, min(ord_date)) from sales)

UPDATE top (100) titles

set royalty = royalty * 1.25

You may be thinking that using TOP in INSERT statements is not really necessary because
you can always specify it in a SELECT query, as shown in Listing 43.30.

LISTING 43.30 Limiting Rows for Insert with TOP in a SELECT Statement

CREATE TABLE top_sales

(stor_id char(4),

ord_num varchar(20),

ord_date datetime NOT NULL,

qty smallint NOT NULL,

payterms varchar(12) ,

title_id dbo.tid NOT NULL)

go

insert top_sales

select top 100 * from sales

where qty > 1700

order by qty desc

However, you may find using the TOP clause in an INSERT statement useful when insert-
ing the result of an EXEC command or the result of a UNION operation, as shown in
Listing 43.31.

ptg

1693The OUTPUT Clause
4

3

LISTING 43.31 Using TOP in an Insert with a UNION ALL Query

insert top (50) into top_sales

select stor_id, ord_num, ord_date, qty, payterms, title_id from sales

where qty >= 1800

union all

select stor_id, ord_num, ord_date, qty, payterms, title_id from sales_big

where qty >= 1800

order by qty desc

When a TOP (n) clause is used with DELETE, UPDATE, or INSERT, the selection of rows on
which the operation is performed is not guaranteed. If you want the TOP(n) clause to
operate on rows in a meaningful chronological order, you must use TOP together with
ORDER BY in a subselect statement. The following query deletes the 10 rows of the
sales_big table that have the earliest order dates:

delete from sales_big

where sales_id in (select top 10 sales_id

from sales_big order by ord_date)

To ensure that only 10 rows are deleted, the column specified in the subselect statement
(sales_id) must be the primary key of the table. Using a nonkey column in the subselect
statement could result in the deletion of more than 10 rows if the specified column
matched duplicate values.

NOTE

SQL Server Books Online states that when you use TOP (n) with INSERT, UPDATE, and
DELETE operations, the rows affected should be a random selection of the TOP(n) rows
from the underlying table. In practice, this behavior has not been observed. Using TOP
(n) with INSERT, UPDATE, and DELETE appears to affect only the first n matching rows.
However, because the row selection is not guaranteed, it is still recommended that you
use TOP together with ORDER BY in a subselect to ensure the expected result.

The OUTPUT Clause
By default, the execution of a DML statement such as INSERT, UPDATE, or DELETE does not
produce any results that indicate what rows changed except for checking @@ROWCOUNT to
determine the number of rows affected.

In SQL Server 2005, the INSERT, UPDATE, and DELETE statements were enhanced to support
an OUTPUT clause to be able to identify the actual rows affected by the DML statement. The
OUTPUT clause allows you to return data from a modification statement (INSERT, UPDATE, or
DELETE). This data can be returned as a result set to the caller or returned into a table vari-
able or an output table. To capture information on the affected rows, the OUTPUT clause
provides access to the inserted and deleted virtual tables that are normally accessible

ptg

1694 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

only in a trigger. The inserted and deleted tables provide access to the new/old images of
the modified rows; this is similar to how they provide the information in triggers. In an
INSERT statement, you are allowed to access only the inserted table. In a DELETE state-
ment, you are allowed to access only the deleted table. In an UPDATE statement, you are
allowed to access both the inserted and deleted tables.

Following is the general syntax of the OUTPUT clause:

UPDATE [TOP (expression) [PERCENT]] tablename

SET { column_name = { expression | DEFAULT | NULL }

| @variable = expression

| @variable = column = expression [,...n]

} [,...n]

OUTPUT

{ DELETED | INSERTED | from_table_name}.{* | column_name} | scalar_expression

[INTO { @table_variable | output_table } [(column_list)]] }

[FROM { table_name } [,...n]]

[WHERE search_conditions]

DELETE [TOP (expression) [PERCENT]] tablename

OUTPUT { DELETED | from_table_name}.{* | column_name} | scalar_expression

[INTO { @table_variable | output_table } [(column_list)]] }

[FROM] table_name

[FROM table_name [,...n]]

[WHERE search_conditions]

INSERT [TOP (expression) [PERCENT]] [INTO] tablename

{

[(column_list)]

[OUTPUT { INSERTED | from_table_name}.{* | column_name} | scalar_expression

[INTO { @table_variable | output_table } [(column_list)]]] }

{ VALUES ({ DEFAULT | NULL | expression } [,...n])

| SELECT_statement

}

}

The output table (output_table) may be a table variable, permanent table, or temporary
table. If column_list is not specified, the output table must have the same number of
columns as the OUTPUT result set. If column_list is specified, any omitted columns must
either allow NULL values or have default values assigned to them. Any identity or
computed columns in the output table must be skipped. In addition, output_table cannot
have any enabled triggers defined on it, participate on either side of a foreign key
constraint, or have any check constraints or enabled rules.

ptg

1695The OUTPUT Clause
4

3

One use of the OUTPUT clause is to verify the rows being deleted, updated, or inserted:

begin tran

delete from sales_big output deleted.*

where sales_id in (select top 10 sales_id from sales_big order by ord_date)

rollback

go

sales_id stor_id ord_num ord_date qty payterms title_id

-------- ------- ------- ----------------------- --- -------- --------

168745 7067 P2121 2005-06-15 00:00:00.000 40 Net 30 TC3218

168746 7067 P2121 2005-06-15 00:00:00.000 20 Net 30 TC4203

168747 7067 P2121 2005-06-15 00:00:00.000 20 Net 30 TC7777

20 7067 P2121 2005-06-15 00:00:00.000 40 Net 30 TC3218

21 7067 P2121 2005-06-15 00:00:00.000 20 Net 30 TC4203

22 7067 P2121 2005-06-15 00:00:00.000 20 Net 30 TC7777

337470 7067 P2121 2005-06-15 00:00:00.000 40 Net 30 TC3218

337471 7067 P2121 2005-06-15 00:00:00.000 20 Net 30 TC4203

337472 7067 P2121 2005-06-15 00:00:00.000 20 Net 30 TC7777

506195 7067 P2121 2005-06-15 00:00:00.000 40 Net 30 TC3218

Another possible use of the OUTPUT clause is as a purge/archive solution. Suppose you want to
periodically purge historic data from the sales_big table but also want to copy the purged
data into an archive table called sales_big_archive. Rather than writing a process that has
to select the rows to be archived before deleting them, or putting a delete trigger on the
table, you could use the OUTPUT clause to insert the deleted rows into the archive table.

On approach would be to implement a loop to delete historic data (for example, delete
rows for the oldest month in the sales_big table) in chunks, using the TOP clause to
specify the chunk size. The OUTPUT clause can be specified to copy the deleted rows into
the sales_big_archive table, as shown in Listing 43.32.

LISTING 43.32 Implementing a Purge/Archive Scenario, Using the OUTPUT Clause

declare @purge_date datetime,

@rowcount int

-- find the oldest month in the sales_big table

select @purge_date = dateadd(day, - (datepart(day, min(ord_date))) + 1,

dateadd(month, 1, min(ord_date))),

@rowcount = 1000

from sales_big

while @rowcount = 1000

begin

delete top (1000) sales_big

output deleted.* into sales_big_archive

where ord_date < @purge_date

set @rowcount = @@rowcount

end

ptg

1696 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

In addition to referencing columns in the table being modified by using the INSERTED or
DELETED qualifier, you can also retrieve information from another table included in the
FROM clause of a DELETE or an UPDATE statement used to specify the rows to update or delete:

begin tran

delete top (5) sales

output t.title_id

from sales s

join titles t on t.title_id = s.title_id

where t.pub_id = ‘9906’

rollback

go

title_id

FI9620

CH2080

BI7178

CH8924

FI2680

When used with an UPDATE command, OUTPUT produces both a deleted and an inserted

table. The deleted table contains the values before the UPDATE command, and the
inserted table has the values after the UPDATE command. The OUTPUT clause is also useful
for retrieving the value of identity or computed columns after an INSERT or an UPDATE

operation. Listing 43.33 shows an example of OUTPUT being used to capture the computed
column as the result of an UPDATE.

LISTING 43.33 Using OUTPUT to Capture a Computed Column

create table UpdateOutputTest

(col1 tinyint,

col2 tinyint,

computed_col3 as convert(float, col2/convert(float, col1)))

go

insert UpdateOutputTest (col1, col2)

output inserted.computed_col3

values (10, 20)

insert UpdateOutputTest (col1, col2)

output inserted.computed_col3

values (10, 25)

go

computed_col3

ptg

1697The OUTPUT Clause
4

3

2

computed_col3

2.5

declare @output_table TABLE (del_col1 int, ins_col1 int,

del_col2 int, ins_col2 int,

del_computed_col3 float, ins_computed_col3 float,

mod_date datetime)

update UpdateOutputTest

set col2 = col2/5.0

output deleted.col1, inserted.col1,

deleted.col2, inserted.col2,

deleted.computed_col3, inserted.computed_col3,

getdate()

into @output_table

output deleted.computed_col3,

inserted.computed_col3,

getdate() as mod_date

select del_col1, ins_col1, del_col2, ins_col2,

del_computed_col3 as del_col3, ins_computed_col3 as ins_col3,

mod_date from @output_table

go

computed_col3 computed_col3 mod_date

------------- ------------- -----------------------

2 0.4 2010-02-28 19:48:34.240

2.5 0.5 2010-02-28 19:48:34.240

del_col1 ins_col1 del_col2 ins_col2 del_col3 ins_col3 mod_date

-------- -------- -------- -------- -------- -------- -----------------------

10 10 20 4 2 0.4 2010-02-28 19:48:34.240

10 10 25 5 2.5 0.5 2010-02-28 19:48:34.240

The UPDATE statement in Listing 43.33 also demonstrates the capability to use OUTPUT to
both insert values into a table and return values to the caller.

Note that the OUTPUT clause is not supported in DML statements that reference local parti-
tioned views, distributed partitioned views, remote tables, or INSERT statements that
contain an execute_statement. Columns returned from OUTPUT reflect the data as it is
after the INSERT, UPDATE, or DELETE statement has completed but before any triggers on
the target table are executed.

ptg

1698 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

Common Table Expressions
A common table expression (CTE) is an ANSI SQL-99 expression that produces a table that
is referred to by name within the context of a single query. The general syntax for a CTE is
as follows:

WITH expression_name [(column_name [,...n])]

AS (CTE_query_definition)

The WITH clause, in effect, defines a table and its columns. Note that the syntax of the
WITH clause is similar to that of a view. You can think of a CTE as a temporary view that
lasts only for the life of the query that defines the CTE. Listing 43.34 shows an example of
a simple CTE. This CTE is used to return the average and maximum sales quantities for
each store. The CTE is then joined to the sales table to return the average and maximum
sales quantity for the store, along with sales records for a specific title_id.

LISTING 43.34 An Example of a Simple CTE

with sales_avg (stor_id, avg_qty, max_qty)

as (select stor_id, avg(qty), max(qty)

from sales

group by stor_id)

select top 5 s.stor_id, s.ord_num,

convert(varchar(10), ord_date, 101) as ord_date,

qty, title_id, avg_qty, max_qty

from sales s

join sales_avg a on s.stor_id = a.stor_id

where s.title_id = ‘DR8514’

go

stor_id ord_num ord_date qty title_id avg_qty max_qty

------- -------------------- ---------- ------ -------- ------- -------

A004 ONGGGGGGGGGGGGGGG 09/13/2006 1224 DR8514 1008 1716

A068 ONEEEEEEEEEEE 09/02/2007 1572 DR8514 961 1572

A071 ONWWWWWWWWWWWWWWWWWW 08/20/2006 1728 DR8514 948 1728

A161 ONDDDDDDDDDDDD 05/25/2006 624 DR8514 829 1668

A203 ONGGGGGGGGGGGGGGGGGG 11/16/2006 1572 DR8514 1056 1692

NOTE

If the WITH clause for a CTE is not the first statement in the batch, you should delimit
it from the preceding statement by placing a semicolon (;) in front of it. The semicolon
is used to avoid ambiguity with other uses of the WITH clause (for example, for table
hints). Including a semicolon is not necessary in all cases, but it is recommended that
you use it consistently to avoid problems.

ptg

1699Common Table Expressions
4

3

It is also possible to define multiple CTEs in a single query, with each CTE delimited by a
comma. Each CTE is able to refer to previously defined CTEs. Listing 43.35 shows an
example of a nested CTE that calculates the minimum, maximum, and difference of
counts of store orders.

LISTING 43.35 An Example of Multiple CTEs in a Single Query

WITH store_orders(stor_id, cnt)

AS (SELECT stor_id, COUNT(*) FROM sales

GROUP BY stor_id),

MinMaxCTE(MN, MX, Diff)

AS (SELECT MIN(Cnt), MAX(Cnt), MAX(Cnt)-MIN(Cnt)

FROM store_orders)

SELECT * FROM MinMaxCTE

go

MN MX Diff

----------- ----------- -----------

1 22 21

A CTE must be followed by a single SELECT, INSERT, UPDATE, or DELETE statement that
references some or all of the CTE columns. A CTE can also be specified in a CREATE VIEW
statement as part of the defining SELECT statement of the view.

Listing 43.36 shows an example of a CTE used in a DELETE statement.

LISTING 43.36 An Example of a CTE in a DELETE

with oldest_sales (stor_id, ord_num, ord_date)

as (select top 100 stor_id, ord_num, ord_date from sales_big order by ord_date)

delete sales_big from sales_big s, oldest_sales o

where s.stor_id = o.stor_id

and s.ord_num = o.ord_num

and s.ord_date = o.ord_date

go

Most valid SELECT statement constructs are allowed in a CTE, except the following:

. COMPUTE or COMPUTE BY

. ORDER BY (except when a TOP clause is specified)

. INTO

. OPTION clause with query hints

ptg

1700 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

. FOR XML

. FOR BROWSE

Recursive Queries with CTEs

Nonrecursive CTEs are ANSI SQL-99 compliant expressions that provide T-SQL coding flex-
ibility. However, for each nonrecursive CTE, there is usually another T-SQL construct that
can be used to achieve the same results (for example, derived tables). The real power and
capability of CTEs is revealed when you use them to create recursive queries.

A recursive CTE can help simplify the code required to run a recursive query within a
SELECT, INSERT, UPDATE, DELETE, or CREATE VIEW statement. Recursive queries are often
useful for expanding a hierarchy stored in a relational table (for example, displaying
employees in an organizational chart). In previous versions of SQL Server, a recursive
query usually required using temporary tables, cursors, and logic to control the flow of the
recursive steps.

A CTE is considered recursive when it refers to itself within the CTE definition. Recursive
CTEs are constructed from at least two queries. One is a nonrecursive query, also referred
to as the anchor member (AM). The other is the recursive query, also referred to as the
recursive member (RM). The queries are combined using the UNION ALL operator.

The following pseudocode defines the basic structure of a recursive CTE:

WITH cte_name (column_name [,...n])

AS

(CTE_query_definition1 -- Anchor member (AM) is defined.

UNION ALL

CTE_query_definition2 -- Recursive member (RM) is referencing cte_name.

)

-- Statement using the CTE

SELECT col_list FROM cte_name

...

Logically, you can think of the algorithm implementing the recursive CTE as follows:

1. The anchor member is activated, and the initial result set (R) is generated.

2. The recursive member is activated, using the initial result set (Rn) as input and
generating result set Rn+1.

3. The logic of step 2 is run repeatedly, incrementing the step number (n) until an
empty set is returned.

4. The outer query is executed, getting the cumulative (UNION ALL) result of all the pre-
vious steps when referring to the recursive CTE.

You can have more than two members in a recursive CTE, but only the UNION ALL opera-
tor is allowed between a recursive member and another recursive or nonrecursive member.
Other operators, such as UNION, are allowed only between nonrecursive members.

ptg

1701Common Table Expressions
4

3

Recursive CTEs also require an exact match of the columns in all members, including the
same data type, length, and precision.

Listing 43.37 shows a simple recursive CTE that generates a list of sequential numbers.
Note that the AM generates the base result, and the RM following the UNION ALL controls
the recursion. It is important in this example that a valid endpoint be defined to avoid
infinite recursion.

LISTING 43.37 An Example of a Simple Recursive CTE

with numlist (val)

as (select 1

union all

select val + 1

from numlist

where val < 10)

select * from numlist

go

val

1

2

3

4

5

6

7

8

9

10

The following sections present some examples and uses of recursive CTEs.

Using Recursive CTEs for Expanding a Hierarchy
For this hierarchy example, we use the parts table in the bigpubs2008 database. This table
contains a simplified hierarchy of car parts, as shown in Figure 43.1.

In the parts table, any part that is a subpart of another part has the parent part ID stored
in the parentpartid column. The parentpartid column is a foreign key that references
the partid column. Therefore, the parentpartid must either correspond to a valid
partid within the table or be NULL. For example, the car itself has NULL in the
parentpartid column.

Following are some common requests that might be run on the parts table:

. Return all the parts for the engine.

ptg

1702 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

Car

Body DriveTrain Frame

Engine Transmission Driveshaft Axle

Flywheel

Clutch

Gearbox

Reverse Gear

First Gear

Second Gear

Third Gear

Fourth Gear

Radiator

Intake Manifold

Exhaust Manifold

Carburetor

Piston

Crankshaft

Piston Rings

Float Valve

FIGURE 43.1 The parts table hierarchy.

The first request is probably the most common one: returning a part (for example, the
engine, which has partid = 2) and all subparts. The recursive CTE shown in Listing 43.38
provides a solution to this request.

LISTING 43.38 A Recursive CTE to Return a Part and All Subparts

WITH PartsCTE(partid, partname, parentpartid, lvl)

AS

(

SELECT partid, partname, parentpartid, 0

FROM PARTS

WHERE partid = 2 -- Engine

UNION ALL

SELECT P.partid, P.partname, P.parentpartid, PP.lvl+1

FROM Parts as P

JOIN PartsCTE as PP

ON P.parentpartid = PP.Partid

)

. Show me all parts that are two levels below the drivetrain.

. Show me all the parts in such a way that it is easy to see their hierarchical depen-
dencies.

ptg

1703Common Table Expressions
4

3

SELECT PartID, Partname, ParentPartid, lvl

FROM PartsCTE

go

PartID Partname ParentPartid lvl

----------- ------------------------------ ------------ -----------

2 Engine 1 0

5 Radiator 2 1

6 Intake Manifold 2 1

7 Exhaust Manifold 2 1

8 Carburetor 2 1

13 Piston 2 1

14 Crankshaft 2 1

21 Piston Rings 13 2

11 Float Valve 8 2

Notice that the lvl value is repeatedly incremented with each recursive invocation of the
CTE. You can use this level counter to limit the number of iterations in the recursion. For
example, Listing 43.39 shows an example of a CTE that returns all parts two levels below
the drivetrain.

LISTING 43.39 A Recursive CTE to Return All Subparts Two Levels Below a Part

WITH PartsCTE(partid, partname, parentpartid, lvl)

AS

(

SELECT partid, partname, parentpartid, 0

FROM PARTS

WHERE partid = 1 -- Drivetrain

UNION ALL

SELECT P.partid, P.partname, P.parentpartid, PP.lvl+1

FROM Parts as P

JOIN PartsCTE as PP

ON P.parentpartid = PP.Partid

where lvl < 2

)

SELECT PartID, Partname, ParentPartid, lvl

FROM PartsCTE

where lvl = 2

go

PartID Partname ParentPartid lvl

----------- ------------------------------ ------------ -----------

9 Flywheel 3 2

ptg

1704 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

10 Clutch 3 2

16 Gear Box 3 2

5 Radiator 2 2

6 Intake Manifold 2 2

7 Exhaust Manifold 2 2

8 Carburetor 2 2

13 Piston 2 2

14 Crankshaft 2 2

In Listing 43.39, the filter WHERE lvl < 2 in the recursive member is used as a recursion
termination check; recursion stops when lvl = 2. The filter on the outer query (WHERE
lvl = 2) is used to remove all parts up to the second level. Logically, the filter in the
outer query (lvl = 2) is sufficient by itself to return only the desired rows, but for perfor-
mance reasons, you should include the filter in the recursive member to stop the recursion
as soon as two levels below the drivetrain are returned.

SQL Server allows the use of local variables in a CTE to help make the query more generic.
For example, you can use variables instead of constants for the part ID and level, as shown
in Listing 43.40.

LISTING 43.40 Using Local Variables in a Recursive CTE

DECLARE @partid AS INT, @lvl AS INT;

SET @partid = 22; -- Car

SET @lvl = 2; -- two levels

WITH PartsCTE(partid, partname, parentpartid, lvl)

AS

(

SELECT partid, partname, parentpartid, 0

FROM PARTS

WHERE partid = @partid

UNION ALL

SELECT P.partid, P.partname, P.parentpartid, PP.lvl+1

FROM Parts as P

JOIN PartsCTE as PP

ON P.parentpartid = PP.Partid

WHERE lvl < @lvl

)

SELECT PartID, Partname, ParentPartid, lvl

FROM PartsCTE

Go

PartID Partname ParentPartid lvl

----------- ------------------------------ ------------ -----------

22 Car NULL 0

ptg

1705Common Table Expressions
4

3

1 DriveTrain 22 1

23 Body 22 1

24 Frame 22 1

2 Engine 1 2

3 Transmission 1 2

4 Axle 1 2

12 Drive Shaft 1 2

You can also use recursive CTEs to perform aggregations, such as counting the total
number of subparts that make up each parent part, as shown in Listing 43.41.

LISTING 43.41 Performing Aggregation with a Recursive CTE

WITH PartsCTE(parentpartid, lvl)

AS

(

SELECT parentpartid, 0

FROM PARTS

WHERE parentpartid is not null

UNION ALL

SELECT P.parentpartid, lvl+1

FROM Parts as P

JOIN PartsCTE as PP

ON PP.parentpartid = P.Partid

WHERE P.parentpartid is not null

)

SELECT C.parentpartid, P.PartName, COUNT(*) AS cnt

FROM PartsCTE C

JOIN PArts P on C.ParentPartID = P.PartID

GROUP BY C.parentpartid, P.PArtName

go

parentpartid PartName cnt

------------ ------------------------------ -----------

1 DriveTrain 20

2 Engine 8

3 Transmission 8

8 Carburetor 1

13 Piston 1

16 Gear Box 5

22 Car 23

In the example in Listing 43.41, the anchor member returns a row with the parentpartid
for each part, being sure to filter out the NULL value in the parentpartid column because
it is essentially the top of the hierarchy and represents no parent part. The recursive

ptg

1706 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

member returns the parentpartid of each parent of the previously returned parts, again
excluding any NULL values. Eventually, the CTE contains, for each part, as many occur-
rences as their direct or indirect number of subparts. The outer query is then left with the
tasks of grouping the results by parentpartid and returning the count of occurrences. A
join to Parts is included to get the corresponding partname for each parent part to
provide more meaningful results.

Suppose you want to generate a report that is a bit more readable, with the subparts sorted
and indented according to hierarchical dependencies. Listing 43.42 provides a way you
could accomplish this.

LISTING 43.42 Generating a Formatted Report with a Recursive CTE

WITH PartsCTE(partid, partname, parentpartid, lvl, sortcol)

AS

(

SELECT partid, partname, parentpartid, 0, cast(partid as varbinary(max))

FROM Parts

WHERE partid = 22

UNION ALL

SELECT P.partid, P.partname, P.parentpartid, PP.lvl+1,

CAST(sortcol + CAST(P.partid AS BINARY(4)) AS VARBINARY(max))

FROM Parts AS P

JOIN PartsCTE AS PP

ON P.parentpartID = PP.PartID

)

SELECT

REPLICATE(‘--’, lvl)

+ right(‘>’,lvl)

+ partname AS partname

FROM PArtsCTE

order by sortcol

go

partname

Car

-->DriveTrain

---->Engine

------>Radiator

------>Intake Manifold

------>Exhaust Manifold

------>Carburetor

-------->Float Valve

------>Piston

-------->Piston Rings

ptg

1707Common Table Expressions
4

3

------>Crankshaft

---->Transmission

------>Flywheel

------>Clutch

------>Gear Box

-------->Reverse Gear

-------->First Gear

-------->Second Gear

-------->Third Gear

-------->Fourth Gear

---->Axle

---->Drive Shaft

-->Body

-->Frame

In this example, you use a varbinary string as the sortcol to sort subparts according to
the partid value. The anchor member is the starting point, generating a binary value for
the partid of the root part. In each iteration, the recursive member appends the current
part ID, converted to a binary value, to the parent part ID’s sortcol. The outer query then
sorts the result by sortcol, which groups the subparts under each immediate parent part.

Setting the MAXRECURSION Option
To help avoid infinite recursion in CTEs, SQL Server, by default, sets a MAXRECURSION

value of 100. If a recursive CTE attempts to perform more than 100 recursions, it is
aborted, with the following error message:

Msg 530, Level 16, State 1, Line 1

The statement terminated. The maximum recursion 100 has been exhausted before

statement completion.

You can override the default MAXRECURSION setting by using the OPTION(MAXRECURSION
value) query hint to force termination of the query after a specific number of recursive
iterations have been invoked. Listing 43.43 shows an example.

LISTING 43.43 Controlling the Number of Recursions with MAXRECURSION

WITH PartsCTE(partid, partname, parentpartid, lvl)

AS

(

SELECT partid, partname, parentpartid, 0

FROM PARTS

WHERE partid = 22 -- Car

UNION ALL

SELECT P.partid, P.partname, P.parentpartid, PP.lvl+1

FROM Parts as P

ptg

1708 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

JOIN PartsCTE as PP

ON P.partid = PP.Partid

)

SELECT PartID, Partname, ParentPartid, lvl

FROM PartsCTE

OPTION (MAXRECURSION 10)

go

Msg 530, Level 16, State 1, Line 2

The statement terminated. The maximum recursion 10 has been exhausted before

statement completion.

Keep in mind that if you use MAXRECURSION to control the number of levels of recursion in
a CTE, your application receives the error message. It is not considered good program-
ming practice to use code that returns errors in valid situations. Certain applications may
discard query results if an error message is received. Instead, it is recommended that you
use the level counter to limit recursion, as shown earlier in this chapter, in Listing 43.39.
You should use the MAXRECURSION hint as a safeguard against infinite loops due to bad
data or as a coding safeguard.

Ranking Functions
SQL Server 2005 introduced four new ranking functions: ROW_NUMBER, RANK, DENSE_RANK,
and NTILE. These functions allow you to analyze data and provide ranking values to result
rows of a query. For example, you might use these ranking functions for assigning sequen-
tial integer row IDs to result rows or for presentation, paging, or scoring purposes.

All four ranking functions follow a similar syntax pattern:

function_name() OVER(

[PARTITION BY partition_by_list]

ORDER BY order_by_list)

The ROW_NUMBER Function

The ROW_NUMBER function allows you to provide sequential integer values to the result rows
of a query, based on the order of the rows in the result. The result set must be ordered
using an OVER clause, with an ORDER BY clause as a variable.

The ROW_NUMBER function has been a feature long desired by SQL Server developers. For
example, suppose you want to return the publishers and total number of titles per publisher
and list the result rows, in descending order, with a numeric score assigned to each row.
The query shown in Listing 43.44 generates the desired results by using the ROW_NUMBER

function, specifying ordering over the num_titles column, in descending order.

ptg

1709Ranking Functions
4

3

LISTING 43.44 Using ROW_NUMBER to Rank Publishers by Number of Titles

select top 10 WITH TIES p.pub_id, pub_name, count(*) as num_titles,

ROW_NUMBER () OVER (order by count(*) DESC) as Rank

from publishers p join titles t on p.pub_id = t.pub_id

group by p.pub_id, p.pub_name

order by count(*) desc

go

pub_id pub_name num_titles Rank

------ -- ----------- --------------------

9911 Jones Jones and Johnson 44 1

9904 Strawberry Publications 34 2

9907 Incandescent Imprints 33 3

9905 Gooseberry Titles 32 4

9909 North American Press 30 5

9912 Landlocked Books 30 6

9913 Blackberry’s 28 7

9914 Normanskill Printing Company 28 8

9910 Sidney’s Books and More 28 9

9906 Tomato Books 28 10

9903 Kumquat Technical Publishing 28 11

In this example, the publishers with the highest number of titles got row number 1, and
the publisher with the tenth-highest number of titles got row number 10. The
ROW_NUMBER function always generates a distinct row number for each row, according to
the requested sort.

If the ORDER BY list specified within the OVER() option is not on a unique key, the order-
ing of the row numbers is nondeterministic. For publishers that may have the same
number of titles, each row would be assigned a different unique row number. The
sequence of the row numbers assigned to those publishers could be different in different
invocations of the query. In the results for Listing 43.44, for example, five different
publishers have the same number of titles (28). Because SQL Server has to assign different
row numbers to the different publishers, you should assume that the row numbers were
assigned in arbitrary order among those publishers.

To ensure that the result is always deterministic, specify a unique ORDER BY list. For
example, adding pub_id to the ORDER BY list ensures that in the case of a tie between
publishers, the lowest pub_id is always assigned the lower row number, as shown in
Listing 43.45.

LISTING 43.45 Using a Unique ORDER BY List for Deterministic ROW_NUMBER Results

select top 10 WITH TIES p.pub_id, pub_name, count(*) as num_titles,

ROW_NUMBER () OVER (order by count(*) DESC, p.pub_id) as Rank

ptg

1710 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

from publishers p join titles t on p.pub_id = t.pub_id

group by p.pub_id, p.pub_name

order by count(*) desc

go

pub_id pub_name num_titles Rank

------ -- ----------- --------------------

9911 Jones Jones and Johnson 44 1

9904 Strawberry Publications 34 2

9907 Incandescent Imprints 33 3

9905 Gooseberry Titles 32 4

9909 North American Press 30 5

9912 Landlocked Books 30 6

9903 Kumquat Technical Publishing 28 7

9906 Tomato Books 28 8

9910 Sidney’s Books and More 28 9

9913 Blackberry’s 28 10

9914 Normanskill Printing Company 28 11

In the previous two examples, the sequence of row numbers is generated across the
entire result set as one group. You can also have ranking values calculated indepen-
dently within groups of rows as opposed to being calculated for all table rows as one
group by using the PARTITION BY clause.

Partitioning by ROW_NUMBER()
PARTITION BY allows you to specify a list of expressions that identify the groups of rows
for which ranking values should be calculated independently. For example, the query in
Listing 43.46 assigns row numbers within each type of book separately, in num_titles and
pub_id order.

LISTING 43.46 Using PARTITION BY to Rank Rows Within Groups

select top 20 WITH TIES p.pub_id, pub_name, type, count(*) as num_titles,

ROW_NUMBER () OVER (partition by type order by count(*) DESC, p.pub_id) as Rank

from publishers p join titles t on p.pub_id = t.pub_id

group by p.pub_id, p.pub_name, type

order by type, count(*) desc

go

pub_id pub_name type num_titles Rank

------ -- ------------ ----------- --------

9906 Tomato Books biography 4 1

9911 Jones Jones and Johnson biography 4 2

9905 Gooseberry Titles biography 2 3

9900 Boysenberry Books biography 1 4

ptg

1711Ranking Functions
4

3

9903 Kumquat Technical Publishing biography 1 5

9904 Strawberry Publications biography 1 6

9909 North American Press biography 1 7

9913 Blackberry’s biography 1 8

9914 Normanskill Printing Company biography 1 9

9916 Nordome Titles biography 1 10

9918 Significant Titles Company biography 1 11

1389 Algodata Infosystems business 3 1

0736 New Moon Books business 1 2

9911 Jones Jones and Johnson children 21 1

9914 Normanskill Printing Company children 13 2

9905 Gooseberry Titles children 12 3

9901 GGG&G children 11 4

9903 Kumquat Technical Publishing children 11 5

9915 Beanplant General children 9 6

9900 Boysenberry Books children 8 7

9913 Blackberry’s children 8 8

The RANK and DENSE_RANK Functions

The RANK and DENSE_RANK functions are similar to the ROW_NUMBER function in the sense
that they also provide ranking values according to a specified sort. The difference is that
rather than assign a unique ranking value to each row, RANK and DENSE_RANK assign the
same ranking value to rows with the same values in the specified sort columns when the
ORDER BY list is not unique.

The difference between RANK and DENSE_RANK is that with the DENSE_RANK function, there
are no gaps in the ranking. The RANK function skips the next number if there is a tie in the
ranking value. Listing 43.47 modifies the query shown in Listing 43.44 by replacing the
ROW_NUMBER function with RANK and DENSE_RANK and provides a good example of the differ-
ences between the two.

LISTING 43.47 Using RANK and DENSE_RANK

select top 10 WITH TIES p.pub_id, pub_name, count(*) as num_titles,

RANK() OVER (order by count(*) DESC) as Rank,

DENSE_RANK() OVER (order by count(*) DESC) as Dense_Rank

from publishers p join titles t on p.pub_id = t.pub_id

group by p.pub_id, p.pub_name

order by count(*) desc

go

pub_id pub_name num_titles Rank Dense_Rank

ptg

1712 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

------ ------------------------------ ----------- ----- ----------

9911 Jones Jones and Johnson 44 1 1

9904 Strawberry Publications 34 2 2

9907 Incandescent Imprints 33 3 3

9905 Gooseberry Titles 32 4 4

9909 North American Press 30 5 5

9912 Landlocked Books 30 5 5

9913 Blackberry’s 28 7 6

9914 Normanskill Printing Company 28 7 6

9910 Sidney’s Books and More 28 7 6

9906 Tomato Books 28 7 6

9903 Kumquat Technical Publishing 28 7 6

Notice that in this result set, all publishers with the same number of titles get the same
RANK and DENSE_RANK values.

NOTE

If the ORDER BY list for a ranking function is unique, ROW_NUMBER, RANK, and
DENSE_RANK produce exactly the same values.

The NTILE Function

The NTILE function assigns a ranking value by separating the result rows of a query into a
specified number of approximately even-sized groups. Each group of rows is assigned the
same ranking number, starting with 1 for the first group, 2 for the second, and so on. You
specify the number of groups you want the result set divided into as the argument to the
NTILE function. The number of rows in a group is determined by dividing the total
number of rows in the result set by the number of groups. If there’s a remainder, n, the
first n groups have an additional row assigned to them. Listing 43.48 provides an example
of using the NTILE function, so you can compare it to the ROW_NUMBER function.

LISTING 43.48 Using the NTILE Function

select p.pub_id, pub_name, count(*) as num_titles,

NTILE(3) OVER (order by count(*) DESC) as NTILE,

ROW_NUMBER() OVER (order by count(*) DESC) as RowNum

from publishers p join titles t on p.pub_id = t.pub_id

group by p.pub_id, p.pub_name

order by count(*) desc

go

pub_id pub_name num_titles NTILE RowNum

------ -- ----------- ----- ------

9911 Jones Jones and Johnson 44 1 1

9904 Strawberry Publications 34 1 2

ptg

1713Ranking Functions
4

3

9907 Incandescent Imprints 33 1 3

9905 Gooseberry Titles 32 1 4

9909 North American Press 30 1 5

9912 Landlocked Books 30 2 6

9913 Blackberry’s 28 2 7

9914 Normanskill Printing Company 28 2 8

9910 Sidney’s Books and More 28 2 9

9906 Tomato Books 28 2 10

9903 Kumquat Technical Publishing 28 3 11

9902 Lemon Legal Publishing 27 3 12

9901 GGG&G 25 3 13

9908 Springfield Publishing 25 3 14

9900 Boysenberry Books 23 4 15

9916 Nordome Titles 22 4 16

9915 Beanplant General 21 4 17

9917 BFG Books 17 4 18

9918 Significant Titles Company 17 5 19

0877 Binnet & Hardley 6 5 20

1389 Algodata Infosystems 6 5 21

0736 New Moon Books 5 5 22

In this example, NTILE is used to divide the result set into five groups. Because there are
22 rows in the publishers table, there are 4 rows in each group, with 2 left over. The 2
extra rows are added to the first two groups.

The NTILE function provides a way to generate a histogram with an even distribution of
items for each step. In the previous example, the first step represents the publishers with
the highest number of titles, and the last step represents the publishers with the lowest
number of titles. You can use this information in a CASE expression to provide descriptive
meaningful alternatives to the ranking numbers, as shown in Listing 43.49.

LISTING 43.49 Using a CASE Expression to Provide Meaningful Labels to Ranking Values

select p.pub_id, pub_name, count(*) as num_titles,

case NTILE(5) OVER (order by count(*) DESC)

when 1 then ‘Highest’

when 2 then ‘Above Average’

when 3 then ‘Average’

when 4 then ‘Below Average’

when 5 then ‘Lowest’

end as Ranking

from publishers p join titles t on p.pub_id = t.pub_id

group by p.pub_id, p.pub_name

order by pub_id

go

ptg

1714 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

pub_id pub_name num_titles Ranking

------ -- ----------- -------------

0736 New Moon Books 5 Lowest

0877 Binnet & Hardley 6 Lowest

1389 Algodata Infosystems 6 Lowest

9900 Boysenberry Books 23 Below Average

9901 GGG&G 25 Average

9902 Lemon Legal Publishing 27 Average

9903 Kumquat Technical Publishing 28 Average

9904 Strawberry Publications 34 Highest

9905 Gooseberry Titles 32 Highest

9906 Tomato Books 28 Above Average

9907 Incandescent Imprints 33 Highest

9908 Springfield Publishing 25 Average

9909 North American Press 30 Highest

9910 Sidney’s Books and More 28 Above Average

9911 Jones Jones and Johnson 44 Highest

9912 Landlocked Books 30 Above Average

9913 Blackberry’s 28 Above Average

9914 Normanskill Printing Company 28 Above Average

9915 Beanplant General 21 Below Average

9916 Nordome Titles 22 Below Average

9917 BFG Books 17 Below Average

9918 Significant Titles Company 17 Lowest

Using Row Numbers for Paging Results

Typical uses for row numbers are for paging through the results of a query and for select-
ing a specific subset of rows from within the result set. Essentially, given a page size in
terms of number of rows, and a page number, you can return the rows that belong to that
given page.

For example, suppose you want to return the second page of rows from a query similar to
the one shown in Listing 43.45. Assuming a page size of five rows, the query shown in
Listing 43.50 uses a CTE to first calculate the row numbers according to the ranking by
number of titles, and then only those rows with numbers 6 through 10, which belong to
the second page, are returned.

LISTING 43.50 Using ROW_NUMBER to Page Through Results

with pub_titles as

(

select p.pub_id, pub_name, count(*) as num_titles,

ROW_NUMBER () OVER (order by count(*) DESC, p.pub_id) as Rank

from publishers p join titles t on p.pub_id = t.pub_id

ptg

1715Ranking Functions
4

3

group by p.pub_id, p.pub_name

)

select * from pub_titles

where Rank between 6 and 10

go

pub_id pub_name num_titles Rank

------ -- ----------- --------------------

9912 Landlocked Books 30 6

9903 Kumquat Technical Publishing 28 7

9906 Tomato Books 28 8

9910 Sidney’s Books and More 28 9

9913 Blackberry’s 28 10

You could make this query more generic by using local variables for the page number and
page size and using them to calculate the proper set of rows to return, as shown in
Listing 43.51.

LISTING 43.51 Using Local Variables for Determining Page Size When Paging Through Results

declare @pagesize tinyint,

@pagenum tinyint;

set @pagesize = 6;

set @pagenum = 2;

with pub_titles as

(

select p.pub_id, pub_name, count(*) as num_titles,

ROW_NUMBER () OVER (order by count(*) DESC, p.pub_id) as Rank

from publishers p join titles t on p.pub_id = t.pub_id

group by p.pub_id, p.pub_name

)

select * from pub_titles

where Rank between ((@pagenum - 1) * @pagesize) + 1

and @pagenum * @pagesize

go

pub_id pub_name num_titles Rank

------ -- ----------- --------------------

9903 Kumquat Technical Publishing 28 7

9906 Tomato Books 28 8

9910 Sidney’s Books and More 28 9

9913 Blackberry’s 28 10

9914 Normanskill Printing Company 28 11

9902 Lemon Legal Publishing 27 12

ptg

1716 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

The example in Listing 43.51 is adequate for ad hoc requests when you’re interested in
retrieving only one specific page of the result set. However, this approach is not adequate
for most applications that would issue multiple requests for individual pages of data
because each invocation of the query would require a complete scan of the table to calcu-
late the row numbers. A more efficient method for when the user might repeatedly
request different pages would be to first populate a temporary table with all the base table
rows, including the calculated row numbers, and then create a clustered index on the
column in the temp table that contains the row numbers. An example is presented in
Listing 43.52.

LISTING 43.52 Using a Temp Table for Paging Through Results

select p.pub_id, pub_name, count(*) as num_titles,

ROW_NUMBER () OVER (order by count(*) DESC, p.pub_id) as Rank

into #paging_table

from publishers p join titles t on p.pub_id = t.pub_id

group by p.pub_id, p.pub_name

go

create unique clustered index idx1 on #paging_table(Rank)

go

declare @pagesize tinyint,

@pagenum tinyint;

set @pagesize = 6;

set @pagenum = 2;

SELECT *

FROM #paging_table

WHERE Rank BETWEEN (@pagenum-1)*@pagesize+1 AND @pagenum*@pagesize

ORDER BY Rank

set @pagesize = 6;

set @pagenum = 4;

SELECT *

FROM #paging_table

WHERE Rank BETWEEN (@pagenum-1)*@pagesize+1 AND @pagenum*@pagesize

ORDER BY Rank

go

pub_id pub_name num_titles Rank

------ -- ----------- --------------------

9903 Kumquat Technical Publishing 28 7

9906 Tomato Books 28 8

9910 Sidney’s Books and More 28 9

9913 Blackberry’s 28 10

9914 Normanskill Printing Company 28 11

9902 Lemon Legal Publishing 27 12

pub_id pub_name num_titles Rank

ptg

1717Ranking Functions
4

3

------ -- ----------- --------------------

9918 Significant Titles Company 17 19

0877 Binnet & Hardley 6 20

1389 Algodata Infosystems 6 21

0736 New Moon Books 5 22

If you are limiting the result set to a specific number of rows and are using a fixed page
size, an alternative to using ROW_NUMBER would be to use the NTILE function to calculate
the actual page numbers. For example, if you are using TOP to limit the result set to the
first 500 rows and each page contains 10 rows, the total number of pages would be 500 /
10, or 50 pages. If you use 50 as the argument to the NTILE function, the query generates
50 distinct ranking values with 10 rows each. An example of this solution is presented in
Listing 43.53.

LISTING 43.53 Using NTILE to Generate Page Numbers

select TOP 500 t.title_id,

left(title, 20) as title,

sum(qty) as total_sales,

NTILE(50) OVER(ORDER BY sum(qty) desc) AS pagenum

into #title_list

from titles t join sales s on t.title_id = s.title_id

group by t.title_id, title

go

create clustered index page_index on #title_list(pagenum)

go

select * from #title_list

where pagenum = 11

go

title_id title total_sales pagenum

-------- -------------------- ----------- --------------------

FI1704 Journey 295872 11

FI2784 Rhoda: A Life in Sto 295836 11

FI4524 The Unconsoled 295584 11

FI4554 The Spy Who Came in 295500 11

FI0897 Polar Star 295308 11

CH0126 Little Bear 295296 11

FI5040 The Tombs of Atuan 295284 11

PS1372 Computer Phobic AND 295172 11

FI7820 Tinker, Tailor, Sold 295092 11

FI2816 Zuckerman Unbound 294960 11

CH0623 The Black Cauldron 294960 11

ptg

1718 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

PIVOT and UNPIVOT

SQL Server 2005 added the PIVOT clause to T-SQL. A typical analytical use of the PIVOT
command is to convert temporal data into categorized data to make the data easier to
view and analyze.

The first, and simplest, option for returning the temporal data is to query the data, group-
ing the fact information in such a way that it answers the questions being asked. For
example, Listing 43.54 retrieves data from the titles tables and provides the total
number of business books sold, by year. Note that it’s difficult to see trends of the number
of titles sold between years. It is also even more difficult to answer questions about how
sales of one title compared to sales of other titles in the same year.

LISTING 43.54 A Standard Query to Return Total Sales of Titles, by Year

select t.title_id,

datepart(year, ord_date) as year,

sum(qty) as total_sales

from sales s join titles t on s.title_id = t.title_id

where t.type = ‘business’

group by t.title_id, datepart(year, ord_date)

go

title_id year total_sales

-------- ----------- -----------

BU7832 2007 104616

BU1111 2007 88116

BU2075 2007 117888

BU1032 2006 95556

BU7832 2008 78240

BU1111 2006 104149

BU2075 2008 84588

BU7832 2006 102975

BU1032 2007 97131

BU2075 2006 108995

BU1032 2008 59772

BU1111 2008 72336

You could visualize and answer these questions more easily if you could pivot the YEAR
column to create columns of TOTAL_SALES for each year. The resulting table is generally
referred to as a crosstab. The PIVOT clause provides this capability.

The syntax of the PIVOT expression is as follows:

pivoted_table ::=

table_source PIVOT (aggregate_function (value_column)

ptg

1719PIVOT and UNPIVOT
4

3

FOR pivot_column

IN (column_list) table_alias

To use the PIVOT feature, you first decide which column contains the important values for
the query. In this example, the important piece of information is the total_sales
amount. Next, you determine which field data becomes the columns you will pivot the
data into. In this example, because you want to analyze sales over a period of time, you
want to pivot the sales year field data into columns in the final result.

You start out by defining a CTE that returns the detail data on which you want to aggre-
gate. This CTE might look like the following SQL code fragment:

with title_sales as

(select t.title_id,

datepart(year, ord_date) as year,

qty

from sales s join titles t on s.title_id = t.title_id

where t.type = ‘business’)

Drawing from the title_sales CTE, the value column is the qty column. Because you
want to sum the qty values, you need to use the SUM() aggregate function in the PIVOT
expression. The pivot column is YEAR. You need to define a list of YEAR columns that you
want to see. For this example, the columns are 2006, 2007, and 2008. You specify these
values as column headings in the select list in the SQL expression and also as the column
list in the PIVOT expression. Putting all the pieces together, you end up with the SQL state-
ment shown in Listing 43.55.

LISTING 43.55 Using PIVOT to Return Total Sales by Year

with title_sales as

(select t.title_id,

datepart(year, ord_date) as year,

qty as total_sales

from sales s join titles t on s.title_id = t.title_id

where t.type = ‘business’)

select ts_pivot.title_id,

isnull([2006], 0) as [2006],

isnull([2007], 0) as [2007],

isnull([2008], 0) as [2008]

from title_sales

pivot (sum(total_sales) for year in ([2006], [2007], [2008])

) as ts_pivot

go

title_id 2006 2007 2008

-------- ----------- ----------- -----------

BU1032 95556 97131 59772

ptg

1720 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

BU1111 104149 88116 72336

BU2075 108995 117888 84588

BU7832 102975 104616 78240

Note that in this example, the SUM aggregate function is a required component of the PIVOT

expression. If you think about it, the CTE could easily have been coded to perform the sum
of the qty values, grouping them by year and simply have the PIVOT expression pivot using
only the total_sales, without the need for the SUM function. Unfortunately, the PIVOT

expression requires having an aggregate function included, so it must be coded this way.

Also note that the data specified in the IN column list for the PIVOT expression must
explicitly include the names of all the values that will be pivoted into columns. Currently,
the syntax does not allow for this column list to be dynamic.

The UNPIVOT expression is used to take data that is already in the form of a crosstab and
rotate the data columns into data rows. You are likely to use UNPIVOT much less often
than PIVOT.

For example, you can create a temporary table from the results of the PIVOT query in
Listing 43.55:

with title_sales as

(select t.title_id,

datepart(year, ord_date) as year,

qty

from sales s join titles t on s.title_id = t.title_id

where t.type = ‘business’)

select ts_pivot.title_id,

isnull([2006], 0) as [2006],

isnull([2007], 0) as [2007],

isnull([2008], 0) as [2008]

into #title_sales_by_year

from title_sales

pivot (sum(qty) for year in ([2006], [2007], [2008])

) as ts_pivot

go

select title_id, [2006], [2007], [2008]

from #title_sales_by_year

go

title_id 2006 2007 2008

-------- ----------- ----------- -----------

BU1032 95556 97131 59772

BU1111 104149 88116 72336

ptg

1721PIVOT and UNPIVOT
4

3

BU2075 108995 117888 84588

BU7832 102975 104616 78240

To unpivot the #title_sales_by_year table, you start with the common table expression
that returns the rows and columns you want to unpivot:

with title_sales as

(select title_id, [2006], [2007], [2008]

from #title_sales_by_year)

Drawing from the title_sales CTE, the year columns become a single column called
year, and you rotate the current total_sales columns into a single column. This time
around, the year column is the unpivot column. For this example, the columns you want
to unpivot are 2006, 2007, and 2008. You specify these values as the column list in the
UNPIVOT expression and rename it as a single column called total_sales. Putting all the
pieces together, you end up with the SQL statement shown in Listing 43.56.

LISTING 43.56 Using UNPIVOT to Rotate Pivoted Data

with title_sales as

(select title_id, [2006], [2007], [2008]

from #title_sales_by_year)

select title_id,

cast(ts_unpivot.year as smallint) as year,

ts_unpivot.total_sales

from title_sales

UNPIVOT (total_sales for year in ([2006], [2007], [2008])

) as ts_unpivot

go

title_id year total_sales

-------- ------ -----------

BU1032 2006 95556

BU1032 2007 97131

BU1032 2008 59772

BU1111 2006 104149

BU1111 2007 88116

BU1111 2008 72336

BU2075 2006 108995

BU2075 2007 117888

BU2075 2008 84588

BU7832 2006 102975

BU7832 2007 104616

BU7832 2008 78240

ptg

1722 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

NOTE

UNPIVOT is not the exact reverse of PIVOT. PIVOT performs an aggregation and, there-
fore, merges possible multiple rows into a single row in the output. UNPIVOT does not
reproduce the original detail rows from the summary values.

The APPLY Operator
The APPLY relational operator allows you to invoke a table-valued function once per each
row of an outer table expression. You specify APPLY in the FROM clause of a query, simi-
larly to the way you use the JOIN operator. APPLY can take two forms: CROSS APPLY and
OUTER APPLY.

CROSS APPLY

CROSS APPLY invokes a table-valued function for each row in an outer table expression,
returning a unified result set out of all the results returned by the individual invocations
of the table-valued function. The columns in the outer table are used as arguments to the
table-valued function. If the table-valued function returns an empty set for a given outer
row, that outer row is not returned in the result.

For example, the table-valued function in Listing 43.57 accepts stor_id and an integer as
arguments and returns a list of the top N largest orders for that store. The number of rows
returned is determined by the value passed to the second parameter. If you call this func-
tion with stor_id and a number of rows, it returns that many rows, ordered by the qty of
the order, in descending order.

LISTING 43.57 A Table-Valued Function That Returns the Top N Orders for stor_id

CREATE FUNCTION dbo.fn_GetTopOrders(@stor_id AS char(4), @n AS INT)

RETURNS TABLE

AS

RETURN

SELECT TOP(@n) *

FROM dbo.sales

WHERE stor_id = @stor_id

ORDER BY qty DESC

GO

Following is a sample invocation of the function in Listing 43.57:

select * from dbo.fn_GetTopOrders (‘B251’, 3)

go

stor_id ord_num ord_date qty payterms title_id

------- ------------------ ----------------------- ---- ------------ --------

ptg

1723The APPLY Operator
4

3

B251 ONQQQQQQQQQQQQQQQ 2008-01-23 00:00:00.000 1740 Net 60 CH6808

B251 ONKKKKKKKKKKKKKKKK 2007-11-04 00:00:00.000 1704 Net 60 FI9420

B251 ONTTTTTTTTTTTTTTTT 2008-02-22 00:00:00.000 1560 Net 60 FI8000

If you want to generate a result set that shows each store name and the top three largest
orders for each store, you can use the CROSS APPLY function to join to the
dbo.fn_GetTopOrders function for each stor_id in the outer query, as shown in Listing
43.58.

LISTING 43.58 Using CROSS APPLY

select st.stor_id, stor_name, s.ord_date, s.qty

from stores st

cross apply

dbo.fn_GetTopOrders (st.stor_id, 3) as s

where st.state = ‘MI’

and st.stor_name in (‘Barnes & Noble’, ‘B Dalton BookSeller’, ‘Waldenbooks’)

order by stor_id, s.qty DESC

go

stor_id stor_name ord_date qty

------- ------------------- ----------------------- ------

B251 B Dalton Bookseller 2008-01-23 00:00:00.000 1740

B251 B Dalton Bookseller 2007-11-04 00:00:00.000 1704

B251 B Dalton Bookseller 2008-02-22 00:00:00.000 1560

B510 Barnes & Noble 2008-08-13 00:00:00.000 1464

B510 Barnes & Noble 2007-10-08 00:00:00.000 1200

B510 Barnes & Noble 2006-01-08 00:00:00.000 924

P963 Waldenbooks 2008-07-07 00:00:00.000 1668

P963 Waldenbooks 2006-12-30 00:00:00.000 1068

P963 Waldenbooks 2006-03-29 00:00:00.000 1032

Q017 Waldenbooks 2007-11-02 00:00:00.000 1776

Q017 Waldenbooks 2006-06-15 00:00:00.000 1704

Q017 Waldenbooks 2007-02-24 00:00:00.000 1548

CROSS APPLY returns only rows from the outer table that produce a result set from the
table-valued function. If a store has no orders, it does not appear in the result set. To
include all rows from the outer table, use OUTER APPLY.

OUTER APPLY

OUTER APPLY returns from the outer table both rows that produce a result set and rows that
do not. Rows that do not produce a result set from the table-valued function return NULL

values in the columns produced by the table-valued function.

ptg

1724 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

The following example is similar to the query in Listing 43.58 but replaces CROSS APPLY
with the OUTER APPLY clause:

select st.stor_id, stor_name, s.ord_date, s.qty

from stores st

outer apply

dbo.fn_GetTopOrders (st.stor_id, 3) as s

where st.state = ‘MI’

and st.stor_name in (‘Barnes & Noble’, ‘B Dalton BookSeller’, ‘Waldenbooks’)

order by stor_id, s.qty DESC

go

stor_id stor_name ord_date qty

------- ------------------- ----------------------- ------

B251 B Dalton Bookseller 2008-01-23 00:00:00.000 1740

B251 B Dalton Bookseller 2007-11-04 00:00:00.000 1704

B251 B Dalton Bookseller 2008-02-22 00:00:00.000 1560

B510 Barnes & Noble 2008-08-13 00:00:00.000 1464

B510 Barnes & Noble 2007-10-08 00:00:00.000 1200

B510 Barnes & Noble 2006-01-08 00:00:00.000 924

B511 Barnes & Noble NULL NULL

P963 Waldenbooks 2008-07-07 00:00:00.000 1668

P963 Waldenbooks 2006-12-30 00:00:00.000 1068

P963 Waldenbooks 2006-03-29 00:00:00.000 1032

Q017 Waldenbooks 2007-11-02 00:00:00.000 1776

Q017 Waldenbooks 2006-06-15 00:00:00.000 1704

Q017 Waldenbooks 2007-02-24 00:00:00.000 1548

TRY...CATCH Logic for Error Handling
SQL Server 2005 also introduced the TRY...CATCH construct, which you can use within T-
SQL code to provide a more graceful mechanism for exception handling than was avail-
able in previous versions of SQL Server. In versions prior to 2005, error handling was
typically done by checking @@ERROR after each SQL statement and often using the GOTO
statement to branch to an error-handling routine.

A TRY...CATCH construct consists of two parts: a TRY block and CATCH block. When an
error condition is detected in a T-SQL statement that is inside a TRY block, control is
immediately passed to the CATCH block, where the error is processed. T-SQL statements in
the TRY block that follow the statement that generated the error are not executed.

If an error occurs and processing is passed to the CATCH block, after the statements in the
CATCH block are executed, control is transferred to the first T-SQL statement that follows
the END CATCH statement. If there are no errors inside the TRY block, control is passed to
the statement immediately after the associated END CATCH statement, essentially skipping
over the statements in the CATCH block.

ptg

1725TRY...CATCH Logic for Error Handling
4

3

A TRY block is initiated with the BEGIN TRY statement and ended with the END TRY state-
ment and can consist of one or more Transact-SQL statements between the BEGIN TRY and
END TRY statements. The TRY block must be followed immediately by a CATCH block. A
CATCH block is indicated with the BEGIN CATCH statement and ended with the END CATCH
statement and can consist of one or more SQL statements. In SQL Server, each TRY block
can be associated with only one CATCH block.

The syntax of the TRY...CATCH construct is as follows:

BEGIN TRY

one_or_more_sql_statements

END TRY

BEGIN CATCH

one_or_more_sql_statements

END CATCH

In a CATCH block, you can use the following error functions to capture information about
the error that invoked the CATCH block:

. ERROR_NUMBER()—Returns the error number

. ERROR_MESSAGE()—Returns the complete text of the error message

. ERROR_SEVERITY()—Returns the error severity

. ERROR_STATE()—Returns the error state number

. ERROR_LINE()—Returns the line number inside the procedure that caused the error

. ERROR_PROCEDURE()—Returns the name of the stored procedure or trigger where the
error occurred

Unlike @@ERROR, which is reset by each statement that is executed, the error information
retrieved by the error functions remains constant anywhere within the scope of the CATCH
block of a TRY...CATCH construct. Error functions can also be referenced from within a
stored procedure invoked within a CATCH block. This allows you to modularize the error
handling into a single stored procedure so you do not have to repeat the error-handling
code in every CATCH block. Listing 43.59 shows an example of an error-handling procedure
that you can use in your CATCH blocks.

LISTING 43.59 An Example of a Standard Error Handler Procedure

use bigpubs2008

go

create proc dbo.error_handler

as

begin

Declare @errnum int,

@severity int,

@errstate int,

ptg

1726 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

@proc nvarchar(126),

@line int,

@message nvarchar(4000)

-- capture the error information that caused the CATCH block to be invoked

SELECT @errnum = ERROR_NUMBER(),

@severity = ERROR_SEVERITY(),

@errstate = ERROR_STATE(),

@proc = ERROR_PROCEDURE(),

@line = ERROR_LINE(),

@message = ERROR_MESSAGE()

-- raise an error message with information on the error

RAISERROR (‘Failed to add new publisher for the following reason:

Error: %d, Severity: %d, State: %d, in proc %s at line %d, Message: “%s”’,

16, 1, @errnum, @severity, @errstate, @proc, @line, @message)

Return

end

Listing 43.60 provides an example of the use of the TRY...CATCH construct in a T-SQL
batch. Note that this CATCH block uses the dbo.error_handler procedure defined in
Listing 43.59.

LISTING 43.60 Using a TRY...CATCH Construct for Error Handling in a T-SQL Batch

use bigpubs2008

go

BEGIN TRY

INSERT INTO bigpubs2008.dbo.publishers

(pub_id, pub_name, city, state, country)

VALUES(‘9950’, ‘Sams Publishing’, ‘Indianapolis’, ‘IN’, ‘USA’)

-- if no error occurs, we should see this print statement

print ‘New Publisher added’

END TRY

BEGIN CATCH

-- invoke the error_handler procedure

exec error_handler

-- return a non-zero status code

END CATCH

-- if successful execution, return 0

go

Msg 50000, Level 16, State 1, Procedure error_handler, Line 18

Failed to add new publisher for the following reason:

Error: 2627, Severity: 14, State: 1, in proc (null) at line 2,

Message: “Violation of PRIMARY KEY constraint ‘UPKCL_pubind’.

Cannot insert duplicate key in object ‘dbo.publishers’.”

ptg

1727The TABLESAMPLE Clause
4

3

If you want to capture and handle any errors that may occur within a CATCH block, you
can incorporate another TRY...CATCH block within the CATCH block.

NOTE

Some errors with severity 20 or higher that would cause SQL Server to close the user
connection cannot be handled by the TRY...CATCH construct. However, severity level
20 or higher errors that do not result in the connection being closed can be captured
and handled by the CATCH block. Any errors with a severity level of 10 or less are con-
sidered only warnings or informational messages and not really errors, and thus they
are not handled by the TRY...CATCH construct. Also, any compile errors (such as syn-
tax errors) or object name resolution errors that happen during deferred name resolu-
tion also do not invoke a CATCH block. These errors are returned to the application or
batch that called the error-generating routine.

The TABLESAMPLE Clause
The TABLESAMPLE clause lets you query a random sample of data from a table (either an
exact number of rows or a percentage of rows). You can use TABLESAMPLE to quickly return
a sample from a large table when the sample does not have to be a truly random sample
at the level of individual rows. This clause is also useful when you want to test your code
against a random subset of data that you copy from a production environment or when
you just want to test the validity of your solutions against a subset of data as opposed to
the entire data set.

To return a random sample of data using the TABLESAMPLE clause, you specify it in a
query’s FROM clause, right after the table name or table alias. The TABLESAMPLE clause has
the following syntax:

TABLESAMPLE [SYSTEM] (sample_number [PERCENT | ROWS])

[REPEATABLE (repeat_seed)]

Specifying the SYSTEM keyword is optional, but this option is currently the only sampling
method available in SQL Server and is applied by default. SYSTEM specifies that an ANSI
SQL implementation-dependent sampling method will be used. This means that individ-
ual database management system (DBMS) products can implement this method differ-
ently. In SQL Server, the same sampling method that it uses to sample data to create
statistics is used to generate the results for TABLESAMPLE.

The result set returned by a query using TABLESAMPLE and a specified percentage is created
by generating a random value for each physical page in the table. Based on the random
value generated for a page, that page is either included in the sample or excluded. When a
page is included in the sample, all rows on that page are returned in the result set. For

ptg

1728 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

example, if you specify TABLESAMPLE SYSTEM 10 PERCENT, SQL Server returns all the rows
from approximately 10% of the randomly selected data pages of the table.

When a specific number of rows rather than a percentage is specified, the requested
number of rows is converted into a percentage of the total number of rows in the table
and a percentage of the number of pages that should be returned. The TABLESAMPLE opera-
tion is then performed against the computed percentage of pages.

If the rows are evenly distributed on the pages of the table, the number of rows returned
by a TABLESAMPLE query should be close to the requested sample size. However, if there is a
mix of full and sparse pages in the table, the number of rows returned may vary widely for
subsequent executions of the query. Consider the following query:

with sales_sample as

(select * from sales TABLESAMPLE (1 percent))

select count(*) as numrows from sales_sample

go

numrows

2055

There are 168,715 rows in the sales table in the bigpubs2008 database. A 1% sample
should return approximately 1,687 rows. However, as you can see from the preceding
example, it returns 2,055 rows.

NOTE

Each time this query is run, it is likely to return a different set of rows, so your row
counts may not match those presented in these examples.

If you invoke the query again, it could return a different number of rows:

with sales_sample as

(select * from sales TABLESAMPLE (1 percent))

select count(*) as numrows from sales_sample

go

numrows

1138

Note also that if you specify an actual number of rows, because the sampling is done at
the page level, the pages sampled may have more or fewer rows than required to provide
the requested sample size. For example, consider the following query, which requests a
TABLESAMPLE of 1,000 rows:

ptg

1729The TABLESAMPLE Clause
4

3

with sales_sample as

(select * from sales TABLESAMPLE (1000 rows))

select count(*) as numrows from sales_sample

go

numrows

683

A subsequent execution of the same query could return a different number of rows:

with sales_sample as

(select * from sales TABLESAMPLE (1000 rows))

select count(*) as numrows from sales_sample

go

numrows

1371

If you run this query repeatedly, you are likely to get a different number of rows every
time. However, the larger the table and the greater the number of rows you request, the
more likely it is to get a closer percentage or number of requested rows returned. The
smaller the table and the smaller the number or percentage of rows you request, the less
likely the query is to return the number of rows close to the number or percentage you
requested. With very small tables, you might not even get any rows.

To increase the likelihood of receiving the number of rows that you request, you should
specify a greater number of rows than you actually need in the TABLESAMPLE clause and
use the TOP option to specify the number of rows you actually want. For example, if you
want a set of 1,000 random rows, you should request 2,000 rows in the TABLESAMPLE
clause and then limit it to 1,000 rows with the TOP option, as in this example:

select top 1000 * from sales TABLESAMPLE (2000 rows)

When you do this, you may still get fewer than 1,000 rows returned, but the likelihood of
that occurring is lower than if you request 1,000 rows in the TABLESAMPLE clause alone.
Also, by specifying TOP(1000), you’re guaranteed not to get more than 1,000 rows. When
you use a combination of TABLESAMPLE and TOP, the data you obtain is a more representa-
tive sampling of the data in your table than if you use TOP alone.

If you want to generate the same random sample each time you use the TABLESAMPLE
clause, you can specify the REPEATABLE option with a specified repeat_seed value. The
REPEATABLE option causes a selected sample to be returned again. When REPEATABLE is
specified with the same repeat_seed value, SQL Server returns the same subset of rows, as

ptg

1730 CHAPTER 43 Transact-SQL Programming Guidelines, Tips, and Tricks

long as no changes have been made to the table. For example, the following query uses
repeat_seed of 1 and, in this case, returns 16,896 rows:

with sales_sample as

(select * from sales TABLESAMPLE (10 percent) repeatable (1))

select count(*) as numrows from sales_sample

go

numrows

16896

When REPEATABLE is specified with a different repeat_seed value, SQL Server typically
returns a different sample of the rows in the table. For example, the following query uses
repeat_seed of 2 and gets a different set and number of rows:

with sales_sample as

(select * from sales TABLESAMPLE (10 percent) repeatable (2))

select count(*) as numrows from sales_sample

go

numrows

19856

Running the query again with repeat_seed of 1 returns the same result rows as previously:

with sales_sample as

(select * from sales TABLESAMPLE (10 percent) repeatable (1))

select count(*) as numrows from sales_sample

go

numrows

16896

The types of actions that are considered changes and could affect the repeatability of the
TABLESAMPLE results include inserts, updates, deletes, index rebuilding, index defragment-
ing, restoration of a database, and attachment of a database.

You can use other techniques to request random data samples, but most of those tech-
niques require scanning the entire table, which can be time-consuming and I/O intensive
for very large tables. Using TABLESAMPLE for a specific table limits the Query Optimizer to
performing table scans only on that table, but physical I/Os are performed only on the
actual sampled pages included in the result set. Because of this, using TABLESAMPLE is
usually a faster way of generating a random sampling of your data.

ptg

1731Summary
4

3

Summary
Transact-SQL is a powerful data access and data modification language that provides a
number of features and components to help you develop powerful and robust SQL
Server–based applications. SQL Server 2005 further expanded the power and capabilities of
T-SQL with the addition of a number of new features, and SQL Server 2008 provides even
more (see Chapter 42 for details on the new T-SQL features introduced in SQL Server
2008). The guidelines, tips, and T-SQL features presented in this chapter provide you with
some building blocks you can use to get the most out of your T-SQL code to help make
your SQL Server–based applications even more powerful and robust.

ptg

This page intentionally left blank

ptg

CHAPTER 44

Advanced Stored
Procedure Programming

and Optimization

IN THIS CHAPTER

. T-SQL Stored Procedure
Coding Guidelines

. Using Cursors in Stored
Procedures

. Nested Stored Procedures

. Using Temporary Tables in
Stored Procedures

. Using Remote Stored
Procedures

. Stored Procedure Performance

. Using Dynamic SQL in Stored
Procedures

. Installing and Using .NET CLR
Stored Procedures

. Using Extended Stored
Procedures

Chapter 28, “Creating and Managing Stored Procedures,”
introduced the basic syntax and features for creating,
viewing, and maintaining stored procedures. This chapter
delves into more advanced stored procedure features and
programming methods and provides guidelines on how to
develop more robust and better optimized stored proce-
dures.

It is important to understand the various capabilities and
limitations of stored procedures before writing much stored
procedure code. Poorly written procedures can make the
server appear to run sluggishly and inefficiently. Well-
written procedures run efficiently and solidly. Following the
guidelines and tips presented in this chapter should help
you write more efficient and robust stored procedures.

T-SQL Stored Procedure Coding
Guidelines
Transact-SQL (T-SQL) stored procedures should be treated
just like reusable application code. You should follow these
suggested guidelines to ensure that your stored procedures
are solid and robust:

. Check all parameters for valid values and return an
error message if a problem exists.

. Be sure that the parameter data types match the
column data types they are compared against to avoid
data type mismatches and poor query optimization.

ptg

1734 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

. Check the @@error system function after each SQL statement, especially insert,
update, and delete, to verify that the statements executed successfully. Return a
status code other than 0 if a failure occurs.

. Be sure to comment your code so that when you or others have to maintain it, the
code is self-documenting.

. Consider using a source code management system, such as Microsoft Visual Studio
SourceSafe, CVS, or Subversion, to maintain versions of your stored procedure
source code.

You should avoid using select * in your stored procedure queries. If someone were to
add columns to or remove columns from a table, the stored procedure would generate a
different result set, which could cause errors with the applications.

Whenever using INSERT statements in stored procedures, you should always provide the
column list associated with the values being inserted. This allows the procedure to
continue to work if the table is ever rebuilt with a different column order or additional
columns are added to the table. Listing 44.1 demonstrates what happens if the column list
is not provided and a column is added to the referenced table.

LISTING 44.1 Lack of Column List in INSERT Statement Causing Procedure to Fail

use bigpubs2008

go

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’insert_publishers’)

DROP PROCEDURE dbo.insert_publishers

GO

create proc insert_publishers @pub_id char(4),

@pub_name varchar(40),

@city varchar(20),

@state char(2),

@country varchar(30)

as

INSERT INTO bigpubs2008.dbo.publishers

VALUES(@pub_id, @pub_name, @city, @state, @country)

if @@error = 0

print ‘New Publisher added’

go

exec insert_publishers ‘9950’, ‘Sams Publishing’, ‘Indianapolis’, ‘IN’, ‘USA’

go

New Publisher added

ptg

1735T-SQL Stored Procedure Coding Guidelines
4

4

alter table publishers add street varchar(80) null

go

exec insert_publishers ‘9951’, ‘Pearson Education’, ‘Indianapolis’, ‘IN’, ‘USA’

go

Msg 213, Level 16, State 1, Procedure insert_publishers, Line 7

Insert Error: Column name or number of supplied values does not match table

definition.

A stored procedure cannot directly create schemas, views, triggers, defaults, rules, aggre-
gates, functions, or stored procedures. You can, however, execute dynamic SQL that
creates the object:

CREATE PROC create_other_proc AS

EXEC (‘CREATE PROC get_au_lname AS

SELECT au_lname from authors

RETURN’)

TIP

If you are using dynamic SQL to create objects in stored procedures, be sure to qualify
each object with the name of the object schema if users other than the stored proce-
dure owner will be executing the stored procedure.

You can create tables in stored procedures. Generally, only temporary tables are created in
stored procedures. Temporary tables created in stored procedures are dropped automati-
cally when the procedure terminates. Global temporary tables, however, exist until the
connection that created them terminates.

If you don’t qualify object names within a stored procedure, they default to the schema of
the stored procedure. It is recommended that objects in stored procedures be qualified
with the appropriate schema name to avoid confusion.

You cannot drop a table and re-create another table with the same name within the proce-
dure unless you use dynamic SQL to execute a string that creates the table.

A stored procedure cannot issue the USE statement to change the database context in
which it is running; the database context for execution is limited to a single database. If
you need to reference an object in another database, you should qualify the object name
with the database name in your procedure code.

Calling Stored Procedures from Transactions

Stored procedures can be called from within a transaction, and they can also initiate
transactions. SQL Server notes the transaction nesting level, which is available from the
@@trancount function, before calling a stored procedure. If the value of @@trancount

ptg

1736 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

when the procedure returns is different from the value of @@trancount when it was
executed, SQL Server displays error message 266: Transaction count after EXECUTE

indicates that a COMMIT or ROLLBACK TRAN is missing. This message indicates that
transaction nesting is out of balance. Because a stored procedure does not abort the batch
on a rollback transaction statement, a rollback transaction statement inside the
procedure could result in a loss of data integrity if subsequent statements are executed
and committed.

A rollback transaction statement rolls back all statements to the outermost transaction,
including any work performed inside nested stored procedures that have not been fully
committed. A commit tran within the stored procedure decreases the value of
@@trancount by only one. Because the transaction is not fully committed until
@@trancount returns to zero, the work can be completely rolled back at any time prior to
that. Essentially, the nested transaction inside the stored procedure is largely ignored. The
modifications within the procedure are committed or rolled back based on the final action
taken for the outermost transaction.

To avoid transaction nesting issues, you need to develop a consistent error-handling strat-
egy for failed transactions or other errors that occur in transactions within your stored
procedures and implement that strategy consistently across all procedures and applica-
tions. Within stored procedures that might be nested, you need to check whether the
procedure is already being called from within a transaction before issuing another begin
tran statement. If a transaction is already active, you can issue a save tran statement so
that the procedure can roll back only the work that it has performed and allow the calling
procedure that initiated the transaction to determine whether to continue or abort the
overall transaction.

To maintain transaction integrity when calling procedures that involve transactions,
follow these guidelines:

. Make no net change to @@trancount within your stored procedures.

. Issue a begin tran only if no transaction is already active.

. Set a savepoint if a transaction is already active so that a partial rollback can be
performed within the stored procedure.

. Implement appropriate error handling and return an error status code if something
goes wrong and a rollback occurs.

. Issue a commit tran only if the stored procedure issued the begin tran statement.

Listing 44.2 provides a template for a stored procedure that can ensure transactional
integrity whether it is run as part of an ongoing transaction or independently.

LISTING 44.2 Template Code for a Stored Procedure That Can Run as Part of a Transaction or
Run as Its Own Transaction

/* proc to demonstrate no net change to @@trancount

** but rolls back changes within the proc

** VERY IMPORTANT: return an error code

ptg

1737T-SQL Stored Procedure Coding Guidelines
4

4

** to tell the calling procedure rollback occurred */

create proc ptran1

as

declare @trncnt int

select @trncnt = @@trancount — save @@trancount value

if @trncnt = 0 — transaction has not begun

begin tran ptran1 — begin tran increments nest level to 1

else — already in a transaction

save tran ptran1 — save tran doesn’t increment nest level

/* do some processing */

if (@@error != 0) — check for error condition

begin

rollback tran ptran1 — rollback to savepoint, or begin tran

return 25 — return error code indicating rollback

end

/* more processing if required */

if @trncnt = 0 — this proc issued begin tran

commit tran ptran1 — commit tran, decrement @@trancount to 0

— commit not required with save tran

return 0 /* successful return */

Listing 44.3 provides a template for the calling batch that might execute the stored proce-
dure shown in Listing 44.2. The main problem you need to solve is handling return codes
properly and responding with the correct transaction handling.

LISTING 44.3 Template Code for a Calling Batch or Stored Procedure That Might Execute a
Stored Procedure Built with the Template in Listing 44.2

/* Retrieve status code to determine if proc was successful */

declare @status_val int, @trncnt int

select @trncnt = @@trancount — save @@trancount value

if @trncnt = 0 — transaction has not begun

begin tran t1 — begin tran increments nest level to 1

ptg

1738 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

else — otherwise, already in a transaction

save tran t1 — save tran doesn’t increment nest level

/* do some processing if required */

if (@@error != 0) — or other error condition

begin

rollback tran t1 — rollback to savepoint,or begin tran

return — and exit batch/procedure

end

execute @status_val = ptran1 —exec procedure, begin nesting

if @status_val = 25 — if proc performed rollback

begin — determine whether to rollback or continue

rollback tran t1

return

end

/* more processing if required */

if @trncnt = 0 — this proc/batch issued begin tran

commit tran t1 — commit tran, decrement @@trancount to 0

return — commit not required with save tran

Handling Errors in Stored Procedures

SQL Server 2008 provides the TRY...CATCH construct, which you can use within your T-
SQL stored procedures to provide a more graceful mechanism for exception handling than
was available in previous versions of SQL Server by checking @@ERROR (and often the use of
GOTO statements) after each SQL statement.

A TRY...CATCH construct consists of two parts: a TRY block and a CATCH block. When an
error condition is detected in a T-SQL statement inside a TRY block, control is immediately
passed to a CATCH block, where the error is processed. T-SQL statements in the TRY block
that follow the statement that generated the error are not executed.

If an error occurs and processing is passed to the CATCH block, after the statements in the
CATCH block are executed, control is then transferred to the first T-SQL statement that
follows the END CATCH statement. If there are no errors inside the TRY block, control is
passed to the statement immediately after the associated END CATCH statement, essentially
skipping over the statements in the CATCH block.

A TRY is initiated with the BEGIN TRY statement and ended with the END TRY statement
and can consist of one or more T-SQL statements between the BEGIN TRY and END TRY

statements. The TRY block must be followed immediately by a CATCH block. A CATCH block

ptg

1739T-SQL Stored Procedure Coding Guidelines
4

4

is indicated with the BEGIN CATCH statement and ended with the END CATCH statement and
can consist of one or more SQL statements. In SQL Server, each TRY block can be associ-
ated with only one CATCH block.

The syntax of the TRY...CATCH construct is as follows:

BEGIN TRY

one_or_more_sql_statements

END TRY

BEGIN CATCH

one_or_more_sql_statements

END CATCH

When in a CATCH block, you can use the following error functions to capture information
about the error that invoked the CATCH block:

. ERROR_NUMBER()—Returns the error number

. ERROR_MESSAGE()—Returns the complete text of the error message

. ERROR_SEVERITY()—Returns the error severity

. ERROR_STATE()—Returns the error state number

. ERROR_LINE()—Returns the line number inside the procedure that caused the error

. ERROR_PROCEDURE()—Returns the name of the stored procedure or trigger where the
error occurred

Unlike @@error, which is reset by each statement that is executed, the error information
retrieved by the error functions remains constant anywhere within the scope of the CATCH
block of a TRY...CATCH construct. Error functions can also be referenced inside a stored
procedure and can be used to retrieve error information when the stored procedure is
executed within a CATCH block. This allows you to modularize the error handling into a
single procedure so you do not have to repeat the error-handling code in every CATCH
block. Listing 44.4 shows an example of an error-handling procedure that you can use in
your CATCH blocks.

LISTING 44.4 An Example of a Standard Error-Handling Procedure

create proc dbo.error_handler

as

begin

Declare @errnum int,

@severity int,

@errstate int,

@proc nvarchar(126),

@line int,

@message nvarchar(4000)

-- capture the error information that caused the CATCH block to be invoked

ptg

1740 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

SELECT @errnum = ERROR_NUMBER(),

@severity = ERROR_SEVERITY(),

@errstate = ERROR_STATE(),

@proc = ERROR_PROCEDURE(),

@line = ERROR_LINE(),

@message = ERROR_MESSAGE()

-- raise an error message with information on the error

RAISERROR (‘Failed to add new publisher for the following reason:

Error: %d, Severity: %d, State: %d, in proc %s at line %d, Message: “%s”’,

16, 1, @errnum, @severity, @errstate, @proc, @line, @message)

Return

end

Listing 44.5 provides an example of the TRY...CATCH construct in a stored procedure,
modifying the insert_publishers procedure created in Listing 44.1. Note that this CATCH
block uses the dbo.error_handler procedure defined in Listing 44.4.

LISTING 44.5 Using a TRY...CATCH Construct for Error Handling in a Stored Procedure

use bigpubs2008

go

alter proc insert_publishers @pub_id char(4),

@pub_name varchar(40),

@city varchar(20),

@state char(2),

@country varchar(30)

as

BEGIN TRY

INSERT INTO bigpubs2008.dbo.publishers

(pub_id, pub_name, city, state, country)

VALUES(@pub_id, @pub_name, @city, @state, @country)

-- if no error occurs, we should see this print statement

print ‘New Publisher added’

END TRY

BEGIN CATCH

-- invoke the error_handler procedure

exec error_handler

-- return a non-zero status code

RETURN -101

END CATCH

-- if successful execution, return 0

RETURN 0

go

exec insert_publishers ‘9951’, ‘Pearson Education’, ‘Indianapolis’, ‘IN’, ‘USA’

ptg

1741T-SQL Stored Procedure Coding Guidelines
4

4

exec insert_publishers ‘9950’, ‘Sams Publishing’, ‘Indianapolis’, ‘IN’, ‘USA’

go

New Publisher added

Msg 50000, Level 16, State 1, Procedure insert_publishers, Line 18

Failed to add new publisher for the following reason:

Error: 2627, Severity: 14, State: 1, in proc insert_publishers at line 8,

Message: “Violation of PRIMARY KEY constraint ‘UPKCL_pubind’. Cannot insert

duplicate key in object ‘dbo.publishers’.”

If you want to capture and handle any errors that may occur within a CATCH block, you
can incorporate another TRY...CATCH block within the CATCH block itself.

Also note that some errors with severity 20 or higher that cause SQL Server to close the
user connection cannot be handled by the TRY...CATCH construct. However, severity level
20 or higher errors that do not result in the connection being closed are captured and
handled by the CATCH block. Any errors with a severity level of 10 or less are considered
warnings or informational messages and not really errors and thus are not handled by the
TRY...CATCH construct. Also, any compile errors (such as syntax errors) or object name
resolution errors that happen during deferred name resolution also do not invoke a CATCH

block. These errors are returned to the application or batch that called the error-generat-
ing routine.

Using Source Code Control with Stored Procedures

When you can, it’s generally a good idea to use source code control for your stored proce-
dure scripts. Stored procedures are as much a part of an application as the application
code itself and should be treated as such. When using source code control, you can link
versions of your procedures and other object creation scripts with specific versions of
your applications. Using source code control systems also provides a great way to keep
track of the changes to your stored procedures and other object creation scripts, enabling
you to go back to a previous version if the modifications lead to problems with the appli-
cations or data.

SQL Server Management Studio (SSMS) provides a feature similar to Visual Studio that lets
you organize your SQL scripts into solutions and projects. A project is a collection of one or
more script files stored in the Windows file system, usually in a folder with the same
name as the project. A solution is a collection of one or more projects.

In addition to providing a way to manage and organize your scripts, SSMS can also inte-
grate with source code control software if the source code control system provides a
compatible plug-in. If you are using Visual Studio, it’s likely that you are also using Visual
SourceSafe. Visual SourceSafe provides a one-to-one mapping between SSMS projects and
Visual SourceSafe projects. After you create an SSMS solution, you can check the entire
SSMS solution into Visual SourceSafe and then check out individual script files or projects.

ptg

1742 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

FIGURE 44.1 Creating a new project/solution and adding it to source control.

You can also specify that a solution be added to source code control when you create a
new solution. In SSMS, you select File, New and then select New Project. In the New
Project dialog, you can specify the name for the project and solution, and you can also
specify whether to add the solution to source code control, as shown in Figure 44.1.

When you add a solution to Visual SourceSafe, it prompts you for the login ID and pass-
word to use to access Visual SourceSafe. After you provide that information, Visual
SourceSafe then prompts you for the Visual SourceSafe project to add the SMSS project to,
or it allows you to create a new project in Visual SourceSafe.

Within a project, you can specify the database connection(s) for the project and add SQL
script files to the Queries folder. After creating a new script file, you can add it into the
source code control system by right-clicking the script file in the Solutions Explorer and
selecting Check In (see Figure 44.2).

After you check in a script file, you can right-click the file and perform source code
control tasks such as checking out the script for editing, getting the current version,
comparing versions, and viewing the check-in history. If you check out the script for
editing, you can then open it in a new query window, where you can make changes to the
script and then execute it in the database. When you are satisfied with the changes, you
can check the new version back into the source code control system.

For more information on working with solutions and projects in SSMS, see Chapter 4,
“SQL Server Management Studio.”

ptg

1743Using Cursors in Stored Procedures
4

4

FIGURE 44.2 Checking in a new script file.

Using Cursors in Stored Procedures
When using cursors in stored procedures in SQL Server, you need to be aware of the
scope of the cursor and how it can be accessed within calling or called procedures.
Cursors in SQL Server can be declared as local or global. A global cursor defined in a
stored procedure is available until it is deallocated or when the connection closes. A local
cursor goes out of scope when the stored procedure that declared it terminates or the
procedure scope changes.

If neither the GLOBAL nor LOCAL option is specified when the cursor is declared in a stored
procedure, the default cursor type is determined by the database option CURSOR_DEFAULT,
which you set with the ALTER DATABASE statement. The default value for the option
is_local_cursor_default is FALSE, which defaults cursors as global, to match the behav-
ior of earlier versions of SQL Server. If this value in the sys.databases catalog view is set
to TRUE, T-SQL cursors default to local cursors.

TIP

If neither GLOBAL nor LOCAL is specified, the default scope setting for cursors in SQL
Server 2008 is determined by the Default to Local Cursor database option. This option
currently defaults to OFF to provide backward compatibility with versions of SQL Server
prior to 7.0, in which all cursors were global. This default setting might change in
future versions, so it is recommended that you explicitly specify the LOCAL or GLOBAL
option when declaring your cursors so your code will not be affected by changes to the
default setting.

ptg

1744 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

If stored procedures are nested, they can access cursors declared in higher-level stored
procedures in the call tree, but only if the cursors are declared as global. If the cursor is
declared as local, it can be referenced only within the scope of the stored procedure in
which it is declared. It cannot be accessed from a called or calling procedure. If the cursor
is declared as global, it can be accessed within the declaring procedure, in a called proce-
dure, or even from outside the declaring procedure if the cursor is not deallocated before
the procedure returns.

In the following example, procedure p1 creates a cursor defined as global that can then be
accessed by procedure p2:

if object_id(‘p1’) is not null

drop proc p1

go

if object_id(‘p2’) is not null

drop proc p2

go

create proc p2

as

set nocount on

-- fetch from global cursor defined in calling proc p1

fetch c1

return

go

create proc p1

as

set nocount on

-- Declare global cursor

declare c1 cursor global for

select title_id, type from titles

open c1

fetch c1

exec p2

close c1

deallocate c1

go

exec p1

go

title_id type

-------- ------------

BI0194 biography

ptg

1745Using Cursors in Stored Procedures
4

4

title_id type

-------- ------------

BI1408 biography

As you can see in the preceding example, the cursor c1 is defined as global in procedure
p1 and can be accessed from within procedure p2.

TIP

To clean up the output when using cursors within stored procedures, specify the set
nocount on option within the stored procedure to disable the n rows(s) affected

that would normally be displayed after each invocation of the fetch statement.

Now, look what happens if you modify procedure p1 to declare the cursor as local:

alter proc p1

as

set nocount on

-- Declare local cursor

declare c1 cursor local for

select title_id, type from titles

open c1

fetch c1

exec p2

close c1

deallocate c1

go

exec p1

go

title_id type

-------- ------------

BI0194 biography

Msg 16916, Level 16, State 1, Procedure p2, Line 5

A cursor with the name ‘c1’ does not exist.

Notice in this example that the cursor c1 is not available to the procedure p2. The reason
is that the cursor is defined as local and is accessible only within the scope of procedure
p1. Because the cursor is localized to the scope of p1, you are able to define a cursor with
the same name within the scope of procedure p2:

alter proc p2

as

set nocount on

ptg

1746 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

-- Declare another local cursor with same name ‘c1’

declare c1 cursor local for

select au_id, au_lname from authors

open c1

fetch c1

close c1

deallocate c1

return

go

exec p1

go

title_id type

-------- ------------

BI0194 biography

au_id au_lname

----------- --

047-43-0360 Michener

Notice that when you define the scope of both cursors as local, each procedure can create
a cursor with the same name without any conflict between them. You can take advantage
of this feature if you have a recursive stored procedure that uses a cursor, as demonstrated
in the “Recursive Stored Procedures” section, later in this chapter.

In addition to a global cursor defined in a calling procedure being available within a called
procedure, the reverse is possible as well. A global cursor defined in a called procedure is
available to the calling procedure as demonstrated in the following example:

alter proc p2

as

set nocount on

-- declare global cursor c2

declare c2 cursor global for

select au_id, au_lname from authors

open c2

--do not close/deallocate cursor so it can be used by calling proc p1

return

go

alter proc p1

as

set nocount on

declare c1 cursor local for

select title_id, type from titles

open c1

fetch c1

exec p2

ptg

1747Using Cursors in Stored Procedures
4

4

-- fetch from global cursor declared in proc p2

fetch c2

close c1

deallocate c1

close c2

deallocate c2

return

go

exec p1

go

title_id type

-------- ----------

BI0194 biography

au_id au_lname

----------- --

047-43-0360 Michener

As you can see in the preceding example, the global cursor defined in the called procedure
p2 is available for use by the calling procedure p1 as long as the cursor is left open by the
called procedure p2.

NOTE

Remember that global cursors persist beyond the scope of the procedure in which they
are defined. If you are going to declare global cursors in called procedures to be
accessed by the calling procedure, be sure the calling procedure closes and deallo-
cates the cursor declared in the called procedure before it returns. Otherwise, the
cursor will remain open and defined until the end of the user session. The following
example demonstrates this behavior:

alter proc p1

as

set nocount on

declare c1 cursor local for

select title_id, type from titles

open c1

fetch c1

exec p2

-- fetch from global cursor declared in proc p2

fetch c2

close c1

deallocate c1

ptg

1748 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

-- Cursor c2 is not closed/deallocated before return

return

go

exec p1

go

--Cursor c2 should still be open here so the following fetch will work

fetch c2

go

title_id type

-------- ----------

BI0194 biography

au_id au_lname

----------- --

047-43-0360 Michener

au_id au_lname

----------- --

052-04-3539 Gray

Using CURSOR Variables in Stored Procedures

Another method available in SQL Server 2008 for passing cursor result sets between stored
procedures is using the cursor data type. The cursor data type can be used to bind a cursor
result set to a local variable, and that variable can then be used to manage and access the
cursor result set. Cursor variables can be referenced in any of the cursor management
statements: OPEN, FETCH, CLOSE, and DEALLOCATE.

A stored procedure can pass cursor variables as output parameters only; cursor variables
cannot be passed as input parameters. When defining a CURSOR output parameter, you
must also specify the VARYING keyword.

When assigning a cursor to a cursor variable, you must use the SET command because an
assignment select is not allowed. Cursor data types can either be the source or the target
in a SET statement.

The following stored procedure declares a cursor, opens it, and passes it back as an output
parameter using the cursor data type:

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

ptg

1749Using Cursors in Stored Procedures
4

4

AND name = N’cursor_proc’)

DROP PROCEDURE dbo.cursor_proc

GO

create proc cursor_proc @cursor CURSOR VARYING OUTPUT

as

declare curs1 cursor global for

select cast(title as varchar(30)) as title , pubdate from titles

set @cursor = curs1

open curs1

return

A cursor variable and the declared cursor name can be used interchangeably in cursor
commands. You can use either the variable name or declared name to open, fetch, close,
and deallocate the cursor. Fetching using either the cursor name or cursor variable fetches
the next row in the cursor result set. Listing 44.6 illustrates how each fetch gets the next
row in the result set.

LISTING 44.6 Fetching Cursor Rows by Using the Declared Cursor Name and a Cursor
Variable

set nocount on

declare @curs CURSOR

exec cursor_proc @cursor = @curs output

fetch curs1

fetch @curs

fetch curs1

fetch @curs

go

title pubdate

Samuel Johnson 2008-09-19 00:00:00.000

title pubdate

Freud, Dora, and Vienna 1900 2008-02-25 00:00:00.000

title pubdate

Freud: A Life for Our Time 2008-06-21 00:00:00.000

title pubdate

For Love of the World 2006-01-06 00:00:00.000

ptg

1750 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

One of the problems with a cursor declared as a global cursor in the procedure is that you
cannot invoke the procedure again within the same session unless the cursor is closed and
deallocated. This can be a problem if you need to get the cursor into a cursor variable
again. If you try to invoke the procedure again, and the cursor hasn’t been closed or deal-
located, you get error messages, as shown in the following example:

set nocount on

declare @curs CURSOR

exec cursor_proc @cursor = @curs output

go

Msg 16915, Level 16, State 1, Procedure cursor_proc, Line 4

A cursor with the name ‘curs1’ already exists.

Msg 16905, Level 16, State 1, Procedure cursor_proc, Line 6

The cursor is already open.

close curs1

deallocate curs1

go

One way to work around this issue is to use the CURSOR_STATUS function in the procedure
to check whether the cursor exists yet before declaring it and also to check whether the
cursor is already open before opening it. Thus, the stored procedure declares the cursor
only if it doesn’t exist and opens the cursor only if it’s closed, but the stored procedure
always returns the cursor in the cursor output parameter. Keeping this in mind, take a
look at a revised version of the cursor_proc stored procedure:

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’cursor_proc’)

DROP PROCEDURE dbo.cursor_proc

GO

go

create proc cursor_proc @cursor CURSOR VARYING OUTPUT

as

if CURSOR_STATUS(‘global’, ‘curs1’) = -3 -- cursor does not exist

declare curs1 cursor global for

select cast(title as varchar(30)) as title , pubdate from titles

if CURSOR_STATUS(‘global’, ‘curs1’) = -1 -- cursor is not open

open curs1

set @cursor = curs1

return

When the procedure is written this way, you can now safely call the procedure at any
time, even if the cursor is already open. If the cursor is open, it simply stores the cursor
pointer into the cursor variable.

ptg

1751Using Cursors in Stored Procedures
4

4

If you want to close the cursor, you can do so by using either the cursor variable or
declared cursor name. When it is closed, however, you cannot fetch more rows from the
cursor or cursor variable until it is reopened:

set nocount on

declare @curs CURSOR

exec cursor_proc @cursor = @curs output

fetch curs1

fetch @curs

-- close the cursor

close curs1

-- try to fetch from the cursor variable

fetch @curs

go

title pubdate

Samuel Johnson 2008-09-19 00:00:00.000

title pubdate

Freud, Dora, and Vienna 1900 2008-02-25 00:00:00.000

Msg 16917, Level 16, State 2, Line 7

Cursor is not open.

However, if the cursor has been assigned to a cursor variable, it cannot be fully deallocated
until the last remaining reference to the cursor issues the DEALLOCATE command. Until all
references to the cursor issue the DEALLOCATE command, the cursor can be reopened, but
only by using the remaining cursor reference(s) that hasn’t issued the DEALLOCATE
command. An example of this behavior is shown in Listing 44.7. If the cursor has not
been closed, only the last deallocation of the cursor closes it.

LISTING 44.7 Deallocating a Cursor by Cursor Name and Cursor Variable

declare @curs CURSOR

exec cursor_proc @cursor = @curs output

print ‘FETCH VIA NAME:’

fetch curs1

print ‘FETCH VIA VARIABLE:’

fetch @curs

print ‘CLOSE BY NAME’

close curs1

print ‘DEALLOCATE BY NAME’

ptg

1752 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

deallocate curs1

print ‘ATTEMPT FETCH VIA VARIABLE (CURSOR SHOULD BE CLOSED):’

fetch @curs

print ‘ATTEMPT TO OPEN VIA VARIABLE (CURSOR SHOULD OPEN, NOT DEALLOCATED YET)’

open @curs

print ‘ATTEMPT FETCH VIA VARIABLE (SHOULD START FROM BEGINNING AGAIN):’

fetch @curs

print ‘CLOSE AND DEALLOCATE VIA VARIABLE’

close @curs

deallocate @curs

print ‘ATTEMPT TO OPEN VIA VARIABLE (SHOULD FAIL, SINCE NOW FULLY DEALLOCATED):’

open @curs

go

FETCH VIA NAME:

TITLE PUBDATE

SAMUEL JOHNSON 2008-09-19 00:00:00.000

FETCH VIA VARIABLE:

TITLE PUBDATE

FREUD, DORA, AND VIENNA 1900 2008-02-25 00:00:00.000

CLOSE BY NAME

DEALLOCATE BY NAME

ATTEMPT FETCH VIA VARIABLE (CURSOR SHOULD BE CLOSED):

MSG 16917, LEVEL 16, STATE 2, LINE 15

CURSOR IS NOT OPEN.

ATTEMPT TO OPEN VIA VARIABLE (CURSOR SHOULD OPEN, NOT DEALLOCATED YET)

ATTEMPT FETCH VIA VARIABLE (SHOULD START FROM BEGINNING AGAIN):

TITLE PUBDATE

SAMUEL JOHNSON 2008-09-19 00:00:00.000

CLOSE AND DEALLOCATE VIA VARIABLE

ATTEMPT TO OPEN VIA VARIABLE (SHOULD FAIL, SINCE NOW FULLY DEALLOCATED):

MSG 16950, LEVEL 16, STATE 2, LINE 27

The variable ‘@curs’ does not currently have a cursor allocated to it.

ptg

1753Nested Stored Procedures
4

4

If the cursor is declared as a local cursor within a stored procedure, it can still be passed
back in an output variable to a cursor variable, but it is accessible only through the cursor
variable, as shown in Listing 44.8.

LISTING 44.8 Assigning a Local Cursor to a Cursor Output Parameter

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’cursor_proc2’)

DROP PROCEDURE dbo.cursor_proc2

GO

create proc cursor_proc2 @cursor CURSOR varying output

as

declare curs1 cursor local for

select cast(title as varchar(30)) as title , pubdate from titles

set @cursor = curs1

open curs1

go

declare @curs CURSOR

exec cursor_proc2 @cursor = @curs output

print ‘ATTEMPT FETCH VIA NAME:’

fetch next from curs1

print ‘ATTEMPT FETCH VIA VARIABLE:’

fetch next from @curs

go

ATTEMPT FETCH VIA NAME:

Msg 16916, Level 16, State 1, Line 4

A cursor with the name ‘curs1’ does not exist.

ATTEMPT FETCH VIA VARIABLE:

title pubdate

Samuel Johnson 2008-09-19 00:00:00.000

Nested Stored Procedures
Stored procedures can call other stored procedures, and any of those procedures can call
other procedures, up to a maximum nesting level of 32 levels deep. If you exceed the 32-
level nesting limit, an error message is raised, the batch is aborted, and any open transac-
tion in the session is rolled back. The nesting level limit prevents a recursive procedure
from calling itself repeatedly in an infinite loop until a stack overflow occurs. To check the
depth to which a procedure is nested, you use the system function @@NESTLEVEL (see
Listing 44.9).

ptg

1754 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

LISTING 44.9 Checking @@NESTLEVEL in Nested Stored Procedures

create proc main_proc

as

print ‘Nesting Level in main_proc before sub_proc1 = ‘ + str(@@NESTLEVEL, 1)

exec sub_proc1

print ‘Nesting Level in main_

proc after sub_proc1 = ‘ + str(@@NESTLEVEL, 1)

exec sub_proc2

print ‘Nesting Level in main_proc after sub_proc2 = ‘ + str(@@NESTLEVEL, 1)

return

go

create proc sub_proc1

as

print ‘Nesting Level in sub_proc1 before sub_proc2 = ‘ + str(@@NESTLEVEL, 1)

exec sub_proc2

print ‘Nesting Level in sub_proc1 after sub_proc2 = ‘ + str(@@NESTLEVEL, 1)

return

go

create proc sub_proc2

as

print ‘Nesting Level in sub_proc2 = ‘ + str(@@NESTLEVEL, 1)

return

go

print ‘Nesting Level before main_proc = ‘ + str(@@NESTLEVEL, 1)

exec main_proc

print ‘Nesting Level after main_proc = ‘ + str(@@NESTLEVEL, 1)

go

The module ‘main_proc’ depends on the missing object ‘sub_proc1’. The module

will still be created; however, it cannot run successfully until the object

exists.

The module ‘main_proc’ depends on the missing object ‘sub_proc2’. The module

will still be created; however, it cannot run successfully until the object

exists.

The module ‘sub_proc1’ depends on the missing object ‘sub_proc2’. The module

will still be created; however, it cannot run successfully until the object

exists.

Nesting Level before main_proc = 0

Nesting Level in main_proc before sub_proc1 = 1

Nesting Level in sub_proc1 before sub_proc2 = 2

Nesting Level in sub_proc2 = 3

Nesting Level in sub_proc1 after sub_proc2 = 2

ptg

1755Nested Stored Procedures
4

4

Nesting Level in main_proc after sub_proc1 = 1

Nesting Level in sub_proc2 = 2

Nesting Level in main_proc after sub_proc2 = 1

Nesting Level after main_proc = 0

Although a limit exists for the number of levels to which procedures can be nested, the
number of stored procedures that can be called from within a single procedure is limitless.
The main-level procedure can call potentially hundreds of other procedures. As long as the
other procedures never invoke another procedure, the nesting level never exceeds two.

Any stored procedure that is called from within another procedure should return a status
code if an error condition occurs. Depending on the severity of the error, failure within a
nested procedure does not always cause the calling procedure or batch to be aborted.
Checking the error condition from a nested procedure allows you to conditionally deter-
mine whether to continue processing.

Recursive Stored Procedures

A stored procedure can call itself up to the maximum nesting level of 32. This is referred
to as recursion. When might you want a stored procedure to be recursive? One common
example is when you need to expand a tree relationship. Although a common table
expression (CTE) can be used to recursively expand a tree relationship, internally it builds
the entire tree before applying any filters to display the tree, starting at a specific level. It
is also somewhat limited in how the tree is displayed (see Listing 44.10).

LISTING 44.10 Using a Common Table Expression to Expand a Tree Relationship

WITH PartsTree (PartID, PartName, parentPartID, Level)

AS

(

-- Anchor member definition

SELECT PartID, PartName, ParentPartID,

0 AS Level

FROM Parts AS parent

where Parent.parentpartid is null

UNION ALL

-- Recursive member definition

SELECT child.PartID, child.PartName, child.ParentPArtID,

Level + 1

FROM Parts AS Child

INNER JOIN PartsTree AS parent

ON child.ParentPartID = parent.PArtID

)

-- Statement that executes the CTE

select * from PArtsTree

ptg

1756 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

go

PartID PartName parentPartID Level

----------- ------------------------------ ------------ -----------

22 Car NULL 0

1 DriveTrain 22 1

23 Body 22 1

24 Frame 22 1

2 Engine 1 2

3 Transmission 1 2

4 Axle 1 2

12 Drive Shaft 1 2

9 Flywheel 3 3

10 Clutch 3 3

16 Gear Box 3 3

15 Reverse Gear 16 4

17 First Gear 16 4

18 Second Gear 16 4

19 Third Gear 16 4

20 Fourth Gear 16 4

5 Radiator 2 3

6 Intake Manifold 2 3

7 Exhaust Manifold 2 3

8 Carburetor 2 3

13 Piston 2 3

14 Crankshaft 2 3

21 Piston Rings 13 4

11 Float Valve 8 4

A recursive procedure can provide a somewhat more elegant solution to expanding a tree
relationship from any level in the tree. This solution also provides more control over
formatting of the output. For example, the procedure in Listing 44.11 formats the output
so that the child parts are indented within the parent part.

LISTING 44.11 Expanding a Tree Relationship by Using a Recursive Procedure

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’SHOW_PARTS_LIST’)

DROP PROCEDURE dbo.SHOW_PARTS_LIST

GO

CREATE PROC SHOW_PARTS_LIST @partid varchar(50)

as

set nocount on

ptg

1757Nested Stored Procedures
4

4

declare @treelevel int,

@partname varchar(50),

@childpartid int,

@parentpartid int

select @treelevel = @@NESTLEVEL -- keep track of nesting level for indenting

if @@nestlevel = 1 -- this is the top of the tree

begin

select @partname = PArtName from Parts where Partid = @partid

print ‘Expanded parts list for ‘ + @partname

end

if @@NESTLEVEL < 32 -- Make sure we don’t exceed the maximum nesting level

begin

-- set up cursor to find all child parts for the current part

declare c1 cursor local for

select PartId, PartName from Parts

where parentpartid = @partid

open c1

fetch c1 into @childpartid, @partname

while @@fetch_Status = 0

begin

-- use the current tree level to set the indenting when

-- we print out this record

print replicate(‘-’, @treelevel * 3) + ‘> ‘

+ @partname + ‘, Part Number: ‘ + ltrim(str(@childpartid))

-- Now, call the procedure again to find all the child parts

-- for the current part

exec show_parts_list @childpartid

fetch c1 into @childpartid, @partname

end

close c1

deallocate c1

end

else

begin

-- We are at maximum nesting level, print out message to indicate this

print ‘Nesting level at 32. Cannot expand tree further.’

end

return

go

-- show the whole parts tree

declare @car_partid int

select @car_partid = partid from Parts where PartName = ‘Car’

exec show_parts_list @partid = @car_partid

ptg

1758 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

go

Expanded parts list for Car

---> DriveTrain, Part Number: 1

------> Engine, Part Number: 2

---------> Radiator, Part Number: 5

---------> Intake Manifold, Part Number: 6

---------> Exhaust Manifold, Part Number: 7

---------> Carburetor, Part Number: 8

------------> Float Valve, Part Number: 11

---------> Piston, Part Number: 13

------------> Piston Rings, Part Number: 21

---------> Crankshaft, Part Number: 14

------> Transmission, Part Number: 3

---------> Flywheel, Part Number: 9

---------> Clutch, Part Number: 10

---------> Gear Box, Part Number: 16

------------> Reverse Gear, Part Number: 15

------------> First Gear, Part Number: 17

------------> Second Gear, Part Number: 18

------------> Third Gear, Part Number: 19

------------> Fourth Gear, Part Number: 20

------> Axle, Part Number: 4

------> Drive Shaft, Part Number: 12

---> Body, Part Number: 23

---> Frame, Part Number: 24

-- show the parts tree for ‘Engine’

declare @car_partid int

select @car_partid = partid from Parts where PartName = ‘Engine’

exec show_parts_list @partid = @car_partid

go

Expanded parts list for Engine

---> Radiator, Part Number: 5

---> Intake Manifold, Part Number: 6

---> Exhaust Manifold, Part Number: 7

---> Carburetor, Part Number: 8

------> Float Valve, Part Number: 11

---> Piston, Part Number: 13

------> Piston Rings, Part Number: 21

---> Crankshaft, Part Number: 14

ptg

1759Using Temporary Tables in Stored Procedures
4

4

Using Temporary Tables in Stored Procedures
Temporary tables are commonly used in stored procedures when intermediate results need
to be stored in a work table for additional processing. Local temporary tables created in a
stored procedure are automatically dropped when the stored procedure exits. Global
temporary tables created in a stored procedure still exist after the stored procedure exits
until they are explicitly dropped (see Listing 44.12) or the user session in which they were
created disconnects from SQL Server.

LISTING 44.12 Using Local and Global Temporary Tables in Stored Procedures

set nocount on

go

create proc temp_test2

as

select pub_id, pub_name, city, state

into ##temp

from publishers

where State in (‘MA’, ‘DC’, ‘CA’)

select pub_id, pub_name, city, state

into #temp

from publishers

where State in (‘MA’, ‘DC’, ‘CA’)

go

exec temp_test2

go

select * from ##temp

go

pub_id pub_name city state

------ -- -------------------- -----

0736 New Moon Books Boston MA

0877 Binnet & Hardley Washington DC

1389 Algodata Infosystems Berkeley CA

9912 Landlocked Books Boston MA

9913 Blackberry’s Cambridge MA

select * from #temp

go

Server: Msg 208, Level 16, State 0, Line 1

ptg

1760 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

Invalid object name ‘#temp’.

Note what happens if you try to run the stored procedure again:

exec temp_test2

go

Server: Msg 2714, Level 16, State 6, Procedure temp_test2, Line 3

There is already an object named ‘##temp’ in the database.

TIP

The general consensus is that there is not much need for using global temporary
tables in stored procedures. The typical reason for using temporary tables in stored
procedures is that you need a work area within the stored procedure only. You normally
wouldn’t want it sticking around after the procedure finishes. Creating a global tempo-
rary table in a stored procedure requires an explicit drop of the table before the proce-
dure exits if you no longer need it. If that’s the case, what’s the benefit of using a
global temporary table? Any subprocedures will be able to see and reference a local
temporary table created in the calling procedure, so global temporary tables are not
needed in that case.

Only if you need to create and populate a work table and have it available after the
procedure exits should you consider using a global temporary table. However, you have
to remember to explicitly drop it at some point before attempting to run the procedure
again. But if an error occurs that aborts processing of the stored procedure, the
explicit drop might not be executed.

You might want to include a check for the global temporary table in your stored proce-
dure and drop it automatically before attempting to create it again, as in the following
code snippet:

create proc myproc

as

if exists (select 1 from tempdb..sysobjects where name = ‘##global_temp’

and type = ‘U’)

drop table ##global_Temp

select * into ##global_temp from ...

Temporary Table Performance Tips

All users in SQL Server share the same tempdb database for work tables and temporary
tables, regardless of the database in which they are working. This makes tempdb a
potential performance bottleneck in any multiuser system. The primary bottleneck in
tempdb is disk I/O, but locking contention may also occur between processes on the
tempdb system catalogs.

ptg

1761Using Temporary Tables in Stored Procedures
4

4

SQL Server 2008 alleviates the disk I/O problem by logging just enough information to
allow rollback of transactions without logging all the additional information that would
be necessary to recover those transactions. The recovery information is needed only when
recovering a database at system startup or when restoring from a backup. Because tempdb
is rebuilt during SQL Server startup (and no one in his right mind would restore tempdb
from a backup), you don’t need to keep this recovery information. When you reduce the
logging in tempdb, data modification operations on tables in tempdb can be up to four
times faster than the same operations in other databases.

However, locking in tempdb is still a potential performance bottleneck. If you create a table
in tempdb within a transaction, locks are held on rows in the system catalogs. These locks
being held on the system catalogs could lead to locking contention with other processes
trying to read or update the tempdb system catalogs.

To minimize the potential for locking contention on the system tables in tempdb, you
should consider creating your temporary tables before starting a transaction so that locks
are released immediately and not held on the system catalogs until the end of the transac-
tion. If the table must be created in a transaction, you should commit your transaction as
soon as possible.

Also, you need to be aware that even if it’s not in a transaction, creating a temporary table
by using SELECT INTO holds locks on the system catalogs in tempdb until the SELECT INTO
completes. If locking contention in tempdb becomes a problem, you should consider
replacing SELECT INTO with CREATE TABLE, followed by an INSERT using a SELECT state-
ment. Although this statement might run a bit more slowly than SELECT INTO, the system
table locks are held only for the brief moment it takes for CREATE TABLE to complete.

Another way to speed up temporary table creation/population is to keep temporary tables
as small as possible so that they are created and populated more quickly. You should select
only the required columns, rather than use SELECT *, and you should retrieve only the
rows from the base table that you actually need to reference. The smaller the temporary
table, the faster it is to create the table; smaller temporary tables also help speed up
queries against the temporary table.

If a temporary table is of sufficient size and is going to be accessed multiple times within
a stored procedure, it might be cost effective to create an index on it on the column(s)
that will be referenced in the search arguments of queries against the temporary table. If
the time it takes to create the index plus the time the queries take to run using the index
is less than the sum total of the time it takes the queries against the temporary table to
run without the index, you probably want to consider creating an index on the
temporary table.

The following example demonstrates the creation of an index on a temporary table:

use bigpubs2008

go

create proc ptemp1 WITH RECOMPILE

as

select title_id, type, pub_id, ytd_sales

ptg

1762 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

into #temp_titles

from titles

create index tmp on #temp_titles(pub_id)

select sum(ytd_sales)

from #temp_titles

where pub_id = ‘0736’

select min(ytd_sales)

from #temp_titles

where pub_id = ‘0736’

return

go

Following are some other final tips for using temporary tables in stored procedures:

. Don’t use temporary tables to combine result sets together when a UNION or UNION
ALL will suffice; internal worktables are faster due to less overhead than temporary
tables. UNION ALL is the fastest because no worktable in tempdb is required to merge
the result sets.

. Drop temporary tables as soon as possible to free up space in tempdb.

. Consider using the table data type to avoid using tempdb altogether.

Using the table Data Type

The table data type can be used to define table variables in stored procedures and else-
where in SQL code. Table variables are defined similarly to regular tables, except you
define them using a DECLARE statement, rather than using CREATE TABLE:

DECLARE @table_variable TABLE ({ column_definition | table_constraint }

[,...n])

The following simple example shows how to use a table variable in a stored procedure:

-- proc to get year-to-date sales for all books published since specified date

-- with ytd_sales greater than specified threshold

create proc tab_var_test @pubdate datetime = null,

@sales_minimum int = 0

as

declare @ytd_sales_tab TABLE (title_id char(6),

title varchar(50),

ytd_sales int)

if @pubdate is null

— if no date is specified, set date to last year

ptg

1763Using Temporary Tables in Stored Procedures
4

4

set @pubdate = dateadd(month, -12, getdate())

insert @ytd_sales_tab

select title_id, convert(varchar(50), title), ytd_sales

from titles

where pubdate > @pubdate

and ytd_sales > @sales_minimum

select * from @ytd_sales_tab

return

go

exec tab_var_test ‘6/1/2001’, 10000

go

title_id title ytd_sales

-------- -- -----------

BU2075 You Can Combat Computer Stress! 18722

MC3021 The Gourmet Microwave 22246

TC4203 Fifty Years in Buckingham Palace Kitchens 15096

You can use table variables in user-defined functions, stored procedures, and T-SQL
batches. You should consider using table variables instead of temporary tables whenever
possible because they provide the following benefits:

. Table variables are memory resident and require no space in tempdb.

. When table variables are used in stored procedures, fewer recompilations of the
stored procedures occur than when temporary tables are used.

. Transactions involving table variables last only for the duration of an update on the
table variable. Thus, table variables require fewer locking and no logging resources.

. A table variable behaves like a local variable, and its scope is limited to the stored
procedure in which it is declared. It is cleaned up automatically at the end of the
function, stored procedure, or batch in which it is defined.

A table variable can be used like a regular table in SELECT, INSERT, UPDATE, and DELETE
statements. However, a table variable is not allowed in a SELECT INTO statement like the
following:

SELECT select_list INTO table_variable ...

You need to keep a couple of other limitations in mind when considering using table vari-
ables in stored procedures. You cannot create indexes on table variables by using the
CREATE INDEX command, and no statistics are kept on table variables. You can, however,
define a primary or unique key on the table variable when it is declared to enforce unique-
ness. However, because table variables are memory resident and typically not very large in
size, the inability to define explicit indexes generally does not lead to any significant

ptg

1764 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

performance issues. In some cases, (for example, if the result set is large and accessed
repeatedly) performance may improve when you use temporary tables instead because
they support indexes and statistics.

Using Remote Stored Procedures
You can execute a stored procedure residing on another server by using a four-part
naming scheme:

EXEC server_name.db_name.owner_name.proc_name

This concept is called remote stored procedures. The name implies that the procedure called
on the other server is a special type of stored procedure, but it is not. Any stored proce-
dure can be called from another server, as long as the remote server has been configured
and the appropriate login mapping has been done. The method used to set up servers to
allow Remote Procedure Calls (RPCs) is described in Chapter 54, “Managing Linked and
Remote Servers” (on the CD).

The processing done by the remote stored procedure is, by default, not done in the local
transaction context. If the local transaction rolls back, modifications performed by the
remote stored procedure are not undone. However, you can get the remote stored proce-
dures to execute within the local transaction context by using distributed transactions, as
in the following example:

BEGIN DISTRIBUTED TRANSACTION

EXEC purge_old_customers --A local procedure

EXEC LONDON.customers.dbo.purge_old_customers -- a remote procedure

COMMIT TRANSACTION

SQL Server also automatically promotes a local transaction to a distributed transaction if
the remote proc trans option is enabled and a remote stored procedure is invoked in a
transaction. This option can be configured globally in SQL Server via sp_configure, or it
can be set explicitly at the connection level with the SET REMOTE_PROC_TRANSACTIONS
command. If the remote proc trans option is enabled, remote stored procedure calls in
local transactions are automatically protected as part of distributed transactions, without
requiring you to rewrite applications to specifically issue BEGIN DISTRIBUTED TRANSACTION
instead of BEGIN TRANSACTION.

Distributed transactions and the Microsoft Distributed Transaction Coordinator service are
also discussed in Chapter 54.

Stored Procedure Performance
Using stored procedures can provide a number of benefits to SQL Server applications. One
performance benefit is reduced network traffic because stored procedures minimize the
number of round trips between client applications and SQL Server. Stored procedures can
consist of many individual SQL statements but can be executed with a single statement.

ptg

1765Stored Procedure Performance
4

4

This allows you to reduce the number and size of calls from the client to the server. If you
have to take different actions based on data values, you can specify to have these deci-
sions made directly in the procedure, avoiding the need to send data back to the applica-
tion to determine what to do with the data values.

By default, SQL Server sends a message back to the client application after each statement
is completed within the stored procedure to indicate the number of rows affected by the
statement. To further reduce the amount of “chatter” between the client and server and to
therefore further improve stored procedure performance, you can eliminate the
DONE_IN_PROC messages that SQL Server sends to the client API by issuing the set nocount

on command at the beginning of the stored procedure. Be aware that if you turn on this
option, the number of rows affected by the commands in the procedure is not available to
the client application. If you need this information, you can still issue select @@rowcount
after a statement executes to determine the number of rows affected.

Another performance benefit of using stored procedures is potentially faster execution due
to the caching of stored procedure query plans. Stored procedure query plans are kept in
cache memory after the first execution. The code doesn’t have to be reparsed and reopti-
mized on subsequent executions.

Query Plan Caching

When a batch of SQL statements is submitted to SQL Server, SQL Server performs a
number of steps, including the following, before the data can be returned to the client:

1. Parse the SQL statements and build a query tree (the internal format on which SQL
Server operates).

2. Check for a previous cached plan for the query/procedure. If one does not exist or is
no longer valid, optimize the SQL statements and generate an execution plan.

3. Check for permissions for access to the underlying objects.

4. Execute the execution plan for the SQL statements.

The first time a stored procedure executes, SQL Server loads the SQL code for the stored
procedure from the system catalog into the plan cache and optimizes and compiles an
execution plan.

The optimization of SQL statements is based on the parameters passed, the index distribu-
tion statistics, the number of rows in each table, and other information available at the
time of the first execution. The compiled plan is then saved in cache memory. For subse-
quent executions, all SQL Server has to do is find the plan in the cache and execute it,
essentially skipping most of the work in steps 1 and 2. Parsing and compilation always
add some overhead, and depending on the complexity of the stored procedure code, they
can sometimes be as expensive as the actual execution. Just by skipping these two steps,
you can achieve a performance gain by using stored procedures.

ptg

1766 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

The SQL Server Plan Cache

SQL Server uses the same buffer area for storing data and index pages as it does for storing
query execution plans. The portion of the buffer pool used to store execution plans is
referred to as the plan cache. The percentage of the memory pool allocated to execution
plans fluctuates dynamically, depending on the state of the system. SQL Server also can
keep execution plans in cache for ad hoc queries. This means that even dynamic SQL
queries might be able to reuse a cached execution plan and skip recompilation. The cache
space is dynamically allocated as needed.

With the ability to keep query plans in memory for ad hoc queries, it is not as critical in
SQL Server 2008 for applications to use stored procedures to achieve performance benefits
of using precompiled plans. However, when and how the plans are stored and reused for
ad hoc queries is not nearly as predictable as with stored procedures. The query plans for
stored procedures remain in cache memory more persistently. In addition, you have less
explicit control over the recompilation of ad hoc queries.

TIP

You can get information about what is currently in the plan cache via the
dm_exec_cached_plans, dm_exec_plan_attributes, and dm_exec_sql_text dynamic
management views. These views return the current server state information regarding
the plan cache.

Shared Query Plans

SQL Server 2008 execution plans consist of two main components: a query plan and an
execution context. The query plan is the bulk of the execution plan. Query plans are re-
entrant, read-only data structures used by any number of users. There are at most ever
only two copies of the query plan in memory: one copy for all serial executions and
another for all parallel executions. The parallel copy covers all parallel executions, regard-
less of their degree of parallelism. When a SQL statement is executed, the Database Engine
searches the plan cache to see whether an execution plan for the same SQL statement is
already in the plan cache. If a query plan does exist, the Database Engine reuses it, saving
the overhead of recompiling the SQL statement. However, if no existing query plan is
found, SQL Server 2008 generates a new execution plan for the query and saves it into the
plan cache.

For each user currently executing a query, there is a data structure that holds information
specific to that user’s execution, such as parameter values. This data structure is referred to
as the execution context. Execution context data structures are also reusable if they are not
currently in use. When a user executes a query, SQL Server looks for an execution context
structure not being used, and it reinitializes the structure with the context for the new
user. If no free execution context structures exist, SQL Server creates a new one. Thus,
there can potentially be multiple execution context structures in the plan cache for the
same query.

ptg

1767Stored Procedure Performance
4

4

For more information on the syscacheobjects table and how query plans are cached and
managed in SQL Server, see Chapter 35, “Understanding Query Optimization” and
Chapter 36, “Query Analysis.”

Automatic Query Plan Recompilation

SQL Server attempts to reuse existing execution plans for stored procedures, but certain
operations cause the execution plans to become inefficient or invalid. In these cases, a
new execution plan needs to be recompiled on the next execution of the stored proce-
dure. The following conditions cause a plan to be invalidated:

. Whenever there is a change to the schema of a referenced table or view

. When an index for a referenced table is dropped or changed

. When the statistics used by an execution plan have been updated, either explicitly
or automatically

. When sp_recompile has been run on a table referenced by a stored procedure

. When a sufficient number of data changes have been made to a table that is refer-
enced by the stored procedure

. For tables with triggers, when the number of rows in the inserted and deleted tables
grows significantly

In addition to these reasons, other events that can cause stored procedures to recompile
new query plans include the following:

. When SQL Server activity is heavy enough to cause execution plans to be flushed
from cache memory

. When the WITH RECOMPILE option has been specified in the CREATE PROCEDURE or
EXEC command

. When shutting down and restarting SQL Server, which flushes all query plans
from memory

In SQL Server 2000 and prior versions, whenever an execution plan was invalidated, the
entire batch or stored procedure was recompiled. In SQL Server 2005 and later, only the
statement, batch, or stored procedure that caused the query plan to be invalidated has to
be recompiled. Because often only a small number of statements in batches or stored
procedures are the reason a plan becomes invalidated, statement-level recompilation
improves performance in terms of CPU time and locks by avoiding the need to have to
recompile all the other statements in the batch whose execution plans are still valid.

Monitoring Stored Procedure Recompilation
You can monitor when stored procedures or statements are automatically recompiled by
using SQL Server Profiler. The two events you want to monitor are the SP:Recompile and
SQL:StmtRecompile trace events (see Figure 44.3). In SQL Server 2008, the TextData
column of these events is filled in with information about the query that caused the

ptg

1768 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

recompile, so you do not need to also trace the SP:StmtStarting or SP:StmtCompleted
events to be able to capture the query information.

If a stored procedure or statement is automatically recompiled during execution, SQL
Server Profiler displays the SP:Recompile event and/or the SQL:StmtRecompile event. For
example, you can create the following stored procedure to create and populate a tempo-
rary table:

create proc recomp_test

as

create table #titles (title_id varchar(6), title varchar(80), pubdate datetime)

insert #titles select title_id, title, pubdate from titles

where pubdate > ’10/1/2001’

select * from #titles

go

Say you turn on SQL Server Profiler and then execute the following SQL, which executes
the procedure (which in turn results in the initial compilation), and then add an index on
pubdate to the titles table:

exec recomp_test

go

create index idx1 on titles (pubdate)

go

FIGURE 44.3 Adding events in SQL Server Profiler to monitor stored procedure recompilation.

ptg

1769Stored Procedure Performance
4

4

exec recomp_test

go

drop index titles.idx1

go

When you do this, you capture events similar to those shown in Figure 44.4.

The key columns to focus on in the Profiler trace are ObjectName, EventSubclass, and
TextData. The TextData column shows which statements were recompiled. You can see in
Figure 44.4 that on the subsequent execution, only the statement affected by the new
index on the titles table was recompiled. The EventSubclass column provides the
reason for the recompile. These reasons are summarized in Table 44.1.

FIGURE 44.4 Recompile events captured for a stored procedure in SQL Server Profiler.

TABLE 44.1 SQL Server Profiler EventSubClass Values for Recompile Events

EventSubClass Value Description

1 Schema changed.

2 Statistics changed.

3 Deferred compile.

4 SET option changed.

5 Temporary table changed.

6 Remote rowset changed.

7 FOR BROWSE permission changed.

8 Query notification environment changed.

ptg

1770 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

For more information on using SQL Server Profiler to monitor SQL Server performance,
see Chapter 6, “SQL Server Profiler.”

Forcing Recompilation of Query Plans

In some situations, a stored procedure might generate different query plans, depending on
the parameters passed in. At times, depending on the type of query and parameter values
passed in, it can be difficult to predict the best query plan for all executions. Consider the
following stored procedure:

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’advance_range’)

DROP PROCEDURE dbo.advance_range

GO

create proc advance_range

(@low money, @high money)

as

select * from dbo.titles

where advance between @low and @high

return

Assume that a nonclustered index exists on the advance column in the titles table. A
search in which advance is between 1,000 and 2,000 might be highly selective, and the
index statistics might indicate that fewer than 5% of the rows fall within that range, and
thus an index would be the best way to find the rows. If those were the values passed on
the first execution, the cached query plan would indicate that the index should be used.

Suppose, however, that if on a subsequent execution, search values of 5,000 and 10,000
were specified. These values match against 90% of the rows in the table, and if optimized
normally, SQL Server would likely use a table scan because it would have to visit almost all
rows in the table anyway. Without recompiling, however, it would use the index as speci-
fied in the cached query plan, which would be a suboptimal query plan because it would
likely be accessing more pages using the index than would a table scan.

When a lot of variance exists in the distribution of data values in a table or in the range of
values passed as parameters, you might want to force the stored procedure to recompile
and build a new execution plan during execution and not use a previously cached plan.

TABLE 44.1 SQL Server Profiler EventSubClass Values for Recompile Events

EventSubClass Value Description

9 Partitioned view changed.

10 Cursor options changed.

11 OPTION (RECOMPILE) requested.

ptg

1771Stored Procedure Performance
4

4

Although you incur the overhead of compiling a new query plan for each execution, it is
typically much less expensive than executing the wrong query plan.

You can force recompilation of the query plan for a stored procedure by specifying the
WITH RECOMPILE option when creating or executing a stored procedure. Including the WITH
RECOMPILE option in the create procedure command causes the procedure to generate a
new query plan for each execution:

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’advance_range’)

DROP PROCEDURE dbo.advance_range

GO

create proc advance_range

(@low money, @high money)

WITH RECOMPILE

as

select * from dbo.titles

where advance between @low and @high

return

If the procedure is not created with the WITH RECOMPILE option, you can generate a new
query plan for a specific execution by including the WITH RECOMPILE option in the EXEC
statement:

exec advance_range 5000, 10000 WITH RECOMPILE

Because of the performance overhead of recompiling query plans, you should try to avoid
using WITH RECOMPILE whenever possible. One approach is to create different subproce-
dures and execute the appropriate one based on the passed-in parameters. For example,
you could have a subprocedure to handle small-range retrievals that would benefit from
an index and a different subprocedure to handle large-range retrievals. The queries in each
procedure would be identical; the only difference would be in the parameter values passed
to them. This is controlled in the top-level procedure. An example of this approach is
demonstrated in Listing 44.13.

LISTING 44.13 Using Multiple Stored Procedures as an Alternative to Using
WITH RECOMPILE

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’advance_range’)

DROP PROCEDURE dbo.advance_range

GO

go

create proc get_titles_smallrange

ptg

1772 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

@low money, @high money

as

select * from titles

where advance between @low and @high

return

go

create proc get_titles_bigrange

@low money, @high money

as

select * from titles

where advance between @low and @high

return

go

create proc advance_Range

@low money, @high money

as

if @high - @low >= 1000

-- if the difference is over 5000

exec get_titles_bigrange @low, @high

else

-- execute the small range procedure

exec get_titles_smallrange @low, @high

Obviously, this solution would require substantial knowledge of the distribution of data in
the table and where the threshold is on the range of search values that results in different
query plans.

Another type of stored procedure that can sometimes generate different query plans based
on initial parameters is a multipurpose procedure, which usually performs different
actions based on conditional branching, as in the following example:

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’get_titles_data’)

DROP PROCEDURE dbo.get_titles_data

GO

create proc get_titles_data (@flag tinyint, @value money)

as

if @flag = 1

select * from titles where price = @value

else

select * from titles where advance = @value

At query compile time, the Query Optimizer doesn’t know which branch will be followed
because the if...else construct isn’t evaluated until runtime. On the first execution of

ptg

1773Stored Procedure Performance
4

4

the procedure, the Query Optimizer generates a query plan for all SELECT statements in
the stored procedure, regardless of the conditional branching, based on the parameters
passed in on the first execution. A value passed in to the parameter intended to be used
for searches against a specific table or column (in this example, price versus qty) might
not be representative of normal values to search against another table or column.

Again, a better approach would be to break the different SELECT statements into separate
subprocedures and execute the appropriate stored procedure for the type of query to be
executed, as in the following example:

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’get_titles_data’)

DROP PROCEDURE dbo.get_titles_data

GO

drop proc get_titles_data

go

create proc get_titles_data_by_price (@value money)

as

select * from titles where price = @value

go

create proc get_titles_data_by_advance (@value money)

as

select * from titles where advance = @value

go

create proc get_titles_data (@flag tinyint, @value money)

as

if @flag = 1

exec get_titles_data_by_price @value

else

exec get_titles_data_by_advance @value

Using sp_recompile

In versions of SQL Server prior to 7.0, it was necessary to use the sp_recompile system
stored procedure when you wanted to force all stored procedures that referenced a specific
table to generate a new query plan upon the next execution. This was necessary if you
had added new indexes to a table or had run UPDATE STATISTICS on the table. However,
the usefulness of this command in SQL Server 2008 is questionable because new query
plans are generated automatically whenever new indexes are created or statistics are
updated on a referenced table. It appears that sp_recompile is available primarily for back-
ward compatibility or for times when you want the recompilations to occur explicitly for
all procedures referencing a specific table.

ptg

1774 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

Using Dynamic SQL in Stored Procedures
SQL Server allows the use of the EXEC statement in stored procedures to execute dynamic
SQL statements. This capability allows you to do things such as pass in object names as
parameters and dynamically execute a query against the table name passed in, as in the
following example:

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’get_order_data’)

DROP PROCEDURE dbo.get_order_data

GO

create proc get_order_data

(@table varchar(30), @column varchar(30), @value int)

as

declare @query varchar(255)

select @query = ‘select * from ‘ + @table

+ ‘ where ‘ + @column

+ ‘ = ‘ + convert(varchar(10), @value)

EXEC (@query)

return

This feature can be useful when you have to pass a variable list of values into a stored
procedure. The string contains a comma-separated list of numeric values or character
strings, just as they would appear inside the parentheses of an IN clause. If you are passing
character strings, you need to be sure to put single quotation marks around the values, as
shown in Listing 44.14.

LISTING 44.14 Passing a Variable List of Values into a Stored Procedure

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’find_books_by_type’)

DROP PROCEDURE dbo.find_books_by_type

GO

create proc find_books_by_type @typelist varchar(8000)

as

exec (‘select title_id, title = substring(title, 1, 40), type, price

from titles where type in (‘

+ @typelist + ‘) order by type, title_id’)

go

ptg

1775Using Dynamic SQL in Stored Procedures
4

4

set quoted_identifier off

exec find_books_by_type “‘business’, ‘mod_cook’, ‘trad_cook’”

go

title_id title type price

-------- -- ------------ ------------------

BU1032 The Busy Executive’s Database Guide business 14.9532

BU1111 Cooking with Computers: Surreptitious Ba business 14.595

BU2075 You Can Combat Computer Stress! business 15.894

BU7832 Straight Talk About Computers business 14.9532

MC2222 Silicon Valley Gastronomic Treats mod_cook 14.9532

MC3021 The Gourmet Microwave mod_cook 15.894

TC3218 Onions, Leeks, and Garlic: Cooking Secre trad_cook 0.0017

TC4203 Fifty Years in Buckingham Palace Kitchen trad_cook 14.595

TC7777 Sushi, Anyone? trad_cook 14.3279

When using dynamic SQL in stored procedures, you need to be aware of a few issues:

. Any local variables that are declared and assigned values in the constructed string
within an EXEC statement are not available to the stored procedure outside the EXEC
command. The lifespan of a local variable is limited to the context in which it is
declared, and the context of the EXEC command ends when it completes. For a solu-
tion to passing values back out from a dynamic query, see the section “Using Output
Parameters with sp_executesql,” later in this chapter.

. Any local variables that are declared and assigned values in the stored procedure can
be used to build the dynamic query statement, but the local variables cannot be
referenced by any statements within the EXEC string. The commands in the EXEC
statement run in a different context from the stored procedure, and you cannot
reference local variables declared outside the current context.

. Commands executed in an EXEC string execute within the security context of the
user executing the procedure, not the execution context of the stored procedure. By
default, if a user has permission to execute a stored procedure, that user also has
implied permission to access all objects referenced in the stored procedure that are
owned by the same person who created the stored procedure. However, if a user has
permission to execute the procedure but hasn’t explicitly been granted the permis-
sions necessary to perform all the actions specified in the EXEC string, a permission
violation occurs at runtime.

. If you issue a USE command to change the database context in an EXEC statement, it
is in effect only during the EXEC string execution. It does not change the database
context for the stored procedure (see Listing 44.15).

ptg

1776 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

LISTING 44.15 Changing Database Context in an EXEC Statement

use bigpubs2008

go

create proc db_context as

print db_name()

exec (‘USE AdventureWorks print db_name()’)

print db_name()

go

exec db_context

go

bigpubs2008

AdventureWorks

bigpubs2008

Using sp_executesql

If you want to have the flexibility of dynamic SQL but better persistence of parameterized
execution plans, you should consider using sp_executesql instead of EXEC in your stored
procedures. The syntax for sp_executesql is as follows:

sp_executesql @SQL_commands, @parameter_definitions, param1,...paramN

sp_executesql operates just as the EXEC statement with regard to the scope of names,
permissions, and database context. However, sp_executesql is more efficient for executing
the same SQL commands repeatedly when the only change is the values of the parame-
ters. Because the SQL statement remains constant and only the parameters change, SQL
Server is more likely to reuse the execution plan generated for the first execution and
simply substitute the new parameter values. This saves the overhead of having to compile
a new execution plan each time.

Listing 44.16 provides an example of a stored procedure that takes up to three parameters
and uses sp_executesql to invoke the dynamic queries.

LISTING 44.16 Invoking Dynamic Queries in a Procedure by Using sp_executesql

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’find_books_by_type2’)

DROP PROCEDURE dbo.find_books_by_type2

GOgo

create proc find_books_by_type2 @type1 char(12),

@type2 char(12) = null,

@type3 char(12) = null

as

ptg

1777Using Dynamic SQL in Stored Procedures
4

4

exec sp_executesql N’select title_id, title = substring(title, 1, 40),

type, price from bigpubs2008.dbo.titles where type = @type’,

N’@type char(12)’,

@type = @type1

if @type2 is not null

exec sp_executesql N’select title_id, title = substring(title, 1, 40),

type, price from bigpubs2008.dbo.titles where type = @type’,

N’@type char(12)’,

@type = @type2

if @type3 is not null

exec sp_executesql N’select title_id, title = substring(title, 1, 40),

type, price from bigpubs2008.dbo.titles where type = @type’,

N’@type char(12)’,

@type = @type3

go

set quoted_identifier off

exec find_books_by_type2 ‘business’, ‘mod_cook’, ‘trad_cook’

go

title_id title type price

-------- -- ------------ ------------------

BU1032 The Busy Executive’s Database Guide business 14.9532

BU1111 Cooking with Computers: Surreptitious Ba business 14.595

BU2075 You Can Combat Computer Stress! business 15.894

BU7832 Straight Talk About Computers business 14.9532

title_id title type price

-------- -- ------------ ------------------

MC2222 Silicon Valley Gastronomic Treats mod_cook 14.9532

MC3021 The Gourmet Microwave mod_cook 15.894

title_id title type price

-------- -- ------------ ------------------

TC3218 Onions, Leeks, and Garlic: Cooking Secre trad_cook 0.0017

TC4203 Fifty Years in Buckingham Palace Kitchen trad_cook 14.595

TC7777 Sushi, Anyone? trad_cook 14.3279

Note that the SQL command and parameter definition parameters to sp_executesql must
be of type nchar, nvarchar, or ntext. Also, to ensure that the query plan is reused, make
sure that the object names are fully qualified in the SQL command.

Using Output Parameters with sp_executesql
One important concept to remember about dynamic SQL is that it runs in a separate scope
from the stored procedure that invokes it. This is similar to when a stored procedure
executes another stored procedure. Because local variables are available only within the

ptg

1778 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

current scope, a nested procedure cannot access a local variable declared in the calling
procedure. Similarly, you cannot access a local variable declared outside the scope of a
dynamic SQL statement. With stored procedures, you can work around this limitation by
using input and output parameters to pass values into and out of a nested stored procedure.

If you use sp_executesql to execute dynamic SQL, you can use output parameters to pass
values both into and out of the dynamic SQL query through local variables. As described
in the previous section, the second parameter to sp_executesql is a comma-separated list
that defines the parameters you will be using within the dynamic SQL statement. As with
parameter definitions for a stored procedure, parameters passed to sp_executesql can also
be defined as output parameters. To get the values back out, you define the parameter as
an output parameter in the parameter list and then specify the OUTPUT keyword when
passing the variable in the corresponding argument list for sp_executesql.

Listing 44.17 shows an example of a stored procedure that uses sp_executesql to execute
a dynamic SQL query and return a value via an output parameter. You can use the para-
meters inside the dynamic SQL–like parameters inside a stored procedure. Any values
assigned to output parameters within the dynamic SQL query are passed back to the local
variable in the calling procedure.

LISTING 44.17 Using Output Parameters in sp_executesql

IF EXISTS (SELECT * FROM sys.procedures

WHERE schema_id = schema_id(‘dbo’)

AND name = N’get_avg_price’)

DROP PROCEDURE dbo.get_avg_price

GO

create proc get_avg_price @dbname sysname,

@type varchar(12) = ‘%’

as

declare @dsql nvarchar(500),

@avgval float

/***

** build the dynamic query using the @avg and @type as

** variables, which will be passed in via sp_executesql

**/

select @dsql = ‘select @avg = avg(isnull(price, 0)) from ‘

+ @dbname+ ‘..titles ‘

+ ‘where type like @type’

/***

** submit the dynamic query using sp_executesql, passing type

** as an input parameter, and @avgval as an output parameter

** The value of @avg in the dynamic query will be passed

** back into @avgval

ptg

1779Installing and Using .NET CLR Stored Procedures
4

4

***/

exec sp_executesql @dsql, N’@avg float OUT, @type varchar(12)’,

@avgval OUT, @type

print ‘The avg value of price for the titles table’

+ ‘ where type is like ‘’’ + @type

+ ‘’’ in the ‘ + @dbname + ‘ database’

+ ‘ is ‘ + ltrim(str(@avgval, 9,4))

go

exec get_avg_price @dbname = ‘bigpubs2008’,

@type = ‘business’

go

The avg value of price for the titles table where type is like ‘business’

in the bigpubs2008 database is 15.0988

exec get_avg_price @dbname = ‘bigpubs2008’,

@type = DEFAULT

go

The avg value of price for the titles table where type is like ‘%’ in the

bigpubs2008 database is 0.3744

Installing and Using .NET CLR Stored Procedures
Prior to SQL Server 2005, the only way to extend the functionality of SQL Server beyond
what was available using the T-SQL language was to create extended stored procedures or
COM components. The main problems with these types of extensions were that if not
written carefully, they could have an adverse impact on the reliability and security of SQL
Server. Besides extended stored procedures and COM components, in SQL Server, the only
language the stored procedures could be written in was T-SQL. Unfortunately, T-SQL has a
somewhat limited command set for things such as complex string comparison and manip-
ulation and complex numeric computations.

In SQL Server 2005 and later, you can create stored procedures in any Microsoft .NET
Framework programming language, such as Microsoft Visual Basic .NET or Microsoft
Visual C#. Stored procedures written in the common language runtime (CLR) are much
more secure and reliable than extended stored procedures or COM components.

For information on the methods and tools for actually creating and compiling CLR stored
procedures, see Chapter 46, “Creating .NET CLR Objects in SQL Server 2008.” In this
chapter, we focus only on how to install and use CLR procedures in a SQL Server database.

ptg

1780 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

NOTE

The CLR procedure examples presented subsequently in this chapter are provided as
illustrations only. The sample code will not execute successfully because the underlying
CLR assemblies have not been provided.

Adding CLR Stored Procedures to a Database

If you’ve already created and compiled a CLR stored procedure, the next step is to install
that CLR procedure in the database. The first step in this process is to copy the .NET
assembly to a location that SQL Server can access and then load it into SQL Server by
creating an assembly. The syntax for the CREATE ASSEMBLY command is as follows:

CREATE ASSEMBLY AssemblyName [AUTHORIZATION LoginName]

FROM StringPathToAssemblyDll

[WITH PERMISSION_SET (SAFE | EXTERNAL_ACCESS | UNSAFE)]

AssemblyName is the name of the assembly, and StringPathToAssemblyDll is the path to
the DLL. The path can be a local path, but often this path is a network share.

The WITH clause is optional, and it defaults to SAFE. Marking an assembly with the SAFE
permission set indicates that no external resources (for example, the Registry, web services,
file I/O) will be accessed.

The CREATE ASSEMBLY command fails if it is marked as SAFE and assemblies such as
System.IO are referenced, and anything causing a permission demand for executing
similar operations results in an exception being thrown at runtime.

Marking an assembly with the EXTERNAL_ACCESS permission set tells SQL Server that it will
be using resources such as networking, files, and so forth. Assemblies such as
System.Web.Services (but not System.Web) may be referenced with this set. To create an
EXTERNAL_ACCESS assembly, the creator must have EXTERN_ACCESS permission.

Marking an assembly with the UNSAFE permission set tells SQL Server that not only might
external resources be used, but unmanaged code may be invoked from managed code. An
UNSAFE assembly can potentially undermine the security of either SQL Server or the CLR.
Only members of the sysadmin role can create UNSAFE assemblies.

After an assembly has been created, the next step is to associate the method within the
assembly with a stored procedure. This is done with the CREATE PROCEDURE command,
using the following syntax:

CREATE PROCEDURE [schema_name.] procedure_name

([{ @parameter_name [AS] [schema_name.]scalar_datatype [= default] }

[,...n]])

[AS] EXTERNAL NAME assembly_name.class_name.method_name

After the CLR procedure has been created successfully, it can be used just like a T-SQL stored
procedure. The following example shows how to manually deploy a CLR stored procedure:

ptg

1781Installing and Using .NET CLR Stored Procedures
4

4

CREATE ASSEMBLY pr_address_verify

FROM ‘F:\assemblies\address_routines\address_procs.dll’

WITH PERMISSION_SET = SAFE

GO

CREATE PROCEDURE pr_address_verify (@address1 nvarchar(100),

@address2 nvarchar(100),

@city varchar(50),

@state char(2),

@zip char(9))

AS

EXTERNAL NAME [SQLCLR].[Routines.StoredProcedures].[address_verify]

go

NOTE

The preceding examples show the manual steps of registering an assembly and creat-
ing the CLR function. If you are using Visual Studio’s Deploy feature, Visual Studio
automatically issues the CREATE/ALTER ASSEMBLY and CREATE PROCEDURE commands.
For more details on using Visual Studio to create and deploy user-defined CLR func-
tions, see Chapter 46.

T-SQL or CLR Stored Procedures?

One question that often comes up is whether it’s better to develop stored procedures in T-
SQL or in the CLR. The best answer is that the method you choose really depends on the
situation and what functionality the procedure needs to implement.

The general rule is that if the stored procedure will be performing data access or large set-
oriented operations with little or no complex procedural logic, it’s better to create the
procedure in T-SQL for best performance. The reason is that T-SQL works more closely
with the data and doesn’t require multiple transitions between the CLR and the SQL OS.

However, most benchmarks have shown that the CLR performs better than T-SQL for
procedures that require a high level of computation or text manipulation. The CLR offers
much richer APIs that provide capabilities not available in T-SQL for operations such as
text manipulation, cryptography, I/O operations, data formatting, and invocation of web
services. For example, T-SQL provides only rudimentary string manipulation capabilities,
whereas .NET supports capabilities such as regular expressions, which are much more
powerful for pattern matching and replacement than the T-SQL replace() function.

In a nutshell, performance tests have shown that T-SQL generally performs better for stan-
dard CRUD (create, read, update, delete) operations, whereas CLR code performs better for
complex math, string manipulation, and other tasks that go beyond data access.

ptg

1782 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

Using Extended Stored Procedures
If you’ve worked with versions of SQL Server prior to SQL Server 2005, you are probably
familiar with extended stored procedures. These stored procedures reside in the master
database and have names that begin with xp_. Extended stored procedures are invoked
and managed similarly to regular stored procedures. You can grant and revoke permissions
on extended stored procedures as you do for normal stored procedures. Although
extended stored procedures reside in the master database like system procedures, the
procedure name has to be fully qualified with the master database name when it is
invoked from a database other than master, as in the following example:

use bigpubs2008

go

exec master..xp_fixeddrives

Extended stored procedures are not built with T-SQL commands; instead, they map to a
function stored in a DLL. Historically, extended stored procedures were the mechanism
available to extend SQL Server functionality. However, the introduction of CLR procedures
provides a much easier, safer way to extend the functionality of SQL Server 2008.

Extended stored procedures are typically written in Microsoft C or Visual C++, using the
Microsoft Extended Stored Procedure API, and coding them can be quite complex. In addi-
tion, extended stored procedures run under the same security context as SQL Server and
within the same address space. A poorly written extended stored procedure could bring
down the SQL Server service. CLR procedures, in contrast, are written in .NET code that is
type safe and runs within the Appdomain boundary so it cannot access random SQL Server
memory locations. In other words, it is much easier and safer to create and deploy CLR
procedures than extended stored procedures.

TIP

Because of the unsafe nature of extended stored procedures, and the greater security
and capabilities of CLR stored procedures, extended stored procedures are a feature
that will very likely be removed in some future version of Microsoft SQL Server. For new
development efforts, you should use CLR procedures instead of extended stored proce-
dures. In addition, you should make plans to convert any existing applications that cur-
rently use extended stored procedures to use CLR procedures instead.

Adding Extended Stored Procedures to SQL Server

If you happen to have a DLL that contains one or more extended stored procedures you
need to add to SQL Server, you can use the sp_addextendedproc system stored procedure.
Only SQL Server system administrators can add extended stored procedures to SQL Server.
The syntax is as follows:

sp_addextendedproc [@functname =] ‘procedure’ , [@dllname =] ‘dll’

ptg

1783Using Extended Stored Procedures
4

4

Extended stored procedures are added only in the master database. The sp_addextended
procedure adds an entry for the extended stored procedure to the system catalogs and
registers the DLL with SQL Server. You must provide the complete path for the DLL when
registering it with SQL Server.

To remove an extended procedure from SQL Server, you use sp_dropextendedproc:

sp_dropextendedproc [@functname =] ‘procedure’

CAUTION

Because extended stored procedure DLLs and SQL Server share the same address
space, poorly written extended procedure code can adversely affect SQL Server func-
tioning. Any memory access violations or exceptions thrown by an extended stored pro-
cedure could possibly damage SQL Server data areas. For this reason, it is strongly
recommended that CLR procedures be considered as an alternative to extended stored
procedures. If there is some compelling reason to use extended stored procedures,
they should be thoroughly tested and verified before they are installed.

Obtaining Information on Extended Stored Procedures

To obtain information on the extended stored procedures in SQL Server, you use
sp_helpextendedproc as follows:

sp_helpextendedproc [[@funcname =] ‘procedure’]

If the procedure name is specified, sp_helpextendedproc lists the procedure name along
with the DLL invoked when the extended stored procedure is executed. If no procedure
name is passed in, sp_helpextendedproc lists all extended stored procedures defined in
SQL Server and their associated DLLs.

Extended Stored Procedures Provided with SQL Server

Most of the extended stored procedures that ship with SQL Server are undocumented. All
extended stored procedures (or rather, the references to them) are stored in the master
database. You can display them in SSMS under the master database. To do so, you open
the Programmability folder for the master database and then open the Extended Stored
Procedures folder. The provided extended stored procedures are listed in the System
Extended Stored Procedures folder.

If you plan to use an undocumented extended stored procedure, be careful. First, you have
to find out what it does and what parameters it takes. You should also be aware that
Microsoft does not support the use of undocumented extended stored procedures.
Moreover, an undocumented procedure might not be included in a later version of SQL
Server, or if it is included, it might behave differently than it does now.

ptg

1784 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

Table 44.2 lists the general categories of extended stored procedures.

Using xp_cmdshell

One of the most useful, and potentially dangerous, extended stored procedures provided
with SQL Server 2008 is xp_cmdshell. xp_cmdshell can execute any operating system
command or program available on the SQL Server system, as long as it is a console program
that doesn’t require user input. xp_cmdshell accepts a varchar(8000) (or nvarchar(4000))
value as the command string to be executed, and it returns the results of the command as a
single nvarchar(255) column. The full syntax of xp_cmdshell is as follows:

xp_cmdshell { ‘command_string’ } [, no_output]

If the no_output option is specified, the results from the command are not displayed.

The following example uses xp_cmdshell to list the files in a directory on the SQL Server
computer’s hard disk:

EXEC xp_cmdshell ‘DIR c:*.*’

xp_cmdshell runs synchronously. Control is not returned to the SQL Server user session
until the shell command completes. This is why you have to ensure that the shell
command invoked via xp_cmdshell does not prompt for user input. Commands invoked
via xp_cmdshell do not run interactively, so there is no way to respond to the user input
prompt. The SQL Server session waits indefinitely for a command invoked via
xp_cmdshell to return.

TABLE 44.2 Extended Stored Procedures Categories

Category Description

General extended proce-
dures

Provide general functionality. Perhaps the most useful is
xp_cmdshell, which executes external programs and returns the
output from them as a result set.

SQL Mail extended proce-
dures

Enable you to perform email operations from within SQL Server.

SQL Server Profiler
extended procedures

Are used by SQL Server Profiler. They can also be used directly, for
instance, to create a trace queue and start the trace from within a
stored procedure.

OLE automation procedures Allow SQL Server to create and use OLE automation objects.

API system stored proce-
dures

Are undocumented extended stored procedures used by the API
libraries. The server cursor functionality, for instance, is imple-
mented as a set of extended stored procedures.

ptg

1785Using Extended Stored Procedures
4

4

CAUTION

After SQL Server passes off the xp_cmdshell command to the operating system, SQL
Server cannot interact with the command. If the command requires user input, the
process waits indefinitely, and it usually doesn’t go away without a fight. Killing the
process in SQL Server usually just leaves it in a KILLED/ROLLBACK state. Closing the
session that invoked the xp_cmdshell statement doesn’t help either. Sometimes, you
might have to stop and restart SQL Server to make the process finally go away.
Alternatively, you may be able to use Task Manager on the system where SQL Server is
running to identify the system process that corresponds to the process invoked by
xp_cmdshell and end the process.

If xp_cmdshell is invoked from another database, it has to be fully qualified as
master..xp_cmdshell. Unlike with system procedures, SQL Server doesn’t automatically
look for extended stored procedures in the master database.

Because of the potentially dangerous nature of xp_cmdshell (it essentially allows a user to
run operating system–level commands on the SQL Server machine), it is disabled by
default. To enable xp_cmdshell, you must run the following commands:

EXEC sp_configure ‘show advanced options’, 1

GO

RECONFIGURE

GO

-- To enable the feature.

EXEC sp_configure ‘xp_cmdshell’, 1

GO

RECONFIGURE

GO

As an additional security measure in SQL Server 2008, by default, permission to execute
xp_cmdshell is limited to users with CONTROL SERVER permission. The Windows process
spawned by xp_cmdshell runs within the security context of the account under which the
SQL Server service is running. Essentially, it has the same security rights as the SQL Server
service account.

When xp_cmdshell is invoked by a user who is not a member of the sysadmin fixed server
role, it fails unless a proxy account has been set up. A proxy account is a Windows account
that a system administrator defines and sets a security context for within the Windows
environment. When a user who is not a member of the sysadmin group runs xp_cmdshell,
the commands are run within the security context of the defined proxy account.

The proxy account for xp_cmdshell can be created by executing
sp_xp_cmdshell_proxy_account. The syntax of this command is as follows:

sp_xp_cmdshell_proxy_account [NULL | { ‘account_name’ , ’password’ }]

ptg

1786 CHAPTER 44 Advanced Stored Procedure Programming and Optimization

For example, the following command creates a proxy credential for the Windows domain
user Developer\tom that has the Windows password ss2k5Unl:

sp_xp_cmdshell_proxy_account ‘Developer/tom’ , ‘ss2k5Unl’

If NULL is passed as account_name, the proxy credential is deleted.

CAUTION

Because of the potential havoc that could be wreaked on your database server if
xp_cmdshell got into the wrong hands, it is recommended that the capability to run
xp_cmdshell be left disabled. If you must use xp_cmdshell, be very careful about
who has access to it by limiting it to only those with sysadmin permissions if at all
possible. If for some reason xp_cmdshell must be made available to all users, be
sure that the permissions granted to the proxy account are restricted to the minimum
permissions required to perform the commands that need to be invoked via
xp_cmdshell.

Summary
Stored procedures in SQL Server can be very powerful, especially when they take advan-
tage of the many features of the T-SQL language. Very complex tasks can be simplified
into a single stored procedure call. The guidelines and tips presented in this chapter
should help you create more powerful, efficient, and robust stored procedures.

Additionally, with the ability to create .NET CLR stored procedures, you can write even
more powerful stored procedures in languages other than T-SQL to further expand the
capabilities and power of the stored procedures that reside in SQL Server.

ptg

CHAPTER 45

SQL Server and the
.NET Framework

IN THIS CHAPTER

. What’s New in SQL Server
2008 and the .NET Framework

. Getting Comfortable with
ADO.NET 3.5 and SQL Server
2008

. Developing with LINQ to SQL

. Using ADO.NET Data Services

. Leveraging the Microsoft Sync
Framework

This chapter examines the deep integration of the .NET
Framework with SQL Server 2008. It first teaches the essen-
tials of programming with ADO.NET 3.5, then it jump-
starts your LINQ to SQL skills, and finally it delves into
ADO.NET Data Services (formerly Astoria) and the Microsoft
Sync Framework.

What’s New in SQL Server 2008
and the .NET Framework
The release of the .NET Framework 3.5 includes a number
of exciting new SQL Server features, the most compelling of
which is Language-Integrated Query (LINQ). LINQ to SQL is
a timesaving and powerful technology that enables devel-
opers to write code in either C# or VB .NET, rather than T-
SQL, to query SQL Server databases.

ADO.NET Data Services is another new technology that
makes it easy to work with SQL Server data in web applica-
tions, websites, Rich Internet Applications (RIAs), and other
programs that need to consume data from the Web. This
chapter shows you how to get started with a simple web
application that exposes your data over HTTP.

Finally, this chapter covers the Microsoft Sync Framework
and how to use it for your occasionally connected applica-
tions.

ptg

1788 CHAPTER 45 SQL Server and the .NET Framework

Getting Comfortable with ADO.NET 3.5 and SQL
Server 2008
You need to familiarize yourself with the following primary .NET Framework namespaces
to be able to program against SQL Server 2008:

. System.Data —This is the root namespace, which contains essential data access
classes, such as DataSet, DataTable, and DataRow.

. System.Data.SqlClient —This namespace contains classes specialized for SQL Server
access, such as SqlConnection, SqlCommand, and SqlParameter.

. System.Xml —This namespace holds most of the objects you need to be able to work
with SQL Server XML.

. System.Linq and System.Data.Linq —These namespaces hold classes essential for
working with LINQ to SQL (stored in the new Sytem.Core assembly).

The easiest way to immerse yourself in the code is to walk through some typical usage
scenarios, which we do in the following sections.

ADO.NET: Advanced Basics

To start coding with ADO.NET and SQL Server, you first need to connect to an instance of
SQL Server. To do this, you need a connection string. A connection string is simply a string
literal that contains all the parameters necessary to locate and log in to a server in a semi-
colon-delimited format. The following is an example:

”Data Source=(SQLServer001);Initial Catalog=AdventureWorks2008;Integrated

Security=True”

This connection string tells ADO.NET to connect to a server called SQLServer001, change
to the AdventureWorks2008 database context, and use integrated Windows security to
connect, which means it should use the credentials of the currently authenticated user (in
web applications, this is usually ASPNET, unless impersonation is used). You typically want
to store this connection string in your application’s .config file, preferably encrypted.

There are too many different connection string parameters to list here; you can check the
MSDN “Connection Strings” topic for full information.

The managed object that represents a SQL Server connection is
System.Data.SqlClient.SqlConnection.

This chapter takes you through a simple C# Windows application built with Visual Studio
2008 (VS). It contains every manager’s dream: a form with a magic button on it that does
everything with one click. To create this application, open Visual Studio and create a new
C# Windows Forms application (illustrated in Figure 45.1). Right-click the file called
Form1.cs in Solution Explorer (SE) and select Rename. Change the name to MainForm.cs

ptg

1789Getting Comfortable with ADO.NET 3.5 and SQL Server 2008
4

5

FIGURE 45.1 Creating a new C# Windows Forms application with Visual Studio 2008.

and accept the rename warning. Next, right-click MainForm.cs again and select View Code.
Then type the following namespaces into the using area at the top left:

using System.Data.SqlClient;

using System.Configuration;

Next, right-click the References folder in the Solution Explorer and choose Add Reference.
On the ensuing Add Reference dialog, click on the .NET tab and then scroll down until
you find System.Configuration. Select this entry and click OK. Next, right-click the
project in the Solution Explorer and choose Add New Item; then scroll though the choices
that appear in the Add New Item dialog until you find Application Configuration File.
This file is the place where you typically store connection strings and other configurable
parameters. Open your new App.Config file and enter the following elements, substituting
your server name for (local) in the connection string itself:

<?xml version=”1.0” encoding=”utf-8” ?>

<configuration>

<appSettings>

<add

key=”SqlConn”

value=”Data Source=(local);Initial Catalog=AdventureWorks2008;

Integrated Security=True”/>

</appSettings>

</configuration>

ptg

1790 CHAPTER 45 SQL Server and the .NET Framework

Switching back to MainForm.cs, right-click the file in Solution Explorer and then select
View Designer, which launches the Visual Studio WinForms designer. Drag a Button
control from the Toolbox onto the form and name it btnGo. Next, drag a DataGridView
control onto the form and name it GridView (ignore the form designer’s SmartTag); this
control will be used to display the data returned when you execute your SqlCommand. The
SqlCommand object allows you to execute T-SQL, including stored procedures, functions,
and other expressions from within the context of an active SQL Server connection.

SqlCommand has several execution methods, each of which behaves differently and returns
a different type of object:

. ExecuteNonQuery—Executes the T-SQL statements and returns an Int32 that indi-
cates the number of rows affected. It also populates any output parameters. This
capability is especially useful when you are executing INSERT and UPDATE queries.

. ExecuteScalar—Executes the T-SQL statements and returns an object (of type
Object) that contains the value of the first column of the first row returned. The
object returned is castable to one of the native .NET types (for example, Int32,
String [even for returned xml columns], Boolean).

. ExecuteReader—Executes the T-SQL statements and returns a SqlDataReader object.
SqlDataReader objects are useful when you want to perform some behavior on the
returned result set on a per-row and/or per-column basis (usually using a looping
construct).

. ExecuteXmlReader—Executes the T-SQL statements and returns a
System.Xml.XmlReader, which you can use to iterate through the nodes in selected
XML (or to instantiate other System.Xml objects, such as
System.Xml.XPath.XPathDocument), produced either via SELECT...FOR XML or from
a column or variable of the new xml data type.

TIP

System.Data.SqlClient also provides asynchronous versions of the preceding
method calls in begin-call/end-call pairs that take a handy callback method parameter,
including BeginExecuteReader, EndExecuteReader, BeginExecuteNonQuery, and
EndExecuteNonQuery. Note that there is no
BeginExecuteScalar/EndExecuteScalar.

To wire up the data returned from the SqlCommand into a System.Data.DataSet (the
storage object for returned results), you need to use an object of type
System.Data.SqlClient.SqlDataAdapter. Developers frequently use SqlDataAdapter
objects to map data coming from SQL Server into DataSet objects and back, using its
Fill() and Update() methods, respectively.

ptg

1791Getting Comfortable with ADO.NET 3.5 and SQL Server 2008
4

5

You may also want to include in your code a try-catch exception-handling block that
catches any SqlException objects thrown during your code’s execution.

To test the many classes we’ve just mentioned, add the code in Listing 45.1 to the
btnGo_Click() event handler. To generate the event handler, simply view your form in
the Visual Studio designer and then double-click your button.

LISTING 45.1 A Button Event Handler That Illustrates the Use of Several ADO.NET Objects

private void btnGo_Click(object sender, EventArgs e)

{

using (SqlConnection Connection =

new SqlConnection(ConfigurationManager.AppSettings[“SqlConn”]))

{

using (SqlCommand Command =

new SqlCommand(

@”SELECT TOP 10 * FROM Person.Person”

, Connection))

{

try

{

using (SqlDataAdapter Adapter =

new SqlDataAdapter(Command))

{

using (DataSet Set = new DataSet())

{

Connection.Open();

Adapter.Fill(Set);

GridView.DataSource = Set.Tables[0];

}

}

}

catch (SqlException SqlEx)

{

foreach (SqlError SqlErr in SqlEx.Errors)

{

MessageBox.Show(

“The following SQL Error occurred: “ + SqlErr.Message,

“SqlError”);

}

}

}

}

}

ptg

1792 CHAPTER 45 SQL Server and the .NET Framework

FIGURE 45.2 Using ADO.NET in a simple Windows Forms application.

Next, run your Windows Forms application (press F5) and then click btnGo. Your form
should look something like the one in Figure 45.2.

This code in your form executes as follows: a connection to SQL Server is made via
SqlConnection and the subsequent call to Connection.Open() (which, by the way, is
unnecessary because SqlDataAdapter.Fill() implicitly opens the closed connection). The
SqlCommand object Command is set to use this connection via its constructor. The constructor
also takes a string parameter that contains the text of the query. It can also take the name
of a stored procedure, for example. When using a stored procedure name, you change its
CommandType property from the default of CommandType.Text to
CommandType.StoredProcedure.

Next, you instantiate a SqlDataAdapter object that registers the Command object as what it
will execute on the call to Fill(). You also create a DataSet object to hold the returned
data. In the simplest respect, DataSet objects are collections of DataTable objects, which
map directly to SQL Server query results. Each DataTable object, as you may guess, holds
an array of DataRow objects, each of which in turn holds an array of DataColumn values
accessible by indexers.

You bind the DataGridView object to the filled DataSet object’s first table (Tables[0]), and
you can rest assured that the catch block will notify you with a message box about each
SqlError contained in the Errors collection of any raised SqlException.

NOTE

One convention used in the code in this chapter is nested using statements with
these objects. When you use this C# syntax convention, you don’t have to set up a
finally block that calls Dispose() for every object; using does that implicitly for you.

ptg

1793Developing with LINQ to SQL
4

5

Many of the database classes provided in ADO.NET have a Dispose() method because,
under the covers, they utilize unmanaged (COM) resources. The objects you most
commonly use for database applications that provide Dispose() are SqlConnection,
SqlCommand, SqlDataAdapter, SqlDataReader, and DataSet.

Now that you’ve had a taste of working with some of the traditional ADO.NET objects, it’s
time to forge ahead into the new world of LINQ.

Developing with LINQ to SQL
LINQ enables developers to write code in either C# or VB.NET using the same set of
syntactic conventions to query object collections (known as LINQ to Objects), XML docu-
ments (known as LINQ to XML), SQL Server data (known as LINQ to SQL), and other
queryable resources. The focus in the following sections is exclusively on LINQ to SQL.

A LINQ to SQL statement is translated into an in-memory data structure known as an
expression tree. An expression tree is an abstract representation of executable code. These
trees provide a means for translating LINQ expressions into something else—in the case of
LINQ to SQL, T-SQL statements. Once translated into T-SQL, the code is executed on SQL
Server (not in .NET). This point is important because it highlights the fact that LINQ is
independent from its various data providers.

Another important point is that the T-SQL produced by LINQ is not executed until the
moment in your .NET code when your LINQ to SQL query is first utilized, not where it is
first defined. You may, for example, declare a LINQ to SQL statement near the top of your
.NET method but then only actually use it in one branch of an if-else block. This
provides enormous efficiency.

We should also mention that a certain amount of trust is involved in using LINQ to SQL
because it requires you to accept the fact that Microsoft’s LINQ team has made most of the
right decisions in doing this translation work (and it has). This does not mean that, as a
.NET developer, you no longer need to learn T-SQL; on the contrary, there is much more
to T-SQL that LINQ simply doesn’t do, and you will run into its limitations if you use it a
lot. It does mean, however, that you can save an immense amount of time in developing
data-driven applications because you no longer have to do the repetitive work of writing
T-SQL stored procedures for every simple create, retrieve, update, and delete (CRUD) query.

Getting Started

To start with LINQ to SQL, launch Visual Studio 2008, then right-click your sample project
in Solution Explorer, and choose Add New Item. Click on the Data folder on the left side
of the ensuing dialog and then select the LINQ to SQL Classes item on the right. Name
your new file AdventureWorks2008 and click OK (illustrated in Figure 45.3).

ptg

1794 CHAPTER 45 SQL Server and the .NET Framework

FIGURE 45.3 Adding a LINQ to SQL classes file to your Windows Forms sample application.

After your new .dbml file is created in your project, Visual Studio’s Object/Relational (O/R)
Designer opens up with its blank surface ready. On this surface, you add C# data classes
that mirror the tables and relationships in your database. This is the heart of what is
known as object/relational mapping (ORM): each class represents a database table. Each
instance of that class represents a row in that table. Each property on each instance repre-
sents either a column and its value, or a collection of related (via ORM) objects. Changes
to these object instances (including updates, insertions, and deletions) once committed,
are reflected as changes to the underlying rows in your tables. LINQ to SQL operates on
these ORM objects, which are defined in the code of your .dbml file.

Using Visual Studio’s View menu, open Server Explorer. Right-click its root node and select
Add Connection. Fill out the form to set up a connection to your AdventureWorks2008
database. When done, navigate to that new node in Server Explorer (it is named
[ServerName]\[InstanceName].AdventureWorks2008.[SchemaName]). (This new node
should have a tiny image of a plug on its icon.) Expand this node and then expand the
Tables node to view the tables in your database.

Shift-click the following table nodes in Server Explorer and then drag them all to your O/R
Designer surface and release the mouse button (answer Yes to the ensuing warning dialog):

. Product (Production)

. ProductModel (Production)

. ProductInventory (Production)

. ProductReview (Production)

Your O/R Designer surface should now look something like the one in Figure 45.4.

The best way to introduce any new technology is with sample code, so let’s jump right in
and write a LINQ to SQL query.

ptg

1795Developing with LINQ to SQL
4

5

FIGURE 45.4 Viewing Visual Studio’s O/R Designer surface for the Windows Forms sample
application.

Right-click your Windows Forms project in Solution Explorer and then click Add Class.
Name your new class LINQExamples.cs and then add the code from Listing 45.2 into its
body.

LISTING 45.2 Your First LINQ to SQL Query

public List<Product> GetProductsById(int ProductId)

{

AdventureWorks2008DataContext Context =

new AdventureWorks2008DataContext();

var query =

from p in Context.Products

where p.ProductID == ProductId

select p;

return query.ToList();

}

ptg

1796 CHAPTER 45 SQL Server and the .NET Framework

Going Deeper

LINQ requires an understanding of generics (introduced in .NET 2.0), which provide a
means of working with classes in a type-independent manner. That is, a generic class
provides methods and properties just like any other class; however, it also has a type para-
meter that enables users of that class to supply a type at runtime that the algorithms in
the class will then operate on. In Listing 45.2, for example, the return type of
GetProductsById uses the generic Framework class System.Collections.Generic.List<T>,
substituting Product as a type parameter for T.

When working with LINQ to SQL, you also use the new var keyword, which indicates that
the named variable is implicitly typed. This means that the compiler will infer the type of
the statement on the right by walking down the expression at compile time. In many
cases, your LINQ statements end up being implicitly typed as
System.Linq.IQueryable<T>. This generic class stores the abstract expression tree that will
be translated (at execution time) to T-SQL, information about the query provider (in this
case SQL Server), as well as the enumerable collection itself that provides access to the
data the query returns.

IQueryable<T> itself derives from System.Collections.Generic.IEnumerable<T>. One
reason for this is that, under the hood, the compiler converts the query syntax used in
Listing 45.2 to actually use generic query operators defined as extension methods to
IEnumerable<T>, including Select, Where, OrderBy, Distinct, and so on. (Extension
methods provide a means of adding methods to classes that are otherwise sealed, that is,
noninheritable). This means that the query in Listing 45.2 could also have been written as

var query = Context.Products.Where(p => p.ProductID == ProductId);

Because of their common return type (IEnumerable<T>), LINQ’s extension methods may
be chained together. For example:

var query =

Context.Products.Where(p => p.ProductID == ProductId).OrderBy(p =>

p.ProductID).Distinct();

The parameter to the Where and OrderBy methods shown here is built on another new
construct called a lambda expression, which is an anonymous function that can be cast to a
delegate (such as System.Func<T, TResult>, the delegate type required by the input para-
meter to the extension method Where). Lambda expressions take the form input parame-
ters => expression, where the lambda operator => is read as “goes to.” (For more
information, refer to the MSDN article titled “Lambda Expressions.”) Put simply, these
expressions provide a compact syntax for writing anonymous functions that you will use
more often as you progress deeper in your knowledge of LINQ. For now, let’s get back to
the code in Listing 45.2.

First, in the method signature, you can see that GetProductsById takes an integral
ProductId as input and returns a generic List of Product objects. What is a Product

ptg

1797Developing with LINQ to SQL
4

5

object? It’s a LINQ to SQL class instance that points (is object/relationally mapped) to a
particular row in the Production.Product table.

You can think of a Product object as an “objectified” SQL Server row, insofar as its primi-
tively typed properties are akin to SQL Server column values. It also has collection-backed
properties that point to rows stored in the tables to which it is related. These specialized
LINQ collections are of type System.Data.Linq.EntitySet. Let’s examine the class defini-
tion of Product to see how this plays out.

Using Solution Explorer, expand the AdventureWorks2008.dbml file to reveal
AdventureWorks2008.designer.cs. This code file contains all the ORM logic needed to use
LINQ to SQL with your database. Double-click this file and, using the drop-down at the
top left of your code editor window, select [YourProjectName].Product.

Above your class’s name, notice the Table attribute (attributes are .NET classes used to
decorate other classes with information queryable at runtime). Its Name property reveals
that the class it decorates is to be mapped to rows in Production.Product. As you scroll
down, examine this class a bit more. Notice how its primitive properties map nicely to the
columns of your table. Notice also how each property has its own Column attribute, signi-
fying the specific SQL Server column to which it is mapped.

As we mentioned earlier, the Product class also has collection-backed properties, such as
ProductInventories and ProductReviews. These properties represent the tables related
(via primary and foreign keys) to Product. By using properties in your .NET code, you can
navigate from a parent object in Product to a child object in ProductInventories, just like
you would when writing T-SQL joins. Not surprisingly, each Association attribute found
on your collection-backed properties denotes the direction of the navigational path from
parent to child.

The glue that holds all this together is the System.Linq.DataContext class, represented in
Listing 45.2 by your Context object (which is of type AdventureWorks2008DataContext). Put
simply, DataContext is the ORM bridge or conduit from .NET to SQL Server and back.

At the top of your designer file, you can see that the DBML class inherits from
System.Data.Linq.DataContext. Notice its mapping attribute, Database, which indicates
that it is mapped to AdventureWorks2008. As the SQL Server conduit, you use the
DataContext instance to select your object-mapped rows. Through it, you commit inserts,
updates, and deletes to the underlying tables, by adding, changing properties of, and
removing objects from its System.Data.Linq.Table collection’s properties. These collec-
tions represent the tables you added to your O/R Designer’s surface. And this is the real
power of LINQ to SQL: no longer is it necessary to waste hours writing boilerplate T-SQL
to perform simple database operations; you can get it all done with pure .NET code.

Let’s look at a slightly more complex LINQ query that leverages the power of key-based rela-
tionships to select related database objects. In Listing 45.3, you add a new method to the
sample class that gets a List of ProductReview objects for a given Product.

ptg

1798 CHAPTER 45 SQL Server and the .NET Framework

LISTING 45.3 Using Database Relationships to Select Related Objects with LINQ to SQL

public List<ProductReview>

GetProductReviewsByProduct(Product MyProduct)

{

AdventureWorks2008DataContext Context =

new AdventureWorks2008DataContext();

var query =

from p in Context.Products

join r in Context.ProductReviews

on p.ProductID equals r.ProductID

where p.ProductID == MyProduct.ProductId

select r;

return query.ToList();

}

Notice the join syntax introduced in this example. As you can see, it’s a lot like T-SQL’s
INNER JOIN, and it performs the same basic function. The where clause in the example is
also just like T-SQL’s WHERE, except for the fact that you have to use C#’s == operator
instead of T-SQL’s =). The one big difference to pay attention to is that with LINQ your
select statement comes last, and your from clause comes first. Remember that all the
tables you want to select from are properties (System.Data.Linq.Table objects) of the
DataContext object. Very simple, very powerful.

Uncovering LINQ to SQL with Linqpad

You may be curious about the T-SQL that LINQ is generating for this .NET expression. To
reveal this mystery, you can use two tools: SQL Server Profiler and Linqpad. To use
Profiler, launch the application from the Windows Start menu, create a new trace using
the File menu (select New Trace), and connect to your database of choice. On the ensuing
Trace Properties dialog, select the trace template called T-SQL_SPs, start the trace, and then
run the LINQ statement found in Listing 45.3. The T-SQL that LINQ generates is revealed
in the TextData column.

Alternatively, you can download and use the amazing Linqpad from http://www.linqpad.
net. Visit the site and download Linqpad.exe. Save it to a folder that you will remember.
As of this writing (version 1.35), Linqpad does not have or need an installation program;
the download itself is the entire self-contained application.

After you download Linqpad, start it. Click on the Add Connection link at top left of the
application’s main window; then add a connection to your local server. Next, select the
AdventureWorks2008 database using the drop-down at the top left. In the query window,

http://www.linqpad.net
http://www.linqpad.net

ptg

1799Developing with LINQ to SQL
4

5

type the following LINQ statement (Hint: This is the same as shown in Listing 45.3, minus
the method signature, input parameter, and Context object):

from p in Products

join r in ProductReviews

on p.ProductID equals r.ProductID

select r

Click the green arrow button or press F5. Your query results show up in a visually friendly
tabular format in the results area below the query window. Notice just above the results
area there is a button bar with four buttons: Results, Δ; (lambda expression), SQL, and IL.
You’ve seen what shows up with the default setting, Results. Δ; reveals the underlying
anonymous functions upon which LINQ relies. IL shows you the CLR Intermediate
Language code that your LINQ expression generates. Finally, SQL shows the resultant T-
SQL, of main concern to you now. Select SQL and press F5 again. Your results should
match the code shown in Figure 45.5. You can also use the Analyze SQL menu option
(above the results area) to jump into SSMS to run your query, or you can even run the T-
SQL itself via Linqpad.

Next, let’s examine an insert query using LINQ to SQL, as shown in Listing 45.4.

FIGURE 45.5 Viewing the T-SQL Generated by a LINQ Query with Linqpad.

ptg

1800 CHAPTER 45 SQL Server and the .NET Framework

LISTING 45.4 An Insert Query Using LINQ to SQL

public void AddProductReview(

int ForProductId,

string Comments,

string Email,

int Rating,

string Reviewer

)

{

AdventureWorks2008DataContext Context =

new AdventureWorks2008DataContext();

ProductReview NewReview =

new ProductReview()

{

Comments = Comments,

EmailAddress = Email,

ModifiedDate = DateTime.Now,

ProductID = ForProductId,

Rating = Rating,

ReviewDate = DateTime.Now,

ReviewerName = Reviewer

};

Context.ProductReviews.InsertOnSubmit(NewReview);

Context.SubmitChanges();

//Check the new review ID:

if (NewReview.ProductReviewID > 0)

{

Debug.WriteLine(

string.Format(

“Success! Added new ProductReview with ID#{0}”,

NewReview.ProductReviewID

)

);

}

}

Let’s go over this code in detail. First, you can see that the input parameters to the new
AddProductReview method include a ProductReviewId as well as most of the properties
that make up a row in Production.ProductReview. Next, using C#’s new new syntax, you
instantiate a ProductReview object (NewReview) representing a row to be added to

ptg

1801Developing with LINQ to SQL
4

5

Production.ProductReview. To make the insertion happen, you again rely on the
DataContext object (Context). The syntax Context.ProductReviews indicates that the
target table is Production.ProductReview.

When you call InsertOnSubmit with your NewReview object as its parameter, your new
review is added to the table when you call SubmitChanges (one line further down in the
example). After that call, you can check your object to see if its ProductReviewID prop-
erty was magically populated due to the fact that the row was created in the database
(because ProductReviewID is bound to the table’s primary key, which is an auto-incre-
mental identity column). LINQ is great in this way because it keeps the contents of your
objects and data tables in sync.

The next listing, Listing 45.5, illustrates how to perform a delete using LINQ to SQL.

LISTING 45.5 Deleting Rows Using LINQ to SQL

public void DeleteProductReview(int ProductReviewId)

{

AdventureWorks2008DataContext Context =

new AdventureWorks2008DataContext();

ProductReview Review

= (from m in Context.ProductReviews

where m.ProductReviewID == ProductReviewId

select m).FirstOrDefault();

if (Review != null)

{

using (TransactionScope Tran = new TransactionScope())

{

Context.ProductReviews.DeleteOnSubmit(Review);

Context.SubmitChanges();

}

}

}

To run Listing 45.5, you need to add a reference to System.Transactions and then add a
using statement for that namespace. This addition to the code illustrates one way to use
transactions with LINQ and also preserves the integrity of your AdventureWorks2008 data.

Going over the example, the DeleteProductReview method takes a ProductReviewID value
as input. It then looks up that record using a LINQ query, just as you would in T-SQL. If
the record was found (that is, if the query returns a non-null value), you then create a new
transaction, in which you delete the record by calling DeleteOnSubmit. Note that because
you do not call the Complete method of the Tran object, the transaction is implicitly
rolled back.

ptg

1802 CHAPTER 45 SQL Server and the .NET Framework

Listing 45.6 rounds out our LINQ examples by showing you how to update a set of rows.

LISTING 45.6 Updating Rows Using LINQ to SQL

public void UpdateProductInventories(int Threshold, short NewQty)

{

AdventureWorks2008DataContext Context =

new AdventureWorks2008DataContext();

List<ProductInventory> InventoryItems

= (from m in Context.ProductInventories

where m.Quantity < Threshold

select m).ToList();

if (InventoryItems.Count > 0)

{

using (TransactionScope Tran = new TransactionScope())

{

foreach (ProductInventory Item in InventoryItems)

{

Item.Quantity = NewQty;

}

Context.SubmitChanges();

}

}

}

In this listing, the query operates on a range of rows, rather than just one. Using LINQ’s
ORM magic, you select rows from Production.ProductInventory as a List of
ProductInventory by matching your Threshold criterion against the current Quantity
value of objects in DataContext.ProductInventories. (Notice how LINQ even performs
grammatically correct pluralization of table names.) You iterate through each returned
object (again, within the scope of a transaction so as to keep AdventureWorks2008 intact)
and then update the Quantity for each. Then you submit your changes. Very simple, very
powerful, very much a timesaver.

Although this LINQ to SQL primer covers the essentials, we highly recommend you dive
deeper into the .NET namespaces you’ve seen to uncover all the possibilities LINQ to SQL
has to offer.

ptg

1803Using ADO.NET Data Services
4

5

Using ADO.NET Data Services
ADO.NET Data Services (ADODS) is a platform for providing SQL Server data to websites,
RIAs (such as Silverlight and Flash applications), and other Internet clients over standard
HTTP using modern web development conventions.

Getting Set Up

To start using ADODS, you first need to download and install Visual Studio 2008 Service
Pack 1, as well as the .NET Framework 3.5 Service Pack 1. These updates include support
for the Microsoft Entity Framework (EF), ADODS core, and ADODS .NET client library. A
second configuration step, required for viewing ADODS XML data in the examples that
follow, is an Internet Explorer 8 settings change: using the Tools menu, click Internet
Options. Click the Content tab and then click the Settings button in the Feeds and Web
Slices group. On the Feeds and Web Slices dialog, uncheck the Turn on Feed Reading View
check box. Click OK twice.

Essentials

To work with data provided by ADODS services, you make HTTP requests, each of which
must include three key parts:

. A uniform resource identifier (URI), which addresses the data in question

. An HTTP verb (either GET, POST, MERGE, PUT, or DELETE), which indicates the type of
CRUD operation to be performed

. An HTTP Accept header, which indicates the format of the data being sent or received

As of this writing, ADODS services provide data to clients in one of two formats:

. Atom Publishing Protocol (AtomPub)—An XML format that acts as an applica-
tion-level protocol for working with web resources. (This is the default ADODS
response format. For more information on Atom, visit
http://en.wikipedia.org/wiki/Atom_(standard).)

. JavaScript Object Notation (JSON)—A text-based format for representing serial-
ized JavaScript objects. Many popular Asynchronous JavaScript and XML (AJAX)
client libraries (including JQuery, Prototype, and YUI) include core support for work-
ing with JSON.

ADODS services rely on EF to provide an abstract mapping layer between a physical data
model and CLR object model. EF is a general-purpose ORM (similar to a LINQ to SQL class)
that works with a number of data providers, including SQL Server, Oracle, DB2, and MySQL.

The first step in working with ADODS is to create an EF Entity Data Model (EDM) that
includes the objects you want to expose from the AdventureWorks2008 database to the Web.

http://en.wikipedia.org/wiki/Atom_(standard)

ptg

1804 CHAPTER 45 SQL Server and the .NET Framework

FIGURE 45.6 Creating a new Entity Data Model in Visual Studio 2008.

Let’s get started. First, create a new web application project or website using Visual Studio
2008. Next, right-click that project and select Add New Item. On the ensuing Add New
Item dialog, click on the Data node under the Categories heading on the left. Under
Templates, click ADO.NET Entity Data Model and name your model file
AdventureWorks2008.edmx. This is illustrated in Figure 45.6.

On the ensuing Entity Data Model Wizard dialog, be sure the Generate from Database
option is selected and click Next. On the Choose Your Data Connection screen, select or
create a connection to AdventureWorks2008 and then click Next. The result of this step is a
new connection string written to your Web.Config file.

NOTE

If you examine this connection string, you will notice that it utilizes the new
System.Data.EntityClient provider, rather than the traditional
System.Data.SqlClient. It also uses a new metadata parameter in its connection
string itself, which points to Conceptual Schema Definition Language (CSDL) and
Storage Metadata Schema (SSDL) XML content found in the
AdventureWorks2008.edmx EDM file.

CSDL provides markup for describing content models such as EDMs. SSDL provides
markup for describing the underlying data stores used by EDMs. For more information,
consult the MSDN articles “Conceptual Schema (CSDL)” and “Storage Metadata
Schema (SSDL).”

On the Choose Your Database Objects screen that follows, expand the Tables node and
then select the same four tables used previously in the LINQ to SQL examples

ptg

1805Using ADO.NET Data Services
4

5

FIGURE 45.7 Visualizing the Entity Data Model with Visual Studio 2008’s EDM Designer.

(Production.Product, Production.ProductModel, Production.ProductInventory, and
Production.ProductReview). Take note of the name of your model
(AdventureWorks2008Model) and then click Finish. The EDM Designer surface opens to
reveal your new EDM with your four selected entities, as illustrated in Figure 45.7.

Notice how the new Model Browser tool window appears on the right side of Visual
Studio. This new window provides access to all the properties of everything in the EDM,
including its types, associations, properties, and the underlying data store. Using the
Model Browser, you could, for example, click on the name of a CLR entity and then
change it using the Visual Studio Properties window.

The new Mapping Details window also appears in Visual Studio. This provides a means of
manipulating the mappings from your SQL Server tables and columns to your EDM enti-
ties and properties.

Using the Mapping Details window, you could, for example, using the drop-down lists
found in its Value/Property grid column, delete the mapping of a given property by select-
ing the <Delete> option in that mapping’s drop-down list. Take a few moments to famil-
iarize yourself with these new tool windows and the EDM Designer surface.

ptg

1806 CHAPTER 45 SQL Server and the .NET Framework

FIGURE 45.8 Creating a new ADO.NET data service in Visual Studio 2008.

Building Your Data Service

Now that you have your EDM, you can move forward and create your ADODS service. To
accomplish this, right-click your web project again in Visual Studio and select Add New
Item. Next, click on the Web node under the Categories heading on the left. Under
templates, click ADO.NET Data Service and name your service file AW08Service.svc. This
is illustrated in Figure 45.8.

The code editor opens in Visual Studio with your new service’s code. This code will not
compile as is because you need to specify a type argument for the generic base class from
which the service derives. ADODS is built on Windows Communication Foundation
(WCF), and all ADODS services are specializations of the WCF class
System.Data.Services.DataService<T>. The T in the type argument expects a derivative
of System.Data.Objects.ObjectContext, which the EDM class
AdventureWorks2008Entities just happens to be.

Delete the comment in the type argument of the class declaration and then type
AdventureWorks2008Entities. Believe it or not, your data service is almost ready to start
serving data; there is only one more change to make: in the InitializeService method,
add the following line of code:

config.SetEntitySetAccessRule(“*”, EntitySetRights.All);

This SetEntitySetAccessRule method on the context
System.Data.Services.IDataServiceConfiguration controls which entities may be
accessed and with which rights. This example enables access to all entities with full
access (that is, every entity in the EDM may be selected, updated, or deleted). Here’s a
second example:

config.SetEntitySetAccessRule(“Product”, EntitySetRights.ReadMultiple);

ptg

1807Using ADO.NET Data Services
4

5

This call enables access only to any set of Product entities as provided by the EDM. (Leave
this first example intact and remove the second.) The code in your class should now look
like the following:

public class AW08Service : DataService<AdventureWorks2008Entities>

{

public static void InitializeService(IDataServiceConfiguration config)

{

config.SetEntitySetAccessRule(“*”, EntitySetRights.All);

}

}

Now it’s time to test your service. In Solution Explorer, right-click the AW08Service.svc
file and select Set as Start Page. Right-click your web project and select Set as StartUp
Project. Press F5 and view the result in Internet Explorer (illustrated in Figure 45.9).

The XML displayed (known as the default service document) is in Atom format. Notice how
each of the entities is represented by a collection node. Each collection node has an
href attribute, which indicates the relative navigational path to take to access that entity
collection. Let’s navigate to the ProductReview collection. To do this, type the following
URI in Internet Explorer’s address box:

http://server:port/AW08Service.svc/ProductReview

FIGURE 45.9 Atom XML showing the entities exposed by your ADO.NET data service.

ptg

1808 CHAPTER 45 SQL Server and the .NET Framework

FIGURE 45.10 Atom XML document showing a single ProductReview entity.

The XML response to the HTTP GET request is quite long; it contains every record in the
ProductReview table. The reason is that the request is translated by ADODS to the follow-
ing T-SQL query:

SELECT * FROM AdventureWorks2008.Production.ProductReview

Most of the time, your applications won’t (or shouldn’t) be doing queries like this. To
narrow the query to a ProductReview row having a specific key value, supply that key
value in parentheses after the entity name, like this:

http://server:port/AW08Service.svc/ProductReview(1)

The result is illustrated in Figure 45.10.

The URI syntax for your requests may be broadly defined as

http[s]://server:port/ServiceName.svc/[EntitySetName[(KeyValue)]

[/EntitySetName[(KeyValue)]]...[?QueryString]

The power of this addressing syntax is that it enables you to write URIs that traverse an
entity model in depth. For example:

http://server:port/AW08Service.svc/Product(1)/ProductReview(5)/Comments

ptg

1809Using ADO.NET Data Services
4

5

TABLE 45.1 Query Options for ADO.NET Data Service URI Query Strings

Option Purpose

$top Like T-SQL’s TOP operator; limits results

$skip Use with $top when paging; skips n number of rows

$orderby Like T-SQL’s ORDER BY clause; includes support for ascending (asc) and descending
(desc) sorting

$filter Like T-SQL’s WHERE clause; has its own set of operators, listed in Table 45.2

$expand Instead of pointing to related objects via a URI (see Atom’s link element), includes
them inline in the response

The preceding request asks your service for value of the Comments property of
ProductReview #5 by way of Product entity #1.

Next, let’s ask for the top two ProductReview entities for Product #937, in descending
order, where the ProductReviewID is greater than or equal to 2:

http://server:port/AW08Service.svc/Product(937)/ProductReview?$top=2&$filter=

ProductReviewID ge

2&$orderby=ProductReviewID desc

The query string in this example makes use of three different query options (denoted with
$). Table 45.1 lists them all.

As mentioned in Table 45.1, the $filter option has its own set of operators for filtering
values. Table 45.2 contains an abbreviated list of these operators.

TABLE 45.2 Operators for the ADO.NET Data Service URI $filter Query Option

Operator(s) Usage

eq, gt, lt, ge, le =, >, <, >=, <=

and, or, not Logical AND, logical OR,
logical NOT

() Grouping precedence

add, sub, mul, div, mod, round, floor, ceiling, and so on Math functions

length, indexof, startswith, endswith, substring, trim,
concat, insert, remove, replace, toupper, tolower, and so on

String functions

day, hour, minute, second, day, month, year, and so on Date functions

IsOf, Cast Type functions

ptg

1810 CHAPTER 45 SQL Server and the .NET Framework

Now that you know how to work with ADODS URIs, let’s examine the salient parts of the
Atom XML response.

First, notice its root entry node. This contains the base address for the service (in its
xml:base attribute value), as well as three namespace declarations:

. http://www.w3.org/2005/Atom—Atom Syndication Format namespace, the default

. http://schemas.microsoft.com/ado/2007/08/dataservices—Namespace for entity
content

. http://schemas.microsoft.com/ado/2007/08/dataservices/metadata—Namespace
for entity metadata

Moving down the response document shown in Figure 45.10, the id node indicates the
URI of the entity you’ve just requested, the updated node indicates the date and time of
your request, the author node is blank (it’s required by Atom), followed by the link
elements.

Each link element includes a title attribute, indicating the name of the current or a
related entity that you can address in future requests, and an href attribute, indicating the
relative URI of that entity (also known as a navigational property). The first link element
also contains a rel attribute with the value edit, indicating that the entity in question
may be updated by a subsequent request (using a PUT or MERGE request, covered in the
next section). The second and final link element tells you, via its href, which URI to use
to traverse the EDM to find related ProductReview entities.

Below the link elements is the content element, which contains the result of your
request: the entity ProductReview(1) and all its properties.

NOTE

To change the response format from Atom to JSON, you must change the value of your
request’s HTTP Accept header to application/json. To accomplish this in a test envi-
ronment, we recommend using the freeware HTTP testing application known as Fiddler,
available at http://www.fiddler2.com. Use Fiddler’s Request Builder feature to modify a
prior request and then examine the response with its Session Inspector.

Note that requests sent with an Accept header value of either */*, application/xml,
text/xml, text/*, or application/atom+xml all result in an Atom-based response.

Listing 45.7 contains the JSON-formatted version of the response generated by this
request. The outer object is simply called d. It has a child object called __metadata that
contains properties describing the uri and entity type. The properties that follow are
those of the selected entity, including a navigational property object leading to related

http://www.w3.org/2005/Atom
http://schemas.microsoft.com/ado/2007/08/dataservices
http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
http://www.fiddler2.com

ptg

1811Using ADO.NET Data Services
4

5

Product entities (__deferred). JSON responses like this one should integrate seamlessly
with your AJAX-enabled Web applications.

LISTING 45.7 JSON-Formatted Response from the ADODS Service

{

“d”: {

“__metadata”: {

“uri”: “http://localhost:2061/AW08Service.svc/ProductReview(1)”,

“type”: “AdventureWorks2008Model.ProductReview”

},

“ProductReviewID”: 1,

“ReviewerName”: “John Smith”,

“ReviewDate”: “\/Date(1066608000000)\/”,

“EmailAddress”: “john@fourthcoffee.com”,

“Rating”: 5,

“Comments”: “I can\’t believe I\’m singing...”,

“ModifiedDate”: “\/Date(1066608000000)\/”,

“Product”: {

“__deferred”: {

“uri”:

“http://localhost:2061/AW08Service.svc/ProductReview(1)/Product”

}

}

}

}

CRUD Operations

In keeping with the principles of Representational State Transfer (REST), ADODS provides
a mechanism for selecting, inserting, updating, and deleting data via HTTP requests to
particular URIs. To put this into practice, a client application must be able to formulate its
requests using specific HTTP verbs, as shown in Table 45.3.

TABLE 45.3 HTTP Verbs Corresponding to CRUD Operations for ADO.NET Data Services

HTTP Verb Operation

GET Select

MERGE Update the specified properties

PUT Update all properties (replace-style update)

POST Insert

DELETE Delete

ptg

1812 CHAPTER 45 SQL Server and the .NET Framework

FIGURE 45.11 Adding a service reference to the data service with Visual Studio 2008.

To simplify the proper creation of these potentially complex HTTP requests, rather than
hand-crafting them, you can use the new .NET client library,
System.Data.Services.Client, which comes with ADODS.

Create a new website or web application project using Visual Studio 2008. Add a reference
to System.Data.Services.Client by right-clicking your new project and then clicking
Add Reference, as you have done previously. Next, right-click the project again and select
Add Service Reference. Type the URI to the service in the Address box; then, at the bottom
of the dialog, type AW08Service in the Namespace box (as illustrated in Figure 45.11).
(Note: You can also use the new command-line tool dataserviceutil.exe, located in
c:\Windows\Microsoft .NET\Framework\3.5, to generate the same service reference classes
as necessary.)

Let’s write some quick code to exemplify each of the CRUD operations. First, add a new
class called ServiceClient.cs to your sample project. Completely empty the file and then
add all the code in Listing 45.8 (substitute ProjectName, located in the fifth using state-
ment, with the name of your web project).

LISTING 45.8 .NET Class Leveraging the ADO.NET Data Services Client Library

using System;

using System.Data.Services.Client;

using System.Diagnostics;

using System.Linq;

using ProjectName.AW08Service;

ptg

1813Using ADO.NET Data Services
4

5

public class ServiceClient

{

Uri _svcUri = new Uri(“http://localhost:2061/AW08Service.svc/”);

DataServiceContext _ctx = null;

public ServiceClient ()

{

_ctx = new DataServiceContext(_svcUri);

}

public Product GetProduct(int ProductId)

{

string Query = string.Format(“Product({0})”, ProductId);

Uri RelativeUri = new Uri(Query, UriKind.Relative);

Product P = _ctx.Execute<Product>(RelativeUri).FirstOrDefault();

if (P != null)

{

Debug.WriteLine(string.Format(“Success! Found Product {0}”, P.Name));

}

return P;

}

}

The class shown in Listing 45.8 requests data from an ADODS service. Its variable declara-
tions introduce the DataServiceContext class (_ctx), which facilitates communication
between client applications and ADODS services. Notice its URI-based initialization in the
constructor. Further down, examine the GetProduct method. (As with LINQ to SQL, its
object selection code is built on IEnumerable<T> and its extension methods.) To call the
service, you construct a relative URI (RelativeUri) containing the path and query
options to the entity or entities you want to retrieve. You then pass this relative URI to
the Execute<T> method of the context, supplying Product for its type parameter. Finally,
you call FirstOrDefault against the query result, which in turn returns either the first
selected entity returned or null. Because this is merely a retrieval, an HTTP GET request is
issued to retrieve the Product.

Let’s add an update query to the client class, as shown in Listing 45.9. Under the hood,
this query uses the HTTP MERGE verb to update a particular ProductReview entity.

LISTING 45.9 An Update Query Using the ADO.NET Data Services Client Library

public ProductReview UpdateProductReview(int ProductReviewId, string NewComments)

{

AdventureWorks2008Entities NewContext =

ptg

1814 CHAPTER 45 SQL Server and the .NET Framework

new AdventureWorks2008Entities(_svcUri);

ProductReview P =

NewContext.ProductReview.Where

(

p => p.ProductReviewID == ProductReviewId

).FirstOrDefault();

if (P != null)

{

string OldComments = P.Comments;

P.Comments = NewComments;

NewContext.UpdateObject(P);

NewContext.SaveChanges();

Debug.WriteLine(string.Format(“Success! Updated comments to {0}”

, P.Comments));

//put old comments back:

P.Comments = OldComments;

NewContext.UpdateObject(P);

NewContext.SaveChanges();

}

return P;

}

Notice the use of the NewContext object. It is of type AdventureWorks2008Entities, a
DataServiceContext derivative that was generated when you added your service reference.
You must use this class, rather than the original _ctx object, to perform any CRUD query
other than a retrieval.

Walking through the code in Listing 45.9, you first select your desired ProductReview
entity and then update its Comments property. Then you call UpdateObject and
SaveChanges to commit your changes to the database through your service.

Next up, Listing 45.10 illustrates how to perform an insert of a new ProductReview
(related to an existing Product) using ADODS. Under the hood, it uses the HTTP POST verb
to accomplish its goal. In this example, you first fetch your Product (to which you associ-
ate your new ProductReview), then set the properties of your ProductReview, add that
new object (PR) to the current list (via NewContext.AddToProductReview), set the Product
property on PR, and then call SetLink to tell your context that you have made this associ-
ation. Finally, you call SaveChanges to commit your work.

ptg

1815Using ADO.NET Data Services
4

5

LISTING 45.10 An Insert Query Using the ADO.NET Data Services Client Library

public ProductReview AddProductReview(int ToProductId, string Comments)

{

AdventureWorks2008Entities NewContext =

new AdventureWorks2008Entities(_svcUri);

Product P =

(

from p in NewContext.Product

where p.ProductID == ToProductId

select p

).FirstOrDefault();

ProductReview PR = null;

if (P != null)

{

PR = new ProductReview()

{

Comments = Comments,

EmailAddress = “alex@unifieddigital.com”,

Rating = 4,

ReviewDate = DateTime.Now,

ModifiedDate = DateTime.Now,

ReviewerName = “Alex T. Silverstein”

};

NewContext.AddToProductReview(PR);

PR.Product = P;

NewContext.SetLink(PR, “Product”, P);

NewContext.SaveChanges();

Debug.WriteLine(string.Format(“Success! Added new review {0}”,

PR.ProductReviewID));

}

return PR;

}

To round things out, in this final example, Listing 45.11 illustrates how to perform a
delete using ADODS. Its syntax is straightforward and simple. All that is needed is to fetch
the object to be deleted and then call DeleteObject on your context and then

ptg

1816 CHAPTER 45 SQL Server and the .NET Framework

SaveChanges. Note that in this final example, the URI for your deletion is
http://server:port/AW08Service.svc/ProductReview(11), no payload is sent to the server,
and your HTTP verb is DELETE.

LISTING 45.11 A Delete Query Using the ADO.NET Data Services Client Library

public void DeleteProductReview(int ProductReviewId)

{

AdventureWorks2008Entities NewContext =

new AdventureWorks2008Entities(_svcUri);

ProductReview PR =

(

from p in NewContext.ProductReview

where p.ProductReviewID == ProductReviewId

select p

).FirstOrDefault();

if (PR != null)

{

NewContext.DeleteObject(PR);

NewContext.SaveChanges();

}

}

Although you’ve learned quite a bit about ADODS in this short space, we encourage you to
continue exploring this exciting new framework on your own, using Fiddler to examine the
HTTP traffic in detail. For now, it’s time to switch gears to a new topic.

Leveraging the Microsoft Sync Framework
Microsoft Sync Framework (MSF) is a complete platform enabling synchronization of data,
files, feeds, or other critical information between clients, peers, and servers over common
transport protocols and across networks. It provides the necessary interfaces, assemblies,
code-generation tools, script wizards, and other components that make it easy for develop-
ers to begin using it.

The main use case for MSF we cover in this chapter is that of the Occasionally Connected
Application (OCA). OCA is a descriptive term for a program that relies on data on a regular
basis, yet which is not permanently connected to the Internet. If your target users are
stuck with a slow, unreliable, or occasionally unavailable network provider, they are the
perfect targets candidate for building an OCA.

OCAs include phone, PDA, tablet, or other portable device applications, such as those
needed by a mobile salesperson, floor manager, insurance adjuster, physician, or any other
professional who is on the go. People in these positions cannot be expected to always

ptg

1817Leveraging the Microsoft Sync Framework
4

5

have access to a high-speed wireless network, and MSF enables you to build programs that
accommodate them.

Getting Started with MSF and Sync Services for ADO.NET

As is the trend with many new Microsoft technologies, much of the work of configuring
and preparing your application is done by wizards and other code-generation mecha-
nisms. In the sections that follow, we examine how to use the MSF-related tools and
templates provided with SQL Server 2008 and Visual Studio 2008 to accomplish our goal
of building an OCA-style Windows Forms application.

To begin, you must first have MSF installed on your local machine. To accomplish this,
you have two options: install the feature using the SQL Server installer (illustrated in
Figure 45.12) or download MSF using the links found at MSF’s home page at http://www.
msdn.com/sync.

You also need to install Sync Services for ADO.NET (SSADO) if your system does not have
it already. SSADO provides assemblies in the Microsoft.Synchronization.Data* name-
spaces that enable data synchronization for ADO.NET applications. To see whether you
have these assemblies, open Windows Explorer and navigate to
%PROGRAMFILES%\Microsoft Synchronization Services\ADO.NET. If they aren’t installed,
visit the MSF home page and look for the Sync Services for ADO.NET links; then down-
load and install.

FIGURE 45.12 Installing MSF via the SQL Server 2008 installer.

http://www.msdn.com/sync
http://www.msdn.com/sync

ptg

1818 CHAPTER 45 SQL Server and the .NET Framework

The general architectural model for MSF with SSADO is made up of the following:

. Synchronization providers, both client and server side, which abstract the details of
and provide access to the data stores on each side of the synchronization

. A synchronization agent, which acts as the runtime that communicates with each
synchronization provider

. Databases, which store the desired content as well as synchronization metadata and
supporting T-SQL code

The main idea behind these components is that they enable your application to read and
write to a local database; then, when synchronization time comes, any changes that
happened on the local side get pushed up to the server database. In turn, any changes that
happened on the server since the last synchronization get pushed down to the local data-
base. Any conflicts that occur are resolved by the conflict resolution logic built in to the
synchronization components (which, of course, you can tweak as necessary). In this way,
when synchronization completes, your local database always has the latest and greatest,
and you can continue to work offline until the next synchronization.

In the sample OCA, you build a simple WinForms application that synchronizes with the
AdventureWorks2008 database on your local server.

Building Our Example OCA

To begin, start Visual Studio and create a new Windows Forms application (this example is
in C#). Next, right-click your application name in Solution Explorer and click Add New
Item. Click the Data node under the Categories heading on the left. Under Templates,
click Local Database Cache, and name this new file AW08LocalCache.sync (as illustrated in
Figure 45.13). Local database caches (LDCs) provide you with the code area in your project
where you can control how data synchronization works.

FIGURE 45.13 Adding a local database cache file to the sample application.

ptg

1819Leveraging the Microsoft Sync Framework
4

5

After your LDC has been added, the new Configure Data Synchronization (CDS) dialog
opens (you can also view this dialog anytime by double-clicking your LDC). This is a criti-
cal dialog to understand because it is responsible for generating all the C#, T-SQL, and
configuration code needed for using synchronization in your program.

When you use SSADO with SQL Server 2008 databases, two options exist for performing
the change tracking at its core:

. Using SQL Server Change Tracking, a new feature in SQL Server 2008 that natively
tracks row changes and stores them as metadata, accessible via a new set of functions
(covered in detail in Chapter 42, “What’s New for Transact-SQL in SQL Server 2008”)

. Using the default tracking mechanism, which relies on T-SQL triggers to compare
datetime values stored in columns added to the server tables

Returning to the CDS dialog, under the Database Connections group box, select the
connection to your local AdventureWorks2008 database under Server Connection. Under
Client Connection, leave the default AdventureWorks2008.sdf (New) selection. This
option creates a new SQL Server Compact (SQLCE) 3.5 database in your application that
acts as your OCA’s local data store (illustrated in Figure 45.14).

On the left side of the dialog, under Cached Tables, is a tree structure (the top of the tree
represents the Application itself). Using the Add and Remove buttons below the tree, you
can configure which tables you want to synchronize between the local SQLCE database
and the remote database. Those you select are created and/or populated before your first
synchronization with the server.

FIGURE 45.14 Using the Configure Data Synchronization dialog to configure MSF with
ADO.NET.

ptg

1820 CHAPTER 45 SQL Server and the .NET Framework

Click the Add button, and, using the ensuing Configure Tables for Offline Use dialog,
scroll down under Tables and put a check mark next to ProductReview (Production)
(illustrated in Figure 45.15). As you can see on the right side, there are a number of
options for which data to download (all or incremental), which columns will be used to
compare records (either by using existing columns or adding new ones to the server table),
and where deleted records’ keys will be stored on the server (TableName_Tombstone is the
default naming convention). The wizard adds the CreationDate and ModifiedDate

columns to ProductReview in both the local and server databases. The wizard creates the
ProductReview_Tombstone table on the server. It also generates two handy T-SQL DDL
scripts in your Visual Studio project to accomplish and undo these changes.

When your Configure Tables for Offline Use dialog matches the one in Figure 45.15, click
OK to return to the main CDS dialog. Next, uncheck the Use SQL Server Change Tracking
check box, found under the Database Connections group box. Next, click the Advanced
button. This group box contains options that allow you to generate the server and client
provider code in either the same or two different Visual Studio projects.

If you click the Show Code Example link button on the bottom of the CDS dialog, you are
presented with a handy dialog that provides you with a block of prewritten synchroniza-
tion code and a Copy button that puts that code on the Clipboard. Click the Copy button
and then click Close. When your CDS dialog matches the one in Figure 45.14, click OK.
To make things even easier for development, the next dialog that appears (Data Source
Configuration Wizard) will generate a strongly typed dataset (called
AdventureWorks2008DataSet) that encapsulates your selected tables (illustrated in Figure
45.16). Be sure to put a check mark in the root Tables node; then click Finish. (If you get
a warning about MSF needing to upload or synchronize changes, accept the default state
of the dialog and click OK.)

Using Solution Explorer, examine all the files created throughout this process. Notice your
new App.Config and corresponding Settings.Settings files, with their connection strings

FIGURE 45.15 Using the Configure Tables for Offline Use dialog to select tables to be
synchronized.

ptg

1821Leveraging the Microsoft Sync Framework
4

5

FIGURE 45.16 Using the Data Source Configuration Wizard to generate a strongly typed
dataset.

to the local and server databases. Then look at the T-SQL DLL script that creates the trig-
gers, columns, and tombstone table which facilitate change tracking. Examine your new
SQLCE database (using SSMS if you like), strongly typed dataset, LDC, and other code files.

Believe it or not, the only things left to do to set up the OCA for synchronization are to
add a DataGridView to the application’s main form, associate it with the strongly typed
dataset, add the block of code that you copied to your Clipboard (earlier, from the CDS
dialog) to an event handler, and change your agent to perform bidirectional synchroniza-
tion (it does unidirectional download-only by default).

Perform the following steps to complete your application:

. To set the synchronization mode, open your LDC’s designer file
(AW08LocalCache.designer.cs), locate the synchronization agent class
(AW08LocalCacheSyncAgent), and replace its partial method declaration for
OnInitialize to the following:

private void OnInitialized()

{

Production_ProductReview.SyncDirection =

Microsoft.Synchronization.Data.SyncDirection.Bidirectional;

}

. Next, open your project’s main form in the forms designer. Reveal the Data Source
tool window by pressing Shift+Alt+D. Drag the Production_ProductReview node
from the Data Source tool window onto your form. This provides your form with an
instance of your strongly typed dataset (AdventureWorks2008DataSet) as well as a
DataGridView (production_ProductReviewDataGridView) with standard buttons,
table adapter (production_ProductReviewTableAdapter) and associated manager

ptg

1822 CHAPTER 45 SQL Server and the .NET Framework

(tableAdapterManager), and data navigator
(production_ProductReviewBindingNavigator) for moving through the data using
the toolbar.

. Set the Dock property of your DataGridView to Fill. The final result should look
something like the form shown in Figure 45.17.

. Double-click the title area of your form. In the OnLoad event handler that opens in
the text editor, replace the code in the body with the following synchronization code:

private void Form_Load(object sender, EventArgs e)

{

//Sync the data when the application starts

try

{

new AW08LocalCacheSyncAgent().Synchronize();

}

catch (Exception)

{

MessageBox.Show(“Unable to synchronize at this time.”);

}

finally

{

production_ProductReviewTableAdapter.Fill(

adventureWorks2008DataSet.Production_ProductReview);

}

}

FIGURE 45.17 Windows Forms application UI showing synchronization data.

ptg

1823Summary
4

5

. Run your application in debug mode. Edit and save any record using your
DataGridView; then, using SQL Server Management Studio, edit and save a different
record in the Production.Product review table. Examine the results of bidirectional
synchronization by restarting your application. Validate the changes by querying the
server data by writing a new SELECT query and executing it in SSMS.

If you are interested in learning all the implementation details of MSF, feel free to walk
through your synchronization code in debug mode to familiarize yourself with all the
components at work, including the providers, agent, adapters, and T-SQL triggers.

Although this tutorial provided an MSF jump-start, you should be sure to visit the MSF
Developer Center at http://www.msdn.com/sync for full coverage on all aspects of MSF
and SSADO.

Summary
In this chapter, you saw how to develop data-driven applications using several new and
updated frameworks including ADO.NET 3.5, LINQ to SQL, ADO.NET Data Services, and
the Microsoft Sync Framework.

Chapter 46, “SQLCLR: Developing SQL Server Objects in .NET," shows how to write stored
procedures, functions, triggers, aggregates, and custom data types in C# or VB.NET.

http://www.msdn.com/sync

ptg

This page intentionally left blank

ptg

CHAPTER 46

SQLCLR: Developing
SQL Server Objects in

.NET

IN THIS CHAPTER

. What’s New for SQLCLR in SQL
Server 2008

. Developing Custom Managed
Database Objects

This chapter examines the deep integration of the .NET
Framework with SQL Server 2008. It delves into SQL Server
2008’s support for the creation of custom managed database
objects, otherwise known as SQLCLR.

What’s New for SQLCLR in SQL
Server 2008
Although there are only a few changes to SQLCLR in SQL
Server 2008, including support for multiparameter aggre-
gates, support for large-value data types (such as
nvarchar(MAX)) and support for the new SQL Server 2008
data types (such as date and time), SQLCLR itself intro-
duces a wealth of new possibilities for developing with .NET
and SQL Server that you should consider leveraging in your
data-driven applications.

In the following sections, we give you all the tools you
need to write your own stored procedures, functions, trig-
gers, data types, and aggregate functions in C# or VB .NET.

Developing Custom Managed
Database Objects
SQL Server 2008 hosts the common language runtime
(CLR), implementing what’s known as the Hosting API. The
Hosting API gives SQL Server 2008 full control over the
execution of .NET code in a carefully managed environment
that honors the shared resource usage of both SQL Server
and the CLR. The CLR provides an execution context far

ptg

1826 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

safer than that of code you might formerly have run in an extended stored procedure or
COM object under SQL Server 2000 and previous editions.

In the sections that follow, you will create one of each of the managed versions of data-
base routines and types. You work with both the SQL Server project type in Visual Studio
2008 as well as the T-SQL Data Definition Language (DDL) syntax for managed objects.

Finally, you’ll learn about advanced topics such as transaction control in mixed (T-SQL
and managed) environments.

An Introduction to Custom Managed Database Objects

The capability to run managed code presents a world of possibilities, yet these features
must be leveraged appropriately. The meaning of appropriate will ultimately be the result
of ongoing dialogs between database administrators and the developers who want to use
the .NET Framework in SQL Server.

Just like SQL Server’s capability to host web services (covered in Chapter 48, “SQL Server
Web Services”), this feature set begins to blur the line between SQL Server as a database
server and SQL Server as a lightweight application server.

.NET assemblies are built using Visual Studio or the command-line compilers and then
literally uploaded into the database and loaded into memory on the same physical server
as the SQL Server instance. CLR objects may therefore consume valuable server and
network resources.

This scenario presents a challenging new management paradigm that database administra-
tors, managers, and developers have to negotiate. Administrators are just beginning to
consider strategies for what kinds of .NET code they should allow to run and in which
contexts. Following are a few general rules to consider regarding when managed objects
should and should not be used:

. Data selection and modification should always be performed using T-SQL because
that’s what it’s optimized to do. You should not create a T-SQL wrapper in your .NET
code.

. You should use managed code when you need to overcome the procedural limita-
tions of T-SQL, such as avoiding the use of nested cursors that connect to multiple
databases and other awkward constructs. (SQL was never developed to be a proce-
dural language, only a set-based query language.)

. You should use managed code when you want to extend the per-row or per-set
effects of routines to leverage managed resources, such as XML parsers, web services,
and custom code libraries.

The software development staff still must decide what to do, but we can be thankful that
SQL Server has some rules of its own for what kinds of operations can be called and
under which permission sets, as discussed in the following section.

ptg

1827Developing Custom Managed Database Objects

FIGURE 46.1 Blessed assemblies in the Add References dialog in Visual Studio 2008.

Managed Object Permissions

The first thing to know about managed object permissions is that SQL Server has only
blessed a certain group of assemblies usable under each of the three SQL Server permission
sets.

Figure 46.1 shows the Add References dialog for a SQL Server project in Visual Studio
2008, listing these .NET Framework assemblies. They are the only assemblies (aside from
user-created assemblies) that can be referenced in SQL Server projects. Note that this list
doesn’t change in Visual Studio, regardless of the permission set used. Note also that SQL
Server and/or Visual Studio walks down the reference chain to see whether any refer-
enced assemblies reference anything that is not blessed. Therefore, you shouldn’t bother
trying to get around this list; there isn’t even a Browse button on the dialog box as there
is with the other project types.

The Three Permission Sets
SQL Server has three built-in .NET Code Access Security (CAS) permission sets that define
which kinds of operations can be executed at runtime. Using the CAS layer is a huge
improvement over running extended stored procedures under default login credentials
because it allows for fine-grained permission granting and revocation.

These are the permission sets, in increasing order of freedom:

. SAFE

. EXTERNAL_ACCESS

. UNSAFE

These keywords are used in the DDL syntax for assemblies.

ptg

1828 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

Assuming that you have built an assembly targeted for SQL Server use (which you do in
the next section), you can use the following syntax for loading that assembly into your
database of choice:

CREATE ASSEMBLY AssemblyName [AUTHORIZATION LoginName]

FROM StringPathToAssemblyDll | BinaryDataValue

[WITH PERMISSION_SET (SAFE | EXTERNAL_ACCESS | UNSAFE)]

This syntax is reasonably self-explanatory: you tell SQL Server the name of the assembly
and the path (using a UNC if needed) to it. If you’re loading an assembly from a
varbinary column, you supply the actual data that makes up the compiled code of the
assembly instead of the path to it (Visual Studio does this).

NOTE

CREATE ASSEMBLY and ALTER ASSEMBLY are commands used by Visual Studio’s Deploy
feature, which does the managed code DDL work for you.

The WITH PERMISSION SET clause is optional, and it defaults to SAFE. Marking an assembly
with the SAFE permission set indicates that no external resources (for example, the
Registry, web services, file I/O) are going to be accessed. The DDL will fail if assemblies
such as System.IO are referenced, and anything causing a permission demand for execut-
ing similar operations will result in an exception being thrown at runtime. Marking an
assembly with the EXTERNAL_ACCESS permission set tells SQL Server that it will be using
resources such as networking, files, and so forth. Assemblies such as System.Web.Services
(but not System.Web) may be referenced with this set.

Marking an assembly with the UNSAFE permission set tells SQL Server that not only might
external resources be used, but unmanaged code may even be invoked from managed code.

Some assemblies in the .NET Framework go so far as to tell the processes that ultimately
host them (such as SQL Server or Internet Explorer) about their relative safety, using a
specific .NET attribute: HostProtectionAttribute (HPA).

The enumeration flags of the HPA’s parameter indicate to the host what kinds of opera-
tions the classes decorated with it may attempt. Because documentation of the HPA with
regards to SQL Server is scant, it’s unclear whether SQL Server ultimately relies on the HPA
to determine what may be loaded. (It seems to do so at runtime, but the blessed list is
likely to be hard coded.)

Following are some of the operations you cannot perform with .NET code running under
SQL Server’s SAFE and EXTERNAL_ACCESS options (but possibly under UNSAFE):

. Thread synchronization

. External process management

. Framework security changes

. Use of non-read-only static fields

ptg

1829Developing Custom Managed Database Objects

Only those in the sysadmin role can upload UNSAFE assemblies to SQL Server. (Just don’t
tell your DBA we told you how to do it.)

The EXTERNAL_ACCESS permission on master is required for uploading EXTERNAL_ACCESS
assemblies. And anyone in the db_owner role may load SAFE assemblies.

Developing Managed Objects with Visual Studio 2008

When SQL Server 2008 is installed, it includes Microsoft.SqlServer.Server, the assem-
bly that contains the attributes and other classes needed for SQLCLR (the common
acronym for managed code running in SQL Server) programming.

The first step in working with SQLCLR is to enable the feature in SQL Server.

Setting Up the Server for Managed Code Execution
Before you can work with managed database objects, you need to execute the following T-
SQL commands in the context of the master database:

sp_configure ‘clr enabled’, 1

RECONFIGURE

go

This step is necessary because SQL Server comes with managed code execution turned off
by default.

At this point, you’re ready to create your first SQLCLR project using Visual Studio 2008
(VS). Start VS and create a new C#-based SQL Server project with a name of your choosing
(the example is named SQL2008SQLCLR). Figure 46.2 shows the Add New Project dialog.

FIGURE 46.2 Using the Add New Project dialog in Visual Studio 2008 to create a SQLCLR
project.

ptg

1830 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

Next, VS asks you to create or add a reference to a database to which you will deploy your
new assembly. During deployment, your assembly (and with it, all its SQLCLR types and
routines) is uploaded directly into SQL Server’s system tables. Select AdventureWorks2008
so you can work with the examples that follow.

Next, you create your first managed SQL Server object, a stored procedure written in C#.

Developing Managed Stored Procedures

Stored procedures are a great starting point for getting into SQLCLR because they are easy
to implement. To do so, right-click your new project in VS’s Solution Explorer and then
select Add, Stored Procedure. Name your new class StoredProcedures.cs. A partial class of
that name opens in the VS code window. Note that VS automatically adds the required
reference to Microsoft.SqlServer.Server and its associated using statement.
Microsoft.SqlServer.Server contains the SqlProcedure attribute required for turning
ordinary methods into SQLCLR stored procedures.

Change your autogenerated method name from StoredProcedures to GetProductReviews.
Next, if you’re not working in VS, you need to decorate this method with the
SqlProcedure attribute.

Attributes and the Implementation Contract
If you’ve never used attributes, you can think of them as metadata that tells callers,
usually through reflection, that the decorated element (known as the target) meets some
criterion. All the managed objects you create in this chapter require certain attributes to
be applied; otherwise, they cannot be used in a SQL Server context.

The classes you build must also implement particular methods and/or method signatures
to be built and deployed successfully to SQL Server. This is known as fulfilling the imple-
mentation contract. For stored procedures, fulfilling this contract requires that your method
be marked static. Its return type must be one of the following: void, Int32,
Nullable<Int32>, or SqlInt32. Its input parameters and their types are up to you, but
keep in mind that these must be convertible from a T-SQL context to a .NET context.
These are the only contract requirements to be filled for stored procedures.

NOTE

It makes sense that these methods must be marked static because they are called
by the CLR host via the class’s type object, rather than via an object instance (that is,
AssemblyName.ClassName.StaticMethodName(Parameters)).

Object-oriented (OO) purists might suggest that this way of creating managed SQL Server
objects could have been done in a more OO-friendly way if the contract to be filled
required overriding the methods of an abstract class or implementing interfaces. The static
requirement, however, currently makes this impossible because static members are not
inherited and cannot be used to implement interface members.

ptg

1831Developing Custom Managed Database Objects

The constructor for the SqlProcedure attribute is overloaded to either take zero parameters
or take one parameter that is actually a list of named parameters. (Having a list of named
parameters in the attribute signature is common to most of the attributes used in this
chapter, although the choice of named parameter pairs varies from attribute to attribute.)

For the SqlStoredProcedureAttribute, only one named parameter exists: Name. You use
Name when you want to name the method one thing but have the name it generates for
use in a T-SQL context to be another name.

The code in Listing 46.1 illustrates the use of a named parameter in this attribute and
contains a simple example of how to generate a set of rows using SQLCLR.

LISTING 46.1 A Managed Stored Procedure That Generates a Set of Rows

[SqlProcedure(Name = “clr_GetProductManuals”)]

public static void GetProductManuals()

{

using (SqlConnection ContextConnection =

new SqlConnection(“context connection=true”))

{

SqlDataRecord record =

new SqlDataRecord(

new SqlMetaData[]

{

new SqlMetaData(“ProductModelId”,

SqlDbType.Int),

new SqlMetaData(“Manual”,

SqlDbType.Xml)

}

);

SqlContext.Pipe.SendResultsStart(record);

using (SqlCommand Command = new SqlCommand())

{

Command.CommandText =

@”SELECT TOP 10 ProductModelId, Instructions

FROM Production.ProductModel

WHERE Instructions IS NOT NULL”;

Command.Connection = ContextConnection;

ContextConnection.Open();

using (SqlDataReader reader = Command.ExecuteReader())

{

while (reader.Read())

{

ptg

1832 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

int ProductModelId = reader.GetInt32(0);

SqlXml ManualXml = reader.GetSqlXml(1);

record.SetInt32(0, ProductModelId);

record.SetSqlXml(1, ManualXml);

SqlContext.Pipe.SendResultsRow(record);

}

}

SqlContext.Pipe.SendResultsEnd();

}

}

}

Although this example does not require it, if your SQLCLR code needs to access server
resources (such as files), it would be necessary to change your assembly’s permission set
from the default of SAFE to EXTERNAL_ACCESS. To do to this in VS, right-click your project
in Solution Explorer and select Properties. Then, on the left side of the window, select the
Database tab. (Note that the Database tab is the place where VS stores a connection string
matching your database reference. You can change that here as well.) Under the Permission
Level drop-down, change the value from Safe to External and save the project. You can also
type in the name of the SQL Server login (under Assembly Owner), which will be specified
for the AUTHORIZATION parameter of CREATE ASSEMBLY during deployment by VS.

The idea behind the code in Listing 46.1 is that, given a set of rows from
Production.ProductModel, the procedure generates a result set of only those products that
have a reference manual. Let’s examine the new objects in this code.

The Context Connection
In our managed procedure, we use a special ADO.NET connection string (”context
connection=true”), known as the context connection string, to connect to the session of
SQL Server under which our managed stored procedure is currently executing (that is,
once the assembly has been deployed and is running in a T-SQL context).

Objects in Microsoft.SqlServer.Server
Our managed procedure also uses some specialized objects to send data to SQL Server
through the active connection:

. SqlContext—This represents the server execution context for the managed routine.
You can think of it as the line of communication between the .NET and SQL Server
environments.

. SqlContext.Pipe—SqlContext holds the crucial Pipe property, used to send
SqlDataRecord objects or text messages to the method’s caller, which, by the way,
may be either another managed routine (via ADO.NET) or any T-SQL user code.

ptg

1833Developing Custom Managed Database Objects

. SqlDataRecord—This is an abstraction that represents a record in any given table.
The schema of columns for a SqlDataRecord object is created by using SqlMetaData
objects, as shown in Listing 46.1.

. SqlMetaData—An array of SqlMetaData objects is passed to the constructor of each
SqlDataRecord. Each SqlMetaData object defines the name, type, precision, scale,
and so forth for its target column via its overloaded constructors.

Returning to the code in Listing 46.1, before looping through our SqlDataReader object
(reader), we call Pipe.SendResultsStart, passing a SqlDataRecord object whose struc-
ture matches our desired output. This tells SQL Server that our procedure is about to
send rows (to the caller) having a specific structure.

Looping through the reader (using while (reader.Read())), we select the values to be
returned. To do this, we use the Set[DataTypeName] methods on our SqlDataRecord object
called record. When our values are all set, we call
SqlContext.Pipe.SendResultsRow(record) to return these data.

After the code has finished sending data to the client, it cleans up by calling
Pipe.SendResultsEnd. Note that the Pipe object also has an ExecuteAndSend method that
takes a SqlCommand parameter, executes it, and sends all the results back to the caller in
one fell swoop. In addition, you can query the status of the Pipe object by checking its
IsSendingResults Boolean property. You can even send an informational text message
(similar to T-SQL’s print function) to the caller, using Pipe.Send(”Text”). Send() is over-
loaded to accept a SqlDataRecord object or a SqlDataReader object that contains the data
to be returned.

Building and Deploying the Assembly
At this point, you can build the VS project and then choose the new Deploy command
from VS’s Build menu. In this step, VS generates the T-SQL DDL scripts needed to upload
our assembly to SQL Server and then add our managed stored procedure to the
AdventureWorks2008 database.

You’ve already seen the CREATE ASSEMBLY DDL that VS uses. For now, let’s assume that
you’ve already uploaded the assembly once. In this scenario, you need to execute the
following T-SQL to replace that assembly with a newly compiled version of the same:

ALTER ASSEMBLY AssemblyName

[AUTHORIZATION LoginName]

FROM StringPathToAssemblyDll | BinaryDataValue

[PERMISSION_SET = (SAFE | EXTERNAL_ACCESS | UNSAFE)]

You can also use ALTER ASSEMBLY to upload your C# class files so that when you’re debug-
ging any exceptions you get source code line numbers in the stack dump (seamlessly
reported by SQL Server’s built-in error reporting mechanism). Here’s an example:

ALTER ASSEMBLY AssemblyName ADD FILE FROM FilePath

ptg

1834 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

TIP

The use of any managed user-defined types in your database (covered later in this
chapter) prevents an assembly from being dropped or altered until any type already in
use is dropped (because it is a dependency).

After you load your assembly to SQL Server, you can execute the following DDL to add
your managed stored procedure to AdventureWorks2008:

CREATE PROCEDURE [dbo].[clr_GetProductManuals]

WITH EXECUTE AS CALLER

AS

EXTERNAL NAME

[ProjectName].[StoredProcedures].[GetProductManuals]

The new WITH EXECUTE AS CALLER clause tells SQL Server that the permissions for execut-
ing the procedure should be those of its caller. (See the “EXECUTE AS” Books Online topic
for more information.)

The new EXTERNAL NAME keywords tell SQL Server that the routines or types being created
belong to a specific class in a loaded assembly. The dot-notation for the string parameter
of EXTERNAL NAME is as follows:

AssemblyName.ClassName.RoutineOrTypeName

You’ll see this parameter again in the DDL of the other managed objects we’ll soon create.

To view the objects created during script execution or VS deployment, open the Object
Explorer in SQL Server Management Studio (SSMS), expand the AdventureWorks2008 data-
base node, and then expand the Programmability node. There you can find the
Assemblies node. (The managed objects in the assembly are kept in their respective
folders.) If you right-click an assembly and view its properties, another window appears
where you can view or change the assembly’s permissions.

Debugging Managed Code
Now open a new query window in SSMS and test your new managed stored procedure,
just as you would any other. Try the following:

EXEC clr_GetProductManuals

Go

ProductModelId Manual

7 <root xmlns=”http://schemas.microsoft.com/sqlserver/2004/07/...

10 <root xmlns=”http://schemas.microsoft.com/sqlserver/2004/07/...

...

(10 rows(s) affected.)

ptg

1835Developing Custom Managed Database Objects

Let’s try debugging with VS. By default, every SQL Server project is created with a Test
Scripts folder and a file called Test.sql. Test.sql (or any other .sql file in a SQL Server
project) is kind of like a hybrid of a code file and a query window. In this file you can
execute a batch of arbitrary database commands, and you can also set breakpoints on each
code line. The output of the commands appears in the Database Output section of VS’s
Output window.

Enter the same T-SQL in Test.sql that you just did in SSMS. Then set a breakpoint on any
line. Press F5 or click the Run button, and you can now execute and step through your
managed stored procedure in a single environment.

You may first need to acknowledge a dialog window that asks whether it’s okay to enable
SQLCLR debugging on the server. Answer in the affirmative, unless you’re in a nontesting
environment. (One caveat: As with remote debugging in general, this setup may not work
in all environments.)

Developing Managed User-Defined Functions (UDFs)

Using SQL Server 2008 and the .NET Framework, you can write both scalar (single-valued)
and table-valued user-defined functions in managed code. Scalar functions are the easier
of the two, so we look at those first.

Scalar UDFs
In VS, right-click your SQLCLR project in the Solution Explorer and select Add, Add New
Function. Next, name this new class XSLT, and, when it opens in the code editor,
rename its default method to XSLTransform because that’s what it is going to do—trans-
form the content of an xml-typed variable using XSLT, using a stylesheet also stored in
an xml column.

The xml data type lets you take advantage of server-side storage of XML, and why not
leverage that same technology to store XSLT stylesheets? You’ll have the assurance that
before you save your XSLTs to your table, they are guaranteed to be well formed.

You need to add using statements to the newly created XSLT.cs file for the namespaces
System.IO, System.Xml, and System.Xml.Xsl. You need System.IO to use the streams it
offers (but not to write files), and you need the XslCompiledTransform object to perform
the transformation.

Listing 46.2 shows the code of our new scalar function (note that we removed the
namespace statement from XSLT.cs).

LISTING 46.2 A Managed Scalar UDF for Transforming XML

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

ptg

1836 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

using System.IO;

using System.Xml;

using System.Xml.Xsl;

public class XSLT

{

[SqlFunction(

DataAccess = DataAccessKind.None,

IsDeterministic=false,

IsPrecise=true,

Name=”clr_XSLTransform”,

SystemDataAccess=SystemDataAccessKind.None

)]

public static SqlXml XSLTransform(SqlXml InputXml, SqlXml XSLT)

{

MemoryStream ms = new MemoryStream();

XslCompiledTransform xslcomp = new XslCompiledTransform(false);

xslcomp.Load(XSLT.CreateReader());

xslcomp.Transform(InputXml.CreateReader(), null, ms);

ms.Seek(0, SeekOrigin.Begin);

XmlTextReader xreader = new XmlTextReader(ms);

return new SqlXml(xreader);

}

};

Notice the use of the new SqlFunction attribute and its named parameter list. The imple-
mentation contract for managed scalar functions is just the same as for stored proce-
dures: mark it as static and decorate it with the appropriate attribute.

The following named parameters are available for scalar UDFs:

. DataAccess—Tells SQL Server whether the function will access user table data on the
server in its body. If you provide the enum value DataAccessKind.None, some opti-
mizations may be made.

. SystemDataAccess—Tells SQL Server whether the function will access system table
data on the server in its body. Again, if you provide the enum value
SystemDataAccessKind.None, some optimizations may be made.

. IsDeterministic—Tells SQL Server whether the function will always return the same
values, given the same input parameters.

A common example of a nondeterministic function is GETDATE(), which always
returns something different. A function is also said to be nondeterministic if any of
the functions that it calls are nondeterministic. ISNUMERIC() is a good example of a
deterministic function.

ptg

1837Developing Custom Managed Database Objects

. IsPrecise—Tells SQL Server whether the function does floating-point arithmetic (in
which case, you provide the value false). Precise functions can be indexed;
nonprecise functions cannot.

. Name—Tells the deployment routine what to call the function when it is created in
the database.

What’s neat about the code in Listing 46.2 is that it performs the entire XML transforma-
tion without using file I/O (except for the I/O required for SQL Server’s paging functional-
ity). You should build and deploy the code in this listing to your instance of SQL Server.

To test this example, create the following table in AdventureWorks2008, which will hold
XSLTs pertaining to the tables in the HumanResources schema:

CREATE TABLE HumanResources.XmlResources

(

XmlResourceId int IDENTITY(1,1) PRIMARY KEY CLUSTERED,

XmlResourceType int NOT NULL DEFAULT(1),

XmlResourceName varchar(50) NOT NULL,

XmlResource xml

)

You also need a stylesheet to test it. Listing 46.3 inserts into this table an XSLT that
searches the XML in the Resume xml column of JobCandidate and pulls out the name and
address information into a more simplified XML structure.

LISTING 46.3 Inserting the XSLT Used by Our Managed Scalar UDF

INSERT HumanResources.XmlResources

SELECT

1,

‘ResumeAddressTransformer’,

‘<?xml version=”1.0” ?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume”

version=”1.0”>

<xsl:template match=”ns:Resume”>

<NameAndAddress>

<xsl:apply-templates/>

</NameAndAddress>

</xsl:template>

<xsl:template match=”ns:Name”>

ptg

1838 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

<Name>

<xsl:value-of select=”ns:Name.First”/>

<xsl:text disable-output-escaping=”yes”> </xsl:text>

<xsl:value-of select=”ns:Name.Last”/>

</Name>

</xsl:template>

<xsl:template match=”ns:Address[ns:Addr.Type=’’Home’’]”>

<HomeAddress>

<HomeStreet>

<xsl:value-of select=”ns:Addr.Street”/>

</HomeStreet>

<HomeCity>

<xsl:value-of

select=”ns:Addr.Location/ns:Location/ns:Loc.City”/>

</HomeCity>

<HomeState>

<xsl:value-of

select=”ns:Addr.Location/ns:Location/ns:Loc.State”/>

</HomeState>

<HomeZip>

<xsl:value-of select=”ns:Addr.PostalCode”/>

</HomeZip>

</HomeAddress>

</xsl:template>

<xsl:template match=”node()”/>

</xsl:stylesheet>

‘

Now that you have your new resource saved, you need to test it on some data. Copy the
code from Listing 46.3 into a new SSMS query window and execute it. Deploy your assem-
bly using VS. Then copy the code in Listing 46.4 into another SSMS query window and
execute it, preferably using the results-to-text (Ctrl+T) option.

You should use results-to-text here because the code in the listing executes the UDF and
then, using query(), performs an XQuery against the results of the transformation (itself
an instance of the xml data type) to reformat the content as textual output for use by a
mail merge program.

LISTING 46.4 Running the XSLT UDF and Transforming the Output

DECLARE @inputXML xml, @XSLT xml

SELECT @inputXML = Resume

FROM HumanResources.JobCandidate

ptg

1839Developing Custom Managed Database Objects

WHERE Resume.exist(‘

declare namespace

ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume”;

/ns:Resume/ns:Name[ns:Name.First=”Shai”]

‘) = 1

SELECT @XSLT = XmlResource

FROM HumanResources.XmlResources

WHERE XmlResourceName = ‘ResumeAddressTransformer’

SELECT dbo.clr_XSLTransform(@inputXML, @XSLT).query(‘

declare namespace

ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume”;

text {(/NameAndAddress/Name/text())[1]},

text {“
”},

text {(/NameAndAddress/HomeAddress/HomeStreet/text())[1]},

text {“
”},

text {(/NameAndAddress/HomeAddress/HomeCity/text())[1]},

text {“, “},

text {(/NameAndAddress/HomeAddress/HomeState/text())[1]},

text {(/NameAndAddress/HomeAddress/HomeZip/text())[1]}

‘) AS StreetAddress

go

StreetAddress

Shai Bassli

567 3rd Ave

Saginaw, MI 53900

(1 row(s) affected)

Table-Valued UDFs (TVFs)
Like scalar UDFs, table-valued UDFs (TVFs) use the SqlFunction attribute, except that for
TVFs, two additional named parameters are available:

. TableDefinition—Because you’ll be returning a table, you need to tell the compiler
what the schema of that table will be. TableDefinition takes a string that corre-
sponds to the column definition list used in the CREATE TABLE statement (that is,
ColumnName ColumnDataType Constraints (etc)).

. FillRowMethodName—At execution time, each row in the returned table is represent-
ed in the class as an array of object (for example, in C#, Object[]). SQL Server
needs to call a particular method of the TVF’s class on a per-row basis that takes an
empty array of object and fills each value of the array with an appropriate column
value for the current row.

ptg

1840 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

As you may have already surmised, SQL Server relies quite a bit on the .NET interfaces
IEnumerable and IEnumerator to build a table of rows.

The main method of any TVF must be decorated with the SqlFunction attribute and also
must implement IEnumerable. This simply means it must provide a parameterless method
called GetEnumerator() that returns an instance of an object that implements
IEnumerator.

The object that implements IEnumerator in turn implements the MoveNext() and Reset()

methods and the Current property. If you have used and implemented .NET Framework
collections, this approach should seem straightforward.

It may be useful to think of SQL Server as the “user” that calls the implemented methods
of the code. The reason is that the actual runtime caller only needs to specify the name of
the SqlFunction object; the caller doesn’t need to know (or care) how things actually get
called under the covers at runtime.

One thing on everyone’s wish list for T-SQL has always been the use of regular expressions
because the LIKE operator just isn’t powerful enough for many matches. The code in
Listing 46.5 contains a set of classes for a TVF that acts as a regular expression evaluator.
It’s unique from many examples out there in a few respects:

. It takes an input string, a user-defined type (covered later in this chapter) that repre-
sents a regular expression pattern (the RegexPattern UDF provides built-in pattern
validation and storage), and an Int32 that represents the .NET Framework
System.Text.RegularExpressions.RegexOptions enum.

. It returns a two-column table of results, one row per match:

. The first column is an incremental ID for the match.

. The second column is an instance of the xml data type that contains the text
of the match, the groups matched, and their respective captures.

The neat thing is that you can use this class just as you would the Regex.Match()

method, options and all, and get a complete report of the matches on a per-match (think
per-row) basis.

TIP

You need to add the C# RegexPattern struct to your assembly (covered in the next
section on UDTs, in Listing 46.6) before you can deploy the code in Listing 46.5 to SQL
Server using VS.

LISTING 46.5 A Table-Valued UDF for Pattern Matching

using System;

using System.Data;

using System.Data.Sql;

ptg

1841Developing Custom Managed Database Objects

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

//added

using System.Text.RegularExpressions;

using System.Collections;

using System.Xml;

using System.IO;

using System.Data.SqlClient;

public class RegexLibrary

{

[Microsoft.SqlServer.Server.SqlFunction

(

IsDeterministic = true,

IsPrecise = true,

Name = “MatchAll”,

DataAccess = DataAccessKind.None,

SystemDataAccess = SystemDataAccessKind.None,

FillRowMethodName = “FillMatchAll”,

TableDefinition =

@”MatchIndex int,

GroupList xml”

)]

public static IEnumerable MatchAll(string Input,

RegexPattern Expression, Int32 Options)

{

return new RegexReader(Input, Expression, Options);

}

public static void FillMatchAll(

object row,

out SqlInt32 MatchIndex,

out SqlXml GroupList)

{

Object[] RowArray = (Object[])row;

MatchIndex = (SqlInt32)RowArray[0];

GroupList = (SqlXml)RowArray[1];

}

public class RegexReader : IEnumerable

{

public String input = string.Empty;

public RegexPattern Expression;

public Int32 Options = int.MinValue;

ptg

1842 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

public RegexReader(String Input, RegexPattern Expression, Int32 Options)

{

this.input = Input;

this.Expression = Expression;

this.Options = Options;

}

//Called by SS after initialization

public IEnumerator GetEnumerator()

{

return new RegexEnumerator(this);

}

}

public class RegexEnumerator : IEnumerator

{

private Regex _rex = null;

private Match _match = null;

private Object[] _current = null;

private RegexReader _reader = null;

private int _matchIndex = 0;

public RegexEnumerator(RegexReader Reader)

{

_reader = Reader;

Reset();

}

public void Reset()

{

_rex = null;

_matchIndex = 0;

_current = null;

_rex = new Regex(_reader.Expression.ToString(),

(RegexOptions)_reader.Options);

_match = _rex.Match(_reader.input);

}

public bool MoveNext()

{

if (_match.Success)

{

_matchIndex++;

_current = new Object[6];

_current[0] = (SqlInt32)_matchIndex;

ptg

1843Developing Custom Managed Database Objects

string GroupList = @”<matchlog pattern=’” + _rex.ToString() +

“‘ options=’” + _rex.Options.ToString() + “‘ idx=’” +

_matchIndex.ToString() +

“‘ matchtext=’” + _match.ToString() + “‘>”;

for (int g = 1; g < _match.Groups.Count; g++)

{

Group grp = _match.Groups[g];

GroupList += “<group idx=’” + g.ToString() +

“‘ text=’” + grp + “‘>”;

string CaptureList = string.Empty;

CaptureCollection caps = grp.Captures;

for (int c = 0; c < caps.Count; c++)

{

Capture cap = caps[c];

CaptureList += “<capture idx=’” + c + “‘ pos=’” +

cap.Index.ToString() + “‘ text=’” + cap + “‘/>”;

}

GroupList += CaptureList + “</group>”;

}

GroupList += “</matchlog>”;

_current[1] = new SqlXml(

new XmlTextReader(

new StringReader(GroupList)));

_match = _match.NextMatch();

return true;

}

else

{

return false;

}

}

public Object Current

{

get {

return _current;

}

}

}

}

ptg

1844 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

When MatchAll() is invoked, it returns an instance of the RegexReader class. In its
constructor, RegexReader sets the passed-in regular expression, input string, and options
to its data members. Then, at initialization time, SQL Server invokes RegexReader’s
GetEnumerator() instance method, which returns an instance of RegexEnumerator, which
does all the real work, utilizing the members of the RegexReader object that is passed into
its constructor and set to its private _reader object.

Reset() is called in RegexEnumerator’s constructor so that it can initialize its members in
the following way:

. RegexEnumerator uses a private Regex object (_rex) for performing the match and
stores the resulting array of Match (Match[]) in a private Regex.Match object (_match).

. The ordinal number of the match is kept in _matchIndex and initialized to 0 (in case
there are no matches).

. When Reset() is complete, it is up to SQL Server to iterate through the matches by
calling MoveNext().

MoveNext() does the work of re-creating the row (represented as a private array of object
called _current) for every successful match stored in _match:

. _match[0] is set to the value of _matchIndex (incremented on a per-match basis) and
corresponds to the output table column (defined in the TableDefinition named
parameter) MatchIndex.

. _match[1] is set to the value of an XML document that is built for every match and
contains subnodes for each group and group capture. This value corresponds to the
output table column GroupList.

When SQL Server uses the RegexEnumerator, it first calls MoveNext() and then uses the
Current property.

Next, execution passes to the method specified in FillRowMethodName (FillMatchAll()).

Finally, the CLR passes the latest value of _current to FillMatchAll() as the row parame-
ter. Each out parameter of FillMatchAll() is set to the value for the columns in the
output row.

NOTE

If this implementation seems daunting, the best way to overcome that is to walk
though the function line by line in debug mode, using VS.

Developing Managed User-Defined Types (UDTs)

In the preceding section, you used a managed user-defined type (UDT) called
RegexPattern to store the regular expression pattern. In this section, you explore how
custom UDTs are built and used in SQL Server.

The first thing to note is that although the name UDT is the same as the extended data
types built using SQL Server 2000, they are by no means the same in SQL Server 2008.

ptg

1845Developing Custom Managed Database Objects

SQL Server 2000’s UDTs were actually retro-named “alias data types” in SQL Server 2005.
SQL Server 2008 UDTs are structs (value types) built using the .NET Framework.

To create a UDT of your own, you right-click your Visual Studio project and then select
Add, User-Defined Type. Next, you should name both the class and its autogenerated
method RegexPattern. Notice the attribute used to decorate the RegexPattern struct:
SqlUserDefinedType. Its constructor has the following parameters:

. Format—Tells SQL Server how serialization (and its complement, deserialization) of
the struct should be done. You specify Format.Native to let SQL Server handle serial-
ization for you. You specify Format.UserDefined to do your own serialization.

When Format.UserDefined is specified, the struct must implement the
IBinarySerialize interface to explicitly take the values from string (or int, or
whatever the value passed into the constructor of the type is) back to binary and
vice versa.

. A named parameter list—This list contains the following:

. IsFixedLength—Tells SQL Server that the byte count of the struct is the same
for all its instances.

. IsByteOrdered—Tells SQL Server that the bytes of the struct are ordered so that
it may be used in binary comparisons, as with ORDER BY, GROUP BY, or PARTITION
BY clauses, in indexing, and when the UDT is a primary or foreign key.

. MaxByteSize—Tells SQL Server not to allow more than the specified number of
bytes to be held in an instance of the UDT. The overall limit is 8KB. You must
specify this when using Format.UserDefined.

. Name—Tells the deployment routine what to call the UDT when it is created in
the database.

. ValidationMethodName—Tells SQL Server which method of the struct to use to
validate it when it has been deserialized (in certain cases).

The implementation contract for any UDT is as follows:

. It must provide a static method called Parse(), used by SQL Server for conversion to
the struct from a string.

. It must provide an instance method that overrides the default ToString() method
for converting from the struct to a string.

. It must implement the INullable interface, providing a Boolean instance method
called IsNull, used by SQL Server to determine whether an instance is null.

. It must have a static property called Null of the type of the struct. This property
returns an instance of the struct whose value is null (that is, where IsNull is true for
that instance). (This concept seems to be derived from the “null object” design pat-
tern.)

ptg

1846 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

Also, you need to be aware that UDTs can have only read-only static fields, they cannot
use inheritance, and they cannot have overloaded methods (except the constructor, whose
overloads are mainly used when ADO.NET is the calling context).

Given these fairly stringent requirements, Listing 46.6 provides an implementation of a
UDT representing a regular expression pattern.

LISTING 46.6 A UDT Representing a Regular Expression Pattern

using System;

using System.Data;

using System.Data.Sql;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

//added

using System.Text.RegularExpressions;

[Serializable]

[Microsoft.SqlServer.Server.SqlUserDefinedType(

Format.UserDefined, // requires IBinarySerialize

IsFixedLength=false,

IsByteOrdered=true,

MaxByteSize=250,

ValidationMethodName = “RegexPatternValidator”

)]

public struct RegexPattern : INullable, IBinarySerialize

{

//instance data fields

private Regex _reg;

private bool _null;

//constructor

public RegexPattern(String Pattern)

{

_reg = new Regex(Pattern);

_null = (Pattern == String.Empty);

}

//instance method

public override string ToString()

{

return _reg.ToString();

}

//instance property

public bool IsNull

ptg

1847Developing Custom Managed Database Objects

{

get

{

if (_reg == null || _reg.ToString() == string.Empty)

{

return true;

}

else

return false;

}

}

//static method

public static RegexPattern Null

{

get

{

RegexPattern NullInstance = new RegexPattern();

NullInstance._null = true;

return NullInstance;

}

}

//static method

public static RegexPattern Parse(SqlString Pattern)

{

if (Pattern.IsNull)

return Null;

else

{

RegexPattern u = new RegexPattern((String)Pattern);

return u;

}

}

//private instance method

private bool RegexPatternValidator()

{

return (_reg.ToString() != string.Empty);

}

//instance method

public Int32 Match(String Input)

{

Match m = _reg.Match(Regex.Escape(Input.ToString()));

if (m != null)

ptg

1848 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

return Convert.ToInt32(m.Success);

else

return 0;

}

//instance property

public bool IsFullStringMatch

{

get

{

Match m = Regex.Match(_reg.ToString(), @”\^.+\$”);

if (m != null)

return m.Success;

else

return false;

}

}

//instance method

[SqlMethod(

DataAccess = DataAccessKind.None,

IsMutator = false,

IsPrecise = true,

OnNullCall = false,

SystemDataAccess = SystemDataAccessKind.None

)]

public Int32 MatchingGroupCount(SqlString Input)

{

Match m = _reg.Match(Regex.Escape(Input.ToString()));

if (m != null)

return m.Groups.Count;

else

return 0;

}

//static method

[SqlMethod(

DataAccess = DataAccessKind.None,

IsMutator = false,

IsPrecise = true,

OnNullCall = false,

SystemDataAccess = SystemDataAccessKind.None

)]

public static bool UsesLookaheads(RegexPattern p)

// must be static to be called with :: syntax

{

ptg

1849Developing Custom Managed Database Objects

Match m = Regex.Match(p.ToString(), @

if (m != null)

return m.Success;

else

return false;

}

#region IBinarySerialize Members

public void Read(System.IO.BinaryReader r)

{

_reg = new Regex(r.ReadString());

}

public void Write(System.IO.BinaryWriter w)

{

w.Write(_reg.ToString());

}

#endregion

}

As you can see by scanning this code, it meets the required implementation contract. In
addition, it declares static and instance methods, as well as instance properties. Both
static and instance methods can optionally be decorated with the SqlMethod attribute. By
default, methods of UDTs are declared to be nondeterministic and nonmutator, meaning
that they do not change the value of the instance.

You use the named parameters of the constructor for SqlMethod to override this and other
behaviors. These are its named parameters:

. DataAccess—Tells SQL Server whether the method will access user table data on the
server in its body. If you provide the enum value DataAccessKind.None, some opti-
mizations may be made.

. SystemDataAccess—Tells SQL Server whether the method will access system table
data on the server in its body. Again, if you provide the enum value
SystemDataAccessKind.None, some optimizations may be made.

. IsDeterministic—Tells SQL Server whether the method always returns the same
values, given the same input parameters.

. IsMutator—Must be set to true if the method changes the state of the instance.

. Name—Tells the deployment routine what to call the UDT when it is created in the
database.

. OnNullCall—Returns null if any arguments to the method are null.

ptg

1850 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

. InvokeIfReceiverIsNull—Indicates whether to invoke the method if the instance of
the struct itself is null.

To create this type in SQL Server without using Visual Studio, you use the CREATE TYPE
DDL syntax, as follows:

CREATE TYPE RegexPattern EXTERNAL NAME SQLCLR.RegexPattern

Note that DROP TYPE TypeName is also available, but there is no ALTER TYPE statement.

Let us add a few words on the code in Listing 46.6. The constructor to RegexPattern vali-
dates the expression passed to it via the constructor of
System.Text.RegularExpressions.Regex.

If you pass an invalid regex to the T-SQL SET statement (when declaring a variable of type
RegexPattern) or when the UDT is used as a table column data type and a value is modi-
fied, the Regex class does its usual pattern validation, as it does in the .NET world.

Let’s look at some of the ways you can use your UDT. The following example shows how
to call all the public members (both static and instance) of RegexPattern:

DECLARE @rp RegexPattern

SET @rp = ‘(\w+)\s+?(?!bar)’

SELECT

@rp.ToString() AS ToString,

@rp.IsFullStringMatch AS FullStringMatch,

@rp.Match(‘uncle freddie’) AS Match,

@rp.MatchingGroupCount(‘loves elken’) AS GroupCount,

RegexPattern::UsesLookaheads(@rp) AS UsesLH

go

ToString FullStringMatch Match GroupCt UsesLH

--

(\w+)\s+?(?!bar) 0 1 2 1

(1 row(s) affected)

Note that static members can be called (without an instance, that is) by using the follow-
ing new syntax:

TypeName::MemberName(OptionalParameters)

To try this, you can create a table and populate it as shown here:

CREATE TABLE dbo.RegexTest

(

PatternId int IDENTITY(1,1),

Pattern RegexPattern

)

GO

ptg

1851Developing Custom Managed Database Objects

INSERT RegexTest SELECT ‘\d+’

INSERT RegexTest SELECT ‘foo (?:bar)’

INSERT RegexTest SELECT ‘(\s+()’

Msg 6522, Level 16, State 2, Line 215

A .NET Framework error occurred during execution of user defined

routine or aggregate

‘RegexPattern’:

System.ArgumentException: parsing “(\s+()” - Not enough)’s.

System.ArgumentException:

at System.Text.RegularExpressions.RegexParser.ScanRegex()

at System.Text.RegularExpressions.RegexParser.Parse(String re,

RegexOptions op)

at System.Text.RegularExpressions.Regex..ctor(String pattern,

RegexOptions options,

Boolean useCache)

at System.Text.RegularExpressions.Regex..ctor(String pattern)

at RegexPattern..ctor(String Pattern)

at RegexPattern.Parse(SqlString Pattern)

Do you see what happens when you try to insert an invalid regex pattern into the Pattern
column (the third insert statement)? The parenthesis count is off, and the CLR tells you
so in the query window’s output.

Because the UDT has the IsByteOrdered named parameter set to true, you can index this
column (based on the struct’s serialized value) and use it in ORDER BY statements. Here’s
an example:

CREATE NONCLUSTERED INDEX PatternIndex ON dbo.RegexTest(Pattern)

GO

SELECT

Pattern.ToString(),

RegexPattern::UsesLookaheads(Pattern)

FROM RegexTest

ORDER BY Pattern

go

PatString UsesLookaheads

\d+ 0

foo (?:bar) 1

(2 row(s) affected)

Back using ADO.NET, you can access the UDT by using the new SqlDbType.Udt enum
value. To try this, you can add a new C# Windows application to your sample solution.
You can add a project reference to your sample project (”SQLCLR”) and then add a using
statement for System.Data.SqlClient. Then you should add a list box called lbRegexes to
the form. Finally, you should add a button called btnCallUDT to the form, double-click it,
and add the code in Listing 46.7 to the body of its OnClick event handler.

ptg

1852 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

LISTING 46.7 Using a UDT from ADO.NET in a Client Application

private void btnCallUDT_Click(object sender, EventArgs e)

{

using (SqlConnection c =

new SqlConnection(ConfigurationManager.AppSettings[“connstring”]))

{

using (SqlCommand s = new SqlCommand(“SELECT Pattern FROM dbo.RegexTest”, c))

{

c.Open();

SqlDataReader r = s.ExecuteReader(CommandBehavior.CloseConnection);

{

while (r.Read())

{

RegexPattern p = (RegexPattern)r.GetValue(0);

lbRegexes.Items.Add(p.ToString());

}

r.Close();

}

}

}

}

In this example, you selected all the rows from the sample table dbo.RegexText and then
cast the Pattern column values into RegexPattern structs. Finally, you called the
ToString() method of each struct, adding the text of the regex as a new item in the list box.

You can also create SqlParameter objects to be mapped to UDT columns by using code
such as the following:

SqlParameter p = new SqlParameter(“@Pattern”, SqlDbType.Udt);

p.UdtTypeName = “RegexPattern”;

p.Value = new RegexPattern(“\d+\s+\d+”);

command.Parameters.Add(p);

Finally, keep in mind that FOR XML does not implicitly serialize UDTs. You have to do that
yourself, as in the following example:

SELECT Pattern.ToString() AS ‘@Regex’

FROM dbo.RegexTest

FOR XML PATH(‘Pattern’), ROOT(‘Patterns’), TYPE

go

<Patterns>

<Pattern Regex=”\d+” />

<Pattern Regex=”foo (?:bar)” />

</Patterns>

ptg

1853Developing Custom Managed Database Objects

Developing Managed User-Defined Aggregates (UDAs)

A highly specialized feature of SQL Server 2008, managed user-defined aggregates (UDAs)
provide the capability to aggregate column data based on user-defined criteria built in to
.NET code. You can now extend the (somewhat small) list of aggregate functions usable
inside SQL Server to include those you custom-define.

NOTE

If you’ve been following the examples in this chapter sequentially, at this point, you
need to drop the sample table dbo.RegexTest to redeploy the assembly after creating
the UDA example.

The implementation contract for a UDA requires the following:

. A static method called Init(), used to initialize any data fields in the struct, particu-
larly the field that contains the aggregated value.

. A static method called Terminate(), used to return the aggregated value to the
UDA’s caller.

. A static method called Aggregate(), used to add the value in the current row to the
growing value.

. A static method called Merge(), used when SQL Server breaks an aggregation task
into multiple threads of execution (SQL Server actually uses a thread abstraction
called a task), each of which needs to merge the value stored in its instance of the
UDA with the growing value.

UDAs cannot do any data access, nor can they have any side-effects—meaning they
cannot change the state of the database. They take only a single input parameter, of any
type. You can also add public methods or properties other than those required by the
contract (such as the IsPrime() method used in the following example).

Like UDTs, UDAs are structs. They are decorated with the SqlUserDefinedAggregate
attribute, which has the following parameters for its constructor:

. Format—Tells SQL Server how serialization (and its complement, deserialization) of
the struct should be done. This has the same possible values and meaning as
described earlier for SqlUserDefinedType.

. A named parameter list—This list contains the following:

. IsInvariantToDuplicates—Tells SQL Server whether the UDA behaves differ-
ently with respect to duplicate values passed in from multiple rows.

. IsInvariantToNulls—Tells SQL Server whether the UDA behaves differently
when null values are passed to it.

. IsInvariantToOrder—Tells SQL Server whether the UDA cares about the order
in which column values are fed to it.

ptg

1854 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

. IsNullIfEmpty—Tells SQL Server that the UDA will return null if its aggregated
value is empty (that is, if its value is 0, or the empty string ””, and so on).

. Name—Tells the deployment routine what to call the UDA when it is created in
the database.

. MaxByteSize—Tells SQL Server not to allow more than the specified number of
bytes to be held in an instance of the UDA. You must specify this when using
Format.UserDefined.

For this example, you implement a very simple UDA that sums values in an integer
column, but only if they are prime. Listing 46.8 shows the code to do this.

LISTING 46.8 A UDA That Sums Prime Numbers

using System;

using System.Data;

using System.Data.Sql;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

[Serializable]

[Microsoft.SqlServer.Server.SqlUserDefinedAggregate(

Format.Native,

IsInvariantToDuplicates=false,

IsInvariantToNulls=true,

IsInvariantToOrder=true,

IsNullIfEmpty=true

)]

public struct SumPrime

{

SqlInt64 Sum;

private bool IsPrime(SqlInt64 Number)

{

for (int i = 2; i < Number; i++)

{

if (Number % i == 0)

{

return false;

}

}

return true;

}

public void Init()

{

Sum = 0;

ptg

1855Developing Custom Managed Database Objects

}

public void Accumulate(SqlInt64 Value)

{

if (!Value.IsNull && IsPrime(Value) && Value > 1)

Sum += Value;

}

public void Merge(SumPrime Prime)

{

Sum += Prime.Sum;

}

public SqlInt64 Terminate()

{

return Sum;

}

}

In this code, SQL Server first calls Init(), initializing the private Sum data field to 0.

For each column value passed to the aggregate, the Accumulate() method is called,
wherein Sum is increased by the value of the column, if it is prime.

When multiple threads converge, Merge() is called, adding the values stored in each
instance (as the Prime parameter) to Sum.

When the rowset has been completely parsed, SQL Server calls Terminate(), wherein the
accumulated value Sum is returned.

Following are the results of testing SumPrime on Production.Product (an existing
AdventureWorks2008 table):

SELECT TOP 10 dbo.SumPrime(p.ProductId) AS PrimeSum, p.Name

FROM Production.Product p

JOIN Production.WorkOrder o ON

o.ProductId = p.ProductId

WHERE Name LIKE ‘%Frame%’

GROUP BY p.ProductId, p.Name

ORDER BY PrimeSum DESC

go

PrimeSum Name

--

360355 HL Mountain Frame - Black, 42

338462 HL Mountain Frame - Silver, 42

266030 HL Road Frame - Red, 48

214784 HL Road Frame - Black, 48

ptg

1856 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

133937 HL Touring Frame - Yellow, 46

68338 LL Road Frame - Red, 52

54221 LL Mountain Frame - Silver, 48

15393 ML Road Frame - Red, 52

0 HL Mountain Frame - Black, 38

0 HL Road Frame - Black, 44

(10 row(s) affected.)

Following is the DDL syntax for this UDA:

CREATE AGGREGATE SumPrime(@Number bigint)

RETURNS bigint

EXTERNAL NAME SQLCLR.SumPrime

As with UDTs, with UDAs there is no ALTER AGGREGATE, but you can use DROP AGGREGATE
to drop them.

Developing Managed Triggers

Managed triggers are static methods of a .NET class decorated with the SqlTrigger
attribute. SqlTrigger has three named parameters:

. Event—A required string-valued parameter that tells SQL Server which type of trigger
you’re defining, as is done when defining T-SQL triggers.

. Target—A required string-valued parameter that tells SQL Server which schema and
table you’re attaching the trigger to.

. Name—An optional string parameter that tells the deployment routine what to call the
trigger when it is created in the database.

The implementation contract for a managed trigger is only that it be a static method that
returns void.

Inside the method body of a managed trigger, you need to get a reference to the execu-
tion context of the trigger so you can find out what Data Manipulation Language (DML)
statement the trigger is responding to and which columns have been updated. You do
this by using the SqlContext.TriggerContext object of type SqlTriggerContext. (Note
that this object is null when used in nontrigger contexts.) It has the following members:

. ColumnCount—An integer property that indicates how many columns were affected
by the operation.

. IsUpdatedColumn—A Boolean method that indicates whether the column at a
specific position was updated during the operation.

. TriggerAction—An enum that indicates which operation caused the trigger to fire.
For DML triggers, this is either TriggerAction.Insert, TriggerAction.Update, or
TriggerAction.Delete. For DDL triggers, the list is quite a bit longer. Refer to MSDN
to see all the possible values of the TriggerAction enumeration.

ptg

1857Developing Custom Managed Database Objects

. EventData—In the case of a DDL trigger, an object of type SqlXml that contains an XML
document whose content explains the DDL that just fired. (The XML content model for
this object is the same as that returned by the EVENTDATA() built-in function.)

Have you ever wanted to be notified by email that some important column value in your
tables has been created or updated? There are many ways to do this, including using
Query Notifications. You can also accomplish this by writing a managed trigger that calls a
web service, which in turn sends an email.

Up until now, you haven’t had to decrease the runtime safety of your assembly. But because
certain aspects of web services use the Synchronized attribute (which means they do thread
synchronization), we have to change our SQLCLR assembly’s permission set to UNSAFE.

CAUTION

Only the sysadmin role can upload an UNSAFE assembly to SQL Server. You should
allow this uploading only when you know the code being uploaded doesn’t do anything
that might compromise the integrity of the data, the server, or your job.

First, you need to create a simple web service routine that sends your email. To do this
using Visual Studio 2008, you create a new local IIS website called photoserve and add to
it a new web service called PhotoService.asmx. Then you replace the entire body of
PhotoService.cs with the following C# code:

using System;

using System.Web.Services;

using System.Net.Mail;

using System.Configuration;

[WebService(Namespace = “urn:www-samspublishing-com:examples:sqlclr:triggers”)]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

public class PhotoService : System.Web.Services.WebService

{

[WebMethod]

public void PhotoUpdateNotify(int ProductPhotoId)

{

MailMessage m = new MailMessage();

m.Subject = “New Photo: “ + ProductPhotoId.ToString();

m.From = new MailAddress(“ProductPhotoService@localservername”);

m.Body = “http://localhost:1347/photoserve/getphoto.aspx?ppid=” +

ProductPhotoId.ToString();

m.To.Add(new MailAddress(“PhotoAdmin@ localservername “));

SmtpClient s = new SmtpClient(“localservername”, 25);

s.Send(m);

}

}

ptg

1858 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

Of course, you need to have SMTP and IIS correctly configured on your server for this
example to work completely. You also need to replace localhost and localservername

and the email account names shown in the code with values that work for you.

Next, you should add a new web form called getphoto.aspx to the site. You replace the
entire contents of getphoto.aspx.cs with the code in Listing 46.9.

LISTING 46.9 A Web Form That Retrieves Photos from SQL Server

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Data.SqlClient;

using System.IO;

public partial class getphoto : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

if (Request.QueryString[“ppid”] != null)

{

string ppid = Request.QueryString[“ppid”].ToString();

string FileName = “photos/” + ppid + “.jpeg”;

string MappedFileName = Server.MapPath(FileName);

using (SqlConnection c =

new SqlConnection(

“Data Source=(local);Initial Catalog=AdventureWorks2008;

Integrated Security=True”

)

)

{

using (SqlCommand s = new SqlCommand(

@”SELECT LargePhoto

FROM Production.ProductPhoto

WHERE ProductPhotoId = “ + ppid, c))

{

c.Open();

using (SqlDataAdapter a = new SqlDataAdapter(s))

{

using (DataSet d = new DataSet())

{

a.Fill(d);

if (d.Tables.Count == 1 && d.Tables[0].Rows.Count == 1)

{

ptg

1859Developing Custom Managed Database Objects

byte[] BigImg = (byte[])d.Tables[0].Rows[0][“LargePhoto”];

FileStream f =

new FileStream(

MappedFileName,

FileMode.Create,

FileAccess.Write);

f.Write(BigImg, 0, BigImg.GetUpperBound(0));

f.Close();

Response.Redirect(FileName, false);

}

else

{

Response.Write(“<H2>Sorry, ProductPhotoId “ + ppid

+ “ was not found.</H2>”);

}

}

}

}

}

}

else

{

Response.Write(“<H2>A querystring value for ppid is required.</H2>”);

}

}

}

Next, you add a subfolder to the site called photos. This is the place where the web form
will save product photos as JPEG files and redirect the email recipient. The main body of
the code in Listing 46.9 illustrates how to save LOB values to file in a succinct manner, so
it may prove useful for your other applications.

You either need to give your ASP.NET user file I/O permissions on photos or have the web
application impersonate a user who has those permissions.

To recap, the website code so far consists of the following: a web service
(PhotoService.asmx) that generates notification emails containing URLs. These URLs in
turn point to a web form (getphoto.aspx) that saves the varbinary value of
Production.ProductPhoto.LargePhoto (given a particular ProductPhotoId) to the photos
folder as [ProductPhotoId].jpeg.

The last item you need is the reason you’re writing this code in the first place: a managed
trigger that invokes the web service to kick off the whole process. To add this, you right-
click the SQLCLR project and then select Add, Trigger. Name this new trigger class
Triggers.cs (the default). Then replace the entire content of Triggers.cs with the code
in Listing 46.10.

ptg

1860 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

LISTING 46.10 A Managed Trigger That Invokes a Web Service

using System;

using System.Data;

using Microsoft.SqlServer.Server;

using System.Data.SqlClient;

using SQLCLR.photoserve;

public partial class Triggers

{

[Microsoft.SqlServer.Server.SqlTrigger(

Event = “FOR UPDATE”,

Name = “Production.PhotoUpdateTrigger”,

Target = “Production.ProductPhoto”

)]

public static void PhotoUpdateTrigger()

{

SqlTriggerContext stc = SqlContext.TriggerContext;

if (stc.TriggerAction == TriggerAction.Update)

{

if (stc.IsUpdatedColumn(3)) //The LargePhoto varbinary(max) column

{

using (SqlCommand s = new SqlCommand(

“SELECT DISTINCT ProductPhotoId FROM INSERTED”,

new SqlConnection(“context connection=true”)))

{

s.Connection.Open();

using (SqlDataReader r =

s.ExecuteReader(CommandBehavior.CloseConnection))

{

PhotoService p = new PhotoService();

while (r.Read())

{

SqlContext.Pipe.Send(

“Notifying Web Service of Update for PPID: “ +

r.GetInt32(0).ToString());

p.PhotoUpdateNotify(r.GetInt32(0));

}

}

}

}

}

}

}

ptg

1861Developing Custom Managed Database Objects

Now that all the code is in place, all that’s left is an explanation of the code of
PhotoUpdateTrigger() and a test case.

In the code in Listing 46.10, you check to see whether the current TriggerAction is
TriggerAction.Update, meaning that the trigger is firing due to an update. You declare
this to be true by using the Event named parameter of the SqlTrigger attribute.

Next, you select the ProductPhotoId of the updated row from the INSERTED table and
connect to the database by using the context connection.

You execute the command and get your SqlDataReader (r); then you instantiate the
PhotoService web service. Using the overloaded method of the Pipe object, you send a
string literal informational message (equivalent to T-SQL’s print function), which tells any
clients what is about to happen. You call the PhotoUpdateNotify method of the web
service and pass in the ProductPhotoId, which in turn sends the email containing the link
back to getphoto.aspx, which generates the photo JPEG for that ProductPhotoId.

To make the test case work, you need to make your local machine’s Network Service user a
SQL Server login and a user in AdventureWorks2008 with at least db_datareader access. In
addition, you might need to use the Visual Studio sgen.exe tool to create a serialization
assembly for SQL2008SQLCLR.dll (which sgen.exe would, by default, name
SQL2008SQLCLR.XmlSerializers.dll).

You need to load this serialization assembly into AdventureWorks2008 before loading the
main assembly (using CREATE ASSEMBLY). (At the time of this writing, it was necessary to
also load System.Web.dll and its dependencies into AdventureWorks2008 before loading
the application assemblies.)

To test the trigger, you simply update a value of Production.ProductPhoto.LargePhoto:

UPDATE Production.ProductPhoto

SET LargePhoto = LargePhoto

WHERE ProductPhotoId = 69

go

Notifying Web Service of Update for PPID: 69

(1 row(s) affected.)

If you get an email in your test inbox, you’ve done everything right. If not, don’t fret; this
is a challenging example developed mainly to show the power of managed code.

Using Transactions

When you are writing managed objects, just as with T-SQL, it’s important to be aware of the
current transaction context under which your code may be running.

Managed database objects have the option of making use of the classes in the new
System.Transactions namespace to control transactions. Following are the main objects
you use to do this:

. Transaction.Current—This is a static object of type Transaction that represents the
current transaction. You use this object to explicitly roll back the current transaction

ptg

1862 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

(using Rollback()). It contains an IsolationLevel property that indicates the
current transaction isolation level, as well as a TransactionCompleted event that
your objects may subscribe to and a TransactionInformation property that indicates
TransactionStatus and other attributes of the transaction. You can also use this
object to manually enlist additional objects in the current transaction.

. TransactionScope—This object represents a transactional scope that is used to wrap
managed code. Note that transactions automatically roll back unless they are explic-
itly committed using this object’s Complete() method. It is enough to merely
instantiate this object at the beginning of the managed code: If a current transaction
is active, the instantiated object assumes that transaction; if not, a new transaction
is initiated.

Note that it is not necessary to explicitly declare or even use transactions: if your managed
code is already running in the scope of a transaction, it automatically participates in that
transaction. (To turn off this behavior, you append ”enlist=false” to your connection
string.) In fact, even if your code opens additional connections on additional servers, the
transaction context is not only preserved but is automatically promoted to a distributed
transaction that enlists all the connections involved. (The MSDTC service must be
running for distributed transactions to work.)

One thing you cannot do with managed transactions that you can with T-SQL is begin a
new transaction and then just leave it open.

The code example in Listing 46.11 illustrates the use of the System.Transactions objects
in a managed stored procedure. You need to add a new managed stored procedure to the
SQLCLR project and call it SPTrans. Then you need to add the using statement using
System.Transactions; and replace the autogenerated method with the code from
Listing 46.11.

LISTING 46.11 Using Transactions in a Managed Stored Procedure

[SqlProcedure]

public static void SpTrans()

{

TransactionScope ts = null;

try

{

SqlContext.Pipe.Send(“Proc Started”);

if (Transaction.Current != null)

{

SqlContext.Pipe.Send(“A) Current tran is not null.”);

SqlContext.Pipe.Send(“A) About to rollback current tran...”);

Transaction.Current.Rollback(

new ApplicationException(“I wanted to do this.”));

SqlContext.Pipe.Send(“A) Rollback Complete.”);

}

else

ptg

1863Developing Custom Managed Database Objects

{

SqlContext.Pipe.Send(“A) Current tran is null.”);

}

ts = new System.Transactions.TransactionScope();

SqlContext.Pipe.Send(“New Tran Started”);

if (Transaction.Current != null)

SqlContext.Pipe.Send(“B) Current tran is not null.”);

else

SqlContext.Pipe.Send(“B) Current tran is null.”);

if (ts != null)

ts.Complete();

SqlContext.Pipe.Send(“B) Complete() is Complete.”);

}

finally

{

if (ts != null)

ts.Dispose();

SqlContext.Pipe.Send(“Proc Complete”);

}

}

To test this code, you simply run the stored procedure from a query window (or use
sqlcmd.exe) inside and outside a transactional scope and watch the results. Here’s an
example:

BEGIN TRAN

EXEC dbo.SpTrans

ROLLBACK TRAN

EXEC dbo.SPTrans

Using the Related System Catalogs

As with other database objects, SQL Server provides catalog views that enable you to view
loaded managed assemblies, routines, and types. The base view for finding these objects is
sys.assemblies.

To see which assemblies have been loaded (including the one you created in this
chapter), you use the following query:

SELECT TOP 5

name,

assembly_id,

permission_set_desc as permission_set

FROM sys.assemblies

ptg

1864 CHAPTER 46 SQLCLR: Developing SQL Server Objects in .NET

ORDER BY assembly_id desc

go

name assembly_id permission_set

--

SQLCLR 65719 UNSAFE_ACCESS

System.Configuration.Install 65705 UNSAFE_ACCESS

System.ServiceProcess 65704 UNSAFE_ACCESS

System.Web.RegularExpressions 65703 UNSAFE_ACCESS

System.Drawing.Design 65702 UNSAFE_ACCESS

Now that you have the assembly_id for your SQLCLR project (yours will not be the same
value as shown here), you can look up its routines and classes in sys.assembly_modules:

SELECT TOP 5

name,

assembly_class as class,

assembly_method as method

FROM sys.assembly_modules am

JOIN sys.assemblies a

ON am.assembly_id = a.assembly_id

WHERE a.assembly_id = 65719

GO

name class method

SQLCLR StoredProcedures GetSetIllustrationWebLinks

SQLCLR StoredProcedures SpTrans

SQLCLR RegexLibrary MatchAll

SQLCLR XSLT XSLTransform

SQLCLR SumPrime NULL

Notice that the class holding your UDA (SumPrime) is listed, but your UDA itself is not
listed. In addition, your UDT (RegexPattern) is not listed. To see everything, you right-
click SQLCLR in the Assemblies node of the Object Browser and then select View
Dependencies.

Summary
This chapter covered the development of SQLCLR code using user-defined managed data-
base objects in conjunction with ADO.NET. We also reviewed advanced topics, such as
transaction control and system catalog viewing.

If you attempted the examples from start to finish, you have upgraded your SQL Server
and .NET programming arsenal and opened the doorway to a new world of data-inte-
grated software.

In Chapter 47, “Using XML in SQL Server 2008,” we cover SQL Server’s extensive
support for XML.

ptg

CHAPTER 47

Using XML in SQL
Server 2008

IN THIS CHAPTER

. What’s New in Using XML in
SQL Server 2008

. Understanding XML

. Relational Data as XML: The
FOR XML Modes

. XML as Relational Data: Using
OPENXML

. Using the xml Data Type

. Indexing and Full-Text Indexing
of xml Columns

SQL Server first planted its Extensible Markup Language
(XML) roots with the introduction of the FOR XML and
OPENXML keywords in SQL Server 2000, right around the
time XML was growing in popularity as a markup format
with seemingly unlimited uses.

With the release of SQL Server 2008, the bar has clearly
been raised for XML support in relational databases.

What’s New in Using XML in SQL
Server 2008
XML and relational data may exist side by side and are
more interchangeable than ever, thanks to SQL Server’s
XML-centric features, such as the xml data type, extensions
to FOR XML, schema storage, content validation, indexing,
XQuery support, and more.

With the release of SQL Server 2008, the SQL Server team
added support for the few XML features that were unavail-
able in SQL Server 2005, including

. Support for lax validation in XML schemas

. Improved support for union and list types in XML
schemas

. Addition of the let clause in XQuery

. Enhancements to XML Data Modification Language
(DML) expressions

The introduction of these features is both vital and timely
because XML has become the standard for everything from

ptg

1866 CHAPTER 47 Using XML in SQL Server 2008

traditional markup for publications to business-to-business data exchange, web services,
application programming (with XAML), graphics display (with SVG), news syndication
(with RSS), and the list goes on.

But before digging into the world of SQL Server XML, let’s briefly look at what XML is.

Understanding XML
XML was first created as a solution to the complexity inherent in the Standard
Generalized Markup Language (SGML), the granddaddy of all structured markup
languages. What you may not know is that SGML actually contains the rules that define
how to produce other markup languages, such as HTML. XML is just a subset or restriction
of those rules, providing the specifications for producing markup for all kinds of content
based on a few simple conventions.

XML documents are either well formed, meaning they contain a single root element that
contains every other element (or none), or valid, meaning they are well formed and all
their elements adhere to all the constraints set forth in their associated Document Type
Definition (DTD) or XML Schema Definition (XSD).

An XML document that adheres to the constraints of a particular DTD or schema is
known as an instance of that DTD or schema. In some cases, an XML document is referred
to as a fragment, meaning it contains more than one root element and/or text-only nodes.

XML documents are generally made up of elements (also called tags), attributes, instruc-
tions to the applications that use the document (known as processing instructions),
comments, and text. Despite their variation in kind, all these structures are commonly
known as nodes.

Keep in mind that there is no set list of predefined XML tags: they can be anything the
XML specialist chooses. And just as HTML is considered to be an instance of SGML, the
XML content model is also itself an instance of XML.

XML’s only job is to provide the specification for how a document may be structured (or
marked up). It contains no inherent information pertaining to data display or layout,
content usage, or anything else.

The pages that follow provide many examples of XML, both simple and complex. We tour
the many ways SQL Server can produce, store, load, and transform XML.

Relational Data As XML: The FOR XML Modes
One of the most important uses of XML is to provide a way of describing and encapsulat-
ing relational data. Doing so requires a mapping between two basic kinds of data struc-
tures: sets and trees. The techniques shown in this section thus have a single goal:
converting the columns and rows that make up the sets derived from any SELECT state-
ment into XML trees.

ptg

1867Relational Data As XML: The FOR XML Modes
4

7

Note that before XML came along, selected result sets would most likely be exported to
delimited text files for consumption by disparate systems. Today, most data interchange
favors the use of XML. In response, developers have come to rely on XSL for
Transformations (XSLT) as a companion skill for translating XML into HTML, PDF, RTF, or
any other type of document.

Let’s look at how the SELECT...FOR XML syntax can automatically mark up relational data
in a variety of ways. The simplest approach uses FOR XML RAW.

RAW Mode

When specified at the end of a SELECT statement, the keywords FOR XML RAW tell SQL
Server to generate a one-XML-element-per-row structure. The FOR XML statement has a few
options that change its output from the default of document fragments to well-formed
documents with a slightly (compared to a few other FOR XML options) reshaped structure.
This is its syntax:

FOR XML RAW [(’ElementName’)]

[

[, BINARY BASE64]

[, TYPE]

[, ROOT [(’RootName’)]

]

[, { XMLDATA | XMLSCHEMA [(’TargetNameSpaceURI’)]}]

[, ELEMENTS [XSINIL | ABSENT]]

Listing 47.1 illustrates the XML generated by the no-option version of FOR XML RAW. (Note
that all the code in this chapter relies on the AdventureWorks2008 sample database.)

LISTING 47.1 A SELECT Statement That Uses FOR XML RAW with No Additional Modifiers

SELECT Name, ListPrice, Color

FROM Production.Product [Product]

WHERE Name LIKE ‘%Chain%’

ORDER BY Name

FOR XML RAW

go

<row Name=”Chain” ListPrice=”20.2400” Color=”Silver” />

<row Name=”Chain Stays” ListPrice=”0.0000” />

<row Name=”Chainring” ListPrice=”0.0000” Color=”Black” />

<row Name=”Chainring Bolts” ListPrice=”0.0000” Color=”Silver” />

<row Name=”Chainring Nut” ListPrice=”0.0000” Color=”Silver” />

This kind of XML shape is known as attribute-centric XML because each column in the
result set is mapped to an attribute rather than an element. Each row is mapped to an
element named row, which holds these attributes.

ptg

1868 CHAPTER 47 Using XML in SQL Server 2008

Listing 47.2 illustrates how the resultant XML can be changed into an element-centric
shape, where each selected column is converted to an XML element simply through the
addition of the ELEMENTS keyword to FOR XML RAW.

LISTING 47.2 A SELECT Statement That Uses FOR XML RAW, ELEMENTS

SELECT Name, ListPrice, Color

FROM Production.Product [Product]

WHERE Name LIKE ‘%Chain%’

ORDER BY Name

FOR XML RAW, ELEMENTS

go

<row>

<Name>Chain</Name>

<ListPrice>20.2400</ListPrice>

<Color>Silver</Color>

</row>

<row>

<Name>Chain Stays</Name>

<ListPrice>0.0000</ListPrice>

</row>

<row>

<Name>Chainring</Name>

<ListPrice>0.0000</ListPrice>

<Color>Black</Color>

</row>

<row>

<Name>Chainring Bolts</Name>

<ListPrice>0.0000</ListPrice>

<Color>Silver</Color>

</row>

<row>

<Name>Chainring Nut</Name>

<ListPrice>0.0000</ListPrice>

<Color>Silver</Color>

</row>

If the tag name row is undesirable, you can change the element name by simply adding a
string-valued parameter, in parentheses, to the RAW keyword.

Note that in contrast to FOR XML AUTO (discussed later in this chapter), in this case, alias-
ing the Production.Product table has no effect on the output. Here’s an example:

SELECT Name, ListPrice, Color

FROM Production.Product [Product]

WHERE Name LIKE ‘%Chain%’

ptg

1869Relational Data As XML: The FOR XML Modes
4

7

ORDER BY Name

FOR XML RAW(‘ChainElement’), ELEMENTS

SQL Server 2008 also enables you to return NULL column values in generated XML.
Previously, when a NULL column value was returned in the result set when using FOR XML,
the null value was simply omitted from the XML: no attribute or element was generated
at all. In SQL Server 2008, by specifying the keyword XSINIL after ELEMENTS, you can
ensure that all null values are represented in the XML.

Note how the xsi:nil=”true” attribute is produced for elements representing null
column values. In addition, SQL Server automatically adds the XML schema namespace
declaration to each node of the resulting fragment. This is required under the rules of
XML because this fragment uses a Boolean attribute called nil, which is declared in the
XML schema located at the specified URL. This, as well as the effect of the ELEMENTS
keyword, is illustrated in Listing 47.3.

LISTING 47.3 A SELECT Statement That Uses FOR XML RAW, ELEMENTS XSINIL

SELECT TOP 1 Name, ListPrice, Color, Weight

FROM Production.Product [Product]

WHERE Name LIKE ‘%Chain%’

ORDER BY Name

FOR XML RAW(‘ChainElement’), ELEMENTS XSINIL

go

<ChainElement xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<Name>Chain</Name>

<ListPrice>20.2400</ListPrice>

<Color>Silver</Color>

<Weight xsi:nil=”true”/>

</ChainElement>

Note that the XML results in Listing 47.3 happen to produce a well-formed XML docu-
ment only because a single row was selected: this one row acts as both the root of the
document and its entire content. All other XML results (including all the previous listings)
encapsulating two or more rows are actually just fragments.

To easily change these XML fragments to well-formed documents, you can apply the ROOT
keyword to add a root node to the output, as shown in Listing 47.4.

LISTING 47.4 A SELECT Statement That Uses FOR XML RAW and the ROOT Keyword

SELECT Name, ListPrice, Color, Weight

FROM Production.Product [Product]

WHERE Name LIKE ‘%Chain%’

ORDER BY Name

FOR XML RAW(‘ChainElement’), ELEMENTS XSINIL, ROOT(‘ChainDoc’)

go

ptg

1870 CHAPTER 47 Using XML in SQL Server 2008

<ChainDoc xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<ChainElement>

<Name>Chain</Name>

<ListPrice>20.2400</ListPrice>

<Color>Silver</Color>

<Weight xsi:nil=”true” />

</ChainElement>

<ChainElement>

<Name>Chain Stays</Name>

<ListPrice>0.0000</ListPrice>

<Color xsi:nil=”true” />

<Weight xsi:nil=”true” />

</ChainElement>

<ChainElement>

<Name>Chainring</Name>

<ListPrice>0.0000</ListPrice>

<Color>Black</Color>

<Weight xsi:nil=”true” />

</ChainElement>

<ChainElement>

<Name>Chainring Bolts</Name>

<ListPrice>0.0000</ListPrice>

<Color>Silver</Color>

<Weight xsi:nil=”true” />

</ChainElement>

<ChainElement>

<Name>Chainring Nut</Name>

<ListPrice>0.0000</ListPrice>

<Color>Silver</Color>

<Weight xsi:nil=”true” />

</ChainElement>

</ChainDoc>

Users (or applications) on the receiving side of RAW-produced XML may also require an
inline XML schema (XSD) or an inline XML-Data Reduced (XDR) schema. Note that inline
XDR schemas are considered to be deprecated in this release.

To produce these schemas, you add the XMLSCHEMA or XMLDATA keyword to the clause. The
results are too long to be listed here, but to see how these schema types differ, compare
the output of this:

SELECT Name, ListPrice, Color, Weight

FROM Production.Product [Product]

WHERE Name LIKE ‘%Chain%’

ORDER BY Name

FOR XML RAW, ELEMENTS XSINIL, XMLDATA

ptg

1871Relational Data As XML: The FOR XML Modes
4

7

to the output of this:

SELECT Name, ListPrice, Color, Weight

FROM Production.Product [Product]

WHERE Name LIKE ‘%Chain%’

ORDER BY Name

FOR XML RAW(‘ChainElement’),

ELEMENTS XSINIL,

ROOT(‘ChainDoc’),

XMLSCHEMA (‘urn:www-samspublishing-com:examples’)

XML schemas are discussed in further detail later in this chapter, in the section “Using
XML Schema Collections.”

NOTE

The XMLDATA keyword is not permitted when ROOT is specified or when a tag name
parameter has been passed to RAW (for example, RAW(‘ChainElement’)).

Note also that XMLSCHEMA takes an optional string-valued parameter, allowing you to
specify a value for the target namespace of the produced XML (for example, XMLSCHEMA
(‘urn:www-samspublishing-com:examples)).

Working with Binary Columns
Even though XML is purely a text-based markup language, FOR XML still has the capability
to generate XML that contains data selected from binary–data-typed columns, such as
image, binary, and varbinary. To do this, SQL Server base-64 encodes the data, resulting
in a long character string.

To implement this in a query, you add joins from the table Production.Product to
Production.ProductProductPhoto and then to Production.ProductPhoto, which contains
the varbinary(max)–data-typed ThumbNailPhoto column. Then you add the keywords
BINARY BASE64 to the FOR XML clause. Listing 47.5 illustrates this and also shows the
schema generated by the XMLSCHEMA keyword. (Note that the base-64 character data is
truncated in the listing for brevity with the character string {...}.)

LISTING 47.5 A SELECT Statement That Uses FOR XML RAW and the BINARY BASE64
Option

SELECT TOP 1 Name, ListPrice, Color, Weight, ThumbNailPhoto

FROM Production.Product [Product]

JOIN Production.ProductProductPhoto PhotoJunction ON

[Product].ProductId = PhotoJunction.ProductId

JOIN Production.ProductPhoto Photo

ON Photo.ProductPhotoId = PhotoJunction.ProductPhotoId

WHERE Name LIKE ‘%Chain%’

ORDER BY Name

FOR XML RAW(‘ChainElement’),

ptg

1872 CHAPTER 47 Using XML in SQL Server 2008

ELEMENTS XSINIL,

ROOT(‘ChainDoc’),

XMLSCHEMA(‘urn:www-samspublishing-com:examples’),

BINARY BASE64

go

<ChainDoc xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<xsd:schema targetNamespace=”urn:www-samspublishing-com:examples”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:sqltypes=”http://schemas.microsoft.com/sqlserver/2004/sqltypes”

elementFormDefault=”qualified”>

<xsd:import

namespace=http://schemas.microsoft.com/sqlserver/2004/sqltypes

schemaLocation=”http://schemas.microsoft.com/sqlserver/2004/

sqltypes/sqltypes.xsd”

/>

<xsd:element name=”ChainElement”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”Name” nillable=”1”>

<xsd:simpleType

sqltypes:sqlTypeAlias=”[AdventureWorks2008].[dbo].[Name]”>

<xsd:restriction base=”sqltypes:nvarchar” sqltypes:localeId=”1033”

sqltypes:sqlCompareOptions=”IgnoreCase IgnoreKanaType

IgnoreWidth” sqltypes:sqlSortId=”52”>

<xsd:maxLength value=”50” />

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name=”ListPrice” type=”sqltypes:money” nillable=”1” />

<xsd:element name=”Color” nillable=”1”>

<xsd:simpleType>

<xsd:restriction base=”sqltypes:nvarchar” sqltypes:localeId=”1033”

sqltypes:sqlCompareOptions=”IgnoreCase IgnoreKanaType

IgnoreWidth” sqltypes:sqlSortId=”52”>

<xsd:maxLength value=”15” />

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name=”Weight” nillable=”1”>

<xsd:simpleType>

<xsd:restriction base=”sqltypes:decimal”>

<xsd:totalDigits value=”8” />

<xsd:fractionDigits value=”2” />

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

ptg

1873Relational Data As XML: The FOR XML Modes
4

7

<xsd:element

name=”ThumbNailPhoto” type=”sqltypes:varbinary” nillable=”1”/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

<ChainElement xmlns=”urn:www-samspublishing-com:examples”>

<Name>Chain</Name>

<ListPrice>20.2400</ListPrice>

<Color>Silver</Color>

<Weight xsi:nil=”true” />

<ThumbNailPhoto>R0lGODlhUAAxAPcAAKeamoyLj {...}</ThumbNailPhoto>

</ChainElement>

</ChainDoc>

AUTO Mode

When RAW mode is not enough, FOR XML AUTO provides a few more ways to shape your
XML output. Its usefulness derives from its capability to produce nested XML elements
from rows derived by joining multiple tables, in contrast to the flat structure of RAW mode.

The ROOT keyword introduced earlier also applies with AUTO mode, and it is good practice
to continue to use it in your queries. Like RAW mode, AUTO mode produces attribute-centric
XML by default, but you can change this by using the ELEMENTS keyword. XSINIL and
XMLSCHEMA are also applicable here, having the same effect as with RAW mode. Listing 47.6
illustrates these points.

LISTING 47.6 A SELECT Statement That Uses FOR XML AUTO, ELEMENTS XSINIL,
ROOT

SELECT

Color,

Offer.SpecialOfferId Id,

Product.ProductId Id,

Name,

Description [Desc],

Size

FROM Sales.SpecialOffer Offer

JOIN Sales.SpecialOfferProduct OP ON

OP.SpecialOfferId = Offer.SpecialOfferId

JOIN Production.Product Product ON

Product.ProductId = OP.ProductId

WHERE Name LIKE ‘Mountain Bike%’

FOR XML AUTO, ELEMENTS XSINIL, ROOT(‘MountainBikeSpecials’)

go

ptg

1874 CHAPTER 47 Using XML in SQL Server 2008

<MountainBikeSpecials xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<Product>

<Color>White</Color>

<Id>710</Id>

<Name>Mountain Bike Socks, L</Name>

<Size>L</Size>

<Offer>

<Id>1</Id>

<Desc>No Discount</Desc>

</Offer>

</Product>

<Product>

<Color>White</Color>

<Id>709</Id>

<Name>Mountain Bike Socks, M</Name>

<Size>M</Size>

<Offer>

<Id>1</Id>

<Desc>No Discount</Desc>

</Offer>

<Offer>

<Id>2</Id>

<Desc>Volume Discount 11 to 14</Desc>

</Offer>

<Offer>

<Id>3</Id>

<Desc>Volume Discount 15 to 24</Desc>

</Offer>

<Offer>

<Id>4</Id>

<Desc>Volume Discount 25 to 40</Desc>

</Offer>

</Product>

</MountainBikeSpecials>

With AUTO mode, the keywords BINARY BASE64 have the same effect as with RAW mode,
with one major difference: RAW mode generates an error if binary data is selected and
BINARY BASE64 is not specified; therefore, it is required. With AUTO mode, binary data may
be selected without specifying BINARY BASE64, although SQL Server requires that the
primary key of the table containing the binary data be selected. This is so that SQL Server
can generate a path to the binary field, using the primary key to address the row (in place
of the encoded data), of the following form:

’dbobject/SchemaName.TableName[@PrimaryKeyName=”PrimaryKeyValue”]/@ColumnName’

ptg

1875Relational Data As XML: The FOR XML Modes
4

7

This special XPath-like output is unique to AUTO mode and is useful for applications that
incorporate SQLXML’s URL-based querying to return the desired binary data. Listing 47.7
illustrates this XML production.

LISTING 47.7 Addressing Binary Data That Uses FOR XML AUTO

SELECT Top 1

Photo.ProductPhotoId, ThumbNailPhoto, Color, Offer.SpecialOfferId Id,

Product.ProductId Id, Name, Description [Desc], Size

FROM Sales.SpecialOffer Offer

JOIN Sales.SpecialOfferProduct OP ON

OP.SpecialOfferId = Offer.SpecialOfferId

JOIN Production.Product Product ON

Product.ProductId = OP.ProductId

JOIN Production.ProductProductPhoto PhotoJunction ON

Product.ProductId = PhotoJunction.ProductId

JOIN Production.ProductPhoto Photo ON

Photo.ProductPhotoId = PhotoJunction.ProductPhotoId

WHERE Name LIKE ‘Mountain Bike%’

FOR XML AUTO, ELEMENTS XSINIL, ROOT(‘MountainBikeSpecials’)

go

<MountainBikeSpecials xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<Photo>

<ProductPhotoId>1</ProductPhotoId>

<ThumbNailPhoto>

dbobject/Production.ProductPhoto[@ProductPhotoID=’1’]/@ThumbNailPhoto

</ThumbNailPhoto>

<Product>

<Color>White</Color>

<Id>710</Id>

<Name>Mountain Bike Socks, L</Name>

<Size>L</Size>

<Offer>

<Id>1</Id>

<Desc>No Discount</Desc>

</Offer>

</Product>

</Photo>

</MountainBikeSpecials>

Notice how you can generate an additional level of nesting (with the Photo element) in
the XML hierarchy simply by selecting a value from an additional table.

SQL Server has a set of rules it uses for nesting elements in AUTO mode. As rows are
streamed to output, the XML engine studiously compares the values in adjacent columns

ptg

1876 CHAPTER 47 Using XML in SQL Server 2008

to check for differences from the first row on down to the last. When one or more
primary keys have been selected in the query, only the primary key values are used in the
column comparison. When no primary keys have been selected, all column values are
used in the comparison, except for columns of type ntext, text, image, or xml, whose
values are always assumed to be different.

The following example includes primary keys in the SELECT statement:

SELECT Offer.SpecialOfferId, Product.ProductId, Name

FROM Sales.SpecialOffer Offer

JOIN Sales.SpecialOfferProduct OP ON

OP.SpecialOfferId = Offer.SpecialOfferId

JOIN Production.Product Product ON

Product.ProductId = OP.ProductId

WHERE Name LIKE ‘Mountain Bike%’

go

SpecialOfferId ProductId Name

--

1 710 Mountain Bike Socks, L

1 709 Mountain Bike Socks, M

2 709 Mountain Bike Socks, M

3 709 Mountain Bike Socks, M

4 709 Mountain Bike Socks, M

(5 row(s) affected)

As the XML engine works down this result set, it sees that SpecialOfferId has the same
value in the first and second rows, but ProductId differs in the same rows. It therefore
creates one Offer element and nests the two different Product values in Product subele-
ments.

Column selection order is also a determining factor in AUTO mode XML composition. Notice
that even though in Rows 2–5, the ProductId remains 709, the XML engine still nests
Product under Offer because Offer.SpecialOfferId is specified first in the list of selected
columns. When FOR XML AUTO is added to the preceding query, it results in the following:

<MountainBikeSpecials>

<Offer SpecialOfferId=”1”>

<Product ProductId=”710” Name=”Mountain Bike Socks, L” />

<Product ProductId=”709” Name=”Mountain Bike Socks, M” />

</Offer>

<Offer SpecialOfferId=”2”>

<Product ProductId=”709” Name=”Mountain Bike Socks, M” />

</Offer>

<Offer SpecialOfferId=”3”>

<Product ProductId=”709” Name=”Mountain Bike Socks, M” />

</Offer>

ptg

1877Relational Data As XML: The FOR XML Modes
4

7

<Offer SpecialOfferId=”4”>

<Product ProductId=”709” Name=”Mountain Bike Socks, M” />

</Offer>

</MountainBikeSpecials>

To tell the XML engine that you prefer to nest Offer under Product, you simply change
the column order in the SELECT statement:

SELECT Product.ProductId, Offer.SpecialOfferId, Name

FROM Sales.SpecialOffer Offer

JOIN Sales.SpecialOfferProduct OP ON

OP.SpecialOfferId = Offer.SpecialOfferId

JOIN Production.Product Product ON

Product.ProductId = OP.ProductId

WHERE Name LIKE ‘Mountain Bike%’

FOR XML AUTO, ROOT(‘MountainBikeSpecials’)

go

<MountainBikeSpecials>

<Product ProductId=”710” Name=”Mountain Bike Socks, L”>

<Offer SpecialOfferId=”1” />

</Product>

<Product ProductId=”709” Name=”Mountain Bike Socks, M”>

<Offer SpecialOfferId=”1” />

<Offer SpecialOfferId=”2” />

<Offer SpecialOfferId=”3” />

<Offer SpecialOfferId=”4” />

</Product>

</MountainBikeSpecials>

EXPLICIT Mode

FOR XML EXPLICIT is a powerful, oft-maligned, somewhat daunting mode of SQL Server
XML production. It allows for the shaping of row data in any desirable XML structure, but
the SQL required to produce it can easily end up being hundreds (or, in some cases, thou-
sands) of lines long, leading to a potential maintenance headache.

With EXPLICIT mode, the query author is responsible for making sure the XML is well
formed and that the rowset generated behind the scenes corresponds to a very particular
format.

The FOR XML PATH statement renders FOR XML EXPLICIT obsolete except when you need to
output column values as CDATA. This section therefore briefly covers the required query
structure for and provides an example of this particular case.

ptg

1878 CHAPTER 47 Using XML in SQL Server 2008

NOTE

It’s not an easy task to understand EXPLICIT mode just by reading. Practice is essen-
tial. After you’ve succeeded in using it a few times, it will begin to feel like an intuitive,
albeit complex, way of doing things.

Microsoft calls the relational structure behind EXPLICIT mode queries the universal table.
The universal table has a hierarchical structure sometimes known as the adjacency list
model. Put simply, this means that the first column in the table is the primary key, and the
second column is a foreign key referencing it, creating a parent–child relationship
between rows in the same table. XML similarly models this relationship through the
nesting of elements because nodes contained inside other nodes also hold a parent–child
relationship.

Each level of hierarchical depth in the universal table is created by a separate SELECT state-
ment, and each SELECT is unioned to the next, producing the complete rowset. Some
details on the table structure help make this clearer:

. The first column in the universal table (think of it as the primary key) must be
named Tag and hold an integer value. The value of Tag can be thought of as repre-
senting the depth of the node that will be produced.

. The second column must be named Parent and must refer to a valid value of Tag, or
null, in the case of the first branch.

. The rest of the selected columns in the query are mapped either to attributes,
subelements, or CDATA nodes, or they may be selected but not produced in the
resultant XML.

Listing 47.8 shows a query that returns a universal table. Later, you can change it so that
it returns XML by adding FOR XML EXPLICIT.

LISTING 47.8 A Query That Generates the Universal Table Rowset Format

SELECT

1 as Tag,

NULL as Parent,

Reason.ScrapReasonId ‘ScrapReason!1!ScrapReasonId!element’,

Name ‘ScrapReason!1!!cdata’,

WorkOrderId ‘WorkOrder!2!WorkOrderId’,

NULL ‘WorkOrder!2!ScrappedQuantity’

FROM Production.ScrapReason Reason

JOIN Production.WorkOrder WorkOrder

ON Reason.ScrapReasonId = WorkOrder.ScrapReasonID

WHERE Reason.ScrapReasonId = 12

UNION ALL

ptg

1879Relational Data As XML: The FOR XML Modes
4

7

SELECT

2 as Tag,

1 as Parent,

Reason.ScrapReasonId,

NULL,

WorkOrderId,

ScrappedQty

FROM Production.ScrapReason Reason

JOIN Production.WorkOrder WorkOrder

ON Reason.ScrapReasonId = WorkOrder.ScrapReasonID

WHERE Reason.ScrapReasonId = 12

The first SELECT statement in the union must use a special column alias syntax that tells the
XML generator how to shape each column. This is the syntax:

element_name!corresponding_Tag_value!attribute_or_subelement_name[!directive]

The following list explains each part of the preceding syntax:

. element_name—The name of the generated element associated with each row.

. corresponding_Tag_value—The value of Tag for the context rowset.

. attribute_or_subelement_name—The name of the attribute or subelement associ-
ated with the column in the context row.

. directive—An optional directive to the XML generator. The possible values are

. element—When specified, tells the XML generator to produce the column
associated with attribute_or_subelement_name as a subelement. (An attribute is
produced by default.)

. hide—Tells the XML generator not to show the associated column data at all
in the produced XML. This may be needed if there is some side effect desired
from selecting the column but the data does not need to be shown.

. cdata—Tells the XML generator to output the associated column data as a
CDATA section.

. xml—Disables entitization of text data. This can lead to non-well-formed XML
because the XML special characters (&, ’, ”, <, >) are output directly.

In all subsequent SELECT statements, the columns corresponding to the rowsets identified
by Tag are selected according to the layout specified in the first SELECT.

Notice how in Listing 47.8, NULL is selected for WorkOrder!2!ScrappedQuantity. This is
done because the value for that column will be filled in by the SELECT statement having a
Tag value of 2, as specified in corresponding_Tag_value. Likewise, ScrappedQty is selected
only in the second SELECT statement (where NULL is supplied for ScrapReason!1!!cdata)
because Name is selected in this column in the first SELECT. The primary key

ptg

1880 CHAPTER 47 Using XML in SQL Server 2008

(ScrapReasonId) that is the common thread joining both sets of rows must be specified in
both SELECT statements for this query to work.

Now that you have an understanding of the universal table structure that must be built,
the only thing left to do is add FOR XML EXPLICIT to the query in Listing 47.8 and then
order the output according to the desired element hierarchy. Listing 47.9 illustrates the
final query and its result.

LISTING 47.9 Using FOR XML EXPLICIT

SELECT

1 as Tag,

NULL as Parent,

Reason.ScrapReasonId ‘ScrapReason!1!ScrapReasonId!element’,

Name ‘ScrapReason!1!!cdata’,

WorkOrderId ‘WorkOrder!2!WorkOrderId’,

NULL ‘WorkOrder!2!ScrappedQuantity’

FROM Production.ScrapReason Reason

JOIN Production.WorkOrder WorkOrder

ON Reason.ScrapReasonId = WorkOrder.ScrapReasonID

WHERE Reason.ScrapReasonId = 12

UNION ALL

SELECT

2 as Tag,

1 as Parent,

Reason.ScrapReasonId,

NULL,

WorkOrderId,

ScrappedQty

FROM Production.ScrapReason Reason

JOIN Production.WorkOrder WorkOrder

ON Reason.ScrapReasonId = WorkOrder.ScrapReasonID

WHERE Reason.ScrapReasonId = 12

ORDER BY ‘ScrapReason!1!ScrapReasonId!element’, ‘WorkOrder!2!WorkOrderId’

FOR XML EXPLICIT, ROOT(‘ScrappedWorkOrders’)

go

<ScrappedWorkOrders>

<ScrapReason>

<ScrapReasonId>12</ScrapReasonId>

<![CDATA[Thermoform temperature too high]]>

<WorkOrder WorkOrderId=”2573” ScrappedQuantity=”14” />

</ScrapReason>

<ScrapReason>

<ScrapReasonId>12</ScrapReasonId>

<![CDATA[Thermoform temperature too high]]>

<WorkOrder WorkOrderId=”4972” ScrappedQuantity=”1” />

ptg

1881Relational Data As XML: The FOR XML Modes
4

7

</ScrapReason>

<ScrapReason>

<ScrapReasonId>12</ScrapReasonId>

<![CDATA[Thermoform temperature too high]]>

<WorkOrder WorkOrderId=”7771” ScrappedQuantity=”6” />

</ScrapReason>

<ScrapReason>

<ScrapReasonId>12</ScrapReasonId>

<![CDATA[Thermoform temperature too high]]>

<WorkOrder WorkOrderId=”9071” ScrappedQuantity=”1” />

</ScrapReason>

<ScrapReason>

<ScrapReasonId>12</ScrapReasonId>

<![CDATA[Thermoform temperature too high]]>

<WorkOrder WorkOrderId=”10274” ScrappedQuantity=”1” />

</ScrapReason>

{...}

</ScrappedWorkOrders>

In the ORDER BY clause, you tell the XML generator to first produce ScrapReason elements
and then nest the WorkOrder elements underneath them.

Like the other modes, FOR XML EXPLICIT supports the BINARY BASE64 keywords, although
base-64 encoding is performed automatically by the parser, even if not specified.

The ROOT keyword can also be used, although not when specifying XMLDATA. XMLSCHEMA is
not supported as of this writing. ELEMENTS and XSINIL are also not supported, probably
because you can get along without them, thanks to the many shaping options available.

PATH Mode

PATH mode is the latest and best addition to the FOR XML syntax. It provides a straightfor-
ward way of using a limited XPath syntax to specify the shaping of query-produced
XML. It is also a very compact syntax in comparison with some of the other modes,
especially EXPLICIT.

Let’s look at how PATH mode works by re-creating the XML produced in Listing 47.9, this
time using PATH mode. Listing 47.10 illustrates this mode.

LISTING 47.10 Using FOR XML PATH to Simplify an EXPLICIT Query

SELECT

Reason.ScrapReasonId,

Name ‘text()’,

WorkOrderId ‘WorkOrder/@WorkOrderId’,

ScrappedQty ‘WorkOrder/@ScrappedQuantity’

FROM Production.ScrapReason Reason

ptg

1882 CHAPTER 47 Using XML in SQL Server 2008

JOIN Production.WorkOrder WorkOrder

ON Reason.ScrapReasonId = WorkOrder.ScrapReasonID

WHERE Reason.ScrapReasonId = 12

FOR XML PATH(‘ScrapReason’), ROOT(‘ScrappedWorkOrders’)

go

<ScrappedWorkOrders>

<ScrapReason>

<ScrapReasonId>12</ScrapReasonId>

Thermoform temperature too high

<WorkOrder WorkOrderId=”2573” ScrappedQuantity=”14” />

</ScrapReason>

<ScrapReason>

<ScrapReasonId>12</ScrapReasonId>

Thermoform temperature too high

<WorkOrder WorkOrderId=”4972” ScrappedQuantity=”1” />

</ScrapReason>

<ScrapReason>

<ScrapReasonId>12</ScrapReasonId>

Thermoform temperature too high

<WorkOrder WorkOrderId=”7771” ScrappedQuantity=”6” />

</ScrapReason>

<ScrapReason>

<ScrapReasonId>12</ScrapReasonId>

Thermoform temperature too high

<WorkOrder WorkOrderId=”9071” ScrappedQuantity=”1” />

</ScrapReason>

{...}

</ScrappedWorkOrders>

The only difference between Listing 47.10 and Listing 47.9 is that here you aren’t
outputting a CDATA section—just a text node for the ScrapReason.Name column. Which
FOR XML query would you rather maintain?

As the query in Listing 47.10 illustrates, the PATH keyword works like RAW in that all
columns values are wrapped in a default element. Like RAW, PATH takes a parameter to
specify the name of this default element. If a name is not specified, row is used, just as it
is with RAW.

Unlike RAW, PATH mode is element-centric. When a column is not specified to be generated
as an attribute (for example, using an XPath column alias, such as WorkOrderId ‘@Id’), it
is produced as a subelement of the default tag.

You can also specify the ROOT keyword and the ELEMENTS XSINIL keywords in the same
manner as RAW, although using ELEMENTS is somewhat redundant because PATH mode
defaults to element-centric XML. Using ELEMENTS XSINIL is still the only way to produce
null values in the XML.

ptg

1883Relational Data As XML: The FOR XML Modes
4

7

You are not allowed to specify XMLSCHEMA and XMLDATA. BINARY BASE64 may be specified,
but it is not required because base-64 encoded data is automatically generated.

To build the XML, the engine first works down the column list to figure out the desired
XML shape to be output. XML is then generated for each row, based on the shape speci-
fied by the column names or aliases. Columns can be aliased using the literal string XPath
format, or they may have no alias at all.

In the example in Listing 47.10, the following structure is specified by the column
selections:

. For Reason.ScrapReasonId, output a subelement of ScrapReason (specified by
PATH(‘ScrapReason’)) called ScrapReasonId. When no alias is specified, the default
shape is element-centric.

. For Name, output the value as a text-only child node of ScrapReason.

. For WorkOrderId, output a child node of ScrapReason called WorkOrder and add an
attribute called WorkOrderId to it.

. For ScrappedQty, output an attribute of WorkOrder called ScrappedQuantity.

Usually, when you set out to shape XML, you intuitively know where you want your
values to be, so it’s more a matter of practice and application than memorization. When
you know the basics, the syntax is intuitive enough to create whatever XML you desire.

FOR XML PATH has a few other neat features, which Listing 47.11 illustrates in one fell swoop.

LISTING 47.11 Demonstrating Several Features of FOR XML PATH in a Single Query

SELECT

Reason.ScrapReasonId ‘*’,

‘Comment: Name = ‘ + Name ‘comment()’,

ModifiedDate ‘processing-instruction(ModDatePI)’,

(

SELECT WorkOrderId ‘data()’

FROM Production.WorkOrder WorkOrder

JOIN Production.ScrapReason Reason

ON Reason.ScrapReasonId = WorkOrder.ScrapReasonID

WHERE Reason.ScrapReasonId = 12

ORDER BY WorkOrderId desc

FOR XML PATH(‘’)

) ‘WorkOrders/@WorkOrderIds’

FROM Production.ScrapReason Reason

WHERE Reason.ScrapReasonId = 12

FOR XML PATH(‘ScrappedWorkOrder’), ROOT(‘ScrappedWorkOrders’)

go

<ScrappedWorkOrders>

ptg

1884 CHAPTER 47 Using XML in SQL Server 2008

<ScrapReason>12

<!--Comment: Name = Thermoform temperature too high-->

<?ModDatePI 1998-06-01T00:00:00?>

<WorkOrders WorkOrderIds=”72370 72273 70875 69474 69173 68573 65970 60472

56975 56875 55275 53771 50370 47670 45773 42071 41975 39372 36673

36671 32872 32775 32770 31073 29370 27771 24174 22673 22670 17674

16073 13073 10274 9071 7771 4972 2573” />

</ScrapReason>

</ScrappedWorkOrders>

Let’s review the selected columns in Listing 47.11: the first is aliased with the asterisk (*)
character. This character tells SQL Server to inline-generate the data for that column (as
text). (Using the text() node test would do the same in this case.)

Next, the comment() node test is specified for Name, telling the XML generator to output its
value in a comment. For clarity’s sake, we added a little syntactic sugar in this statement
by prepending the text ’Comment: Name = ‘ to the value produced inside the comment.

Next, the processing-instruction() node test is specified to output each value of
ModifiedDate to a new processing instruction called ModDatePI.

Finally, the fourth column is produced as a list of WorkOrderId values, using the magical
data() keyword in a nested FOR XML PATH statement. data() tells SQL Server to generate a
space-delimited list of atomic column values, one value for each row in the result set.

Note that the nested query is merely used to generate a list of WorkOrderId values. The
empty string is given for the PATH keyword, telling the XML engine not to generate a
default element at all, so no XML is generated whatsoever! You can extract and test the
statement to see this in action.

The nested query applies the same WHERE clause as its parent to filter WorkOrderId values
where the value of ScrapReasonId is 12. This ensures the relevancy of the nested data to
the outer query.

The resulting list of values is grafted to the XML of the outer statement, using the column
alias ’WorkOrders/@WorkOrderIds’.

FOR XML and the xml Data Type

By default, the results of any FOR XML query (using all four modes) is streamed to output
as a one-column/one-row dataset with a column named XML_F52E2B61-18A1-11d1-B105-
00805F49916B of type nvarchar(max). (In SQL Server 2000, this was a stream of XML split
into multiple varchar(8000) rows.)

One of the biggest limitations of SQL Server 2000’s XML production was the inability to
save the results of a FOR XML query to a variable or store it in a column directly without
using some middleware code to first save the XML as a string and then insert it back into
an ntext or nvarchar column and then select it out again.

ptg

1885Relational Data As XML: The FOR XML Modes
4

7

Today, SQL Server 2008 natively supports column storage of XML, using the xml data
type. Be sure to read the section “Using the xml Data Type,” later in this chapter, for a
complete overview.

You can easily convert FOR XML results to instances of xml by using the TYPE directive with
all four modes (RAW, AUTO, EXPLICIT, and PATH). Listing 47.12 demonstrates the use of FOR
XML PATH with the TYPE directive.

LISTING 47.12 Using FOR XML PATH, TYPE to Create an Instance of the xml Data Type

SELECT *

FROM Production.WorkOrder WorkOrder

WHERE ScrapReasonId = 12

AND WorkOrderId = 72370

FOR XML RAW(‘WorkOrder’), ELEMENTS XSINIL, ROOT(‘WorkOrders’), TYPE

go

<WorkOrders xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<WorkOrder>

<WorkOrderID>72370</WorkOrderID>

<ProductID>329</ProductID>

<OrderQty>48</OrderQty>

<StockedQty>47</StockedQty>

<ScrappedQty>1</ScrappedQty>

<StartDate>2008-07-01T00:00:00</StartDate>

<EndDate>2008-07-11T00:00:00</EndDate>

<DueDate>2008-07-12T00:00:00</DueDate>

<ScrapReasonID>12</ScrapReasonID>

<ModifiedDate>2008-07-11T00:00:00</ModifiedDate>

</WorkOrder>

</WorkOrders>

Notice that in contrast to the preceding FOR XML examples, in this example, the query
window in SQL Server Management Studio (SSMS) no longer displays the lengthy XML
column UUID in the results frame, nor on the window tab. The results have been cast to a
single instance of the xml data type, ready for use in variables of type xml, in subsequent
queries, inserted into xml columns, or returned to the client.

The five xml data type methods—value(), exist(), nodes(), query(), and modify(),
discussed later in this chapter, in the section “The Built-in xml Data Type Methods”—can
be intermixed with relational queries by using all FOR XML modes. This makes it even
easier to shape your XML exactly the way you want.

Listing 47.13 demonstrates how you can nest XQuery queries inside regular FOR XML T-
SQL to produce XML documents built from both relational and XML sources.

ptg

1886 CHAPTER 47 Using XML in SQL Server 2008

LISTING 47.13 Bridging the Gap Between Relational and XML Data by Using FOR XML PATH
and the xml Data Type

SELECT

FirstName,

LastName,

E.JobTitle,

Resume.query(

‘declare namespace ns=”http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/Resume”;

//ns:Education

‘

) ‘*’

FROM HumanResources.Employee E

JOIN Person.Person C on E.BusinessEntityID = C. BusinessEntityID

JOIN HumanResources.JobCandidate J on J. BusinessEntityID = E. BusinessEntityID

WHERE J.JobCandidateId = 8

FOR XML PATH(‘AWorthyJobCandidate’), TYPE

go

<AWorthyJobCandidate>

<FirstName>Peng</FirstName>

<LastName>Wu</LastName>

<Title>Quality Assurance Supervisor</Title>

<ns:Education xmlns:ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume”>

<ns:Edu.Level> </ns:Edu.Level>

<ns:Edu.StartDate>1986-09-15Z</ns:Edu.StartDate>

<ns:Edu.EndDate>1990-05-15Z</ns:Edu.EndDate>

<ns:Edu.Degree>Bachelor of Science</ns:Edu.Degree>

<ns:Edu.Major> </ns:Edu.Major>

<ns:Edu.Minor />

<ns:Edu.GPA>3.3</ns:Edu.GPA>

<ns:Edu.GPAScale>4</ns:Edu.GPAScale>

<ns:Edu.School>Western University</ns:Edu.School>

<ns:Edu.Location>

<ns:Location>

<ns:Loc.CountryRegion>US </ns:Loc.CountryRegion>

<ns:Loc.State>WA </ns:Loc.State>

<ns:Loc.City>Seattle</ns:Loc.City>

</ns:Location>

</ns:Edu.Location>

</ns:Education>

</AWorthyJobCandidate>

ptg

1887XML As Relational Data: Using OPENXML
4

7

In this example, the asterisk (*) is used as a column alias for the results of the nested
query (on HumanResources.JobCandidate.Resume), telling SQL Server to simply output the
XML inline with the other nodes.

XML As Relational Data: Using OPENXML
This section covers what might be called the inverse of FOR XML: OPENXML. You use
OPENXML in T-SQL queries to read XML data and shred (or decompose) it into relational
result sets. OPENXML is part of the SELECT statement, and you use it to generate a table
from an XML source.

The first step required in this process is a call to the system stored procedure
sp_xml_preparedocument. sp_xml_preparedocument creates an in-memory representation
of any XML document tree for use in querying. It takes the following parameters:

. An integer output parameter for storing a handle to the document tree

. The XML input data

. An optional XML namespace declaration, used in subsequent OPENXML queries

sp_xml_preparedocument is able to convert the following data types into internal XML
objects: text, ntext, varchar, nvarchar, single-quoted literal strings, and untyped XML
(data from an xml column having no associated schema collection). This is its syntax:

sp_xml_preparedocument integer_variable OUTPUT[, xmltext][, xpath_namespaces]

And here is an example of OPENXML in use:

DECLARE @XmlDoc XML, @iXml int

SET @XmlDoc = ‘

<ex:ExampleDoc xmlns:ex=”urn:www-samspublishing-com:examples”>

<ex:foo>hello</ex:foo>

<ex:bar>sql!</ex:bar>

</ex:ExampleDoc>’

EXEC sp_xml_preparedocument

@iXml OUTPUT,

@XmlDoc,

‘<ExampleDoc xmlns:ex=”urn:www-samspublishing-com:examples”/>’

SELECT id, parentid, nodetype, localname, prefix

FROM OPENXML(@iXml, ‘/ex:ExampleDoc/ex:foo’)

--WITH (foo varchar(10) ‘/ex:ExampleDoc/ex:foo’)

EXEC sp_xml_removedocument @iXml

go

ptg

1888 CHAPTER 47 Using XML in SQL Server 2008

id parentid nodetype localname prefix

3 0 1 foo ex

5 3 3 #text NULL

Notice in the example that the WITH predicate has been commented out. This is to illus-
trate in the query results what is known as an edge table: the XML document in its rela-
tional form. Edge is a term taken from graph theory. It refers to what you might visualize
as a depth line between two nodes.

If the edge table looks familiar, the reason is probably that it bears a resemblance to the
universal table that must be created for EXPLICIT mode. As with the universal table, the
edge table follows the adjacency list model for its hierarchical relationships. The node
types of the input XML are marked in the nodetype column (1 = element, 2 = attribute, 3
= text). Namespaces are stored in namespaceuri, and the data of each node is stored in the
text column.

If you uncomment the WITH predicate and change the query from SELECT * to SELECT

foo, you get back a one-row/one-column table with a column called foo that has the
varchar(10) value hello. This shows that the WITH predicate instructs OPENXML how to
decompose the nodes to columns by using XPath syntax.

The syntax for OPENXML (including the WITH predicate) is as follows:

OPENXML(integer_document_handle_variable int, rowpattern nvarchar,[flags byte])

[WITH (SchemaDeclaration | TableName)]

Let’s match this syntax with the values in the example:

. The first parameter is the local variable @iXml, which acts as a handle to the internal
XML representation.

. The next parameter is a row pattern in XPath syntax that tells OPENXML how to select
nodes into rows. OPENXML generates one row in the result set for each node that
matches this row pattern. This is similar to the .NET XmlDocument object’s
SelectNodes() method, insofar as every matching node in rowpattern returns a row
in the rowset.

. The result set’s columns are then defined, using matching nodes as the context and
the XPath in the column definitions of the WITH predicate to find the values relative
to the node.

. The flags parameter is a combinable byte value that controls how the selected XML
nodes are to be decomposed. The following values are possible:

. 0—Uses attribute-centric decomposition. In this case, each attribute in the
source XML is decomposed into a column. This is the default.

. 1—Uses attribute-centric decomposition. May be combined with flag 2 (that is,
the value 3 may be specified). Combining flags 1 and 2 tells the rowset genera-
tor how to deal with the values in the XML not yet accounted for in the down-

ptg

1889XML As Relational Data: Using OPENXML
4

7

ward parse of the XML document from nodes into rows. In other words,
attribute-centric decomposition takes place before element-centric decomposi-
tion. This point is important because without the combinability of the flags,
only one or the other decomposition will happen, and (lacking a WITH predi-
cate that captures all the nodes) some nodes would not make it into the rowset.

. 2—Uses element-centric decomposition. Combinable with flag 1 (that is,
specify 3).

. 8—Tells the rowset generator how to deal with text data in the metaproperties
(not covered in this chapter). Can be combined with flags 1, 2, or both.

Note that the column generation determined by the flags 0, 1, and 2 can all be overridden
by the XPath expressions expressed in the lines of the WITH predicate. For example, if the 1
flag is specified to map a particular attribute to a column, but in the line of the WITH pred-
icate for that same column, the XPath maps the value from an XML element, the WITH
predicate takes precedence. It’s truly best to just set the value of flags to 3 in most cases,
unless you care to ignore attributes or elements for some reason.

The syntax of the WITH predicate tells the rowset generator which column names and data
types to use when mapping the XML to rows. If the structure of the input XML matches
the schema of a particular table in your database, the name of that table may be specified.
An example of this case occurs when the input XML has been produced from an existing
table, using FOR XML. The values in the FOR XML-produced document have been updated,
and the new values need to make it back into the table. The following code example illus-
trates this common scenario:

DECLARE @JobCandidateXmlDoc XML, @iXml int

SET @JobCandidateXmlDoc = ‘

<JobCandidateUpdate>

<ModifiedDate>

10/5/2008 12:34PM

</ModifiedDate>

</JobCandidateUpdate>’

EXEC sp_xml_preparedocument

@iXml OUTPUT,

@JobCandidateXmlDoc,

‘<JobCandidateUpdate

xmlns:ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume”/>’;

UPDATE HumanResources.JobCandidate

SET ModifiedDate = OXML.ModifiedDate

FROM

(

SELECT *

FROM OPENXML(@iXml, ‘/JobCandidateUpdate’, 2)

WITH HumanResources.JobCandidate

) AS OXML

ptg

1890 CHAPTER 47 Using XML in SQL Server 2008

WHERE JobCandidateId = 8

EXEC sp_xml_removedocument @iXml

go

(1 row(s) affected)

If a table name is not specified, you need to specify a comma-separated list of lines, using
the following syntax:

column_name datatype ‘XPath’

The following list explains each part of the preceding syntax:

. column_name—Provides a relational name for the XML-produced column.

. datatype—Provides a T-SQL data type for the XML-produced column.

. ’XPath’—Specifies a row pattern that matches the nodes in the XML whose values
are to be mapped to the XML-produced column.

When you’re done reading out the XML, it’s important to free the memory used to hold
the internal XML document. You accomplish this by calling the system stored procedure
sp_xml_removedocument, as in the following example:

EXEC sp_xml_removedocument @iXml

Using the xml Data Type
The xml data type is a real problem solver for those who use both XML and SQL Server on
a daily basis. Relational columns and XML data can be stored side by side in the same
table, in an implementation that plays to the strengths of both. With SQL Server’s power-
ful XML storage, validation, querying, and indexing capabilities, it’s bound to cause quite
a stir in the field of XML content management and beyond.

Some of the benefits of storing XML on the database tier can be realized immediately.
Building middleware using the .NET Framework to manage XML stored in columns, rather
than on the filesystem, is a far more robust solution than depending on the filesystem;
plus, it’s a lot easier to access the content from anywhere.

SQL Server inherently provides to stored XML the traditional DBMS benefits of backup
and restoration, replication and failover, query optimization, granular locking, indexing,
and content validation. The xml data type can be used with local variable declarations, as
the output of user-defined functions, as input parameters to stored procedures and func-
tions, and much more. XML instances containing up to 128 levels of nesting can be stored
in xml columns; deeper instances cannot be inserted, nor may existing instances be made
to increase beyond this depth via the modify() data type method.

xml columns can also be used to store code files such as XSLT, XSD, XHTML, and any
other well-formed content. These files can then be retrieved by user-defined functions
written in managed code hosted by SQL Server. (See Chapter 53, “SQL Server 2008
Reporting Services,” for a full review of SQL Server–managed hosting.)

ptg

1891Using the xml Data Type
4

7

NOTE

In some cases, it’s still a perfectly valid scenario to store XML on the filesystem or in
[n]varchar(max), [n]text, or [n]varbinary(max) columns. In a few cases this
usage is actually recommended. The following summary details some possible XML
usage scenarios and makes suggestions for each.

XML data is stored in an internal binary format and can be up to 2GB in size.

Before we dig into the many uses of the xml data type, it’s worthwhile to consider some of
the different ways you can leverage your institution’s XML with SQL Server:

. XML can be used solely as a temporary output format produced from relational data,
using FOR XML. This applies in scenarios in which the relational tables hold the real-
time data and XML is produced only for read-only application uses, as in the display
of dynamic web pages. In this scenario, the XML really just provides a DBMS-inde-
pendent, easy-to-transform view of the data.

. XML can be stored in relational (nvarchar and so on) columns, as done previously.
This might be the best option when your XML is sometimes not well formed or
when the learning curve to XQuery is too high for an application-delivery time
frame. This is also a valuable option when the byte-for-byte exactness of the XML
must be preserved.

Note that the latter is a necessary option in some institutions because typed XML
(that is, xml data type columns associated with a schema collection) storage disre-
gards extra whitespace characters, namespace prefixes, attribute order, and the XML
declaration to make way for query optimizations. This scenario also leverages fast
data retrieval because, as far as SQL Server is concerned, XML is never brought into
the mix (it’s all relational). The data can still be converted to the xml data type,
using the methods described earlier, and applications can use OPENXML to read it as
well. To read XML into SQL Server from server-side accessible files, you call the T-
SQL OPENROWSET function.

. The XML can be stored as untyped XML—that is, XML stored in an xml data type
column lacking an associated schema collection. This provides the benefits of query-
ing the XML using the data type methods (discussed later in the section “The Built-
in xml Data Type Methods”) and provides server-side checks for well-formed XML.
This scenario also allows for the possibility that XML adhering to any (or no)
schemas may reside in the column. A schema collection could be added later to pro-
vide validation on the existing data (although a few intermediate editing steps may
be necessary if any documents fail to validate).

Safely armed with an understanding of some of the different options and uses, let’s plunge
into our discussion of xml.

ptg

1892 CHAPTER 47 Using XML in SQL Server 2008

Defining and Using xml Columns

You can add columns of type xml to any table by using a familiar Data Definition
Language (DDL) syntax, with a few new twists. Much like their relational counterparts,
xml columns, parameters, and variables may contain null or non-null values.

The following snippet shows the DDL used to create the table
HumanResources.JobCandidate from AdventureWorks2008. The column you are concerned
with is Resume:

CREATE TABLE [HumanResources].[JobCandidate](

[JobCandidateID] [int] IDENTITY(1,1) NOT NULL,

[EmployeeID] [int] NULL,

[Resume] [xml](CONTENT [HumanResources].[HRResumeSchemaCollection]) NULL,

[ModifiedDate] [datetime] NOT NULL

CONSTRAINT [DF_JobCandidate_ModifiedDate] DEFAULT (getdate()),

CONSTRAINT [PK_JobCandidate_JobCandidateID] PRIMARY KEY CLUSTERED

(

[JobCandidateID] ASC

) ON [PRIMARY]

) ON [PRIMARY]

When you are defining objects of type xml, either of two facets may be applied:

. CONTENT—This facet specifies that well-formed XML documents as well as fragments
may be inserted into the xml column or variable. (CONTENT is the default and may be
omitted from the definition.)

Fragments may have more than one top-level node (as is produced, by default, using
FOR XML), and elements may be mixed with text-only nodes.

. DOCUMENT—This facet specifies that only well-formed, valid XML conforming to a
specified schema collection may be stored. Updates to the column must also result
in schema-valid, well-formed XML.

XML schema collections can be associated with xml variables, parameters, or columns. The
name of the schema collection is specified directly after the chosen facet, as is done in
JobCandidate.Resume.

The following code example defines a typed xml local variable that allows only valid
Resume data to be stored in it:

DECLARE @ValidWellFormed xml (DOCUMENT HumanResources.HRResumeSchemaCollection)

Trying to insert the following well-formed but invalid document throws an error that says
the first (and only) ThisBlowsUp element in the document is not declared in any of the
schemas in HRResumeSchemaCollection:

SELECT @ValidWellFormed = ‘<ThisBlowsUp/>’

go

ptg

1893Using the xml Data Type
4

7

XML Validation: Declaration not found for element ‘ThisBlowsUp’.

Location:/*:ThisBlowsUp[1]

When you change the facet to CONTENT (the default) and remove the schema association,
the following is possible:

DECLARE @WellFormed xml

SELECT @WellFormed = ‘<ThisWorks/>’

go

Command(s) completed successfully.

When defining xml columns, you can specify defaults and constraints just as you do with
relational columns. Consider the following example:

CREATE TABLE XmlExample

(

XmlColumn xml NOT NULL DEFAULT CONVERT(xml,’<root/>’,0)

)

This example creates an xml column called XmlColumn that starts out having an empty root

node. Notice how the string ’<root/>’ is converted to the xml type. This is actually not
necessary because conversions from literal strings and from varchar to xml are implicit.

The next example adds a table-level constraint to XmlColumn to make sure the root node
always exists. It depends on a scalar-valued user-defined function to do its validation work:

CREATE FUNCTION dbo.fn_XmlColumnNotNull

(

@XmlColumnValue xml

)

RETURNS bit

AS

BEGIN

RETURN @XmlColumnValue.exist(‘/root’)

END

GO

CREATE TABLE XmlExample

(

XmlColumn xml NOT NULL DEFAULT CONVERT(xml,’<root/>’,0)

)

GO

ALTER TABLE XmlExample WITH CHECK

ADD CONSTRAINT CK_XmlExample_HasRoot

CHECK (dbo.fn_XmlColumnNotNull(XmlColumn) = 1)

The following statement thus fails:

INSERT XmlExample SELECT ‘<foo/>’

ptg

1894 CHAPTER 47 Using XML in SQL Server 2008

But this statement succeeds:

INSERT XmlExample SELECT ‘<root><foo/></root>’

Let’s say you manage the data for a company that has just upgraded from SQL Server 2000
to 2008. You already store all your XML inside ntext columns, and it’s time to convert
those columns to xml. You can do this easily if the stored XML is well formed, as in the
following example:

CREATE TABLE NTextXml

(

NTextXmlColumn ntext NULL

)

GO

INSERT NTextXml

SELECT

‘<feedback_review>

<parts_order id=”106”>

<customer_comment>Lot's of Junk!</customer_comment>

</parts_order>

</feedback_review>’

GO

ALTER TABLE NTextXml

ALTER COLUMN NTextXmlColumn xml NULL

Next, you would like to ensure that all your XML validates against a schema. To change the
column from typed to untyped XML by associating a schema, you execute the following:

ALTER TABLE NTextXml

ALTER COLUMN NTextXmlColumn xml

(DOCUMENT HumanResources.HRResumeSchemaCollection)

go

XML Validation: Declaration not found for element ‘feedback_review’.

Location: /*:feedback_review[1]

The statement has been terminated.

Notice the error generated. The reason is that the tags used are not defined in the
schemas of HRResumeSchemaCollection, so the XML does not validate, and the ALTER

TABLE statement fails. What you really want is for the XML to validate against your own
schema, which is described in the next section.

Using XML Schema Collections

In this section, you define a simple XML schema, add it to a new schema collection stored
on the server, and create a table where you can store instances of this schema. You also
add a check constraint to ensure that the value of the ProductId attribute of the XML’s
root node matches the value of the ProductId column, using the xml data type value()
method (discussed later in this chapter, in the section, “The Built-in xml Data Type

ptg

1895Using the xml Data Type
4

7

Methods”). The foreign key constraint you define on ProductId also serves to ensure that
both ProductId values reference a primary key value in HumanResources.Product.

The real-world concept behind this sample schema is that it defines groups of customer
feedback calls and subsequent corporate responses pertaining to different kinds of orders.
Listing 47.14 shows the schema and table definition.

LISTING 47.14 An XSD and Table for Modeling and Storing Customer Feedback Reviews

use AdventureWorks2008

go

CREATE XML SCHEMA COLLECTION Sales.FeedbackSchemaCollection AS

‘<?xml version=”1.0”?>

<xsd:schema

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”urn:www-samspublishing-com:examples:feedback_review_xsd”

xmlns=”urn:www-samspublishing-com:examples:feedback_review_xsd”

elementFormDefault=”qualified”

attributeFormDefault=”unqualified”>

<xsd:element name=”feedback_review” type=”feedbackReviewType”/>

<xsd:complexType name=”feedbackReviewType”>

<xsd:sequence minOccurs=”1” maxOccurs=”unbounded”>

<xsd:element name=”order” type=”orderType”/>

</xsd:sequence>

<xsd:attribute

name=”product_id”

type=”xsd:integer”

use=”optional”/>

</xsd:complexType>

<xsd:complexType name=”feedbackType” mixed=”true”>

<xsd:attribute name=”id” type=”xsd:integer” use=”required”/>

</xsd:complexType>

<xsd:complexType name=”orderType”>

<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>

<xsd:element name=”customer_comment” type=”feedbackType”/>

<xsd:element name=”company_response” type=”feedbackType”/>

</xsd:choice>

<xsd:attribute name=”id” type=”xsd:integer” use=”required”/>

<xsd:attribute name=”type” use=”required”>

<xsd:simpleType>

<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”parts”/>

<xsd:enumeration value=”product”/>

<xsd:enumeration value=”service”/>

</xsd:restriction>

</xsd:simpleType>

ptg

1896 CHAPTER 47 Using XML in SQL Server 2008

</xsd:attribute>

</xsd:complexType>

</xsd:schema>’

GO

CREATE FUNCTION Sales.fnCheckProductId

(

@FeedbackReviewXml xml

)

RETURNS int

AS

BEGIN

DECLARE @ProductId int

SELECT @ProductId = @FeedbackReviewXml.value(‘

declare namespace

fr=”urn:www-samspublishing-com:examples:feedback_review_xsd”;

/fr:feedback_review[1]/@product_id’, ‘int’)

RETURN @ProductId

END

GO

CREATE TABLE Sales.FeedbackReview

(

FeedbackReviewId int IDENTITY(1, 1) NOT NULL PRIMARY KEY,

ProductId int NULL REFERENCES Production.Product,

FeedbackReviewXml xml (DOCUMENT Sales.FeedbackSchemaCollection) NOT NULL,

CONSTRAINT ProductIdMatches

CHECK (Sales.fnCheckProductId(FeedbackReviewXml) = ProductId)

)

GO

Having created the xml column, you can now insert valid, well-formed documents into
FeedbackReview in the following manner:

INSERT Sales.FeedbackReview

SELECT

NULL,

‘<feedback_review

xmlns=”urn:www-samspublishing-com:examples:feedback_review_xsd”>

<order id=”353” type=”service”>

<customer_comment id=”131”>

You guys said you'd be here on Monday.

</customer_comment>

<company_response id=”242”>I said Wednesday!</company_response>

</order>

ptg

1897Using the xml Data Type
4

7

</feedback_review>’

GO

(1 row(s) affected)

Using INSERT, you can input XML into xml columns as varchar, xml, or literal string data,
or you can insert the output of a subquery that returns these types.

The syntax used to create an XML schema collection is simple and straightforward:

CREATE SCHEMA COLLECTION schema_collection_name AS schema

The schema parameter can be either a string (as shown), or a variable that contains the
text of the schema of type varchar, nvarchar, varbinary, nvarbinary, or xml.

Dropping a schema collection is just as easy:

DROP SCHEMA COLLECTION schema_collection_name

If you ever want to select your schema back out again, you simply call the system func-
tion xml_schema_namespace, as in the following example:

SELECT xml_schema_namespace(

‘Sales’,

‘FeedbackSchemaCollection’,

‘urn:www-samspublishing-com:examples:feedback_review_xsd’

)

To add additional schemas to the collection, you use ALTER XML SCHEMA COLLECTION:

ALTER XML SCHEMA COLLECTION

Sales.FeedbackSchemaCollection ADD another schema

To view some of the nodes in your stored XML schemas, you query
sys.xml_schema_collection and its related catalog views. Here’s an example:

use AdventureWorks2008

go

SELECT el.name, el.*, el.must_be_qualified

FROM sys.columns sc

JOIN sys.xml_schema_collections xs

ON sc.xml_collection_id = xs.xml_collection_id

JOIN sys.xml_schema_elements el

ON xs.xml_collection_id = el.xml_collection_id

WHERE sc.name = ‘FeedbackReviewXml’

Given the name of the table’s typed xml column (FeedbackReviewXml), you can find its
associated schema collection by querying the catalog views as follows:

SELECT

sc.name XmlColumnName,

ptg

1898 CHAPTER 47 Using XML in SQL Server 2008

xs.name CollectionName,

ns.name Namespace

from sys.columns sc

JOIN sys.xml_schema_collections xs

ON sc.xml_collection_id = xs.xml_collection_id

JOIN sys.xml_schema_namespaces ns

ON ns.xml_collection_id = sc.xml_collection_id

WHERE sc.name = ‘FeedbackReviewXml’

go

XmlColumnName CollectionName Namespace

FeedbackReviewXml FeedbackSchemaCollection urn:www-samspublishing-

com:examples:feedback_review_xsd

You can accomplish the same thing by using the Object Browser in SSMS by viewing the
properties of the xml column or by right-clicking the Modify menu choice on the table
object, as shown in Figure 47.1.

You can control permissions on schema collections by using the standard ALTER, CONTROL,
TAKE OWNERSHIP, REFERENCES, VIEW DEFINITION, and EXECUTE syntax. Here’s an example:

GRANT ALTER ON XML SCHEMA COLLECTION::Sales.FeedbackSchemaCollection

TO some_login

FIGURE 47.1 Viewing the properties of an xml column in SSMS.

ptg

1899Using the xml Data Type
4

7

There are a few unsupported XML schema features in schema collections. Check the Books
Online article titled “Guidelines and Limitations of XML Schema Collections on the
Server” for the most up-to-date information. Following are some notable limitations:

. The XSD constraints key, keyref, and unique are not supported.

. XSD include and redefine are not supported.

. Lax validation is not supported.

You can also manage XML schema collections using SSMS. To do so, you open the Object
Browser and expand the main tree to the following node:
ServerName\Databases\AdventureWorks2008\Programmability\Types\XML Schema

Collections. Then you right-click a schema collection to drop it or to add new schemas.
You can also easily script schemas out for review whenever needed. Figure 47.2 shows the
expanded Object Browser tree.

The Built-in xml Data Type Methods

Now that you know how to create and manage typed and untyped xml columns, the next
step is to learn how to query and modify stored XML content. Although SQL Server
supports only a subset of the XQuery 1.0 recommendation, you’ll soon see that it’s plenty
to get the job done.

FIGURE 47.2 Using the Object Browser to manage XML schema collections.

ptg

1900 CHAPTER 47 Using XML in SQL Server 2008

Keep in mind that a mastery of XQuery is not a requirement for selecting out XML data;
you can just specify the name of the xml column to select all the data back at once.

SQL Server provides five built-in methods on the xml data type: query(), exists(),
value(), nodes(), and modify(). These methods are appended to the name of the xml
column in question, using the ColumnName.MethodName([MethodParameters]) syntax.
These methods work on XML in the following ways:

. query()—Evaluates an XQuery expression into a node list, allowing for reshaping of
the selected nodes. Results in untyped XML.

. exists()—Performs a Boolean test to see whether the result of an XQuery expres-
sion is empty (no matching nodes). Returns 1 (non-empty), or 0 (empty).

. value()—Extracts a single (that is, scalar) value from an XML node and casts it to a
SQL Server relational data type (for example, int, varchar).

. nodes()—Uses an XQuery expression to decompose the XML input into a rowset;
this is similar to the effect of OPENXML.

. modify()—Alters the content of an XML document using the insert, replace value
of, and delete XQuery functions.

XQuery is a bit like T-SQL in that it uses similar SELECT-FROM-WHERE-ORDER BY semantics
to find the required nodes. It also bears a resemblance to writing foreach loops with
object iterators in a language such as C#. It is unique in that it combines the navigational
power of XPath to locate nodes and (in the same expressions) allows for new XML genera-
tion on the fly, all in one tight syntax package built especially for processing XML.

To use XQuery effectively, you need to have at least a rudimentary understanding of
XPath. A great starting point is the World Wide Web Consortium’s (W3C’s) site, at www.
w3.org/TR/xpath20/. The following subsections assume such basic knowledge.

Selecting XML by Using query()
The job of query() is to retrieve XML nodes by using XQuery expressions. The result of
query() is an instance of untyped xml. It takes a single parameter, a string literal contain-
ing the XQuery code itself.

NOTE

Like all the other four xml data type methods (and unlike most other T-SQL keywords),
query() is case sensitive. This is in keeping with the case sensitivity of XML itself.

NOTE

The parameter to query() cannot be a variable; it must be a string literal. This puts
something of a hold on dynamic XQuery expressions. However, declared T-SQL variables
and column values are available for use in XQuery, using the functions
sql:variable() and sql:column() (described later in this chapter).

www.w3.org/TR/xpath20/
www.w3.org/TR/xpath20/

ptg

1901Using the xml Data Type
4

7

Each XQuery query is broken into two distinct parts, separated by a semicolon. The first
part is known as the prolog. This is the place where any namespaces used in the XPath
expressions and selected nodes are declared. The second part is known as the body, and
this is the place where XPath and XQuery expressions are evaluated.

The following example declares the act namespace in its query prolog and then selects
any act:eMail nodes from Person.Person.AdditionalContactInfo in its body:

SELECT

AdditionalContactInfo.query(

‘

declare namespace

act=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ContactTypes”;

//act:eMail

‘

)

FROM Person.Person

WHERE ContactId = 2

go

<act:eMail

xmlns:act=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ContactTypes”>

<act:eMailAddress>Joe@xyz.com</act:eMailAddress>

<act:SpecialInstructions>

Dont send emails for urgent issues. Use telephone instead.

</act:SpecialInstructions>

</act:eMail>

Note that as with FOR XML, the result of query() can sometimes be an XML fragment (or
an empty string). You can again use FOR XML RAW, ROOT to guarantee that this won’t
happen. Listing 47.15 illustrates this use, as well as the WITH XMLNAMESPACES statement.

LISTING 47.15 Using WITH XMLNAMESPACES with FOR XML and query()

WITH XMLNAMESPACES

(

‘http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ContactTypes’

as act

)

SELECT

FirstName,

LastName,

AdditionalContactInfo.query(

‘

//act:eMail

‘

ptg

1902 CHAPTER 47 Using XML in SQL Server 2008

)

FROM Person.Person

WHERE BusinessEntityID = 2

FOR XML RAW(‘ContactInfo’), ROOT(‘Contact’)

go

<Contact xmlns:act=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ContactTypes”>

<ContactInfo FirstName=”Catherine” LastName=”Abel”>

<act:eMail xmlns:act=”http://schemas.microsoft.com/sqlserver/2004/07/

adventure-works/ContactTypes”>

<act:eMailAddress>Joe@xyz.com</act:eMailAddress>

<act:SpecialInstructions>

Dont send emails for urgent issues. Use telephone instead.

</act:SpecialInstructions>

</act:eMail>

</ContactInfo>

</Contact>

You can use WITH XMLNAMESPACES to declare namespaces for use in subsequent SELECT
statements. Using this statement makes it possible to omit the prolog from the query(). It
also has the desirable side effect of adding the act namespace declaration to the root
Contact node in the resulting FOR XML RAW wrapper. It’s a great keystroke saver and helps
keep xml data type queries readable.

In addition to selecting nodes with simple XPath expressions, you can use query() to
specify WHERE clause conditions on the selected nodes, iterate through the nodes using
for-each semantics, order the nodes differently than in the original document, and
return XML in any desired structure, based on the selection. This type of processing is
known by its acronym FLWOR (pronounced flower), which stands for for, let, where,
order by, return.

The for Clause The for clause establishes a variable that is bound to a node list for the
purpose of iterating over each node. In each iteration of the for loop, this bound variable
takes the value of the context node. It may be optionally typed (using as
XML_Schema_TypeName) to a schema-declared type, and it is followed by the XPath used to
match the nodes to be selected. The bound variable in the following example is $ContextNode:

SELECT Instructions.query(‘

declare default element namespace

“http://schemas.microsoft.com/sqlserver/2004/07/adventure

-works/ProductModelManuInstructions”;

for $ContextNode in //Location

return

<LotSize>

{$ContextNode/@LotSize}

</LotSize>

ptg

1903Using the xml Data Type
4

7

‘) as Result

FROM Production.ProductModel

WHERE ProductModelID = 10

Go

<LotSize xmlns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelManuInstructions” LotSize=”100” />

This example also shows the use of the declare default element namespace statement,
which allows the specified XPath expressions that follow it to omit any namespace prefixes.

In place of an XPath expression, you can use the bound variable to iterate through a
sequence of values, rather than nodes, as in the following example:

SELECT Instructions.query(‘

for $ContextNode in (1, 2, 3)

return

<Number>

{$ContextNode }

</Number>

‘) as Result

FROM Production.ProductModel

WHERE ProductModelID = 10

go

<Number>1</Number>

<Number>2</Number>

<Number>3</Number>

You can also specify more than one bound variable in the for clause. Bound variables
subsequent to the first can be used in XPath queries against the first. In this manner, two
related context nodes—one inner and one outer—can be created simultaneously. This is
analogous to writing a nested for loop in a programming language, but here you need
only declare both context variables by using a comma. Here’s an example:

DECLARE @Xml xml

SET @Xml = ‘

<outernode name=”a”>

<innernode>1</innernode>

<innernode>2</innernode>

<innernode>3</innernode>

</outernode>

<outernode name=”b”>

<innernode>4</innernode>

<innernode>5</innernode>

<innernode>6</innernode>

</outernode>

‘

SELECT @Xml.query(‘

ptg

1904 CHAPTER 47 Using XML in SQL Server 2008

for $outer in /outernode,

$inner in $outer/innernode

return

<Outside letter=”{$outer/@name}”>

<Inside number=”{$inner}”/>

</Outside>

‘)

go

<Outside letter=”a”>

<Inside number=”1” />

</Outside>

<Outside letter=”a”>

<Inside number=”2” />

</Outside>

<Outside letter=”a”>

<Inside number=”3” />

</Outside>

<Outside letter=”b”>

<Inside number=”4” />

</Outside>

<Outside letter=”b”>

<Inside number=”5” />

</Outside>

<Outside letter=”b”>

<Inside number=”6” />

</Outside>

The let Clause New to SQL Server 2008, the let clause is the L in FLWOR. It performs
the critical function of enabling variable value assignments in XQuery expressions. Here’s
an example:

WITH XMLNAMESPACES

(

DEFAULT ‘http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/StoreSurvey’

)

SELECT TOP 1

Demographics.query(

‘

for $N in /StoreSurvey

let $Total := ($N/AnnualRevenue + $N/AnnualSales)

order by $N/AnnualSales

return

<Statement

AnnualRevenue=”{$N/AnnualRevenue}”

ptg

1905Using the xml Data Type
4

7

AnnualSales=”{$N/AnnualSales}”

SalesPlusRevenue=”{$Total}”/>

‘)

FROM Sales.Store

WHERE Demographics.exist(‘(//AnnualRevenue[xs:integer(.)=300000])’) = 1

The where Clause Just like the WHERE clause in T-SQL, XQuery’s where clause restricts the
nodes in the selected node list to those matching a certain expression. Here’s an example:

SELECT TOP 1 Resume.query(‘

declare namespace

ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume”;

for $ResumeNode in /ns:Resume

where count($ResumeNode/ns:Employment) > 2

return

$ResumeNode/ns:Employment/ns:Emp.JobTitle

‘)

FROM HumanResources.JobCandidate

go

<ns:Emp.JobTitle

xmlns:ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume”>

Lead Machinist

</ns:Emp.JobTitle>

<ns:Emp.JobTitle

xmlns:ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume”>

Machinist

</ns:Emp.JobTitle>

<ns:Emp.JobTitle

xmlns:ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume”>

Assistant Machinist

</ns:Emp.JobTitle>

Here, you use the T-SQL-analogous count() aggregate function to restrict the result set
to ns:Resume nodes having three or more ns:Employment children. The standard aggre-
gate functions are available in XQuery expressions. They are max(), min(), avg(), sum(),
and count().

The order by Clause Just like T-SQL’s ORDER BY, XQuery’s order by is used to reorder
the selected nodes from the default document order to a new order, based on an expres-
sion. The order may be set to descending or ascending (the default).

ptg

1906 CHAPTER 47 Using XML in SQL Server 2008

The following example casts a node value to an instance of the xs:date type and orders
the results from most to least recent date:

SELECT Resume.query(‘

declare namespace

ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume”;

<Achievements>

{

for $EducationNode in //ns:Education

order by xs:date(string($EducationNode/ns:Edu.EndDate[1])) descending

return

<Degree>

<DateAwarded>

{ string($EducationNode/ns:Edu.EndDate[1]) }

</DateAwarded>

<Name>

{ string($EducationNode/ns:Edu.Degree[1]) }

</Name>

</Degree>

}

</Achievements>

‘)

FROM HumanResources.JobCandidate

WHERE JobCandidateId = 2

go

<Achievements>

<Degree>

<DateAwarded>1997-06-03Z</DateAwarded>

<Name>Bachelor of Science</Name>

</Degree>

<Degree>

<DateAwarded>1993-06-12Z</DateAwarded>

<Name>Diploma</Name>

</Degree>

</Achievements>

The expression xs:date(string($EducationNode/ns:Edu.EndDate[1])) requires some
explanation. Working from the inside out: ns:Edu.EndDate is selected, using the child
node of the node stored in the bound context variable $EducationNode. For the string()
typecasting function to work, a singleton, or single node, must be specified; this is why the
positional predicate [1] must be specified. Finally, the string is cast to xs:date. (Note that
in the return statement, the string value of the same node is used.)

This example illustrates not only the type-related aspects of FLWOR expressions, but also
the capability to generate a root node without using FOR XML...ROOT. All that is required
is that a root node (in this case, Achievements), followed by curly braces, surround the
entire FLWOR statement.

ptg

1907Using the xml Data Type
4

7

The return Clause Similar to T-SQL’s SELECT statement, the return clause executes once
for every selected context node. This is the section where you specify the structure and
content of the resulting XML. The key aspect of it is the use of node constructors.

TIP

When using attribute constructors in the return clause, you need to make sure your
curly braces are directly adjacent to the attribute’s begin and end quotes, with no
whitespace in between (for example, attribute=”{$Node}”), or SQL Server raises an
error. The reason is that string literals (even blank spaces) cannot be mixed with
attribute constructors.

Put simply, constructors create the nodes and node values to be output. There are two
types of constructors:

. Computed constructors—These are placed inside curly-braced expressions and
evaluated against the context node (for example, attribute=”{$N}”).

. Direct constructors—These are constant node strings used in the FLWOR statement
(for example, <Achievements>). Listing 47.16 illustrates a variety of constructors.

LISTING 47.16 Using XQuery Constructors

SELECT Resume.query(‘

declare namespace

ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume”;

for $N in //ns:Education

return

<NodeConstructor attributeConstructor=”{string($N/ns:Edu.School[1])}”>

{ $N/ns:Edu.Major }

<?PI processing-instruction constructor PI?>

<!-- comment constructor -->

</NodeConstructor>

‘)

FROM HumanResources.JobCandidate

WHERE JobCandidateId = 1

go

<NodeConstructor attributeConstructor=”Midwest State University”>

<ns:Edu.Major

xmlns:ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/Resume”>

Mechanical Engineering

</ns:Edu.Major>

<?PI processing-instruction constructor PI?>

ptg

1908 CHAPTER 47 Using XML in SQL Server 2008

<!-- comment constructor -->

</NodeConstructor>

Exactly the same XML result can be generated a third way: using the alternative node-
type-name constructors (for example, element, attribute, text) in a comma-delimited list
within curly braces. Here’s an example:

SELECT Resume.query(‘

declare namespace

ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume”;

for $N in //ns:Education

return

element NodeConstructor

{

attribute attributeConstructor { string($N/ns:Edu.School[1])},

text { string($N/ns:Edu.Major[1]) },

<?PI processing-instruction constructor PI?>,

<!-- comment constructor -->

}

‘)

FROM HumanResources.JobCandidate

WHERE JobCandidateId = 1

TIP

Because query() returns an instance of xml, the xml data type methods can be
stacked on its result, allowing for powerful XQuery subqueries, such as
query(‘’).query(‘’).exist(‘’).

Testing XML by Using exist()
A common task when working with XML is the need to check for the existence of a node
or node value. The exist() method does just that, returning 1 if the node test returns
nonempty, or 0 if empty.

Listing 47.17 tests whether the annual revenue of a surveyed store exceeds $100,000.

LISTING 47.17 Using exist() to Test for a Specific Node Value

WITH XMLNAMESPACES

(

DEFAULT ‘http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/StoreSurvey’

)

SELECT Demographics.query(

ptg

1909Using the xml Data Type
4

7

‘

for $N in /StoreSurvey

order by $N/AnnualSales

return

if ($N/AnnualSales >= 3000000)

then

<Money

Bank=”{$N/BankName}”

AnnualRevenue=”{$N/AnnualRevenue}”

AnnualSales=”{$N/AnnualSales}”

Comments=”really big bucks”/>

else

<Money

AnnualRevenue=”{$N/AnnualRevenue}”

AnnualSales=”{$N/AnnualSales}”

Comments=”big bucks”/>

‘)

FROM Sales.Store

WHERE Demographics.exist(‘

(//AnnualRevenue[xs:integer(.)>100000])

‘) = 1

go

<p1:Money xmlns:p1=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/StoreSurvey” AnnualRevenue=”150000” AnnualSales=”1500000”

Comments=”big bucks” />

<p1:Money xmlns:p1=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/StoreSurvey” AnnualRevenue=”150000” AnnualSales=”1500000”

Comments=”big bucks” />

<p1:Money xmlns:p1=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/StoreSurvey” AnnualRevenue=”150000” AnnualSales=”1500000”

Comments=”big bucks” />

<p1:Money xmlns:p1=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/StoreSurvey” AnnualRevenue=”150000” AnnualSales=”1500000”

Comments=”big bucks” />

<p1:Money xmlns:p1=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/StoreSurvey” Bank=”International Bank” AnnualRevenue=”300000”

AnnualSales=”3000000” Comments=”really big bucks” />

{...}

Listing 47.17 also illustrates the use of the XQuery if-then-else construct, which is used
to conditionally generate the BankName attribute and change the value of the Comments
attribute. In the WITH XMLNAMESPACES statement that precedes the query, you use the
DEFAULT keyword to specify a default namespace for the selection.

ptg

1910 CHAPTER 47 Using XML in SQL Server 2008

Converting a Node Value to a T-SQL Data Type by Using value()
The value() function allows for a selected node value to be cast to a T-SQL–data typed
value. It has two parameters: the first is a string-literal XPath expression that selects the
desired node value. The second is a string-literal T-SQL data type name.

The code in Listing 47.18 queries an Extensible Application Markup Language (XAML)
document by using value() to select the Height attribute of Canvas nodes and cast them
to decimal. Notice that the returned results are rows rather than XML.

LISTING 47.18 Using value() to Retrieve and Convert a Node Value

WITH XMLNAMESPACES

(

‘http://schemas.microsoft.com/winfx/2006/xaml’ as x,

DEFAULT ‘http://schemas.microsoft.com/winfx/2006/xaml/presentation’

)

SELECT

IllustrationID,

Diagram.value(‘(//Canvas/@Height)[1]’, ‘decimal(16,4)’) HeightAsSQLDecimal

FROM Production.Illustration

go

IllustrationID HeightAsSQLDecimal

-------------- ----------------------

3 147.7061

4 314.9819

5 105.7393

6 213.6152

7 177.5449

(5 row(s) affected)

Accessing Relational Columns and T-SQL Variables in XQuery Expressions Besides value(),
two other bridges between T-SQL and XQuery are the XQuery functions sql:column() and
sql:variable().

sql:column(), as the name implies, allows for the selection of a relational column value
in a FLWOR statement. In Listing 47.19, contact name data is pulled from Person.Person
into an XQuery element constructor and then selected back out again as a node value. In
addition, the value of the declared T-SQL variable TotalPurchaseYTD is compared against
the value of the node of the same name in the XQuery where clause, using
sql:variable().

LISTING 47.19 Using sql:column() and sql:variable() in XQuery

DECLARE @TotalPurchaseYTD decimal(6,2)

SET @TotalPurchaseYTD = 0

ptg

1911Using the xml Data Type
4

7

SELECT Demographics.query(‘

declare default element namespace

“http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/IndividualSurvey”;

for $IS in /IndividualSurvey

where $IS/TotalPurchaseYTD[.= sql:variable(“@TotalPurchaseYTD”)]

return

element Contact

{

attribute ID { sql:column(“C.BusinessEntityID”) },

attribute YTDTotal { sql:variable(“@TotalPurchaseYTD”) },

element FullName { concat(sql:column(“FirstName”), “ “,

sql:column(“LastName”)) }

}

‘)

FROM Sales.SalesPerson I

JOIN Person.Person C ON

C.BusinessEntityID = I.BusinessEntityID

AND C.BusinessEntityID = 285

concat() is one of several string functions built into XQuery, in addition to contains(),
substring(), and string-length().

Using the nodes() Method to Shred XML
In the section “XML as Relational Data: Using OPENXML,” earlier in this chapter, you
learned how to decompose XML directly into relational rows that could be mapped to
values in existing tables or used any other T-SQL way.

nodes() is kind of like OPENXML’s big brother: given an XML input document and an
XQuery expression, it generates a table with an xml column against which subsequent
XQuery queries can be run. nodes() can be applied to both xml variables and xml columns.

Each row in the generated table contains a copy of the original input content. The context
node for each row is based on the XQuery expression parameter. It is possible to shred the
input in multiple ways by running multiple XQuery queries on the generated column in
the same SELECT statement. For example, one query might return a relational value from
each context node, using the value() method. Another could transform and return each
content node to a different XML schema.

Let’s examine a simple example that shows how this works. Listing 47.20 illustrates how
an XML document is shredded into relational rows and columns by applying six different
XQuery queries on each generated row, each of which creates a new relational column.

ptg

1912 CHAPTER 47 Using XML in SQL Server 2008

LISTING 47.20 Shredding XML Six Ways, Using nodes()

DECLARE @XmlVar xml

SET @XmlVar = ‘

<alphnumerics>

<item>

<alph name=”A” val=”65”/>

</item>

<item>

<alph name=”B” val=”66”/>

</item>

<item>

<alph name=”C” val=”67”/>

</item>

<item>

<num name=”1” val=”49”/>

</item>

<item>

<num name=”2” val=”50”/>

</item>

<item>

<num name=”3” val=”51”/>

</item>

</alphnumerics>’

SELECT

XmlTable.XmlColumn.query(‘alph’) AS ANode,

XmlTable.XmlColumn.value(‘alph[1]/@name’, ‘char(1)’) AS AName,

XmlTable.XmlColumn.value(‘alph[1]/@val’, ‘int’) AS AVal,

XmlTable.XmlColumn.query(‘num’) AS NNode,

XmlTable.XmlColumn.value(‘num[1]/@name’, ‘int’) AS NName,

XmlTable.XmlColumn.value(‘num[1]/@val’, ‘int’) AS NVal

FROM @XmlVar.nodes(‘/alphnumerics/item’) AS XmlTable(XmlColumn)

The syntax of nodes() is as follows:

nodes(XQuery) AS GeneratedTableName(GeneratedXmlColumnName)

Note that it is not possible to directly select the xml column generated by nodes without
using one of the xml data type methods. Using the XML from the preceding example, the
following code would raise an error:

SELECT XmlTable.XmlColumn

FROM @XmlVar.nodes(‘/alphnumerics/item’) AS XmlTable(XmlColumn)

You can also use nodes() with CROSS APPLY or OUTER APPLY to execute nodes() once for
every row returned in the outer table. In this way, you can combine relational data with
multiple XQuery queries against a relational rowset. Listing 47.21 illustrates this technique.

ptg

1913Using the xml Data Type
4

7

LISTING 47.21 Using nodes() with CROSS APPLY

WITH XMLNAMESPACES(

‘http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume’ as ns

)

SELECT

JC.JobCandidateId,

E.BusinessEntityID,

ResumeTable.XmlColumn.value(‘ns:Emp.JobTitle[1]’, ‘nchar(50)’) JobTitle

FROM HumanResources.JobCandidate JC

CROSS APPLY JC.Resume.nodes(‘

/ns:Resume/ns:Employment[2]

‘) as ResumeTable(XmlColumn)

JOIN HumanResources.Employee E ON

E.BusinessEntityID = JC.BusinessEntityID

go

JobCandidateId EmployeeId JobTitle

--

4 274 Sales Associate

8 212

(2 row(s) affected.)

Using modify() to Insert, Update, and Delete XML
A frequent requirement when working with XML is the insertion, deletion, and modifi-
cation of nodes and node values. These operations are known as XML Data Modification
Language (XML DML) statements, and they are supported by the xml data type’s
modify() method.

When you are working with typed XML, modify() performs type and structural checks
that allow operations to succeed only if they result in valid XML, so it’s important to
know your schema well.

When document order is important, it’s also crucial to know the exact location and posi-
tion of the nodes or values to be changed. In the case of untyped or loosely constrained
typed XML, it may not matter all that much where a new node is placed.

XQuery provides a few functions and operators related to node order. position() returns
the numeric position of a node (starting at 1). last() returns the numeric position of the
last node in a selected node list. They are both performed against a context node.

In addition, you can use the node order comparison operators << and >> to compare the
relative positions of two selected nodes. The Boolean is operator is also provided to test
whether two selected nodes are actually the same node.

modify() allows for three main operations in its XQuery expression parameter: insert,
replace value of, and delete. Let’s look at delete first.

ptg

1914 CHAPTER 47 Using XML in SQL Server 2008

Removing XML Nodes by Using delete delete uses its XPath parameter to locate the
node to remove. In the example in Listing 47.22, any alph node that has a name attribute
with a value of B is deleted. Then the remaining values for alph/@name are selected, using
nodes() to illustrate the success of the deletion.

LISTING 47.22 Deleting Nodes Using delete

DECLARE @XmlVar xml

SET @XmlVar = ‘

<alphnumerics>

<item>

<alph name=”A” val=”65”/>

</item>

<item>

<alph name=”B” val=”66”/>

</item>

<item>

<alph name=”C” val=”67”/>

</item>

<item>

<num name=”1” val=”49”/>

</item>

<item>

<num name=”2” val=”50”/>

</item>

<item>

<num name=”3” val=”51”/>

</item>

</alphnumerics>’

SET @XmlVar.modify(‘delete(//item/alph[@name=”B”])’)

SELECT XmlTable.XmlCol.value(‘./@name’, ‘char(1)’)

as RemainingAlphNames

FROM @XmlVar.nodes(‘//item/alph’) as XmlTable(XmlCol)

go

AlphNames

A

C

(2 row(s) affected)

Modifying XML with insert and replace value of You can insert and update new
nodes in document trees by using insert. In these situations, node position counts most.
Let’s look at a real-world example for the scenarios in this section: say that a content
author is building a structured document. Each node has both its respective level (or
depth) and its order of appearance. Your DML operations must respect both. The markup

ptg

1915Using the xml Data Type
4

7

and table storage for such a scenario might look something like the untyped XML in
Listing 47.23.

LISTING 47.23 Simple Untyped XML Markup for a Book

CREATE TABLE SimpleBook

(BookId int IDENTITY(1,1) PRIMARY KEY CLUSTERED, BookXml xml)

GO

INSERT SimpleBook

SELECT

‘<book book_id=”1”>

<title>A Great Work</title>

<chapter chapter_id=”1”>

<title>An Excellent Chapter</title>

<section id=”1”>

<title>A Boring Section</title>

<paragraph para_id=”1”>

Something boring.

</paragraph>

</section>

<section id=”2”>

<title>Another Fine Section</title>

<paragraph para_id=”2”>

Another fine paragraph.

</paragraph>

</section>

</chapter>

</book>’

In this listing, notice that the XML element content in the first section seems out of
place, considering the laudatory content of the chapter and book titles. You can fix this
by using replace value of, which has the following syntax:

replace value of old_expression with new_expression

NOTE

When you are updating typed xml values, the value specified in new_expression must
be of the same XSD-declared type as the value selected in old_expression.

Here is the update for the book’s incongruous content:

UPDATE SimpleBook

SET BookXml.modify(‘

ptg

1916 CHAPTER 47 Using XML in SQL Server 2008

replace value of (/book/chapter/section[@id=”1”]/title/text())[1]

with “A Fine Section”

‘)

WHERE BookId = 1

GO

UPDATE SimpleBook

SET BookXml.modify(‘

replace value of (/book/chapter/section/paragraph[@para_id=”1”]/text())[1]

with “A Fine Paragraph”

‘)

WHERE BookId = 1

(1 row(s) affected)

(1 row(s) affected)

You can also add a new section to the document by using the insert function, which has
the following syntax:

insert new_node_expression (

{{{as first | as last} into} | after | before}

reference_node_expression)

In new_node_expression, you specify the nodes to be inserted, using the familiar direct or
computed constructor syntax, discussed earlier in this chapter, in the section “Selecting
XML by Using query().” New to SQL Server 2008 is the capability to insert variable values
of type xml using insert.

What’s different about insert is that it allows for the specification of where, with respect
to the reference_node_expression, the constructed nodes are to be placed. To specify that
the new nodes are to be inserted as children of the reference node, you use as first into

when specifying the first child. You use as last into when specifying the last child.

To specify that the new node is to be inserted as a sibling of the reference node, you use
after to specify the next sibling or before to specify that the new node is a previous
sibling of the reference node (that is, the new node is now to be the leftmost sibling).

You can finish the sample document by adding a new chapter to the book, using the code
in Listing 47.24.

LISTING 47.24 Inserting Nodes by Using insert

UPDATE SimpleBook

SET BookXml.modify(‘

insert

<chapter chapter_id=”2”>

<title>This is Chapter 2</title>

</chapter>

after

ptg

1917Using the xml Data Type
4

7

(/book/chapter[@chapter_id=1])[1]

‘)

WHERE BookId = 1

GO

UPDATE SimpleBook

SET BookXml.modify(‘

insert

<section id=”3”>

<title>This is Section 3</title>

</section>

as last into

(/book/chapter[@chapter_id=2])[1]

‘)

WHERE BookId = 1

GO

SELECT BookXml FROM SimpleBook

GO

<book book_id=”1”>

<title>A Great Work</title>

<chapter chapter_id=”1”>

<title>An Excellent Chapter</title>

<section id=”1”>

<title>A Fine Section</title>

<paragraph para_id=”1”>A Fine Paragraph</paragraph>

</section>

<section id=”2”>

<title>Another Fine Section</title>

<paragraph para_id=”2”>

Another fine paragraph.

</paragraph>

</section>

</chapter>

<chapter chapter_id=”2”>

<title>This is Chapter 2</title>

<section id=”3”>

<title>This is Section 3</title>

</section>

</chapter>

</book>

The first call to modify() inserts a new chapter after the first chapter, as its right-most
sibling. The second call to modify() inserts a new section as the last child of the new
section.

ptg

1918 CHAPTER 47 Using XML in SQL Server 2008

TIP

Both reference_node_expression of insert and new_expression of replace value
of require a singleton to be matched in their XPath expressions; otherwise, SQL Server
raises an error. Using a singleton here is sometimes hard to do because you have to
think like an XML parser in terms of how many possible nodes may be matched.

Even though you may know that there’s only one node in the instance document match-
ing a complex predicate such as
/book/chapter/section/paragraph[@para_id=”1”]/text(), the parser knows that
more than one is possible because the position of the nodes has not been specified.

It’s usually best to enclose the matching XPath expression in parentheses and then
apply the positional predicate (that is, [1]) to the entire sequence, as the examples
illustrate. Otherwise, your XPath expressions need to look as ugly as the following,
where the position is specified for every node in the sequence:

/book[1]/chapter[1]/section[1]/paragraph[1]

[@para_id=”1” and position() = 1]/text()[1]

All three XML DML functions that use modify() have the side effect of causing any XML
indexes on the xml column to be repropagated to reflect the changes, just as with rela-
tional indexes.

The next section covers how to create and maintain primary and secondary indexes on
your xml columns.

Indexing and Full-Text Indexing of xml Columns
Just as with relational data, xml column data, whether typed or untyped, can be indexed.

Indexing xml Columns

Two levels of indexing are available for xml columns: primary and secondary. Three types of
secondary indexing are available, based on the different kinds of XQuery queries that will
be performed on the column: PATH for path-based querying, PROPERTY for property bag
scenarios, and VALUE for value-based querying.

If you want to create a primary XML index on a table, it must meet a few requirements:

. The table must have a clustered primary key (with fewer than 16 columns in it).
The reason is that the primary XML index contains a copy of the primary key for
back referencing. It is also required for table partitioning because it ensures that the
primary XML index is partitioned in the same manner as the table. The primary
key of the table thus cannot be modified unless all the XML indexes on the table
are dropped.

ptg

1919Indexing and Full-Text Indexing of xml Columns
4

7

. Your SET options must have the following values when you’re creating or rebuilding
XML indexes or when you’re attempting to use the modify() xml data type method,
which triggers index maintenance:

SET ANSI_NULLS ON

SET ANSI_PADDING ON

SET ANSI_WARNINGS ON

SET ARITHABORT ON

SET CONCAT_NULL_YIELDS_NULL ON

SET NUMERIC_ROUNDABORT OFF

SET QUOTED_IDENTIFIER ON

Note that these are the SET values in a default SQL Server installation. You can view
them by calling DBCC USEROPTIONS in T-SQL.

As with many other operations, indexes can be created both by using the dialogs in SSMS
and also in T-SQL. The following syntax can be used to create a primary XML index on an
xml column:

CREATE PRIMARY XML INDEX IndexName ON TableName(XmlColumnName)

For example, using the SimpleBook table from the previous section, you would execute

CREATE PRIMARY XML INDEX PrimaryXmlIndex_BookXml ON SimpleBook(BookXml)

To drop an XML index, you execute

DROP INDEX IndexName ON TableName

To do the same thing in SSMS, you right-click the table name in Object Explorer, click
Modify, and then right-click the xml column and select XML Indexes. Then you use the
Add or Delete buttons to create or drop indexes.

NOTE

Dropping the primary XML index also drops all secondary indexes because they are
dependent on the columns of the shredded Infoset’s table of the primary XML index
(discussed in the next section).

You can disable XML indexes using the following syntax:

ALTER INDEX XmlIndexName on TableName DISABLE

You can rebuild them using the following syntax:

ALTER INDEX XmlIndexName on TableName REBUILD

You can also query XML indexes like other indexes, using the catalog view sys.indexes.

XML indexes are different from relational indexes in a few important ways. Let’s consider
their underlying structure and how they work at runtime.

ptg

1920 CHAPTER 47 Using XML in SQL Server 2008

Understanding XML Indexes
XML indexes store the xml column data for a table in a compressed B+tree (pronounced B
plus tree) data structure. The XML data is stored there in its shredded rather than original
XML format (remember the universal table?). XML Infoset information items (that is,
nodes), the navigational paths used to find each item, and other crucial data are stored in
the columns of the index.

NOTE

XML Infoset is a W3C recommendation defining an abstract data set and a correspond-
ing set of terms used to refer to any item in any well-formed XML document. For
example, each element in a document is considered to be an element information item,
each attribute an attribute information item, and so forth.

A B+tree is a tree data structure that stores content such that the values for every
node in the tree are exclusively kept in its leaves; the branches contain only pointers to
the leaves. B+trees are optimized for fast insertion and removal of nodes.

When retrieving xml, SQL Server builds a query plan that consists of both the relational
and XML portions of the query. The XML portion is built using the primary XML index.
Secondary indexes are chosen based on cost after the query is optimized.

The Primary XML Index When the primary XML index is created, each xml column value
is shredded into a relational representation of its Infoset and stored. The index itself is
clustered on the column that contains the ordpath: a node labeling scheme that captures a
document’s order and hierarchy, which allows for insertion of new nodes without node
relabeling and provides efficient access to nodes, using range scans.1

Let’s look at an example of how ordpaths work. Assume that some node is labeled 1.1. All
nodes are initially labeled in document order during index creation, using odd numbers,
allowing inserted nodes to be labeled with even numbers without changing the existing
node labels. The original children of 1.1 would thus be labeled 1.1.1, 1.1.3, and so forth.
Any children inserted after labeling would get an even number, such as 1.1.4. Each
number in the ordpath represents a node, and each dot represents an edge of depth.

To see the actual columns of our primary XML index, you can run the following query:

SELECT *

FROM sys.columns sc

JOIN sys.indexes si ON

si.object_id = sc.object_id

AND si.name LIKE ‘PrimaryXmlIndex_BookXml’

AND si.type = 1

1. S. Pal, , S., I. Cseri, O. Seeliger, M. Rys, G. Schaller, W. Yu, D. Tomic, A. Baras, B. Berg, D. Churin,
and E. Kogan. “XQuery Implementation in a Relational Database System,” in Proceedings of the
31st International Conference on Very Large Data Bases (VLDB 2005), 1175-1186. New York: ACM
Press, 2005.

ptg

1921Indexing and Full-Text Indexing of xml Columns
4

7

Given the XML document used in Listings 47.23 and 47.24, the shredded rows for it in
the index might look something like those shown in Table 47.1. The real index’s column
names are underlined beside the conceptual names; conceptual names and values are
supplied to make the table easy to understand.

TABLE 47.1 Shredded Infoset Rows for the XML Instance in Listing 47.232

BookId

(pk1)

Ordpath

(id)

Tag (nid) NodeType

(tid)

Value (value) PathId

(hid)

1 1 1 (book) 1 (Element) Null #1

1 1.1 2 (book_id) 2

(Attribute)

1 #2#1

1 1.3 3 (title) 1 ’A Great Work’ #3#1

1 1.5 4 (chapter) 1 Null #4#1

1 1.5.1 5

(chapter_id)

2 1 #5#1

1 1.5.3 6 (title) 1 ’An Excellent

Chapter’

#6#4#1

1 1.5.5 7 (section) 1 Null #7#4#1

1 1.5.5.1 8 (id) 1 1 #8#4#1

1 1.5.5.3 9 (title) 1 ’A Boring Section’ #9#7#4#1

1 1.5.5.5 10

(paragraph)

1 ’Something Boring’ #10#7#4#1

1 1.5.5.5.1 11

(para_id)

2 1 #11#7#4#1

1 1.5.7 7 (section) 1 Null #7#4#1

1 1.5.7.1 8 (id) 2 2 #8#4#1

1 1.5.7.3 9 (title) 1 ’Another Fine

Section’

#9#7#4#1

1 1.5.7.5 10

(paragraph)

1 ’Another Fine

Paragraph’

#10#7#4#1

1 1.5.7.5.1 11

(para_id)

2 2 #11#7#4#1

2 S. Pal, I. Cseri, O. Seeliger, M. Rys, G. Schaller, W. Yu, D. Tomic, A. Baras, B. Berg, D. Churin, E. Kogan,
“XQuery Implementation in a Relational Database System,” Proceedings of the 31st International
Conference on Very Large Data Bases (VLDB 2005), ACM Press, New York (2005), pp. 1175-1186.

ptg

1922 CHAPTER 47 Using XML in SQL Server 2008

The NodeType column holds an integer based on the Infoset type of the node. The Value
column holds the value of the node (if any) or a pointer to that value. The Tag column holds a
nonunique integer assigned to each Infoset item. These numbers repeat for similar items, as
when a second section or para_id appears in the content. The PathId column is computed
based on the path from the root to the current item. For example, the section element with
Ordpath value 1.5.5 has the same Tag value as the section element with Ordpath value 1.5.7.

When calculating PathId, SQL Server recognizes that the path from either section back to the
root is the same. That is, from either section (Tag = 7), through chapter (Tag = 4), to book (Tag
= 1), the path is the same: #7#4#1. The Tag and PathId values for these groups of rows are thus
the same. Another way of looking at this is to consider that the XPath /book/chapter/section
would return both section nodes, regardless of their text values or positions.

The PathId value is stored with the path in reverse order for the purpose of optimizing
when the descendant-or-self (//) XPath axis is specified in the queries; in that case, only
the final node names in a path such as //section/title are known.

When XQuery queries are executed against the xml columns, they are translated into relational
queries against this Infoset table. First, the primary key of the table (in this case, BookId) is
scanned to find the group of rows that contain the nodes. Then the PathId and Value columns
are used to find the matching paths and values requested in the XPath of the XQuery. When
found, the resulting nodes are serialized up from the Infoset table and reassembled into XML.

The Secondary XML Indexes Secondary XML indexes are useful when specific types of
XQuery queries are run against the XML documents.

The syntax for creating a secondary XML index is as follows:

CREATE XML INDEX SecondaryXmlIndexName ON TableName(XmlColumnName)

USING XML INDEX PrimaryXmlIndexName FOR (PROPERTY | VALUE | PATH)

Secondary XML indexes are dropped in the same way as primary XML indexes.

The PATH Secondary XML Index Generally speaking, the PATH secondary index is useful
when the bulk of your queries attempt to locate nodes via a simple path to the node (for
example, /book/chapter/section/title).

At runtime, the XPath is translated to the value of PathId in the Infoset table, and then
the matching PathId values are used to retrieve the unique Ordpath of the matching
nodes. Note that Value is used secondarily to PathId in this type of index.

The VALUE Secondary XML Index When many of the XPath queries to the XML are value
based, meaning that the value of an element or attribute is specified in a predicate, a
VALUE secondary index may improve seek times. In this case, the Value column of the
Infoset table is primarily relied on during index searches, and then PathId.

The following example shows how to use a value-based XQuery:

SELECT BookXml.query(‘

/book[@book_id=1]/chapter[@chapter_id=1]//paragraph[contains(text()[1], “fine”)]

ptg

1923Indexing and Full-Text Indexing of xml Columns
4

7

‘)

FROM SimpleBook

WHERE BookId = 1

go

<paragraph para_id=”2”>Another fine paragraph.</paragraph>

(1 row(s) affected)

The PROPERTY Secondary XML Index When the XML in the xml column is used to
encapsulate multiple properties of an object (for example, in an object serialization
scenario) and these properties are often retrieved together, it may be useful to create a
PROPERTY secondary index.

For example, if your markup resembles

DECLARE @objectXml xml

SET @objectXml =

‘<object id=”111”>

<name>MyObject</name>

<value>Value 1</value>

<coordinateX>24</coordinateX>

<coordinateY>636</coordinateY>

</object>’

and your XQuery queries often retrieve multiple values simultaneously, such as

SELECT

@objectXml.value(‘(/object/name)[1]’, ‘varchar(20)’) as OName,

@objectXml.value(‘(/object/value)[1]’, ‘varchar(20)’) as OValue,

@objectXml.value(‘(/object/coordinateX)[1]’, ‘int’) as X,

@objectXml.value(‘(/object/coordinateY)[1]’, ‘int’) as Y

WHERE @objectXml.exist(‘(/object[@id=111])[1]’) = 1

the PROPERTY index should help to optimize index seek time. The reason is that PROPERTY
indexes rely primarily on the Value column of the index and secondarily on PathId.

NOTE

Every call to value() requires an additional SELECT statement against the Infoset
table, so it’s important to try to index for this scenario, when applicable.

XML Index Performance Considerations
You know that indexing works well with untyped XML, but it actually works better with
typed xml columns. When the XML is untyped, node values are stored internally as
Unicode strings. Each time a value comparison must be made, those strings must typecast
to the corresponding SQL for the XML type used in the XQuery. This type conversion
must also be made for every possible value match in Infoset table, and this operation

ptg

1924 CHAPTER 47 Using XML in SQL Server 2008

grows proportionally more costly as the number of rows of the table grows. It also
prevents the value range scans possible when matching against typed values.

When the types of all the nodes are declared in an associated XML schema, the values are
stored as the corresponding SQL type (not as strings), and runtime typecasting is not
necessary.

Following are some other points for performance consideration:

. When retrieving an entire XML instance, it is faster to select the xml column by
name, without using query() or nodes(), because serialization of the XML up from
the shredded Infoset format is costly.

. XML indexes are not used during execution of check constraints on xml columns.

. You should use the exist() method whenever possible to restrict the range of data
being scanned.

Full-Text Indexing

xml columns can be full-text indexed, just like relational columns. The big difference is
that for xml columns, the word boundary is not whitespace but element delimiters (<, >).
Element text is indexed; attribute values are ignored.

It’s important to use exist() when using a full-text T-SQL function such as CONTAINS to
reduce unnecessary scans on the XML columns that don’t contain the text you are
looking for.

NOTE

To generate a full-text index, a unique, non-null, single column index is required. The con-
straint name PK_ _SimpleBook_ _2F2FFC0C shown in the following example represents
the automatically generated primary key index name for the primary key of SimpleBook.
Your instance of SQL Server will likely generate a different name for this index.

ptg

1925Summary
4

7

Here’s an example of how to generate and utilize a full-text index on an xml column:

CREATE FULLTEXT CATALOG FullTextXmlCatalog

GO

CREATE FULLTEXT INDEX ON SimpleBook(BookXml)

KEY INDEX PK_ _SimpleBook_ _2F2FFC0C

ON FullTextXmlCatalog

GO

SELECT ‘End of Chapter’

FROM SimpleBook

WHERE CONTAINS(BookXml, ‘Excellent’)

AND

BookXml.exist(‘(/book/chapter/title[contains(text()[1], “Excellent”)])[1]’)=1

GO

End of Chapter

Summary
Within reason, there’s nothing you can’t do with XML in SQL Server 2008. The Microsoft
team has addressed nearly every XML complaint and wish-list item gathered from the
days of SQL Server 2000 and 2005.

For the beginner and expert alike, SQL Server 2008 offers much to master in the realm of
XML processing. The sheer quantity of new features may seem challenging at first.
Remember that you need only utilize those features that are appropriate to your current
application needs. How your applications develop and grow from there is entirely up to you.

In Chapter 48, “SQL Server Web Services,” shows how to expose T-SQL routines to
Internet clients using native XML Web services.

ptg

This page intentionally left blank

ptg

CHAPTER 48

SQL Server Web Services

IN THIS CHAPTER

. What’s New in SQL Server
Web Services

. Web Services Migration Path

. Web Services History and
Overview

. Building Web Services

. Examples: A C# Client
Application

. Using Catalog Views and
System Stored Procedures

. Controlling Access Permissions

Web services address a problem domain that is crucial to
business-driven programming: the need for application and
platform-independent Remote Procedure Calls (RPC). They
also provide one of the few ways in which non-Microsoft
clients can consume SQL Server data over the Internet.

This chapter provides all the details necessary to get native
web services up and running on your instance of SQL Server
2008. It includes examples of both the client- and server-
side code needed to make things happen at runtime.

What’s New in SQL Server Web
Services
Microsoft first made it possible to expose T-SQL query
batches, stored procedures, and scalar-valued functions as
web services with the release of SQLXML 3.0, an add-on
package for SQL Server 2000 that allowed for the interchange
of relational data as Extensible Markup Language (XML).

Over the past few years, the SQLXML packages have
addressed the growing dependence of data-driven, distrib-
uted applications on XML and have kept SQL Server 2000
current with the explosion of progress in the world of XML.

The good news is that we no longer need SQLXML to
create SQL Server web services because SQL Server 2008
supports them natively. The bad news is that this feature
has been deprecated in SQL Server 2008. Although it is true
that sometimes SQL Server features are deprecated for
several versions before being removed, it seems more likely

ptg

1928 CHAPTER 48 SQL Server Web Services

that native web services will be removed from the next version of SQL Server due to secu-
rity concerns.

Web Services Migration Path
Although SQL Server 2008 supports native web services, it’s important to plan your migra-
tion path to another web service technology as soon as possible. The first step in moving
away from this technology is to identify your web service endpoints. There are several
ways to accomplish this. The easiest is to use SQL Server Upgrade Advisor, which includes
deprecation warnings in its reports. SQL Server’s installer generates warnings when you
upgrade from SQL Server 2005 to 2008. The database engine generates warnings (such as
“Avoid using this feature in new development work”) upon service startup and when you
create HTTP endpoints using SQL Server Management Studio (SSMS) or a similar tool. You
may also view deprecation warnings generated at runtime using SQL Profiler (be sure to
include the Deprecation: Warning event in the properties of your trace template).

Now that you know how to identify your endpoints, the next step is choosing a replace-
ment technology. Microsoft ASP.NET provides comprehensive support for web services, as
does Windows Communication Foundation (WCF). There are also a number of related
technologies to choose from, such as services developed using Representational State
Transfer (a.k.a. RESTful services) and ADO.NET Data Services (formerly known as Astoria).
The choice is really about what works for you, your organization, and your applications.
Discussion of these technologies is beyond the scope of this book. SQL Server web services
generates runtime errors or produces unexpected behaviors if the underlying data trans-
mitted by the service is typed as one of the newly introduced SQL Server 2008 data types,
such as date, time, hierarchy_id, datetime2, datetimeoffset, geometry, or geography.

If you use these data types either in results returned by a stored procedure (exposed via an
endpoint), or in its input parameters, SQL Server generates a SOAP fault at runtime. These
types also end up commented out of the types section of the WSDL that SQL Server gener-
ates for your web services. All data types supported by SQL Server 2005, however, continue
to work as expected.

In the following sections, we describe how to develop web services using SQL Server 2008
(or SQL Server 2005). Keep in mind that the services you build, while supported today,
may not be supported in the near future.

Web Services History and Overview
Web services are supported on most major software platforms and can be built using
Integrated Development Environments (IDEs) that comply with a few key World Wide
Web Consortium (W3C) recommendations:

. Web Services Description Language (WSDL)—WSDL is the XML grammar used
to specify the functions and types (known as its interface) of a web service.

. Simple Object Access Protocol (SOAP) 1.2—SOAP is the network transport-layer
protocol for web services.

ptg

1929Web Services History and Overview
4

8

Until now, Open Database Connectivity (ODBC) and Tabular Data Stream (TDS; a propri-
etary protocol developed by Sybase) were the only means available for clients to access
SQL Server data. But because the web service standards are nonproprietary (although
there are proprietary extensions), web service clients don’t need to install Microsoft Data
Access Components (MDAC), ODBC, SQL Server Client Tools, or any open source vari-
ants of these.

NOTE

Some of the examples in this chapter assume that you have a rudimentary knowledge
of HTTP, a touch of coding savvy (some examples utilize Visual Studio 2008 and the C#
.NET programming language), and a general understanding of how XML is used to
describe and encapsulate data.

The Web Services Pattern

Web services follow a stateless request/response model that corresponds directly with the
client/server model of Hypertext Transfer Protocol (HTTP). The following summary illus-
trates this programming pattern:

. A client application discovers that a server application hosts a web service that
exposes one or more web methods. This process, known as discovery, is accomplished
in one or more of the following ways:

. Microsoft’s Universal Description, Discovery, and Integration (UDDI) service,
an online catalog for publishing web services, facilitates this process.

. More commonly, the developer of the hosted web service provides the network
address and web method descriptions to the developer of the client application
that will consume it (that is, call its methods). This is still the dominant way
web services are exposed because most provide data that is strictly confidential.

. The client then asks the discovered web service to describe its methods and their
types, parameters, and return values, using the standard WSDL XML vocabulary.
This is usually performed via an HTTP request to the web service in the form
http[s]://ServerDomainName/WebServiceName?wsdl.

. The web service responds by providing the WSDL (an XML document).

. The client application (or, in some cases, the IDE of the client, such as Visual Studio)
creates a code class based on the server-generated WSDL. This class is known as a
stub, or proxy, because it merely contains callable references to the actual remote
methods of the web service, wrapped in the formal language semantics of the client’s
software platform. (The actual implementation of those methods is held on the
server application.)

. The client invokes a web service method over some protocol (usually HTTP). This
invocation is an HTTP request encoded in the SOAP XML vocabulary.

. The web service responds (it is hoped) with a SOAP-encoded response.

ptg

1930 CHAPTER 48 SQL Server Web Services

NOTE

Content and metadata pertaining to these stateless communications are always
encoded in XML-tagged documents known as SOAP envelopes. For complete informa-
tion on SOAP, visit the SOAP messaging framework specification, available online from
the W3C, at www.w3.org.

The W3C is the organizational body responsible for creating and maintaining World
Wide Web standards, including XML. The W3C website is a great place to get accurate
and up-to-date information on Web standards.

To recap: UDDI or word-of-mouth provides a discovery mechanism for web services.
WSDL provides the web methods, types, and metadata of the web service. Stateless
requests and responses are invoked over HTTP (or perhaps TCP) and transmitted in SOAP-
encoded format.

Before SQL Server 2005, developers had to use the Internet Information Services Virtual
Directory Management (IISVDM) for SQL Server utility to create SOAP-typed virtual names
to expose their data. (Incidentally, this could also be accomplished using a language such
as Visual Basic .NET with the SQLVDir object model that came with IISVDM.)

Today, this process is far easier. SQL Server no longer relies on IISVDM or even IIS to
publish web services. It ties directly in with operating-system–level (or kernel-mode) HTTP,
listening by way of the HTTP API (sometimes referred to as http.sys). This means that
under the covers, SQL Server registers the virtual paths (also known as URIs, such as
www.myserver.com/urlpath) specified in endpoint creation syntax with http.sys in the
same way that IIS registers virtual directories. The operating system then farms out incom-
ing HTTP requests to IIS or SQL Server, based on the path of the incoming request.

SQL Server also includes the entire SOAP messaging stack in its binaries. You might say
that to a certain degree, SQL Server is now a web server with limited applications.

NOTE

It is possible to create SQL Server endpoints for use with database mirroring schemes,
network connectivity, and SQL Server Service Broker. This chapter focuses strictly on
web service endpoints.

Building Web Services
Let’s delve right into the process of building a web service in SQL Server 2008.

The first step is to decide which data or T-SQL functionality to expose to the clients who
will ultimately call the web methods.

For this first example, you should create the stored procedure shown in Listing 48.1,
which returns a row of data from the AdventureWorks2008 sample database. The purpose
is to reveal a few attributes of an employee, given his or her unique EmployeeId.

www.w3.org
www.myserver.com/urlpath

ptg

1931Building Web Services
4

8

LISTING 48.1 A Stored Procedure for Your First Web Service

use AdventureWorks2008

GO

CREATE PROC dbo.GetEmployeeBasics

(

@EmployeeId int

)

AS

SELECT

e.BusinessEntityID,

FirstName,

LastName,

e.JobTitle

FROM HumanResources.Employee e

JOIN Person.Person p ON

e.BusinessEntityID = p. BusinessEntityID

WHERE BusinessEntityID = @EmployeeId

To expose this procedure as a web method of your web service, you use the CREATE
ENDPOINT T-SQL statement, which falls under the formal SQL category of Data Definition
Language (DDL). An endpoint can be defined as simply an entity on one end of a connec-
tion over a communication protocol, such as HTTP. SOAP endpoints have an additional
nickname: nodes. SOAP nodes consist of a SOAP sender and a SOAP receiver, following the
request-response model.

To create a SOAP-based HTTP endpoint, you use the fairly complex T-SQL syntax shown in
Listing 48.2.

LISTING 48.2 CREATE ENDPOINT T-SQL Syntax

CREATE ENDPOINT EndPointName [AUTHORIZATION login]

STATE = { STARTED | STOPPED | DISABLED }

AS HTTP

(

PATH = ’url’

, AUTHENTICATION =({ BASIC | DIGEST | INTEGRATED | NTLM | KERBEROS }

[,...n])

, PORTS = ({ CLEAR | SSL} [,... n])

[SITE = {‘*’ | ‘+’ | ’webSite’ },]

[, CLEAR_PORT = clearPort]

[, SSL_PORT = SSLPort]

[, AUTH_REALM = { ’realm’ | NONE }]

[, DEFAULT_LOGON_DOMAIN = { ’domain’ | NONE }]

[, RESTRICT_IP = { NONE | ALL }]

[, COMPRESSION = { ENABLED | DISABLED }]

ptg

1932 CHAPTER 48 SQL Server Web Services

[, EXCEPT_IP = ({ <4-part-ip> | <4-part-ip>:<mask> } [,...n])

)

FOR SOAP

(

[{ WEBMETHOD [’namespace’ .] ’method_alias’

(NAME = ’database.owner.name’

[, SCHEMA = { NONE | STANDARD | DEFAULT }]

[, FORMAT = { ALL_RESULTS | ROWSETS_ONLY }]

)

} [,...n]]

[BATCHES = { ENABLED | DISABLED }]

[, WSDL = { NONE | DEFAULT | ’sp_name’ }]

[, SESSIONS = { ENABLED | DISABLED }]

[, LOGIN_TYPE = { MIXED | WINDOWS }]

[, SESSION_TIMEOUT = timeoutInterval | NEVER]

[, DATABASE = { ’database_name’ | DEFAULT }

[, NAMESPACE = { ’namespace’ | DEFAULT }]

[, SCHEMA = { NONE | STANDARD }]

[, CHARACTER_SET = { SQL | XML }]

[, MAX_SOAP_HEADERS_SIZE = { int | DEFAULT }]

)

Before running the examples that follow, you should create a dedicated Windows login to
use in the authorization scheme; this user should own and be able to access the database
objects you create. In the examples that follow, this user is indicated as
MyDomain\SQLWebServicesClient. Replace this name with your own.

Listing 48.3 contains the endpoint creation DDL that exposes dbo.GetEmployeeBasics to
its web consumers.

LISTING 48.3 T-SQL for Creating a SQL Server Web Service Endpoint

CREATE ENDPOINT EPT_SQL2008UnleashedExamples

AUTHORIZATION [MyDomain\SQLWebServicesClient]

STATE = STARTED

AS HTTP

(

AUTHENTICATION = (INTEGRATED),

PATH = ‘/opensql/’,

PORTS = (CLEAR, SSL),

CLEAR_PORT = 80,

SSL_PORT = 443,

SITE = ‘*’,

COMPRESSION = ENABLED

)

FOR SOAP

(

ptg

1933Building Web Services
4

8

WEBMETHOD ‘urn:www-samspublishing-com:examples’.’WM_GetEmployeeBasics’

(

NAME = ‘AdventureWorks2008.dbo.GetEmployeeBasics’,

SCHEMA = STANDARD,

FORMAT = ALL_RESULTS

),

WSDL = DEFAULT,

BATCHES = DISABLED,

SCHEMA = STANDARD,

LOGIN_TYPE = WINDOWS,

SESSION_TIMEOUT = 120,

DATABASE = ‘AdventureWorks2008’,

NAMESPACE = ‘urn:www-samspublishing-com:examples’,

CHARACTER_SET = XML

)

In this listing, the name of the endpoint (EPT_SQL2008UnleashedExamples) immediately
follows the keywords CREATE ENDPOINT.

NOTE

Using EPT_ as a prefix is a naming convention chosen to delineate endpoints from
other types of user-created objects. Any valid database object name is acceptable here.

The endpoint name is also conveniently used to drop the endpoint from the server, as
follows:

DROP ENDPOINT EPT_SQL2008UnleashedExamples

But don’t drop the endpoint until you’ve finished trying out all the examples!

One caveat when creating endpoints: if the server name, port, and path you choose are
already reserved or in use by another application (such as IIS) on your server, you may
need to call the new stored procedure sp_reserve_http_namespace. This procedure explic-
itly reserves the URL of your choosing with http.sys so that you may use it for your
endpoints. Here’s an example:

EXEC sp_reserve_http_namespace N’http://localhost:80/opensql’

Next in the DDL, the AUTHORIZATION keyword is used to specify the name of the login
(either of authorization type Windows or SQL Server) that owns the endpoint. You can
change the name of the login later by using the ALTER AUTHORIZATION statement, as in the
following example:

ptg

1934 CHAPTER 48 SQL Server Web Services

ALTER AUTHORIZATION ON ENDPOINT::EPT_SQL2008UnleashedExamples

TO MyDomain\SomeOtherUser

Next, the STATE keyword indicates the initial state of the endpoint.

Much as in Windows services, the possible states are STOPPED, STARTED, and DISABLED. (For
security’s sake, STOPPED is the default.)

To change the state of any endpoint, you again invoke the ALTER ENDPOINT syntax. The
following example stops the endpoint:

ALTER ENDPOINT EPT_SQL2008UnleashedExamples STATE = STOPPED

Again, don’t do this until you are done with the examples!

The AS HTTP Keyword Group

The AS HTTP statements describe the protocol, ports, virtual path, and TCP/IP bindings for
the endpoint. This keyword group is of interest to security professionals because this is
where you can implement IP restrictions, authentication, and other lockdown mechanisms.

In the example shown in Listing 48.3, HTTP is the transport protocol. But you could just
as easily use TCP if your application demands it: when creating a TCP endpoint, you
specify AS TCP instead of AS HTTP. Then you add the following parameters:

. LISTENER_PORT—Specifies an integer-valued port number on which the server listens
for incoming requests. The default is 4022.

. LISTENER_IP—Specifies an incoming IP address on which the TCP listener accepts
connections. The default is the keyword ALL (that is, listening on all IP addresses).

Next, you specify that the AUTHENTICATION method is INTEGRATED. Microsoft recommends
INTEGRATED (which includes both KERBEROS and NTLM) and KERBEROS as the most secure
ways of authenticating to endpoints, although they are not necessarily platform-indepen-
dent ways. This approach is in contrast to using BASIC or DIGEST authentication. In case
the endpoint consumer requires BASIC authentication, SQL Server requires that the HTTP
port of the web service be secured via Secure Sockets Layer (SSL).

NOTE

Using BASIC authentication allows for the additional keyword DEFAULT_LOGON_DOMAIN
to specify the domain under which users will authenticate.

DIGEST authentication is also available, but only a domain-level account may be used in
the AUTHORIZATION section for the endpoint to be successfully created.

ptg

1935Building Web Services
4

8

TIP

The prerequisite of a domain-level account is also true for all other authentication
methods (KERBEROS, BASIC, INTEGRATED, and NTLM): SQL Server does not register the
endpoint if authorization checks fail at DDL execution time.

Using DIGEST allows for the additional keyword AUTH_REALM, whose string value represents
the challenge hint required by this type of authentication.

NOTE

In contrast to SQLXML, there is no way for web anonymous users (such as
IUSR_MACHINENAME) to access SQL Server 2008 endpoints. This is an uncommonly
proactive security move for Microsoft, and database administrators will applaud it.

Next, you specify the PATH (/opensql) to the web service. PATH is simply the part of the
URL that follows the server and domain name portion of a URL (for example,
http://ServerDomainName/PATH). Paths are sometimes also referred to as virtual names.
Clients connecting to the HTTP endpoint thus access it via the URL
http://ServerDomainName/opensql.

This method of specifying the PATH is similar to the way virtual directories are used with
IIS, and the reason is that IIS and SQL Server register their endpoints similarly with the
HTTP API. When the web service is called by a client, the HTTP API responds by farming
the request out to SQL Server.

NOTE

You cannot register a value for PATH that is already registered by SQL Server, IIS, or any
other application that uses the HTTP API. If you attempt to do so, SQL Server raises
the following error:

The URL specified by endpoint ‘ENDPOINTNAME’ is already registered

to receive requests or is reserved for use by another service.

Next in the syntax, you specify the PORTS on which SQL Server listens for requests for this
endpoint. The example in Listing 48.3 specifies both CLEAR (the unsecured standard HTTP
port, which defaults to 80) as well as SSL (the standard SSL port, which defaults to 443).
You can also specify nondefault numeric values for CLEAR_PORT and SSL_PORT, but this
example simply restates the default for clarity.

ptg

1936 CHAPTER 48 SQL Server Web Services

Note that it is essential you do not use port numbers owned by other network services
(such as email, telnet, and so on), although SQL Server may allow you to do so. Only one
port can be specified each for CLEAR_PORT and SSL_PORT.

In addition to specifying ports, you can restrict or grant endpoint access to specific IP
addresses by using a combination of the keywords RESTRICT_IP and EXCEPT_IP.
RESTRICT_IP defaults to NONE (that is, no IP addresses are restricted), but you can change
this to ALL to prevent users from accessing the endpoint (which is useful during offline
maintenance periods). For EXCEPT_IP, you can add specific client IP addresses in parenthe-
ses. Here’s an example:

CREATE ENDPOINT EPT_SQL2008UnleashedIPExample

AUTHORIZATION [MyDomain\SQLWebServicesClient]

STATE = STARTED

AS HTTP

(

AUTHENTICATION = (INTEGRATED),

PATH = ‘/opensql2/’,

PORTS = (CLEAR, SSL),

CLEAR_PORT = 80,

SSL_PORT = 443,

SITE = ‘*’,

COMPRESSION = ENABLED,

RESTRICT_IP = ALL,

EXCEPT_ID = 192.168.10.1

)

FOR SOAP

(

WEBMETHOD ‘urn:www-samspublishing-com:examples’.’WM_GetEmployeeBasics2’

(

NAME = ‘AdventureWorks2008.dbo.GetEmployeeBasics’,

SCHEMA = STANDARD,

FORMAT = ALL_RESULTS

),

WSDL = DEFAULT,

BATCHES = DISABLED,

SCHEMA = STANDARD,

LOGIN_TYPE = WINDOWS,

SESSION_TIMEOUT = 120,

DATABASE = ‘AdventureWorks2008’,

NAMESPACE = ‘urn:www-samspublishing-com:examples’,

CHARACTER_SET = XML

);

ptg

1937Building Web Services
4

8

TIP

It is assumed that for most endpoints, you want to implement some level of IP filtering.
It is recommended that you use the modifiers described here to prevent broad access.

Next, you use the SITE keyword to specify the hostname(s) used on the server hosting the
endpoint. In this case, ’*’ restates the default (that is, all hostnames reserved by the local
machine), but you can use a specific host name (such as ’hostname’) or all hostnames
(that is, ’+’). This capability is useful (and necessary) when multiple host headers are in
play for the same IP address.

The NAMESPACE keyword indicates to clients that the web method originates from a specific
organizational entity. This prevents confusion when comparing the XML generated by this
web service with that of any other organization that might expose a web method of the
same name on an endpoint of the same name (which is an entirely possible situation).

TIP

Specifying the company name in uniform resource name (URN) format is standard prac-
tice for namespace naming. A URN differs from a uniform resource locator (URL) in that
it specifies just the name of a resource, independent of its location. Using the URN is
useful because the name of a resource is usually valid longer than the lifetime of any
particular URL.

COMPRESSION is an interesting optional keyword because, when specified, it tells SQL Server
to decompress its incoming SOAP requests if they have been compressed using gzip; then,
in turn, it tells SQL Server to use gzip on the outgoing responses. You might think that
web services over SOAP are too slow for the average application because of the sheer byte
count of SOAP XML documents. However, using gzip on an XML file usually results in a
compression ratio of greater than 80%.

When COMPRESSION is set to ENABLED, both the client and server must support gzip compres-
sion for web service compression to work properly, although the web service can still process
uncompressed requests with uncompressed responses even with the setting turned on.

To enable compression on IIS 6 (on Windows 2003 Server, Standard Edition), you follow
these steps:

1. Open the IIS Manager, expand the main tree, right-click the Web Sites node, and
choose Properties.

2. When the Web Sites Properties dialog appears, click on the Service tab and check the
Compress Application Files and Compress Static Files check boxes.

ptg

1938 CHAPTER 48 SQL Server Web Services

FIGURE 48.1 Enabling compression on IIS 6.

3. Add a web service extension for the .gzip file extension and edit the metabase
appropriately, if necessary.

The Web Sites Properties dialog box should look something like the one in Figure 48.1
when these steps are complete.

The FOR SOAP Keyword Group

The second major section of the DDL begins after the end parenthesis of the AS clause,
with the FOR SOAP group, whose keywords appear in parentheses.

First, you assign the namespaced-name ’urn:www-samspublishing-
com:examples’.’WM_GetEmployeeBasics’ to WEBMETHOD. This name is specified in two parts
to ensure its uniqueness:

. A namespace as a string in URN format (followed by a period)

. The string name of the web method

NOTE

In Listing 48.3, the naming convention WM_ is used simply to differentiate the web
method from other database objects. Later in this chapter, you see how this convention
makes objects easy to pick out in query results on the endpoint catalog views in the
section “Using Catalog Views and System Stored Procedures.”

The following keyword options are used inside the parenthetical group following WEBMETHOD:

ptg

1939Building Web Services
4

8

. NAME—The string value represents the SQL Server scalar-valued user-defined function
(UDF) or stored procedure that will be executed via the web service.

. SCHEMA—This keyword choice describes the quality of XML schema produced to
describe the transmitted XML data.

CAUTION

The SCHEMA keyword occurs twice in the FOR SOAP group. This first occurrence of
SCHEMA relates specifically to inline schema generation for the web method. It tells the
compiler how to generate (or not generate) an XSD schema within the SOAP response
envelope that describes the types used by this particular WEBMETHOD.

These are the valid keyword values for SCHEMA:

. NONE—Do not include web method–specific schema information in the SOAP
response.

. STANDARD—Generate a standard schema.

. DEFAULT—Use the value of the SCHEMA keyword that is specified (somewhat
confusingly, a second time) after the end of the WEBMETHOD clause.

. FORMAT—This option specifies which kinds of objects are returned to the web
method’s caller. Following are the valid keyword values for FORMAT:

. ALL_RESULTS—Include two or more objects in the SOAP response, including
the following:

. The result set itself (in .NET, deserialized as DataSet; or, in the case of
web methods that return XML, one or more sqlresultstream:SqlXml
nodes deserialized as XmlElements)

. A row count of the result set (in .NET, deserialized as a SqlRowCount
object; or, in the case of XML results, a sqlresultstream:SqlRowCount
node deserialized as an XmlElement)

. A result code (in .NET, an integer; or, in the case of XML results, a
sqlresultstream:SqlResultCode node deserialzed as an XmlElement)

. Any SQL Server errors or warnings, if generated at runtime (in .NET, dese-
rialized as SqlMessage objects)

. ROWSETS_ONLY—Return just the result sets, if any.

. NONE—Do not mark up the output data in SOAP-typed envelope data. NONE is
an advanced setting and should be used with the following caveat: no output

ptg

1940 CHAPTER 48 SQL Server Web Services

parameters or UDFs are allowed with this option, and WSDL for the web
method is not generated.

. BATCHES—Setting this switch to ENABLED or DISABLED allows or disallows ad hoc T-
SQL statements to be executed on the endpoint. This means that any number of SQL
statements (with associated parameters) may be run via the special sqlbatch() web
service proxy method, explained later in this chapter.

TIP

Although convenient, the BATCHES feature has some security implications because a
wide range of T-SQL may be executed; thus, many administrators want it kept off. (It is
disabled by default.) There are, however, some valid situations for using it, including

.During the design and testing phases of a website

.When implementing highly customized remote database administrative tools

.For ad hoc-query–dependent features

. LOGIN_TYPE—You use this setting to set the SQL Server Authentication mode for the
endpoint to either MIXED (both Windows and SQL Server) or WINDOWS (the default).
As with BASIC authentication, SSL is required to be both implemented on the server
and specified after the PORTS keyword for the statement to compile.

. WSDL—You use this setting to determine whether SQL Server will generate WSDL for
methods on the endpoint. You specify DEFAULT to do so or NONE. When you require
specific WSDL to be generated, you specify a string value corresponding to the
name of the custom stored procedure that generates the home-grown WSDL. Here’s
an example:

WSDL ‘wsdl_generating_stored_procedure_name’

Note that for the C# web service client example later in this chapter to work, the value for
WSDL must be DEFAULT. The reason is that the Visual Studio .NET IDE uses the generated
WSDL to create web references as the basis for generating proxy classes used to call them.

TIP

The built-in system stored procedures that SQL Server uses to generate WSDL are
sp_http_generate_wsdl_complex, sp_http_generate_wsdl_simple,
sp_http_generate_wsdl_defaultcomplexorsimple, and
sp_http_generate_wsdl_defaultsimpleorcomplex. You can test them by executing
them with varying parameters to see how they work.

For more information on generating custom WSDL, see the Books Online topic
“Implementing Custom WSDL Support.”

ptg

1941Building Web Services
4

8

WSDL on SQL Server comes in two different flavors: the default and simple. To see an
example of simple WSDL, try the following URL (after you create the sample endpoint by
running the code in Listing 48.3): http[s]://ServerDomainName/opensql?wsdlsimple.

. SESSIONS—You use this setting to specify whether SOAP sessions managed by SQL
Server are ENABLED or DISABLED (the default). Managing SOAP sessions on the client
side requires a fair amount of programming in an environment such as Visual Studio
2008 for successful implementation. Not all SOAP clients require sessions.

. SESSION_TIMEOUT—You use this setting to specify how long (in seconds) before a SQL
Server SOAP session times out.

. DATABASE—You use this setting to specify the database (named with a string value) in
whose context the web methods of this endpoint are executed. Note that the
keyword DEFAULT is also an option. Using it tells SQL Server to execute the web
methods in the context of the default database of the login accessing the endpoint.

. SCHEMA—This is the second occurrence of this keyword in the CREATE ENDPOINT DDL.
This time around, it applies to schema generation for all SOAP responses of all web
methods on the endpoint, not merely of a particular web method. These are the
possible values:

. NONE—Do not generate an inline XML schema in the SOAP response.

. STANDARD—Generate an inline schema.

. CHARACTER_SET—The XML specification specifies a set of characters that are invalid
in element and attribute values; they are <, >, ”, ’, and &. The reason for this is that
XML parsers would have a hard time figuring out whether these characters represent
markup or text values because they are used to delimit XML information items. For
example, they are used in element tagging (for example, <element>), attribute
naming (for example, attribute=”value”), and entity naming (for example,
&entity;).

The two keyword values for CHARACTER_SET treat these and other special characters
(when found in markup) in distinct ways:

. XML—If a SOAP response is sent and the special XML characters are not escaped
into their valid entity equivalents (<, >, ", ', and &) the
response generates an error. This is the default.

. SQL—Any invalid XML characters are transformed into their respective entity
representations (a process called entitization) before response transmission.

Other special characters are not permitted in the names of XML attributes or
elements (known formally as qualifying names, or QNames) but may nevertheless end
up in XML documents. SQL Server automatically escapes them by taking their
Unicode hexadecimal values and preceding them with the string #x[4-digit hex
value]. The asterisk (*) character, for example, would be converted to the character
string #x002A.

ptg

1942 CHAPTER 48 SQL Server Web Services

NOTE

This character conversion may not be cross-platform compatible because not all
parsers approve of it, but it is far better to convert characters than have your SQL
connection closed due to an XML parsing error.

One of the ways that such special character entitization may occur is when you use
SQL column (or other object) aliases that, though legally named in T-SQL, are not valid
QNames (for example, SELECT ColumnName AS ‘*’ FROM TableName FOR XML RAW).

. MAX_SOAP_HEADERS_SIZE—Optionally, you can set the maximum size of the header
section of each transmitted SOAP envelope. (The default is 8KB.) Transmitting a larg-
er header than specified in this setting thus causes a server error.

As you can see, the CREATE ENDPOINT syntax offers a feast of options. Thankfully, it is easy
to choose the ones you need, depending on your application’s requirements.

Examples: A C# Client Application
After you execute the DDL in Listing 48.3, you can call your SOAP endpoint. In the
following sections, you learn how to call the endpoint’s web methods using a simple C#
client application.

If you do not want to try your hand at C#, you can skip to the next section, but working
through the following examples is recommended so that you have a complete understand-
ing of both sides of the web service pattern.

Example 1: Running a Web Method Bound to a Stored Procedure
from C#

Using Visual Studio 2008, create a new web application or website and name it
SQLWebServicesClient. Next, add a web reference to the SQL Server web service created in
Listing 48.3. To do this, you right-click the project name in the Server Explorer window
and select Add Web Reference. In the dialog that appears, you type the following in the
URL text box, replacing ServerDomainName with the server name of your SQL Server instance:

http[s]://ServerDomainName/opensql?wsdl

Next, you click the green Go arrow button. You may be required to Windows-authenticate
to the machine hosting the SQL web service. Be sure to use an account that has a match-
ing SQL Server login. After you do so, the Add Web Reference dialog should look some-
thing like the one shown in Figure 48.2.

Notice in the dialog that the browser box (directly below the URL text box) contains the
endpoint name you used in the DDL (EPT_SQL2008UnleashedExamples), located on top
and in quotation marks. It is followed by the name of the web method you added
(WM_GetEmployeeBasics).

ptg

1943Examples: A C# Client Application
4

8

FIGURE 48.2 Adding a web reference by using Visual Studio 2008.

Also note how on the right side of the dialog, under the heading Web Services Found at
This URL, the value you specified for PATH (opensql) is displayed. You need to type
opensql in the Web Reference Name text box and click the Add Reference button. Next,
you open the automatically created default.aspx file in design mode and add GridView,
TextBox, Label, and Button controls to the form. Using the Properties dialog, you should
name the label lblResults, the text box txtEmployeeId, the grid view gvData, and the
button btnGetValue.

Next, you need to double-click btnGetValue. The IDE exits design mode and enters the
code region of the C# partial class default.aspx.cs. The following empty event handler is
autogenerated:

protected void btnGetValue_Click(object sender, EventArgs e) {}

At the top of this file, you type the following C# using statement:

using SQLWebServicesClient.opensql;

This statement tells the compiler to import the names culled from the WSDL of the web
service into this C# class. The namespace contains a C# stub class with the same name as
the endpoint (EPT_SQL2008UnleashedExamples); the .NET runtime (CLR) uses this name to
call the SQL Server HTTP endpoint.

At this point, you need to type the code in Listing 48.4 inside the empty body of
btnGetValue_Click().

ptg

1944 CHAPTER 48 SQL Server Web Services

LISTING 48.4 Calling a SQL Server Web Method from C#

if (txtEmployeeId.Text != string.Empty)

{

EPT_SQL2008UnleashedExamples SQLEndpointProxy =

new EPT_SQL2008UnleashedExamples();

SQLEndpointProxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

int EmployeeId = int.Parse(txtEmployeeId.Text);

object[] ReturnArray = SQLEndpointProxy.WM_GetEmployeeBasics(EmployeeId);

foreach (object Obj in ReturnArray)

{

if (Obj is DataSet)

{

DataSet ds = (DataSet)Obj;

if (ds.Tables.Count == 0)

{

lblResults.Text = “(No Results Found)”;

}

else

{

lblResults.Text = “(“ +

((SqlRowCount)ReturnArray[1]).Count + “ Result(s) Found)”;

gvData.DataSource = ds;

gvData.DataBind();

}

}

}

}

After you test whether the text box txtEmployeeId is nonempty, you instantiate the
WSDL-based stub class opensql.EPT_SQL2008UnleashedExamples and name it
SQLEndpointProxy. Next, you set the credentials used by the web service to those of the
currently logged-on user.

NOTE

When using SQL Server (not Windows) Authentication, instead of assuming the default
credentials, you need to add web services security (WS-Security) username and pass-
word headers to the SOAP request. Note that the password will be sent in clear text,
so SSL is required to be installed and turned on for your web service.

Anonymous web access is completely disabled for SQL Server web services, and Visual Studio
turns on NTLM authentication by default for the sample web application’s virtual directory.

ptg

1945Examples: A C# Client Application
4

8

Depending on your system’s security policy configuration, the following line might be
required in the configuration section of your web.config (or machine.config) file:

<identity impersonate=”true” userName=”SQLWebServicesClient” password=”wsdl”/>

This line tells the CLR to run the web application under the credentials of the user
SQLWebServicesClient (created earlier and also specified after the AUTHORIZATION keyword
in the DDL). The client application thus impersonates SQLWebServicesClient in its requests
to the web service, regardless of the credentials of the logged-in Windows user.

When btnGetValue is clicked in the running browser window, the text typed into
txtEmployeeId is typecast to an integer value. This value represents the EmployeeId of the
employee about whom the web method’s stored procedure returns data.

You pass this value into the call to the SQL Server web method with the code:

opensql.WM_GetEmployeeBasics(EmployeeId)

Notice that WM_ GetEmployeeBasics is exactly the same name you specified in WEBMETHOD
(minus the namespace prefix). EmployeeId corresponds to the input parameter of the
stored procedure @EmployeeId.

The next line of Listing 48.4 illustrates how the SOAP results returned from SQL Server are
deserialized from XML into .NET Framework objects.

As mentioned earlier in this chapter, when ALL_RESULTS is specified for the FORMAT state-
ment of the web method, you get back the array object[] ReturnArray that has two or
more elements:

. The result set (if any) of the stored procedure, deserialized by the CLR into
System.Data.DataSet. SELECT queries on relational data (as opposed to XML data)
are always returned as .NET DataSets.

. An object of type SqlRowCount, representing the number of records in the result set.

. Any errors or warnings (or the value 0, if none occur), typed as SqlMessage objects.

Also possible in the object array are the following objects (not returned in this example):

. The results of SELECT...FOR XML statements are deserialized into System.Xml.
XmlElement objects.

. Output parameters of a SQL Server web method–bound stored procedure are deserial-
ized as SqlParameter objects.

Because you don’t always know at runtime which objects are in which position in an
array, it is best to iterate through the objects, testing to see which class they are before
using them. This is the purpose of the foreach loop in the code example.

At this point, you need to run the web application by clicking the IDE’s Run toolbar
button or by pressing F5. When the browser is up and running, you enter a number in
txtEmployeeId and click btnGetValue. If any tables are returned in the DataSet (for

ptg

1946 CHAPTER 48 SQL Server Web Services

FIGURE 48.3 Calling a SQL Server web service from a C# web application.

example, if (ds.Tables.Count == 0)) the DataSet is bound to GridView, and the result-
ing data is displayed.

With a little visual sprucing up, your webpage should look a lot like Figure 48.3.

Listing 48.5 contains the HTML built in default.aspx so far. (You add to this code as you
continue through the examples.)

LISTING 48.5 ASP.NET HTML Code in default.aspx

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Default.aspx.cs”

Inherits=”_Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Default.aspx.cs”

Inherits=”_Default” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >

<head runat=”server”>

<title>SQL Server 2008 Web Services - Called From Our ASP.NET Web Site</title>

</head>

<body>

<form id=”form1” runat=”server”>

<div>

<h4>SQL Server 2008 Web Services - Called From Our ASP.NET Web Site</h4>

<asp:Label ID=”lblResults”

runat=”server” Text=”” Font-Italic=true></asp:Label>

<asp:GridView ID=”gvData” runat=server

BackColor=”LightGoldenrodYellow”

BorderColor=”Tan” BorderWidth=”1px”

ptg

1947Examples: A C# Client Application
4

8

CellPadding=”2” ForeColor=”Black”>

<FooterStyle BackColor=”Tan” />

<PagerStyle BackColor=”PaleGoldenrod”

ForeColor=”DarkSlateBlue” HorizontalAlign=”Center” />

<SelectedRowStyle BackColor=”DarkSlateBlue” ForeColor=”GhostWhite” />

<HeaderStyle BackColor=”Tan” Font-Bold=”True” />

<AlternatingRowStyle BackColor=”PaleGoldenrod” />

</asp:GridView>

<h6>Run Stored Procedure:</h6>

EmployeeID: <asp:TextBox ID=”txtEmployeeId” runat=”server”>1</asp:TextBox>

<asp:Button ID=”btnGetValue” runat=”server”

OnClick=”btnGetValue_Click” Text=”Get Employee” />

Example 2: Running Ad Hoc T-SQL Batches from a SQL Server Web
Service

For this example, you need to execute a batch of T-SQL statements by adding a new web
method to the endpoint and changing it to accept query batches.

The syntax for making changes to SOAP endpoints is similar to that for CREATE ENDPOINT.
The differences are shown in Listing 48.6.

LISTING 48.6 ALTER ENDPOINT T-SQL Syntax

ALTER ENDPOINT endpointname

<same as above>

AS HTTP

(

<same as above>

<except>

ADD EXCEPT_IP = (ip-address)

DROP EXCEPT_IP = ({ <4-part-ip> | <4-part-ip>:<mask> } [,...n])

ADD WEBMETHOD webmethodname

ALTER WEBMETHOD webmethodname

DROP WEBMETHOD webmethodname

)

FOR SOAP

(

<same as above>

)

ptg

1948 CHAPTER 48 SQL Server Web Services

The following bullets explain the keywords used with ALTER ENDPOINT:

. ADD and DROP EXCEPT_IP allow you to update the list of IP addresses allowed to
connect to the web service.

. ADD WEBMETHOD allows a new web method to be added to the web service.

. ALTER WEBMETHOD permits changes in the attributes of an existing web method.

. DROP WEBMETHOD permanently drops the named web method from the endpoint.

Now you can change your endpoint and set BATCHES to ENABLED so you can run ad hoc
queries on the web service:

ALTER ENDPOINT EPT_SQL2008UnleashedExamples

FOR SOAP

(

BATCHES = ENABLED

)

At this point, you need to return to Visual Studio and right-click the App_WebReferences
node under the project name in the Solution Explorer. Then you select Update Web
References from the context menu. This causes the IDE to re-request the WSDL from SQL
Server to check for changes to the service description.

The .NET IDE recognizes that batching has been turned on by adding the sqlbatch()
method to the proxy class. All the behind-the-scenes work for SQL batching is done via
this magical .NET method. When BATCHES is enabled, SQL Server adds some special
elements to the WSDL XML to make this happen.

A peek at the WSDL in opensql.wsdl (found under the App_WebReference node in
Solution Explorer) serves to illustrate some of the special batching XML nodes:

<wsdl:message name=”sqlbatchSoapIn”>

<wsdl:part name=”parameters” element=”s0:sqlbatch” />

</wsdl:message>

<wsdl:message name=”sqlbatchSoapOut”>

<wsdl:part name=”parameters” element=”s0:sqlbatchResponse” />

</wsdl:message>

You should now open default.aspx once again in design mode and add an additional
TextBox control to the form named txtSQLBatch and set its TextMode property to
MultiLine. Then you need to add a second Button control named btnRunBatch. Next, you
double-click btnRunBatch and add the code in Listing 48.7 to the empty event handler
(btnRunBatch_Click()) generated by the IDE.

ptg

1949Examples: A C# Client Application
4

8

LISTING 48.7 Calling Ad Hoc T-SQL Batches from C#

EPT_SQL2008UnleashedExamples SQLEndpointProxy =

new EPT_SQL2008UnleashedExamples();

SQLEndpointProxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

opensql.SqlParameter[] sqlParams =

new opensql.SqlParameter[1];

// note: using opensql.SqlParameter avoids namespace collisions

// with System.Data.SqlClient.SqlParameter

sqlParams[0] = new opensql.SqlParameter();

sqlParams[0].name = “EmployeeId”;

sqlParams[0].Value = int.Parse(txtEmployeeId.Text);

object[] ReturnArray = SQLEndpointProxy.sqlbatch(txtSQLBatch.Text, ref sqlParams);

if (ReturnArray.Length > 0)

{

foreach (Object Obj in ReturnArray)

{

if (Obj is DataSet)

{

DataSet ds = (DataSet)Obj;

if (ds.Tables.Count == 0)

{

lblResults.Text = “(No Results Found)”;

}

else

{

gvData.DataSource = ds;

gvData.DataBind();

}

}

}

}

else

{

lblResults.Text = “(No Results)”;

}

As in the first example, the first and second code lines in Listing 48.7 create the proxy
object and set its credentials. Next, an array of opensql.SqlParameter objects of length 1
is created, and its single parameter (EmployeeID) is assigned the value of
txtEmployeeId.Text, typecast to an integer. You use this value as a declared parameter to
your SQL batch.

Instead of calling any web method by name, you instead call
SQLEndpointProxy.sqlbatch(), passing in the text of the T-SQL statement and the value
of txtEmployeeId.Text. With a little visual sprucing up, the running webpage should look
something like the one in Figure 48.4.

ptg

1950 CHAPTER 48 SQL Server Web Services

Now you need to append the HTML code in Listing 48.8 to default.aspx just below the
last line entered.

LISTING 48.8 Additional ASP.NET HTML Code for default.aspx

<h6>Run Sql Batches:</h6>

<asp:TextBox

ID=”txtSQLBatch” runat=”server”

Height=”280px” TextMode=”MultiLine”

Width=”437px”>SELECT LoginId, BusinessEntityID

FROM HumanResources.Employee

WHERE BusinessEntityID = @EmployeeID

</asp:TextBox>

<asp:Button ID=”btnRunBatch” runat=”server” OnClick=”btnRunBatch_Click”

Text=”Run Batch” />

When btnRunBatch is clicked at runtime, the text of the query stored in txtSQLBatch.Text
is executed. The parameter @EmployeeId is populated from txtEmployeeId.Text (in this
case, typecast to the integer value 1), and the batch is run. The web service responds with
SOAP flowing over HTTP, and the envelope is deserialized into an array of objects.

FIGURE 48.4 Running T-SQL batches on a web service by using sqlbatch().

ptg

1951Examples: A C# Client Application
4

8

The resulting DataSet is again bound to the GridView gvData. Any SqlMessages in the
ReturnArray are appended to the text of lblResults for viewing on the page.

This type of querying just touches the tip of what can be accomplished via ad hoc web
services queries using sqlbatch(). You can use your imagination to take it as far as you
want.

Example 3: Calling a Web Method–Bound Stored Procedure That
Returns XML

For your third and final web method, you create a stored procedure that returns XML
from an xml column, using the new FOR XML PATH syntax. To do this, you need to create
the stored procedure in Listing 48.9 in the context of the AdventureWorks2008 database.

LISTING 48.9 A Stored Procedure That Returns XML

use AdventureWorks2008

GO

CREATE PROC dbo.GetJobCandidateResumeXml

(

@JobCandidateId int

)

AS

SELECT

Resume.query(‘

declare namespace

ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume”;

/ns:Resume/ns:Name

‘) as “Name”,

Resume.query(‘

declare namespace

ns=”http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume”;

/ns:Resume/ns:Skills

‘) as “Skills”

FROM HumanResources.JobCandidate

WHERE JobCandidateId = @JobCandidateId

FOR XML PATH(‘CandidateQuickView’)

The Resume column of HumanResources.JobCandidate is of the new SQL data type xml.
The .query() syntax used in GetJobCandidateResumeXml is part of the XQuery language,
which is newly supported in SQL Server 2008. Chapter 47, “Using XML in SQL Server
2008,” describes these features in detail.

Now you need to bind the stored procedure to the existing endpoint, using the T-SQL in
Listing 48.10.

ptg

1952 CHAPTER 48 SQL Server Web Services

LISTING 48.10 ALTER ENDPOINT Syntax for Adding a Web Method That Returns XML

ALTER ENDPOINT EPT_SQL2008UnleashedExamples

FOR SOAP

(

ADD WEBMETHOD

‘urn:www-samspublishing-com:examples’.’WM_GetJobCandidateResumeXml’

(

NAME = ‘AdventureWorks2008.dbo.GetJobCandidateResumeXml’,

FORMAT = ALL_RESULTS,

SCHEMA = STANDARD

)

)

You need to return to Visual Studio and update the web reference of the project, as described
in Example 1. Then you switch default.aspx to design mode and add another Button
control, named btnGetXml, to the bottom of the page.

In the HTML Source view of default.aspx, you append to the page the lines of ASP.NET
code found in Listing 48.11.

LISTING 48.11 The Final ASP.NET HTML Code in default.aspx

<h6>Run Xml-Based Stored Procedure:</h6>

Job Candidate Id:

<asp:TextBox ID=”txtJobCandidateId” runat=”server” Text=”1”></asp:TextBox>

<asp:Button ID=”btnGetXml” runat=”server” Text=”Get Xml” OnClick=”btnGetXml_Click” />

<hr />

<textarea style=”font-size:11px;” rows=”10” cols=”80” ID=”textareaXml”

runat=”server”></textarea>

<hr />

<h6>SqlRowCount=<asp:Label ID=”lblRowCount” runat=”server”/></h6>

<h6>SqlResultCode=<asp:Label ID=”lblResultCode” runat=”server”/></h6>

At this point you should double-click btnGetXml. In btnGetXml_Click(), you type or copy
the C# code found in Listing 48.12.

LISTING 48.12 Consuming a Web Method That Returns XML in C#

opensql.EPT_SQL2008UnleashedExamples SQLEndpointProxy =

new opensql.EPT_SQL2008UnleashedExamples();

SQLEndpointProxy.Credentials =

System.Net.CredentialCache.DefaultCredentials;

ptg

1953Examples: A C# Client Application
4

8

object[] XmlResult =

SQLEndpointProxy.WM_GetJobCandidateResumeXml(int.Parse(txtJobCandidateId.Text));

if (XmlResult.Length == 3)

{

lblRowCount.Text = ((SqlRowCount)XmlResult[1]).Count.ToString();

lblResultCode.Text = XmlResult[2].ToString();

XmlElement CandidateQuickViewXmlElement = (XmlElement)XmlResult[0];

textareaXml.Value = CandidateQuickViewXmlElement.OuterXml;

}

For this example to compile, you must add the following C# using statement to the top of
default.aspx.cs:

using System.Xml;

The final output should display the XML result of the GetJobCandidateResumeXml stored
procedure in an HTML text area, as shown in Figure 48.5.

FIGURE 48.5 Returning XML from a stored procedure to a SQL Server web service C# client.

ptg

1954 CHAPTER 48 SQL Server Web Services

Using Catalog Views and System Stored Procedures
SQL Server provides a set of stored procedures and catalog views directly related to
endpoint functionality. With them, you can find out anything you need to know about
what endpoints exist on the server, the states they are in, the web methods associated
with them, the settings used in their DDL, and so on.

To get a result set of all the registered endpoints for a server, you execute the following
simple T-SQL statement against sys.endpoints in a new query window in the context of
the master database:

SELECT name, endpoint_id, protocol_desc, type_desc, state_desc

FROM sys.endpoints

Go

name endpoint_id protocol_desc type_desc state_desc

Dedicated Admin Connection 1 TCP TSQL STARTED

TSQL Local Machine 2 SHARED_MEMORY TSQL STARTED

TSQL Named Pipes 3 NAMED_PIPES TSQL STARTED

TSQL Default TCP 4 TCP TSQL STARTED

TSQL Default VIA 5 VIA TSQL STARTED

EPT_SQL2008UnleashedExamples 65536 HTTP SOAP STARTED

(6 row(s) affected)

As the result set illustrates, listeners for the basic SQL Server network protocols (for
example, T-SQL named pipes, T-SQL default TCP) are also registered as endpoints.

After you ascertain the endpoint_id of the endpoint (65536), you can get all the details
about it by querying the catalog view sys.http_endpoints:

SELECT name, site, url_path, clear_port, ssl_port

FROM sys.http_endpoints

WHERE endpoint_id = 65536

Go

name site url_path clear_port ssl_port

--

EPT_SQL2008UnleashedExamples * /opensql/ 80 443

(1 row(s) affected)

To see all of the endpoint’s web methods and their DDL-defined settings, you can try the
following query against the view sys.endpoint_webmethods:

SELECT

method_alias,

result_schema_desc as [schema],

result_format_desc as [format]

FROM sys.endpoint_webmethods

ptg

1955Controlling Access Permissions
4

8

WHERE namespace = ‘urn:www-samspublishing-com:examples’

AND endpoint_id = 65536

Go

method_alias schema format

--

WM_GetEmployeeBasics STANDARD ALL_RESULTS

WM_GetJobCandidateResumeXml STANDARD ALL_RESULTS

(2 row(s) affected)

To see all endpoints defined using FOR SOAP and some of the settings used in their FOR
SOAP clause, you can use the following:

SELECT name, principal_id, type_desc, login_type, header_limit

FROM sys.SOAP_endpoints

Go

name principal_id type_desc login_type header_limit

EPT_SQL2008UnleashedExamples 259 SOAP WINDOWS 4096

(1 row(s) affected)

Controlling Access Permissions
An important task in endpoint management is the granting, revoking, and denying of
endpoint permissions. To control whether a login may connect to (and thus consume) an
endpoint, you use the following syntax:

{ GRANT | DENY | REVOKE } CONNECT ON ENDPOINT:: <EndPointName> TO <login>

For example, to give a login called MyDomain\MyUserName connect permission on your
endpoint, you would use this statement:

GRANT CONNECT ON ENDPOINT::EPT_SQL2008UnleashedExamples TO MyDomain\MyUserName

Note that whenever the login specified in the AUTHORIZATION keyword of the endpoint
DDL isn’t the same as the login consuming the service, you must grant connect permis-
sion to that login. To control whether a given login may create endpoints on your SQL
Server instance, you use the following syntax:

{ GRANT | DENY | REVOKE } CREATE ENDPOINT TO <login>

For example, to prevent your test user from creating more endpoints, you execute the
following statement:

REVOKE CREATE ENDPOINT TO [MyDomain\SQLWebServicesClient]

ptg

1956 CHAPTER 48 SQL Server Web Services

NOTE

The main difference between DENY and REVOKE is that REVOKE removes both currently
granted and currently denied permissions, but DENY also prevents permissions from
being inherited through role assignment.

To allow a login permission to alter endpoints, you use the following syntax:

{ GRANT | DENY | REVOKE } ALTER ANY ENDPOINT TO <login>

{ GRANT | DENY | REVOKE } ALTER ON ENDPOINT:: <EndPointName> TO <login>

{ GRANT | DENY | REVOKE } CONTROL ON ENDPOINT:: <EndPointName> TO <login>

For example, to allow server-wide endpoint altering to a login, you execute the following:

GRANT ALTER ANY ENDPOINT TO [MyDomain\MyUserLogin]

And to disallow ALTER permission on a specific endpoint, you execute the following state-
ment:

DENY ALTER ON ENDPOINT::EPT_SQL2008UnleashedExamples TO [MyDomain\MyUserLogin]

The CONTROL keyword changes whether a given login may transfer ownership of, alter,
drop, or connect to a specific endpoint. To revoke control for a specific endpoint, you
execute the following:

REVOKE CONTROL ON ENDPOINT::EPT_SQL2008UnleashedExamples TO [MyDomain\MyUserLogin]

The following syntax controls the ability for a login to see the metadata of an endpoint
via the catalog views:

{GRANT|DENY|REVOKE} VIEW DEFINITION ON ENDPOINT:: <EndPointName> TO <login>

Finally, you use the following syntax to allow a login the ability to take ownership of an
endpoint, using the AUTHORIZATION keyword in endpoint DDL:

{ GRANT | DENY | REVOKE } TAKE OWNERSHIP ON ENDPOINT:: <EndPointName> TO <login>

To allow a given login the ability to take ownership of your endpoint, you execute the
following:

GRANT TAKE OWNERSHIP ON ENDPOINT::EPT_SQL2008UnleashedExamples

TO [MyDomain\MyUserLogin]

At the time of this writing, there are just a few limitations in SQL Server web services
worth noting:

. Table-valued user-defined functions cannot be specified as web methods. However,
you can solve this problem by simply calling a table-valued UDF inside a stored
procedure exposed as a web method.

ptg

1957Summary
4

8

. SQL Server’s SOAP engine allows for XML processing instructions embedded in SOAP
envelopes (contrary to the SOAP specification). SQL Server ignores these processing
instructions, so this shouldn’t be an issue for most applications.

. SOAP over HTTP is simply slower (by up to 30%, according to Microsoft) than the
native TDS protocol. So for applications in which speed is key, TDS is still the proto-
col of choice.

Summary
Using the new functionality in SQL Server 2008, applications built and running on
varying software platforms can now communicate with SQL Server with little or no depen-
dence on expensive, proprietary middleware. And they can do so with minimal client
configuration. In providing custom HTTP endpoint support, SQL Server 2008 is also
pushing the bounds of what it means to be a traditional database server.

Chapter 49, “SQL Server Service Broker,” describes a key component of SQL Server 2008
that is responsible for creating your own asynchronous messaging services.

ptg

This page intentionally left blank

ptg

CHAPTER 49

SQL Server Service Broker

IN THIS CHAPTER

. What’s New in Service Broker

. Understanding Distributed
Messaging

. Designing a Sample System

. Understanding Service Broker
Constructs

. Service Broker Routing and
Security

. Troubleshooting SSB
Applications with
ssbdiagnose.exe

. Related System Catalogs

This chapter takes a look at one of the newer features of
SQL Server: SQL Server Service Broker (SSB). Service Broker
provides a native SQL Server infrastructure that supports
asynchronous, distributed messaging between database-
driven services. Service Broker handles all the hard work of
managing coordination among the constructs required for
distributed messaging, including transactional delivery and
storage, message typing and validation, multithreaded acti-
vation and control, event notification, routing, and security.

This chapter examines each of the objects that make up the
plumbing of Service Broker applications, and you build a
sample program along the way to put them all together.

What’s New in Service Broker
With the release of SQL Server 2008, Service Broker includes
the following new features:

. A new diagnostic command-line utility called
ssbdiagnose

. Prioritization of conversations

. Additional performance counters (for use with
System Monitor)

. Enhanced configurability via SQL Server Management
Studio (SSMS)

Although in versions of SQL Server prior to SQL Server
2005, it was possible to create structures analogous to some
of the new database objects used with Service Broker (for
example, using a table as a work queue), such implementa-

ptg

1960 CHAPTER 49 SQL Server Service Broker

tions do not even come close to providing the reliability, ease of use, and scalability of
Service Broker. This chapter introduces SQL Server’s native messaging-oriented framework.

Understanding Distributed Messaging
If you have experience with Microsoft Message Queuing (MSMQ) or IBM’s MQSeries, you
already know the paradigm in play: two or more distinct database-driven applications
reside on one or more servers, yet they need to collaborate, acting as a single unit to
successfully complete a set of tasks. These applications may have varying implementa-
tions, but they are still considered to be part of the same distributed system. The
constraints on these systems are such that the applications involved must be able to
communicate in the freest, most reliable way possible.

Free, in this context, means that the applications cannot make synchronous method calls
(or even asynchronous callbacks) to each other; they must be able to send or receive
messages without having to wait for the other to reply or acknowledge. Such applications
are said to be loosely coupled.

Reliable, in this context, means that even if one partner in the collaboration isn’t up and
running when the other needs to send or receive a message, they must still be able to do
so in such a way that the message will be stored for later processing, with its integrity and
send order guaranteed.

For any of this to happen, a basic infrastructure must be in place that such applications
can rely on—one that is independent of and yet enables such communications. This is
Service Broker’s reason for being.

The Basics of Service Broker

A default instance of Service Broker exists for every database you create. To find it by using
the SQL Server Management Studio Object Browser, you look under the Service Broker

node directly under your database’s root node.

NOTE

When you expand the Services node under the Service Broker node, it becomes
readily apparent that, under the covers, SQL Server uses Service Broker services to
implement some of its other built-in functionality, including Database Mail.

If you expand a few subnodes under the Service Broker node, you can see most of the
new Service Broker constructs:

. Messages—These (optionally typed) envelopes contain the data to be interchanged.

. Contracts—These rules define the flow of messages (that is, which message types
can flow from service to service).

. Queues—These are storage facilities for messages.

ptg

1961Understanding Distributed Messaging
4

9

. Services—Services are endpoints in a Service Broker application that send and/or
receive messages.

. Routes—These are associations between network addresses and services running on
remote machines.

. Remote service bindings—These are associations between database principals and
remote services for authorization and message encryption (using certificates).

A few constructs are not directly named in the subnodes:

. Conversations—These are communications between two or more services.

. Dialogs—These are conversations between exactly two services.

. Conversation groups—A conversation group consists of one or more related con-
versations.

The sections that follow cover all these objects in detail. But before you get to that, you
need to set up the entities required to execute this chapter’s examples. The first step is to
configure a new database (as well as AdventureWorks2008) to work with Service Broker.
Note that Service Broker is turned off by default. You configure Service Broker at the data-
base level by using a few new Data Definition Language (DDL) options:

. DISABLE_BROKER—This option turns off Service Broker for a database.

. ENABLE_BROKER—This option turns on Service Broker for the database. (You can
check to see whether Service Broker is enabled by querying the is_broker_enabled
column in sys.databases.)

. ERROR_BROKER_CONVERSATIONS—This option turns on Service Broker and drops an
error message in all queues for active conversations when the database is attached,
giving Service Broker services a chance to respond to this special message and grace-
fully self-terminate.

. NEW_BROKER—This option changes the unique identifier for Service Broker in the
database instance (that is, the value of service_broker_guid in sys.databases),
effectively terminating any running conversations with an error message. This is
essentially a plug-pulling mechanism. Note that each Service Broker instance gets its
own unique identifier, which Service Broker services use for inter-database messaging
(which is described later in this chapter).

Note that you can set these options only by using CREATE DATABASE when performing an
attach; therefore, you need to create the database as you normally would and then use
ALTER DATABASE, providing one of the options just described. To turn on Service Broker
for AdventureWorks2008 (which is required for the examples in this chapter), you execute
the following:

USE Master

GO

ALTER DATABASE AdventureWorks2008 SET ENABLE_BROKER

ptg

1962 CHAPTER 49 SQL Server Service Broker

You also need to set the TRUSTWORTHY option to ON (it is OFF by default) for databases
involved with messaging and to create an encrypted MASTER KEY for every database (as
explained later in this chapter, in the section “Service Broker Routing and Security”):

USE Master

GO

ALTER DATABASE AdventureWorks2008 SET TRUSTWORTHY ON

GO

USE AdventureWorks2008

GO

-- Note: Password validation using a password as simple as the following

-- will fail when Group Policy demands strong validation.

CREATE MASTER KEY

ENCRYPTION BY PASSWORD = ‘AdventureWorks2008’;

You need to create a sample database that resides on the same SQL Server 2008 instance as
AdventureWorks2008. The concept behind this example is that a bicycle manufacturer and
seller (AdventureWorks Cycles) must provide new and updated parts data to a sister
company (Extreme Catalog Management, a.k.a. XCatMgmt) that implements a leading
catalog management system on the same network. AdventureWorks Cycles must keep
XCatMgmt up-to-date with its product model data; otherwise, it could lose market share
or end up receiving orders from distributors based on out-of-date catalog information. The
reason is that the AdventureWorks Cycles products are featured in several of XCatMgmt’s
publications, which industry resellers use to choose what to buy. Listing 49.1 shows how
you create the entities for the XCatMgmt sample database.

LISTING 49.1 DDL for a Service Broker–Enabled Simplified Product Catalog Database

CREATE DATABASE XCatMgmt WITH TRUSTWORTHY ON

GO

ALTER DATABASE XCatMgmt SET ENABLE_BROKER

GO

USE XCatMgmt

GO

CREATE MASTER KEY

ENCRYPTION BY PASSWORD = ‘XCatMgmt’;

GO

CREATE SCHEMA Publication

CREATE TABLE Publication.BaseCatalog

(

CatalogId int IDENTITY(1,1) PRIMARY KEY,

CatalogName varchar(100) NOT NULL,

LastPublicationDate datetime

)

CREATE TABLE Publication.Product

ptg

1963Understanding Distributed Messaging
4

9

(

ProductId int IDENTITY(1,1) PRIMARY KEY,

ProductName varchar(100) NOT NULL,

SourceProductId int NOT NULL,

ManufacturerId int NOT NULL,

Price money NOT NULL,

ProductDetailXml xml,

CreateDate datetime NOT NULL,

LastUpdateDate datetime DEFAULT GETDATE()

)

CREATE TABLE Publication.ProductCatalogType

(

ProductCatalogTypeId int PRIMARY KEY,

Description varchar(100)

)

CREATE TABLE Publication.ProductCatalog

(

ProductCatalogId int IDENTITY(1,1) PRIMARY KEY,

ProductCatalogTypeId int NOT NULL

REFERENCES Publication.ProductCatalogType(ProductCatalogTypeId),

ProductId int NOT NULL

REFERENCES Publication.Product(ProductId),

CatalogId int NOT NULL

REFERENCES Publication.BaseCatalog(CatalogId)

)

GO

INSERT Publication.ProductCatalogType

SELECT 1, ‘Mountain Bicycles and Parts’

INSERT Publication.BaseCatalog (CatalogName)

SELECT ‘The Complete Catalog of Wholesale Mountain Bike Parts’

INSERT Publication.Product

(

ProductName,

SourceProductId,

ManufacturerId,

Price,

ProductDetailXml,

CreateDate

)

SELECT ‘AdventureWorksProductName’, 749, 1, 99.99, ‘<empty/>’, GETDATE()

INSERT Publication.ProductCatalog

SELECT 1, 1, 1

ptg

1964 CHAPTER 49 SQL Server Service Broker

Designing a Sample System
The sample messaging system used in this chapter has the following design: an update
stored procedure in AdventureWorks2008.Production.ProductModel starts up a service
that initiates a conversation with a service in XCatMgmt. It does this by sending a message
to the inbound work queue of XCatMgmt. When the transaction surrounding the initial
send is complete, Service Broker transmits the message, signaling that a catalog change for
an AdventureWorks Cycles product model is ready for processing.

In response to the arrival of this new message, Service Broker executes a stored procedure
associated with a catalog maintenance service for XCatMgmt, known as its service program.
This process is known as internal activation; it is internal because the stored procedure
resides in and is activated by SQL Server.

Because a Service Broker program might not always be a stored procedure, external activa-
tion is also available when you use event notification with the QUEUE_ACTIVATION event.
You can create an event notification service and map it to your Service Broker service and
queue by using syntax such as the following:

CREATE QUEUE NotificationQueue

GO

CREATE SERVICE EventNotificationService

ON QUEUE NotificationQueue

([http://schemas.microsoft.com/SQL/Notifications/PostEventNotification])

GO

CREATE EVENT NOTIFICATION NotifyMe

ON QUEUE NotificationQueue FOR QUEUE_ACTIVATION

TO SERVICE ‘EventNotificationService’, ‘broker-instance-guid’

Note that you need to retrieve your database’s Service Broker unique identifier and
replace ’broker-instance-guid’ with it for the example to work. To do this, you run the
following query:

SELECT service_broker_guid

FROM sys.databases

WHERE NAME = ‘AdventureWorks2008’

go

service_broker_guid

3036906E-8B9E-4266-A8C6-DD4E01B656CA

(1 row(s) affected)

You should keep this query in mind because you need it later in this chapter when you’re
working on service conversations.

Let’s return to the sample system’s description. When the catalog maintenance service’s
work is done, it sends an acknowledgment message back to the sender’s inbound queue.

ptg

1965Understanding Service Broker Constructs
4

9

Service Broker Application

Conversion Group

Dialog (Conversion)

Service Queues Queues

Program Program
Messages

Contract
Activation Activation

Service

FIGURE 49.1 Service Broker concepts illustrated.

To accomplish everything included in the design so far, you need to represent the follow-
ing kinds of objects in the system:

. Two types of messages: one defining product model catalog changes and one for
acknowledgments

. Two queues, one for each service

. One contract that defines the message flow between the services

. Two services, each representing an endpoint in the system

. At least one conversation and its related conversation group

The following sections describe how to define and build on all these new constructs, and
you learn how they work together in the orchestration of Service Broker applications.

Understanding Service Broker Constructs
To introduce the new Service Broker constructs you’ll be using, Figure 49.1 shows the
interrelations between the constructs described in the upcoming subsections.

Figure 49.1 illustrates the fact that a dialog is a conversation between two services. These
services exchange typed (or untyped) messages by sending them to queues according to
the rules of a contract. Each service can have a service program activated by Service Broker
to receive messages from a queue. Every conversation belongs to a conversation group.
Messages are always sent with respect to a conversation group. One or more conversation
groups make up a Service Broker application.

Defining Messages and Choosing a Message Type

For the AdventureWorks2008 database to communicate with the XCatMgmt database via
Service Broker, a dialog between two services must take place. Within this conversation,
each service sends messages to or receives messages from queues, providing the indirection
needed for the underlying systems to stay loosely coupled.

ptg

1966 CHAPTER 49 SQL Server Service Broker

The dialog messages are typed to constrain and (optionally) validate their content. You use
the new SQL Server database object MESSAGE to represent a typed message. Defining the
messages to be transmitted is the first step in building a Service Broker application.

You create SQL Server messages by using the following syntax:

CREATE MESSAGE TYPE [AUTHORIZATION UserName]

[VALIDATION = {

NONE | EMPTY | WELL_FORMED_XML |

VALID_XML WITH SCHEMA COLLECTION XMLSchemaCollectionName

}]

You can alter message types by using the intuitive ALTER MESSAGE TYPE syntax. Before you
create the first message type, you need to create a Windows user on the local server and
associate a SQL Server login with it, giving it db_owner permissions in both
AdventureWorks2008 and XCatMgmt. You need to specify this user in the AUTHORIZATION
clause of any object you create that includes this clause. In the examples in this chapter,
this is exemplified as SSBTestUserName.

Messages can be validated based on the following options:

. NONE—Do no validation; any message content is acceptable.

. EMPTY—Transmitted messages must be empty.

. WELL_FORMED_XML—Transmitted messages must be any well-formed XML.

. VALID_XML WITH SCHEMA COLLECTION—Transmitted messages must be valid XML cor-
responding to any schema in the XML schema collection specified in
XMLSchemaCollectionName.

It is highly recommended that applications use either WELL_FORMED_XML or VALID_XML
WITH SCHEMA COLLECTION. You don’t want just any old message structure coming across
the pipe because your application will almost certainly be looking for specific values in a
specific location. XML is appropriate because it is the ubiquitous standard today. Note that
the XML content of messages is actually stored as varbinary(MAX). (XML schema collec-
tions are covered in the section “Using XML Schema Collections” in Chapter 47, “Using
XML in SQL Server 2008.”)

Now you should go ahead and create your two message types, both of which should be set
to VALID_XML. The first deals with catalog entries and/or changes (that is, updates and
deletions), and the second is a generic message type you use for all acknowledgments.
Listing 49.2 shows the schemas for these message types, along with the necessary schema
collection and message type creation syntax.

LISTING 49.2 DDL for Creating the Sample Message Types and Their Associated XML
Schema Collections

-- Note:

-- Execute the T-SQL below, and then change the USE statement

-- to ‘USE AdventureWorks2008’ and execute it again.

ptg

1967Understanding Service Broker Constructs
4

9

USE XCatMgmt

GO

CREATE XML SCHEMA COLLECTION CatalogChangeSchema

AS

‘<?xml version=”1.0”?>

<xs:schema

targetNamespace=”urn:www-samspublishing-com:examples:ssb:catalogchange”

elementFormDefault=”qualified”

xmlns=”urn:www-samspublishing-com:examples:ssb:catalogchange”

xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”CatalogChangeMessage”>

<xs:complexType>

<xs:sequence maxOccurs=”unbounded”>

<xs:element name=”CatalogChange” type=”CatalogChangeType”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name=”CatalogChangeType”>

<xs:sequence>

<xs:element name=”Summary” type=”xs:string”/>

<xs:element name=”Features” type=”xs:string” minOccurs=”0”/>

<xs:element name=”Specifications” type=”xs:string” minOccurs=”0”/>

</xs:sequence>

<xs:attribute name=”SourceProductId” type=”xs:integer” use=”required”/>

<xs:attribute name=”ManufacturerId” type=”xs:integer” use=”required”/>

<xs:attribute name=”ChangeType”>

<xs:simpleType>

<xs:restriction base=”xs:integer”>

<xs:enumeration id=”Insert” value=”1”/>

<xs:enumeration id=”Update” value=”2”/>

<xs:enumeration id=”Delete” value=”3”/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name=”Price” type=”xs:decimal”/>

<xs:attribute name=”Name” type=”xs:string”/>

</xs:complexType>

</xs:schema>’

GO

CREATE MESSAGE TYPE

[//samspublishing.com/SS2008/SSB/MessageTypes/CatalogChangeMessage]

AUTHORIZATION [SSBTestUserName]

VALIDATION = VALID_XML

WITH SCHEMA COLLECTION CatalogChangeSchema

ptg

1968 CHAPTER 49 SQL Server Service Broker

GO

CREATE XML SCHEMA COLLECTION GenericAcknowledgementSchema

AS

‘<?xml version=”1.0” encoding=”utf-8” ?>

<xs:schema

targetNamespace=”urn:www-samspublishing-com:examples:ssb:genericack”

elementFormDefault=”qualified”

xmlns=”urn:www-samspublishing-com:examples:ssb:genericack”

xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:simpleType name=”MsgTypeType”>

<xs:restriction base=”xs:integer”>

<xs:enumeration id=”SuccessMsg” value=”0”/>

<xs:enumeration id=”FailureMsg” value=”1”/>

<xs:enumeration id=”WarningMsg” value=”2”/>

</xs:restriction>

</xs:simpleType>

<xs:element name=”Ack”>

<xs:complexType>

<xs:sequence>

<xs:element name=”ResultMessage”>

<xs:complexType mixed=”true”>

<xs:attribute

name=”ContentId”

type=”xs:integer”

use=”optional”/>

<xs:attribute

name=”MsgType”

type=”MsgTypeType”/>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name=”ResultCode”>

<xs:simpleType>

<xs:restriction base=”xs:integer”>

<xs:enumeration id=”Success” value=”1”/>

<xs:enumeration id=”Failure” value=”0”/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

</xs:schema>’

GO

CREATE MESSAGE TYPE

ptg

1969Understanding Service Broker Constructs
4

9

[//samspublishing.com/SS2008/SSB/MessageTypes/GenericAck]

AUTHORIZATION [SSBTestUserName]

VALIDATION = VALID_XML

WITH SCHEMA COLLECTION GenericAcknowledgementSchema

Note that the message types and schema collections should be created (as the Listing 49.2
comment indicates) in both participating databases, AdventureWorks2008 and XCatMgmt.
The reason is that when you create the XML messages, you might want to temporarily
store them as local typed XML variables to ensure that they are validated before being
sent. However, it is only necessary to create the schema collections on the database where
the message will be received because the receiving instance of Service Broker performs the
validation.

In the MESSAGE TYPE DDL, you should use this standard naming convention for Service
Broker objects: //DomainName/Path/ObjectType/ObjectName. This convention will help
you identify your objects later. (Don’t worry if the name is long; you can use Object
Explorer’s drag-and-drop feature to drag the name into your scripts.) If you’re curious, you
can view the newly created objects in Object Explorer by selecting the Service Broker

node and then expanding the Message Types node. You can find the XML schema collec-
tions by selecting the Programmability node and then selecting the Types node and
expanding the XML Schema Collections node.

Note that there are several built-in message types that any queue can receive from Service
Broker. Service programs should be built to handle these as well as the specific message
types defined in their contracts. You can view them all in the Object Brower (they all begin
with http://schemas.microsoft.com/SQL/ServiceBroker/). When receiving messages from a
queue, you should filter them based on the message_type_name column of the queue to be
sure you handle each one correctly. You can expect to see these types in your queues:

. Error—This type is enqueued by Service Broker whenever an error is encountered.
Alternatively, a user program can choose to create these types.

. EndDialog—This type is enqueued by Service Broker when a conversation ends in
response to calls to END CONVERSATION (as explained later in this chapter).

Service programs can also send messages of the built-in type DialogTimer. Service Broker
delivers these messages to the specified queue when a specific time period has elapsed. To
tell Service Broker to send a DialogTimer message to the queue associated with a service
after 5 minutes has elapsed, for example, you execute the following T-SQL during a
conversation in the service program:

BEGIN CONVERSATION TIMER (@ConversationHandle) TIMEOUT = 600

In this code, you replace @ConversationHandle with the unique identifier assigned to your
conversation (as explained later in this chapter).

Now that all your message types are in place and you know which built-in messages to
expect, you can create the contract that defines the message flow in this system.

http://schemas.microsoft.com/SQL/ServiceBroker/

ptg

1970 CHAPTER 49 SQL Server Service Broker

Setting Up Contracts for Communication

You use contracts to specify which messages can flow from which endpoints to which
queues. Two new T-SQL keywords come into play here:

. INITIATOR—This service begins a messaging conversion.

. TARGET—This service engages in (or accepts) conversions with an initiator.

As described earlier, the sample system is initiated by a stored procedure in
AdventureWorks2008 that sends a message of type CatalogChangeMessage to a queue in
XCatMgmt. Every CatalogChangeMessage is thus sent by a conversation initiator.

The catalog management service that receives these messages sends an acknowledgment
reply message of type GeneralAck when it completes the requested change. GeneralAck
messages in this case are thus sent by the target of the original initiated message.

To create the contract that represents this message flow, you need to execute the following
code in both databases:

-- Note: Change SSBTestUserName to a user on your system,

-- and run this code on both AdventureWorks2008 and XCatMgmt

CREATE CONTRACT

[//samspublishing.com/SS2008/SSB/Contracts/BasicCatalogChangeContract]

AUTHORIZATION [SSBTestUserName]

(

[//samspublishing.com/SS2008/SSB/MessageTypes/CatalogChangeMessage]

SENT BY INITIATOR,

[//samspublishing.com/SS2008/SSB/MessageTypes/GenericAck]

SENT BY TARGET

)

This code for creating contracts also allows for message types to be sent by either the
initiator or the target, in which case, you need to specify SENT BY ANY. A service can also
be bound to more than one contract. Note that there is also a built-in contract called
DEFAULT (as well as a message type of DEFAULT) that you use during conversations that do
not specify a contract.

Contracts cannot be altered because only DROP CONTRACT exists.

Now that your contract and message types are ready, the next step is to create the queues
needed to store the messages.

Creating Queues for Message Storage

Queues represent a layer of communication indirection between services, allowing them
to send and receive messages independently of each other. A queue is a first-class database
object, internally implemented as a table that has some unique behaviors.

ptg

1971Understanding Service Broker Constructs
4

9

NOTE

You can select values from any queue by using standard syntax, such as SELECT *
FROM QueueName WITH (NOLOCK). This has no effect on the data in the queue, nor
does it imply a message receive operation. It does, however, cause blocking on the
internal queue table, so you should always use the NOLOCK hint. Data Manipulation
Language (DML) statements on queues are not permitted.

The following is the syntax for creating a queue:

CREATE QUEUE DatabaseName.SchemaName.QueueName

[WITH

[STATUS = { ON | OFF } [,]]

[RETENTION = { ON | OFF } [,]]

[ACTIVATION (

[STATUS = { ON | OFF },]

PROCEDURE_NAME = SPName,

MAX_QUEUE_READERS = Number,

EXECUTE AS { SELF | ‘UserName’ | OWNER }

)]

]

[ON { filegroup | [DEFAULT] }]

This syntax contains the following options:

. STATUS—This option turns the queue on or off, meaning that it may or may not be
used. (This capability is useful with ALTER QUEUE when a queue must be temporarily
put offline.) It defaults to ON.

. RETENTION—This option turns message retention on or off during active conversations
that use the queue. It defaults to OFF. You might need to turn this feature on at some
point if you need to see messages that have already been processed. The reason is that
the normal message receive operation implicitly deletes a message when the transac-
tion that surrounds it commits. When RETENTION is set to ON, the value in the status

column for the queue is changed to 1 after a receive instead of a deletion. In addition,
sent messages are copied to the sender’s queue (duplicated) and given a status value
of 3, to fully audit the message flow in both directions.

. ACTIVATION—This clause is used to specify the following options regarding the inter-
nally activated stored procedure (described earlier):

. STATUS—This option is used to turn activation on or off. (You may want to
temporarily turn off activation when updating a procedure.) It defaults to ON.

. PROCEDURE_NAME—This option specifies the name of the activated procedure.

ptg

1972 CHAPTER 49 SQL Server Service Broker

. MAX_QUEUE_READERS—This option supplies an integer that indicates to Service
Broker the maximum number of instances of the activated procedure to create.
This setting hints at the fact that Service Broker uses multithreading to instan-
tiate additional queue readers when unread messages in the queue build up
faster than the existing instances can process them. This is a great boon to
developers because they no longer have to develop and maintain the multi-
threaded code to perform this task. To do this, Service Broker internally creates
queue monitors that keep an eye on the number of unread messages in the
queue. Keep this number the same as the number of processor cores you have
in your system.

. EXECUTE AS—This option specifies the name of the user under which the initi-
ated procedure runs.

You need two queues for the application so far: one used by each service. The T-SQL in
Listing 49.3 creates them.

LISTING 49.3 T-SQL for Creating Queues and Their Activated Stored Procedures

USE XCatMgmt

GO

CREATE PROC Publication.CatalogChangeQueueReader

AS

GO

CREATE QUEUE Publication.CatalogChangeQueue

WITH

STATUS = ON,

ACTIVATION

(

STATUS = ON,

PROCEDURE_NAME = Publication.CatalogChangeQueueReader,

MAX_QUEUE_READERS = 10,

EXECUTE AS ‘SSBTestUserName’

)

GO

USE AdventureWorks2008

GO

CREATE PROC Production.CatalogChangeAckQueueReader

AS

GO

CREATE QUEUE Production.CatalogChangeAckQueue

WITH

STATUS = ON,

ACTIVATION

(

STATUS = ON,

PROCEDURE_NAME = Production.CatalogChangeAckQueueReader,

ptg

1973Understanding Service Broker Constructs
4

9

MAX_QUEUE_READERS = 10,

EXECUTE AS ‘SSBTestUserName’

)

The code in Listing 49.3 declares an empty stored procedure for each queue. You can fill
this shell after you define the services.

Defining Services to Send and Receive Messages

Services represent the endpoints in Service Broker applications. You can think of them as
the glue that binds contracts with queues. This binding ensures that the typed messages
specified in the contract end up in the appropriate queues.

Here is the DDL syntax for creating services:

CREATE SERVICE ServiceName

[AUTHORIZATION OwnerName]

ON QUEUE [SchemaName.]QueueName

[(ContractName | [DEFAULT] [,...n])] [;]

For this example, you need to create two services: the initiator in AdventureWorks2008 and
the target in XCatMgmt.

This is the initiator in AdventureWorks2008:

USE AdventureWorks2008

GO

CREATE SERVICE

[//samspublishing.com/SS2008/SSB/Services/CatalogChangeInitiatorService]

AUTHORIZATION [SSBTestUserName]

ON QUEUE

Production.CatalogChangeAckQueue

([//samspublishing.com/SS2008/SSB/Contracts/BasicCatalogChangeContract])

And this is the target in XCatMgmt:

USE XCatMgmt

GO

CREATE SERVICE

[//samspublishing.com/SS2008/SSB/Services/CatalogMaintenanceService]

AUTHORIZATION [SSBTestUserName]

ON QUEUE

Publication.CatalogChangeQueue

([//samspublishing.com/SS2008/SSB/Contracts/BasicCatalogChangeContract])

As you can see, creating services is simple. Now that all the plumbing is in place, you can
begin the dialog between the services.

ptg

1974 CHAPTER 49 SQL Server Service Broker

Planning Conversations Between Services

A conversation is a dialog between two services. The purpose of this dialog is, of course, the
sending and receiving of messages, which ultimately leads to the completion of a task.

A powerful feature of Service Broker messaging is that it guarantees exactly-once-in-order
(EOIO) messaging. This means that messages are sent exactly once; there’s no chance that
a message can be sent twice because of a system issue, so the receiver doesn’t have to
check whether a message has already been processed. It also means that messages are
always ordered in their queue in the same order in which they were sent. (The
queuing_order column of the queue indicates this order.) Service Broker makes sure of
this, even in cases in which the send order somehow gets out of sync.

Transactions are an integral part of Service Broker conversations. When a message is sent
within the scope of a transaction, it is not actually moved to the destination queue unless
the transaction commits. This has to do with the fact that before being placed in a queue,
messages are stored in internal tables called transmission queues (which are viewable via the
catalog view sys.transmission_queue). Similarly, a message is not deleted from a queue
after it is received unless the transaction commits (except in cases in which the RETENTION
flag for the queue is set to ON). This point is very important because it means that any
database operations as well as any messaging operations belong to the same transaction,
and they are controlled by the same transactional system. This is a unique feature of
messaging with Service Broker and is part of the rationale for having messaging built in to
the database.

The BEGIN CONVERSATION DIALOG statement is the cornerstone of the process of creating
conversations. It specifies the services participating (TO SERVICE and FROM SERVICE) and
the contract to which they will be adhering during the dialog (ON CONTRACT). It also
enables the correlation of messages because it is the thread that relates them to each other.
This relationship is achieved through the use of a conversation, or dialog, handle. A dialog
handle is a variable of type uniqueidentifier that identifies the dialog.

You use the following syntax to start a dialog:

BEGIN DIALOG [CONVERSATION] @DialogHandle

FROM SERVICE InitiatingServiceName

TO SERVICE ‘TargetServiceName’

[, { ‘service_broker_guid’ | ‘CURRENT DATABASE’ }]

[ON CONTRACT ContractName]

[WITH

[{ RELATED_CONVERSATION = RelatedDialogHandle |

RELATED_CONVERSATION_GROUP = RelatedConversationGroupId }]

[[,] LIFETIME = DialogLifetimeInSeconds]

[[,] ENCRYPTION = { ON | OFF }]]

[;]

The items in the syntax are as follows:

ptg

1975Understanding Service Broker Constructs
4

9

. @DialogHandle—This is an output parameter of type uniqueidentifier that is
returned by the statement. You use this option later in this chapter to relate
conversations.

. InitiatingServiceName—This is the name of the (local) service acting as the initiator.

. ’TargetServiceName’—This is the name of the service acting as the target. Note that
this is a case-sensitive string (technically of type nvarchar(256)), for purposes of
name resolution against non–SQL Server services (for later extensions); a byte-level
comparison is made for name resolution. If this value is incorrectly provided,
messages remain in the transmission queue. Note that
sys.transmission_queue.to_service_name holds this value.

A Service Broker globally unique identifier (GUID) may be optionally specified after
’TargetServiceName’, and it is required when you are doing inter-database messag-
ing (as a later example in this chapter illustrates). The ’CURRENT_DATABASE’ string
indicates the current Service Broker GUID.

. ContractName—This is the name of the contract that the services use.

. WITH—This clause allows you to specify a related conversation group to which the
current conversation is related, either via a conversation handle or a conversation
group ID.

NOTE

When a new conversation is created, in addition to being assigned a new conversation
(or dialog) handle, that conversation is also joined to a new conversation group behind
the scenes, unless the group ID of an existing conversation group is specified.

Conversation groups are incredibly important because queues are locked at the conver-
sation group level. A queue used by any services in a group of related conversations is
locked on that group during receives, ensuring that messages are always received seri-
ally by all the services in the group. BEGIN CONVERSATION DIALOG implicitly locks the
conversation group it specifies (or the implied group it creates).

If locking did not work this way, a service program could receive a message lower in the
queue order before a second instance of the same service program finished receiving a
message higher in the order. If that lower message needed data that was dependent
on the other uncommitted receive, you would end up with a referential integrity issue.

It is thus a rather questionable practice to spread related and/or dependent data
across multiple messages or to do so without doing the appropriate checks in the code.

The following options are available for the WITH clause:

. RELATED_CONVERSATION—This option relates the current conversation to the
conversation group created for the specified conversation handle.

ptg

1976 CHAPTER 49 SQL Server Service Broker

. RELATED_CONVERSATION_GROUP—This option relates the current conversation to
the conversation group created for the specified conversation group ID. (This
has the same effect as the RELATED_CONVERSATION keyword, with a different
parameter.) If the value provided for RelatedConversationGroupId is invalid, a
new conversation group is created to which the dialog is related.

. LIFETIME—This option specifies the number of seconds for which the dialog
will remain open; it defaults to the maximum value of int, which is approxi-
mately 68 years. If this option is specified, both services must call END DIALOG
CONVERSATION before this time is up, or an error is raised.

. ENCRYPTION—This option specifies whether messages transmitted beyond the
current SQL Server instance (within the conversation) are encrypted. It defaults
to ON, meaning that message transmissions between databases on different
instances are encrypted by default. Encryption requires the use of certificates,
discussed later in this chapter, in the section “Using Certificates for
Conversation Encryption.”

Creating the Conversation Initiator
It’s finally time to create the stored procedure that initiates the dialog between the
services. Listing 49.4 contains the code to do this.

LISTING 49.4 Using BEGIN CONVERSATION DIALOG in a Stored Procedure

CREATE PROCEDURE Production.ProductModelUpdate

GO

USE AdventureWorks2008

GO

DROP PROC Production.ProductModelUpdate

GO

CREATE PROCEDURE Production.ProductModelUpdate

(

@ProductId int,

@NewName Name

)

AS

DECLARE @DialogHandle UNIQUEIDENTIFIER

DECLARE @CatalogChangeXml xml (DOCUMENT dbo.CatalogChangeSchema)

DECLARE @RemoteSSBGuid uniqueidentifier

-- Get the SSB guid for the target service’s db

SELECT @RemoteSSBGuid = service_broker_guid

FROM sys.databases

WHERE name = ‘XCatMgmt’;

BEGIN TRAN;

ptg

1977Understanding Service Broker Constructs
4

9

UPDATE Production.ProductModel

SET Name = pm.Name -- change this to @NewName to actually modify the data

FROM Production.ProductModel pm

JOIN Production.Product p on

p.ProductModelId = pm.ProductModelId

WHERE p.ProductId = @ProductId;

if @@ERROR != 0

BEGIN

ROLLBACK TRAN

RAISERROR(‘(Initiator) Error during table update’, 16, 1)

RETURN

END;

BEGIN TRY;

WITH XMLNAMESPACES

(

‘http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription’ as p1,

‘http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelWarrAndMain’ as wm,

‘http://www.adventure-works.com/schemas/OtherFeatures’ as wf,

‘http://www.w3.org/1999/xhtml’ as html

)

SELECT

@CatalogChangeXml = CatalogDescription.query(‘

for $ContextNode in //p1:ProductDescription,

$SpecNode in $ContextNode/p1:Specifications,

$FeatureNode in $ContextNode/p1:Features

return

<CatalogChangeMessage

xmlns=”urn:www-samspublishing-com:examples:ssb:catalogchange”>

<CatalogChange

ChangeType=”2”

Price=”{sql:column(“p.ListPrice”)}”

ManufacturerId=”1”

Name=”{sql:column(“pm.Name”)}”

SourceProductId=”{sql:column(“p.ProductId”)}”>

<Summary>{$ContextNode/p1:Summary/html:p/text()}</Summary>

<Features>

Handlebars: {$FeatureNode/wf:handlebar/text()}

Wheels: {$FeatureNode/wf:wheel/text()}

BikeFrame: {$FeatureNode/wf:BikeFrame/html:i/text()}

</Features>

<Specifications>

ptg

1978 CHAPTER 49 SQL Server Service Broker

Material: {$SpecNode/Material/text()}

Color: {$SpecNode/Color/text()}

ProductLine: {$SpecNode/ProductLine/text()}

Style: {$SpecNode/Style/text()}

</Specifications>

</CatalogChange>

</CatalogChangeMessage>

‘)

FROM Production.ProductModel pm

JOIN Production.Product p

ON pm.ProductModelId = p.ProductModelId

WHERE p.ProductId = @ProductId

END TRY

BEGIN CATCH

ROLLBACK TRAN

RAISERROR(‘(Initiator) Error during XML production.’, 16, 1)

RETURN;

END CATCH

BEGIN DIALOG CONVERSATION @DialogHandle

FROM SERVICE

[//samspublishing.com/SS2008/SSB/Services/CatalogChangeInitiatorService]

TO SERVICE

‘//samspublishing.com/SS2008/SSB/Services/CatalogMaintenanceService’,

@RemoteSSBGuid

ON CONTRACT

[//samspublishing.com/SS2008/SSB/Contracts/BasicCatalogChangeContract]

WITH ENCRYPTION = OFF;

SEND ON CONVERSATION @DialogHandle

MESSAGE TYPE

[//samspublishing.com/SS2008/SSB/MessageTypes/CatalogChangeMessage]

(@CatalogChangeXml)

PRINT ‘(Initiator) Message Sent Successfully.’

COMMIT TRAN

This UPDATE procedure exemplifies several key concepts. A variable for the dialog handle is
declared for later storage during the call to BEGIN DIALOG. After the actual database update,
a typed XML variable—that matches the same XML schema collection as the message type
of which it will become an instance—is populated, using an XQuery statement.

The call to CatalogDescription.query() transforms the original XML into XML that
matches the schema in CatalogChangeSchema. This way, if there are any validation errors,

ptg

1979Understanding Service Broker Constructs
4

9

you find out about them before the message is sent (implicitly terminating the open trans-
action). This makes it virtually impossible to send an invalid message.

The new value for ProductModel.Name is inserted into the XML via the attribute constructor
Name=”{sql:column(“pm.Name”)}”. The value of the attribute ChangeType=”2” corresponds
to the enumeration in the schema where id=”Update”. Because you use this value (as you’ll
soon see), the service for XCatMgmt knows what the sender intended by the message.

In the new SEND statement, the saved GUID for the Service Broker instance on XCatMgmt is
used to locate the target service when sending the message. SEND has the following syntax:

SEND ON CONVERSATION ConversationHandle

[MESSAGE TYPE MessageTypeName]

[(MessageBody)][;]

As you can see, the SEND statement requires ConversationHandle for message correlation.
The type specified in MessageTypeName must match the appropriate type specified in the
contract for the sending service. MessageBody must be of a data type that can be converted
to varbinary(max), such as xml.

If any issues arise during the sending of a message, you can find the text of the reason
for the problems in sys.transmission_queue.transmission_status. This is a great place
to look for transmission-related information because the messages in it are reasonably
user-friendly.

You also need to consider the use of the END CONVERSATION statement, which, predictably,
ends the conversation. This is its syntax:

END CONVERSATION ConversationHandle

[

[WITH ERROR = ErrorPositiveInt DESCRIPTION = ‘ErrorMsg’]

|

[WITH CLEANUP]

][;]

If desired, you can specify an error message value in ErrorPositiveInt and an error
message of your choosing when ending the conversation. Ending a conversation with an
error drops all the unsent messages currently in the transmission queue, and Service
Broker sends a message to the target service of type Error.

You can specify the WITH CLEANUP clause to clean up the transmission queue’s unsent
messages related to the conversation and to clear the queue owned by this service (in this
case, Production.CatalogChangeAckQueue).

Note that until both services in the conversation call END CONVERSATION, the conversation
is not complete. When only one side calls END CONVERSATION or when the LIFETIME
setting of the conversation has been met, the other endpoint can continue to use the

ptg

1980 CHAPTER 49 SQL Server Service Broker

invalid conversation handle until the two sides receive the EndDialog message (if messages
are sent after the EndDialog message has been received, a runtime error is raised).

Creating the Conversation Target
After you create the initiator, the next step is to create the service program in XCatMgmt
that is activated when messages arrive. This step involves a bit more work because this
program needs to receive messages of at least three types (Error, EndDialog, and
CatalogChangeMessage), create and send acknowledgment messages, and perform local
database DML.

The example in Listing 49.5 contains a stored procedure that receives correlated messages
from the initiator. Note that this procedure is the same (empty) one you specified in
Listing 49.3.

LISTING 49.5 Using GET CONVERSATION DIALOG, RECEIVE, and SEND ON CONVERSA-
TION in an Service Broker–Activated Stored Procedure

use XCatMgmt

GO

DROP PROC Publication.CatalogChangeQueueReader

GO

CREATE PROCEDURE Publication.CatalogChangeQueueReader

AS

DECLARE @e int, @r int, @MsgTypeName nvarchar(128), @desc varchar(255),

@MsgXml xml, @AckXml xml (DOCUMENT dbo.GenericAcknowledgementSchema),

@RemoteSSBGuid uniqueidentifier, @ErrNS varchar(150), @EndDlgNS varchar(150),

@CatChangeNS varchar(150), @TempXml xml, @NewName varchar(100),

@SourceProductId int, @ChangeType int, @ConversationGroupId uniqueidentifier,

@DialogHandle uniqueidentifier

SET @ErrNS = ‘http://schemas.microsoft.com/SQL/ServiceBroker/Error’

SET @EndDlgNS = ‘http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog’

SET @CatChangeNS = ‘//samspublishing.com/SS2008/SSB/MessageTypes/

CatalogChangeMessage’

-- Get the SSB guid for the initiator’s db

SELECT @RemoteSSBGuid = service_broker_guid

FROM sys.databases

WHERE name = ‘AdventureWorks2008’;

BEGIN TRAN;

WAITFOR(

GET CONVERSATION GROUP @ConversationGroupId

FROM Publication.CatalogChangeQueue

), TIMEOUT 1000

IF @ConversationGroupId IS NULL

ptg

1981Understanding Service Broker Constructs
4

9

BEGIN

ROLLBACK TRAN

PRINT ‘(Target) ConversationGroupId not acquired in time.’

RETURN

END

ELSE

PRINT ‘(Target) ConversationGroupId acquired successfully.’;

RECEIVE TOP(1)

@MsgXml = CAST(message_body as xml),

@MsgTypeName = message_type_name,

@DialogHandle = conversation_handle

FROM Publication.CatalogChangeQueue

WHERE conversation_group_id = @ConversationGroupId

SELECT @e = @@ERROR, @r = @@ROWCOUNT

IF @r = 0

BEGIN

ROLLBACK TRAN

RETURN

END

IF @e != 0

BEGIN

ROLLBACK TRAN

PRINT ‘(Target) Error during receive.’

RETURN

END

ELSE

PRINT ‘(Target) Message received.’

-- if the msg is of type Error, end the conversation, stating the error

IF @MsgTypeName = @ErrNS

BEGIN

SELECT @desc = @MsgXml.value(‘

declare default element namespace

“http://schemas.microsoft.com/SQL/ServiceBroker/Error”;

(/Error/Description/text())[1]’, ‘varchar(255)’)

ROLLBACK TRAN

PRINT ‘(Target) Error message received.’

END CONVERSATION @DialogHandle

WITH ERROR = 808 DESCRIPTION = @desc

RETURN

END

ptg

1982 CHAPTER 49 SQL Server Service Broker

-- if the msg is of type EndDialog, end the conversation without error

IF @MsgTypeName = @EndDlgNS

BEGIN

PRINT ‘(Target) EndDialog message received.’;

END CONVERSATION @DialogHandle

RETURN

END

-- if the msg is of type CatalogChangeMessage, update appropriately

IF @MsgTypeName = @CatChangeNS

BEGIN

BEGIN TRY

-- what kind of change is requested?

-- (here we only deal with product name and xml changes)

;WITH XMLNAMESPACES

(

DEFAULT ‘urn:www-samspublishing-com:examples:ssb:catalogchange’

)

SELECT

@ChangeType = @MsgXml.value(‘

(/CatalogChangeMessage/CatalogChange/@ChangeType)[1]’, ‘int’),

@NewName = @MsgXml.value(‘

(/CatalogChangeMessage/CatalogChange/@Name)[1]’, ‘varchar(100)’),

@SourceProductId = @MsgXml.value(‘

(/CatalogChangeMessage/CatalogChange/@SourceProductId)[1]’, ‘int’)

IF @ChangeType IS NULL OR @NewName IS NULL OR @SourceProductId IS NULL

BEGIN

ROLLBACK TRAN

PRINT ‘(Target) An xml-selected value is NULL.’

RETURN

END

IF @ChangeType = 2 -- “Update”

BEGIN

UPDATE Publication.Product

SET

ProductName = @NewName,

ProductDetailXml = @MsgXml

WHERE @SourceProductId = SourceProductId

IF @@ERROR != 0 OR @@ROWCOUNT = 0

BEGIN

ROLLBACK TRAN

PRINT ‘(Target) Failure during table update.’

RETURN

END

ptg

1983Understanding Service Broker Constructs
4

9

SET @AckXml = ‘

<Ack

xmlns=”urn:www-samspublishing-com:examples:ssb:genericack”

ResultCode=”1”>

<ResultMessage ContentId=”’ +

CAST(@SourceProductId as varchar(10)) + ‘“

MsgType=”1”>Success!</ResultMessage></Ack>’;

SEND ON CONVERSATION @DialogHandle

MESSAGE TYPE

[//samspublishing.com/SS2008/SSB/MessageTypes/GenericAck]

(@AckXml)

PRINT ‘(Target) Message Sent Successfully.’

END

END TRY

BEGIN CATCH

ROLLBACK TRAN

SELECT @desc = ERROR_MESSAGE()

-- INSERT dbo.TargetErrs SELECT @desc -- simple error storage table

PRINT ‘(Target) Caught error:’ + @desc

END CONVERSATION @DialogHandle

WITH ERROR = 808 DESCRIPTION = @desc

RETURN

END CATCH

END

COMMIT TRAN

One issue you might notice when testing the code in Listing 49.5 is that the PRINT state-
ments in the activated procedure do not show up in the SSMS query window. You need to
use SQL Profiler (which is discussed in Chapter 6, “SQL Server Profiler”) to aid in debug-
ging activated code because it always runs on background threads. To help you out, a
Service Broker event group is available in SQL Profiler for tracing all the new Service
Broker events’ message transmission, activation, conversation beginning and ending, and
so on. You can use this new event group along with the T-SQL and stored procedure event
groups to trace the code path. Print statements are included in the code in Listing 49.5 to
make debugging easier.

The code in Listing 49.5 introduces three new SQL statements: GET CONVERSATION DIALOG,
RECEIVE, and GET CONVERSATION GROUP.

The purpose of GET CONVERSATION DIALOG is to lock the next available conversation group
associated with the messages in Publication.CatalogChangeQueue. Conventional use of
GET CONVERSATION DIALOG requires that the WAITFOR statement be used to make the initi-
ated program wait a specified number of milliseconds (or infinitely, as specified in
TIMEOUT) before continuing on in the program logic. If the conversation group ID has been

ptg

1984 CHAPTER 49 SQL Server Service Broker

received within the specified time, the code successfully locks that conversation group
(that is, locks the specified queue for receiving). If not, @ConversationGroupId is NULL.

After this call, the program attempts to receive the next message in the queue by using the
RECEIVE statement, whose syntax is similar to that of SELECT, except that instead of speci-
fying a table name, you specify a queue name.

Next, the code checks the received message type and takes the appropriate action. If the
message type is Error, it ends the dialog, reporting the error. If the message type is
EndDialog, it simply ends its side of the dialog. If it is a catalog change message, it updates
Publication.Product so that the related row in Publication.ProductCatalog (which
associates products with catalogs) now points to the newest data.

Just as with the initiator code, the target code first declares its outgoing messages as a
typed XML variable (@AckXml). This helps in making sure that the outgoing message will
be received without error.

One issue to be mindful of is that all this code is executing in the scope of a single trans-
action. If any part of the code fails, the ROLLBACK statement rolls back any DML as well as
message sends and receives. To test the code, you can execute the following statement:

EXEC Production.ProductModelUpdate 749, ‘A Super Product’

NOTE

You might want to come up with a clever way of populating the body of the responding
Production.CatalogChangeAckQueueReader stored procedure to deal with the incom-
ing acknowledgment messages sent by the target.

Prioritizing Services
The next issue to consider is conversation priority. A safe assumption is that some of your
software applications are more important than others. Likewise, some of your SSB services
are mission-critical (and should be configurable as such) and others may be only for casual
use. You can easily set a numeric priority for these services so that when system resources
are scarce (during periods of high server and network utilization), messages for your criti-
cal applications are processed first.

SQL Server 2008 offers a simple syntax for accomplishing this. The following example
illustrates how to set the priority to level 1 for messages transmitted from our SSB initiator
(local) service to our target (remote) service:

CREATE BROKER PRIORITY CatChangeInitToTarget

FOR CONVERSATION

SET

(

CONTRACT_NAME =

[//samspublishing.com/SS2008/SSB/Contracts/BasicCatalogChangeContract],

LOCAL_SERVICE_NAME =

ptg

1985Service Broker Routing and Security
4

9

[//samspublishing.com/SS2008/SSB/Services/CatalogChangeInitiatorService],

REMOTE_SERVICE_NAME =

N’//samspublishing.com/SS2008/SSB/Services/CatalogChangeNotifyTarget’,

PRIORITY_LEVEL = 1

)

Next, you need to learn how to set up Service Broker messaging applications to run on
multiple instances of SQL Server.

Service Broker Routing and Security
The following sections detail how to set up the Service Broker constructs you need for
your applications to work in a secure, distributed environment.

Using Certificates for Conversation Encryption

In Listing 49.4, you might have noticed that you set the ENCRYPTION = OFF flag in the
code of the initiator. You had to do this because Service Broker relies heavily on certifi-
cate-based encryption. If you had left the encryption flag set to its default of ON, your
messages would not have left their transmission queue, and Service Broker would have
raised an error.

Service Broker services running on multiple SQL Server instances communicate across the
network via endpoints that are secured using certificates. Certificates are the foundation of
secure network communications. They are used for securing email (PGP), FTP (S/FTP),
HTTP (SSL), .NET assemblies (strong naming), and more. The basic premise of certificates
is the use of public key cryptography: When a digital certificate is created, a public key
(shared openly) and a private key (never shared) are created simultaneously via a special
algorithm such as RSA. Data to be securely transmitted is first encrypted by the sender,
using the receiver’s public key, acquired either through a registration authority (RA) or
otherwise. When the encrypted data is received, the receiver decrypts the data by using its
private key.

SQL Server provides the DDL statement CREATE CERTIFICATE for creating certificates. This
statement provides several methods for doing so, but in this chapter you use it only to
create self-signed certificates—that is, certificates signed by their creator, not by a trusted
external authority (such as VeriSign), known as a certificate authority (CA).

Before you create a certificate, you need to create a master key for the master database
(just as you did with AdventureWorks2008 and XCatMgmt) that can be used to protect the
private keys you’ll create. You also need to create certificates on master for use with the
endpoint you need (as described later in this section). Note that you have to perform this
step and subsequent steps on all the instances of SQL Server that will be communicating
via Service Broker. In the sample code, by convention, the objects created on the first
instance all terminate with the string I1, and in the second instance, they terminate with
I2. In addition, we refer to the first SQL Server instance as I1 and the second as I2.

ptg

1986 CHAPTER 49 SQL Server Service Broker

The following T-SQL creates a master key in the master database:

USE master

GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘masterI1’

Now you can create your first certificate in master on I1. (Note that SUBJECT is a metadata
field defined in the certificate standard X.509.) Here’s how you do it:

CREATE CERTIFICATE SSBMasterCertI1

WITH SUBJECT = ‘SSBMasterCertOnInstance1’,

START_DATE = ‘2008-10-02 07:30:35’;

-- Note: The start date must not be in the future,

-- or the certificate is not useful

Next, you need to create a TCP endpoint that enables Service Broker in I1 to communi-
cate with Service Broker in I2. (The CREATE ENDPOINT syntax is shown in Chapter 54,
“Managing Linked and Remote Servers,” for use in creating web services.) This endpoint
uses the keys in the certificate you just created to communicate securely. You use the
following code to create the endpoint:

CREATE ENDPOINT SSBEndpointI1

STATE = STARTED

AS TCP (LISTENER_PORT = 4022) -- the default SSB port; TCP-based

FOR SERVICE_BROKER

(ENCRYPTION = REQUIRED, AUTHENTICATION = CERTIFICATE SSBMasterCertI1)

GO

GRANT CONNECT ON ENDPOINT::SSBEndpointI1

TO [SSBTestUserName]

For I2 to encrypt messages using the public key that resides in MasterCertI1, that public
key must be exported from the database to a file and then imported into a new certificate
on I2. You can use the new BACKUP CERTIFICATE command to accomplish the export to
file, and then you can perform the same steps on I2 to import MasterCertI1’s public key
into a matching certificate:

BACKUP CERTIFICATE SSBMasterCertI1 TO FILE = ‘c:\temp\MasterCertI1_PK.cer’

Now you need to switch over to the second SQL Service instance and run the following
code:

USE master

GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘masterI2’

GO

CREATE CERTIFICATE SSBMasterCertI2

WITH SUBJECT = ‘MasterCertOnInstance2’,

START_DATE = ‘2008-10-02 07:30:35’;

ptg

1987Service Broker Routing and Security
4

9

GO

CREATE ENDPOINT SSBEndpointI2

STATE = STARTED

AS TCP (LISTENER_PORT = 4022)

FOR SERVICE_BROKER

(ENCRYPTION = REQUIRED, AUTHENTICATION = CERTIFICATE SSBMasterCertI2)

GO

GRANT CONNECT ON ENDPOINT::SSBEndpointI2

TO [SSBTestUserName]

GO

BACKUP CERTIFICATE SSBMasterCertI2

TO FILE = ‘c:\temp\SSBMasterCertI2_PK.cer’

GO

CREATE CERTIFICATE SSBMasterCertI1

AUTHORIZATION [SSBTestUserName]

FROM FILE = ‘C:\temp\SSBMasterCertI1_PK.cer’

The last statement in this code creates a certificate on I2 that has the same name and
contains the same public key as SSBMasterCertI1. It also performs an essential function: it
assigns that public key to SSBTestUserName by using the AUTHORIZATION keyword.

Now you can return to the first instance to do the same there, using SSBMasterCertI2’s
public key:

CREATE CERTIFICATE SSBMasterCertI2

AUTHORIZATION [SSBTestUserName]

FROM FILE = ‘C:\temp\SSBMasterCertI2_PK.cer’

Note that you set up SSBTestUserName as a domain user and then add this user as a login
with db_owner permissions on both instances. You don’t need to create SSBTestUserName
in XCatMgmt because this user is already (or should be) there. For purposes of this discus-
sion, you can assume that both instances can use the path c:\temp.

The next step is to create a new database on I2 called XBikeDistribution. The concept
behind this database is that XBikeDistribution is a subscriber to one of the catalogs
published by XCatMgmt. When a product in that catalog changes, XBikeDistribution
needs to know about it. You can use the following code to create this database so that it is
as lean as possible:

USE master

GO

CREATE DATABASE XBikeDistribution

WITH TRUSTWORTHY ON

GO

ALTER DATABASE XBikeDistribution SET ENABLE_BROKER

GO

USE XBikeDistribution

GO

ptg

1988 CHAPTER 49 SQL Server Service Broker

CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘XBikeDistributionPW’

GO

CREATE SCHEMA Cataloging

CREATE TABLE Cataloging.CatalogSimple

(

CatalogId int IDENTITY(1,1) PRIMARY KEY,

CatalogXml xml NOT NULL,

LastUpdateDate datetime DEFAULT GETDATE()

)

GO

CREATE USER [SSBTestUserName]

The next step is to add the XML schema collection you used in previous examples
(GenericAcknowledgementSchema; found in Listing 49.2) to XBikeDistribution. Then you
need to set up certificates for use in the Service Broker dialogs that will take place between
the catalog change service running in XCatMgmt and a new service you need to set up in
XBikeDistribution. On I2, you run the following code to set up a certificate for use in
Service Broker conversations:

CREATE CERTIFICATE SSBDialogCertI2

WITH SUBJECT = ‘SSBDialogCertOnInstance2’,

START_DATE = ‘2008-10-02 07:30:35’

ACTIVE FOR BEGIN_DIALOG = ON;

GO

BACKUP CERTIFICATE SSBDialogCertI2

TO FILE = ‘c:\temp\SSBDialogCertI2_PK.cer’

Now you need to switch back to I1, change to XCatMgmt, and create two more certificates,
one for each side of the exchange:

USE XCatMgmt

GO

CREATE CERTIFICATE SSBDialogCertI1

WITH SUBJECT = ‘SSBDialogCertOnInstance1’,

START_DATE = ‘2008-10-02 07:30:35’

ACTIVE FOR BEGIN_DIALOG = ON;

GO

BACKUP CERTIFICATE SSBDialogCertI1

TO FILE = ‘c:\temp\SSBDialogCertI1_PK.cer’

GO

CREATE CERTIFICATE SSBDialogCertI2

AUTHORIZATION [SSBTestUserName]

FROM FILE = ‘C:\temp\SSBDialogCertI2_PK.cer’;

Note that the second certificate in this code contains the public key you just created and
exported to file in SSBDialogCertI2.

ptg

1989Service Broker Routing and Security
4

9

Now you need to return to I2 and import the public key in SSBDialogCertI1 and associ-
ate it with SSBTestUserName:

CREATE CERTIFICATE SSBDialogCertI1

AUTHORIZATION [SSBTestUserName]

FROM FILE = ‘C:\temp\SSBDialogCertI1_PK.cer’;

By the time you’re done creating all these certificates, you should have the following .cer
files in your directory: SSBMasterCertI1_PK.cer, SSBMasterCertI2_PK.cer,
SSBDialogCertI2_PK.cer, and SSBDialogCertI1_PK.cer. By now, the pattern of certificate
creation and public key user association should be quite clear.

The next step is to set up the Service Broker constructs. You need to start on I2 in
XBikeDistribution because it has no constructs yet. First, you create the
GenericAcknowledgementSchema XML schema collection in XBikeDistribution, as shown
earlier in Listing 49.2. Note that in this Service Broker conversation, a service in XCatMgmt
plays the role of initiator, and a service in XBikeDistribution is the target. (Because
you’ve seen this all before, the following examples lump a lot of the DDL together.)

Next, you need to switch to I2 and run the code in Listing 49.6.

LISTING 49.6 T-SQL for Creating All the Service Broker Constructs on a Second SQL Server
Instance

USE XBikeDistribution

GO

CREATE MESSAGE TYPE

[//samspublishing.com/SS2008/SSB/MessageTypes/CatalogChangeNotifySimple]

AUTHORIZATION [SSBTestUserName] VALIDATION = WELL_FORMED_XML;

GO

CREATE MESSAGE TYPE

[//samspublishing.com/SS2008/SSB/MessageTypes/GenericAck]

AUTHORIZATION [SSBTestUserName] VALIDATION = VALID_XML

WITH SCHEMA COLLECTION GenericAcknowledgementSchema

GO

CREATE CONTRACT

[//samspublishing.com/SS2008/SSB/Contracts/SimpleCatalogNotifyContract]

AUTHORIZATION [SSBTestUserName]

(

[//samspublishing.com/SS2008/SSB/MessageTypes/CatalogChangeNotifySimple]

SENT BY INITIATOR,

[//samspublishing.com/SS2008/SSB/MessageTypes/GenericAck]

SENT BY TARGET

)

GO

CREATE PROC Cataloging.CatalogChangeNotifyQueueReader

ptg

1990 CHAPTER 49 SQL Server Service Broker

AS

GO

CREATE QUEUE Cataloging.CatalogChangeNotifyReceiveQueue

WITH

STATUS = ON,

ACTIVATION

(

STATUS = ON,

PROCEDURE_NAME = Cataloging.CatalogChangeNotifyQueueReader,

MAX_QUEUE_READERS = 10,

EXECUTE AS ‘SSBTestUserName’

)

GO

CREATE SERVICE

[//samspublishing.com/SS2008/SSB/Services/CatalogChangeNotifyTarget]

ON QUEUE Cataloging.CatalogChangeNotifyReceiveQueue

([//samspublishing.com/SS2008/SSB/Contracts/SimpleCatalogNotifyContract])

GO

CREATE ROUTE

[//samspublishing.com/SS2008/SSB/Routes/RouteToCatalogChangeNotifyInitator]

WITH

SERVICE_NAME =

‘//samspublishing.com/SS2008/SSB/Services/CatalogChangeNotifyInitiator’,

ADDRESS = ‘TCP://192.168.22.5:4022’;

GO

CREATE REMOTE SERVICE BINDING

[//samspublishing.com/SS2008/SSB/RSBindings/RSBForCatalogChangeNotifyInitator]

TO SERVICE

‘//samspublishing.com/SS2008/SSB/Services/CatalogChangeNotifyInitiator’

WITH USER = [SSBTestUserName],

ANONYMOUS = OFF

GO

GRANT SEND ON

SERVICE::[//samspublishing.com/SS2008/SSB/Services/CatalogChangeNotifyTarget]

TO [SSBTestUserName]

Listing 49.7 contains all the DDL you need to create the complementary Service Broker
objects in XCatMgmt on I1.

LISTING 49.7 T-SQL for Creating All the Service Broker Constructs on the First SQL Server
Instance

USE XCatMgmt

GO

CREATE MESSAGE TYPE

ptg

1991Service Broker Routing and Security
4

9

[//samspublishing.com/SS2008/SSB/MessageTypes/CatalogChangeNotifySimple]

AUTHORIZATION [SSBTestUserName] VALIDATION = WELL_FORMED_XML;

GO

CREATE CONTRACT

[//samspublishing.com/SS2008/SSB/Contracts/SimpleCatalogNotifyContract]

AUTHORIZATION [SSBTestUserName]

(

[//samspublishing.com/SS2008/SSB/MessageTypes/CatalogChangeNotifySimple]

SENT BY INITIATOR,

[//samspublishing.com/SS2008/SSB/MessageTypes/GenericAck]

SENT BY TARGET

)

GO

CREATE PROC Publication.CatalogChangeNotifyAckQueueReader

AS

GO

CREATE QUEUE Publication.CatalogChangeNotifyAckQueue

WITH

STATUS = ON,

ACTIVATION

(

STATUS = ON,

PROCEDURE_NAME = Publication.CatalogChangeNotifyAckQueueReader,

MAX_QUEUE_READERS = 10,

EXECUTE AS ‘SSBTestUserName’

)

GO

CREATE SERVICE

[//samspublishing.com/SS2008/SSB/Services/CatalogChangeNotifyInitiator]

ON QUEUE Publication.CatalogChangeNotifyAckQueue

([//samspublishing.com/SS2008/SSB/Contracts/SimpleCatalogNotifyContract])

GO

CREATE ROUTE

[//samspublishing.com/SS2008/SSB/Routes/RouteToCatalogChangeNotifyTarget]

WITH

SERVICE_NAME =

‘//samspublishing.com/SS2008/SSB/Services/CatalogChangeNotifyTarget’,

ADDRESS = ‘TCP://192.168.22.6:4022’;

GO

CREATE REMOTE SERVICE BINDING

[//samspublishing.com/SS2008/SSB/RSBindings/RSBForCatalogChangeNotifyTarget]

TO SERVICE

‘//samspublishing.com/SS2008/SSB/Services/CatalogChangeNotifyTarget’

WITH USER = [SSBTestUserName],

ANONYMOUS = OFF

GO

ptg

1992 CHAPTER 49 SQL Server Service Broker

GRANT SEND ON

SERVICE::[//samspublishing.com/SS2008/SSB/Services/CatalogChangeNotifyInitiator]

TO [SSBTestUserName]

If you look closely at Listings 49.6 and 49.7, you see that they introduce two new Service
Broker constructs: routes and remote service bindings.

Building Routes to Map Conversations Between SQL Server Instances
Routes are used to map a Service Broker service to a TCP address for use when conversing
between different SQL Server instances. They provide a useful level of abstraction because
the address of a route can be changed without having to change any of the constructs that
depend on it. In this way, it is possible to change a route and, as long as the message
types, required XML schema collections, contracts, queues, and services exist in the data-
bases on the machines involved, only the route needs to be updated. Routes can also be
used when only a single SQL Server instance is involved so that it can easily be changed to
work when a new instance comes into play.

NOTE

For the routes in this example to work, the TCP port specified earlier in CREATE END-
POINT (port 4022) must be open on any firewalls involved.

The routes created in Listings 49.6 and 49.7 are thus necessary because the initiator needs
to be able to locate the target service to send messages, and the target service needs to be
able to do the same.

Creating Remote Service Bindings for Conversations
When initiating a conversation with a service on a nonlocal SQL Server instance, you
need to create a remote service binding. A remote service binding associates a local database
user with a remote service. When messages are transmitted between the instances, Service
Broker encrypts them, using the public key of the local user’s certificate. They are then
decrypted on the other end, using the private key. Because you have created matching
pairs of certificates and associated them with the user in the master database and in all
participating databases on both instances (and you have also turned off anonymous
access), you can be certain that communications will happen securely over the network.

A Final Note on the Sample System

If you like, you can create the initiator and target service programs for the final example
in this chapter. For example, you could create an update trigger (as the initiator) on
XCatMgmt.Publication.ProductCatalog that sends a CatalogChangeNotifySimple well-
formed XML message to
XBikeDistribution.Cataloging.CatalogChangeNotifyReceiveQueue. You fill in the body
of the target’s activated procedure
XBikeDistribution.Cataloging.CatalogChangeNotifyQueueReader to receive these

ptg

1993Troubleshooting SSB Applications with ssbdiagnose.exe
4

9

messages and reply by sending a message of type GenericAck to the existing
Production.CatalogChangeAckQueue. Remember that you need to acquire the
service_broker_guid of the remote SQL Server instance’s Service Broker instance to send
messages successfully. Also, you need to be sure to set the ENCRYPTION flag to ON (the
default) when calling BEGIN DIALOG CONVERSATION.

Troubleshooting SSB Applications with
ssbdiagnose.exe

SQL Server 2008 comes with a new command-line application, ssbdiagnose.exe. You use
this advanced utility to monitor SSB conversations or to check application configuration
status, both across databases and between computers. It supports a variety of authentication
and configuration options and generates either plain text or XML as its output.

The general syntax for ssbdiagnose.exe has three parts:

. Output format and error level

. Connection information

. Application-specific settings

You can leverage the full syntax of ssbdiagnose.exe by simply executing it from the
command line with no options (it is located in the folder [SQL Server installation
root]\[version number]\Tools\Binn). To run it, open a command window (run the
CMD.exe program) and then navigate to your installation location using the CD command.
As an exercise, you can execute any of the examples that follow.

In the following example, you connect to the current SSB application (as developed in
Listings 49.1 through 49.7) and check on the services’ configuration status. Remember
that the application lives in two databases (AdventureWorks2008 and XCatMgmt), so you
need to provide parameters to check on both sides of the service contract. Because the
service and contract names are quite long, we suggest enclosing the command-line
contents in a batch file and running it from there.

Execute the following command, substituting connection credentials with those appropri-
ate for your environment:

SSBDiagnose.exe

-U SSBTestUserName -P SSBTestUserName CONFIGURATION FROM SERVICE

“//samspublishing.com/SS2008/SSB/Services/CatalogChangeInitiatorService”

-S localhost\SQL08 -d AdventureWorks2008 TO SERVICE

“//samspublishing.com/SS2008/SSB/Services/CatalogMaintenanceService”

-S localhost\SQL08 -d XCatMgmt ON CONTRACT

“//samspublishing.com/SS2008/SSB/Contracts/BasicCatalogChangeContract”

If you’ve executed all the sample code and listings in this chapter, you should see no
errors in the ssbdiagnose.exe output. For troubleshooting, refer to the next section to
learn how to explore the system catalogs for SSB.

ptg

1994 CHAPTER 49 SQL Server Service Broker

Now that you have a sense of what you can accomplish with this utility, you should take
some time to explore it further by monitoring the status of a conversation of the service
you set up in the XBikeDistribution database. Further information is available in the
MSDN article “ssbdiagnose Utility.”

Related System Catalogs
A few of the system catalogs and dynamic management views (DMVs) might be of interest
to you if you’re debugging Service Broker applications or simply seeking a greater under-
standing of how Service Broker works under the hood. Let’s take a look at some of them.

You’ve already seen sys.transmission_queue, which is used to store undelivered messages
in a particular database. This table is very useful because it provides the reason a message
is undeliverable (in transmission_status), the date sent (in enqueue_time), a conversation
identifier (conversation_handle), contract and service names (service_contract_name,
to_service_name, from_service_name), and more.

Another useful catalog is sys.service_queues, which holds the definitions of the queues
defined in a particular database. It has a few interesting columns:

. activation_procedure—This column contains the name of the activated service
program that is bound to the queue.

. max_readers—This column contains the integer value specified in the CREATE QUEUE
of MAX_QUEUE_READERS.

. is_retention_enabled—This column contains the Boolean value of the RETENTION
flag in CREATE QUEUE.

You can use the value in the object_id column to figure out which queue is being refer-
enced in a particular error message, such as the following, which you may find in your
transmission queue someday: This message could not be delivered because the
destination queue has been disabled. Queue ID: 325576198. This error occurs when
your activated code throws an error in its body after receiving a message, rolls back the
receive, is activated again, and so on, until Service Broker intervenes and disables the
queue. (It usually takes three failures for this to happen.) A similar error is raised if you set
ENCRYPTION = ON and don’t set up certificates.

To see all the services in a particular database, you can query sys.services. To see all the
active conversations, you can query sys.conversation_groups. The following query
shows how to use these tables together:

SELECT

sq.name as QueueName,

ss.name as ServiceName,

cg.conversation_group_id as CGId

FROM sys.services ss

JOIN sys.service_queues sq

ON ss.service_queue_id = sq.object_id

ptg

1995Related System Catalogs
4

9

LEFT JOIN sys.conversation_groups cg

ON cg.service_id = ss.service_id

To see all the contracts in a particular database, you can query sys.service_contracts. To
see all the message types, you can query sys.service_message_types. These catalog views
are brought together in the system table sys.service_contract_message_usages (showing
message types by contract). You can also link them to sys.service_contract_usages
(showing contracts by service) via the following query:

SELECT

s.Name ServiceName,

sc.Name ContractName,

smt.Name as MsgTypeName,

scmu.is_sent_by_initiator,

scmu.is_sent_by_target

FROM sys.services s

JOIN sys.service_contract_usages scu

ON scu.service_id = s.service_id

JOIN sys.service_contracts sc

ON sc.service_contract_id = scu.service_contract_id

JOIN sys.service_contract_message_usages scmu

ON scmu.service_contract_id = sc.service_contract_id

JOIN sys.service_message_types smt

ON smt.message_type_id = scmu.message_type_id

In addition, you can view any certificates you have created by querying
sys.certificates, routes via sys.routes, and remote service bindings via
sys.remote_service_bindings. Each side of a conversation is known as an endpoint, and
you can view endpoints by querying sys.conversation_endpoints.

Five DMVs may be of interest in debugging live Service Broker applications:

. sys.dm_broker_activated_tasks—Each row refers to a stored procedure being acti-
vated.

. sys.dm_broker_connections—Each row refers to an in-use Service Broker network
connection.

. sys.dm_broker_forwarded_messages—Each row refers to a message currently being
forwarded.

. sys.dm_broker_queue_monitors—Each row refers to the current behavior of a SQL
Server background task known as a queue monitor, which is responsible for activation.

. sys.dm_broker_transmission_status—Each row refers to the status of a message
being transmitted.

To see all the activated stored procedures in a given database, for example, you can try
the following:

ptg

1996 CHAPTER 49 SQL Server Service Broker

SELECT

d.name DBName,

sq.name QueueName,

dmbat.spid SPID,

dmbat.procedure_name ProcName

FROM sys.dm_broker_activated_tasks dmbat

JOIN sys.databases d ON

d.database_id = dmbat.database_id

AND dmbat.database_id = DB_ID()

JOIN sys.service_queues sq

ON dmbat.queue_id = sq.object_id

Summary
Like the addition of native Web services, the addition of Service Broker pushes SQL Server
even further outside the bounds of being a pure database server and into the application
server realm.

Because it is built directly into SQL Server databases, Service Broker inherently provides
backup and restoration, replication and failover, and single-mode transactions, which
together give Service Broker an edge over competing messaging technologies. Plus, as
you’ve seen, it’s extremely easy to set up and begin coding, because you need to do very
little groundwork; all the ingredients are already “in there.”

One issue not covered in this chapter is the fact that service programs may be written in
managed code that makes use of SQL Server CLR integration. At the time of this writing,
there is no officially released .NET Framework library for the Service Broker objects, so this
chapter does not cover the subject. However, Microsoft may release a Windows
Communication Foundation (WCF) channel that provides a Service Broker interface.

In Chapter 50, “SQL Server Full-Text Search” (on the CD), looks at how SQL Server’s Full-
Text Search feature enables you to create an index of and perform specialized queries
against all textual data in your tables.

ptg

CHAPTER 50

SQL Server Full-Text
Search

IN THIS CHAPTER

. What’s New in SQL Server
2008 Full-Text Search

. Upgrade Options in SQL
Server 2008

. How SQL Server FTS Works

. Implementing SQL Server 2008
Full-Text Catalogs

. Setting Up a Full-Text Index

. Full-Text Searches

. Full-Text Search Maintenance

. Full-Text Search Performance

. Full-Text Search Troubleshooting

This chapter looks at how to use SQL Server 2008 Full-Text
Search (FTS). SQL Server FTS allows you to do extremely fast
searches of textual contents stored in columns of the char,
nchar, varchar, nvarchar, varchar(max), nvarchar(max),
xml, and text data types and binary content stored in image
and varbinary(max) data types (if you have an IFilter for
the data stored in the image or varbinary(max) data types).

SQL Server FTS has considerable advantages over a search
based on a LIKE clause because it is faster, can search binary
content, and has language features that a LIKE clause does
not support. SQL Server FTS also allows you to include a
wildcard at the end of a word (for example, doing a search
on test* to match test, testing, tester, and testament).
However, SQL Server FTS does not allow a wildcard at the
beginning of a word; for these types of prefix-based
searches, you still have to use a LIKE clause.

SQL Server FTS creates an index similar to one you can find
at the back of any book. It contains a list of words, with
pointers to the tables and rows that contain the words. SQL
Server consults this index, called a full-text index, when you
issue a full-text query; it returns a list of rows that contain
the words in your search phrase.

SQL Server FTS ships, by default, in all versions of SQL
Server except SQL CE/Mobile and SQL Express. There are
several versions of SQL Server Express. If you want a
version of SQL Server Express with Full-Text Search, you
need to download SQL Server 2008 R2 Express with
Advanced Services.

ptg

1998 CHAPTER 50 SQL Server Full-Text Search

What’s New in SQL Server 2008 Full-Text Search
Microsoft spent more than five years developing SQL Server 2008 R2. The developers at
Microsoft spent that time improving the engine, tools, and performance and making this
version more user friendly. SQL Server 2008 introduces the following for Full-Text Search:

. Full-text catalogs are now stored inside the database. In previous versions, they were
stored in the filesystem.

. SQL Server execution plans are able to make intelligent queries against the full-
text catalogs.

. Stop lists (also known as noise words files) are now stored in the database. You can
create any number of stop word lists; each full-text index table or indexed view can
have its own specific stop list.

. You are able to use two DMVs to troubleshoot indexing.

. More languages are now supported for Full-Text Search. SQL Server 2008 supports 48
languages, up from the 23 supported in SQL Server 2005.

. Full-text catalogs in log-shipped or mirrored databases do not need to be repopulated
when you fail over. In previous versions of SQL Server, if you log shipped or
mirrored a database that was full-text indexed, you would have to repopulate the
full-text indexes when you failed over to the secondary or mirror. In SQL Server
2008, this step is no longer necessary; on failover, the full-text indexes are immedi-
ately accessible and queryable.

. FTS works with the FILESTREAM property of varbinary(max) columns.

. A new external engine performs the content extraction and indexing (it is called
FDHost also known as Filter Daemon Host).

. DBCC CHECKDB validates SQL Full-Text structures but does not validate its contents,
however.

. Considerable performance improvements have been made.

These new features are covered throughout this chapter.

Upgrade Options in SQL Server 2008
When you upgrade SQL Server from a previous version to SQL Server 2008, or if you
attach or restore a SQL 2005 database to SQL Server 2008, you are prompted to upgrade
your full-text catalogs.

There are three options:

. Import

. Rebuild

. Reset

ptg

1999How SQL Server FTS Works
5

0

In an import, the full-text catalog is imported from the SQL Server 2005 instance in the
case of an upgrade. In the case of a database attach or restore, the SQL 2005 full-text cata-
logs are stored in the database in a different file group.

An import is faster than a rebuild; however, the import does not use the new word break-
ers (described later), so for some languages where the word breakers have been improved,
you may not get consistent results when compared with catalogs that have been rebuilt.
In SQL Server 2008, if your full-text key is not an integer, the full-text engine builds a
document map mapping the full-text key with a more efficient integer-based key. If you
import your full-text catalog and your full-text key is not an integer key, your full-text
queries are not able to take advantage of this efficiency.

A rebuild takes advantage of the new word breakers and other capabilities of SQL Server
2008. However, the rebuild may take longer than an import.

A reset drops the SQL 2005 catalogs but retains the metadata, so your full-text indexes are
intact but not populated until you start a population in SQL Server 2008.

A rebuild is the preferred option but results in the full-text catalog being rebuilt; conse-
quently, full-text queries will be out of date until the rebuild is complete.

How SQL Server FTS Works
As mentioned previously, in SQL Server 2008, the catalogs are now stored inside the full-
text engine. This redesign has resulted in many architectural changes in SQL Server 2008
Full-Text Search.

The two main components of Full-Text Search are as follows:

. IndexingExtracts the textual content from your data and stores the words or tokens
in inverted file indexes

. SearchingQueries these inverted file indexes and returns the rows that match the
query

Indexing

The indexing engine connects to your database and extracts the content from the tables
you are full-text indexing. It then sends this stream to COM components called filters (or
IFilters). These COM components are run in an out-of-process service called the FT
Daemon Host. These filters are able to understand the content and can extract text data
from them. For example, if you store XML or Word documents in your database, these
filters can understand this data or binary data and emit words and/or tokens it finds in
there. The filters chosen are the default text ones if you are using char, varchar, or text
data types or XML if you are using the xml data type. If you are indexing varbinary docu-
ments, the indexing engine reads the document type column and launches the filter
corresponding to the value stored in the document type column.

ptg

2000 CHAPTER 50 SQL Server Full-Text Search

If you are storing Word documents in a varbinary data type column, and in your full-text
creating statement you specified a document type column called DocumentType, the
contents of this column for that row should be doc, .doc, docx, or .docx.

You can obtain a list of filters in use by querying as follows:

select document_type from sys.fulltext_document_types

Each filter understands the file format of the type of document it indexes. For example,
the Word filter understands the file formats for Word documents and emits the textual
data it finds in the Word documents; the XML filter understands the XML documents and
emits the textual data it finds in them.

If you need to index documents for which the file type does not appear in the results of
sys.full_text_document_types, you need to install that filter on the server running SQL
Server 2008 and then allow SQL Server 2008 to use them.

To allow SQL Server to use these third-party iFilters, you need to issue the following
command:

sp_FullText_Service ‘load_os_resources’,1

This command loads the filter if it is installed on the OS. In most cases, this is sufficient.
In many cases, SQL Server wants to verify the signature/certificate embedded in the COM
component/filter. This can cause problems in two ways. First, the filter may not have a
certificate, and when SQL Server tries to validate the certificate with the issuing authority,
it is unable to do so. Second, the performance impact of having to validate the certifi-
cate/signature causes the initial queries to take a long time as the validation process
proceeds. For these two reasons, you might want to disable the certificate/signature check
by using the following command:

sp_FullText_Service ‘verify_signature’,0

Microsoft has published documentation on how to develop your own filters. For more infor-
mation on how to do this, consult

http://msdn2.microsoft.com/en-us/library/ms916793.aspx

The filters then send the stream of textual data emitted by them to another component
called word breakers. Word breakers respect the language you specified to be used to index
your columns’ content.

The neutral word breaker basically breaks words at whitespace boundaries and at punctua-
tion (, . : ; ’ “ ! -) and indexes only alphanumeric characters.

The English (U.S) and British (or International English) word breakers index hyphenated
words without the hyphens and as their component words, so data-base is indexed as
data, base, and database. They also index acronyms as single letters and the whole word if
they are capitalized. For example, F.B.I. is indexed as f, b, i, and fbi (words are indexed
lowercase).

http://msdn2.microsoft.com/en-us/library/ms916793.aspx

ptg

2001How SQL Server FTS Works
5

0

The English and British English word breakers are nearly identical, with the exception that
during the searching process, different stems may be used. In U.S. English speakers may
say oriented, whereas British English speakers may say orientated (in Canada oriented is now
more common; however in the rest of the English-speaking world—with the exception of
the United States—orientated is more common).

The German and Dutch word breakers index compound words as the compound and
constituent words. For example, the German word Volkswagen is indexed as volks and wagen.

For Far Eastern languages, the word breakers break the sentence at whitespace and then
go through the “words” and extract characters. In some Far Eastern languages, characters
appear contiguous to each other in blocks that appear to Westerners as words. In fact,
each character is a word unto itself, and characters can be combined to form new words.
These characters may be indexed singly or in multiple character combinations.

By default, the word breaker used by the indexing process is the language specified in
sp_configure unless you specify that you want the contents of the columns you are full-
text indexing to be indexed in a different language:

exec sp_configure ‘show advanced options’,1

reconfigure with override

exec sp_configure ‘default full-text language’

Refer to the sections titled “Using the Full-Text Indexing Wizard to Build Full-Text Indexes
and Catalogs” and “Using T-SQL Commands to Build Full-Text Indexes and Catalogs.”

Some documents have language-specific tags in them that launch different word breakers
than the ones you specify on your server or in your full-text index creation statement. For
example, Word and XML documents have language tags embedded in them. If your Word
documents are in German, and you specify in your full-text index creation statement to
use the French word breakers, your Word document are indexed in German, not French.

When the word breakers have done their work, the stop lists are applied and the stop lists
are removed. Then the words are sent to the full-text indexes. The full-text indexes store
positional information, so they know where a word occurs in a document. These word
positions also reflect stop list words that were removed.

At any one time, there may be multiple temporary memory resident full-text indexes. At
certain periods, these temporary full-text indexes are consolidated into a single master
full-text index. This process is called a master merge. You can force a master merge by reor-
ganizing a catalog (using the T-SQL statement ALTER FULLTEXT CATALOG MyCatalog REOR-
GANIZE, where your catalog is name MyCatalog) or optimizing (an option available to you
in the Catalog Properties dialog).

Searching

Although the indexer launches word breakers and filters as out-of-process SQL Server
components, the search process is entirely within the SQL Server engine. To query the full-
text indexes, you need to use CONTAINS or FREETEXT predicates or their rowset analogs
(CONTAINSTABLE, FREETEXTTABLE).

ptg

2002 CHAPTER 50 SQL Server Full-Text Search

Just as the indexer applies the default server full-text language for indexing, it also applies
the default full-text language for searching. Consider a search on the French word courir (to
run). If you were to search in English on this word, it would search on courir and courirs.
However, on a server with the default full-text language setting for French, your search
would be conducted on couraient, courais, courait, courant, coure, courent, coures, courez,
couriez, courions, courir, courons, courra, courrai, courraient, courrais, courrait, courras, courrez,
courriez, courrions, courrons, courront, cours, court, couru, courue, courues, courumes, courumes,
coururent, courus, courusse, courussent, courusses, courussiez, courussions, courut, courutes.

Now that you understand the architecture of Full-Text Search, let’s discuss how to create
full-text catalogs.

NOTE

The examples in this chapter are based on the SQL Server 2005 version of the
AdventureWorks database. The 2005 version of the AdventureWorks database can be
installed using the same installer that installs the AdventureWorks2008 or
AdventureWorks2008R2 database. If you didn’t install AdventureWorks when you
installed either of these sample databases, simply relaunch the installer and choose to
install the AdventureWorks OLTP database.

For more information on downloading and installing the AdventureWorks sample data-
bases, see the Introduction chapter.

Implementing SQL Server 2008 Full-Text Catalogs
In SQL Server 2005 and previous versions, full-text catalogs were containers for your full-
text indexes. In SQL Server 2008, they are really virtual containers on which you can tag
various settings and have these settings apply to all indexes placed in that catalog (for
example, accent sensitivity) or rebuild all indexes in a catalog at one time.

To create a full-text catalog, you first need to full-text enable your database. To do this,
issue the following query in your database:

sp_fulltext_database ‘enable’

You can also right-click on your database, select Properties, and then click on the Files tab.
Check Use Full-Text Indexing and then click OK.

After doing this, you can create your catalog. There are two ways to do this: by using the
wizard or using T-SQL.

Before you create a full-text index, you must create a full-text catalog. In the wizard, full-
text catalog creation can be done alongside full-text index creation, but under the covers,
the catalog is always created first.

We first discuss creating the full-text catalog using the wizard and then using the T-SQL
commands.

ptg

2003Setting Up a Full-Text Index
5

0

Setting Up a Full-Text Index
There are two ways to create a full-text index:

. Using T-SQL commands

. Using the Full-Text Wizard

Using T-SQL Commands to Build Full-Text Indexes and Catalogs

In SQL 2008 full-text catalogs are “virtual.” They are just containers for full-text catalog
properties like accent sensitivity or catalog rebuild or population statements. They live
inside the database in SQL 2008, unlike SQL 2000 and 2005, where the catalogs and full-
text indexes resided in the filesystem.

To build your full-text catalogs and indexes, you need to use the CREATE FULLTEXT
commands.

NOTE

T-SQL commands are not case sensitive.

There are three commands for full-text index creation and maintenance:

. CREATE FULLTEXT CATALOG

. CREATE FULLTEXT INDEX

. ALTER FULLTEXT INDEX

Let’s look at how they work.

CREATE FULLTEXT CATALOG

To create a full-text catalog in its simplest form, you enter this command:

USE AdventureWorks;

Create fulltext catalog MyCatalog

In this command, MyCatalog is the name of the catalog. The CREATE FULLTEXT CATALOG

statement has several switches:

. ON FILEGROUP

. IN PATH

. WITH ACCENT_SENSITIVITY

. AS DEFAULT

. AUTHORIZATION

We next cover each of these parameters.

ptg

2004 CHAPTER 50 SQL Server Full-Text Search

ON FILEGROUP The ON FILEGROUP command is for backward compatibility only.

IN PATH The IN PATH command is for backwards compatibility only.

WITH ACCENT_SENSITIVITY The WITH ACCENT_SENSITIVITY option allows you to create
a catalog that is sensitive (Accent_Sensitivity ON) to accents (the default) or insensitive
to accents. With Accent_Sensitivity OFF, a search on café would match with café and
cafe. Likewise, a search on cafe would match with cafe and café. With Accent_Sensitivity
ON, a search on café would match only with café and not cafe. Likewise, a search on cafe
would match only with cafe and not café.

The following is the typical syntax for using the option:

USE AdventureWorks;

CREATE FULLTEXT CATALOG MyCatalog ON FILEGROUP MyFileGroup

WITH ACCENT_SENSITIVITY = OFF

AS DEFAULT The AS DEFAULT option allows you to create a default full-text catalog for
every full-text index in a database. This option is convenient because you don’t have to
specify the full-text catalog for your full-text indexes. Ideally, each large table will have its
own full-text catalog, so although it saves some time typing the commands, this option is
not the best one to use all the time. For example, when you create a full-text index, at a
minimum, you need to use the following:

Use AdventureWorks;

CREATE FULLTEXT INDEX ON person.Contact(Firstname)

KEY INDEX pk_Contact_ContactID ON MyCatalog

With a default catalog for your database, all you have to type is this:

Use AdventureWorks;

CREATE FULLTEXT INDEX ON person.Contact(Firstname) KEY INDEX pk_Contact_ContactID

If you do not have a default catalog, you get the following error message:

Msg 9967, Level 16, State 1, Line 2

A default full-text catalog does not exist in database ‘AdventureWorks’

or user does not have permission to perform this action.

Here is the syntax to create a default catalog: Create FullText Catalog AdventureWorksFT
as Default

NOTE

You can have only one default catalog per database.

ptg

2005Setting Up a Full-Text Index
5

0

AUTHORIZATION The AUTHORIZATION option allows a user or a role to own and conse-
quently manage a full-text catalog. The following is the typical syntax for using this option:

Use AdventureWorks;

CREATE FULLTEXT CATALOG MyCatalog WITH ACCENT_SENSITIVITY =OFF Authorization [dbo]

Now that you know how to create a catalog, let’s create full-text indexes on the tables that
will be stored in these catalogs.

CREATE FULLTEXT INDEX

You use the CREATE FULLTEXT INDEX command to create full-text indexes. Your searches
query full-text indexes to return results.

The CREATE FULLTEXT INDEX command has several parameters:

. COLUMN NAME

. TYPE COLUMN

. LANGUAGE

. ON FULL-TEXT CATALOG

. KEY INDEX

. POPULATION TYPE

We next cover each of these parameters.

COLUMN NAME The COLUMN NAME parameter is the char, varchar, nchar, nvarchar, text,
or xml column that you are full-text indexing. A minimal CREATE FULLTEXT INDEX state-
ment would look like this:

Use AdventureWorks;

CREATE FULLTEXT INDEX ON Person.Contact(Firstname) KEY INDEX pk_Contact_ContactID

In this example, Person.Contact is the name of the table you are full-text indexing, and
pk_Contact_ContactID is the Full-Text Search key. A Full-Text Search key must be a
unique, non-nullable, single-column index that is not offline and has a maximum size of
900 bytes. Note that this full-text index is created on the default full-text catalog. Once
again, if you do not have a default full-text catalog, you get the following message:

A default full-text catalog does not exist in database ‘AdventureWorks’

or user does not have permission to perform this action.

You specify a full-text catalog by using the following command:

Use AdventureWorks;

CREATE FULLTEXT INDEX ON Person.Contact(Firstname, Lastname)

KEY INDEX pk_Contact_ContactID ON MyCatalog

ptg

2006 CHAPTER 50 SQL Server Full-Text Search

In this command, MyCatalog is the name of the full-text catalog. Note that the second
example creates a full-text index on two columns.

TYPE COLUMN You can index columns of the char, varchar, nchar, nvarchar, text,
ntext, and xml data types. You can also index columns of the image and varbinary(max)

data types if you have an ancillary column, which tells what the content is in that
column. The reason for this is the Indexer needs to interpret the binary data in the image
and varbinary(max) columns and will need to load an IFilter, which corresponds to the
binary data stored in these columns. The Indexer will load the IFilter, which corresponds
to the extension stored in this ancillary column. For example, if you store a PDF in the
image or varbinary(max) column, the ancillary column would have to have the value PDF
or .PDF (not case sensitive) so the PDF IFilter would be launched.

There is a relevant example in the AdventureWorks database. Consider the
Production.Document table. If you want to search Word documents stored in this table, a
LIKE clause search would not work because the Word documents are in binary format.
Full-text indexing on the Document column similarly wouldn’t work because the IFilter
would not be able to interpret the binary stream. So you need to add a column that
contains the extension the document in this row would have if it were stored in the
filesystem; in this case, it’s a Word document, so the extension would be .doc. This
column is called a document type column. In the Production.Document table, this column is
the FileExtension column. When you index binary large objects (BLOBs), there are
special considerations, as discussed in the next section.

Full-Text Indexing of BLOBs and XML SQL Server 2008 can natively index content columns
of the char, nchar, varchar, nvarchar, text, and xml data types. If you want to index
binary large objects, you need to store them in the image or varbinary(max) column and
associate with the image column a column that will contain the extension the document
would have if it were stored in the filesystem. For example, if you were storing a Word
document in the image or varbinary(max) column, the document type column would
have the value doc. While indexing the contents of the image or varbinary(max) column,
the Indexer reads the value of the document type column for that row and launches the
IFilter that corresponds to that value. SQL Server 2008 ships with many IFilters. You can
tell which document extensions have IFilters by querying sys.fulltext_document_types:

SELECT * FROM sys.fulltext_document_types

If you are indexing a document stored in the image or varbinary(max) data type for
which the extension is not listed in sys.fulltext_document_types, the indexer is unable
to index the document. To enable indexing for unsupported document types, you must do
the following:

1. Download the IFilter for that document type and install it on the server running
SQL Server.

2. Enable the third-party IFilters to be used in SQL Server FTS. You do this by issuing
the following commands:

ptg

2007Setting Up a Full-Text Index
5

0

Exec Sp_fulltext_service ‘load_os_resources’, 1

GO

Exec Sp_fulltext_service ‘verify_signature’, 0

GO

LANGUAGE By default, the content in the columns you are full-text indexing is broken
by the word breakers according to the language rules for the default full-text index
language setting for your instance of SQL Server. You establish this setting by issuing the
following command:

sp_configure ‘default full-text language’

go

name minimum maximum config_value run_value

----------------------------------- ----------- ----------- ------------ ---------

default full-text language 0 2147483647 1033 1033

Note the value for run_value. This is the locale identifier (LCID). To determine which
language the LCID corresponds to, you issue the following:

SELECT name FROM sys.fulltext_languages WHERE lcid=1033

go

name

--

English

In this example, 1033 is the value returned for run value in the sp_configure query.
Note that this returns a list of the language word breakers that ship by default with SQL
Server 2008.

The preceding execution of sp_configure returned the default full-text value of 1033,
which corresponds to English. Microsoft recognizes two types of English in all Microsoft
search products: English (U.S. English) and British English (International English). There
are very slight differences between the two word breakers, mainly due to differing suffixes
and spellings (for example, British English recognizes connexion and colour as legitimate
spellings).

By default, all columns are full-text indexed by the word breaker that corresponds to your
default full-text language settings for your instance of SQL Server.

SQL Server FTS allows you to use the language tag to specify word breakers for different
languages to be used to full-text index columns. For example, if you are storing Traditional
Chinese content in a column you want to index, and you want it to be indexed using
Traditional Chinese, you could issue the following statement to create a full-text index:

CREATE FULLTEXT INDEX ON Person.Contact(FirstName,

LastName LANGUAGE 1028)

ptg

2008 CHAPTER 50 SQL Server Full-Text Search

KEY INDEX PK_Contact_ContactID ON MyCatalog

This example full-text indexes two columns; one called FirstName is indexed using the
server default full-text language, and the other, called LastName, is indexed using the
Traditional Chinese language word breaker. This means that what ends up stored in the
full-text indexes is broken according to the language rules of the word breaker. For U.S.
and International English, the words are primarily broken at whitespace or word bound-
aries (that is, punctuation marks). For other languages, the word may be broken into
constituent words or alternate words. For example, if you use the German word breaker,
wanderlust is broken as wanderlust, wandern, and lust, and all three words are stored in the
index; searches on wanderlust, wandern, and lust all return hits to rows containing
wanderlust.

You can specify different language settings for each column you are full-text indexing, but
you can assign only one language setting for each column.

If you are storing BLOBs in the columns of the image or varbinary data type and have a
document-type column assigned to these columns, depending on your content, the
language settings within the content themselves may override the language setting you
specified to be used for your full-text index or your SQL Server default full-text language
settings. For example, if you are indexing HTML or Word documents, have marked these
documents as Chinese, and have specified that the documents be indexed in German, if
your SQL Server default full-text language setting is French, the content is indexed as
Chinese. The same holds true for XML documents stored in columns of the xml data type:
the xml:lang setting determines the language in which these documents are indexed.

ON FULLTEXT CATALOG The ON FULLTEXT CATALOG parameter allows you to place your
full-text index in a specific catalog. If you have a default full-text catalog for the database,
you do not need to specify a catalog. You get better indexing and querying performance if
you place larger tables in their own full-text catalogs.

KEY INDEX SQL Server FTS must be able to identify the row that it is indexing or that is
returned in the query results. You specify which column is to be used as the key by using
the KEY INDEX parameter in your full-text index creation statement. As mentioned previ-
ously, this column must be unique and non-nullable, and it must have a single-column
index that is not offline and have a maximum size of 900 bytes. It can be a unique index
or your primary key.

POPULATION TYPE The process in which the indexer extracts your table content and
builds a full-text index is called population. There are three types of populations:

. Full

. Incremental

. Change tracking

ptg

2009Setting Up a Full-Text Index
5

0

No matter what population type you choose, a full population is initially done first. The
full population extracts rows in batches and indexes them. It does not do any change
tracking, so your catalog starts to become out-of-date as soon as the population completes.

An incremental population occurs if there is a time stamp column on the table you are
full-text indexing. The incremental population extracts each row to determine which rows
have been updated and re-indexes only the changed rows. It also determines which rows
have been removed from the table you are full-text indexing. A row is flagged to be re-
indexed if any of the columns are updated, so if you update one of the columns that is
not being full-text indexed, this row is indexed again.

You should use incremental populations rather than full populations when a significant
amount of your table’s contents changes at any one time. If the bulk of your table
changes—around 90%—a full population is faster than an incremental population.

You use the following commands to do a full population and an incremental population:

Use AdventureWorks;CREATE FULLTEXT INDEX ON Person.Contact(Firstname)

KEY INDEX pk_Contact_ContactID WITH CHANGE_TRACKING OFF, NO POPULATION

To then start a full or incremental population, you issue the following for full and incre-
mental populations, respectively:

Use AdventureWorks;

ALTER FULLTEXT INDEX ON Person.Contact START FULL POPULATION — FULL POPULATION

Use AdventureWorks;

ALTER FULLTEXT INDEX ON Person.Contact START FULL INCREMENTAL — INCREMENTAL POP

At all other times, you should use change tracking because it is much more efficient and
offers near-real-time indexing. Change tracking indexes rows that have had the columns
you are full-text indexing modified in near-real-time. Change tracking starts by doing a
full population but does an incremental population if a timestamp column exists on the
table. Change tracking (like other population types) causes some locking on the tables you
are full-text indexing, so you have an option to schedule when the indexing of the modi-
fied rows is done.

By default, when you create a new full-text index, change tracking is enabled. In other
words, a full population is done and when it completes, all rows modified during the full
population and after it completes are indexed. So the following statements are equivalent:

Use AdventureWorks;CREATE FULLTEXT INDEX ON Person.Contact(Firstname)

KEY INDEX pk_Contact_ContactID WITH CHANGE_TRACKING AUTO

Use AdventureWorks;CREATE FULLTEXT INDEX ON Person.Contact(Firstname)

KEY INDEX pk_Contact_ContactID

ptg

2010 CHAPTER 50 SQL Server Full-Text Search

Because change tracking causes some locking, you can schedule rows to be tracked in real-
time but indexed only at scheduled intervals by using the following statement:

Use AdventureWorks;

CREATE FULLTEXT INDEX ON Person.Contact(Firstname)

KEY INDEX pk_Contact_ContactID WITH CHANGE_TRACKING MANUAL

The preceding command assumes a default index. If you do not have a default catalog,
you would have to specify a named one like this:

Use AdventureWorks;

CREATE FULLTEXT INDEX ON Person.Contact(Firstname)

KEY INDEX pk_Contact_ContactID ON DEFAULT_FULLTEXT_CATALOG WITH

CHANGE_TRACKING MANUAL

To update your index, you issue the following

Use AdventureWorks;

ALTER FULLTEXT INDEX ON Person.Contact START UPDATE

ALTER FULLTEXT INDEX

As you have seen in this chapter, you can use the ALTER FULLTEXT INDEX command to
manage populations. You can also use it for a wide variety of index maintenance tasks.
Here are its parameters, which are discussed in the following sections:

. ENABLE

. DISABLE

. SET CHANGE_TRACKING { MANUAL | AUTO | OFF }

. ADD

. DROP

. START

. STOP

ENABLE and DISABLE The ENABLE and DISABLE parameters enable and disable full-text
indexing on a table. When you use them, you can still conduct full-text searches on your
full-text indexed tables, but the catalogs are no longer kept up-to-date.

For example, you could disable indexing with the following command:

Use AdventureWorks;

ALTER FULLTEXT INDEX ON Person.Contact DISABLE

ptg

2011Setting Up a Full-Text Index
5

0

And then you could re-enable indexing with the following:

Use AdventureWorks;

ALTER FULLTEXT INDEX ON Person.Contact ENABLE

When you re-enable a full-text index, change tracking commences to update changes that
occurred while full-text indexing was disabled. If you disabled change tracking prior to
disabling the full-text index, you have to run a full or incremental population to get your
catalog up-to-date.

SET CHANGE_TRACKING The SET CHANGE_TRACKING option allows you to control change
tracking. For example, you can turn it off, turn it on, or schedule it. Because change track-
ing does cause some locking, you might want to schedule it during a quiet time when the
database is not under load to minimize the impact of the locking.

Here is an example of the use of SET CHANGE_TRACKING:

Use AdventureWorks;

ALTER FULLTEXT INDEX ON Person.Contact SET CHANGE_TRACKING AUTO

The options for setting change tracking are as follows:

. AUTO—Enables continuous real-time indexing.

. OFF—Disables change tracking.

. MANUAL—Provides continuous change tracking, but rows are indexed only when you
issue the following command:

Use AdventureWorks;

ALTER FULLTEXT INDEX ON Person.Contact Start Update Population

ADD You use the ADD parameter to add a new column to a full-text index. For example,
consider Person.Contact, a table in the AdventureWorks database, with three char
columns on it: Firstname, Lastname, and EmailAddress. You have already created a full-
text index on Firstname and Lastname. You could add full-text indexing to EmailAddress
by issuing the following command:

Use AdventureWorks;

ALTER FULLTEXT INDEX ON Person.Contact ADD(EmailAddress)

As soon as you add the new column, a full population is done to index the contents of
the newly added column. You can disable it with the WITH NO POPULATION clause, as in
this example:

Use AdventureWorks;

ALTER FULLTEXT INDEX ON Person.Contact ADD(EmailAddress) WITH NO POPULATION

ptg

2012 CHAPTER 50 SQL Server Full-Text Search

You may get the following message:

Msg 7663, Level 16, State 2, Line 2

Option ‘WITH NO POPULATION’ should not be used when change tracking is enabled.

This message indicates the change tracking is on. To prevent a population starting imme-
diately after adding the column, you would first have to disable change tracking and then
make your change as illustrated in the following example:

ALTER FULLTEXT INDEX ON Person.Contact

SET CHANGE_TRACKING OFF

ALTER FULLTEXT INDEX ON Person.Contact ADD(EmailAddress)

WITH NO POPULATION

You also have the option to specify a specific word breaker to be used or a document type
column to reference whether the column you add is an image or varbinary(max) column.

DROP Like the ADD parameter, the DROP parameter allows you to drop a full-text column
you are indexing. This parameter also supports the WITH NO POPULATION clause, which
disables automatic re-indexing after you drop the full-text column. Here is an example
of its use:

Use AdventureWorks;

ALTER FULLTEXT INDEX ON Person.Contact DROP (Firstname) WITH NO POPULATION

Again, you may get the following message:

Msg 7663, Level 16, State 2, Line 2

Option ‘WITH NO POPULATION’ should not be used when change tracking is enabled.

This message indicates the change tracking is on. To prevent a population starting imme-
diately after adding the column, you would first have to disable change tracking and then
make your change as illustrated in the following example:

ALTER FULLTEXT INDEX ON Person.Contact

SET CHANGE_TRACKING OFF

ALTER FULLTEXT INDEX ON Person.Contact DROP(EmailAddress)

WITH NO POPULATION

The DROP command can be used to drop all the full-text columns on a table.

START and STOP The START and STOP parameters can be used to start and stop full, incre-
mental, or update populations. Following is the typical syntax:

Use AdventureWorks;

ptg

2013Setting Up a Full-Text Index
5

0

ALTER FULLTEXT INDEX ON Person.Contact Stop Population

Use AdventureWorks;

ALTER FULLTEXT INDEX ON Person.Contact Start Full Population

The update population is used in conjunction with change tracking, for example, if you
set up change tracking in manual mode like this:

Use AdventureWorks;

ALTER FULLTEXT INDEX ON Person.Contact SET CHANGE_TRACKING Manual

Use AdventureWorks;

ALTER FULLTEXT INDEX ON Person.Contact START Update Population

We’ve completed our look at the catalog and index creation statements. Next, we look at
how to manage full-text catalogs and indexes.

Managing MSFTESQL

After you create full-text catalogs and indexes, you might need to manage the full-text
engine. The command used to do this is sp_fulltext_service, which accepts the follow-
ing parameters:

. @action

. @value

Following are the acceptable values for the @action parameter:

. load_os_resources—Controls whether the full-text engine loads word breakers and
IFilters that are not part of SQL Server but are installed in the OS. A value of 1 loads
the OS word breakers and IFilters.

. pause_indexing—Pauses the indexing process. During this pause, you can still
query the full-text catalogs.

. resource_usage—Is used for backward compatibility.

. update_languages—Updates the language cache with recently installed word
breakers.

. verify_signature—Disables the checking of signatures for word breakers and IFilters
when set to 0. When set to the default, 1, signatures are checked.

. upgrade_option—Controls how SQL Server processes catalogs in a database that are
restored or attached to SQL Server 2008. It accepts three values: 0, which forces
attached or restored databases with full-text catalogs to be rebuilt; 1, which means
the full-text catalogs’ metadata remains, but the catalog contents are deleted (these

ptg

2014 CHAPTER 50 SQL Server Full-Text Search

catalogs are queryable, but no results are returned until you rebuild them); 2, which
means the full-text indexes are imported into the database (however, the results may
be inconsistent because some of the full-text indexes are generated by the SQL 2005
full-text word breakers and not the SQL Server 2008 word breakers).

Now you know how to build full-text catalogs and indexes and modify them. The next
section describes how to get information on the catalogs and indexes you build.

Diagnostics
After you create catalogs and indexes, you occasionally need to get information about
your catalogs, tables, and indexes. So that you can do this, Microsoft has supplied the
sp_help_fulltext_tables and sp_help_fulltext_columns stored procedures and the
system view sys.fulltext_catalogs.

These stored procedures and view allow you to examine the state of your full-text tables,
columns, and catalogs. Microsoft recommends that rather than using these objects, you
use the OBJECTPROPERTY, COLUMNPROPERTY, and FULLTEXTCATALOGPROPERTY metadata func-
tions. Table 50.1 lists the full-text index properties for the OBJECTPROPERTY function.

TABLE 50.1 Full-Text Index Properties for the OBJECTPROPERTY

Property Description Values

TableFullText

BackgroundUpdate

IndexOn

Indicates whether change 1 = true and 0 = false tracking is
enabled.

TableFulltext

CatalogId

Returns the catalog ID of the
catalog the full-text index is
placed on.

CatalogID or 0 (table not indexed)

TableFulltextChange

TrackingOn

Enables change tracking. 1 = true and 0 = false

TableFulltextDocs

Processed

Returns the number of rows
processed since indexing
started.

TableFulltextFail

Count

Returns the number of rows that
failed to index.

TableFulltextItem

Count

Returns the number of rows
successfully indexed.

TableFulltextKey

Column

Returns the ID of the key index
used by SQL Server FTS
(normally the primary key).

ptg

2015Setting Up a Full-Text Index
5

0

Table 50.2 lists the full-text index properties for the COLUMNPROPERTY function.

Table 50.3 lists the properties for the FULLTEXTCATALOGPROPERTY function.

TABLE 50.1 Full-Text Index Properties for the OBJECTPROPERTY

Property Description Values

TableFulltext

PendingChanges

Returns the number of rows
outstanding to be indexed.

TableFulltext

PopulateStatus

Returns a number indicating the
state of the population.

1 = full population is in progress; 2
= incremental population is in
progress; 3 = propagation of
tracked changes is in progress; 4 =
background update index is in
progress, such as autochange
tracking; and 5 = full-text indexing
is throttled or paused

TableHasActive

FulltextIndex

Indicates whether a table has an
active full-text index on it.

1 = true and 0 = false

TABLE 50.2 Full-Text Index Properties for the COLUMNPROPERTY Function

Property Description Values

IsFulltextIndexed Indicates whether a column is full-text indexed. 1 = true and 0 = false

FullTextTypeColumn Returns the ID of the document type column.

TABLE 50.3 Properties for the FULLTEXTCATALOGPROPERTY

Property Description Values

AccentSensitivity Indicates whether the catalog is accent
sensitive.

1 = true and 0 = false

IndexSize Returns the size of the full-text catalog.

ItemCount Returns the number of items (rows)
indexed in the catalog.

ptg

2016

The following examples show how to query metadata functions using the full-text index
properties:

SELECT OBJECTPROPERTY(object_id(‘Person.Contact’),

‘TableFullTextBackgroundUpdateIndexOn’)

select objectproperty(object_id(‘Person.Contact’),’TableFulltextChangeTrackingOn’)

SELECT OBJECTPROPERTY(object_id(‘Person.Contact’),’TableFulltextKeyColumn’)

SELECT OBJECTPROPERTY(object_id(‘Person.Contact’),’TableFulltextPendingChanges’)

SELECT OBJECTPROPERTY(object_id(‘Person.Contact’),’TableFulltextPopulateStatus’)

SELECT OBJECTPROPERTY(object_id(‘Person.Contact’),’TableHasActiveFulltextIndex’)

CHAPTER 50 SQL Server Full-Text Search

TABLE 50.3 Properties for the FULLTEXTCATALOGPROPERTY

Property Description Values

MergeStatus Indicates whether a master merge is in
progress.

1 = true and 0 = false

PopulateCompletion

Age

Specifies how long ago the last popula-
tion completed.

PopulateStatus Returns the status of the population. 0 = idle, 1 = full population
in progress, 2 = paused, 3
= throttled, 4 = recovering,
5 = shut down, 6 = incre-
mental population in
progress, 7 = building
index, 8 = disk is full,
paused, and 9 = change
tracking

UniqueKeyCount Returns the number of unique words
indexed.

ResourceUsage Returns a number indicating how
aggressively SQL Server FTS is consoli-
dating the catalog.

Ranges from 1 to 5 (the
most aggressive); 3 is the
default.

IsFulltextInstalled Indicates whether SQL Server FTS is
installed.

1 = true and 0 = false

LoadOSResources Indicates whether third-party word break-
ers are loaded.

1 = true and 0 = false

VerifySignature Determines whether signatures of word
breakers and language resources are
checked.

1 = true and 0 = false

ptg

2017Setting Up a Full-Text Index
5

0

SELECT COLUMNPROPERTY (object_id(‘Person.Contact’),

‘charcol’ , ‘IsFulltextIndexed’)

SELECT COLUMNPROPERTY (object_id(‘Person.Contact’),

‘VarbinaryColumn’,’FullTextTypeColumn’)

SELECT FULLTEXTCATALOGPROPERTY(‘MyCatalog’,’indexsize’)

SELECT FULLTEXTCATALOGPROPERTY(‘MyCatalog’,’itemcount’)

SELECT FULLTEXTCATALOGPROPERTY(‘MyCatalog’,’mergestatus’)

SELECT FULLTEXTCATALOGPROPERTY(‘MyCatalog’,’populatecompletionage’)

SELECT FULLTEXTCATALOGPROPERTY(‘MyCatalog’,’populatestatus’)

SELECT FULLTEXTSERVICEPROPERTY(‘loadosresources’)

Using the Full-Text Indexing Wizard to Build Full-Text Indexes and
Catalogs

Although the T-SQL full-text commands provide a scriptable interface for creating full-text
catalogs and indexes, sometimes it is easier to use the Full-Text Indexing Wizard to create
them. To create a full-text index, follow these steps:

1. Connect to SQL Server in SQL Server Management Studio.

2. Expand the databases folder.

3. Expand the database that contains the tables you want to full-text index.

4. Expand the tables folder.

5. Right-click the table you want to full-text index (in this example, the
Production.Document table).

6. Select Full-Text Index, as shown in Figure 50.1.

FIGURE 50.1 Selecting the Full-Text Index menu in SSMS.

ptg

2018

You then click Define Full-Text Index to launch the Full-Text Indexing Wizard. On the
Welcome to the SQL Server Full-Text Indexing Wizard splash screen, you click Next to
bring up the Select an Index dialog, as shown in Figure 50.2. In the Unique Index drop-
down box, you select the unique index you want to use for the full-text index. In this
example, the only option is the primary key, PK_Document_DocumentID.

CHAPTER 50 SQL Server Full-Text Search

TIP

If there are multiple unique keys to choose from, it is recommended that you choose
the smallest of the unique keys. It is also a good idea to choose a unique key; this is a
static column that is unlikely to be modified.

You may get the message “A unique column must be defined on this table/view.” In this
case, you have to create a unique index or primary key on the table before you can
proceed. If a unique index or primary key exists, the Next button is enabled. When you
click the Next button, the next dialog you see is the Select Table Columns dialog (see Figure
50.3). In this dialog, you select the columns you want to index and the word breaker you
want to use to index the contents of this column.

Notice that the Select Table Columns dialog displays only the columns that can be full-
text indexed. In this example, the FileName and DocumentSummary columns will be
indexed by the server default full-text language. For the Document column, you select the
language (English) by clicking the drop-down box that displays the available languages.
The document type (in this case FileExtension) also needs to be selected. You then click
Next and proceed to choose the population type from the Select Change Tracking dialog
(see Figure 50.4).

FIGURE 50.2 The Full-Text Indexing Wizard Select an Index dialog.

ptg

2019Setting Up a Full-Text Index
5

0

FIGURE 50.3 The Full-Text Index Wizard Select Table Columns dialog.

There are three options in the Select Change Tracking dialog: Automatically (continuous
change tracking), Manually (change tracking with scheduled or manual updates), and Do
Not Track Changes. If you specify Do Not Track Changes, the Start Full Population When
Index Is Created check box is enabled. You click Next to advance to the Select a Catalog
dialog. This dialog allows you to select an existing catalog or create a new catalog with
options to set the catalog accent sensitivity and to make it the default catalog. You click
Next to set incremental table and catalog populations. You click Next to view the summary
page and finish creating your full-text indexes and catalogs. You click Close to complete

FIGURE 50.4 The Full-Text Index Wizard Select Change Tracking dialog.

ptg

2020 CHAPTER 50 SQL Server Full-Text Search

the wizard. If you are running Service Pack 1, you need to right-click your table one more
time, select Full-Text Index, and select Enable Full-Text Index to start change tracking.

You are now ready to start querying your full-text indexes.

Full-Text Searches
Four SQL clauses allow you to conduct full-text searches on your full-text index tables:

. CONTAINS—Specifies a strict exact match, with options to make the search flexible.

. CONTAINSTABLE—Returns a ranked rowset from SQL Server FTS implementing the
Contains algorithm, which must be joined against the base table.

. FREETEXT—Specifies a stemmed search that returns results to all generations of the
search phrase.

. FREETEXTTABLE—Returns a ranked rowset from SQL Server FTS implementing the
FreeText algorithm, which must be joined against the base table.

CONTAINS and CONTAINSTABLE

The CONTAINS and CONTAINSTABLE predicates have the following parameters:

. Search phrase

. Generation

. Proximity

. Weighted

Search Phrase
The search phrase is the phrase or word that you are looking for in a full-text indexed
table. If you are searching for more than one word, you have to wrap your search phrase
in double quotation marks, as in this example:

SELECT * FROM Person.Contact

WHERE CONTAINS(*,’”search phrase”’) — search all columns

In this query, you are searching all full-text indexed columns. However, you can search a
single column, a list of columns, or all columns. The following example shows how:

SELECT * FROM Person.Contact

WHERE CONTAINS(FirstName, ‘“search phrase”’) — searching 1 column

SELECT * FROM Person.Contact

WHERE CONTAINS((FirstName,Lastname), ‘“search phrase”’) — searching 2 columns

You can also use Boolean operators in your search phrase, as in this example:

SELECT * FROM Person.Contact WHERE CONTAINS(*, ‘“Ford”

AND NOT (“Harrison” OR “Betty”)’)

ptg

2021Full-Text Searches
5

0

This example searches on Ford cars, where you don’t want hits to rows that contain refer-
ences to Harrison and Ford or Betty and Ford.

CONTAINS supports Boolean AND, OR, and AND NOT but not OR NOT.

You can also use wildcards in your searches by adding the * to the end of a word in your
search phrase. A wildcard added to one word acts as wildcard on all words in the search
phrase, so a search on Al Anon* matches with Alcoholics Anonymous, Al Anon, and
Alexander Anonuevo.

Generation
The term generation refers to all forms of a word, which could be the word itself, all
declensions (that is, singular or plural forms, such as book and books), conjugations of a
word (such as book, booked, booking, and books), and thesaurus replacements and substitu-
tions of a word. To search on all generations of a word, you use a FREETEXT search on the
formsOf predicate. The following example shows how to use the formsOf predicate to
search on declensions and conjugations of a word:

SELECT * FROM Person.Contact WHERE CONTAINS(*,’formsOf(inflectional,book)’)

Generations of a word also include its thesaurus expansions and replacements. An
expansion is the word and other synonyms of the word (for example, book and volume or
car and automobile). An expansion can also include alternate spellings, abbreviations, and
nicknames. A replacement is a word that you want replaced in a search. For example, if
you have users searching on the word sex, and you want sex interpreted as gender, you
can replace the search on the term sex with a search on the word gender. To get the
thesaurus option to work, you need to edit the thesaurus file for your language. By
default, the thesaurus files are in C:\Program Files\Microsoft SQL

Server\MSSQL.X\MSSQL\FTData, where X is the instance number. There is a thesaurus file
for each full-text supported language; it is named TSXXX.XML, where XXX is a three-letter
identifier for the language. There also is another thesaurus file called TSGlobal.XML.
Changes made to the TSGlobal thesaurus file are effective in all languages but are overrid-
den by the language-specific thesaurus files. To make the thesaurus file effective, you have
to remove the comment marks and then restart MSFTESQL (the Microsoft SQL Server Full-
Text Search service). Notice that the thesaurus files have an XML element called
<diacritics = true/>. Setting this element to false makes the thesaurus not sensitive
to accents; otherwise, the thesaurus file is accent sensitive.

As mentioned previously, the thesaurus file has two sections: an expansion section and a
replacement section. The expansion section looks like this:

<expansion>

_{Internet Explorer}

_{IE}

_{IE5}

_{IE6}

</expansion>.

ptg

2022 CHAPTER 50 SQL Server Full-Text Search

The sub nodes refer to substitutes, so a search on Internet Explorer is substituted to addi-
tional searchers on Internet Explorer, IE, IE5, and IE6.

The replacement section looks like this:

<replacement>

<pat>NT5</pat>

<pat>W2K</pat>_{Windows 2000}

</replacement>

Here, searches on the patterns NT5 or W2K are replaced by a search on Windows 2000, so
your search will never find rows containing only the words NT5 or W2K.

To use the thesaurus option, you need to use the formsOf predicate. Here is an example of
a formsOf query:

SELECT * FROM Person.Contact WHERE CONTAINS(*, ‘formsof(thesaurus,ie)’)

Proximity
SQL Server 2008 FTS supports the proximity predicate, which allows you to search on
tokens that are close, or near, to each other. Near is defined as within 50 words. Words
separated by more than 50 words do not show up in a CONTAINS or CONTAINSTABLE search.
With a FREETEXT or FREETEXT table search, the separation distance can be up to 1,326
words. Here is an example of a proximity-based search:

SELECT * FROM Person.Contact WHERE CONTAINS(*, ‘“peanut butter” NEAR “jam”’)

Weighted
A weighted search allows you to assign different weights to search tokens; you use the
ISABOUT predicate to do a weighted search. If you want to search on Gulf of Mexico and
Oil, and you want to place more emphasis on Gulf of Mexico than on Oil, you could
query like this:

SELECT * FROM Person.Contact

WHERE CONTAINS(*, ‘isabout(“Gulf of Mexico” weight(0.7), Oil weight(0.1))’)

You can use multiple weighted search items in a search, but doing so decreases the
search speed.

LANGUAGE

Sometimes you might want to conduct a search in a different language than the default
full-text language for your server. For example, say you want to conduct a German-
language search on the contents of a column. To do this, you would use the language
predicate like this:

SELECT * FROM Person.Contact WHERE CONTAINS(*, ‘volkswagen’, LANGUAGE 1031)

ptg

2023Full-Text Searches
5

0

In this search, German language rules are applied when searching the index. In this case,
the search on Volkswagen is expanded to a search on Volkswagen, wagen, and volk. If you
are storing multilingual content in a single column, you should have a column that indi-
cates the language of the content stored in the column. Otherwise, your searches might
return unwanted results from content in different languages.

CONTAINSTABLE

CONTAINSTABLE supports all the predicates of the CONTAINS operator but returns a result set
containing only the key and rank. The CONTAINSTABLE clause also supports all predicates of
CONTAINS, but it allows you to use the TOP_n_BY RANK parameter to return only the first n
results. Because the CONTAINSTABLE predicate returns only the key value and rank, you
have to join it against the base table (or another related table) to get meaningful results.
Here are some examples:

SELECT * FROM Person.Contact JOIN

(SELECT [key], rank FROM CONTAINSTABLE(Person.Contact, *, ‘test’)) AS k

ON k.[key]= Person.Contact.ContactID

In the following example, Person.Contact is a child table of the Sales.Individual table.
Sales.Individual has a foreign key relationship to the Person.Contact table’s primary
key, ContactID. This query illustrates how you could join the CONTAINSTABLE result set
from the Person.Contact table against the Sales.Individual table (this example also
illustrates the TOP_n_BY_RANK option):

SELECT * FROM Sales.Individual as s

JOIN (SELECT [key], rank FROM CONTAINSTABLE(Person.Contact, *, ‘jon’,100)) AS k

ON k.[key]=s.Contactid order by rank desc

In this query, you limit the results to the top 100 rows. The second query returns, at most,
100 rows with the highest-rank values.

Keep in mind that CONTAINS is faster than FREETEXT, but it is a strict character-by-character
match, unless you use some of the word-generation searches.

FREETEXT and FREETEXTTABLE

FREETEXT and FREETEXTTABLE incorporate what Microsoft considers to be the natural way
to search. For example, if you were searching on book, you would expect to get hits to
rows containing the word books (the plural). If you were searching on the word swimming,
you would expect results containing the words swimming, swim, swims, swum, and so on.
The FreeText and FREETEXTTABLE queries implicitly search on all generations of a word
and include a proximity-based search. However, if you wrap your search in double quota-
tion marks, the FREETEXT and FREETEXTTABLE predicates do not do any stemming.
FREETEXT and FREETEXTTABLE also include the TOP_n_BY_RANK parameter.

ptg

2024 CHAPTER 50 SQL Server Full-Text Search

Here are some examples using FREETEXT and FREETEXTTABLE:

Use AdventureWorks;SELECT * from Person.Contact where Freetext(*,’Barack Obama’)

Corrected! HPC

Use AdventureWorks;

SELECT * FROM Sales.Individual as s

JOIN (SELECT [key], rank FROM FREETEXTTABLE(Person.Contact, *, ‘jon’,100)) AS k

ON k.[key]=s.Contactid order by rank desc

Notice that the FREETEXTTABLE example does the functional equivalent of a CONTAINSTABLE
query because the search is wrapped in double quotation marks.

Stop Lists
Stop lists are used when you want to hide words in searches or to prevent from being
indexed those words that would otherwise bloat your full-text index and might cause perfor-
mance problems. Stop lists (also known as noise word lists or stop word lists) are a legacy
component from decades ago when disk prices were very expensive. Back then, using stop
lists could save considerable disk space. However, with disk prices being relatively cheap, the
use of stop lists is no longer as critical as it once was. You can create your own stop word list
by expanding your database in SSMS and then right-clicking on the Full-Text Stoplists
node and selecting New Full-Text Stoplist. You have an option of creating your own stop list,
basing it on a system stop list, creating an empty one, or creating one based on another stop
list in a different database. Each catalog can have its own stop list, which is a frequently
demanded feature because some search consumers want to be able to prevent some words
from being indexed in one table but want those words indexed in a different table. After you
create a stop word list, you can maintain it by right-clicking on it in the Full-Text
Stoplists node and selecting Properties. Figure 50.5 illustrates this option.

The options are to add a stop word, delete a stop word, delete all stop words, and clear the
stop list. After selecting the option you want, you can enter a stop word and the language
in which you want that stop word to be applied.

Keep in mind that the stop lists are applied at query time (while searching) and index
time (while indexing). Changes made to a stop list are reflected real-time in searches but
applied only to newly indexed words. The stop words remain in the catalog until you
rebuild the catalog. It is a best practice to rebuild your catalog as soon as you have made
changes to your stop word list. To rebuild your full-text catalog, right-click on the catalog
in SSMS and select Rebuild.

Full-Text Search Maintenance
After you create full-text catalogs and indexes that you can query, you have to maintain
them. The catalogs and indexes maintain themselves, but you need to focus on backing
up and restoring them as well as tuning your search solution for optimal performance. In
SQL Server 2008, the full-text catalogs get fragmented from time to time, especially if you
are using the Automatic (Track Changes Automatically) setting. You can check the level of
fragmentation by using the following command:

SELECT table_id, status FROM sys.fulltext_index_fragments WHERE status=4 OR

status=6;

ptg

2025Full-Text Search Performance
5

0

FIGURE 50.5 Maintaining a full-text stop list.

If you notice that your tables are highly fragemented you will optimize your full-text
indexes. Here is the command you would use to do this:

ALTER FULLTEXT CATALOG AdventureWorks2008 REORGANIZE;

Full-Text Search Performance
SQL Server FTS performance is most sensitive to the number of rows in the result set and
number of search terms in the query. You should limit your result set to a practical
number; most searchers are conditioned to look only at the first page of results for what
they are looking for, and if they don’t see what they need there, they refine the search
and search again. A good practical limit for the number of rows to return is 200. You
should try, if at all possible, to use simple queries because they perform better than more
complex ones. As a rule, you should use CONTAINS rather than FREETEXT because it offers
better performance, and you should use CONTAINSTABLE rather than FREETEXTTABLE for the
same reason.

Several factors are involved in delivering an optimal Full-Text Search solution. Consider
the following:

. Avoid indexing binary content. Convert it to text, if possible. Most IFilters do not
perform as well as the text IFilter.

. Use integer columns on the base table that comprises your unique index.

ptg

2026 CHAPTER 50 SQL Server Full-Text Search

. Partition large tables into smaller tables. There seems to be a sweet spot around 50
million rows, but your results may vary. Ensure that for large tables, each table has
its own catalog. Place this catalog on a RAID 10 array, preferably on its own
controller.

. SQL Full-Text Search benefits from multiple processors, preferably four or more. A
sweet spot exists on eight-way machines or better. You will find 64-bit hardware also
offers substantial performance benefits over 32-bit.

. Dedicate at least 512MB to 1GB of RAM to MSFTESQL by setting the maximum server
memory to 1GB less than the installed memory. Set resource usage to run at 5 to
give a performance boost to the indexing process (that is, sp_fulltext_service
‘resource_usage’,5), set ft crawl bandwidth (max) and ft notify bandwidth

(max) to 0, and set max full-text crawl range to the number of CPUs on your sys-
tem. Use sp_configure to make these changes.

Full-Text Search Troubleshooting
The first question you should ask yourself when you have a problem with SQL Full-Text
Search is this: “Is the problem with searching or with indexing?” To help you make this
determination, Microsoft has included three DMVs in SQL Server 2008:

. sys.dm_fts_index_keywords

. sys.dm_fts_index_keywords_by_document

. sys.dm_fts_parser

The first two DMVs displays the contents of your full-text index. The first DMV returns
the following columns:

. Keyword—Each keyword in varbinary form.

. Display_term—The keyword as indexed; all the accents are removed from the word.

. Column_ID—The column ID where the word exists.

. Document_Count—The number of times the word exists in that column.

The second DMV breaks down the keywords by document. Like the first DMV, it contains
the Keyword, Display_term, and Column_ID columns, but in addition it contains the
following two columns:

. Document_ID—The row in which the keyword occurs.

. Occurrence_count—The number of times the word occurs in the cell (a cell is also
known as a tuple; it is a row-column combination—for example, the contents of the
third column in the fifth row).

The first DMV, sys.dm_fts_index_keywords, is used primarily to determine candidate
noise wordsit can be used to diagnose indexing problems. The second DMV,
sys.dm_fts_index_keywords_by_document, is used to determine what is stored in your
index for a particular cell.

ptg

2027Full-Text Search Troubleshooting
5

0

Here are some examples of their usage:

select * From sys.dm_fts_index_keywords(DB_ID(),Object_iD(‘MyTable’))

select * From sys.dm_fts_index_keywords_by_document(DB_ID(),Object_iD(‘MyTable’))

These two DMVs are used to determine what occurs at index time. The third DMV,
sys.dm_fts_parser, is used primarily to determine what happens at search time—in other
words, how SQL Server Full-Text Search interprets your search phrase. Here is an example
of its usage.

select * from sys.dm_fts_parser(@queryString, @LCID, @StopListID, @AccentSenstive)

@QueryString is your search word or phrase, @LCID is the LoCale ID for your language

(determinable by querying sys.fulltext_languages), @StopListID is your stoplist

file (determinable by querying sys.fulltext_stoplists), @AccentSensitive allows you

to set accent sensitivity (0 not sensitive, 1 sensitive to accents) . Here is an

example of how this works:

select * from sys.dm_fts_parser(‘café’, 1033, 0, 1)

select * from sys.dm_fts_parser(‘café’, 1033, 0, 0)

In the second example, you will notice that the Display_term is cafe and not café. These
queries return the following columns:

. Keyword—This is a varbinary representation of your keyword.

. Group_id—The query parser builds a parse tree of the search phrase. If you have any
Boolean searches, it assigns different group IDs to each part of the search term. For
example in the search phrase ’”Hillary Clinton” OR “Barack Obama”’, Hillary and
Clinton belong to Group ID 1 and Barack and Obama belong to Group ID 2.

. Phrase_id—Some words are indexed in multiple forms; for example, data-base is
indexed as data, base, and database. In this case, data and base have the same phrase
ID, and database has another phrase ID.

. Occurence_count—This is how frequently the word apprears in the search string.

. Special_term—This column refers to any delimiters that the parser finds in the
search phrase. Possible values are Exact Match, End of Sentence, End of
Paragraph, and End of Chapter.

. Display_term—This is how the term would be stored in the index.

. Expansion_type—This is the type of expansion, whether it is a thesaurus expansion
(4), an inflectional expansion (2), or not expanded (0). For example, the following
query shows the stemmed variants of the word run.

select * from sys.dm_fts_parser(‘FORMSOF(INFLECTIONAL, run)’, 1033, 0, 0)

. Source_Term—This is the source term as it appears in your query.

When troubleshooting indexing problems, you should consult the full-text error log,
which can be found in C:\Program Files\Microsoft SQL

ptg

2028 CHAPTER 50 SQL Server Full-Text Search

Server\MSSQL10.MSSQLSERVER\MSSQL\LOG and starts with the prefix SQLFT followed by the
database ID (padded with leading zeros), the catalog ID (query sys.fulltext_catalogs for
this value), and then the extension .log. You may find many versions of the log each
with a numerical extension, such as SQLFT0001800005.LOG.4; this is the fourth version of
this log. These full-text indexing logs can be read by any text editor.

You might find entries in this log that indicate documents were retried or documents
failed indexing in addition to error messages returned from the iFilters.

Summary
SQL Server 2008 Full-Text Search offers extremely fast and powerful querying of textual
content stored in tables. In SQL Server 2008, the full-text index creation statements are
highly symmetrical, with the table index creation statements making SQL Server FTS
much more intuitive to use than previous versions of SQL Server FTS. Also new is the
tremendous increase in indexing and querying speeds. These features make SQL Server
Full-Text Search a very attractive component of SQL Server 2008.

ptg

CHAPTER 51

SQL Server 2008
Analysis Services

IN THIS CHAPTER

. What’s New in SSAS

. Understanding SSAS and OLAP

. Understanding the SSAS
Environment Wizards

. An Analytics Design
Methodology

. An OLAP Requirements
Example: CompSales
International

SQL Server 2008 Analysis Services (SSAS) continues to
expand with numerous data warehousing, data mining, and
online analytical processing (OLAP)–rich tools and tech-
nologies. Microsoft continues to attack the data warehous-
ing/business intelligence (BI) market by pouring millions
and millions of dollars into this area. Microsoft knows that
the world is hungry for analytics and is betting the farm on
it. As a part of its internal project named “Madison,”
Microsoft has been acquiring other complementary BI tech-
nologies to accelerate its plans (such as acquiring the MPP
data warehousing appliance company DATAllegro and
rolling it under its BI offering). Other more traditional (and
much more expensive) OLAP and BI platforms such as
Cognos, Hyperion, Business Objects, and Micro Strategies
are being challenged, if not completely replaced, by this
new version of SSAS.

A chief data architect from a prominent Silicon Valley
company said recently, “I can now build [using SSAS]
sound, extremely usable, highly scalable, OLAP cubes
myself, faster and smarter than the entire data warehouse
team could do only a few years ago.” This is what Microsoft
has been trying to bring to the forefront for years—“BI for
the masses.”

What’s New in SSAS
SQL Server 2005 was the big jump into completely rede-
ploying Analysis Services—from the architecture, to the
development environment, to the multidimensional
languages supported, and even to the wizard-driven deploy-
ments. SQL Server 2008 R2 raises this core work up a few

ptg

2030 CHAPTER 51 SQL Server 2008 Analysis Services

more notches with enhancements at almost every part of SSAS and with the addition of
major scaleout capabilities. Following are some of the top new features and enhancements:

. Microsoft has improved and streamlined the Cube Designer.

. Several subtle enhancements have been made around the Dimension and
Aggregation Designers.

. You can now create attribute relationships with the new Attribute Relationship
Designer.

. You can use subspace computations to optimize performance for your
Multidimensional Expressions (MDX) queries.

. Multidimensional OLAP (MOLAP) enables write-back capabilities that support high-
performance “what if” scenarios.

. A shared read-only Analysis Services database between several Analysis Services
servers enables you to “scale out” easily and efficiently.

. You are able to use localized analytical data in native languages, including transla-
tion capabilities and automatic currency conversions.

. A highly compressed and optimized data cache is maintained automatically.

. Backup performance is optimized.

. SQL Server PowerPivot for Excel is a new feature.

. The master data hub in SQL Server 2008 R2 helps manage your master data services
more efficiently.

And, last, but not least,

. SQL Server 2008 R2 Parallel Data Warehouse is a highly scalable data warehouse
appliance-based massively parallel processing (MPP) solution that knows no bounds.

Understanding SSAS and OLAP
Because OLAP is at the heart of SSAS, you need to understand what it is and how it solves
the requirements of decision makers in a business. As you might already know, data ware-
housing requirements typically include all the capability needed to report on a business’s
transactional history, such as sales history. This transactional history is often organized
into subject areas and tiers of aggregated information that can support some online query-
ing and usually much more batch reporting. Data warehouses and data marts typically
extract data from online transaction processing (OLTP) systems and serve data up to these
business users and reporting systems. In general, these are all called decision support
systems (DSS), or BI systems, and the latency of this data is determined by the business
requirements it must support. Typically, this latency is daily or weekly, depending on the
business needs, but more and more, we are seeing more real-time (or near-real-time)
reporting requirements.

ptg

2031Understanding SSAS and OLAP
5

1

TIME
GEOGRAHY

All Product

Product Type

All Geo

Country

All Time

Month

Sales Units 450 333 1203

Years

Product

Region

Customer
TIM

E
TIM

E

OLAP Cube

PRODUCT
PRODUCT

G
E

O
G

R
A

P
H

Y

Jan01 Feb01 Mar01 Apr01

996

(France)

(2010)

(Feb 01)

(IBM Laptop
Model 451D)

FIGURE 51.1 Multidimensional representation of business facts.

OLAP falls squarely into the realm of BI. The purpose of OLAP is to provide for a mostly
online reporting environment that can support various end user reporting requirements.
Typically, OLAP representations are of OLAP cubes. A cube is a multidimensional represen-
tation of basic business facts that can be accessed easily and quickly to provide you with
the specific information you need to make a critical decision. It is useful to note that a
cube can be composed of from 1 to N dimensions. However, remember that the business
facts represented in a cube must exist for all the dimensions being defined for the fact. In
other words, all dimensional values (that is, intersections) have to be present for a fact
value to be stored in the cube.

Figure 51.1 illustrates the Sales_Units historical business fact, which is the intersection of
time, product, and geography dimensional data. For a particular point in time (February
2010), for a particular product (IBM laptop model 451D), and in a particular country
(France), the sales units were 996 units. With an OLAP cube, you can easily see how many
of these laptop computers were sold in France in February 2010.

Basically, cubes enable you to look at business facts via well-defined and organized dimen-
sions (time, product, and geography dimensions, in this example). Note that each of these
dimensions is further organized into hierarchical representations that correspond to the
way data is looked at from the business point of view. This provides for the capability to
drill down into the next level from a higher, broader level (like drilling down into a
specific country’s data within a geographic region, such as France’s data within the
European geographic region).

ptg

2032 CHAPTER 51 SQL Server 2008 Analysis Services

SSAS directly supports this and other data warehousing capabilities. In addition, SSAS
allows a designer to implement OLAP cubes using a variety of physical storage techniques
that are directly tied to data aggregation requirements and other performance considera-
tions. You can easily access any OLAP cube built with SSAS via the Pivot Table Service, you
can write custom client applications by using MDX with OLE DB for OLAP or ActiveX
Data Objects Multidimensional (ADO MD), and you can use a number of third-party “OLE
DB for OLAP” compliant tools.

Microsoft utilizes something called the Unified Dimensional Model (UDM) to conceptual-
ize all multidimensional representations in SSAS. It is also worth noting that many of the
leading OLAP and statistical analysis software vendors have joined the Microsoft Data
Warehousing Alliance and are building front-end analysis and presentation tools for SSAS.
The data mining capabilities that are part of SSAS provide a new avenue for organized data
discovery. This includes using SQL Server DMX.

This chapter takes you through the major components of SSAS, discusses a mini-method-
ology for OLAP cube design, and leads you through creating and managing robust OLAP
cube that can easily be used to meet a company’s BI needs.

Understanding the SSAS Environment Wizards
Welcome to the “land of wizards.” This implementation of SSAS, as with older versions of
SSAS, is heavily wizard oriented. SSAS has a Cube Wizard, a Dimension Wizard, a Partition
Wizard, a Storage Design Wizard, a Usage Analysis Wizard, a Usage-Based Optimization
Wizard, an Aggregation Wizard, a Calculated Cells Wizard, a Mining Model Wizard, and a
few other wizards. All of them are useful, and many of their capabilities are also available
through editors and designers. Using a wizard is helpful for those who need to have a
little structure in the definition process and who want to rely on defaults for much of
what they need. The wizards are also plug-and-play oriented and have been made avail-
able in all SQL Server and .NET development environments. In other words, you can
access these wizards from wherever you need to, when you need to. All the wizard-based
capabilities can also be coded in MDX, DMX, and ASSL.

Figure 51.2 shows how SSAS fits into the overall scheme of the SQL Server 2008 environ-
ment. SSAS has become completely integrated into the SQL Server platform. Utilizing many
different mechanisms, such as SSIS and direct data source access capabilities, a vast amount
of data can be funneled into the SSAS environment. Most of the cubes you build will likely
be read-only because they will be for BI. However, a write-enabled capability (WriteBack) is
available in SSAS for situations that meet certain data updatability requirements.

As you can also see in Figure 51.2, the basic components in SSAS are all focused on building
and managing data cubes. SSAS consists of the analysis server, processing services, integra-
tion services, and a number of data providers. SSAS has both server-based and client-/local-
based SSAS capabilities. This essentially provides a complete platform for OLAP.

You create cubes by preprocessing aggregations (that is, precalculated summary data) that
reflect the desired levels within dimensions and support the type of querying that will be
done. These aggregations provide the mechanism for rapid and uniform response times to

ptg

2033Understanding the SSAS Environment Wizards
5

1

Packages

SSIS

S
Q

L S
erver A

nalysis S
ervices

m
sm

dsrv.exe

OLAP
Cube

OLAP
Cube Mining

Models
Mining
Models

Server Based Local/Client Based

Local Cube Engine
msmdlocal.exe

IIS
COM

Data PumpXMLA
(SOAP over TCP/IP)

XMLA
(SOAP over HTTP)

XMLA
(SOAP over TCP/IP)

A
D

O
 M

D
.N

E
T

O
LE

 D
B

 fo
r O

LA
P

A
D

O
 M

D

Win32/64
Applications

COM-Based
Applications

.NET
Applications

Any Application
for OLAP or DM

OLTP
Databases

Multi-Dimensional
Data Warehouse

OLTP
Databases

Measures
Dimensions
Hierarchies
Partitions
Perspectives

Unified
Dimensional
Model
(UDM)

Proactive Cache
(MOLAP cache)

SSAS
Processing

 Engine

FIGURE 51.2 SSAS as part of the overall SQL Server 2008 environment.

queries. You create them before the user uses the cube. All queries utilize either these aggre-
gations, the cube’s source data, a copy of this data in a client cube, data in cache, or a
combination of these sources. A single Analysis Server can manage many cubes. You can
have multiple SSAS instances on a single machine.

By orienting around UDM, SSAS allows for the definition of a cube that contains data
measures and dimensions. Each cube dimension can contain a hierarchy of levels to
specify the natural categorical breakdown that users need to drill down into for more
details. Look back at Figure 51.1, and you can see a product hierarchy, time hierarchy, and
geography hierarchy representation.

The data values within a cube are represented by measures (the facts). Each measure of
data might utilize different aggregation options, depending on the type of data. Unit data
might require the SUM (summarization) function, Date of Receipt data might require the
MAX function, and so on. Members of a dimension are the actual level values, such as the
particular product number, the particular month, and the particular country. Microsoft
has solved most of the limitations within SSAS. SSAS addresses up to 2,147,483,647 of
most anything within its environment (for example, dimensions in a database, attributes
in a dimension, databases in an instance, levels in a hierarchy, cubes in a database,
measures in a cube). In reality, you will probably not have more than a handful of dimen-
sions. Remember that dimensions are the paths to the interesting facts. Dimension
members should be textual and are used as criteria for queries and as row and column
headers in query results.

ptg

2034 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.3 A star-schema data warehouse design with a central fact table and multiple
dimensions of these facts as the source for an OLAP cube in SSAS.

Every cube has a schema from which the cube draws its source data. The central table in a
schema is the fact table that yields the cube’s data measures. The other tables in the
schema are the dimension tables that are the source of the cube dimensions. A classic star-
schema data warehouse design has this central fact table along with multiple dimension
tables. This is a great starting point for OLAP cube creation, as you can see in Figure 51.3.
Here, we show you a high-tech company’s computer sales star-schema data warehouse
that can be used as the source of building up an OLAP cube within SSAS.

SSAS allows you to build dimensions and cubes from heterogeneous data sources. It can
access relational OLTP databases, multidimensional data databases, text data, and any
other source that has an OLE DB provider available. You don’t have to move all your data
first; you just connect to its source. In SSAS, you can also design OLAP cubes from scratch.
Then you can have SSAS create the relational schema of tables in SQL Server that you
want to populate with the transactional data that will drive the OLAP cube.

Essentially, cubes can be regular or local cubes. Regular cubes are based on real tables as
the data source, have aggregations, and occupy physical storage space of some kind. If a
data source that contributes to this cube changes, the cube must be reprocessed. Figure
51.4 shows this cube representation and that it consists of something called partitions.

Local cubes are entirely contained in portable SSAS files (that is, tables) and can be
browsed without a connection to an SSAS instance. This is really like being in “discon-
nected” mode.

Write-enabled dimensions within a cube enable updates (that is, writes) of data that can
be shared back (that is, written back) with the data sources.

ptg

2035Understanding the SSAS Environment Wizards
5

1

Par
titi

on
s

SQL Server
2008

Par
titi

on
s

OLAP Cube

Cubes

FIGURE 51.4 The SSAS cube representations: regular OLAP cubes and partitions.

Following is a quick summary of all the essential cube terms in SSAS:

. Database—A database is a logical container of one or more cubes. Cubes are defined
within Analysis Server databases.

. Cube—A cube is a multidimensional representation of the business facts. Types of
cubes are regular and local.

. Data source—The data source is the origin of a cube’s data.

. Measure group—This group is a collection (or grouping) of one or more measures
into some type of logical unit for business purposes. A measure group does not
occupy any physical space. It is metadata only.

. Measure—A measure is a data fact representation. A measure is typically a data
value fact, such as price, unit, or quantity.

. Cell—A cell is the part of a data measure that is at the intersection of the dimen-
sions. The cell contains the data value. If an intersection (that is, cell) has no value
yet, it does not physically exist until it is populated.

. Dimension—A cube’s dimension is defined by the aggregation levels of the data
that are needed to support the data requirements. A dimension can be shared with
other cubes, or it can be private to a cube. The structure of a dimension is directly
related to the dimension table columns, member properties, or structure of OLAP
data mining models. This structure becomes the hierarchy and should be organized
accordingly. You can also have strict parent/child dimensions in which two columns
are identified as being parent and child and the dimension is organized according to
them. In a regular dimension, each column in the dimension contributes a hierarchy
level.

ptg

2036 CHAPTER 51 SQL Server 2008 Analysis Services

. Level—A level includes the nodes of the hierarchy or data mining model. Each level
contains the members. Millions of members are possible for each level.

. Partition—One or more partitions comprise a cube. Using a partition is a way to
physically separate parts of a cube. This separation essentially lets you deal with
individual slices of a data cube separately, querying only the relevant data sources. If
you partition by dimension, you can perform incremental updates to change that
dimension independently of the rest of the cube. Consequently, you have to
reprocess only the aggregations that are affected by those changes. This is an excel-
lent feature for scalability.

. Hierarchy—A hierarchy is a set of members in a dimension and their position rela-
tive to each other. Hierarchies can either be balanced or unbalanced. Being balanced
simply means that all branches of the hierarchy descend to the same level. An
unbalanced hierarchy allows for branches to descend to different levels. It is also
possible to define more than one hierarchy for a single dimension. A great example
of this is “fiscal calendar time” and “Gregorian calendar time” being defined in one
dimension—a Time dimension that contains both time.gregorian and time.fiscal.

As mentioned previously, SSAS has many wizards. Which wizards you use depends on
what you need to create. The “Creating an OLAP Database” section, later in this chapter,
outlines the order and path through this maze of wizards.

OLAP Versus OLTP

One of the primary goals of OLAP is to increase data retrieval speed for business-related
queries that are critical to decisions. Very often, there is a need to broaden the scope of a
business query or to drill down into more granular details of the query. OLAP was created
to facilitate this type of capability. A multidimensional schema is not a typical normalized
relational database; redundant data is stored to facilitate quick retrieval. The data in a
multidimensional database should be relatively static; in fact, data is not useful for deci-
sion support if it changes constantly. The information in a data warehouse is built out of
carefully chosen snapshots of business data from OLTP systems. If you capture data at the
right times for transfer to the data warehouse, you can quickly make accurate compar-
isons of important business activities over time.

In an OLTP system, transaction speed is paramount. Data modification operations must be
quick, deal with concurrency (locking/holding of resources), and provide transactional
consistency. An OLTP system is constantly changing; snapshots of the OLTP system, even
if taken only a few seconds apart, are all different. Although historical information is
certainly available in an OLTP system, using it for BI-type analysis might be impractical.
Storing old data in an OLTP system becomes expensive, and you might need to recon-
struct history dynamically from a series of transactions. In addition, OLTP designs and
indexes usually don’t support large-scale decision support querying.

SSAS supports three OLAP storage methods—MOLAP, ROLAP, and HOLAP—providing flex-
ibility to the data warehousing solution and enabling powerful partitioning and aggrega-
tion optimization capabilities.

ptg

2037Understanding the SSAS Environment Wizards
5

1

FIGURE 51.5 MOLAP, HOLAP, and ROLAP storage continuum.

Figure 51.5 shows the MOLAP, HOLAP, and ROLAP storage continuum. MOLAP stores all
data locally (to SSAS), and ROLAP is the opposite (storing all data in the relational data-
base). MOLAP is by far the most often used storage approach. The following sections take
a closer look at them.

MOLAP
Multidimensional OLAP (MOLAP) is an approach in which cubes are built directly from
OLTP data sources or from dimensional databases and downloaded to a persistent store.

In SSAS, data is downloaded to the server, and the details and aggregations are stored in a
native Microsoft OLAP format. No zero-activity records are stored.

The dimension keys in the fact tables are compressed, and bitmap indexing is used. A
high-speed MOLAP query processor retrieves the data.

ROLAP
Relational OLAP (ROLAP) uses fact data in summary tables in the OLTP data source to
make data much more current (real-time). The summary tables are populated by
processes in the OLTP system and are not downloaded to SSAS. The summary tables are
known as materialized views and contain various levels of aggregation, depending on the
options you select when building data cubes with SSAS. SSAS builds the summary tables
with a column for each dimension and each measure. It indexes each dimension column
and creates an additional index on all the dimension columns.

HOLAP
SSAS implements a combination of MOLAP and ROLAP called hybrid OLAP (HOLAP).
Here, the facts are left in the OLTP data source, and aggregations are stored in the SSAS
server. You use SSAS to boost query performance. This approach helps avoid data duplica-
tion, but performance suffers a bit when you query fact data in the OLTP summary tables.
The amount of performance degradation depends on the level of aggregation selected.

ROLAP and HOLAP are useful in situations in which an organization wants to leverage
its investment in relational database technology and existing infrastructure. The
summary tables of facts are also accessible in the OLTP system via normal data access
methods. However, when you are using SSAS, both ROLAP and HOLAP require more
storage space because they don’t use the storage optimizations of the pure MOLAP-
compressed implementation.

ptg

2038 CHAPTER 51 SQL Server 2008 Analysis Services

An Analytics Design Methodology
A data warehouse can be built from the top down or from the bottom up. To build a top-
down warehouse, you need to form a complete picture or logical data model for the entire
organization (or all the subsystems within the scope of the project, such as all financial
systems). In contrast, building a warehouse from the bottom up takes a much more
departmental or specific business-area focus (for example, a sales order system only). This
breaks the task of modeling the data into more manageable chunks. Such a departmental
approach produces data marts that are potentially subsets of the overall data warehouse.
The bottom-up approach can simplify implementation. It helps get departmental or busi-
ness-area information to the people who need it, makes it easier to protect sensitive data,
and results in better query response times because data marts deal with less data than a
voluminous transactional system. The potential risk in the data mart approach is that
disparity in data mart implementation can result in a logically disjointed enterprise data
warehouse if efforts aren’t carefully coordinated across the organization.

Before you embark on an OLAP database creation effort, the time you spend understand-
ing the underlying requirements is the best time you can give your effort. If scope is set
correctly, you will be able to achieve an industrial-strength OLAP design without much
difficulty. First, you need to take care of some groundwork:

1. Carefully assess the scope of what you want to represent in the BI environment.
Start small, as the bottom-up approach suggests. For instance, just tackle the sales
data facts.

2. Coordinate your efforts with other related BI efforts. Let people know that you are
carving out a specific subject area or departmental data and, when you finish,
publish your design to everyone.

3. Seek out any shared dimensions that might have already been created for other
cubes. You want to leverage these as much as possible for the sake of data consis-
tency and nonredundant processing.

4. Understand your data sources. The OLAP cube you create will be only as good as the
data you put into it. It’s best to understand the dirty data issues of what you are
about to touch long before you try to build an OLAP cube with it.

An Analytics Mini-Methodology

To successfully build OLAP solutions, you are advised to carefully assess the requirements
of your end users in as detailed fashion as is possible. A mini-methodology that focuses on
the essential usages and characteristics of an Analytic solution can prove invaluable. The
following sections outline a solid approach to nailing down your BI requirements and
yielding optimal OLAP designs that solve your end users’ needs.

Assumption: You are building a business area–focused OLAP cube.

ptg

2039An Analytics Design Methodology
5

1

Requirements Phase
1. Identify the processing requirements for this DSS. What analysis do you need to do?

Are trend reporting, forecasting, and so on necessary? These can often be repre-
sented in use case form (via UML).

a. Ask each user what business decision questions he or she needs to have
answered.

b. Ask each user how often he or she needs these questions answered and exactly
when the questions must be answered.

c. Ask each user how current the data must be to get accurate answers. (This
speaks to data latency.)

2. Identify the data needed to fulfill these requirements. What data must be touched to
provide answers? The best way to capture this type of information is a logical data
model. Even a rough model is better than none at all. This is the point where you
focus on the facts that need to be analyzed.

3. Identify all possible hierarchies and level representations (that is, aggregations). This
is how the data is used. Most users are likely to tell you that they want to see
product data in the product hierarchy structure that has already been set up (for
example, product family, product groups).

4. Identify the time hierarchies that the users need. Because time is usually implicit, it
just needs to be clarified in terms of levels of aggregation (for example, years, quar-
ters, months, weeks, days) and whether it needs to be fiscal versus Gregorian calen-
dar, both, or something else.

5. Understand the data that each user can view from a security point of view.

Design Phase
1. Analyze which data sources are needed to fulfill the requirements. See whether

dimensions or OLAP cubes that already exist can be shared.

2. Understand what data transformations need to be done to the source data to provide
it to the OLAP world. This might include pre-aggregation, reformatting, data
integrity verifications, and so on.

3. Translate these requirements into an OLAP model design:

a. Translate to MOLAP if your data sources are not going to be leveraged at all
and you will be taking full advantage of OLAP storage.

b. Translate to ROLAP if you are going to leverage an existing relational design
and storage.

c. Translate to HOLAP if you are going to partially utilize the source data storage
and partially utilize OLAP storage. This is the most frequently used approach.

Construction Phase
1. Implement data extraction, transformation, and loading (ETL) logic (via T-SQL, SSIS,

or other methods).

ptg

2040 CHAPTER 51 SQL Server 2008 Analysis Services

2. Create the data sources to be used.

3. Create the dimensions.

4. Create the cube.

5. Select data measures (that is, the data facts) for the cube.

6. Design the storage and aggregations.

7. Process the cube. This brings the data into the OLAP environment.

8. Verify data integrity.

Implementation Phase
1. Define the security roles in the cube.

2. Train the user to use the system.

3. Process the data into the OLAP environment (from production data sources).

4. Verify data integrity.

5. Allow users to use the OLAP cube.

Maintenance Phase
1. Evaluate access optimization in the OLAP cube via usage analysis.

2. Do data mining discovery, if desired.

3. Make schema changes/enhancements, as necessary.

An OLAP Requirements Example: CompSales
International
Following is an abbreviated requirement that reflects an actual implementation that was
done for a large Silicon Valley company. We follow the mini-methodology as closely as
possible to implement this requirement in SSAS, pointing out which facilities of SSAS
should be used for which purpose along the way.

CompSales International Requirements

A large computer manufacturer named CompSales International needs to do basic analyti-
cal processing of its product data in a new BI environment. The main business issues at
hand are related to minimizing channel inventory and better understanding market
demand for the company’s most popular products. The detailed data processing require-
ments are as follows:

1. You want to view sales unit actuals and sales returns for system and nonsystem
products for the past two years via the product hierarchy (All Products, Product
Types, Product Lines, Product Families, SKUs), geography hierarchy (All Geos, Major
Geos, Countries, Channels, Customers), and different time levels (All Time, Years,
Quarters, Months).

2. You want to view data primarily at the yearly and monthly levels, although the
finance department also uses it a little bit at quarterly levels.

ptg

2041An OLAP Requirements Example: CompSales International
5

1

3. You want to view net sales (sales minus returns) at all levels of the hierarchy.

4. The fiscal and Gregorian calendar are the same for CompSales International.

5. One day past month-end processing, all “actuals” data from the prior month is avail-
able (sales units and returns).

You need to implement some general design decisions using SSAS, including the following:

. Hierarchies (dimensions)—This includes product, geography, and time.

. Facts (measures)—This includes sales units, sales returns, and net sales (units
minus returns) calculated.

. OLAP storage—This will be MOLAP or HOLAP (if you want to use the star-schema
data mart that already contains most of what you are after).

. Physical tables that exist—This includes Geo_Dimension, Prod_Dimension,
Time_Dimension, and CompSalesFactoid (the fact table that will become your mea-
sures in the OLAP cube). This data is updated weekly. Each of these tables uses an
artificial key into the main facts table for performance reasons (GeoID, ProductID,
TimeID). In addition, several member/value description tables are associated with
each dimension table. Basically, there is one table for each level in a dimension.
These description tables can be leveraged to make the result rows from OLAP queries
much more user friendly (look back at Figure 51.3 and you can see all tables includ-
ed in CompSales and how they are related via primary/foreign key references).

Figure 51.6 illustrates the desired hierarchies and facts for CompSales International’s
requirements.

TIME GEOGRAHY

All Product

Product Type

Product Line

All Geo

Country

Channel

All Time

Quarter

Month

Sales Units 450 333 1203

Returns 20 35 14 22
Net Sales 430 961 319 1181

Year

Product Family

SKU

Major Geo

Customer

TIM
E

TIM
E

PRODUCT

Facts
(Measures)

OLAP Cube

PRODUCT

G
E

O
G

R
A

P
H

Y

Jan06 Feb06 Mar06 Apr06

996

FIGURE 51.6 CompSales International’s multidimensional OLAP requirements.

ptg

2042 CHAPTER 51 SQL Server 2008 Analysis Services

OLAP Cube Creation

A star-schema data mart/warehouse named CompSales2008 is used as the basis of creating
the OLAP cube example in this chapter. You can download this data mart,
CompsSales2008.zip, from the Sams Publishing website for this book title at www.
samspublishing.com, and it is also on this book’s CD. You can easily unzip and attach this
database to any SQL Server 2008 database instance. This is not an SSAS database; it is a
SQL Server database of a star-schema data warehouse/mart. We use this SQL Server data-
base as the source for the exercises in this chapter. You will build the SSAS OLAP cube
yourself (by following the steps outlined here).

You’ll spend most of the construction phase using SQL Server Business Intelligence
Development Studio (BIDS; also known as Visual Studio) and Microsoft SQL Server
Management Studio (SSMS). All wizards and editors are invoked from either BIDS or
SSMS. As mentioned earlier, Microsoft has moved to a project orientation. For this
reason, you need to start out in the BIDS (which actually invokes Visual Studio with the
BI plug-ins). You must have already installed SSAS. In general, here’s what you’ll be doing
in this example:

1. Create a BI project.

2. Identify data sources and data source views that you want to use for a new cube.

3. Define the basic dimensions for the cube (Time, Geography, Product).

4. Define the hierarchies.

5. Process the dimensions.

6. Create a cube structure.

7. Define the measure groups/measures.

8. Process the cube.

9. Deploy the solution.

10. Use the cube.

Using SQL Server BIDS

The SQL Server BIDS (a.k.a. Visual Studio with the BI plug-ins) is launched from the SQL
Server 2008 Program group on the Start menu or from the Visual Studio 2008 Program
group on the Start menu. We will assume you have installed Visual Studio and SQL Server
Analysis Services. When this is open, you choose File, New Project, Business Intelligence
Projects. Figure 51.7 shows the New Project dialog from which you should highlight the
Analysis Services Project template option and specify a project name, project location, and
solution name for this new BI project. In this case, the solution name is
CompSalesUnleashed.

NOTE

You can also start a new project by leveraging any other existing SSAS database pro-
ject. You can easily clone an existing project and tweak it a bit to fit your new needs. To
do this, you use the Import Analysis Services Database option.

www.samspublishing.com
www.samspublishing.com

ptg

2043An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.7 The SQL Server BIDS New Project dialog.

After you create a new project, a set of objects is presented to you in the upper-right pane,
which is the Solution Explorer. Figure 51.8 shows the Solution Explorer for the new
project. All OLAP project objects reside here, including data sources, dimensions, cubes,
mining structures, and roles.

FIGURE 51.8 The Solution Explorer view for the new CompSalesUnleashed project.

ptg

2044 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.9 Defining a data source connection in the Data Source Wizard.

Creating an OLAP Database

Remember that an OLAP database is made up of data sources, dimensions, and cubes. A
data source is simply a pointer to data somewhere, such as via a Jet OLE DB provider, an
OLE DB provider, SQL Native Client, Microsoft Directory Services, or even SSIS packages.
You populate the data in your cube from the data source. Dimensions are constructed of
columns from tables that you select to be used to build and filter data cubes. Cubes are
combinations of dimensions whose intersections contain strategically significant measures
of business performance, such as quantities, units, amounts, and so on. You need to iden-
tify the data sources from which your OLAP cube is to be based.

Adding a Data Source
To add data sources for a new database, you simply right-click the Data Sources object in
the Solution Explorer or select Project, New Data Source in Visual Studio. The Data Source
Wizard is then initiated. As mentioned earlier, much of SSAS administration is wizard
based. The Data Source Wizard starts with a prompt for you to select how to define the
connection to a data source. You can use any existing connections or create new ones
from this dialog. Figure 51.9 shows these two options, along with the data connection
properties. If you have attached the CompSales database (or any other database) already,
you can easily create a new connection to this database for use in this example.

Figure 51.10 shows the Connection Manager dialog, where you specify the provider to use
(for example, Native OLE DB\SQL Native Client 10.0), the name of the database to
connect to, and the authentication method to use for the connection. You should go

ptg

2045An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.10 Connection Manager specification for a new data source.

ahead and establish a connection to the CompSales database you just attached and click
the Test Connection button in the lower-left corner to verify that it is valid. If you have
referenced the CompSales2008 database from Visual Studio before, it may already appear in
the Data Connections list.

As part of this connection specification wizard sequence, you must specify the imperson-
ation information. That is, you must define what credentials SSAS should use to connect
to the data source. You can specify a specific username and password, use the service
account, use the credentials of the current user, or use default authentication. You can also
create a specialized domain account to use for all SSAS connections. We recommend using
the service account approach, which is easily leveraged for most cube administration.

To finish, you must name the data source Comp Sales2008 and then click the Finish
button. Your data source then appears in the Solution Explorer, under Data Sources. As
part of this process, an XML file is created, from which you can easily manage all connec-
tion properties for this data source (Comp Sales2008.ds in this example). Remember that
you have just established connection information only—nothing more. If you right-click
the Comp Sales2008.ds entry under the Data Sources object, you can view the complete
XML code of this entry by selecting the View Code option.

ptg

2046 CHAPTER 51 SQL Server 2008 Analysis Services

The following XML code represents this data source connection:

<DataSource xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:ddl2=”http://schemas.microsoft.com/

analysisservices/2003/engine/2”

xmlns:ddl2_2=”http://schemas.microsoft.com/

analysisservices/2003/engine/2/2” xmlns:ddl100_100=”http://schemas.microsoft.com/

analysisservices/2008/engine/100/100” xmlns:ddl200_200=”

http://schemas.microsoft.com/

analysisservices/2010/engine/200/200” xmlns:dwd=”http://schemas.microsoft.com/

DataWarehouse/Designer/1.0”

xsi:type=”RelationalDataSource”

dwd:design-time-name=”59d9b6d8-4394-40a9-b793-13fd819b892f”

xmlns=”http://schemas.microsoft.com/

analysisservices/2003/engine”>

<ID>Comp Sales2008</ID>

<Name>Comp Sales2008</Name>

<CreatedTimestamp>0001-01-01T00:00:00Z</CreatedTimestamp>

<LastSchemaUpdate>0001-01-01T00:00:00Z</LastSchemaUpdate>

<ConnectionString>Provider=SQLNCLI10.1;

Data Source=DBARCH-LT2\SQL08DE01;

Integrated Security=SSPI;Initial Catalog=CompSales2008

</ConnectionString>

<ConnectionStringSecurity>Unchanged</ConnectionStringSecurity>

<ImpersonationInfo>

<ImpersonationMode>ImpersonateAccount</ImpersonationMode>

<Account>DBARCH-LT2\DBARCH</Account>

<ImpersonationInfoSecurity>PasswordRemoved</ImpersonationInfoSecurity>

</ImpersonationInfo>

<Timeout>PT0S</Timeout>

</DataSource>

You can also choose the View Designer option on this data source entry, which allows you
to view and modify the properties of the data source entry.

Creating Data Source Views
Because you will be basing your cube on a data warehouse/data mart star schema you
already have available, you need to further define exactly what you need to have access to
within that data source. Creating a data source view essentially allows you to look more
deeply into the metadata of the data source and add additional relationships, create things
like calculations, and set logical keys on the metadata of the data source. You start by
right-clicking the Data Source View object in the Solution Explorer and selecting New
Data Source View (or choosing Project, New Data Source View). This starts the Data Source
View Wizard, which you use to define what view of data to use for the cube. The first
dialog box allows you to select a data source to use as the basis of the data source view.

ptg

2047An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.11 Identifying which data source to use for the view in the Data Source View
Wizard.

Figure 51.11 shows the data source Comp Sales2008 that you defined earlier. Chose it and
click Next.

If you need to limit the data source to a particular schema within the database, you can
click the Advanced button and specify a schema (or schemas) to be restricted to and
retrieve any foreign key and primary key relationships that may exist.

If your schema doesn’t include foreign key specifications, you can use this wizard to try to
discover foreign key relationships, using a few different types of column name matching.
Figure 51.12 shows an example of using a simple primary key column name matching
technique to identify any foreign key relationships with other tables in your schema. If
you have used some type of common naming convention on your source tables, you can
easily leverage this name-matching dialog.

You essentially can identify the following:

. Matches based on the exact column name match (as compared to the primary key
column):

Order.CustomerID (foreign key) → Customer.CustomerID (primary key)

. Matches based on the column name being the primary key table name:

Order.Customer → Customer.CustomerID (primary key)

ptg

2048 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.12 Logical relationship discovery, using column-naming matching in the Data
Source View Wizard.

In this example, we used some good naming conventions for columns, so you can simply
specify the first option (match based on exact column match). This is the lead-in to select
the tables (and/or views) you need to be included from your data source. As you can see in
Figure 51.13, you can choose from any number of objects. You must select the base tables
you need in your data source views. These are the CompSalesFactoid, Geo_Dimension,
Prod_Dimension, and Time_Dimension tables. However, you should also click the Add
Related Tables button to add all related tables, based on the matching technique you spec-
ified earlier. We’ve seen a little inconsistency of the wizard not adding all related tables
properly. Please double check the list of tables with our figures list (Figure 51.13). This
completes the set of tables that comprise the data source views for your cube.

You now complete this wizard by naming the data source views (Comp Sales2008 DSV)
and clicking Finish.

When you exit the wizard, you end up in the designer view in Visual Studio, with a graph-
ical representation of the data source views that will be the basis of the cube you are

. Matches based on similar column name by comparing the table name concatenated
with its primary key column name and then loosely comparing it to other column
names of other tables:

Order.CustomerID → CustomerID (concatenated to Customer+ID=CustomerID)

Order.Customer ID → CustomerID

Or Order.Customer_ID → CustomerID

ptg

2049An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.13 Available and included objects for your data source views in the Data Source
View Wizard.

FIGURE 51.14 A designer graphical representation of the data source views.

building (see Figure 51.14). This figure highlights the primary fact table
(CompSalesFactoid), the primary dimension tables (Time_Dimension, Prod_Dimension,
Geo_Dimension), and all tables related to these dimensions (that contain the
values/descriptions of the member entries for the hierarchies of the dimensions).

ptg

2050 CHAPTER 51 SQL Server 2008 Analysis Services

Now, because you have fully specified data source views, you can easily define a cube via
the Cube Wizard. Or you can start defining your cube’s dimensions and then use these
dimensions in the Cube Wizard later. Because you know your source database well, you
should go ahead and create your dimensions and hierarchies first.

Defining Dimensions and Hierarchies
You are now ready to start defining dimensions and hierarchies to your database.
Dimensions are the building blocks for cubes in SSAS. You start by right-clicking the
Dimensiond object in the Solution Explorer (or choosing Project, New Dimension). You
can create a new (standard) dimension or define a dimension that is linked to another
SSAS cube or database.

For this example, you will be creating three new cube dimensions, based on the dimen-
sion tables you have in your data source views (Time_Dimension, Prod_Dimension,
Geo_Dimension). When you choose the New Dimension option, you are welcomed to the
Dimension Wizard. You need to build the new dimensions by using your data source
views. As you can see in Figure 51.15, the first wizard dialog prompts you to specify
whether you will be using a data source to create a dimension. This is the wizard build
method. If you haven’t defined any data sources (and perhaps don’t have them yet), you
can use a template approach to define dimensions. This is the bottom-most option on this
dialog. If you want a time dimension but do not have a previously defined set of tables
that represent your time dimension (in your data source), you can choose the second or
third options to generate a well-formed time representation via this wizard. We discuss
this option later. You do have a valid data source to use, so you will use the first option to
create your first dimension (which is a Time Dimension based on the Comp Sales 2008
data warehouse/mart Time_Dimension table).

When you choose the first option (Use an Existing Table), you are prompted to identify
the data source view you want to use to provide data to the new dimension. Because you
have already defined the data source view in a previous step (the Comp Sales2008 DSV

data source view), it should be available for you to use. Figure 51.16 shows the Comp

Sales2008 DSV data source views and all the tables available for your use. You should
highlight this data source view along with the main table the dimension will be based on
(Time_Dimension table in this case). As you can see in Figure 51.17, the key columns
show up automatically. The fact table’s time is keyed by a pseudo-key called TimeID, with
no other key columns needed. You have a chance to identify any other columns you
might also want to include in this dimension (do not do so in this example though) and
click Next.

You have probably noticed that the time dimension table has all the other levels of the
time dimension hierarchy as separate columns in it. A few related tables to this time
dimension table hold the member value descriptions that correspond to each level in the
hierarchy. It is really nice to have the member-level descriptions available in the cube for
ease of use by the end user. It is pretty easy to include these related tables in the next step
of generating this dimension. Figure 51.18 shows the list of related tables identified earlier
in the data source views. You need to check all the related tables for inclusion in the time
dimension and click Next (they are likely already checked automatically).

ptg

2051An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.16 Identifying which data source views to use for a dimension in the Dimension
Wizard.

FIGURE 51.15 Creating a dimension by using a data source in the Dimension Wizard.

ptg

2052 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.17 The key column of the table the dimension is based on.

It is now time to select the attributes you want to include in the dimension. As shown in
Figure 51.19, the Dimension Wizard presents a Dimension Attributes list, along with the

FIGURE 51.18 Including the related member description tables in the dimension in the
Dimension Wizard.

ptg

2053An OLAP Requirements Example: CompSales International
5

1

attribute key column and attribute name column correspondences. You need to identify
the correct key column value from your data source views for Attribute Key Column. You
also should enable these attributes for browsing for your dimension; this essentially makes
them available (surfaces them) in your dimension hierarchy. Notice also that you identify
the types of attribute characteristics. The default is the Regular attribute for general use.
Several other attribute types correspond to the anticipated behavior or characteristics of
the attribute itself. They might follow date-based behavior, currency type behavior, or
other variations such as slowly changing attributes (and hence slowly changing dimen-
sions). For this example, you check the check box for each dimension attribute you need:
All Time, Year Time, Quarter Time, and Month Time, along with the dimension key itself
(TimeID). Then, for the selected dimension attributes, you specify the attribute type
Regular, check the box for enabling these attributes for browsing, and click Next.

As you can see in Figure 51.20, the last step of the dimension generation process shows
you the summary of what you have defined and prompts you to name the dimension you
are about to create (Time_Dimension in this case).

After you click Next, you are placed in the dimension designer for the dimension you just
created. In addition, a dimension entry is added to the Solution Explorer, and now you
can easily create the hierarchical view for this dimension. This task is quite easy because
all the attributes that represent a level in a hierarchy are visible (because you enabled
them), and you can simply drag them into a hierarchy from within this designer. As you

FIGURE 51.19 Selecting dimension attributes and attribute types for the dimension in the
Dimension Wizard.

ptg

2054 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.20 Finishing the generation of the time dimension.

can see in Figure 51.21, you can click and drag any attribute listed in this dimension from
the Attributes pane (on the far left) to the Hierarchies pane. A new hierarchy is created
automatically when you pull your first attribute into this work area. Your goal is to create
the following hierarchy for the time dimension (in this order, from top to bottom):

1. All Time

2. Year Time

3. Quarter Time

4. Month Time

In addition, from this designer, you can click on the Attribute Relationships tab to see
how the dimension key relates to any of the other attributes you have defined in the
dimension. Usually, there is a correspondence of the key attribute to each of the hierar-
chy levels (which show how they can be used). Figure 51.22 shows what was generated
by the Dimension Wizard. If you need to specify other attribute relationships, you can
easily do so here.

If you want to browse the data that will make up your dimension that is coming from the
data source, you must first process your dimension (populate the values that represent the
dimension and hierarchy). A process icon (the second icon) in the upper-left corner of the
dimension structure designer takes you through a two-step process sequence. Step one is
to deploy the definitions and see whether any errors might exist. Step two is to populate
the values (run the processing). If you like, you can do this now. When this sequence is

ptg

2055An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.21 Creating the time hierarchy in the dimension designer.

FIGURE 51.22 Attribute relationships in your dimension.

ptg

2056 CHAPTER 51 SQL Server 2008 Analysis Services

done, you should be able to open the Dimension Browser and navigate around in your
fully populated dimension hierarchy (as shown in Figure 51.23).

You will probably notice that the data values being displayed in the time hierarchy are
numeric. These are the key values of each level in the hierarchy. If you want to see the full
description of the hierarchy values instead of just the key values, you can easily modify
the properties of each hierarchy level column’s NameColumn and ValueColumn properties to
have them pull the descriptive (more natural) values from the related table entries. You
simply browse down into the property window of any level of the hierarchy and update
the values with the corresponding column names of the related table’s description column
name. The window at the top of Figure 51.24 shows the top-level column (All Times)
column properties with nothing identified in it’s NameColumn or ValueColumn properties
(actually (none) is the default). The window at the bottom of Figure 51.24 shows the same
properties updated with the corresponding description columns from the corresponding
reference table.

You can now update each level in the hierarchy in the same way (with the corresponding
description column for each time hierarchy level) and then reprocess the dimension.
When you reload the dimension in the Dimension Browser, you see the full description
values displayed, as shown in Figure 51.25.

That’s it! You have just generated your first usable dimension for the cube!

If you didn’t have such a well-defined data source set of tables to base your time dimen-
sion on, you could use either of the other two kinds of time dimension options within
this wizard. As you can see in Figure 51.26, you need to specify the date periods that will
be used when generating the hierarchies, along with the corresponding attributes (time
table columns). Setting these attributes is relatively standard.

FIGURE 51.23 Browsing the time dimension hierarchy.

ptg

2057An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.24 Updating the NameColumn and ValueColumn properties of a dimension
hierarchy.

FIGURE 51.25 Full descriptions of hierarchy levels.

Figure 51.27 shows the different server time dimension options that Microsoft provides for
your convenience. Microsoft has tried to cover the primary variations of time dimensions
and calendars in the market: Fiscal, Reporting (for example, for Marketing, which also
includes week-by-month patterns such as 4-4-5 calendars), Manufacturing, and even ISO
8601 calendars. The process is to first identify a time period and then select the calendar
type to use. The wizard then creates a server time dimension that meets your needs.

ptg

2058 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.26 Specifying the time period and hierarchy attributes when not using a data
source table.

FIGURE 51.27 Calendaring options for server time dimensions in the Dimension Wizard.

ptg

2059An OLAP Requirements Example: CompSales International
5

1

NOTE

You might want to have multiple time dimensions in your cube to fulfill multiple busi-
ness unit group needs. You can create as many as you need and then provide perspec-
tives of the cube for each group that include only each group’s specific time dimension
for its needs.

Creating the Other Dimensions
Now you essentially need to go through the whole process of creating a dimension and a
hierarchy for the other dimensions (Product and Geography). The process is as follows:

1. Invoke the Dimension Wizard (by right-clicking the Dimensions object in the
Solution Explorer).

2. Choose the creation method for the dimension to use the existing table from a data
source approach.

3. Specify the Comp Sales2008 DSV data source view.

4. Select the main dimension table to use (Prod_Dimension for the Product dimension
and Geo_Dimension for the Geography dimension).

5. Identify the key column of each new dimension (ProductID for the Product dimen-
sion and GeoID for the Geography dimension).

6. Select the related tables.

7. Specify the dimension attributes and the attribute types (regular).

8. Name the dimension (Product_Dimension and Geography_Dimension) and finish the
Dimension Wizard (which places you in the dimension designer).

9. Drag the dimension attributes to the Hierarchies pane to create the dimension hier-
archy view:

. Use the following product hierarchy, in this order (see Figure 51.28):

1. All Products

2. Product Type

3. Product Line

4. Product Family

5. SKU

. Use the following geography hierarchy, in this order (see Figure 51.29):

1. All Geo

2. Maj Geo

3. Country

4. Channel

5. Customer

ptg

2060 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.28 Creating the product hierarchy in the dimension designer.

FIGURE 51.29 Creating the geography hierarchy in the dimension designer.

10. Update the NameColumn and ValueColumn properties of each dimension hierarchy level.

11. Process the dimension and browse the dimension.

Creating the Cube
Most of the hard work in the CompSales International example is done. All that is left to
do now is to create a cube that is based on your fact tables in your data source, use the
dimensions and hierarchies you just defined, and then process it (that is, populate the
cube with data). In the Solution Explorer, you right-click the Cubes object and select New
Cube. This invokes the Cube Wizard, as shown in Figure 51.30.

Next, you identify the measure group tables from the data source view that will be used to
provide data to the cube. Available data source views are listed in this dialog. Because you

ptg

2061An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.30 Selecting the build method for the cube in the Cube Wizard.

The wizard detects the possible data measures (facts) from the measure group table you
just identified. In this measure group table, there are Sales Units, Sales Prices, Sales Returns,
and a Count measure to choose from. Select all of them, as shown in Figure 51.32.

If you have dimensions defined already (as you chose to do earlier), you want the new
cube to use these definitions. The next wizard dialog lists any shared dimensions that
have been created already. Your dimensions are listed there, and you need to check all the
ones to be used for your cube (Time_Dimension, Product_Dimension, and
Geography_Dimension), as shown in Figure 51.33. Then you click Next.

As you can see in Figure 51.34, the last dialog in this wizard shows a preview of your
complete cube definition and provides a place to name the cube (for this example, name
it Comp Sales). Now you click Finish.

You are now put in the cube designer, which shows the completed cube design for Comp
Sales. The cube designer provides all related cube information within the single IDE
(Visual Studio). Figure 51.35 shows the cube designer and all related tabs that can be
invoked from here (Dimension Usage, Calculations, KPIs, Actions, Partitions,
Aggregations, Perspectives, Translations, and the Cube Data Browser).

have already defined a data source view (Comp Sales2008 DSV), you simply highlight it
and check the primary fact table (use CompSalesFactoid as your Measure group table) that
will provide your data, as shown in Figure 51.31, and click Next.

ptg

2062 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.31 Selecting the data source view and measure group table to use for the cube.

FIGURE 51.32 Selecting the measures (facts) that will be in the cube.

ptg

2063An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.33 Selecting the existing dimensions for your cube.

FIGURE 51.34 Naming the cube and previewing the cube definition in the Cube Wizard.

ptg

2064 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.35 The Comp Sales cube definition in the cube designer.

Building and Deploying the Cube
You basically have a cube definition now, but it is just an empty shell. You need to process it
and then deploy it so that it is instantiated and populated with data (via the data source view).
Remember that this cube definition is a solution project, just like a C# code project. It must be
deployed before it can be used. First, you need to verify that the properties of the cube you are
building are set correctly. You must have these properties correct before the cube can be
processed. (Process, in this case, means build the cube structure and populate the measures and
their associated dimensions.) You can assume that the properties will not be set correctly, so
you should take a quick look and update them accordingly. You start by going to the Project
menu item in Visual Studio and locating the Properties item entry (see Figure 51.36).

After you select this option, you navigate to the Deployment entry (the configuration property
on the bottom). You need to focus on the Target (the target of the deployment) properties. As
you can see in Figure 51.37, the Server property should be pointing to the location where you
want this cube to be deployed. The Database property is simply the name under which you
will deploy the database. For this example, you should make sure to specify a valid Server
value; the default is (localhost). The default in this property usually is not what you want to
happen and usually results in an error during the deployment step. Therefore, you should
specify this value explicitly (such as DBARCH-LT2\SQL08DE01, which is the Analysis Services
server, and CompSalesUnleashed as the Database entry). After the cube is deployed, you will be
able to connect to this server (SSAS engine) with SSMS and administer the cube accordingly.

After you apply these property changes, you are ready to first do a build and then deploy
your SSAS cube. You start by making sure you have a successful build by using the Build
menu item on the toolbar or using the specific build option for the current SSAS solution:
Build CompSalesUnleashed. They both do the same thing. If you have no errors (and you
have received a Build Succeeded message in the lower-left message bar of Visual Studio),
you can deploy this SSAS solution.

ptg

2065An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.36 Selecting the cube properties for Comp Sales from the Project menu.

FIGURE 51.37 Deployment properties for the Comp Sales cube.

Again, you should choose the Build menu item in the toolbar and click the Deploy
Solution option to deploy this cube. Immediately, a Deployment Progress dialog box
appears in the lower-right corner of Visual Studio. When the deployment has progressed,
you receive a Deployment Completed Successfully message.

Populating the Cube with Data
Now you can process actual data into your cube from the data source view. To do so, you
right-click the Comp Sales cube entry in the Solution Explorer and choose the Process
item or choose the Process icon for the cube in the cube designer (second icon from the
left in the cube designer). A Process Cube dialog appears, with the object list of available

ptg

2066 CHAPTER 51 SQL Server 2008 Analysis Services

cubes to process. You select the Comp Sales cube (by highlighting it) and then click the
Run button to start the processing of data (see Figure 51.38). You can also see in Figure
51.38 that the Process Option defaults to Process Full. Other options here vary depending
on what part of the cube needs to be reprocessed (such as when you have structure
changes, data refreshes, incremental data changes, so on).

A Process Progress dialog appears as the processing begins. Remember that this data is the
dimension member values and the measure data values and has not been aggregated up
through a complete cube representation (at all levels in the hierarchies). That will be done
shortly, via the Aggregation Design Wizard. You can actually use your cube right now, but
browsing would be challenging from a performance point of view.

Aggregating Data Within the Cube
The last step of creating your OLAP cube is running through the Aggregation Design
Wizard and determining how best to represent and aggregate the data for your users. This
is point at which you must determine the optimal aggregation levels and storage method
for these aggregations (MOLAP, HOLAP, or ROLAP) for the optimal performance of queries
against the cube.

You double-click the cube entry in the Solution Explorer (Comp Sales.cube) to bring up
the cube designer for your newly created cube. Then you click the Partitions tab to see the
current partition for Comp Sales. Figure 51.39 shows the default storage mode is MOLAP

FIGURE 51.38 Process Cube dialog for Comp Sales.

ptg

2067An OLAP Requirements Example: CompSales International
5

1

and that there is no Aggregation Design for this cube yet. Just to the lower right of this
tab is the Storage Settings option, which shows the different storage options possible for
your partition, as shown in Figure 51.40.

You need to indicate what type of storage mode and caching options you want for the
partition that will contain your aggregations (these storage modes are discussed earlier in
this chapter). You want to optimize performance and don’t need real-time refreshes of the
data. For these reasons, you specify the MOLAP (native SSAS storage) mode. Figure 51.40

FIGURE 51.39 The Partitions for the Comp Sales cube.

FIGURE 51.40 Specifying MOLAP storage mode for your cube in the Storage Settings dialog.

ptg

2068 CHAPTER 51 SQL Server 2008 Analysis Services

shows this MOLAP specification in the Storage Settings dialog. This dialog works as a sliding
scale. You just need to make sure the slider is positioned at the MOLAP storage option.

You also want to take advantage of the proactive caching capabilities that come with SSAS.
You can activate this feature by clicking the Options button of this dialog and then check-
ing the Enable Proactive Caching check box at the top of the Storage Options dialog that
appears (see Figure 51.41). In addition, you use the option Update the Cache When Data
Changes, as indicated in Figure 51.41 along with interval times for these refreshes.

A good rule of thumb is to refresh the cache interval based on response requirements and
the volatility of the data from the data source views and whether the changes will have a
dramatic effect on the BI query results.

Now you can run through the Aggregation Design Wizard to see whether you can opti-
mize your partition for querying. You simply go to the Aggregation Design tab for this
cube (from the cube designer) and choose the Design Aggregations option (click the first
icon in the Design Aggregations tab or right-click within the Aggregation Design tab and
choose Design Aggregations). This launches the Design Aggregation Wizard.

FIGURE 51.41 Enabling proactive caching for the cube.

ptg

2069An OLAP Requirements Example: CompSales International
5

1

First up is the dialog that allows you to specify object counts of the total population of
facts and the number of values at each hierarchical level within each dimension. If you
know what the full extent of counts will be for your cube, you can manually supply these
count values in the Estimated Count column (see Figure 51.42). You typically do this
when you have been able to load only a partial amount of data or the data will grow quite
rapidly over time. If you are building a statically sized cube and have populated the data
already, you just click the Count button to tell the wizard to use the actual data as the
basis of the aggregation.

The next dialog optimizes the storage, based on the level of aggregation. You can specify a
maximum storage approach (you create optimized storage based on the amount of disk
space you can allocate to the cube), tell the wizard to simply optimize to achieve a certain
percentage of performance gain (for example, 50%, 80%), specify to start the aggregation
design process dynamically, and stop when you feel the cube is optimized enough, or do
no design aggregation at all. You really want to see the design aggregation process happen.
Remember that the higher the performance you want, the more storage it will require
(and the longer it will take to reprocess the aggregations). As you can see in Figure 51.43,
you should select the I Click Stop option and stop the design aggregation when the opti-
mization level starts to level off (somewhere between 75% to 88% optimization level). Any
further optimization would really just waste storage space.

FIGURE 51.42 Specifying cube object counts for aggregation in the Aggregation Design
Wizard.

ptg

2070 CHAPTER 51 SQL Server 2008 Analysis Services

When you are satisfied with the aggregation design, you simply click NEXT and name this
design (the sample is named AggregationDesignPrimary, as you can see in Figure 51.44).
You then assign this design aggregation to the partition to use in the Partition tab.

If your company has sales transaction data for the past five years and 250 stores that sell
an average of 1,000 items per day, the fact table will have 456,500,000 rows. This is obvi-
ously a challenge in terms of disk space by itself, without aggregation tables to go along
with it. The control that SSAS provides here is important in balancing storage and retrieval
speed (that is, performance versus size). Aggregations are built to optimize rollup opera-

FIGURE 51.43 Setting the optimal storage and query performance level in the Aggregation
Design Wizard.

FIGURE 51.44 Resulting aggregation design to be assigned to the Comp Sales Factoid parti-
tion.

ptg

2071An OLAP Requirements Example: CompSales International
5

1

tions so that higher levels of aggregation are easily derived from the existing aggregations
to satisfy broader queries. If a high degree of query optimization weren’t possible due to
limitations in storage space, SSAS might choose to build aggregates of monthly or quar-
terly data only. If a user queried the cube for yearly or multiyear data, those aggregations
would be created dynamically from the highest level of pre-aggregated data. With disk
storage becoming more and more inexpensive and servers becoming more powerful, the
tendency is to opt for meeting performance gains. A recommended approach is to specify
between an 80% and 90% performance gain here.

You are now ready to complete the Aggregation Design Wizard. The final step is to either
process this aggregation or save your results and process it later. You should choose to
process this aggregation now and then click Finish (see Figure 51.45). The Process Progress
dialog appears immediately, and you get to watch the full extent of the cube’s aggregation
partitions being built (that is, populated). Aggregation SQL queries are actually created
under the covers to populate all these aggregation levels (which are implementing your
design levels). It’s nice to have Microsoft dynamically create these complex queries for this
critical performance optimization step so you don’t have to worry about it yourself.

When this step completes, you have a fully optimized cube that is ready for data brows-
ing. Congratulations!

Browsing Data in the Cube
You’re ready to browse some cube data now. There are several ways to view data in a
multidimensional cube. OLE DB for OLAP and ADO MD expose interfaces to do this kind

FIGURE 51.45 Deploy and process the aggregation now to complete your cube.

ptg

2072 CHAPTER 51 SQL Server 2008 Analysis Services

of data browsing, and many leading vendors have used these interfaces to build front-end
analysis tools and ActiveX controls. These tools should prove useful for developers of user
interfaces in data warehousing and data mart projects. You can also easily browse a cube’s
data from either Visual Studio or SSMS or via any tool or facility that uses the multidimen-
sional extensions of SQL (that is, SQL with DMX and MDX extensions).

To browse your newly created cube from SSMS, you fire up SSMS and connect to the SSAS
server (Analysis Services server type) on which you deployed your cube. You should not
connect to the SQL Server Database Engine. These are two completely different servers.
When you are connected, you expand the Databases tree on the left until you can see the
cube you created (Comp Sales, in this example).

NOTE

In Visual Studio, you can simply click the Browse tab when you are in the cube design-
er. All browse functionality uses the same plug-ins, whether you are in Visual Studio or
SSMS. In either Visual Studio or SSMS, you can browse the cube (the entire cube with
all dimensions) or just a dimension (using the dimension browser).

In SSMS, you just right-click the Comp Sales cube entry and choose the Browse option. As
you can see in Figure 51.46, a multipaned, drag-and-drop interface is your view into the
data in your cube.

FIGURE 51.46 Browsing data in your cube in the SMSS data browser.

ptg

2073An OLAP Requirements Example: CompSales International
5

1

The middle pane lists all cube objects that you can drag into the data browsing pane (on
the right). The data browser uses the Pivot Table Service to access and display your cube’s
data. You can expand any of the cube hierarchy objects and see the actual member entries
that are in your cube for each level. This capability is helpful when you want to further
filter data in the browser (for example, focus on a particular SKU value or a particular
geography, such as United States or France).

The data browsing pane is easy to use. For example, say that you simply want to see all
product sales and product returns for SKUs across all geographies, for each year in the
cube. To do this, you expand the measures object until you see all the measures in the
Comp Sales cube. Then you drag Sales Units to the center of the lower portion of the data
browsing pane (into the Drop Totals or Detail Fields Here section in the lower right). You
do the same for the Sales Returns measure. Data values (totals) for these measures are
already displayed immediately. These are the total (aggregated) values for sales returns and
sales units across all products, all geographies, and all times. To see the product break-
down of these data measures, you drag the SKU object within the product dimension
object to the Drop Column Fields Here section (just above where the data measures were
dropped). You immediately see the data measure values being broken out by each product
SKU value. Now, you drag the Year Time object within the time dimension to the Drop
Row Fields Here section (just to the left of where the data measures were dropped). You
now see the data broken out by the years along the left side (rows) in the cube that
contains sales and return data for products, as shown in Figure 51.47.

FIGURE 51.47 Sales units and sales returns for all SKUs by years in the SMSS data browser.

ptg

2074 CHAPTER 51 SQL Server 2008 Analysis Services

If you want much more drill-up and drill-down visibility into your data, you could build
up a much more complicated representation in the data browser. Say that you want to see
sales units and sales returns but across the full product dimension breakouts and full time
dimension breakouts for the United States geographic region only. You also want to see all
dimension levels, totals by levels, and grand totals by dimension. You start the same way
as you did earlier and expand out the measures object until you see all the detail measures
in the Comp Sales cube. If you still have the previous example in your data browser, you
can simply locate the Clear Results icon in the data browser tab and clear the data browser
pane. Then you drag Sales Units to the center of the lower portion of the data browsing
pane (into the Drop Totals or Detail Fields Here section in the lower right). You do the
same for the Sales Returns measure. Then you drag the geography dimension to the upper
section called Select Dimensions or just highlight Select Dimensions and choose the geog-
raphy dimension. This is the dimension-level filtering capability within the data browser.
You now just select (via the drop-downs of each section within a filter specification) the
level and type of filtering you want to do for the dimension you are working with. You
can specify any number of filters within any number of dimensions. To just filter on coun-
tries within the geography dimension, you select Countries within the hierarchies list of
the geography dimension, and the operator you want is Equal, and the filter expression is
the data value that you want to filter on (the United States country value, in this case).
These are all drop-down lists that you can easily select by either clicking the entry or indi-
cating which ones to use via a check box entry. Figure 51.48 shows the fully specified Geo
Dimension filter specified.

FIGURE 51.48 Complex data browsing with full dimensions and filtering in the SMSS data
browser.

ptg

2075An OLAP Requirements Example: CompSales International
5

1

The data values you now see are only those of the United States. You now drag the
product dimension object to the Drop Column Fields Here section (just above where the
data measures were dropped). You immediately see the data measure values being broken
out by the entire product dimension (you expand the plus sign of the product hierarchy
all the way out to the SKU level). Then you drag the time dimension object to the Drop
Row Fields Here section (just to the left of where the data measures were dropped). You
can choose to view the data at any level within either the time or product hierarchies, and
you can filter on any other dimension values. You can also just add a dimension or
dimension level to the filter portion within the data browser or just drag off dimensions,
measures, or filters from the data browser if you don’t want to use them anymore. This is
very easy indeed. The cube browser shows you what your cube has in it and also illustrates
the utility of a dimensional database. Users can easily analyze data in meaningful ways.

SSAS allows you to browse individual dimension member data. You just right-click any
dimension in the left pane of SSMS (for example, the time dimension) and choose Browse.
As you can see in Figure 51.49, the dimension browser opens with All as the top node in
the dimension. You simply expand the levels to see the actual member values within this
cube dimension. Expanding each level gets you to more detailed information as you move
down the dimension hierarchy.

FIGURE 51.49 Browsing the Time dimension using SSMS.

ptg

2076 CHAPTER 51 SQL Server 2008 Analysis Services

Delivering Data to Users
SSAS provides a great deal of flexibility for building scalable OLAP solutions, but how do
you present the data to users? The client-side components deliver much of the functional-
ity of SSAS, using the same code base for the dimensional calculation engine, caching,
and query processing. You can use the Pivot Table Service to manage client/server connec-
tions, and this is the layer for user interfaces to access SSAS cubes through the OLE DB for
OLAP interface. ADO MD provides an application-level programming interface for devel-
opment of OLAP applications. Third-party tools and future versions of Microsoft Excel
(like 2007 and 2010) and other Microsoft Office products will use the Pivot Table Service
to access cubes.

The underlying Pivot Table Service shares metadata with SSAS, so a request for data on the
client causes data and metadata to be downloaded to the client. The Pivot Table Service
determines whether requests need to be sent to the server or can be satisfied at the client
with downloaded data. If a user requests sales information for the first quarter of 2008 and
then later decides to query that data for the first quarter of 2007 for comparison, only the
request for 2007 data has to go to the server to get more data. The 2008 data is cached on
the client.

Slices of data that are retrieved to the client computer can also be saved locally for analysis
when the client computer is disconnected from the network. Users can download the data
in which they are interested and analyze it offline. The Pivot Table Service can also create
simple OLAP databases by accessing OLE DB–compliant data sources.

With the ADO MD interface, developers will be able to access and manipulate objects in
an SSAS database, enabling web-based OLAP application development.

Many independent software vendors, such as Brio, Cognos, Business Objects, Micro
Strategies, and Hyperion, are working with Microsoft to leverage the rich features of these
OLAP services. They offer robust user interfaces that can access SSAS’s cubes. Versions of
Microsoft Office include the Pivot Table Service to enable built-in analysis in tools such as
Excel. It is getting easier and easier to bring OLAP to the masses.

Multidimensional Expressions
The OLE DB for OLAP specification contains MDX syntax that is used to build datasets
from cubes and is used to define cubes themselves. Developers of OLE DB OLAP providers
can map MDX syntax to SQL statements or native query languages of other OLAP servers,
depending on the storage techniques.

MDX statements build datasets by using information about cubes from which the data
will be read. This includes the number of axes to include, the dimensions on each axis
and the level of nesting, the members or member tuples and sort order of each dimension,
and the dimension members used to filter, or slice, the data. (Tuples are combinations of
dimensions such as time and product time that present multidimensional data in a two-
dimensional dataset.)

An MDX statement has four basic parts:

. Member scope information, using the WITH MEMBER clause

ptg

2077An OLAP Requirements Example: CompSales International
5

1

. Dimension, measure, and axis information in the SELECT clause

. The source cube in the FROM clause

. Dimension slicing in the WHERE clause

Expressions in an MDX statement operate on numbers, strings, members, tuples, and sets.
Numbers and strings mean the same thing here as they do in other programming contexts.
Members are the values in a dimension, and levels are groups of members. Sets are collec-
tions of tuple elements to further combine facts. If the dimension were time, a particular
year, quarter, or month would be a member, and month values would belong to the
month level. You use the dimension browser in SSAS to view members of a dimension.

The following example shows an MDX SQL expression:

WITH MEMBER [Measures].[Total Sales Units]

AS ‘Sum([Measures].[Sales Units])’

SELECT

{[Measures].[Total Sales Units]} ON COLUMNS,

{Topcount([Product_Dimension].[SKU].members,100,

[Measures].[Total Sales Units])}

ON ROWS

FROM [Comp Sales]

WHERE ([Time_Dimension].[All Time])

You can download this simple query against the Comp Sales cube from Sams Publishing at
www.samspublishing.com, and it is on the CD for this book as well. This query returns the
sums of the sales units for products for all time periods. Figure 51.50 shows the full execu-
tion of this query within a query window of SSMS. Notice that the metadata for the cube
is also made available in the center pane of SSMS, along with an MDX Functions tab that
provides all the MDX functions that can be used. This feature is very helpful for building
valid MDS queries within this environment. Also notice that the result set display area is
very specialized in order to display multidimensional results.

This simple MDX statement shows the basic parts of a working query. In this case,
measures are displayed in columns, and the product dimension members make up the
axes of this multidimensional query and are displayed in rows. The display of multiple
dimensions in rows like this is how the term tuple is used in the context of SSAS.

Much more could be said about MDX syntax, and a complete discussion of MDX could fill
its own chapter. For more information, see the OLE DB for OLAP Programmers Reference,
which is available on the Microsoft website at http://msdn2.microsoft.com/en-us/library/
ms145506.aspx. It contains detailed information about MDX expressions and grammar.

ADO MD
ADO MD is an easy-to-use access method for dimensional data via an OLE DB for OLAP
provider. You can use ADO MD in Visual Basic, Visual C++, and Visual J++. Like ADO,
ADO MD offers a rich application development environment that can be used for multi-
tier client/server and web application development.

www.samspublishing.com
http://msdn2.microsoft.com/en-us/library/ms145506.aspx
http://msdn2.microsoft.com/en-us/library/ms145506.aspx

ptg

2078 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.50 Comp Sales MDX query execution in SSMS.

You can retrieve information about a cube, or metadata, and execute MDX statements by
using ADO MD to create cellsets to return interesting data to a user. ADO MD is another
subject too broad to cover in detail in this chapter. Specifications for OLE DB for OLAP
and ADO MD are available on the Microsoft website at http://msdn2.microsoft.com/en-us/
library/ms126037.aspx.

Calculated Members (Calculations)
Remember from the Comp Sales requirements that there was an additional user need to
see the difference between sales units and sales returns (sales units minus sales returns) to
yield net sales. One approach is to use the SSAS calculated members (calculations) capabil-
ity. This creates an expression against existing measures that will be treated the same as a
measure. Basically, you need to complete the requirements for the Comp Sales cube by
adding a calculation measure to this cube for net sales units.

To create a calculation, you go back to Visual Studio and the cube designer. Then you click
the Calculations tab and create a new calculation measure called Sales Units NET with the
calculation expression of (Sales Units - Sales Returns), as shown in Figure 51.51. Many
functions are available for use that should meet your individual calculation needs.

This calculation fulfills the data measure requirements of Comp Sales. All that is left to do
is to process the cube so others can use it. The following sample MDX query uses the
newly created calculation measure:

WITH MEMBER [Measures].[Total Sales Units NET]

AS ‘Sum([Measures].[Sales Units NET])’

http://msdn2.microsoft.com/en-us/library/ms126037.aspx
http://msdn2.microsoft.com/en-us/library/ms126037.aspx

ptg

2079An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.51 A new calculation measure of Sales Units NET in the Visual Studio cube
designer.

Figure 51.52 shows this new calculation measure listed in the cube’s metadata pane. You
can see how easy it is to use in the cube data browser. You might want to check the math,
however, to make sure the calculation is correct.

Query Analysis and Optimization
In SSAS, you can look at query utilization and performance in a cube. You can look at
queries by user, frequency, and execution time to determine how to better optimize aggre-
gations. If a slow-running query is used frequently by many users, or by the CEO, it might
be a good candidate for individual tuning. A usage-based analysis capability can be used
to change aggregations based on actual live queries that the cube must service. This
adjusts aggregations based on a query to reduce response time. You start this wizard by
right-clicking the cube’s partition. Figure 51.53 shows the Usage-Based Optimization
Wizard splash page.

The Usage-Based Optimization Wizard allows you to filter queries by user, frequency of
execution, time frame, and execution time. You see a record for each query you have run
since the date you began, the number of times it was executed, and the average execution
time, in seconds. This is like a SQL trace analysis of your OLAP queries.

SELECT

{[Measures].[Total Sales Units NET]} ON COLUMNS,

{Topcount([Product_Dimension].[SKU].members,100,

[Measures].[Total Sales Units NET])}

ON ROWS

FROM [Comp Sales]

WHERE ([Time_Dimension].[All Time])

ptg

2080 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.52 Data browsing using the Sales Units NET calculation in the Visual Studio cube
designer data browser.

FIGURE 51.53 The Usage-Based Optimization Wizard.

ptg

2081An OLAP Requirements Example: CompSales International
5

1

Because aggregations already exist, the wizard asks whether you want to replace them or
add new ones. If you replace the existing aggregations, the cube is reprocessed with this
particular query in mind.

Generating a Relational Database

The examples you have worked with up to this point have been from a dimensional data-
base that uses a star or snowflake schema (the CompSales database). Very often, however,
you create cubes based on requirements only and do not have an existing data source (or
sources) to draw on at design time. After you complete your cube design, you can choose
to generate a relational schema that can be used to retain (that is, stage) the cube’s source
data or that can be a data warehouse/data mart unto itself. Figure 51.54 shows the start
of the Schema Generation Wizard for building a data warehouse/staging database from
the top down.

FIGURE 51.54 Generating a relational schema from the cube and dimension definitions.

ptg

2082 CHAPTER 51 SQL Server 2008 Analysis Services

NOTE

Designing dimensional databases is an art form and requires not only sound dimen-
sional modeling knowledge, but also knowledge of the business processes with which
you are dealing. Data warehousing has several design approaches. Regardless of
which approach you take, having a good understanding of the approach’s design tech-
niques is critical to the success of a data warehouse project. Although Microsoft pro-
vides a powerful set of tools to implement data marts, astute execution of design
methods is critical to getting the correct data—the truly business-significant business
data—to the end users.

Limitations of a Relational Database
Even using a tool such as SSAS, you face limitations when dealing with a normalized data-
base. Using a view can often solve (or mask) these issues. In some cases, however, more
complicated facts and dimensions might require denormalized tables or a dimensional
database in the storage component of the data warehouse to bring information together.
Data cleansing and transformation are also major considerations before you attempt to
present decision makers with data from OLTP systems.

Cube Perspectives

A new feature in SSAS is cube perspectives. This is essentially a way to create working
views of a complex cube that is focused on just what a particular user or group of users
need. They don’t need all the dimensions, calculations, levels, and key performance indi-
cators (KPIs) that would otherwise be visible as part of a complex SSAS cube. Therefore,
you need a method to tailor or limit a larger cube environment to be just what the users
need and nothing more—hence, the cube perspective. Figure 51.55 shows the Perspectives
tab in the cube designer. It allows you to easily customize a view (perspective), which is
what will be deployed or referenced to a target user group. In this example, you are creat-
ing a new perspective called Comp Sales wo Sales Price, which excludes the extremely
sensitive Sales Price data measure from any user given access to this perspective.

You can have any number of perspectives on a cube. Figure 51.56 shows what a cube user
sees when trying to browse (or access) cube data via a perspective.

Using perspectives is a great way to simplify the user’s life in an already-complicated
OLAP world.

KPIs

Figure 51.57 shows another new capability in SSAS: creating embedded KPIs. Just like
calculations, KPIs allow you to define thresholds, goals, status indications, and trend
expressions that become part of an OLAP cube. Each can then be graphically displayed in
a variety of ways (for example, gauges, thermometers, traffic lights, trend indications such
as up arrows, smiling faces). This is perfect for an executive dashboard or portal imple-
mentation that has its basis in an SSAS cube. You can easily access KPIs via the cube

ptg

2083An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.55 Creating cube perspectives within SSAS in the cube designer.

FIGURE 51.56 Browsing cube data via a perspective in the cube designer.

designer’s KPIs tab. What are you waiting for? It is pretty easyto create powerful KPIs with
this simple yet rich interface.

Data Mining

With SSAS, a much more robust selection of capabilities for data mining is available..

Data mining is the process of understanding potentially undiscovered characteristics or
distributions of data. Data mining can be extremely useful for OLAP database design in
that patterns or values might define different hierarchy levels or dimensions that were not

ptg

2084 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.57 Creating KPIs in the cube designer.

previously known. As you create dimensions, you can even choose a data mining model
as the basis for a dimension.

Basically, a data mining model is a reference structure that represents the grouping and
predictive analysis of relational or multidimensional data. It is composed of rules,
patterns, and other statistical information of the data that it was analyzing. These are
called cases. A case set is simply a means for viewing the physical data. Different case sets
can be constructed from the same physical data. Basically, a case is defined from a particu-
lar point of view. If the algorithm you are using supports the view, you can use mining
models to make predictions based on these findings.

Another aspect of a data mining model is using training data. This process determines the
relative importance of each attribute in a data mining model. It does this by recursively
partitioning data into smaller groups until no more splitting can occur. During this parti-
tioning process, information is gathered from the attributes used to determine the split.
Probability can be established for each categorization of data in these splits. This type of
data can be used to help determine factors about other data utilizing these probabilities.
This training data, in the form of dimensions, levels, member properties and measures, is
used to process the OLAP data mining model and further define the data mining column
structure for the case set.

In SSAS, Microsoft provides several data mining algorithms (or techniques):

. Association Rules—This algorithm builds rules that describe which items are most
likely to appear together in a transaction. The rules help predict when the presence
of one item is likely with another item (which has appeared in the same type of
transaction before).

. Clustering—This algorithm uses iterative techniques to group records from a
dataset into clusters that contain similar characteristics. This is one of the best algo-
rithms, and it can be used to find general groupings in data.

ptg

2085An OLAP Requirements Example: CompSales International
5

1

. Sequence Clustering—This algorithm is a combination of sequence analysis and
clustering, and it identifies clusters of similarly ordered events in a sequence. The
clusters can be used to predict the likely ordering of events in a sequence, based on
known characteristics.

. Decision Trees—This classification algorithm works well for predictive modeling. It
supports the prediction of both discrete and continuous attributes.

. Linear Regression—This regression algorithm works well for regression modeling.
It is a configuration variation of the Decision Trees algorithm, obtained by disabling
splits. (The whole regression formula is built in a single root node.) The algorithm
supports the prediction of continuous attributes.

. Logistic Regression—This regression algorithm works well for regression modeling.
It is a configuration variation of the Neural Network algorithm, obtained by elimi-
nating the hidden layer. This algorithm supports the prediction of both discrete and
continuous attributes.

. Naïve Bayes—This classification algorithm is quick to build, and it works well for
predictive modeling. It supports only discrete attributes, and it considers all the
input attributes to be independent, given the predictable attribute.

. Neural Network—This algorithm uses a gradient method to optimize parameters of
multilayer networks to predict multiple attributes. It can be used for classification of
discrete attributes as well as regression of continuous attributes.

. Time Series—This algorithm uses a linear regression decision tree approach to ana-
lyze time-related data, such as monthly sales data or yearly profits. The patterns it
discovers can be used to predict values for future time steps across a time horizon.

To create an OLAP data mining model, SSAS uses either an existing source OLAP cube or
an existing relational database/data warehouse, a particular data mining technique/algo-
rithm, case dimension and level, predicted entity, or, optionally, training data. The source
OLAP cube provides the information needed to create a case set for the data mining
model. You then select the data mining technique (decision tree, clustering, or one of the
others). It uses the dimension and level that you choose to establish key columns for the
case sets. The case dimension and level provide a certain orientation for the data mining
model into the cube for creating a case set. The predicted entity can be either a measure
from the source OLAP cube, a member property of the case dimension and level, or any
member of another dimension in the source OLAP cube.

NOTE

The Data Mining Wizard can also create a new dimension for a source cube and
enables users to query the data mining data model data just as they would query OLAP
data (using the SQL DMX extension or the mining structures browser).

In Visual Studio, you simply initiate the Data Mining Wizard by right-clicking the Mining
Structures entry in the Solution Explorer. You cannot create new mining structures from

ptg

2086 CHAPTER 51 SQL Server 2008 Analysis Services

SSMS. When you are past the wizard’s splash screen, you have the option of creating your
mining model from either an existing relational database (or data warehouse) or an exist-
ing OLAP cube (as shown in Figure 51.58).

You want to define a data mining model that can shed light on product (SKU) sales char-
acteristics and that will be based on the data and structure you have created so far in your
Comp Sales Unleashed cube. For this example, you choose to use the existing OLAP cube
you already have (from the existing cube method).

You must now select the data mining technique you think will help you find value in
your cube’s data. Clustering is probably the best one to start from because it finds natural
groupings of data in a multidimensional space. It is useful when you want to see general
groupings in your data, such as hot spots. You are trying to find just such things with
sales of products (for example, things that sell together or belong together). Figure 51.59
shows the data mining technique Microsoft Clustering being selected.

Now you have to identify the source cube dimension to use to build the mining structure.
As you can see in Figure 51.60, you choose Product Dimension to fit the mining inten-
tions stated earlier.

You then select the case key or point of view for the mining analysis. Figure 51.61 illus-
trates the case to be based on the product dimension and at the SKU level (that is, the
individual product level).

FIGURE 51.58 Selecting the definition method to used for the mining structure in the Data
Mining Wizard.

ptg

2087An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.59 Using clustering to identify natural groups in the Data Mining Wizard.

FIGURE 51.60 Identifying the product dimension as the basis for the mining structure in the
Data Mining Wizard.

ptg

2088 CHAPTER 51 SQL Server 2008 Analysis Services

You now specify the attributes and measures as case-level columns of the new mining
structure. Figure 51.62 shows the possible selections. You can simply choose all the data
measures for this mining structure. Then you click the Next button.

As you can see in Figure 51.63, the next few wizard dialogs allow you to specify the
mining structure column’s content and data types (use the defaults that were detected for
most items unless we specifically describe something different), identify a filtered slice to
use for the model training (you don’t need to use this now because you want the whole
cube), and finally identify the number of cases to be reserved for model testing (use a
percentage of data for testing to be about 33%).

The mining model is now specified and must be named and processed. Figure 51.64 shows
what you have named the mining structure (Product Dimension MS) and the mining
model name itself (Product Dimension MM). Also, you select the Allow Drill Through
option so you can look further into the data in the mining model after it is processed.
Then you click the Finish button.

When the Data Mining Wizard is complete, the mining structure viewer pops up, with
your mining structure case-level column’s specification (on the center left) and its correla-
tion to your cube (see Figure 51.65).

You must now process the mining structure to see what you come up with. You do this by
selecting the Mining Model toolbar option and selecting the Process option. You then see
the usual Process dialog, and you have to choose to run this (process the mining struc-
ture). After the mining structure processing completes, a quick click on the Cluster

FIGURE 51.61 Identifying the basic unit of analysis for the mining model in the Data Mining
Wizard.

ptg

2089An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.62 Specifying the measure for the mining model in the Data Mining Wizard.

FIGURE 51.63 Specifying a column’s content, slice filters, and model data training percent-
ages.

Diagram tab shows the results of the clustering analysis (see Figure 51.66). Notice that
because you selected to allow drill through, you can simply right-click any of the clusters
identified and see the data that is part of the cluster (and choose Drill Through). This
viewer clearly shows that there is some clustering of SKU values that might indicate prod-
ucts that sell together or belong together.

ptg

2090 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.64 Naming the mining model and completing the Data Mining Wizard.

FIGURE 51.65 Your new mining structure in the mining structure viewer.

If you click the Cluster Profiles tab of this viewer, you see the data value profile character-
istics that were processed (see Figure 51.67).

Figure 51.68 shows the clusters of data values of each data measure in the data mining
model. This characteristic information gives you a good idea of what the actual data
values are and how they cluster together.

ptg

2091An OLAP Requirements Example: CompSales International
5

1

FIGURE 51.66 Clustering results and drilling through to the data in the mining model viewer.

FIGURE 51.67 Cluster data profiles in the mining model viewer.

Finally, you can see the cluster node contents at the detail level by changing the mining
model viewer type to Microsoft Generic Content Tree Viewer, which is just below the
Mining Model Viewer tab on top. Figure 51.69 shows the detail contents of each model
node and its technical specification of a report format.

If you want, you can now build new cube dimensions that can help you do predictive
modeling based on the findings of the data mining structures you just processed. In this
way, you could predict sales units of one SKU and the number of naturally clustered SKUs
quite easily (based on the past data mining analysis). This type of predictive modeling is
very powerful.

ptg

2092 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.68 Cluster characteristics of the data values for each measure in the mining
model viewer.

FIGURE 51.69 The Microsoft Generic Content Tree Viewer of the cluster nodes in the mining
model viewer.

ptg

2093An OLAP Requirements Example: CompSales International
5

1

SSIS
SSIS provides a robust means to move data between sources and targets. Data can be
exported, validated, cleaned up, consolidated, transformed, and then imported into a
destination of any kind. With any OLAP/SSAS implementation, you will undoubtedly
have to transform, clean, or preprocess data in some way. You can now tap into SSIS capa-
bilities from within the SSAS platform.

You can combine multiple column values into a single calculated destination column or
divide column values from a single source column into multiple destination columns. You
might need to translate values in operational systems. For example, many OLTP systems
use product codes stored as numeric data. Few people are willing to memorize an entire
collection of product codes. An entry of 100235 for a type of shampoo in a product
dimension table is useless to a vice president of marketing who is interested in how much
of that shampoo was sold in California in the past quarter.

Cleanup and validation of data are critical to the data’s value in the data warehouse. The
old saying “garbage in, garbage out” applies. If data is missing, redundant, or inconsistent,
high-level aggregations can be inaccurate, so you should at least know that these condi-
tions exist. Perhaps data should be rejected for use in the warehouse until the source data
can be reconciled. If the shampoo of interest to the vice president is called Shamp in one
database and Shampoo in another, aggregations on either value would not produce
complete information about the product.

The SSIS packages define the steps in a transformation workflow. You can execute the
steps serially and in combinations of serially, in parallel, or conditionally. For more infor-
mation on SSIS, refer to Chapter 46, “SQLCR: Developing SQL Server Objects in .NET.”

OLAP Performance
Performance is a big emphasis of SSAS. Usage-based aggregation is at the heart of much of
what you can do to help in this area. In addition, the proactive caching mechanism in
SSAS has allowed much of what was previously a bottleneck (and a slowdown) to be
circumvented.

When designing cubes for deployment, you should consider the data scope of all the data
accesses (that is, all the OLAP queries that will ever touch the cube). You should only
build a cube that is big enough to handle these known data scopes. If you don’t have
requirements for something, you shouldn’t build it. This helps keep things a smaller, more
manageable size (that is, smaller cubes), which translates into faster overall performance
for those who use the cube.

You can also take caching to the extreme by relocating the OLAP physical storage compo-
nents on a solid-state disk device (that is, a persistent memory device). This can give you
tenfold performance gains. The price of this type of technology has been dramatically

ptg

2094 CHAPTER 51 SQL Server 2008 Analysis Services

reduced within the past year or so, and the ease of transparently applying this type of solu-
tion to OLAP is a natural fit. It affects both the OLAP data population process and the day-
to-day what-if usage by the end users. You should keep these types of surgical incisions in
mind when you face OLAP performance issues in this platform. They are easy to apply, the
gains are huge, and you quickly get a return on your investment.

MPP Data Warehouse Option from Microsoft
A few years ago, Microsoft acquired DATAllegro’s massively parallel data warehouse appli-
ance company. This basically lifted any limitations for data warehousing that SSAS or SQL
Server 2008 R2 itself had. Massively parallel means to scale horizontally on CPU and
storage to grow with your size and processing needs. There is no practical limit here. The
underlying architecture relies on standards-based technologies. Essentially, there is a sepa-
ration of storage and compute nodes that allows you to spread out your data across vast
storage (EMC storage) so that it is very shallow (easy to get to quickly across all data
storage). The compute power is also horizontally scalable and allows any query to process
data access in parallel to surface data needed by any query (and assemble it for delivery).
Figure 51.70 shows the high-level architecture of Microsoft’s DATAllegro v3 offering.

Not only is the DATAllegro v3 architecture massively parallel and fast, but the multinode
architecture also makes it highly available. If any node fails, hot spares kick in to pick up
the load. Any failed node can easily be replaced and brought online with zero processing
interruption. Moreover, multiple appliances can be combined on a common InfiniBand
backbone to create large-scale and extremely powerful multitier or hub-and-spoke data
warehouses with rapid, parallel data movement between the various appliances. Believe it
or not, there is an Ingres SQL engine at the heart of the database portion of this appliance.

Dual 4GB FC
Controller

Dual 4GB FC
Controller

Ingres

Compute
Nodes

Dual 4GB Fiber Channel

Ingres

Dual 4GB Fibre Channel

16GB
RAM

16GB
RAM

Cisco – Redundant
Infiband Network

Cisco – Redundant
Infiband Network

Storage
Nodes

Dual Fiber Channel Network

Hot
Spare

FIGURE 51.70 The DATAllegro v3 MPP architecture.

ptg

2095An OLAP Requirements Example: CompSales International
5

1

Master Data Services
Completing the business intelligence picture is a new focus on the data quality that is
needed at all tiers of data information delivery. Microsoft has been pouring an enormous
amount of effort (and money) into creating and embedding master data services
throughout its BI and transactional platforms. By using Microsoft’s Master Data Services,
organizations can align operational and analytical data across the enterprise and across
lines of business systems with a guaranteed level of data quality for most core data cate-
gories (such as customer data, product data, and other core data of the business).

Microsoft has created data stewardship capabilities complete with workflows and notifica-
tions of any business user who might be impacted by core data change. Managing hierar-
chies is also an important part of mastering data that has a natural hierarchical structure,
such as customer hierarchies (parent company to subsidiaries and so on). Each master data
change within the system is treated as a transaction; and the user, date, and time of each
change are logged, as well as pertinent audit details, such as type of change, member code,
and prior versus new value. In addition to being a very useful audit trail, the transaction
log can be used to selectively reverse changes. Customizable data quality rules create
default values, enable data validation, and trigger actions such as email notifications and
workflows. Rules can be built by IT professionals or business users directly from the stew-
ardship portal.

Microsoft is still getting the kinks out of Master Data Services, so you should look for
much maturing to come in the next few years. Other competing products that have many
years’ headstart provide this capability to companies around the globe, but Microsoft is
catching up fast.

Security and Roles

Security is straightforward in SSAS. For each database or cube, roles are identified with
varying levels of granularity for users. Roles are used when accessing the data in cubes. The
process works like this: a role is defined, and then an individual user or group who is a
member of that role is assigned that role. To create the roles you need for this data, you
right-click on the Roles entry in the Solution Explorer and select New Role. Figure 51.71
shows the creation of a database role with process database and read definition permissions.

The other tabs of the role designer allow you to further specify the controls, such as which
members you want to have this role (Membership tab), what data source access you want
(Data Sources tab), which cubes can be used (Cubes tab), what specific cell data the role
has access to (Cell Data tab), what dimensions can be accessed (Dimensions tab), what
dimensional data can be accessed (Dimension Data tab), and what mining structures are
allowed to be used (Mining Structures tab). These are additive. As you can see in Figure
51.72, you can also specify full MDX queries as part of the process of filtering what a
member and role can have access to.

ptg

2096 CHAPTER 51 SQL Server 2008 Analysis Services

FIGURE 51.71 Creating a database role and permissions in the role designer.

FIGURE 51.72 Specifying MDX-based filtering, using the role designer.

ptg

2097Summary
5

1

Summary
This chapter discusses the OLAP approach, SSAS terms, and the tools Microsoft provides to
enable OLAP cubes. It presents a mini-methodology to follow that should help you get an
OLAP project off the ground and running smoothly. These efforts are typically not simple,
and a well-trained data warehouse analyst, BI specialist, or data architect is usually worth
his or her weight in gold because of the results (and value) that can be achieved through
good OLAP cube design.

Sometimes it is difficult to engage end users and get them to use an OLAP cube success-
fully. Easy-to-use third-party tools can greatly help with this problem.

From an SSAS point of view, the ease of control of storage methods, dimension creation,
degrees of aggregation, cube partitioning, and usage-based optimization are features that
make this product a serious data warehousing tool. It is getting easier and easier to publish
OLAP data via websites or other means. SSAS is truly the land of the wizards, but having a
wizard lead you through a good OLAP cube design is critical. The wizards significantly
reduce the expense and complexity of a data warehouse or data mart OLAP solution,
enabling you to build many more much-needed solutions for your end users.

This chapter also introduces the new paths Microsoft is pursuing around massively parallel
data warehouse appliances and the integration of Master Data Services into their business
intelligence and transactional fabric to raise their levels of performance and data quality
across the board.

The next chapter, “SQL Server 2008 Integration Services,” ventures into the very robust
offering from Microsoft in regards to data enablement, manipulation, and aggregation for
not only Analysis Services, but most other production platforms that require complex data
transformations.

ptg

This page intentionally left blank

ptg

CHAPTER 52

SQL Server Integration
Services

IN THIS CHAPTER

. What’s New with SSIS666

. SSIS Basics667

. SSIS Architecture and
Concepts671

. SSIS Tools and Utilities676

. A Data Transformation
Requirement682

. Running the SSIS Wizard682

. The SSIS Designer693

. The Package Execution
Utility702

. Connection Projects in Visual
Studio716

. Change Data Capture Addition
with R2718

. Using bcp718

. Logged and Nonlogged
Operations737

As you may be aware, SQL Server 2000’s Data
Transformation Services (DTS) was completely redeployed
into and integrated with the Business Intelligence (BI)
Development Studio, Visual Studio environments, and SQL
Server Management Studio (SSMS). This chapter describes
the SQL Server Integration Services (SSIS) environment and
how SSIS addresses complex data movement and integra-
tion needs.

SSIS focuses on importing, exporting, and transforming data
from one or more data sources to one or more data targets.
This is Microsoft’s version of extraction, transformation,
and loading (ETL) on steroids. Competing ETL products
include Informatica, but Microsoft has simply bundled this
functionality together with SQL Server, thus providing more
reasons to purchase SQL Server and not have to buy any
expensive competing products. Other Microsoft solutions
exist for importing and exporting data (such as the Bulk
Copy Program, bcp), but SSIS can be used for a larger variety
of data transformation purposes, and its strength is in direct
data access and complex data transformation.

If you have existing DTS implementations (that is, DTS
packages), you can convert them to SSIS packages with little
to no effort, or you can simply execute them as is (with
some restrictions).

If you still use the Bulk Copy Program (bcp), a section at the
end of this chapter describes this legacy SQL Server capabil-
ity. bcp is still the workhorse of many production environ-
ments and cannot just be discarded every time a new
version of SQL Server comes along. We estimate that bcp
will be around for years to come.

ptg

2100 CHAPTER 52 SQL Server Integration Services

The alternatives to SSIS and bcp in the Microsoft SQL Server 2008 environment include
replication, distributed queries, BULK INSERT, and SELECT INTO/INSERT. This chapter
helps you determine how and when to use both SSIS and bcp as opposed to these other
alternatives.

What’s New with SSIS
In SQL Server 2008, Microsoft has further extended the capabilities of SSIS into a much
more comprehensive and robust data integration platform—with the emphasis on the
word platform. The following are some of the highlights of SSIS 2008:

. Continued support for SQL Server 2000 Data Transformation Services (DTS). This
includes DTS runtime, the object model that it exposes, and the dtsrun.exe
command-line utility. This support will likely be deprecated in the next full release
of SQL Server, though. There are several 64-bit restrictions with DTS.

. Extensive performance enhancements to leverage caching for lookup transforma-
tions, previously a major performance bottleneck during transformations. This also
includes sharing caches in a single package and between separate packages.

. New ADO.NET components for both source and destinations.

. New data profiling tasks and a Data Profile Viewer.

. A new Integration Services Connections Project Wizard that speeds the creation of
the connection information needed by packages.

. A new script environment called Visual Studio Tools for Applications (VSTA) envi-
ronment. VSTA supports both Microsoft Visual Basic 2008 and Visual C# 2008.

. Package upgrades from 2005 (or earlier) to 2008 package format.

. Enhanced data type handling in the SQL Server Import and Export Wizard and a few
new data types, such as new Date and Time data types.

. SQL statement enhancements that allow you to perform multiple data manipula-
tions at the same time with MERGE.

. The ability to use SQL Server 2008’s Change Data Capture technology from within
Integration Services. This one is really a big deal and has been added for R2 via
Microsoft partners.

. The ability to create debug dump files that provide information about your pack-
age’s execution.

SSIS Basics
As the world becomes ever more data oriented, much greater emphasis is being placed on
getting data from one place to another. To complicate matters, data can be stored in many
different formats, contexts, filesystems, and locations. In addition, the data often requires

ptg

2101SSIS Basics
5

2

SQL Server
2008

Data
Mart

SQL Server
2000

Master
Data Warehouse

Distributing periodic updates to
Data Marts from a “master” Data Warehouses

Data
Mart

SQL Server
2005

Data
Mart

ORACLE

SSIS

SSIS

SSIS

FIGURE 52.1 Distributing periodic updates to data marts.

significant transformation and conversion processing as it is being moved around.
Whether you are trying to move data from Excel to SQL Server, create a data mart (or data
warehouse), or distribute data to heterogeneous databases, you are essentially enabling
someone with data.

This section describes the SSIS environment and how it is addressing these needs. As
mentioned earlier, the focus is on importing, exporting, and transforming data from one
or more data sources to one or more data targets.

Common requirements of SSIS might include the following:

. Exporting data out of SQL Server tables to other applications and environments (for
example, ODBC or OLE DB data sources or via flat files)

. Importing data into SQL Server tables from other applications and environments (for
example, ODBC or OLE DB data sources or via flat files)

. Initializing data in some data replication situations, such as initial snapshots

. Aggregating data (that is, data transformation) for distribution to/from data marts or
data warehouses

. Changing the data’s context or format before importing or exporting it (that is, data
conversion)

Some typical business scenarios for SSIS might include the following:

. Enabling data marts to receive data from a master data warehouse through periodic
updates (see Figure 52.1)

ptg

2102 CHAPTER 52 SQL Server Integration Services

FIGURE 52.2 Populating a data warehouse from one or more data sources.

. Populating a master data warehouse from legacy systems (see Figure 52.2)

. Initializing heterogeneous replication subscriber tables on Oracle from a SQL Server
2008 Publisher (see Figure 52.3)

. Pulling sales data directly into SQL Server 2008 from an Access or Excel application
(see Figure 52.4)

. Exporting static time-reporting data files (that is, flat files) for distribution to remote
consultants

. Importing new orders directly or indirectly from a sales force automation or distrib-
uted sales systems

In general, you need SSIS if any of the following conditions exist:

. You need to import data directly into SQL Server from one or more ODBC data
sources, .NET and OLE DB data providers, or via flat files.

. You need to export data directly out of SQL Server to one or more ODBC data
sources, .NET and OLE DB data providers, or via flat files.

. You need to perform data conversions, data cleansing/data standardization, transfor-
mations, merges, or aggregations on data from one or more data sources for distribu-
tion to one or more data targets. You also need SSIS if you need to access the data
directly via any ODBC data source, .NET or OLE DB data providers, or via flat files.

ptg

2103SSIS Basics
5

2

FIGURE 52.3 Initializing a heterogeneous replication subscriber (such as Oracle).

FIGURE 52.4 Pulling data from other disparate applications.

ptg

2104 CHAPTER 52 SQL Server Integration Services

. Your bulk data movement doesn’t have to be faster than the speed of light.
Unfortunately, SSIS must utilize conventional connection techniques to these data
sources. It must also create intermediate buffers to hold data during the transforma-
tion steps. This usually disqualifies SSIS on the high-performance side of require-
ments (at least for large, bulk data movements with any type of data transformations
defined). However, many performance enhancements are present in SSIS and the
data providers that are now supported, which has resulted in about a 50% increase
in bulk data movement speeds. Alternative importing/exporting facilities such as bcp
offer better performance but lack the flexibility of SSIS.

The following additional SSIS data sources and destinations are supported:

. An XML source for extracting data from XML documents directly

. Full insert and updating support for SQL Server Mobile destinations

. Reading and writing to Raw data files (sources and destinations)

. Creating an in-memory ADO DB recordset via a destination

. Direct access to a number of Analysis Services object destinations (for example,
mining models, cubes, and dimensions)

. The ADO.NET DataReader source and destination for reading and writing to any
.NET framework data provider

SQL Server 2008 now supports the following additional SSIS data transformations:

. Data warehousing operations, such as the Aggregate, Pivot, Un-pivot, and Slowly
Changing Dimension transformations

. Enhanced text data mining via the Term Extraction and Term Lookup transformations

. Caching for Lookup transformations

. Enhancing data values from a lookup table via the Data Lookup and Fuzzy Lookup
transformations

. The identification of similar data rows via the Fuzzy Grouping transformation

. Multiple downstream data flow component data distribution via the Conditional
Split and Multicast transformations

. The merging and combining of data rows from multiple upstream data flow compo-
nents via the Union All, Merge, and Merge Join transformations

. Extensive copying and modifying of column data values, using the Copy Column,
Data Conversion, and Derived Column transformations

. Sample rowset extractions, using the Percentage Sampling and Row Sampling
transformations

. Sorting of data and identification of duplicate data rows via the Sort transformation

SSIS includes a set of tools and features that support managing, editing, executing, and
migrating DTS packages from earlier versions of SQL Server. You can see all available DTS

ptg

2105SSIS Architecture and Concepts
5

2

packages in SSMS (in a separate branch). You can also choose to migrate old DTS packages
(from SQL Server 2000) forward to SSIS packages (to SQL Server 2008) via the Package
Migration Wizard. It’s quite easy. If you can’t migrate your old DTS packages yet, you can
directly execute DTS packages from SSIS packages. If you need to be able to design changes
to existing DTS packages, you can either download the special DTS designer version for
SQL Server 2008 from Microsoft’s website, or just bite the bullet and migrate them
forward. We recommend migration as rapidly as is feasible.

SSIS Architecture and Concepts
You can think of SSIS as a data import/export/transformation layer in the overall system
architecture that you are deploying for at least most of your Microsoft-based applications
and a few non-Microsoft applications (see Figure 52.5). SSIS allows you to “data enable”
almost all the individual applications or systems that are part of your overall implementa-
tion, such as OLTP databases, multidimensional cubes, OLAP data warehouses, Excel files,
Access databases, flat files, other heterogeneous database sources, and even web services.
The Integration Services object model includes both native and managed APIs for doing
most SSIS work. This includes APIs for any of the SSIS tools, the command-line utilities,
and even custom applications. SSIS Designer and the Integration Services Wizard both use
the Integration Services object model. SSIS includes the integration service itself (that is,
the service that manages all SSIS packages), the Integration Services object model, the SSIS
runtime and runtime executables, and the data flow task (which has a data flow engine,
source, transformation, and destination components).

FIGURE 52.5 SSIS architecture.

ptg

2106 CHAPTER 52 SQL Server Integration Services

Microsoft uses SSIS packages to implement any data movement/transformation. Basically,
Microsoft treats SSIS packages as if they are managed code and requires that you create
Integration Services projects and deployment utilities as part of managing these SSIS pack-
ages. In addition, separate Integration Services Connection projects can now be created to
aid in connection and provider services. All in all, this is a very good approach that signif-
icantly reduces errors and allows you to go through a reasonably formal release to produc-
tion (that is, development and deployment) cycle.

SSIS packages contain a collection of connections, control flow elements, data flow
elements, event handlers, variables, and configurations. They take the form of tasks,
containers, transformations, and workflows. SSIS packages go through one or more steps
that are either executed sequentially or in parallel at package execution time. In a nutshell,
when an SSIS package is executed, it does the following:

1. Connects to any identified data source

2. Copies data (and database objects, if needed)

3. Transforms data

4. Disconnects from the data sources

5. Notifies users, processes, and even other packages of events (such as sending an
email when something is done or has errors)

The basic SSIS package consists of the following:

. SSIS packages—A package is a discrete, named collection of connections, control
flow, and data flows that implement data movement/data transformation.

. SSIS control flow and tasks—One or more tasks and containers drive what the
package does. You organize control flow based on what you want the package to do.
Tasks are the actions taken to accomplish the desired data transformation and move-
ment. A task can execute any SQL statement, send mail, bulk insert data, execute an
ActiveX script, run a Visual Studio Tool for Application script (VSTA), or launch
another package or an external program.

. SSIS containers—A container groups one or more related tasks that you want to
manage together (and reuse together).

. Workflows—Workflows are definable precedence constraints that allow you to link
two tasks, based on whether the first task executes, executes successfully, or executes
unsuccessfully. Workflow containers are the wrappers for the tasks and are the means
for the flow of control. A task can run alone, parallel to another task, or sequentially,
according to precedence constraints. Precedence constraints are of three types:

. Unconditional—It does not matter whether the preceding step failed or
succeeded.

. On success—The preceding step must have been successful for the execution
of the next step.

. On failure—This constraint returns the appropriate error.

ptg

2107SSIS Architecture and Concepts
5

2

. SSIS data flow—The data flow identifies the sources and destinations that extract
and load data; identifies the transformations that manipulate or enhance the data;
and provides the paths that link sources, transformations, and destinations.

. SSIS data flow task—A data flow task creates, orders, and runs the data flows
themselves, using a data flow engine.

. SSIS transformations—Transformations are one or more functions or operations
applied against a piece of data before the data arrives at the destination.

In SSIS, everything is pretty much a task or a collection of tasks (one or more containers,
tasks in containers), as you can see in Figure 52.6. Control flow determines the overall
execution of the package and data flows that access the data, transform it, and write it.
Precedence constraints determine the overall control flow—connecting the executables,
containers, and tasks into an ordered control flow.

SSIS also has several objects that extend package functionality:

. SSIS event handlers—These workflow tasks run in response to events raised by a
package, task, or container. This is much the same as most programming languages,
such as Java or C#. If a task (or package or container) has some issue (that is, raises
an event), the event handler can be used to handle the issue appropriately. Typical
events in data transformation processing that need to be handled with event
handlers might include connections not being established, disk space issues, and so

FIGURE 52.6 SSIS package elements.

ptg

2108 CHAPTER 52 SQL Server Integration Services

on. You can even have the event handlers write out emails or initiate other
workflows.

. SSIS configurations—These objects are used to help parameterize many of the
previously hard-bound characteristics of packages at runtime. When a package is
run, the configuration information is loaded (updating the values of the package’s
properties), and then the package is run using the new configuration values (all
without having to modify the package). SSIS configurations use the classic prop-
erty/value pair paradigm to represent the properties that are to be configurable.
Following are the varied methods of representing configuration files:

. XML configuration file—This file identifies the configuration property/value
pairs for any number of configuration values. The following sample XML
configuration file is for a package named UnleashedPackage with a property of
PKGVar:

<?xml version=”1.0”?>

<DTSConfiguration>

<DTSConfigurationHeading>

<DTSConfigurationFileInfo

GeneratedBy=”DatabaseArchitechs\PBertucci”

GeneratedFromPackageName=”UnleashedPackage”

GeneratedFromPackageID=”{3GV09721-816B-4E28-9878-0DE37A150234}”

GeneratedDate=”7/09/2009 7:12:22 AM”/>

</DTSConfigurationHeading>

<Configuration ConfiguredType=”Property”

Path=”\Package.Variables[User::PKGVar].Value”

ValueType=”Int32”>

<ConfiguredValue>0</ConfiguredValue>

</Configuration>

</DTSConfiguration>

A configuration header contains information about the configuration file. This
element includes attributes such as when the file was created and the name of
the person who generated the file. In addition, a configuration element
contains information about each configuration. This element includes attrib-
utes such as the property path and configured value of a property.

. Configuration table in SQL Server—This table stores configuration entries
for use by the packages.

. Environment variables (VARs)—These can be referenced by the package.

. Parent package VARs—These can be used by child packages.

. Entry in Registry—The Registry can also contain the configuration values.

ptg

2109SSIS Architecture and Concepts
5

2

. SSIS Logging—Logging can be done from any task or package to write out any type
of logging information desired. When a supplied logging provider is used, a package
can provide a rich runtime history. Logs are associated with packages (that is, the
reference point), but any task (or container) can write to any package’s log. In this
way, it is possible to have consolidated logs of a driver package with the full execu-
tion history of all child packages. The log providers (out of the box) write to a flat
file (text file) or to SQL Server tables. Other custom logging providers can be used,
though. You can log what you need to log—start date/time, end date/time, records
transformed, errors, and so on.

. SSIS variables—SSIS has both system variables and user-defined variables. System
variables provide runtime package object information to tasks or other packages.
This information is helpful when you want to reference these system variables to
help decide what to do next. (They can be used in expressions, scripts, and configu-
rations.) User-defined variables are really for specialized variables that are not found
as system variables and only have to be used within a package’s scope. Again, these
variables can be used in expressions, scripts, and configurations within a package.

SSIS packages can run other packages. This capability is very helpful when you want to
granularly break out common data transformations for reuse by many different higher-
level solutions (that is, higher-level packages that execute common-detail-level transforma-
tion packages).

NOTE

When an SSIS package is first created, it is given a globally unique identifier (GUID)
that is added to the package’s ID property and a name that is added to its NAME prop-
erty. After these are created, they become part of the reference mechanism for the
package itself. If you ever copy a package as the basis of a new package, you have to
rename these two properties so they are unique (that is, new GUID and new NAME prop-
erty). If you simply want to give an existing package a new NAME or ID value, you can
do so directly or with the dtutil command-line utility.

You can also create packages that can be restarted at a point of failure, including restarting
specific tasks within a package (and not all the tasks in a package). This is a super addition
to SQL Server 2008. If a package had more than one data flow task and one completed but
the others didn’t, you could restart just the data flow tasks that had not completed
without rerunning the ones that had worked fine. Long-running packages can also create
checkpoints to provide milestones from which to restart. This capability will save many
sleepless nights for the folks doing production support for data transformation processing.

ptg

2110 CHAPTER 52 SQL Server Integration Services

FIGURE 52.7 Package creation options within Visual Studio/BI Development Studio.

SSIS Tools and Utilities
SSIS includes several tools that simplify package creation, execution, and management.
These tools are available within the Visual Studio/BI Development Studio IDE (as shown
in the drop-down list in Figure 52.7) or integrated into other component-based tools (such
as SSMS, as shown in Figure 52.8).

Equally as easily, you can invoke SSIS functionality (for example, the SSIS Import and
Export Wizard) from within SSMS (see Figure 52.8).

Also, within SSMS, you can organize packages; execute packages (via the Execute Package
utility); import and export packages to and from the SQL Server msdb database, the SSIS
package store, and the filesystem (.dtsx files); and migrate DTS packages (older SQL Server
version packages).

Following are the primary working environments for creating, managing, and deploying
SSIS packages:

. Import and Export Wizard—You can use this wizard, available within Visual
Studio/BI Development Studio or from SSMS, to build packages to import, export,
and transform data or to copy database objects (see Figure 52.9). This is an easy way
to create the basic SSIS packages that you need quickly and deploy them with great
ease.

. SSIS Designer—This standard GUI is available in the Visual Studio/BI Development
Studio, as part of an SSIS project. It lets you construct/manipulate packages contain-
ing complex workflows, multiple connections to heterogeneous data sources, and

ptg

2111SSIS Tools and Utilities
5

2

FIGURE 52.8 Invoking SSIS import/export data (package creation) capability from within
SSMS.

FIGURE 52.9 The Import and Export Wizard from Visual Studio/BI Development Studio.

ptg

2112 CHAPTER 52 SQL Server Integration Services

FIGURE 52.10 The SSIS Designer IDE.

even event-driven logic (see Figure 52.10). This is the same IDE that all code devel-
opment uses in the .NET platform, making it extremely easy to start developing
right away.

. SSIS command-line utilities—A number of utilities are available within SSMS to
aid you in running and managing SSIS packages (see Figure 52.11). One example is
the Execute Package utility (which uses dtexec and dtutil command-line utilities).
If the utility accesses a package that is stored in msdb, the command prompt may
require a username and password.

. SSIS Query Builder—Query Builder provides an easy-to-use GUI for quickly devel-
oping SQL queries, testing the queries, and embedding them into the SSIS packages
that you are developing. It is sort of like a mini SQL Query Profiler. It is entirely
point-and-click oriented. Figure 52.12 shows the point at which you can invoke the
Query Builder as you add Execute SQL Task as part of an SSIS package to the SQL
Task Editor.

Figure 52.13 shows the full Query Builder interface, along with a SQL statement that
is being developed that retrieves address information from the AdventureWorks2008
Person.Address table.

. SSIS Expression Builder—You can use Expression Builder to develop the simple or
complex expressions that get used by a package (the expression property of the pack-
age configuration). These expressions are things like validating working directories
on a local machine where an SSIS package has been deployed and other complex

ptg

2113A Data Transformation Requirement
5

2

FIGURE 52.11 The Integration Services branch in SSMS.

evaluations that you want to have used by an SSIS package property. This graphical
tool enhances your ability to use these types of expressions for your SSIS packages. It
not only helps you develop the expressions, but also evaluates them to make sure
they are providing the proper results (much like what Query Builder does for SQL
statements). Figure 52.14 shows a typical expression palette of both the variables
that can have expressions defined for them and some of the functions (such as
string functions) that can be used with the expression.

Finally, after you have created SSIS packages, you need to execute them via command-line
execution, within SQL programs, or via other .NET–supported programming languages.
You can easily do this by using the dtexec package execution utility. You manage packages
by using the dtutil utility.

A Data Transformation Requirement
Let’s consider a true-life data export requirement that is best served by using SSIS. The
requirement is for a small business intelligence data mart (on SQL Server 2008) to be spun
off each week from the main OLTP database (also on SQL Server 2008) that addresses a
product sales manager’s need to see the total year-to-date business that a customer has
generated. This data mart is merely a standard SQL Server database and tables that have
been transformed (that is, aggregated) for a targeted purpose. As an option, the manager

ptg

2114 CHAPTER 52 SQL Server Integration Services

FIGURE 52.12 Invoking the Query Builder interface from the SQL Task Editor dialog.

FIGURE 52.13 The Query Builder GUI for developing SQL queries.

ptg

2115Running the SSIS Wizard
5

2

FIGURE 52.14 The SSIS Expression Builder GUI for developing expressions.

would also like to spin off an Excel version of this (or at least a comma-delimited .csv file
for Excel), which will be distributed via email to all salespeople in the region. This overall
requirement has been named “Hot Customers Plus” to indicate the emphasis on
customers who are generating significant business for the company (and they will be
customers who have made greater than $5,000 worth of orders). The offloaded data mart
is on a separate machine from the critical OLTP system for all the right reasons; no report-
ing or ad hoc queries are done against the OLTP system. This process must be repeated on
a weekly basis as a total refresh (see Figure 52.15). We use the AdventureWorks2008 data-
base for this example.

Essentially, order data from the OLTP database (contained in the Customer, Product,
Store, SalesTerritory, SalesOrderHeader, and SalesOrderDetails tables) must be aggre-
gated for every order for each customer. In addition, the total amount to be stored in the
YTDTotalSales column in the data mart has to be extended out to reflect the summary of
each product for each customer. The manager is also interested only in customers who are
ordering products that total $5,000 or more. Although the requirements are many, SSIS
should be able to handle all this with no problem.

So that you can get a good feel for the two main SSIS tool capabilities, this chapter takes
you through generating the solution to this requirement using the SSIS Wizard first, and
then we walk through the same solution using SSIS Designer.

Running the SSIS Wizard
The SSIS Wizard is a streamlined interface solely used to generate SSIS packages for import-
ing or exporting data. It is really quite powerful and provides an easy but sophisticated way
to move data from or to any OLE DB, ODBC, or text source to another OLE DB, ODBC, or

ptg

2116 CHAPTER 52 SQL Server Integration Services

FIGURE 52.15 Creating a data mart and a comma-delimited flat file from an OLTP database,
using SSIS.

text source. You can also define simple or complex data transformations using the many
options provided by the wizard. The wizard can also copy database schema, but the trans-
fer of all other database objects, such as indexes, constraints, users, permissions, stored
procedures, and so on, is supported only between SQL Server 7.0 and higher SQL Servers.

The SSIS Import/Export Wizard takes the user through five basic steps for both imports
and exports:

1. Select/identify the data source (source).

2. Select/identify the destination (target).

3. Select the data copy and transformation type. The options are to copy data with or
without the schema, to move data based on a query, or to transfer objects and data
between data stores.

4. Define any data transformations, if required.

5. Save, schedule, and execute the package.

Let’s walk through a quick wizard sequence and create a package that fulfills the “Hot
Customers Plus” data movement/transformation requirement. You will be pulling and
transforming data from the AdventureWorks2008 database and pushing it to another data-
base on the same server instance (SQL08DEV01 in this example). So, first, you need to create

ptg

2117Running the SSIS Wizard
5

2

a database named UnleashedDataMart as the target database to hold the new
HotCustomersPlus table you will be creating with SSIS. Remember that you use the SSIS
Wizard for simple package creations (or data transfers). Nothing fancy here. To get started,
here’s what you do:

1. Fire up the SSIS Wizard from within SSMS by either right-clicking the database
branch for the database from which you will be exporting data or right-clicking in
the summary pane for that same database (as shown in Figure 52.16). If you select
the Tasks option, you are given the option of either importing or exporting data.
You want to export data from this database, so choose the Export Data option.

2. Work through the steps of the SSIS Wizard. The initial step is identifying the source
for the data. In this example, you need to choose a valid SQL Server and source data-
base (in this example, DBARCH-LT2\SQL08DE01 for the server and AdventureWorks2008
for the database). In addition, you must provide the appropriate access credentials
(Windows authentication or SQL Server authentication) for this source SQL Server.
You have a few options of exactly what access mechanism to use (to this data
source). Choose the SQL Native Client connection method (see Figure 52.17).

FIGURE 52.16 Invoking the Export Data Wizard.

ptg

2118 CHAPTER 52 SQL Server Integration Services

FIGURE 52.17 Identifying the SSIS source database and server locations.

3. Next is the data “destination” specification (the target). We had already created a
new database (called UnleashedDataMart) for this purpose before we started and use
that for this example. Our example uses the same SQL Server instance of DBARCH-
LT2\SQL08DE01, using the connection method to this SQL Server instance of SQL
Native Client, and the previously mentioned database of UnleashedDataMart (as
shown in Figure 52.18). We also use Windows Authentication. You are finished with
this window, so click Next.

4. The next step in the wizard asks if you will be pulling source data from one or more
tables (or views) or if you will be specifying a SQL query to pull data from the source.
For this example, select the Write a Query to Specify the Data to Transfer option
because this approach best fits the requirement specified earlier (see Figure 52.19).

5. In the next step in the wizard, create your custom SQL statement that will be used to
select data from the source database. We have provided a fairly complex SQL query
that selects (and joins) data from six tables in the AdventureWorks2008 database to
fulfill the data requirement for this example. This SQL Statement is available on this
book’s CD. In this step of the wizard, enter the following query:

SELECT a.CustomerID,

e.name as CustomerName,

a.CustomerType,

a.TerritoryID,

d.name as TerritoryName,

c.ProductID,

ptg

2119Running the SSIS Wizard
5

2

FIGURE 52.18 Identifying the SSIS destination database and server locations.

FIGURE 52.19 Specifying to use tables or a query for data transfer from the data source.

ptg

2120 CHAPTER 52 SQL Server Integration Services

f.name as ProductName,

sum(c.LineTotal) as YTDSalesTotal

FROM

[sales].[Customer] a

INNER JOIN [sales].[SalesOrderHeader] b

ON a.customerid = b.customerid

INNER JOIN [sales].[SalesOrderDetail] c

ON b.SalesOrderID = c.SalesOrderID

INNER JOIN [sales].[SalesTerritory] d

ON a.TerritoryID = d.TerritoryID

INNER JOIN [sales].[Store] e

ON a.customerid = e.customerid

INNER JOIN [Production].[Product] f

ON c.productID = f.ProductID

WHERE b.orderdate >= ‘2004-01-01 00:00:00.000’

GROUP BY a.customerID,

e.name,

a.CustomerType,

a.TerritoryID,

d.name,

c.ProductID,

f.name

HAVING sum(c.LineTotal) > 5000

ORDER BY d.name,

e.name

In this window, you can select a query from a file by clicking the Browse button to
search for this file, or you can simply start coding directly in the window. You can
click the Parse button to guarantee that the SQL statement has valid syntax and
form (see Figure 52.20). You can test it (preview the data) in the next wizard step.

However, if you chose to copy data directly from the database tables (and not use a
SQL query), you would be provided a list of tables and views from the source data-
base and would be able to map one or more of these tables to tables on the destina-
tion database. Figure 52.21 shows how this Select Source Tables and Views window
would look.

6. Rename the destination table by changing [dbo].[Query] to
[UnleashedDataMart].[dbo].[HotCustomersPlus] (see Figure 52.22). All
subsequent references to this destination target will be what you want.

7. Click the Preview button on this dialog to actually execute the SQL query specified
in step 5. Figure 52.23 shows the Preview Data results of the custom SQL query.
Close this data preview window when you are finished reviewing the data results.

8. Click the Edit Mappings button to see the details of the column-level mappings
being defined. At this point, you can further subset the columns, change data types,
use precision or scale change, and/or not have a column mapped during the data
transformation. As you can see in Figure 52.24, the Source and Destination columns

ptg

2121Running the SSIS Wizard
5

2

FIGURE 52.20 Providing a SQL query to select data from a data source.

FIGURE 52.21 Mapping source tables and views to a destination.

ptg

2122 CHAPTER 52 SQL Server Integration Services

FIGURE 52.22 Source query mapping to a destination.

FIGURE 52.23 Previewing the data from a SQL query.

are side by side, and when you click a column name, you can adjust what you want
to occur (such as ignore or map to the column). In addition, at the object level, you
can have the table created at the destination, have it truncate the data in an existing
table at the destination, or append data to existing data at the destination. For this
example, choose to completely drop and re-create the destination table each time.
You are basically done creating the logic and data mappings for this simple data
transformation.

ptg

2123Running the SSIS Wizard
5

2

9. If you want, click the Edit SQL button in the Column Mappings dialog. A CREATE
TABLE SQL statement appears, and you can modify it if you want (see Figure 52.25).
You don’t need to do any further changes at this time, however.

10. In the Save and Run Package dialog that appears, choose Run Immediately and Save
SSIS Package. Save the SSIS package in SQL Server in the msdb SQL Server database

FIGURE 52.24 Column Mappings options.

FIGURE 52.25 Manually customizing the default CREATE TABLE statement.

ptg

2124 CHAPTER 52 SQL Server Integration Services

FIGURE 52.26 Options for executing and saving SSIS packages.

(see Figure 52.26). It is also possible to save the SSIS package in a structured storage
file at the filesystem level (in a .dtsx file).

11. In the Save SSIS Package dialog, you specify the name of the package, description of
the package, and location where the package is to be stored. For this example, specify
the name “HotCustomersPlus” for the SSIS package, as shown in Figure 52.27.

12. When the SSIS Wizard displays the Complete the Wizard dialog, summarizing all the
actions to be taken, carefully review the list and then click Finish when you are
ready to proceed. After you click Finish, the wizard’s execution console appears, as
shown in Figure 52.28. This console shows all the steps taken, the status of these
steps, and informational detail, as required. In Figure 52.28 note the Copying to

[Unleashed].[dbo].[HotCustomersPlus] table message that 943 rows were trans-
ferred. There is an Error in the step above the row copy that refers to the Drop of the
target table not being found. This was expected since the table never existed before,
this was the first time it would have been created. Subsequent runs will not have this
error. Following this particular “Copying” step are the simple post execute and
cleanup actions for the package.

If you would like, you can also query the system catalog table that contains the metadata
for packages. In this case, the system table [msdb].[dbo].[sysssispackages] contains this
metadata for SSIS packages starting with SQL Server 2005, and going forward. The follow-
ing simple SQL query shows the metadata entry for the package you just created:

ptg

2125Running the SSIS Wizard
5

2

FIGURE 52.27 Saving a package for reuse.

FIGURE 52.28 SSIS package initialization, saving, and execution.

ptg

2126 CHAPTER 52 SQL Server Integration Services

SELECT * FROM [msdb].[dbo].[sysssispackages]

The results look like this:

Name ID Description Datetime

HotCustomersPlus 025EBC25... Weekly datamart updates... 2009-11-01 ...

Figure 52.29 shows the execution tasks for doing straight table copying (transferring)
using SSIS packages of the tables to create a quick-and-dirty (refreshable) data mart. This
method of spinning off data quickly is very useful, and it fits our requirements.

The SSIS Designer
The SSIS Designer is extremely easy to use and gives a user the flexibility of editing and
manipulating any of the package properties in any order needed, as opposed to the strict
sequential order of the SSIS Wizard. After you have mastered all the package concepts, you
will find that you will be spending most of your time using the SSIS Designer instead of
the wizard.

Because you have already created an SSIS package using the wizard, you can just open a
version of this package (which you stored in the filesystem as a .dtsx file) with the SSIS
Designer to see some of the SSIS Designer’s capabilities (see Figure 52.30). You simply
locate a .dtsx package file (such as HotCustomersPlus.dtsx) using the File Open option
within (BI) Development Studio/Visual Studio. We have supplied one for you on the CD
included with this book if you want to use this one.

FIGURE 52.29 An SSIS package straight table copy/transfer example.

ptg

2127The SSIS Designer
5

2

As you can see with the SSIS Designer, you are within the common Visual Studio IDE envi-
ronment, which is used for any type of managed code. SSIS package creation is now just
another option of a code development project. The SSIS Designer includes a main designer
pane, a palette of toolbox icons to the left, an error pane on the bottom, the Solution
Explorer to the right, and Properties pane in the bottom right. The Connection Manager
sits directly below the designer pane, and there are four basic tabs in the designer pane for
different purposes: the Control Flow pane is for overall task, control of flow, and
constraint specification; the Data Flow pane is for generating and manipulating the data
mapping and transformation itself; the Event Handlers pane is for defining what error
handling needs to be part of this package; and the Package Explorer pane is for an overall
view of the elements of the package.

The SSIS Designer is truly a point, click, and drag working environment. For anything in
the workspace, you simply click the icon, such as DestinationConnectionOLEDB (in the
Connection Managers pane) or the Preparation SQL Task icon in the Control Flow pane to
see its properties, or you click the solid line between the Preparation SQL Task and Data
Flow Task boxes to see the task constraints and workflow defined for the package. If you
haven’t created the HotCustomersPlus SSIS package, you should do so now with the
wizard and save it to the filesystem as well (as a .dtsx file). You use it in the next example.

At this point, you need to fire up Visual Studio 2008 or the BI Development Studio envi-
ronment. Either way, the same IDE is started. The SSIS Designer is initiated within this
IDE. When you have successfully started the Visual Studio 2008 IDE environment, you
can easily open the SSIS package you just created and use it to get familiar with the SSIS
Designer. Simply choose File, Open in Visual Studio 2008 and locate the
HotCustomersPlus.dtsx SSIS package you created earlier (see Figure 52.31). You are about
to modify this SSIS package to more fully support the HotCustomersPlus data mart and
Excel comma-delimited flat file creation requirements because the wizard could not
completely do that.

FIGURE 52.30 The SSIS Designer: opening the HotCustomersPlus.dtsx package.

ptg

2128 CHAPTER 52 SQL Server Integration Services

When you open this package, you enter Visual Studio’s development environment, where
you can use the SSIS Designer capabilities. You will be using the SSIS Toolbox to the left to
add functionality to this small SSIS package so that it will completely fulfill the data mart
requirements outlined earlier. If you look back at Figure 52.30, you see this simple SSIS
package within the SSIS Designer. This is what you should have as well. Now, you can
modify any existing tasks or add others to this SSIS package. If you recall, you originally
set up this package to create a new destination table (on the other SQL Server instance) as
the first step. Because you already executed this once, that table now exists
(HotCustomersPlus on the destination SQL Server instance). Therefore, you need to
change this first step to truncate the destination table instead of re-creating it each time.
In addition, you need to add another task to this package that will spin off newly popu-
lated data (from the destination table) into an Excel comma-delimited flat file that can be
easily distributed to the sales team. As you change this package, you also re-label the tasks
to be more reflective of what they are doing (and not use the default task naming that the
wizard used).

The sales team is waiting, so follow these steps:

1. You don’t need the Drop Table(s) SQL Task 1 step because you will be utilizing the
existing table created from the wizard. So, first just delete this step. You can use a
truncate table approach to clear the existing table out before repopulating it each
time the package is run. Simply right-click on the Drop Table(s) SQL Task 1 box and
choose Delete. Confirm you want to delete it.

FIGURE 52.31 Opening the HotCustomersPlus.dtsx package.

ptg

2129The SSIS Designer
5

2

2. Right-click on the Preparation SQL Task and choose Edit. The Execute SQL Task
editor comes up, and in it you can see all aspects of this SQL task. Click the SQL
statement property within this window (where you see the CREATE TABLE statement)
and then click the ... icon to the right of the CREATE TABLE statement. This opens an
editor window that contains the full SQL statement. Now, change this CREATE TABLE
statement to a TRUNCATE TABLE statement for the same table on the destination SQL
Server instance:

TRUNCATE TABLE [UnleashedDataMart].[dbo].[HotCustomersPlus]

GO

This statement is clearly shown in Figure 52.32. After updating the SQL statement to
a TRUNCATE, change the BypassPrepare True/False flag to False. Then click OK and
click Parse Query to make sure the SQL statement is valid. You can now rename this
task to something more appropriate by just clicking the Name property of this task
and changing it to something like Clear out all rows in Destination Table. If
all is well, click OK to exit this window. Now this task clears out the destination
table before it repopulates it with new data instead of re-creating the destination
table over and over.

3. Rename the existing Data Flow task that pulls data out of the source SQL Server
tables via a SELECT statement and populates the destination table. To do so, click this
current data flow task and either right-click and choose Edit or just click the Data
Flow tab in the IDE. You now see the multiple steps within this data flow. Locate the

FIGURE 52.32 Modifying the Execute SQL Task from a CREATE TABLE statement to a
TRUNCATE TABLE statement.

ptg

2130 CHAPTER 52 SQL Server Integration Services

Name property of this data flow task and rename it from Data Flow Task to Extract

from Source Tables, Populate to Destination table. Click the first step of the
data flow (which has the name property Source – Query) and rename it Select
orders from AdventureWorks2008. Now, click on the destination task (Destination
– HotCustomersPlus) and rename it Populate Destination Table –
HotCustomersPlus, as shown in Figure 52.33.

4. Add a new data flow task that will read the sales order data from the destination
table being populated from the source tables and then write out an Excel flat file
with this new data. From the Control Flow tab of this SSIS package, drag a new data
flow task (from the Toolbox on the left) out to the Control Flow designer pane and
then modify its name property to be Read from Destination table, Populate
Excel flat file, as shown in Figure 52.34.

5. Click the Data Flow tab, and you are in the Data Flow designer pane. Nothing is
there yet (the Data Flow design space is empty). Also note that the Toolbox entries
change when you click this tab (they are now all the data flow task items). Drag an
OLE DB Source item from the Toolbox over to the Data Flow designer pane. You will
use this to get the data from the destination table. Rename this Data Flow step
something like Pull data from Destination Table and then right-click this new
Data Flow source task and choose Edit. This puts you in the OLE DB Source Editor,
where you can identify which connection manager to use
(DestinationConnectionOLEDB, in this example) and what table you want to get data
from (HotCustomersPlus table). You want the whole table, so specify the Table or
View option for the access mode (see Figure 52.35). Click the Preview button at the

FIGURE 52.33 Modifying the data flow task within the SSIS package.

ptg

2131The SSIS Designer
5

2

FIGURE 52.34 Creating a new data flow task to write data out to an Excel flat file.

bottom of this editor to verify that you will get all data from the destination table.
Clicking OK returns you to the Data Flow designer pane.

6. Back in the Data Flow designer pane, scroll down in the Toolbox to the Data Flow
Destinations portion and locate the Flat File Destinations item. Drag this over

FIGURE 52.35 Specifying the Source Data Flow items for a new data flow task.

ptg

2132 CHAPTER 52 SQL Server Integration Services

to the Data Flow designer pane and rename it something like Write data to

Excel Flat file.

7. Before you go any further, you need to connect the source data flow task (and its
data output) to this new Excel flat file destination. You can easily do this by just
clicking the source data flow task’s outbound arrow (that is just below the box and is
green) and dragging it to the new Excel flat file destination box. A full arrow is
redrawn that connects these two data flow tasks (as you can see in Figure 52.36).

8. Right-click this new data flow task item (Excel Flat file Destination) and choose Edit.
This again puts you in an editor where you can specify the flat file destination file
properties you want. This starts with identifying the connection manager and the
flat file to be used. Click New here and choose the Delimited format of the destina-
tion flat file. Now, specify a location and filename for the destination flatfile
(HotCustomersPlus.csv). Figure 52.37 shows this complete flat file destination speci-
fication. Click the Preview button to make sure this data will be retrieved properly
(column names appear across the top of the preview dialog; because the file is
empty, no data shows).

You can also click the Mappings option in the Flat File Destination Editor dialog. As
you can see in Figure 52.38, each of the columns in the source table (the
HotCustomersPlus table) will be mapped, one to one, to the flat file columns with
the same names.

9. Return to the Control Flow pane of the SSIS package and connect the new data flow
task to the prior one. You do this by clicking the original data flow task and grab-
bing its control of flow arrow beneath the box and dragging it to the new data flow

FIGURE 52.36 Connecting the data source to the data destination for the new data flow task.

ptg

2133The SSIS Designer
5

2

FIGURE 52.37 Specifying the flat file destination data flow items for a new data flow task.

FIGURE 52.38 Source and destination column mappings.

task you just created. Accept the default to execute the task on success of the prior
task, as shown in Figure 52.39. Note that the Flat File Destination connection
manager now appears under the connection manager pane, and you should have
zero errors in the error list. At this point, save the package by clicking the disk icon
or selecting File, Save.

ptg

2134 CHAPTER 52 SQL Server Integration Services

10. To execute the package, double-click the .dtsx file, which automatically invokes the
package execution utility. Choose Execute, and the package executes and shows all
results in the execution console, as shown in Figure 52.40. That’s it: you have popu-
lated the data mart and created data in an flat file for distribution to the sales team.

FIGURE 52.39 Control of flow between the old data flow and new data flow tasks.

FIGURE 52.40 Executing the SSIS package.

ptg

2135The Package Execution Utility
5

2

NOTE

You could also execute this new package by using the dtexec utility at a command
prompt:

C:> dtexec /FILE “C:\HotCustomerPlus.dtsx”

The Package Execution Utility
The dtsrun utility in SQL Server 2000 is no longer used within SQL Server 2008. It has
been taken over by the dtexec utility, which is bigger and better and has more options
and values to serve your every SSIS package execution need. Before you begin to use the
dtexec utility, you should execute it at a command prompt with the help option set only
and pipe the results into a text file:

c:> dtexec /? > dtexec.txt

You will quickly see all the main options and how similar this is to dtsrun (in SQL Server
2000). Some dtsrun command-line options have direct dtexec equivalents, such as the
options for providing a server name or package name or for setting the value of a variable.
Other dtsrun command-line options don’t have direct dtexec equivalents. In addition,
some dtexec command-line options support features in SSIS, such as the options to pass
in connection strings and manage checkpoints.

You can create new command-line dtexec executions visually with the assistance of the
Package Execution utility, which you open through dtexecui. This GUI displays all the
available options and ensures the use of the correct syntax (see Figure 52.41). You start it
up from the command prompt:

c:> dtexecui

Using this Package Execution utility is really the best way to create new command-line
executions for SSIS packages and to run them easily. Figure 52.42 shows the Package
Execution Progress console during a package execution. You can choose to stop the execu-
tion from here.

When you double-click any filesystem-stored SSIS package (that is, .dtsx file), you are
always placed in this dtexecui environment (just as you automatically start up Microsoft
Word when you double-click a Word document).

The dtexec Utility

You use the dtexec command-line utility to configure and execute SSIS packages. The
dtexec utility provides access to all the package configuration and execution features, such
as connections, properties, variables, logging, and progress indicators. The dtexec utility
lets you load packages from three sources:

. A Microsoft SQL Server database

. The SSIS service (package store)

ptg

2136 CHAPTER 52 SQL Server Integration Services

FIGURE 52.41 The user interface for executing and configuring SSIS packages.

FIGURE 52.42 The Package Execution Progress console in the Execute Package utility.

. The filesystem itself

The dtexec utility proceeds through four phases as it executes:

1. Command sourcing phase—The command prompt reads the list of options and
arguments specified. All subsequent phases are skipped if a /? or /H[ELP] option is
encountered.

ptg

2137The Package Execution Utility
5

2

2. Package-loading phase—The package specified by the /SQL, /FILE, or /DTS option is
loaded.

3. Configuration phase—These options are processed in the following order: process
options that set package flags, variables, and properties; process options that verify
the package version and build; and process options that configure the runtime
behavior of the utility, such as reporting.

4. Validation and execution phase—The package is run or validated without running
if the /VALIDATE option was specified.

When a package runs, dtexec can return an exit code. The exit code is used to populate
the ERRORLEVEL variable—the value of which can then be tested in conditional statements
or branching logic within an operating system batch file. The dtexec utility can set the
following exit code values:

Running Packages

The dtexec options are additive. Depending on what you are trying to do, you are able to
string one or more options and their values together in the following form:

dtexec /option [value] [/option [value]] ...

To show available options for dtexec, you use ’/?’ or ’/H’ or ’/Help’. Alternatively, you
can see the details for a particular option by using the available options indicator followed
by the option name (’/? [option name]). This invokes SQL Server Books online for that
particular option. Note that a dash (-) may be substituted for / in this command.

The dtexec package execution options include the following:

. /~CheckF[ile] filespec—This option sets the CheckpointFileName property on the
package to the path and file specified in filespec. This file is used when the
package restarts.

. /~CheckP[ointing]{on\off}—The value on specifies that a failed package is to be
rerun. When the failed package is rerun, the runtime engine uses the checkpoint file
to restart the package from the point of failure. The default value is on if the option
is declared without a value. Package execution fails if the value is set to on and the
checkpoint file cannot be found. If this option is not specified, the value set in the
package is retained.

Exit Code Value Description

0 Successful package execution.

1 Package execution failure.

3 User-canceled package execution.

4 Package could not be found.

5 Package could not be loaded.

6 Utility encountered an internal error.

ptg

2138 CHAPTER 52 SQL Server Integration Services

NOTE

Using the /CheckPointing on option of dtexec is equivalent to setting the
SaveCheckpoints property of the package to True and the CheckpointUsage

property to Always.

. /~Com[mandFile] filespec—This option specifies that during the command sourc-
ing phase of the utility, the file specified in filespec is opened, and options from
the file are read until the EOF is found in the file. filespec is a text file that contains
additional dtexec command options. The filespec argument specifies the filename
and path of the command file to associate with the execution of the package.

. /~Conf[igFile] filespec—This option specifies a configuration file to extract
values from. Using this option, you can set a runtime configuration that differs from
the configuration specified for the package at design time.

. /~Conn[ection] id_or_name;connection_string [[;id_or_name;connection_

string]...]—This option specifies the specific connection manager name or GUID
and the specific connection string to use. This option requires that both parameters
be specified.

. /~Cons[oleLog] [[displayoptions];[list_options;src_name_or_guid]...]—This
option displays specified log entries to the console during package execution.

The displayoptions values are N (name), C (computer), O (operator), S (source
name), G (source GUID), X (execution GUID), M (message), and T (time start and end).

One list_options value is I, which specifies the inclusion list. With this value set,
only the source names or GUIDs that are specified are logged. The value E specifies
the exclusion list. With this value set, the source names or GUIDs that are specified
are not logged. The src_name_or_guid parameter specified for inclusion or exclusion
is an event name, a source name, or a source GUID.

. /~D¥ package_path—This option is used to load a package from the SSIS package
store. The package_path argument specifies the relative path of the SSIS package,
starting at the root of the SSIS package store, and includes the name of the SSIS
package. The /DTS option cannot be used together with the /File or /SQL option.

. /~De[crypt] password—This option provides the decryption password used when
you load a package with password encryption.

. /~F[ile]filespec—This option is used to load a package saved at the filesystem
level. The filespec argument specifies the path and filename of the package.

. /~L[ogger]classid_orprogid;configstring—This option associates one or more log
providers with the execution of an SSIS package. The classid_orprogid parameter
specifies the log provider and can be specified as a class GUID. configstring is the
string used to configure the log provider.

Following are the available log providers:

ptg

2139The Package Execution Utility
5

2

Text file:

ProgID: DTS.LogProviderTextFile.1

ClassID: {59B2C6A5-663F-4C20-8863-C83F9B72E2EB}

SQL Server Profiler:

ProgID: DTS.LogProviderSQLProfiler.1

ClassID: {5C0B8D21-E9AA-462E-BA34-30FF5F7A42A1}

SQL Server:

ProgID: DTS.LogProviderSQLServer.1

ClassID: {6AA833A1-E4B2-4431-831B-DE695049DC61}

Windows Event Log:

ProgID: DTS.LogProviderEventLog.1

ClassID: {97634F75-1DC7-4F1F-8A4C-DAF0E13AAA22}

XML File:

ProgID: DTS.LogProviderXMLFile.1

ClassID: {AFED6884-619C-484F-9A09-F42D56E1A7EA}

. /~M[axConcurrent] concurrent_executables—This option is used to identify the
number of executable files the package can run concurrently. The value specified
must be either a non-negative integer or –1. With a value of –1, SSIS allows a
maximum number of concurrently running executables equal to the total number of
processors on the computer executing the package, plus two.

. /~P[assword] password—This option is used together with the /User option to
retrieve the package from SQL Server. If the /Password option is omitted and the
/User option is used, a blank password is used.

. /~Rem comment—This option creates a comment on the command prompt or in
command files. The comment is a string that must be enclosed in quotation marks,
and it must contain no whitespace.

. /~Rep[orting] level [;event_guid_or_name[;event_guid_or_name[...]]—This
option identifies what types of messages to report. Available reporting option levels
are N (no reporting), E (errors are reported), W (warnings are reported), I (informa-
tional messages are reported), C (custom events are reported), D (data flow task events
are reported), P (progress is reported), and V (verbose reporting; all details of each
type). If the /Reporting option is not specified, the default level is E, W, and P.

. /~Res[tart] {deny | force | ifPossible}—This option enables you to set a new
value for the CheckpointUsage property on the package. The possible values are Deny
(sets the CheckpointUsage property to DTSCU_NEVER), Force (sets the
CheckpointUsage property to DTSCU_ALWAYS), and ifPossible (sets the
CheckpointUsage property to DTSCU_IFEXISTS).

. /~Set propertyPath;value—This option overrides the configuration of a variable,
property, container, log provider, Foreach enumerator, or connection within a
package. When this option is used, /SET changes the propertyPath argument to the
value specified. You can specify more than one /SET option at a time.

ptg

2140 CHAPTER 52 SQL Server Integration Services

. /~Ser[ver] server—This option identifies the name of the server from which to
retrieve the package. If you do not specify the /Server option, the package execu-
tion is attempted against the local server.

. /~SQ[L] package_path—This option is used to load a package stored in SQL Server
(in the msdb database).

. /~Su[m]—This option displays the incremental counter that contains the number of
rows that will be received by the next package component.

. /~U[ser] user_name—This option identifies the SQL Server user ID needed to
retrieve the package.

. /~Va[lidate]—This option is used to complete the validation phase of package
execution only. The package is not executed.

. /~VerifyB[uild] major[;minor[;build]]—This option is a verification of the build
number of a package against the build numbers specified during the verification
phase in the major, minor, and build arguments. If a mismatch occurs, the package
does not execute. These values are long integers.

. /~VerifyP[ackageID] packageID—This option verifies the GUID of the package to
be executed by comparing it to the value specified in the package_id argument.

. /~VerifyS[igned]—If specified, this option causes the package to fail if the package
is not signed.

. /~VerifyV[ersionID] versioned—This option verifies the version GUID of a
package to be executed by comparing it to the value specified in the version_id
argument during the package validation phase.

. /~W[arnAsError]—This option cause the package to consider a warning as an error.
In other words, the package fails if a warning occurs during validation. If no warn-
ings occur during validation and the /Validate option is not specified, the package
is executed.

Running Package Examples

To execute an SSIS package saved to SQL Server using Windows authentication, you use
the following code:

dtexec /SQL UnleashedPackage1SQL /SER DBARCH-LT2\SQL08DE01

To execute an SSIS package saved to the package store (on the filesystem), you use the
following code:

dtexec /DTS “\File System\UnleashedPackage99PS”

To execute an SSIS package saved in the filesystem, you use the following code:

C:> dtexec /FILE “C:\HotCustomerPlus.dtsx”

/MAXCONCURRENT “ -1 “ /CHECKPOINTING OFF /REPORTING EWCDI

ptg

2141The Package Execution Utility
5

2

Figure 52.43 shows the command prompt and subsequent execution of the
HotCustomersPlus.dtsx SSIS package. Now, the package can be set up for regular batch
execution using SQL Agent or any scheduling software.

To execute an SSIS package saved in the filesystem and specify logging options, you use
the following code:

C:> dtexec /FILE “C:\HotCustomerPlus.dtsx”

/l “DTS.LogProviderTextFile;c:\log.txt”

To execute a package that uses Windows authentication and is saved to the default local
instance of SQL Server, and to verify the version before it is executed, you use the
following code:

dtexec /sq UnleashedPackage1 /verifyv {b399e360-38c5-11c5-99x1-ae62-08002b2b79ef}

The dtutil Utility

You use the dtutil command-line utility to copy, move, delete, or verify the existence of a
package. These actions can be performed on any SSIS package, regardless of whether it is
stored in a Microsoft SQL Server database, the SSIS package store, or at the filesystem.

The dtutil options are additive. Depending on what you are trying to do, you string one
or more options and their values together in the following form:

dtutil /option [value] [/option [value]] ...

To show available options for dtutil, you use ’/?’ or ’/H’ or ’/Help’, as follows:.

c:> dtutil /?

Note that a dash (-) may be substituted for / in this command.

FIGURE 52.43 Command-line execution of an SSIS package.

ptg

2142 CHAPTER 52 SQL Server Integration Services

Alternatively, you can see the details for a particular option by using the available options
indicator followed by the option name (’/?’ [option name]). This invokes SQL Server
Books online for that particular option.

The dtutil options include the following:

. /~C[opy][StorageLocation];[PackageName]—This option identifies where the
package is to be stored (StorageLocation value of DTS, FILE, or SQL) and the full
destination path and filename of the package (PackageName). When the Copy action
encounters an existing package at the destination, dtutil prompts you to confirm
package deletion. Y overwrites the package, and N aborts the overwrite of the destina-
tion package. If you include the /Q (quiet) option, no prompt appears, and the exist-
ing destination package is overwritten.

. /~Dec[rypt] Password—This option sets the decryption password used when
loading a package with password encryption.

. /~Del[ete]—This option deletes the package specified by the SQL, DTS, or FILE option.

. /~DestP[assword] Password—This option specifies the password used with the
SQL option to connect to a destination SQL Server instance using SQL Server
authentication.

. /~DestS[erver] Server—This option specifies the server name used with any action
that causes a destination to be saved to SQL Server or a nonlocal or nondefault
server when saving an SSIS package.

. /~DestU[ser] User name—This option specifies the SQL Server username at the
destination SQL Server instance.

. /~DT[S] PackagePath—This option specifies that the SSIS package referenced is
located in the SSIS package store, and the PackagePath argument is a relative path
that commences at the root of the SSIS package store.

. /~En[crypt] [StorageLocation];[;Path;ProtectionLevel[;Password]—This
option encrypts the loaded package with the specified protection level and password
and saves it to the location specified in Path. StorageLocation types are DTS, FILE,
and SQL. ProtectionLevel determines whether a password is required.

The possible ProtectionLevel values are 0 (strips sensitive information), 1 (sensitive
information is encrypted using local user credentials), 2 (sensitive information is
encrypted using the required password), 3 (package is encrypted using the required
password), 4 (package is encrypted using local user credentials), and 5 (package uses
SQL Server storage encryption).

. /~Ex[ists]—This option is used to determine whether a package exists.

. /~FC[reate] [StorageLocation];FolderPath;NewFolderName—This option creates a
new folder with the name specified by NewFolderName. StorageLocation is SQL or
DTS only. The location of the new folder is indicated by FolderPath.

ptg

2143The Package Execution Utility
5

2

. /~FDe[lete] [StorageLocation] ExistingFolderPath;ExistingFolderName—This
option deletes the folder specified by the name in ExistingFolderName from SQL
Server (SQL) or SSIS (DTS). StorageLocation is SQL or DTS only. The location of the
folder to delete is indicated by ExistingFolderPath.

. /~FDi[rectory] [StorageLocation] FolderPath[;S]]—This option lists the
contents, both folders and packages, in a folder on SSIS (DTS) or SQL Server (SQL).
The optional ExistingFolderPath parameter specifies the folder whose contents you
want to view. StorageLocation is SQL or DTS only. The optional S parameter specifies
that you want to view a listing of the contents of the subfolders for the folder speci-
fied in ExistingFolderPath.

. /~FE[xists] [StorageLocation] ExistingFolderPath—This option verifies
whether the specified folder exists on SSIS (DTS) or SQL Server (SQL). The
ExistingFolderPath parameter is the path and name of the folder for which you
need to verify its existence. StorageLocation is SQL or DTS only.

. /~FR[ename] [StorageLocation]; ExistingFolderPath; ExistingFolderName;

NewFolderName—This option renames a folder on the SSIS (DTS) or SQL Server (SQL).
StorageLocation is SQL or DTS only. ExistingFolderPath is the location (path) of
the folder to rename. ExistingFolderName is the name of the folder to be renamed,
and NewFolderName is the new name to give the folder.

. /~Fi≤ PathName—This option specifies that the SSIS package to be operated on is
located in the filesystem, and the PathName value contains either a universal naming
convention (UNC) path or local path.

. /~I[DRegenerate]—This option creates a new GUID for the package and updates the
package ID property.

. /~M[ove] [StorageLocation]; PathandName—This option specifies a move action
for an SSIS package. StorageLocation may be DTS, FILE, or SQL. PathandName indi-
cates the package path (location) and/or package name: SQL uses the package path
and package name, FILE uses a UNC or local path, and DTS uses a location relative to
the root of the SSIS package store. If an existing package at the destination has the
same name, dtutil prompts you to answer Y to overwrite this existing package or N
to not do the move. If you specify the /Q (quiet) option, no prompt appears when
an existing package may exist at the move destination, and it is just overwritten.

. /~Q[uiet]—This option disables the Y/N prompts when a package with the same
name as the specified package already exists at the destination location or if the
specified package is already signed.

. /~R[emark] [Text]—This option is a comment to the command line. There can be
multiple remarks in a command line.

. /~Si[gn] [StorageLocation]; ExistingPath; Hash—This option signs an SSIS
package. StorageLocation may be DTS, FILE, or SQL. ExistingPath specifies the path

ptg

2144 CHAPTER 52 SQL Server Integration Services

(location) of the package to be signed. Hash specifies a certificate identifier expressed
as a hexadecimal string of varying length.

. /~SourceP[assword] Password—This option provides the password used with the
SQL and SOURCEUSER options to connect to a SQL Server instance that uses SQL
Server authentication.

. /~SourceS[erver] Server—This option provides the name of the server where the
package is to be stored.

. /~SourceU[ser] User Name—This option provides the SQL Server username to use
to access the SSIS package.

. /~SQ[L] PathName—This option specifies the path (location) of the SSIS package
stored in the msdb database.

Next, let’s look at various examples of running dtutil.

dtutil Examples

The following example copies an existing package in SQL to the SSIS package store:

C:> Dtutil /SQL ExistingPackage /COPY DTS;destPackage

The following example copies an existing package from one location on the filesystem to
another location on the filesystem:

C:> dtutil /FILE c:\Unleashed\HotCustomersPlus.dtsx /COPY

FILE;c:\UnleashedProduction\HotCustomersPlus.dtsx

The following example creates a new GUID (usually after you copy a package):

C:> dtutil /I /FILE HotCustomersPlus.dtsx

The following example deletes a package stored in the local server (msdb database):

C:> dtutil /SQL HotCustomersPlus /SOURCEUSER PBertucci

/SOURCEPASSWORD xyz /DELETE

The following example deletes a package stored in the filesystem:

c:> dtutil /FILE c:\UnleashedProduction\HotCustomersPlus.dtsx /DELETE

The following example verifies whether a package exists in a local server (msdb database):

C:> dtutil SQL HotCustomersPlus /SOURCEUSER Pbertucci /SOURCEPASSWORD xyz /EXISTS

The following example verifies whether a package exists on the local filesystem:

C:> dtutil /FILE c:\UnleashedProduction\HotCustomersPlus.dtsx /EXISTS

ptg

2145Connection Projects in Visual Studio
5

2

The following example moves a package from one server (msdb database) to another server
(msdb database):

C:> dtutil /SQL HotCustomersPlus /SOURCEUSER Pbertucci

/SOURCEPASSWORD xyz /MOVE SQL;HotCustomersPlus

/DESTUSER sa /DESTPASSWORD zwx

The following example moves a package from one filesystem location to another:

c:> dtutil /FILE c:\Unleashed\HotCustomersPlus.dtsx /MOVE

FILE;c:\UnleashedProduction\HotCustomersPlus.dtsx

The following example signs a package on the filesystem:

dtutil /FILE c:\Unleashed\HotCustomersPlus.dtsx /SIGN FILE;

c:\Unleashed\HotCustomersPlus.dtsx;987377773999af33df399999333

Connection Projects in Visual Studio
Microsoft is trying to make it easier to get data sources or data targets defined and ready to
utilize with SSIS packages. From Visual Studio, you can now create an Integration Services
Connection project. A wizard takes you through defining the data sources and connections
for an SSIS package. As you can see in Figure 52.44, this wizard allows you to jumpstart the
data source/connection managers you might need for a new SSIS package.

FIGURE 52.44 The Visual Studio Integration Services Connection Project Wizard.

ptg

2146 CHAPTER 52 SQL Server Integration Services

You can then step through the buildup and testing of the connection one connection
manager at a time. Figure 52.45 shows the various data providers available through this
wizard and the creation and testing of one to SQL Server.

After you finish using this wizard, you are set to start defining your SSIS package with the
data sources and connection managers ready for use in your data flows, as you can see in
Figure 52.46.

FIGURE 52.45 Select Data Providers Integration Services Connection project wizard.

FIGURE 52.46 The Visual Studio Designer with connections ready for use.

ptg

2147Using bcp
5

2

Change Data Capture Addition with R2
With SQL Server 2008 R2, Microsoft has introduced some additional capability around
grabbing changes from tables as a part of SSIS. A series of new adapters are now available
from Attunity; they have implemented a streaming agent that detects changes in several
different database platforms and makes these changes available to SSIS package process-
ing. Attunity CDC products for SQL Server Integration Services provide end-to-end opera-
tional data replication (ODR) solutions for many heterogeneous sources. Using these
products, you can enable efficient and real-time data warehousing, set operational busi-
ness intelligence requirements, replicate data from one source to another, and synchro-
nize two or more data sources to ensure data consistency.

Attunity CDC Suite for SSIS includes products for the following:

. SQL Server (Attunity CDC Accelerator)

. Oracle (Attunity Oracle-CDC for SSIS)

. DB2 on IBM iSeries (Attunity iSeries DB2-CDC for SSIS)

. DB2 on IBM Mainframe (Attunity z/OS DB2-CDC for SSIS)

. SQL/MP on HP NonStop (Attunity SQL/MP-CDC for SSIS)

. Nonrelational legacy data sources (Attunity CDC Accelerator)

These adapters in SSIS allow you to feed the deltas (changes) to any target data platform
as opposed to full refreshes—very much like data replication approaches but via SSIS
package control.

Using bcp

As you have seen in this chapter, it is fairly easy to create and implement SSIS packages to
do data transformations from one or more data sources to one or more data destinations.
However, many organizations still really just need a vanilla and very fast mechanism to
export data out of SQL Server or import data into SQL Server. bcp fills this need well (and
has done so from the beginning of SQL Server).

The following sections outline the primary execution methods of bcp, the many switches
of bcp, the format file, and ways to improve performance when using bcp. By the end of
these sections, you will be able to optimally execute bcp successfully for several common
production scenarios. Microsoft has added a new execution switch that generates an XML
format file. Most other features of bcp have remained the same.

First, you need to see whether you have the right version of bcp. A quick check of your
version of bcp guarantees that you won’t run into any limitations from older versions of
bcp that might be left on your servers. You can do this by executing bcp at the command
prompt with the –v option and no other parameters. (Note that all bcp switch options are
case sensitive; for example, –v and –V are two very different switches.) Here’s an example:

C:> bcp –v

ptg

2148 CHAPTER 52 SQL Server Integration Services

BCP - Bulk Copy Program for Microsoft SQL Server.

Copyright (C) Microsoft Corporation. All Rights Reserved.

Version: 10.0.1600.22

This is version 10.0, which is distributed with MS SQL Server 2008 (SQL Server 10.0). If a
version other than 10.x is present here, you must re-install bcp immediately.

At any time, you can see the proper usage and bcp switch options available by executing
bcp at the command prompt with a question mark (?):

C:> bcp ?

usage: bcp {dbtable | query} {in | out | queryout | format} datafile

[-m maxerrors] [-f formatfile] [-e errfile]

. . .

You use the following syntax for bcp, along with one or more switches:

bcp {dbtable | query} {in | out | queryout | format} datafile

In this syntax, dbtable is the database_name, schema, and table_name | view_name (for
example, AdventureWorks2008.Production.Product or
”AdventureWorks2008.Production.Product”):

. database_name—This is the name of the database in which the specified table or
view resides. If not specified, this is the default database for the user.

. owner—This is the name of the schema of the table or view.

. table_name | view_name—This is the name of the destination table or view when
copying data into SQL Server (in), and it is the name of the source table when copy-
ing data from SQL Server (out).

query is a T-SQL query that returns a result set. queryout must also be specified when
bulk-copying data from a query.

in | out | queryout | format specifies the direction of the bulk copy (in copies from a
file in to the database table or view, out copies from the database table or view to a file).
queryout must be specified when bulk-copying data from a query. format creates a format
file based on the switch specified (–n, –c, –w, –V, or –N) and the table or view delimiters. If
format is used, the –f option must be specified as well.

data_file is the data file used when bulk-copying a table or view into or out of SQL
Server.

All the available bcp switches are listed in Table 52.1.

ptg

2149Using bcp
5

2

TABLE 52.1 bcp Switches

Switch Description Example

-m Specifies the maximum number of errors to allow before
stopping the transfer. The default is 10.

[–m max_errors]

-f Specifies the format file used to customize the load or
unload data in a specific style.

[-f format_file]

-e Specifies the file to write error messages to. [-e err_file]

-F Specifies the first row in the data file to start copying
from when importing. The default is 1.

[-F first_row]

-L Specifies the last row in the data file to end copying with
when importing. The default is 0, which indicates the
last row in the file.

[-L last_row]

-b Specifies the number of rows to include in each commit-
ted batch. By default, all data rows in a file are copied in
one batch.

[-b batch_size]

-n Specifies that native (database) data type formats are to
be used for the data.

[-n]

-c Specifies that character data type format is to be used
for the data. In addition, \t (tab character) is used as
the field separator, and \n (newline character) is used
as the row terminator.

[-c]

-w Specifies that the Unicode data type format is to be
used for the data. In addition, \t (tab character) is used
as the field separator, and \n (newline character) is
used as the row terminator.

[-w]

-N Specifies to use Unicode for character data and native
format for all others. This can be used as an alternative
to the –w switch.

[-N]

-V Specifies to use data type formats from earlier versions
of SQL Server.

[-V (70 | 80|90)]

-q Tells bcp to use quoted identifiers when dealing with
table and column names.

[-q]

-C If you are loading extended characters, allows you to
specify the code page of the data in the data file.

[-C code_page]

-t Specifies the terminating character(s) for fields. The
default is \t (tab character).

[-t field_term]

ptg

2150 CHAPTER 52 SQL Server Integration Services

TABLE 52.1 bcp Switches

Switch Description Example

-r Specifies the terminating character(s) for rows. The
default is \n (newline character).

[-r row_term]

-i Specifies a file for redirecting input into bcp (the
response file containing the responses to the command
prompts).

[-i input_file]

-o Specifies the file for receiving redirected output from
bcp.

[-o output_file]

-a Specifies the network packet size (in bytes) used to
send to or receive from SQL Server. Can be between
4,096 and 65,535 bytes. The default size is 4,096.

[-a packet_size]

-S Specifies the SQL Server name to connect to. Local is
the default.

[-S server_name |
server_name\instance_

name]

-U Specifies the user account to log in as; this account
must have sufficient privileges to carry out either a read
or a write of the table.

[-U login_id]

-P Specifies the password associated with the user
account.

[-P password]

-T Makes a trusted connection to the server, using the
network user/security credentials instead of the
login_id/password.

[-T]

-v Displays the bcp version information. [-v]

-R Uses the regional format for currency, date, and time
data, as defined by the locale settings of the client
computer.

[-R]

-k Overrides a column’s default and enforces NULL values
being loaded into the columns as part of the bcp opera-
tion.

[-k]

-E Uses the identity values in the import file rather than
generating new ones.

[-E]

-h Specifies special hints to be used during the bcp opera-
tion. They include the following: the sort order of the
data file, number of rows of data per batch, number of
kilobytes of data per batch, whether to acquire a table-
level lock, whether to check constraints, and whether to
fire insert triggers.

[-h hint_type,..]

ptg

2151Using bcp
5

2Fundamentals of Exporting and Importing Data

One of the great things about bcp is its ease of use. This section runs through a couple
simple examples and provides full explanations. All tables used here can be found in the
AdventureWorks2008 sample database supplied by Microsoft in SQL Server 2008.

Let’s start by exporting product data from AdventureWorks2008 that may be needed by a
sales team for reference in Excel format (a .csv file). To do this, you simply export the
Product table data into a comma-delimited file. You need to specify the following with
bcp in this case:

. The full table name (in this case, AdventureWorks2008.Production.Product)

. The direction of bcp (OUT in this case because it is exporting data out)

. Data filename to hold the exported data (in this case, products.dat)

. The server name DBARCH-LT2\SQL08DE01 for this example (in this case, –S DBARCH-
LT2\SQL08DE01)

. The username SA (in this case, –U sa)

. The password (in this case, –P xyz)

. A comma as the column delimiter (in this case, –t “,”)

. That this should be exported in character data format (in this case, –c)

At the command prompt, you execute the following:

C:> BCP AdventureWorks2008.Production.Product OUT products.dat

–S DBARCH-LT2\SQL08DE01 –U sa

–P xyz –t “,” –c

Starting copy...

504 rows copied.

Network packet size (bytes): 4096

Clock Time (ms.): total: 10 Average: (50400.00 rows per sec.)

Here’s a sample of the data in the Products.dat file that was just exported:

1,Adjustable Race,AR-5381,0,0,,

2,Bearing Ball,BA-8327,0,0,,

3,BB Ball Bearing,BE-2349,1,0,,

4,Headset Ball Bearings,BE-2908,0,0,,

. . .

TABLE 52.1 bcp Switches

Switch Description Example

-x Generates an XML format file. [-x]

ptg

2152 CHAPTER 52 SQL Server Integration Services

Now let’s look at importing data into SQL Server 2008.

Let’s say that each salesperson is providing a flat file that contains his or her new sales
orders summaries. These files are emailed to a person in the ordering department and
need to be imported into SQL Server every week. The file that you will import will be a
comma-delimited file (.csv) that the salesperson created using Excel. The new entries will
be the salesperson’s hottest customer’s totals. A sample input data file (named
BCPHotCustomersPlus.csv) is included on the book’s CD for this chapter.

You need to specify the following with bcp in this case:

. The full table name (in this case, AdventureWorks2008.Sales.HotCustomersPlus).

. The direction of bcp (IN in this case because it is importing data).

. The names of the data files that contain the import data (in this case,
BCPHotCustomersPlus.csv). The following is a sample of the input data file
(BCPHotCustomersPlus.csv):

268,Cycle Parts and Accessories,S,9,Australia,954,Touring-1000 Yellow,7152.210000

268,Cycle Parts and Accessories,S,9,Australia,955,Touring-1000 Yellow,7152.210000

268,Cycle Parts and Accessories,S,9,Australia,956,Touring-1000 Yellow,5721.768000

268,Cycle Parts and Accessories,S,9,Australia,968,Touring-1000 Blue,5721.768000

. . .

. The server name (in this case, –S DBARCH-LT2\SQL08DE01)

. The username SA (in this case, –U sa).

. The password (in this case, –P xyz).

. A comma as the column delimiter (in this case, –t “,”).

. That this should be exported in character data format (in this case, –c).

. The –q option (in this case, –q), to be sure quoted identifiers are handled properly.

At the command prompt, you execute the following:

C:> BCP AdventureWorks2008.Sales.HotCustomersPlus IN BCPHotCustomersPlus.csv

–S DBARCH-LT\SQL08DE01 –U sa –P xyz –t “,” –c –q

Starting copy...

4 rows copied.

Network packet size (bytes): 4096

Clock Time (ms.): total : 241 Average : (99.59 rows per sec.)

A quick SELECT * from the HotCustomersPlus table shows the success of this operation:

CustomerID CustomerName CustomerType TerritoryID TerritoryName

268 Cycle Parts and Accessories S 9 Australia 954

268 Cycle Parts and Accessories S 9 Australia 955

ptg

2153Using bcp
5

2

268 Cycle Parts and Accessories S 9 Australia 956

268 Cycle Parts and Accessories S 9 Australia 968

. . .

The sales team can now send in their sales orders as they make sales. This brief example
illustrates the beauty and power of using bcp.

The following sections look at how bcp can work with basic data representations (charac-
ter, native, or Unicode), the use of a format file, and a few other extended bcp capabilities.

File Data Types

bcp can handle data in one of three forms: character (ASCII), native, or Unicode. You have
the choice of which character format is used, depending on the source or destination of
the data file:

. The character format (–c) is the most commonly used of the three data types
because it reads or writes using ASCII characters and carries out the appropriate data
type conversion for the SQL Server representations. The CHAR data type is the default
storage type; it uses tabs as field separators and the newline character as the row
terminator.

. The native format (–n) is used for copying data between servers. This format allows
bcp to read and write using the same data types used by server, which results in a
performance gain. This format does, however, render the data file unreadable by any
other means.

. The Unicode option (–w) uses Unicode characters rather than ASCII characters. The
NCHAR data type is the default storage type; it uses tabs as field separators and the
newline character as the row terminator.

Format Files

By using a format file, you can customize the data file created by bcp or specify complex
field layouts for data loads. There are two ways to create a format file: by using interactive
bcp and by using the format switch.

Customizing a Format File by Using Interactive bcp
If you do not specify one of the –n, –c, or –w data type format switches, bcp (in or out)
prompts you for the following information for each column in the data set:

. File storage type

. Prefix length

. Field length

. Field terminator

bcp offers a default for each of these prompts that you can either accept or reject. If you
accept all the defaults, you wind up with the same format file you would have by specify-
ing the native format (with the –n switch). The prompts look like this:

ptg

2154 CHAPTER 52 SQL Server Integration Services

Enter the file storage type of field au_id [char]:

Enter prefix length of field au_id [0]:

Enter length of field au_id [11]:

Enter field terminator [none]:

or like this:

Enter the file storage type of field ProductID [int]:

Enter prefix length of field ProductID [0]:

Enter field terminator [none]:

By pressing the Enter key at the prompt, you accept the default. Alternatively, you can
type your own value at the prompt if you know the new value and it is different from
the default.

Creating a Format File by Using the format Switch
By using the format option, you can create a format file without actually transferring any
data. Here is an example of creating a format file for the SalesOrderHeader table in the
AdventureWorks2008 database:

C:> BCP AdventureWorks2008.Sales.SalesOrderHeader format orders.dat

–S DBARCH-LT2\SQL08DE01

–U sa –P xyz –f orders.fmt –c

The format file created looks like this:

10.0

27

1 SQLCHAR 0 12 ““\t”” 1 SalesOrderID ““““

2 SQLCHAR 0 5 ““\t”” 2 RevisionNumber ““““

3 SQLCHAR 0 24 ““\t”” 3 OrderDate ““““

4 SQLCHAR 0 24 ““\t”” 4 DueDate ““““

5 SQLCHAR 0 24 ““\t”” 5 ShipDate ““““

6 SQLCHAR 0 5 ““\t”” 6 Status ““““

7 SQLCHAR 0 3 ““\t”” 7 OnlineOrderFlag ““““

8 SQLCHAR 0 50 ““\t”” 8 SalesOrderNumber SQL_...

9 SQLCHAR 0 50 ““\t”” 9 PurchaseOrderNumber SQL_...

10 SQLCHAR 0 30 ““\t”” 10 AccountNumber SQL_...

11 SQLCHAR 0 12 ““\t”” 11 CustomerID ““““

12 SQLCHAR 0 12 ““\t”” 12 ContactID ““““

13 SQLCHAR 0 12 ““\t”” 13 SalesPersonID ““““

14 SQLCHAR 0 12 ““\t”” 14 TerritoryID ““““

15 SQLCHAR 0 12 ““\t”” 15 BillToAddressID ““““

16 SQLCHAR 0 12 ““\t”” 16 ShipToAddressID ““““

17 SQLCHAR 0 12 ““\t”” 17 ShipMethodID ““““

18 SQLCHAR 0 12 ““\t”” 18 CreditCardID ““““

19 SQLCHAR 0 15 ““\t”” 19 CreditCardApprovalCode SQL_...

ptg

2155Using bcp
5

2

20 SQLCHAR 0 12 ““\t”” 20 CurrencyRateID ““““

21 SQLCHAR 0 30 ““\t”” 21 SubTotal ““““

22 SQLCHAR 0 30 ““\t”” 22 TaxAmt ““““

23 SQLCHAR 0 30 ““\t”” 23 Freight ““““

24 SQLCHAR 0 30 ““\t”” 24 TotalDue ““““

25 SQLCHAR 0 256 ““\t”” 25 Comment SQL_...

26 SQLCHAR 0 37 ““\t”” 26 rowguid ““““

27 SQLCHAR 0 24 ““\r\n”” 27 ModifiedDate ““““

The following is a description of the lines and columns in the preceding format file example:

. The first line shows the version of bcp.

. The second line shows the number of columns.

. The third line, first column shows the data field position.

. The third line, second column shows the data type.

. The third line, third column shows the prefix.

. The third line, fourth column shows the data file field length.

. The third line, fifth column shows the field or row terminator.

. The third line, sixth column shows the column position.

. The third line, seventh column shows the column name.

. The third line, eighth column shows the column collation.

You get different format files depending on your table and whether you chose character,
native, or Unicode as the data type. As you can see in the preceding example, only the last
two columns in the format file relate to the actual table; the remaining columns specify
properties of the data file.

File Storage Types
The storage type is a description of how the data is stored in the data file. Table 52.2 lists
the definitions used during interactive bcp and what appears in the format file. The storage
type allows data to be copied as its base type (native format), as implicitly converted
between types (tinyint to smallint), or as a string (in character or Unicode format).

TABLE 52.2 Storage Data Types

File Storage Type Interactive Prompt Host File Data Type

char c[har] SQLCHAR

varchar c[har] SQLCHAR

nchar w SQLNCHAR

nvarchar w SQLNCHAR

text T[ext] SQLCHAR

ptg

2156 CHAPTER 52 SQL Server Integration Services

NOTE

If the table makes use of user-defined data types, these customized data types appear
in the format file as their base data type.

If you are having problems loading certain fields into your table, you can try the follow-
ing tricks:

. Copy the data in as char data types and force SQL Server to do the conversion for you.

. Duplicate the table and replace all the SQL Server data types with char or varchar of
a length sufficient to hold the value. This trick allows you to further manipulate the
data with T-SQL after it is loaded.

TABLE 52.2 Storage Data Types

File Storage Type Interactive Prompt Host File Data Type

ntext W SQLNCHAR

binary x SQLBINARY

varbinary x SQLBINARY

image I[mage] SQLBINARY

datetime d[ate] SQLDATETIME

smalldatetime D SQLDATETIM4

decimal n SQLDECIMAL

numeric n SQLNUMERIC

float f[loat] SQLFLT8

real r SQLFLT4

int i[nt] SQLINT

smallint s[mallint] SQLSMALLINT

tinyint t[inyint] SQLTINYINT

money m[oney] SQLMONEY

smallmoney M SQLMONEY4

bit b[it] SQLBIT

uniqueidentifie

r

u SQLUNIQUEID

timestamp x SQLBINARY

ptg

2157Using bcp
5

2

Prefix Lengths
To maintain compactness in native data files, bcp precedes each field with a prefix length
that indicates the length of the data stored. The space for storing this information is speci-
fied in characters and is called the prefix length.

Table 52.3 indicates the value to specify for prefix length for each of the data types.

Prefix lengths are likely to exist only within data files created using bcp. It is unlikely that
you will encounter a reason to change the defaults bcp has chosen for you.

Field Lengths
When using either the native or character data format, you must specify the maximum
length of each field. When converting data types to strings, bcp suggests lengths large
enough to store the entire range of values for each particular data type. Table 52.4 lists the
default values for each of the data formats.

TABLE 52.3 Prefix Length Values

Prefix
Length

Data Types to Use

0 Non-null data of type bit or numerics (int, real, and so on). Use this value when
no prefix characters are wanted. This value causes the field to be padded with
spaces to the size indicated for the field length.

1 Non-null data of type binary or varbinary or null data, with the exception of text,
ntext, and image. Use this value for any data (except bit, binary, varbinary,
text, ntext, and image) that you want stored using a character-based data type.

2 When storing the data types binary or varbinary as character-based data types,
2 bytes of char file storage and 4 bytes of nchar file storage are required for each
byte of binary table data.

4 For the data types text, ntext, and image.

TABLE 52.4 Default Field Lengths for Data Formats

Data Type Length (/c) Length (/n)

bit 1 1

binary Column length × 2 Column length

datetime 24 8

smalldatetime 24 4

float 30 8

real 30 4

int 12 4

ptg

2158 CHAPTER 52 SQL Server Integration Services

NOTE

You must specify a field length that is long enough for the data being stored. bcp error
messages regarding overflows indicate that the data value has been truncated in at
least one of the fields. If the operation is a load, an overflow error usually results in
bcp terminating. However, if you are dumping the data to a file, the data is truncated
without error messages.

The field length value is used only when the prefix length is 0 and you have specified no
terminators. In essence, you are doing a fixed-length data copy. bcp uses exactly the amount
of space stated by the field length for each field; unused space within the field is padded out.

NOTE

Preexisting spaces in the data are not distinguished from added padding.

Field Terminators
If you are not making use of fixed-width fields or length prefixes, you must use a field
terminator to indicate the character(s) that separates fields; for the last field in the data
row, you must also indicate which character(s) ends the line.

bcp recognizes the indicators for special characters shown in Table 52.5.

TABLE 52.4 Default Field Lengths for Data Formats

Data Type Length (/c) Length (/n)

smallint 7 2

tinyint 5 1

money 30 8

smallmoney 30 4

decimal 41 up to 17

numeric 41 up to 17

uniqueidentifier 37 16

TABLE 52.5 bcp Indicators for Special Characters

Terminator Escape Code

Tab \t

Backslash \\

Null terminator \0

Newline \n

Carriage return \r

ptg

2159Using bcp
5

2

You cannot use spaces as terminators, but you can use any other printable characters. You
should choose field and row terminators that make sense for your data. Obviously, you
should not use any character you are trying to load. You must combine the \r and \n

characters to get your data into an ASCII data file with each row on its own line.

TIP

By specifying the –t and –r switches, you can override the defaults that appear for the
prompts during interactive bcp.

NOTE

You can specify terminators for data copied in native format. You should be careful if
you decide to go this route; the accepted approach is to use lengthy prefixes.

The prefix length, field length, and terminator values interact with one another. In the
following examples, T indicates the terminator character(s), P indicates the prefix length,
and S indicates space padding.

For data of type char, the data file has the following repeating pattern:

Prefix Length=0 Prefix Length=1, 2, 4

No Terminator stringSstringS PstringSPstringS

Terminator stringSTstringST PstringSTPstringST

Prefix Length=0 Prefix Length=1, 2, 4

No terminator stringSstringS PstringPstring

Terminator stringTstringT PstringTPstringT

For data of other types converted to char, the data file has the following repeating pattern:

The next few sections examine how to load data into tables when there are differences in
column number and layout.

Different Numbers of Columns in a File and Table
If you want to load data into tables when you have fewer fields in the data file than in the
table, you have to “dummy up” an extra line in your format file.

ptg

2160 CHAPTER 52 SQL Server Integration Services

Let’s suppose you want to load a data file that is missing most of the address information
for each customer (into a customer table of some kind that has full address columns in it).
To do this, you create a format file for this table by using the format option with bcp. With
this format file, you can still load this abbreviated data easily. Suppose that the data file
looks like this:

WELLI Wellington Importadora Jane Graham Sales (14)555-8122

(14)555-8111

WHITC White Clover Markets Donald Bertucci Owner (206)555-4112

(206)555-4113

To introduce a dummy value for the missing ones, in the format file, you need to make
the prefix and data lengths 0 and set the field terminator to nothing (””). The modified
format file should look like this:

10.0

11

1 SQLCHAR 0 10 “\t” 1 CustomerID SQL_Latin1_General_

CP1_CI_AS

2 SQLCHAR 0 80 “\t” 2 CompanyName SQL_Latin1_General_

CP1_CI_AS

3 SQLCHAR 0 60 “\t” 3 ContactName SQL_Latin1_General_

CP1_CI_AS

4 SQLCHAR 0 60 “\t” 4 ContactTitle SQL_Latin1_General_

CP1_CI_AS

5 SQLCHAR 0 0 ““ 5 Address SQL_Latin1_General_

CP1_CI_AS

6 SQLCHAR 0 0 ““ 6 City SQL_Latin1_General_

CP1_CI_AS

7 SQLCHAR 0 0 ““ 7 Region SQL_Latin1_General_

CP1_CI_AS

8 SQLCHAR 0 0 ““ 8 PostalCode SQL_Latin1_General_

CP1_CI_AS

9 SQLCHAR 0 0 ““ 9 Country SQL_Latin1_General_

CP1_CI_AS

10 SQLCHAR 0 48 “\t” 10 Phone SQL_Latin1_General_

CP1_CI_AS

11 SQLCHAR 0 48 “\r\n” 11 Fax SQL_Latin1_General_

CP1_CI_AS

Now bcp can load the data file by using this new format file, with the Address, City,
Region, PostalCode, and Country columns containing NULL values for the new rows.

For data files that have more fields than the table has columns, you change the format file
to add additional lines of information. Suppose that your customer data file contains an
additional CreditStatus value at the end (shown here in bold italic):

ptg

2161Using bcp
5

2

WELLI Wellington Importadora Martin Sommer Sales Manager Rua do Mercado,

12 Resende SP 08737-363 Uraguay (14) 555-8122 NULL 1
WELP Well Drilling P Thierry Gerardin Sales Manager Rue de Vaugirard,

997 Paris FR 08737-363 France (11) 555-8122 NULL 1
WF WF Enterprises Yves Moison Sales Manager Rue de Sevres,

4123 Paris FR 08737-363 France (14) 555-8122 NULL 1
WGZR Wellsley Granite Jack McElreath Sales Manager Hillsboro,

131 Hillsboro MA 08737-363 USA (781) 555-8122 NULL 1
WHITC White Clover Markets Scott Smith Owner 305 - 14th Ave. S.

Suite 3B Boston MA 98128 USA (508) 555-4112 (508) 555-4115 2

You need to modify a format file in two important areas: you change the second line to
reflect the actual number of values, and you add new lines for the extra column in the file
that is not in the table (from 11 to 12 entries). Notice that the column position has a
value of 0 to indicate the absence of a column in the table. The result is that your source
data file will import all data into the table, except the extra field (that is, the
CreditStatus field).

Thus, the modified format file looks like this (where the bold italic indicates the
changes made):

10.0

12
1 SQLCHAR 0 10 “\t” 1 CustomerID SQL_Latin1_General_

CP1_CI_AS

2 SQLCHAR 0 80 “\t” 2 CompanyName SQL_Latin1_General_

CP1_CI_AS

3 SQLCHAR 0 60 “\t” 3 ContactName SQL_Latin1_General_

CP1_CI_AS

4 SQLCHAR 0 60 “\t” 4 ContactTitle SQL_Latin1_General_

CP1_CI_AS

5 SQLCHAR 0 120 “\t” 5 Address SQL_Latin1_General_

CP1_CI_AS

6 SQLCHAR 0 30 “\t” 6 City SQL_Latin1_General_

CP1_CI_AS

7 SQLCHAR 0 30 “\t” 7 Region SQL_Latin1_General_

CP1_CI_AS

8 SQLCHAR 0 20 “\t” 8 PostalCode SQL_Latin1_General_

CP1_CI_AS

9 SQLCHAR 0 30 “\t” 9 Country SQL_Latin1_General_

CP1_CI_AS

10 SQLCHAR 0 48 “\t” 10 Phone SQL_Latin1_General_

CP1_CI_AS

11 SQLCHAR 0 48 “\t” 11 Fax SQL_Latin1_General_

CP1_CI_AS

ptg

2162 CHAPTER 52 SQL Server Integration Services

12 SQLCHAR 0 1 “\r\n” 0 CreditStatus SQL_Latin1_General_
CP1_CI_AS

These two examples show you the possibilities that the format file offers for customizing
the loading and unloading of data.

Renumbering Columns
Using the techniques described in the section “Different Numbers of Columns in a File
and Table,” you can also handle data file fields that are in different orders than the target
tables. All you need to do is change the column order number to reflect the desired
sequence of the columns in the table. The fields are then automatically mapped to the
corresponding columns in the table.

For example, suppose that a customer data file you got from another source system came
with the fields in this order:

1. Address

2. City

3. Country

4. PostalCode

5. Region

6. CompanyName

7. ContactName

8. ContactTitle

9. Fax

10. Phone

11. CustomerID

The SQL Server table has columns in a different order. To load your data file into this
table, you modify the format file to look like this (where the bold italic indicates the
changes made):

10.0

11

1 SQLCHAR 0 10 “\t” 11 CustomerID SQL_Latin1_General_

CP1_CI_AS

2 SQLCHAR 0 80 “\t” 6 CompanyName SQL_Latin1_General_

CP1_CI_AS

3 SQLCHAR 0 60 “\t” 7 ContactName SQL_Latin1_General_

CP1_CI_AS

4 SQLCHAR 0 60 “\t” 8 ContactTitle SQL_Latin1_General_

CP1_CI_AS

5 SQLCHAR 0 120 “\t” 1 Address SQL_Latin1_General_

CP1_CI_AS

6 SQLCHAR 0 30 “\t” 2 City SQL_Latin1_General_

CP1_CI_AS

ptg

2163Logged and Nonlogged Operations
5

2

7 SQLCHAR 0 30 “\t” 5 Region SQL_Latin1_General_

CP1_CI_AS

8 SQLCHAR 0 20 “\t” 4 PostalCode SQL_Latin1_General_

CP1_CI_AS

9 SQLCHAR 0 30 “\t” 3 Country SQL_Latin1_General_

CP1_CI_AS

10 SQLCHAR 0 48 “\t” 10 Phone SQL_Latin1_General_

CP1_CI_AS

11 SQLCHAR 0 48 “\r\n” 9 Fax SQL_Latin1_General_

CP1_CI_AS

The principal point to remember with the format file is that all but the last three columns
deal with the data file. The last three columns deal with the database table.

Using Views

bcp can use views to export data from a database. This means an export of data can be a
result set of data from multiple tables (and with distributed queries, even multiple servers).

You can also use a view with bcp to load data back into tables. However, as is the case with
normal T-SQL inserts, you can load into only one of the underlying tables at a time.

Logged and Nonlogged Operations
Bulk-copy operations can occur in two modes: logged and nonlogged (also known as slow
and fast bcp, respectively). The ideal situation is to operate in nonlogged mode because this
arrangement dramatically decreases the load time and consumption of other system
resources, such as memory, processor use, and disk access. However, the default runs the
load in logged mode, which causes the log to grow rapidly for large volumes of data.

To achieve a nonlogged operation, the target table must not be replicated (the replication
log reader needs the log records to relay the changes made). The database holding the
target table must also have its SELECT INTO/BULK COPY option set, and finally, the TABLOCK
hint must be specified.

NOTE

Remember that setting the SELECT INTO/BULK COPY option disables the capability to
back up the transaction log until a full database backup has been performed.
Transaction log dumps are disabled because if the database had to be restored, the
transaction log would not contain a record of the new data.

Although you can still perform fast loads against tables that have indexes, it is advisable to
drop and re-create the indexes after the data transfer operation is complete. In other
words, the total load time includes the loading of the data and index creation time. If
there is existing data in the table, the operation is logged; you achieve a nonlogged opera-
tion only if the table is initially empty.

ptg

2164 CHAPTER 52 SQL Server Integration Services

Generally, you get at least a 50% drop in transfer speed if the table has an index. The
more indexes, the greater the performance degradation. This is due to the logging factor:
more log records are being generated, and index pages are being loaded into the cache
and modified. This can also cause the log to grow, possibly filling it (depending on the log
file settings).

NOTE

Despite the name, even a nonlogged operation logs some things. In the case of index-
es, index page changes and allocations are logged, but the main area of logging is of
extent allocations every time the table is extended for additional storage space for
the new rows.

Batches

By default, bcp puts all the rows that are inserted into the target table into a single trans-
action. bcp calls this a batch. This arrangement reduces the amount of work the log must
deal with; however, it locks down the transaction log by keeping a large part of it active,
which can make truncating or backing up the transaction log impossible or unproductive.
By using the bcp batch (–b) switch, you can control the number of rows in each batch (or,
effectively, each transaction). This switch controls the frequency of commits; although it
can increase the activity in the log, it enables you to trim the size of the transaction log.
You should tune the batch size in relation to the size of the data rows, transaction log size,
and total number of rows to be loaded. The value you use for one load might not neces-
sarily be the right value for all other loads.

Note that if a subsequent batch fails, the prior batches are committed, and those rows
become part of the table. However, any rows copied up to the point of failure in the
failing batch are rolled back.

Parallel Loading

A great enhancement of bcp is that you can now use it to do parallel loads of tables. If you
want to take advantage of this feature, the following must be true:

. The bulk-copy operation must be nonlogged; all requirements specified in the previ-
ous discussion on nonlogged operations must be met.

. There must be no indexes on the target table.

Only applications using the ODBC or SQL OLE DB–based APIs can perform parallel data
loads into a single table.

The procedure is straightforward. After you ascertain that the target table has no indexes
(which could involve dropping primary or unique constraints) and is not being replicated,
you must set the database option SELECT INTO/BULK COPY to true. The requirement to
drop all indexes has to do with the locking that must occur to load the data. Although the
table itself can have a shared lock, the index pages are an area of contention that prevents
parallel access.

ptg

2165Logged and Nonlogged Operations
5

2

Now all that is required is to set up the parallel bcp loads to load the data into the table.
You can use the –F and –L switches to specify the range of the data you want each parallel
bcp to load into the table if you are using the same data file. Using these switches removes
the need to manually break up the file. Here is an example of the command switches
involved for a parallel load with bcp for the customers table:

bcp AdventureWorks2008.Sales.SalesOrderHeader IN SalesOrders10000.dat –T

–S servername –c –F 1

–L 10000 –h “TABLOCK”

bcp AdventureWorks2008.Sales.SalesOrderHeader IN SalesOrders20000.dat –T

–S servername –c –F 10001

–L 20000 –h “TABLOCK”

The TABLOCK hint (–h switch) provides improved performance by removing contention
from other users while the load takes place. If you do not use the hint, the load takes
place using row-level locks, and this is considerably slower.

SQL Server 2008 allows parallel loads without affecting performance by making each bcp
connection create extents in nonoverlapping ranges. The ranges are then linked into the
table’s page chain.

After the table is loaded, it is also possible to create multiple nonclustered indexes in
parallel. If there is a clustered index, you work with that one first, followed by the paral-
lel nonclustered index.

Supplying Hints to bcp

The SQL Server 2008 version of bcp enables you to further control the speed of data
loading, to invoke constraints, and to have insert triggers fired during loads. To take
advantage of these capabilities, you use hint switches to specify one or more hints at a
time. Following is the syntax:

–h “hint [, hint]”

This option cannot be used when bulk-copying data into versions of SQL Server before
version 7.0 because, starting with SQL Server 7.0, bcp works in conjunction with the query
processor. The query processor optimizes data loads and unloads for OLE database rowsets
that the latest versions of bcp and BULK INSERT can generate.

The following sections describe the various hints you can specify with the –h switch.

The ROWS_PER_BATCH Hint
The ROWS_PER_BATCH hint is used to tell SQL Server the total number of rows in the data
file. This hint helps SQL Server optimize the entire load operation. This hint and the –b

switch heavily influence the logging operations that occur with data inserts. If you
specify both this hint and the –b switch, they must have the same values, or you get an
error message.

ptg

2166 CHAPTER 52 SQL Server Integration Services

When you use the ROWS_PER_BATCH hint, you copy the entire result set as a single transac-
tion. SQL Server automatically optimizes the load operation, using the batch size you
specify. The value you specify does not have to be accurate, but you should be aware of the
practical limit, based on the database’s transaction log.

TIP

Do not be confused by the name of the ROWS_PER_BATCH hint. You are specifying the
total file size and not the batch size (as is the case with the –b switch).

The CHECK_CONSTRAINTS Hint
The CHECK_CONSTRAINTS hint controls whether check constraints are executed as part of
the bcp operation. With bcp, the default is that check constraints are not executed. This
hint option allows you to turn the feature on (to have check constraints executed for each
insert). If you do not use this option, you should either be very sure of your data or rerun
the same logic as in the check constraints you deferred after the data has been loaded.

The FIRE_TRIGGER Hint
The FIRE_TRIGGER hint controls whether the insert trigger on the target table is executed
as part of the bcp operation. With bcp, the default is that no triggers are executed. This
hint option allows you to turn the feature on (to have insert triggers executed for each
insert). As you can imagine, when this option is used, it slows down the bcp load opera-
tion. However, the business reasons to have the insert trigger fired might outweigh the
slower loading.

The ORDER Hint
If the data you want to load is already in the same sequence as the clustered index on the
receiving table, you can use the ORDER hint. The syntax for this hint is as follows:

ORDER({column [ASC | DESC] [,...n]})

There must be a clustered index on the same columns, in the same key sequence as speci-
fied in the ORDER hint. Using a sorted data file (in the same order as the clustering index)
helps SQL Server place the data into the table with minimal overhead.

The KILOBYTES_PER_BATCH Hint
The KILOBYTES_PER_BATCH hint gives the size, in kilobytes, of the data in each batch. This
is an estimate that SQL Server uses internally to optimize the data load and logging areas
of the bcp operation.

The TABLOCK Hint
The TABLOCK hint is used to place a table-level lock for the bcp load duration. This hint
gives you increased performance at a loss of concurrency, as described in the section
“Parallel Loading,” earlier in this chapter.

ptg

2167Summary
5

2

Summary
It is fairly easy to create and implement a typical data export, data import, or complex
data transformation by using SSIS. You can either use the wizard for basic data transforma-
tion needs or the SSIS Designer for massively complex transformations (which may have
multiple data sources and/or multiple data destinations). This very robust environment
has adopted a very formal, managed code rigor. With the SSIS capabilities, you get a self-
contained place to build these data transformation solutions, and you can do so very
rapidly. SSIS is completely integrated into the Visual Studio/BI Development Studio envi-
ronment as well, making it that much easier to start producing rock-solid implementa-
tions. And, with Change Data Capture for SSIS, a new dimension of trickling data changes
to various platforms becomes available with SSIS processing.

This chapter also shows how to bulk-load data into and out of SQL Server by using the bcp
utility. The multitude of switches bcp offers are very comprehensive and address most, if
not all, importing and exporting situations. More importantly, with the advent of some
additional switches, such as ORDER (within hints), TABLOCK (within hints), batches (–b),
network packet sizes (–a), and others, it is significantly easier to increase the performance
of bcp in a big way. bcp has been around for a long time, and it will continue to be the
workhorse of bulk data loading and unloading.

Chapter 53, “SQL Server 2008 Reporting Services” discusses this significant SQL Server
capability and how to maximize its use for a production environment.

ptg

This page intentionally left blank

ptg

CHAPTER 53

SQL Server 2008
Reporting Services

IN THIS CHAPTER

. What’s New in SSRS 2008

. Reporting Services Architecture

. Installing and Configuring SSRS

. Developing Reports

. Management and Security

. Performance and Monitoring

This chapter introduces SQL Server Reporting Services
2008 (SSRS). It provides an overview of the product’s
features and architecture, covers the most important func-
tional areas, and gives examples of how to get started devel-
oping on the platform. Although this chapter is by no
means a comprehensive description of everything in SSRS,
its purpose is to get you excited about the capabilities of
this potent technology.

SSRS is an enterprise-class reporting platform that provides
all the tools and services needed to support data-driven
reporting. SSRS empowers you to design reports using a
variety of advanced data visualization controls; populate
them with data culled from a variety of sources; deploy,
secure access to, and schedule execution of reports; and
deliver them to the Web, SharePoint, email recipients, file
shares, and more, on a scheduled or on-demand basis.

The first version of SSRS shipped in January 2004 as part of
SQL Server 2000, generating enthusiasm and enjoying rapid
adoption, as did the enhancements that came in the SQL
Server 2005 release. The latest version of SSRS, included
with SQL Server 2008, comes with a bevy of enhancements
geared toward better performance, increased interoperabil-
ity, consolidation of tools and services, reductions in depen-
dencies, improved user experience, finer control over
design, and overall ease of use.

What’s New in SSRS 2008
From design to architecture, SSRS 2008 includes a number
of platform changes across all areas of the product. The list

ptg

2170 CHAPTER 53 SQL Server 2008 Reporting Services

is long, but it should be duly noted because some of these changes may have a significant
impact on your design, development, monitoring, and tuning processes.

In the following sections, we cover all the features that have been discontinued and any
changes that could break your existing applications. After that, we detail all the enhance-
ments included in this release. Be forewarned: it’s a lot of ground to cover in a short space,
so the pace is quick.

Discontinued Functionality and Breaking Changes

With SSRS 2008, a number of features have been discontinued or significantly changed.
They include

. SSRS 2008 no longer relies on Internet Information Services (IIS) at all. This means
there are no IIS-based websites used by the platform in this release.

To process HTTP requests for SSRS web services, Report Manager ASPX pages, and
other calls, SSRS 2008 now natively hosts the .NET Framework and ASP.NET.

SSRS ties directly in with operating-system–level (or kernel-mode) HTTP, listening for
requests by way of the HTTP API (sometimes referred to as http.sys). This means
that under the covers, SSRS registers its virtual paths (also known as URIs, for
example, www.myserver.com/Reports) with http.sys in the same way that IIS would
register a virtual directory. The operating system redirects incoming HTTP requests to
IIS or SSRS, based on the path specified in the request.

Be aware that any ISAPI extensions, virtual directory settings, or other advanced Web
customizations you may have built might not be compatible with the new SSRS
HTTP architecture.

. Because of the HTTP architecture changes in SSRS 2008, a few HTTP port-related
concerns are noteworthy:

. When you are installing SSRS 2008 on 32-bit Windows XP, SSRS reserves port
8080 (because IIS 5.1 has already exclusively reserved port 80).

. When you are installing SSRS on other operating systems (including 64-bit
XP), port 80 is used in the default native configuration. This means that when
configuring your SSRS URIs using the Reporting Services Configuration Tool
(RSCT), you must be sure to use paths and ports that are not already in use in
any IIS site or virtual directory (to avoid unintended collisions).

TIP

If you try to use a port already reserved by a website or other network service, RSCT
usually warns you. However, if that website or server is configured but in the stopped
state, RSCT may allow you to use that port. This could cause a resource conflict when
that website or service is started.

www.myserver.com/Reports

ptg

2171What’s New in SSRS 2008
5

3

. Email aliases (when doing report deliveries via email) are no longer supported on
Vista or Windows Server 2008.

. The SQL Server 2000 Report Server web service endpoint has been removed.

. Several trace log files have been removed, including

. ReportServerWebApp_[timestamp].log

. ReportServer_[timestamp].log

. ReportServerService_main_[timestamp].log

. Only ReportServerService_[timestamp].log remains, and it is now your one-stop
location for studying trace activity.

. Web application settings have been consolidated from RSWebApplication.config
(now obsolete) into RSReportServer.config.

. Support for rendering Internet Explorer 5.5–compatible reports is discontinued.

. Support for the HTML 3.2 and Office Web Components (OWC) rendering extensions
is discontinued.

. The Excel rendering extension no longer automatically generates spreadsheet formu-
las from your Report Definition Language (RDL) expressions.

. The comma-separated value (CSV) rendering extension no longer attempts to preserve
formatting (spacing) according to the report’s appearance. However, it now supports
two styles of rendering: default mode, which is optimized for Excel, and compliant
mode, which is the standard, format-free CSV you would expect to see rendered.

. The SSRS Rendering Object Model itself has changed, and earlier versions are no
longer supported.

. The capability to automatically upgrade an SSRS database is discontinued (it has
been removed from RSCT).

. Running Report Builder in .NET’s partial trust mode (which requires verification of
managed code and limits the ability to call native code) is discontinued. Report
Builder now runs only in full trust mode.

In SSRS 2005, two separate URLs were used to start Report Builder in each trust level.
With SSRS 2008, the only supported URL is now the full trust URL, which is
http://[server-name]/[path-to-report-
server]/ReportBuilder/ReportBuilder[version].application.

. In RDL, object names are now limited to 256 characters in length.

. In report rendering, overlapping data regions, repeating items (such as headers and
footers), page breaks, and aggregate visibility may be handled differently according to
the rendering extension in use. SQL Server Business Intelligence Development Studio
(BIDS) warns you upon compilation of your reports if such overlapping occurs.

ptg

2172 CHAPTER 53 SQL Server 2008 Reporting Services

. The namespace for Report Object Model classes has changed. Microsoft recommends
that you reference these classes using only their unqualified (rather than fully quali-
fied) names to avoid or resolve this issue in your code. (Note: At compile time, the
currently installed version of the SSRS classes is used by default. You can change this
by modifying the SpecificVersion attribute in your assembly reference’s properties.)

. The SSRS Windows Management Instrumentation (WMI) provider is incompatible
with its previous version. This could break scripts you may have written for the
rs.exe tool (covered later in this chapter). It also means that, when connecting to
an SSRS 2005 instance using SQL Server Management Studio (SSMS), instead of
servername\instancename, you must supply the appropriate full SSRS URL.

. In SSMS, the Home folder (which formerly provided GUI-based management of all
SSRS objects) has been removed. This means you can now use only Report Manager
(or, if using SharePoint integration, your site’s SSRS management pages) to manage
SSRS content.

. In Report Manager, you can no longer manage roles and jobs. SSMS is now the only
place for these tasks.

. SSRS 2008 is not supported on Windows 2000 servers.

Enhancements

SSRS 2008 includes a wide range of important enhancements to all aspects of the plat-
form. The following sections examine these changes according to functional area.

Enhancements in Report Development
SSRS 2008 R2 includes a number of enhancements to the suite of tools used in designing,
developing, and deploying reports. The following sections detail these enhancements.

Enhancements in Report Design The Report Designer, integrated into Visual Studio 2008
(VS; known in SSRS as BIDS) offers a number of improvements. It includes the following
upgrades and changes:

. Two new subpanes for controlling data grouping:

. The Row Grouping pane, which you use to define and manipulate row groups
in your reports

. The Column Grouping pane, which you use to define and manipulate column
groups (when developing matrix-style reports)

Both new subpanes include a number of visual cues indicating your current group-
ing settings, as well as drop-down boxes that allow you to add, remove, change, and
nest data groups, and also define your subtotal and grand total aggregates.

ptg

2173What’s New in SSRS 2008
5

3

NOTE

Control over data grouping was accessible via Property pages in SSRS’s data-bound
controls in former versions of BIDS; these new panes make it much easier to access
and manipulate your group settings quickly.

. The Report Data tab has been removed from the Report Designer. It has been
replaced with a new tool window within VS (of the same name) that displays all
built-in fields, data sources, datasets (shared and nonshared), report parameters, and
images, all in an easy-to-navigate tree. From this tree, most of these objects may be
dragged and dropped onto the report design surface. The menu bar located at the
top of the Report Data tool window offers commands for creating and editing data
sources, datasets, parameters, and images.

. The designer surface includes new context-sensitive rulers, a revamped Report
Properties dialog, and a simplified context menu.

. Using the Report menu (in BIDS), you can now publish report parts to the SSRS catalog
(report parts are covered later in this chapter in the section “Using Report Parts”).

. You can now create, modify, use, and deploy shared datasets (covered later in this
chapter in the section “Using Shared Datasets”).

. The Report Designer now supports rotation of text boxes, vertically or horizontally,
up to 270°.

The Report Designer’s Toolbox tool window offers a number of new data visualization
controls:

. Tablix—At first glance, the Table, Matrix, and List controls still appear to be the
same as in the previous edition of SSRS. However, they have actually been changed
to become data region templates, a kind of layout device for the Tablix, a new super-
control that embodies all the functionality of the Table, Matrix, and List combined.

The Tablix provides functionality for all manner of data grouping; hierarchical
nesting of groups; header, footer, and detail row display. Each Tablix cell may
contain any other type of Tablix data region or control, enabling an endless variety
of layouts.

. Gauge—Gauges enable the graphical representation of a single data field or aggre-
gate value (sometimes referred to as a key performance indicator or KPI). Each gauge
has its own gauge panel, whereupon you may drag and drop additional gauges to
display multiple values. Gauges are displayed in either a radial or linear fashion.

. Indicator—Actually, a type of small gauge, an indicator enables fast visual compre-
hension of a single data field or aggregate value. You may add additional indicators
or gauges to an indicator’s gauge panel. When selecting the icons used by your indi-
cator, you choose from a small set of predefined images, usually corresponding to

ptg

2174 CHAPTER 53 SQL Server 2008 Reporting Services

commonly understood symbols, such as traffic signals, directional arrows, rating
starts, and so on.

. Data Bar—Actually a type of small chart, the data bar allows for the graphical repre-
sentation of one or more data series, just as you would find in a chart (a data bar
may also be promoted to a full chart control with a click of the context menu).
These bars can be drawn as horizontal or vertical bars and can express multiple
groups (categories) of values within a series.

. Sparkline—Also a type of small chart (and also promotable to a full chart), a
Sparkline is much like a data bar in that it enables the visual expression of one or
more data series (grouped or ungrouped). Sparklines come in a range of styles,
including chart types such as column, line, area, shape, and range. Sparklines and
data bars are meant to be small and quickly comprehended; as such, they lack
legends, tick marks, labels, and axis lines.

. Map—The map control enables the visualization of geospatial (mapping) data that
you may combine with related analytical data. Every map begins with a map layer,
which you can source from one of three places:

. A predefined U.S. country or state map (these come with SSRS) that you may
select one from the map gallery

. An Environmental Systems Research Institute, Inc. (ESRI) shapefile (a vector
format that contains geographical data and other attributes)

. A query against spatial data stored in SQL Server using the new geography or
geometry data types (discussed in Chapter 24, “Creating and Managing Tables”
and Chapter 42, “What’s New for Transact-SQL in SQL Server 2008”)

As for your related analytical data, you can source it from any related dataset, or it
may be embedded in the spatial data source itself. For example, if the data you want
to visualize includes product orders by region, you can relate that regional data to
fields in the spatial dataset using match fields. This topic is covered later in this
chapter in the section “Working with Maps.”

Finally, and perhaps most exciting, the map control supports the overlay of Bing map
tiles (to Internet-connected users) on your map, providing a professional look and feel.

General changes to the control suite include the following:

. All Properties pages for every control are completely revamped. Tabs that used to be
across the top are now tabs down the left side, presented in a more visually friendly
tab/detail layout.

. All right-click menus for each control have been enhanced to allow for easier menu
navigation. For example, when you are accessing the properties of a cell’s text box
nested in a Tablix data region, one set of commands is shown for the text box itself
and another for the enclosing Tablix, preventing you from having to click all over
the report to access the context menu you need.

ptg

2175What’s New in SSRS 2008
5

3

. Text and HTML formatting capabilities are enhanced for all controls, allowing for
font and style mixing, import and display of HTML stored in report field data, and
paragraph styling.

. The Chart control offers a number of enhancements, including the following:

. New and updated chart types, include pie, doughnut, pyramid, candlestick,
stock, radar, polar, pareto, histogram, funnel, range column or bar, smooth
area, smooth and stepped line, box plot, bar and column cylinder

. Support for secondary and custom axes, custom rotation angles, scales, strip
lines, multiple combined areas, legends, and titles; custom intervals; and
enhanced interval labeling

. Better color, text, and other formatting capabilities; 3D effects (for some chart
types); and the ability to edit labels directly on the chart at design-time

. Built-in statistical and financial calculations

Shared Datasets A shared dataset is exactly as it sounds—a dataset that you define using
one of the designers and then deploy to the SSRS catalog for reuse. Shared datasets are
parameterizable; when you enable query caching for a dataset, each combination of para-
meters creates a snapshot in the cache. Shared datasets are covered in detail later in the
section “Using Shared Datasets.”

Report Parts With previous SSRS editions, when you wanted to reuse a portion of a
report, such as a data-bound table, you would make that section of the report into a subre-
port and then use that subreport on different reports. This functionality is, of course, still
supported in SSRS 2008, but in addition, you can now reuse charts (including data bars
and Sparklines), gauge panels (including gauges and indicators), images, lists, maps, matri-
ces, report parameters, rectangles, tables, or shared datasets. To do this, you simply publish
them to the SSRS catalog, making them available for reuse using Report Builder or BIDS.
This process is covered in this chapter in the section “Using Report Parts.”

New Data Sources Report Designer includes a new report data source that enables devel-
opers to consume Teradata and SAP BI content in reports.

New Report Definition Language (RDL) Elements RDL has been updated to include support
for all the new report controls and all changes to existing controls. In addition, RDL
provides finer-grained control over page naming, page breaks, and pagination (which can
now be restarted within a page range); margins; header and footer visibility; and null
value handling.

RDL also includes a new element (ReportSections) for SSRS 2008 R2 reports, used to
model the content of the map control and related functionality.

ptg

2176 CHAPTER 53 SQL Server 2008 Reporting Services

New Version of Report Builder SSRS 2008 R2 includes the release of Report Builder 3.0 (at
the time of this writing, Report Builder 1.0 comes with SSRS 2008; Report Builder 2.0 is a
separate download from Microsoft; Report Builder 3.0 comes with SSRS 2008 R2).

The user interface (UI) has been completely rewritten to have the look and feel of an
Office 2007 application, including its Ribbon bar. It offers data visualization and format-
ting enhancements; on-demand rendering; and support for multiple data sources, shared
datasets, and report parts. It is available as a ClickOnce application that you launch from
Report Manager or SharePoint (if using SharePoint-integrated SSRS mode, a topic outside
the scope of this chapter).

In terms of overall usability, previewing of reports in Report Builder has been accelerated,
thanks to the use of edit sessions that enable reuse of cached dataset data.

Enhancements in Report Processing and Rendering
SSRS report processing and rendering has been improved in the following ways:

. Page rendering now happens on demand, meaning that as a user scrolls or pages
through a report, the next page of the report is dynamically rendered.

. The report rendering object model has been updated to reflect these changes,
most notably in regards to how page breaking and pagination are handled.

. Report page counts are not always known at runtime (until the last page is
rendered). This is reflected in the Report Viewer toolbar (page counts are now
displayed as 1 of ?).

. A Microsoft Word rendering extension has been added (compatible with versions
2000 and higher).

. An Atom rendering extension has been added, enabling users to export a report as
an Atom Publishing Protocol (APP) service.

. The Microsoft Excel rendering extension now supports rendering data regions and
subreports that are nested inside Tablix cells.

. When you are exporting to Excel, worksheet tabs can be named. You achieve this at
design time by setting the value of the InitialPageName property of your report to
an expression that returns a name.

. Extra whitespace in the body of your reports is no longer eliminated during render-
ing (you may change this behavior using the ConsumeContainerWhitespace property
of the report).

. Images are retrieved from the server only when the report page containing them is
rendered on demand (except in the case of snapshot creation, when they are all
retrieved up front).

Tool and Service Enhancements

SSRS 2008 R2 includes a number of enhancements to the tools and services which form
the backbone of the platform.

ptg

2177What’s New in SSRS 2008
5

3

Changes to Report Manager
Report Manager comes with a totally revamped Web user interface (with a new
SharePoint-like color scheme). It’s a welcome upgrade that makes liberal use of
Asynchronous JavaScript and XML (AJAX) technology for a faster overall experience (less
navigation per click).

The new Report Manager also includes a new SharePoint-style context menu for each
folder item. This works in a manner similar to what happens when you click a list item in
a SharePoint site. These context menus offer actions that you can take without navigation,
depending on the type of item you select. Not surprisingly, the new Web UI seems to work
best with Internet Explorer because the context menus do not work with Firefox (as tested
with Firefox 3.6).

Report Manager now allows you to administer report models (used with Report Builder
reports, covered in this chapter in the “Report Builder” section), model security, and click-
through reports.

SSRS 2008 includes a new web service (a.k.a. endpoint), ReportService2010.asmx, which
subsumes all the functionality of ReportService2005.asmx and ReportService2006.asmx.
It supports all the new features discussed in this section.

SharePoint Integration Improvements

SSRS 2008 brings tighter integration with SharePoint. It includes the following:

. A set of SharePoint application pages for administering SSRS content (that is, Report
Manager functionality), viewing reports, configuring report settings, and running
Report Builder

. Support for data-driven subscriptions for reports that live in a SharePoint library

. A new Add-In for SharePoint Technologies, which provides a web GUI that includes
job management pages and enables you to view or cancel running reports

. The ReportService2006 and ReportService2010 web services, which include several
new methods that permit programmatic management of SSRS under SharePoint-inte-
grated mode

. Support for using a SharePoint list as a report data source (an eagerly awaited
enhancement)

. New capability to manage SSRS in SharePoint-integrated mode using
ReportService2010.asmx

NOTE

SharePoint integration is not covered in this chapter. (SharePoint components are
installed separately using a SharePoint utility called STSADM.exe.) For more informa-
tion, see the MSDN article “Viewing Reports with SharePoint 2.0 Web Parts.”

ptg

2178 CHAPTER 53 SQL Server 2008 Reporting Services

TABLE 53.1 New Simple Expression Syntax

Report Item Sample Expression Equivalent Complex
Expression

Built-in field {BuiltInFieldName] =Globals!

BuiltInFieldName.Value

Data source field [FieldName] =Fields!

FieldName.Value

Parameter [@ParameterName] =Parameters!

ParameterName.Value

Aggregate on data source field [StDev(FieldName)] =StDev(Fields!

FieldName.Value)

Literal text (with escaped brackets) \[LiteralText\] [

LiteralText]

Service Changes and Improvements

Because IIS is no longer part of the platform, the Report Server Service now stops and
starts all aspects of SSRS, including Report Manager, the web services, and the background
processing engine (a.k.a., the Scheduling and Delivery Processor). SSRS also includes a new
native authentication layer (as opposed to using IIS for authentication), as well as native
HTTP logging and server memory usage configuration.

For a complete list of which administrative tasks may be performed by which tools, see
the MSDN article “Behavior Changes in SQL Server Reporting Services.”

Programming Enhancements

SSRS 2008 R2 includes a number of enhancements to the VB.NET script used in expres-
sions, as well as to the report rendering engine.

New Simple Expression Syntax
Report expression syntax has been reorganized into two logical groups: simple and complex.
Complex expressions are simply the Visual Basic .NET (VB .NET) expressions you’ve used
for years. Simple expressions are a new kind of syntax, allowing for shorthand expression
of simple values. For example, instead of expressing a ProductID field value as
Fields!ProductID.Value, you can now express it simply as [ProductID]. Simple expres-
sion syntax is summarized with examples in Table 53.1 (complex expressions are summa-
rized in Table 53.3).

ptg

2179Reporting Services Architecture
5

3

Enhancements to Expressions
You may now create expressions that perform aggregation of an aggregate—for example,
=StDev(Sum(Fields!Stocks.Price)).

The expression engine includes the following new global variables:

. RenderFormat.Name—Returns the name of the current rendering format. You use
it in expressions to produce different output behavior depending on the rendering
format.

. PageName—Returns the name of the current page.

. OverallTotalPages—Returns the total number of pages in the entire report.

. OverallPageNumber—Returns the current absolute page number (not impacted by
page number resetting).

The expression engine includes the following new functions that operate on datasets
structured as rows of name-value pairs:

. Lookup—Given two datasets whose rows hold a one-to-one relationship, looks up a
single value from a sibling record (by field name and matching value), just as you
would when doing a T-SQL JOIN. This function returns a single value.

. LookupSet—Works similarly to Lookup, except that you use this function when
your datasets hold a one-to-many relationship. It returns the matching set of corre-
sponding values.

. MultiLookup—Works just like Lookup (on datasets that hold a one-to-one relation-
ship), except that it returns a matching set of corresponding values.

New Report Customization Extension
SSRS includes a new Report Customization Extension (RCE), enabling developers to alter
the RDL stream on the fly. This feature is implemented as a processing event into which
you can wire your custom RDC code to change the layout, language, and so on. (This
topic is not covered in this chapter.)

Reporting Services Architecture
When referring to SSRS as a platform, we are actually talking about a cohesive set of devel-
opment tools, configuration tools, web services, applications, and utilities, all working
together to deliver enterprise-grade reporting.

In a nutshell, the platform includes the following components:

. A single Windows service, listed in the Windows Service Control applet as SQL
Server Reporting Services (InstanceName), which acts as a host for and provides
centralized control of SSRS’s background processing engine, web services, and Report
Manager web application. It also handles encryption and decryption of stored
credentials and connection information.

ptg

2180 CHAPTER 53 SQL Server 2008 Reporting Services

. Two databases, known as the Report Server catalogs (note that the following are
their default names; you can name them whatever you want using the Reporting
Services Configuration Manager, or RSCM):

. ReportServer—Stores all reporting objects, including reports, security
settings, schedules, subscriptions, snapshots, users, configuration settings, and
encryption keys.

. ReportServerTempDB—Stores ephemeral report data (sometimes called
intermediate processing products), such as cached reports, session and execution data.

. Four .NET web services, which serve as SSRS’s programmatic APIs:

. ReportService2005.asmx—Provides methods for managing all aspects of
an SSRS instance configured in native mode.

. ReportService2006.asmx—Provides methods for managing all aspects of
an SSRS instance configured in SharePoint-integrated mode.

. ReportService2010.asmx—Subsumes functionality of
ReportService2005.asmx and ReportService2006.asmx.

. ReportExecution2005.asmx—Provides methods for custom report render-
ing and execution.

. Three command-line applications, all located in %PROGRAMFILES%\Microsoft SQL
Server\100\Tools\Binn:

. RSKeyMgmt.exe—Provides encryption management for securing database-
stored Report Server content, such as credentials, connection strings, accounts,
and the encryption key itself. This tool is also used to join servers in an SSRS
farm configuration (via the -j option).

. RS.exe—Enables developers to write scripts in VB .NET that leverage the web
service APIs.

. RSConfig.exe—Enables you to programmatically change SSRS configuration
values in RSReportServer.config (the configuration file for the web service
APIs), either on a single or multiple machines.

. Report Manager, an administrative website that provides Web-based control over
SSRS, including the ability to

. Add or remove, organize, configure, and run all kinds of SSRS objects, including

. Reports, report resources, data sources, shared datasets, report parts,
and folders.

. Report models and data source views (used with Report Builder).

. Administer the SSRS security model, including

. Users and roles.

. Role assignments (remember to keep these simple).

. Manage

. Report snapshot, history, and caching configuration.

. Schedules, subscriptions, and related settings (Note: SQL Agent must be
enabled for automated report execution).

. Report execution timeout duration.

ptg

2181Installing and Configuring SSRS
5

3

. Reporting Services Configuration Manager (RSCM), a configuration GUI application
(covered in detail in the following section).

. A suite of SharePoint Web parts, pages, and documentation.

. Report Builder, a ClickOnce application for designing and executing ad hoc reports.

. BIDS, which includes Report Designer; Model Designer; specialized tool windows;
and other capabilities for report development, testing, and deployment.

. Two Microsoft .NET Report Viewer controls (one for ASP.NET, one for Windows
Forms), for integrating reporting in custom applications. Report Viewer offers a rich
programming interface for controlling report execution and interactivity and is
available for C#, VB .NET, and the other .NET languages.

. The Report Viewer control is capable of processing SSRS reports using two modes:

. Local—Using this mode, report processing happens in your application,
meaning that SSRS is not required to run your application’s reports.

. Remote—Using this mode, report processing happens via the Report
Server web services.

. A Windows Management Instrumentation (WMI) provider, which exposes a set
of WMI interfaces that programmers can use to configure the Report Server or
build other configuration utilities.

Figure 53.1 provides a tiered view of the SSRS architecture, illustrating each platform
component.

In the next section, you learn how to install SSRS, where to find each installed component
on your file system, and how to use RSCM to optimally configure your installation of SSRS.
After configuring SSRS, we move on to report development with BIDS and Report Builder.

Server Workstation

Business User

/Reports
(ReportManager,

ReportBuilder)

/ReportServer
(Web Service

APIs)

Command-line and GUI

URL Reservations
(via http.sys)SQL Server DE

Service Control

RS Config,
Encryption, and
Scripting Utils

ReportBuilder,
subscriptions

API:
Web References

Visual Studio
(Other

Editions)

Command
Line

Utilities

BIDS .NET and SP
Components

Report Viewer:
IE, FireFox, Chrome

RS Windows
Service
(SSRS)

ReportServer

ReportServer
TempDB

FIGURE 53.1 SSRS Tiered Architecture Diagram.

ptg

2182 CHAPTER 53 SQL Server 2008 Reporting Services

FIGURE 53.2 Selecting SSRS on the Feature Selection installation step.

Installing and Configuring SSRS
When you launch the SQL Server installer, the setup application checks the prerequisites
on your system to determine whether SSRS can be installed without issue. If your system
meets all the requirements, you may proceed, following the steps described in the follow-
ing sections.

The Installation Sequence

To install SSRS, you need to run the SQL Server installer and be sure to check the
Reporting Services check box on the Feature Selection installation step, as shown in Figure
53.2. (Note that the figures in this section show the installation screens as they appear
when adding the SSRS feature to an existing SQL Server instance.)

Next, on the Server Configuration step (illustrated in Figure 53.3), select an account to use
for the SSRS Windows service. You can use NETWORK SERVICE (an okay choice), or create
and use a dedicated account (recommended).

ptg

2183Installing and Configuring SSRS
5

3

FIGURE 53.3 Configuring the SSRS Windows service account on the Server Configuration
installation step.

When you reach the Reporting Services Configuration mode selection step (illustrated in
Figure 53.4), you have up to three configuration options, depending on your server’s
configuration:

. The installer detects if SharePoint is running on the target server. If it is, you have
the option of installing SSRS in SharePoint-integrated mode (otherwise this option is
grayed out) and having it automatically configured with the default settings.

TIP

Accepting the default installation settings means that setup creates and sets up the
database catalogs, configures the web service URLs, installs all needed files and
Registry settings, and sets up all necessary security settings and permissions. The only
configuration option you have in this scenario is selecting the Windows service account.

. You can install SSRS in native mode and have it configured with the default settings

. You can install SSRS but not configure it. For this example, you should make this
selection because the next learning task is how to use RSCM to configure SSRS.

ptg

2184 CHAPTER 53 SQL Server 2008 Reporting Services

FIGURE 53.4 Choosing an SSRS configuration mode during installation.

In this scenario, Setup copies all necessary files, creates the appropriate Registry set-
tings, and sets up the Windows service, but otherwise leaves the Report Server
unconfigured.

In the final step, Ready to Install, the installer shows the name of the new SSRS instance
(you need this later to locate the installed files) and the configuration mode selected (illus-
trated in Figure 53.5). In this example, the installer reports that the SSRS install is being
performed in FilesOnlyMode, meaning that you must use RSCM to completely configure
SSRS after installation completes (or you won’t have a working platform).

Assuming all went well, your next task is to open Windows Explorer and navigate to your
install location to examine what’s on the file system. This might seem like a trivial exer-
cise, but in times of immediate need, it’s critical to know where things live.

File Locations
The root folder you should care about most is %PROGRAMFILES%\Microsoft SQL
Server\MSRS10_5[InstanceName]\Reporting Services.

Below this folder, you find all the items listed in Table 53.2 in their respective locations.

ptg

2185Installing and Configuring SSRS
5

3

TABLE 53.2 SSRS Folder Content

SSRS Item Installation Subfolder

Log files (most importantly,
ReportServerService_[timestamp].log).

LogFiles

Report Manager (SSRS’s administrative website). ReportManager

Location of cascading style sheets (use them to tweak the
look of the Report Manager website).

ReportManager\Styles

Web service APIs (and associated configuration files). ReportServer

Windows service (and associated configuration file). ReportServer\Bin

Report Builder 1.0 (if using SSRS 2008) or Report Builder
3.0 (if using SSRS 2008 R2). Remember, Report Builder
2.0 is a separate download from Microsoft.

ReportServer\Report Builder

Command-line utilities. Found in

%PROGRAMFILES%\Microsoft SQL

Server\100\Tools\Binn

SharePoint web parts. Found in
%PROGRAMFILES%\Microsoft SQL

Server\100\Tools\Reporting

Services\SharePoint

FIGURE 53.5 SSRS Installation, Final Step.

ptg

2186 CHAPTER 53 SQL Server 2008 Reporting Services

SSRS Configuration Using RSCM

RSCM is a comprehensive configuration tool that enables you to perform the following
platform tasks:

. Set up http.sys URL reservations (for Report Manager and the reporting web services)

. Create the SSRS databases (ReportServer and ReportServerTempDB)

. Generate and back up SSRS’s symmetric encryption keys (used for encrypting sensi-
tive data stored in the SSRS databases)

. Configure the SMTP account settings used for scheduled report delivery

. Configure the unattended execution account, used by report data sources that don’t
require authentication (such as images, XML files, and so on)

. Configure multiserver scale-out (for building SSRS web farms that share a common
SSRS catalog)

. Start and stop the SSRS Windows service

. Change the SSRS Windows service account

. View SSRS version information for your instances

You can use RSCM at the end of a custom installation or at any time to change the plat-
form settings. When working with RSCM, you navigate the tree displayed on the left of
the GUI from top to bottom, from task to task, configuring all appropriate settings.

Next, let’s walk through a typical configuration scenario using RSCM. This step is neces-
sary because in the installation example you ask the installer not to configure SSRS.

The first step is to launch the program, located in your Programs menu under Microsoft
SQL Server 2008 R2\Configuration Tools. When RSCM starts, it prompts you for an SSRS
instance to which to connect.

Windows Service Configuration with RSCM
After you connect to your instance, notice the configuration choices available on the left
side of the main window. Click your SSRS instance name (at top left) and ensure that your
SSRS Windows service is running. Keep in mind that the Report Server Windows service is
an essential Report Server component. It needs to be running for reports to be executed
either on demand or offline. You can change its service account and/or password by click-
ing the Service Account node.

Web Service Configuration with RSCM
The Report Server web service exposes the Simple Object Access Protocol (SOAP) interfaces
clients use to interact with the platform.

Using the tree on the left of the screen, click on Web Service URL. On the detail pane
(located on the right side of the main window), under Report Server Web Service Virtual

ptg

2187Installing and Configuring SSRS
5

3

FIGURE 53.6 Configuring the SSRS Web Service URL with RSCM.

Directory, enter ReportServer (or similar) in the Virtual Directory text box (if it is not
already present). This is the directory name users have come to expect.

In the next group box, select an IP address, port, and optional SSL certificate and SSL port.
Save your configuration changes by clicking the Apply button (at bottom right). When the
settings are applied successfully, your window should look something like the one in
Figure 53.6. Click the link located under Report Server Web Service URLs to test your new
virtual path. Keep in mind that later, when you begin developing reports with VS, you
need to enter this service URL on your Report Server project’s properties to be used as your
deployment path (covered later in the section “Deploying Reports”).

The setting changes you make in this area of RSCM are saved to the following file:

%PROGRAMFILES%\Reporting Services\ReportServer\rsreportserver.config

These settings are saved to an XML node that you can locate in the configuration file via
the following XPath:

\Configuration\UrlReservations\Application[Name=’ReportServerWebService’]

Database Configuration with RSCM
As mentioned previously, SSRS relies on two databases: the main store for metadata
(named ReportServer by default) and a temporary store for user sessions (named

ptg

2188 CHAPTER 53 SQL Server 2008 Reporting Services

FIGURE 53.7 Configuring the SSRS databases using RSCM.

ReportServerTempDB). ReportServerTempDB is created in simple recovery mode and doesn’t
need to be backed up periodically because it contains only transient data—data about the
in-flight sessions being actively served by SSRS. ReportServer is created in full recovery
mode; it houses all the critical components of your reporting system. SSRS cannot run
without it.

Click on the Database node in the tree on the left. On the detail pane, click the Change
Database button. On the ensuing Change Database dialog, select the radio button labeled
Create a New Report Server Database. Next, select your target SQL Server instance on the
Database Server dialog. On the next step (Database), enter ReportServer as your database
name and leave the Native Mode radio button selected (unless you are using SharePoint
integration). Click Next.

On the Credentials screen, select the SQL Server instance (local or remote) and login
credentials you want you use for the database account. This account is granted the SQL
Server role RSExecRole on both SSRS databases. This role is critical because it contains all
the permissions necessary for report administration. For convenience, you can make this
the same account you selected for the Report Server service (illustrated in Figure 53.7).

When this process completes, open SSMS and verify that your new databases are present
on your target instance of SQL Server. Next, open Object Explorer and navigate to the
Security\Users node for each database. Check the properties of the user you specified in
your database credentials and ensure that the user is a member of the RSExecRole.

ptg

2189Installing and Configuring SSRS
5

3

FIGURE 53.8 Viewing Report Manager in Internet Explorer.

Report Manager Configuration with RSCM
Click the Report Manager URL node in the tree on the left. In the Virtual Directory text
box, enter Reports or something similar (Reports is the default name for the Report
Manager virtual path). Click Apply and then click the URL link to test that Report
Manager is working properly. Your browser should open to Report Manager, looking some-
thing like the window shown in Figure 53.8 (depending on what works for your particular
system configuration).

Your web settings are saved to rsreportserver.config in an XML node you can locate via
the following XPath:

\Configuration\UrlReservations\Application[Name=’ReportManager’]

Email and Execution Account Configuration with RSCM
If you plan to deliver reports over SMTP (something your users will really appreciate), click
the Email Settings node in the RSCM tree and enter your mail server account settings. If
you plan to use externally stored images or XML data sources in your reports, click on
Execution Account in the RSCM tree and enter credentials for an account that has access
to those file systems.

Encryption Configuration with RSCM
As mentioned earlier, SSRS is capable of securely storing sensitive information (for
example, connection strings to data sources for reports, subscription information) in the

ptg

2190 CHAPTER 53 SQL Server 2008 Reporting Services

SSRS catalogs. To be able to so, it uses the Windows Crypto APIs, which are based on the
account under which the service is configured to run.

When the service is first started and it connects to an empty Report Server database, it
creates a symmetric key used for encryption. It then encrypts this symmetric key with the
public key of the account used to run Report Server Windows services. It then stores the
encrypted keys in the SSRS catalog and uses the keys to encrypt and decrypt data. You can
also use this RSCM screen to manually delete encrypted content, change the encryption
key itself, and restore an existing key.

It’s a good idea to make a password-protected backup file of this encryption key. To do
this, click on the Encryption Keys tree node and then click Backup. Select a file location
and enter your password. Now, if anything should go wrong with your SSRS installation,
you can still decrypt your encrypted data. This capability is quite important because if you
lose your key, there is no way to retrieve it again and all your encrypted data is rendered
inaccessible.

You should always change the service account under which the Report Server service runs
via RSCM because, when you do this, the system needs to back up and restore the
encryption keys as well as make sure the new account has access to the Report Server
database. This explains why you are prompted to save the encryption key when you
perform this operation.

Scale-out Architecture Configuration with RSCM
The final RSCM screen to discuss is the Scale-out Deployment screen. If you plan to deploy
the SSRS runtime components to a number of servers but use only a single SQL Server
instance for SSRS data storage, you’re ready to scale out (although this does require SQL
Server Enterprise Edition). You use this screen to join or unjoin servers to and from your
web farm (you can also use the RSKeyMgmt.exe command-line utility for this purpose).

For a list of the available features in each SSRS edition, see “Compare Edition Features” at
the following URL:

http://www.microsoft.com/sqlserver/2008/en/us/editions-compare.aspx

Developing Reports
Now that you understand the SSRS architecture and your instance of SSRS is properly
installed and configured, you’re ready to dive into report development.

Tools of the Trade

SSRS 2008 provides two primary design tools for building reports and related objects:

. BIDS, a powerful development tool integrated with VS 2008

. Report Builder, a simpler-to-use yet no-less-powerful application for designing ad
hoc reports

http://www.microsoft.com/sqlserver/2008/en/us/editions-compare.aspx

ptg

2191Developing Reports
5

3

NOTE

Report Builder no longer depends solely on logical report models developed using
BIDS, as was the case with version 1.0 (report models are covered later in this chapter
in the “Report Builder” section).

Both tools provide rich graphical design surfaces and allow for a (mostly) WYSIWYG expe-
rience, and you can achieve almost all the same results with either. BIDS, however, is
marketed heavily toward developers, whereas Report Builder is marketed more at advanced
business users.

In practice, Report Builder users usually depend on having at least one hard-core BIDS
developer to lean on, not only for questions on how to work with the platform, but also
to prepare reports, report data sources, and report datasets, and to maintain the manage-
ment system, in order to succeed. As a developer, you really need to master both tools
because your end users will almost certainly bring their Report Builder questions to you.

Report Basics

What is a report? A report is a means of visualizing data derived from one or more sources.
Typically, these sources have always been datasets coming from T-SQL statements or stored
procedures. But with the advent of the mapping features in SSRS 2008 R2 (covered in this
chapter in the section “Working with Maps”), reports can now rely on information stored
in ESRI (geospatial) data files.

A report may

. Display data-bound and non–data-bound controls, offering static and interactive
views on the data

. Include a header, footer, table of contents (called a document map), links, images, and
linear art (lines and rectangles)

. Make use of various layouts, styles, and file formats

. Include sorting, filtering, and grouping functionality (on row data)

. Accommodate input parameters, whose values are passed from user or programmatic
input to your report’s queries

. Reference embedded or externally stored credentials and data sources

All reports are internally described by RDL, an Extensible Markup Language (XML)-based
dialect understood by a variety of design tools available from Microsoft as well as a select
few third parties. (The report file extension is .rdl.)

RDL is a content model describing the report layout, formatting, and instructions on how
to fetch the data. It may also contain custom code written in VB.NET that is executed
during report rendering. You can write such code in two ways:

. Using the built-in functionality provided with SSRS’s VB.NET–style expressions

ptg

2192 CHAPTER 53 SQL Server 2008 Reporting Services

Prepare Data Sources
PersonID

1

2

Joe

Barb

Name

Develop Data-Driven
Reports

Deploy Reports to SSRS
Catalog

Request Reports from SSRS

FIGURE 53.9 Phases of report development.

. Referencing and calling methods against custom or core .NET Framework assembly
classes

(Expressions are covered in this chapter in the section “Understanding Expressions.”)

Keep in mind that you do not need to learn the RDL dialect to develop reports. It becomes
important only when you need to generate or manipulate the markup directly—for
example, when generating your own RDL files from an XML source using XSL for
Transformations (XSLT) or when developing a custom rendering extension.

Overview of the Report Development Process

Generally speaking, report development follows four or five phases (illustrated in Figure
53.9):

1. Preparing your data sources and datasets for use with BIDS and/or Report Builder

2. Designing your report using BIDS or Report Builder—that is, laying out your visual
controls and wiring up the datasets

3. Deploying your reports, report parts, data sources, and shared datasets to the
ReportServer catalog, where they are stored (BIDS and Report Manager both provide
this function)

4. Testing your reports using a supported web browser (Firefox, Internet Explorer,
Netscape, or Safari) via Report Manager or your development tool of choice

5. (Optionally) Securing your reports and setting up data caching rules and a delivery
schedule (both covered later in this chapter)

ptg

2193Developing Reports
5

3

Data Planning and Preparation

The first step in report development is to prepare your data for use with SSRS. Generally
speaking, when you are working with non-file data, this means creating the T-SQL tables,
views, procedures, and functions from which your data sources will retrieve rows. Any
complex logic required to get to report data should happen within the Database Engine,
not within SSRS.

The rule of thumb is to keep complex logic and intricate calculations out of your reports
and to prepare them ahead of time in your sources. A good reason to put this policy into
practice is that, from a maintenance perspective, it will be much easier for you and your
colleagues to modify a report if all that is necessary is to change the underlying T-SQL.
You don’t want to bury your business logic in extensive RDL expressions and embedded
code that will be difficult to find.

Another thought to keep in mind during the data planning phase is to ensure that your
database server is capable of handling the increased data storage and execution loads that
SSRS will bring. Plan and discuss this issue with your database and network administra-
tors.

If your increased loads warrant it, consider the idea of dedicating a separate instance of
SQL Server to SSRS storage and execution, or even a separate machine. In addition, you
might want to build or make use of content available in a data mart or data warehouse;
doing so prevents your reports’ execution from impacting the transactional performance
of your online databases.

Using Shared Data Sources

Unless you use shared data sources, the data source for your report is embedded into its
RDL. This means that when you want to change that data source, you must modify the
report or, at the very least, change its data source properties using Report Manager. If you
don’t use shared data sources, each of your reports requires its own data source, and these
data sources cannot be used by any other report.

It’s truly a best practice to use shared data sources. When the time comes to make a
connection change, you have to look in only one place. Think of how useful (and time-
saving) this will be when you need to test your reports in a development environment
and then run them against production. Save yourself the headache and start using shared
data sources from the onset of your report development.

Using Datasets

Every meaningful report relies on at least one dataset. In SSRS terms, a dataset is simply an
abstraction of some set of source data generated by a query and used within a report.
Datasets remember the data structure of the queries whose output they contain (the fields,

ptg

2194 CHAPTER 53 SQL Server 2008 Reporting Services

field names, field data types, collation, case sensitivity, and so on). Datasets also store the
underlying query used to derive report data from a data source and are aware of any para-
meters needed to obtain that data—for example, in cases where the underlying data
source is a stored procedure.

Every data-bound control on your report needs a dataset from which it will be populated at
report (and query) execution time. In BIDS, datasets are listed in the Report Data window’s
tree listing, and, after you create a dataset, you can simply drag its fields from the tree onto
the appropriate drop zones of your data-bound controls to create a link between the two. In
simple terms, this means that for every row your query returns, an instance of that field is
repeated in the data-bound control. This description is, of course, an oversimplification; you
can slice and dice your data in many other ways, as you’ll soon see.

Using Shared Datasets

New to SSRS 2008 R2, shared datasets further improve the decoupling of report data from
reports. They also encourage reuse and accelerate report execution. A shared dataset is
simply a dataset you define at design time that can then be reused by any number of
reports. You may modify or delete a shared dataset independently of any reports or report
parts that depend on it and vice versa. Using shared datasets prevents the need for re-
creating the same dataset in multiple reports. Redundancy is the enemy of maintainable
code, and using shared datasets prevents you from letting small differences in your under-
lying queries produce inconsistent results (something end users tend to intensely dislike).

Like regular datasets, shared datasets may make use of input parameters. At execution
time, shared dataset output is cached according to unique combinations of parameter
input (much like SQL Server stored procedures). This leads to efficiency gains at report
execution time.

Like reports and other SSRS objects, shared datasets are deployed to the SSRS catalog during
report project deployment. When they are published, you can manage your shared datasets
using Report Manager. You can also modify or delete them using BIDS or Report Builder.
Shared datasets are XML files stored with the .rds extension. You can take the .rds file
created by BIDS and deploy it to other SSRS catalogs by uploading it with Report Manager.

Let’s look at how to create a shared dataset using BIDS.

Creating a Shared Dataset
Once you’ve opened up BIDS and created a Report Server project, open your Solution
Explorer window, right-click the Shared Datasets folder, and then click Add New Dataset.
The Dataset Properties window appears. Select your data source (preferably a shared data
source), and then using Query Designer (or the text window), design or type in a T-SQL
query or EXEC statement (for running stored procedures) that will return at least a few rows.

Click on the Fields tab on the left; here, you can create calculated fields (using expres-
sions), or add, remove, rename, or provide a data type for the fields in your shared dataset.
Using the left navigation tabs, you can also set various dataset options (such as case sensi-
tivity) and add any necessary parameters or filters. When your dataset is set up as you like
it, click OK.

ptg

2195Developing Reports
5

3

The following sample query creates a simple shared dataset that takes one input parameter:

SELECT

BusinessEntityID,

PersonType,

Title,

FirstName,

LastName

FROM Person.Person

WHERE FirstName LIKE @FirstLetter + N’%’

ORDER BY FirstName ON p.BusinessEntityID = h.BusinessEntityID

In the sample project (in the code samples on the CD), you can find this shared dataset
file named sdsPeopleByLetter.rsd.

After saving it, right-click your shared dataset in Solution Explorer; then click Deploy to
publish it to the SSRS catalog. When it is deployed, you can use your new shared dataset in
any report. To do this, right-click the Datasets folder in the Report Data tool window and
then click Add Dataset. On the ensuing Dataset Properties window, select the Use a Shared
Dataset radio button, click on the icon representing your shared dataset, and then click OK.

You can use Report Manager (covered later in this chapter in the section “Using Report
Manager”) to manage your shared dataset: move it to another folder or delete it, change
its caching rules, alter its inherited permissions, switch its underlying data source, and,
most importantly, view a list of all reports that depend on it. Figure 53.10 illustrates how
to accomplish these tasks.

FIGURE 53.10 Managing a shared dataset using Report Manager.

ptg

2196 CHAPTER 53 SQL Server 2008 Reporting Services

FIGURE 53.11 Creating a Report Server Project using BIDS.

Developing Reports Using BIDS

When your data sources are in order, the next step is to create a Report Server Project. This
SSRS-specific project type enables the development and organization of most report
objects. Launch BIDS, and, using its main menu, click File, New, Project. In the New
Project dialog, click the Business Intelligence Projects node in the tree at the left of
the screen; then click Report Server Project under Visual Studio Installed Templates
(shown in Figure 53.11).

When your new project is successfully created, open Solution Explorer, right-click the
Reports folder, and then click Add New Report. This launches the Report Wizard, which
leads you through all essential report-creation steps for building a simple report. If you
want to skip the wizard and get directly to the design surface, choose Add New Item and
then select Report instead of selecting Add New Report.

The first step in the Report Wizard is to create a data source for your reports; this is your
reports’ connection to the database from which it will cull report data. In this case,
connect to AdventureWorks2008R2, the sample database for all the work in this chapter.

If you check the check box labeled Make This a Shared Datasource (on the Select the Data
Source screen), the data source is deployed to the server and can be used by other reports.
When you are deployed to the Report Server, the connection string and credentials are
encrypted using the Report Server encryption keys. Keep in mind that a report can use zero,
one, or several data sources, and a data source can be referenced by one or more datasets.

In the next wizard step (Design the Query), you can either paste a T-SQL statement
(including statements such as EXEC stored_procedure_name) directly into the Query string
window, or you can use Query Builder. Query Builder enables you to select tables and

ptg

2197Developing Reports
5

3

columns, build relationships, and apply filters to your input data. By either means, you
end up with a T-SQL statement that will be created as a report dataset.

When building reports without using the Report Wizard, you always have the same
options of either typing your T-SQL directly or using Query Designer (illustrated in Figure
53.12). This functionality is accessible via the Report Data tool window; you right-click
your data source name and then click Add Dataset to create a new one or click Dataset
Properties to modify an existing one.

The Query Designer supports out-of-the-box queries against SQL Server databases, Analysis
Services cubes, Oracle databases, and any generic OLE DB and ODBC drivers. If your
queries contain parameters, the Query Designer prompts you to provide the necessary
values when you execute the report.

Type or paste the code in Listing 53.1 into the Query string window.

LISTING 53.1 T-SQL Code for a Simple Wizard-Generated Report

SELECT

h.JobTitle,

h.BusinessEntityID,

p.FirstName,

p.LastName

FROM Person.Person p

JOIN HumanResources.Employee h

ON p.BusinessEntityID = h.BusinessEntityID

FIGURE 53.12 Creating a new report dataset using the Query Designer.

ptg

2198 CHAPTER 53 SQL Server 2008 Reporting Services

FIGURE 53.13 Field selections using the BIDS Report Wizard.

When the wizard finishes, it executes your T-SQL and saves the result in a dataset, the
storage container for your report data. You see this new (non-shared) dataset displayed on
the Data Sources Toolbox window after the wizard is complete.

In the next step (Select the Report Type), you can set up your report in either a tabular or
matrix format. For this example, select Tabular and click Next. In the Design the Table
step, you choose which fields to display on the report. The three sections displayed on
this screen are implemented as follows:

. PageFields—added here end up on the top of the report.

. GroupFields—added here create the groupings for your report data (including a
summary row).

. DetailsFields—added here are make up the detail rows for your report.

For this example, add JobTitle to the Page area, skip the Group area, add all the other
fields to the Details area (your window should now look something like the one in Figure
53.13), and then click Next. Choose a color theme for your report, click Next, and, on the
Completing the Wizard step, name your report EmployeesByJobTitle, check the Preview
Report check box, and finally click Finish. Your completed report opens in Report
Designer (RD) with its Preview pane (or the Output tool window) in focus.

Switch to the Preview pane (if not already there) and examine the final report. Notice the
toolbar across the top which enables pagination, skipping to a particular report page,
refreshing the report (rerunning the report query), printing, page layout, page setup, and
export features. If you’re wondering why the page numbers are listed as 1of 2?, the

ptg

2199Developing Reports
5

3

reason is that each report page is rendered on demand (new in SSRS 2008); therefore, the
total page quantity is not known unless you move through all pages or skip to the last
page (using the toolbar or keyboard shortcuts).

Flip through the pages of your report. Notice how each new JobTitle value generates a
new page, with the employees who have that JobTitle listed on that page. To understand
the report settings behind this implementation, click on the Design tab (at the top of the
surface) to switch to Design mode. Notice the Row Groups and Column Groups panes
docked below the Report Designer surface.

The sample report has a single grouping on the JobTitle column. To see how this is set
up, under Row Groups, click the black drop-down arrow at the right of the item named
list1_JobTitle (this is the autogenerated name given to the group). Take note of the
menu actions you can perform:

. Add Group—Allows creation of nested and adjacent groups

. Add Total—Creates a summary total row based on the selected group

. Delete Group—Deletes the selected group

. Group Properties—Shows the Group Properties window, from which you can con-
figure formatting, rendering, sorting, filtering, and other advanced options related to
the selected group

Click the Group Properties menu item; then click the General tab at the left of the screen.
Notice the group expression, [JobTitle], which indicates the field being grouped. Notice
how your report’s page breaks (which are forced on a per-JobTitle value basis) are
controlled via the Page Breaks tab. Sorting (by JobTitle) is controlled on the Sorting tab.
You can also change a number of other options using the remaining tabs.

On the left side of BIDS, notice the (new with SSRS 2008) Report Data Toolbox window. It
provides a hierarchical view of everything related to your report, including data sources,
datasets, report dataset fields, built-in fields, report parameters, and images. Expand the
Built-In Fields node. These fields provide essential data frequently used in reports. You
can drag any field to your report, where it will be instantiated as a text box control whose
content is expressed by the simple expression pertaining to the field name (that is,
[FieldName]). Simple expression syntax is covered earlier in the section “New Simple
Expression Syntax.”

Working with the Tablix

Returning to the report area of the designer, click anywhere on the report itself near the
table. Notice how the GUI changes to a raised appearance? This indicates that your report
is using the new Tablix control. The Tablix replaces the Table, Matrix, and List controls,
providing all their functionality in one. It offers three data region templates (Table, Matrix,
and List) that you drag from the Toolbox tool window onto the report. Take a moment to
open the Toolbox to view these and the other standard controls.

The Tablix offers several important visual clues as to how your report data is organized
with the control. Within its inner border, the innermost grouping for your report is always

ptg

2200 CHAPTER 53 SQL Server 2008 Reporting Services

FIGURE 53.14 Detail group row on the table data region of a Tablix.

indicated by a dark orange bracket. On its outside (gray) border, groupings are indicated
by dark gray brackets, which may be nested depending on your report. Because the Tablix
is so important to report development, let’s examine it a bit further.

Using the Solution Explorer, right-click your project’s Reports folder, select Add, New
Item, and then select Report. Drag the Table data region template from the Toolbox onto
your new report. Create a dataset (use the query in Listing 53.1) and click OK. Your new
table-styled Tablix is bound to your new dataset. Let’s explore this new control a bit.

Stretch out the Tablix to fit the report; then mouse over its right-most bottom cell. (If you
have any difficulty in selecting the Tablix itself [to move or resize it], simply click the
upper-left corner of its border; the Tablix changes its state to reveal its grab handles.)
Notice the tiny table icon that appears in its upper-right corner. If you click it, you can
select the field you want to display in that cell.

A simpler method for setting up a tabular report is to drag each field you want to display
from your dataset in the Report Data window to the Header area of each column in the
report. To add additional columns, simply right-click any column and select Insert
Column; then choose Left or Right. Click on any cell in the bottom row of your Tablix.
Notice how the (gray) outer border contains three horizontal lines? This indicates that the
data bound to that row represents your detail group, meaning that the row data will repeat
once per row (see Figure 53.14; notice the black arrow in the bottom-left corner).

Right-click any column border’s header and then click Tablix Properties. Here, you are
presented with a range of options for how to format your Tablix: you can control its
name, ToolTip, source dataset, dataset filtering and sorting, page breaks, row and column
header repetition rules, and visibility.

Understanding Expressions

You’ve seen some simple expressions (covered in the earlier section “New Simple
Expression Syntax”). Now it’s time to delve a bit deeper into complex expressions. Almost
every property of every reporting control can have its value determined at runtime as the

ptg

2201Developing Reports
5

3

TABLE 53.3 SSRS Complex Expression Examples

Complex Expression Explanation

=Avg(CInt(Fields!FieldName.Value)) Converts runtime dataset values from FieldName
to integer and then sums those values

=”Page “ & CStr(Globals!PageNumber)

& “ of “ & CStr(Globals!TotalPages)

Displays a string such as ”Page N of N”, using
global values (use this in a header or footer row,
or outside a data region)

=IIf(IsDate(Fields!FieldName.Value),

“Yes”, “No”)

If the context value of FieldName is a valid date,
returns the string ”Yes”; otherwise returns ”No”

=CLng(First(Fields!FieldName.Value,

“DataSetName”)) << 3

Casts the first row’s value of FieldName in
DataSetName to a long integer and then left-bit-
shifts that value by 3

result of an expression (either simple or complex). You write expressions using VB .NET
code. This means you can derive the value of almost any writable report property from
contextual report data, built-in or custom function output, .NET assembly method output,
or static content. This is no small statement (no pun intended). Table 53.3 shows some
examples of complex expressions.

You don’t even have to remember these examples to get started; the Report Designer’s
Expression Editor makes it easy to build complex expressions on your own. You can
launch the Expression Editor, shown in Figure 53.15, in two ways:

FIGURE 53.15 Using the BIDS Expression Editor.

ptg

2202 CHAPTER 53 SQL Server 2008 Reporting Services

TABLE 53.4 Reporting Services Controls Summary

Control Data-Bound Purpose Notes

Tablix Yes Displays tables, matrices, and lists via
data region templates; supports multi-
ple hierarchical groupings and header,
footer, and detail rows.

Is new in SQL Server 2008;
subsumes Table, Matrix, and
List controls from SQL
Server 2005 (not displayed
in the Toolbox).

Table Yes Displays tabular data, allowing grouping
of rows.

Is now a Tablix data region
template.

Matrix Yes Displays multidimensional data, allowing
grouping of both rows and columns
(useful for cross-tab data, that is, data
having a variable number of columns).

Is now a Tablix data region
template.

. Right-clicking any cell (or another single control) within your report’s Tablix (or any
other control) and then selecting Expression.

. Selecting the value column for any writable property in the Properties tool window
and then clicking its drop-down box and selecting <Expression...>.

The top half of the Expression window contains the evaluation area where you type your
expressions. It offers IntelliSense (with limited autocompletion) and instant syntax check-
ing. The bottom-left side of the Expression window (labeled Category) offers a complete
list of various expression building blocks, including constants, built-in fields, parameters,
dataset fields, variables, operators, and built-in functions, grouped by type.

Most complex expressions (those that contain something more than a static value) begin
with the equal sign and are built up from there. To use any of these items in your expres-
sion, simply click on a Category on the left and then double-click the item you want to
add to your expression listed under Item, or, in the case of dataset fields, click on the field
in a third list box that appears (named Values). What’s even nicer is that as you single-
click through each item under Item, the Expression window provides a description and
usage example on the right.

Report Design Fundamentals

Every report has three main parts: a body, header, and footer (you can view the header
and footer and control their visibility settings by right-clicking an outer edge of the report
on the design surface). A report body can be a collection of static controls, such as text
boxes and lines, but most useful reports contain at least one data-bound control, meaning
that the control is wired up to a dataset; its contents usually repeat in some fashion rela-
tive to the number of rows in the dataset. Notice that the header and footer cannot
contain data-bound controls. Data-bound controls themselves may contain either data-
bound or non–data-bound controls.

Table 53.4 summarizes all the controls in the Toolbox, with their data-binding require-
ments and some typical uses.

ptg

2203Developing Reports
5

3

TABLE 53.4 Reporting Services Controls Summary

Control Data-Bound Purpose Notes

List Yes Displays report content in a simple
repeating fashion (once per row); by
default, repeats all contained items
(this is tweakable per control).

Is now a Tablix data region
template.

Chart Yes Provides enhanced graphical display of
source data in a wide variety of formats;
is great for visualizing results; supports
financial reporting, accounting, asset
tracking, and so on; supports multiple
series of values; provides 2D or 3D
display (with or without perspective);
internally uses Dundas brand charts.

Provides several new styles
and rendering options
(including 3D); see “What’s
New in SSR S2008” for
details.

Gauge Yes Provides graphical display of KPI or
other single data value; is great for data
dashboards.

Is new in SSRS 2008.

Indicator Yes Illustrates that a data value falls within
a finite set of conditions, values, or
thresholds.

Is new in SSRS 2008 R2.

Data Bar Yes Displays a small, single-bar chart within
a cell.

Is new in SSRS 2008 R2.

Sparkline Yes Displays a small chart that quickly illus-
trates a trend in the data.

Is new in SSRS 2008 R2.

Map Yes Renders geospatial and related analyti-
cal data; includes support for Bing map
tiles; uses SQL geometry or geography
data types; can also use ESRI spatial
vector data files.

Is new in SSRS 2008 R2.

Rectangle No Enables you to lay out reports or other
controls; is good for static grouping.

Is useful when displaying
adjacent controls.

Line No Has primarily visual uses (layouts). Is useful for styling.

Image No Displays images, either embedded
within the report, culled from field data,
URLs, or deployed as resources stored
within the SSRS catalog. Support
formats: PNG, GIF, JPG, X-PNG.

Gives a report a
professional look.

ptg

2204 CHAPTER 53 SQL Server 2008 Reporting Services

TABLE 53.4 Reporting Services Controls Summary

Control Data-Bound Purpose Notes

Subreport No Displays another report on a report;
parameters passed to a subreport
enable drill-through (that is, from one
report to the next); uses subreports to
chunk reports into reusable blocks.

Allows your current dataset
to supply values to a subre-
port as parameters.

Text Box No Displays textual data; supports interna-
tionalization.

Each Tablix data region cell
contains a single text box by
default.

Using the Data Visualization Controls: Sparkline, Indicator, and Data Bar

In the next few examples, we examine the new controls that come with SSRS 2008 R2,
starting with Sparklines.

As mentioned earlier, a Sparkline is a small, easy-to-understand chart that you usually
place inside the text box cell of a grouping row in a Tablix. Sparklines make it easy to see
trends in data at a glance. Most types of Sparklines can be converted to full chart controls
when necessary (except for 3D charts). In the following example, we add a Sparkline to a
new report.

As you’ve done before, right-click your Reports folder in Solution Explorer and then click
Add New Report. As you follow the steps of the Report Wizard, select your shared data
source (pointing to the AdventureWorks2008R2 database) and then enter the T-SQL shown
in Listing 53.2 for your report query.

LISTING 53.2 T-SQL Code for a Sparkline Report

SELECT

h.BusinessEntityID,

e.Gender,

p.LastName,

h.Rate,

h.RateChangeDate

FROM HumanResources.EmployeePayHistory h

JOIN HumanResources.Employee e

ON e.BusinessEntityID = h.BusinessEntityID

JOIN Person.Person p

ON e.BusinessEntityID = p.BusinessEntityID

ORDER BY h.BusinessEntityID, h.RateChangeDate

This query illustrates changes in hourly pay rates for all employees over their entire term
with the company.

ptg

2205Developing Reports
5

3

Continuing with the Report Wizard, choose the Tabular report style and then add all the
columns generated by the query to the detail area of the report (at the Design the Table
Wizard step). Select any color theme, name your report RateChangesByEmployee, and
preview it in BIDS. Switch back to Design view and take the following actions using the
Report Designer surface:

1. Click the left edge of your table to select its last row.

2. Using the Row Groups pane (below your report), click the black arrow for your
grouping (named table1_Details_Group by default); then click Group Properties.

3. On the General tab, under Group Expressions, click the Add button.

4. In the Group On box, select [BusinessEntityID].

5. On the Filters tab, click the Add button.

6. In the Expression box, type the following: [Count(BusinessEntityID)].

7. Change the Data Type drop-down to Integer, change the Operator value to >, enter
the number 1 in the Value combo box, and then click OK.

8. Click the top edge of your table to select the Gender column; then right-click and
select Insert Column, Right.

9. Show the Toolbar tool window. Then click and drag a Sparkline control into the text
box of the empty cell in the column you just created.

10. Click your new Sparkline control. On the Select Sparkline Type dialog, select the
second Area chart from the left and click OK.

11. Click your Sparkline control again; then click the green plus sign above the Values
box, select the Rate field, and then click OK.

12. Returning to the table, change the expressions for the Rate and Rate Change Data
columns to [First(Rate)] and [Last(Rate)], respectively.

13. Change the header text for the Rate and Rate Change Data columns to Starting
Rate and Final Rate, respectively.

14. Preview the report; the result should look something like that shown in Figure 53.16.

In the next example, we examine the Indicator control, new with SSRS 2008 R2. Listing
53.3 illustrates the T-SQL for this report. In this report, you use the indicator as an icon
representing the shift worked by a distribution of employees.

LISTING 53.3 T-SQL Code for an Indicator Report

SELECT

e.BusinessEntityID,

p.FirstName,

p.LastName,

s.ShiftID

FROM HumanResources.Shift s

JOIN HumanResources.EmployeeDepartmentHistory h

ON s.ShiftID = h.ShiftID

ptg

2206 CHAPTER 53 SQL Server 2008 Reporting Services

FIGURE 53.16 Sparkline report in Preview mode.

JOIN HumanResources.Employee e

ON e.BusinessEntityID = h.BusinessEntityID

JOIN Person.Person p

ON p.BusinessEntityID = e.BusinessEntityID

WHERE e.OrganizationLevel = 3

AND e.BusinessEntityID BETWEEN 40 AND 108

ORDER BY p.LastName

Add a new report by following the Report Wizard steps for a tabular report (just as in the
Sparkline report example), using the T-SQL in Listing 53.3 for your query. Name your report
EmployeeShifts, open it on the Report Designer surface, and take the following actions:

1. Click the cell that reads [ShiftID]. Then right-click it and choose Delete to delete
the text box in that cell.

2. Show your Toolbar tool window; then click and drag an Indicator control into the
cell where you just deleted the text box.

3. On the ensuing Select Indicator Type dialog, choose a set of icons that appeals to
you and then click OK.

4. Click your new indicator control. Then, under the Values box, where it reads
(Unspecified), click the black drop-down arrow and then select ShiftID.

5. Preview your report; the result should look something like that in Figure 53.17.

For our next example, we utilize the new Data Bar control. In this simple report, we illus-
trate quantities sold of bicycle parts. Add a new report by following the Report Wizard
steps for a tabular report (just as in the Sparkline example), using the T-SQL in Listing
53.4 for your query. Name your report QuantitiesSold.

ptg

2207Developing Reports
5

3

FIGURE 53.17 Indicator report in Preview mode.

LISTING 53.4 T-SQL Code for a Data Bar Report

SELECT TOP 15

p.ProductID as ID,

p.Name,

p.ListPrice,

SUM(d.OrderQty) as TotalSold

FROM Production.Product p

JOIN Sales.SalesOrderDetail d

ON d.ProductID = p.ProductID

GROUP BY p.Name, p.ListPrice, p.ProductID

ORDER BY SUM(d.OrderQty) DESC

Follow these steps to add a data bar visualization to your report:

1. Click the cell that reads [TotalSold]. Then right-click it and choose Delete to delete
the text box in that cell.

2. Show your Toolbar tool window; then click and drag a Data Bar control into the cell
where you just deleted the text box.

3. On the ensuing Select Data Bar Type dialog, choose a data bar style that appeals to
you and then click OK.

4. Click your new data bar control. Then, under the Values box, where it reads
(Unspecified), click the black drop-down arrow and then select TotalSold.

5. Preview your report; the result should look something like that shown in Figure 53.18.

Deploying Reports
When you are happy with your reports’ content and layout, to make them available to
others, you deploy (also known as publish) them to the SSRS catalog using BIDS or Report
Manager, where they are stored. When you publish a report, its content is validated and
compiled to an internal format in which it is saved. (If the report contains code, it is
compiled into .NET assemblies.)

ptg

2208 CHAPTER 53 SQL Server 2008 Reporting Services

FIGURE 53.18 Data Bar report in Preview mode.

FIGURE 53.19 Deployment settings for a Report Server project in BIDS.

Once in the catalog, reports can be managed, secured, and delivered to end users in a
variety of formats, including HTML, Excel, PDF, TIFF, Word, CSV, Atom, and XML. When
they are deployed, various delivery, caching, and execution options are made available, as
are scheduling and historical archiving, covered later in this chapter.

To deploy a report, you must first specify a Report Server URL in the properties of your
BIDS project (for example, http://[servername]:[port]/ReportServer). Note that this URL must
point to the web service virtual directory, not the main http://[servername]:[port]/Reports
directory, which is only for Report Manager. On the Properties window, you can also
specify the catalog folder for your shared data sources, shared datasets, and report parts,
and whether they are to be overwritten upon redeployment, as well as your target catalog
folder for reports and the startup report for your project. Figure 53.19 illustrates the
project deployment settings for our example.

ptg

2209Developing Reports
5

3

When your reports are successfully deployed, authorized users can execute them using
Report Manager or any other SSRS-integrated tools. To deploy from BIDS, right-click your
Report Server project name in the Solution Explorer and then select Deploy. You might
need to first authenticate (once per user session) to the Report Server because it is secured.

Using Report Manager
Report Manager is organized hierarchically as a folder tree. Using it, you can create, delete,
rename, secure, and organize all your deployed reporting objects, as well as the folders
that contain them. The root Report Manager folder is simply known as Home, from which
all other report objects in the tree descend. Permissions (known as role assignments) are
inherited from parent item to child, and they may be overridden at any level.

Take some time now to explore Report Manager. To do this, navigate to the URL you
configured earlier in the chapter (it should be something like
http://[servername]:[port]/Reports). The layout of Report Manager is fairly straightforward:
site configuration links are at the top right, where you can modify settings, get help, and
(if you have personal folders enabled) view your subscriptions. The main site navigation
enables you to create folders and data sources, launch Report Builder, upload a file to the
SSRS catalog, and change the permissions for the current folder (in this case, Home).

If you’ve created all the sample reports so far, below the main navigation you find icons
representing the folders to which you deployed your report items from BIDS. These folders
correspond to the deployment folders you configured using the Properties page of your
report project. If you hover your cursor over any folder, the outline of a drop-down box
appears. If you click the drop-down, you get the following menu choices (provided you
have adequate permissions): Move, enabling you to move the item; Delete, to delete it;
Security, to set its permissions; and Manage, to view or change its properties. If you click
the name of the item itself, the default action for that type of item is executed. Every
deployed item in Report Manager has a hover menu and primary link. The options offered
by each menu are item specific. Figure 53.20 illustrates how to work with Report Manager.

Navigate around your folders and view the properties for various items, such as your
shared data source, shared dataset, and reports. Next, click the Details View link on the
right side of the toolbar. Notice the new main navigation buttons that appear, allowing
you to move and delete deployed items easily. If your SSRS content is still sparse, a great
way to get started with Report Manager content is to download and install the sample
reports for AdventureWorks2008R2 from www.codeplex.com.

Continuing with Report Manager, click the Site Settings link and then click on the
General tab and configure a different name for your site (notice the company name
displayed at the top of Figure 53.20). On this page you can also control the execution
timeout limit for all reports, the number of report snapshots that SSRS stores by default,
and the ClickOnce URL to launch Report Builder (you can use this to launch a different
version of Report Builder than the default, version 3.0). Snapshots are covered in more
detail in the section “Execution Snapshots.”

www.codeplex.com

ptg

2210 CHAPTER 53 SQL Server 2008 Reporting Services

FIGURE 53.20 Working with Report Manager.

The Security tab in the settings area provides a straightforward means of adding and
removing site users and changing role assignments. The Schedules tab enables you to set
up schedules that you can later apply to report execution and delivery jobs. This chapter
covers a few of these management tasks in greater depth in the section “Management
and Security.”

Using Tables and Hierarchies in Reports
Now that you’ve had a quick tour of Report Manager, it’s time to go a little deeper into
our report development examples.

Let’s say you want to represent an organizational hierarchy in a report (a fairly common
task). Using the BIDS Solution Explorer, create a new report by selecting Add New Item
(don’t use the Report Wizard this time) and naming it EmployeeHierarchy.rdl. Drag a
Table data region from the Toolbox onto the report; then use the query in Listing 53.5 for
its dataset (which is named DataSet1 by default). Note that the OrganizationNode column
in this query is of type hierarchy_id (covered in Chapter 42).

ptg

2211Developing Reports
5

3

LISTING 53.5 T-SQL Code for a Hierarchical Data Report

SELECT

e.JobTitle,

e.BusinessEntityID,

e.OrganizationNode.ToString() as OrganizationNode,

e.OrganizationNode.GetAncestor(1).ToString() as ParentOrganizationNode,

p.FirstName,

p.LastName

FROM Person.Person p

JOIN HumanResources.Employee e

ON p.BusinessEntityID = e.BusinessEntityID

ORDER BY p.BusinessEntityID

Add six new columns to your table control; then, using the Report data tree, drag each
dataset field onto the report. Next, using the Row Groups pane, click the Details drop-down
box and then select Add Group, Parent Group. In the ensuing Tablix Group dialog, select
ParentOrganizationNode in the Group By drop-down box, check the Add Group Header
check box, and then click OK (this group is named Group1 by default). Next, using the Row
Groups pane again, click its Group1 drop-down box; then select Add Group, Child Group.
In the ensuing Tablix Group dialog, select OrganizationNode in the Group By drop-down
box, check the Add Group Header check box, and then click OK. In Design mode, your
report should look something like the one shown in Figure 53.21.

Adding Interactivity
The next step is to add drill-down interactivity. To do this, select the final row in your
Tablix by clicking on its gray border at the left edge of the table. Next, right-click the same
border and then select Row Visibility. On the ensuing Row Visibility dialog, select Hide
using the When the Report Is Initially Run radio button. Check the Display Can Be
Toggled by This Report Item check box; then select Group1 in the drop-down box (see
Figure 53.22).

FIGURE 53.21 A hierarchically grouped report in Design mode.

ptg

2212 CHAPTER 53 SQL Server 2008 Reporting Services

FIGURE 53.22 Changing detail row visibility in a hierarchically grouped report.

FIGURE 53.23 Hierarchically grouped report with toggle in Preview mode.

Save and preview the report. The result should resemble the report shown in Figure 53.23.

By clicking the + and - signs, your users can now expand and collapse the hierarchy.

ptg

2213Developing Reports
5

3

Now that you’ve built a number of reports using BIDS, it’s time to learn how to work with
the other primary reporting tool, Report Builder 3.0.

Designing Reports Using Report Builder

Report Builder (RB) is a report authoring application that enables advanced users to design
and publish their own reports. With this release of SQL Server, users can generate reports
using three different versions of Report Builder (although we recommend using only
version 3.0 for new work) and are free to use data generated by any T-SQL query from any
supported data source, data from report models (built by a database administrator), and
mapping sources.

Report Builder
Report Builder simplifies both the data-retrieval and the layout-design phases of report
building for nondevelopers, although it still helps to have a developer around for configu-
ration and advanced tasks.

NOTE

You cannot work in RB1 with reports developed in RB3, nor can you work in RB1 with
BIDS 2008 report models. RB3 supports all the Toolbox controls described in Table
53.4, and the report authoring experience is similar to the experience of using BIDS,
although a number of new wizards facilitate the process very nicely for nondevelopers.
RB1 is essentially unchanged from previous editions of SQL Server. RB2 is similar in
design and usage to RB3 (although RB3 has a few new features we cover shortly); how-
ever, because RB1 and RB2 may not be supported in future releases, they are not cov-
ered in this chapter.

RB Versions
SSRS 2008 comes bundled with Report Builder 3.0 (RB3) as a ClickOnce application. If you
need Report Builder 1.0 or 2.0, you can still (as of this writing) download either one from
Microsoft. Using a main navigation button on Report Manager, you launch RB3 by click-
ing the Report Builder link on the main menu. You may also install RB3 on a user work-
station as a standalone application you launch via the Windows Start menu.

Installing RB3
When installing the standalone version of RB3, you encounter two options screens:

. Feature Selection—Gives you a choice of file installation location.

. Default Target Server—Prompts you to enter the URL to your installation of the
SSRS web services (shown in Figure 53.24). When RB3 is installed, you can modify
this option by clicking the Office button at the top left of the main UI and then
click Options to open the screen shown in Figure 53.25.

ptg

2214 CHAPTER 53 SQL Server 2008 Reporting Services

FIGURE 53.24 Report Builder 3.0 Default Target Server screen.

FIGURE 53.25 Report Builder 3.0 Options screen.

By default, the executable program (MSReportBuilder.exe) is located in the following folder:

%PROGRAMFILES%\Microsoft SQL Server\Report Builder 3.0

You can run this program via the menu shortcut located in the Windows Programs menu
under

Programs\Microsoft SQL Server 2008 R2 Report Builder 3.0

ptg

2215Developing Reports
5

3

Getting Started with RB3
When you run the RB3 application the first time, the main window appears as shown in
Figure 53.26.

As you can see, RB3 comes with a number of new wizards that make it easy for you to
create reports that use tables, matrices, charts, and maps, as well as create datasets and
blank reports (you learn how to use the Map Wizard a bit later in the section “Working
with Maps”).

If you’ve been following along with all the examples in this chapter, you’ll notice that the
RB3 UI includes many of the same features as the BIDS Report Designer, including the
Report Data tool window (which you can use just as you would with BIDS to work with
data sources, datasets, built-in and custom fields, images, and parameters), Row Groups
and Column Groups designer panes, rulers, Properties window, and right-click menus. Of
course, the big difference is the implementation of the Office Ribbon bar and associated
wizards, which make it very easy to build your report. Plus, with RB3, you also get the
new Report Part Gallery (report parts are covered in the section “Using Report Parts”).

FIGURE 53.26 Report Builder 3.0 first run UI (new item screen).

ptg

2216 CHAPTER 53 SQL Server 2008 Reporting Services

TABLE 53.5 RB3 Ribbon Bar Features by Tab

Features Uses Tab Tab Group

Run report Execute your report against the target
server

Home Views

Cut, copy, paste Move report items Home Clipboard

Styling Format report text, paragraph, and border
styling

Home Font, Paragraph,
Border

Numeric formatting Style numbers displayed in reports Home Number

Control positioning,
cell structure

Change z-order index and relative alignment
of report controls; merge and split cells

Home Layout

Report controls that
use data regions

Insert Tablix data regions (Table, Matrix, and
List) into reports; includes wizards for easy
generation

Insert Data Regions

Graphical data-
bound report
controls

Insert Chart, Gauge, Map, Data Bar,
Sparkline, and Indicator controls into
reports; includes some wizards for easy
generation

Insert Data
Visualizations

Non–data-bound
report controls

Insert Text Box, Image, Line, and Rectangle
controls into reports

Insert Report Items

Subreport control Insert Subreport controls into reports Insert Subreports

Header & footer Control visibility of report header and footer Insert Header & Footer

Visibility settings Toggle visibility of all designer tool windows
and panes, including the (new with R2)
Report Part Gallery

View Show/Hide

Design Return to Design mode when running a
report

Run
(appears
on the
Ribbon
whenever
you run a
report)

Views

Zoom Zoom in or out Run Zoom

Take a few minutes to explore the different sections of RB3’s Ribbon bar. Table 53.5
summarizes all its features.

ptg

2217Developing Reports
5

3

TABLE 53.5 RB3 Ribbon Bar Features by Tab

Features Uses Tab Tab Group

Page navigation Move from page to page and back, refresh
report, stop execution

Run Navigation

Printing Manage print setup and layout options Run Print

Exporting Export a report to a file in any of the
supported formats

Run Export

Parameters, Table
of Contents (TOC)

View the document map (the report’s table
of contents), and any report parameters

Run Options

Searching Locate text within the report Run Find

Let’s start using the RB3 designer surface. To begin, click to highlight the text that reads
Click to Add Title; then enter Sales by Product. Click the Save button at the top left.
Notice how the ensuing Save As Report dialog actually shows you the folders as they are
organized in your Report Server catalog (illustrated in Figure 53.27). This dialog provides a
view of the server folder hierarchy, not your local file system as you might expect. Double-
click an appropriate folder, enter a report name, and then click Save.

Returning to the designer, click the Insert Ribbon bar menu item; then click the Chart
button and select Chart Wizard. On the first step of the Chart Wizard, select the radio
button to create a new dataset. On the next step, click the Browse button and navigate to
your shared data sources folder. Then select the shared data source that you created and

FIGURE 53.27 Viewing SSRS folders using Report Builder 3.0’s Save As dialog.

ptg

2218 CHAPTER 53 SQL Server 2008 Reporting Services

deployed in a previous example. Click Next and then set up the appropriate credentials to
access your instance of SQL Server. Then click Next.

The UI in the next step (Design a Query) is built to visually represent in a logical structure
the tables, views, and stored procedures in your selected database. On the left, database
objects are grouped by schema name. On the right, the fields you select from these objects
are added to your query, as well as the appropriate relationships and any filters you want
to apply to your data.

Using the Database View panel, expand the Sales schema node; then expand the Tables

node and make the following selections: from SalesOrderHeader, check the boxes next to
the SalesOrderId and OrderDate columns. From SalesOrderDetail, check SalesOrderId,
ProductID, and OrderQty. Now, scroll up to the root of the tree and expand the Production

schema node. From the Product table, check the ProductID and Name columns. Click the
Run Query exclamation point button. Your Design a Query window should now look
something like the one in Figure 53.28.

When you click Next, a dialog pops up, telling you that the relationship between
SalesOrderDetail.ProductID and Product.ProductID could not be detected. This makes
sense because the relationship is only implied in the physical model. Accept the dialog or
cancel it (either choice does the same thing); then click the Edit as Text button to view
the T-SQL being generated. Add a JOIN clause to the query and the other statements
shown in Listing 53.6 to make your T-SQL match. When finished, click the exclamation
point button again to make sure your query is correct (as shown in Figure 53.29); then
click Next.

FIGURE 53.28 Report Builder 3.0’s Design a Query window in Graphical mode.

ptg

2219Developing Reports
5

3

LISTING 53.6 T-SQL Code for a Report Builder 3.0 Chart Report

SELECT DISTINCT

o.ProductID,

p.Name,

o.OrderQty,

DATEPART(Month, h.OrderDate) as SalesMonth

FROM Sales.SalesOrderDetail o

JOIN Sales.SalesOrderHeader h

ON o.SalesOrderID = h.SalesOrderID

JOIN Production.Product p

ON p.ProductID = o.ProductID

WHERE p.Name LIKE ‘Sport%’

ORDER BY o.ProductID, DATEPART(Month, h.OrderDate)

On the ensuing Choose a Chart Type screen, select Column and then click Next. On the
Arrange Chart Fields screen, drag and drop SalesMonth from the Available Fields list box
to the Categories panel; then drag and drop Name to the Series panel and OrderQty to the
Values panel and click Next. Select a chart style; then click Finish. Stretch out your chart a
bit on the designer and then double-click it to edit the following text items: chart title,
categories axis text, and series axis text. Now, right-click the chart control, select 3D

FIGURE 53.29 Report Builder 3.0’s Design a Query window in T-SQL Edit mode.

ptg

2220 CHAPTER 53 SQL Server 2008 Reporting Services

Effects, and then check the Enable 3D check box. Click OK, save, and then run the report.
The result is shown in Figure 53.30.

Using Report Parts
Best practices dictate that you use shared data sources and shared datasets to achieve
maximum reuse and centralized distribution of your report data. Report parts take this a
step further, enabling you to deploy the charts, tables, gauges, and other data visualization
controls you create on one report to be reused on any other report. You no longer have to
rely on using subreports to create reusable chunks of report functionality, although report
parts do not render subreports obsolete; they still have their place in the Toolbox.

You can start using this new feature by publishing the report parts that live in the chart
example you just completed. Using RB3, click on the Office button (top left of the applica-
tion UI) and then select Publish Report Parts. On the ensuing Publish Report Parts dialog,
click the first button to publish all report items (those that may become report parts) or
click the second button to review your report parts before publication. The report controls
that may become report parts are charts, data bars, Sparklines, gauges, indicators, images,
lists, maps, matrices, report parameters, rectangles, tables, and shared datasets. As illus-
trated in Figure 53.31, the Select Report Parts to Publish step lists the publishable items,
and you may check any combination of those you would like to publish. Check both the
dataset and chart. Checking the dataset’s check box automatically turns the report’s
(formerly embedded) dataset into a shared dataset on deployment. Click the Publish
button; then click Close.

FIGURE 53.30 Rendered 3D chart report using Report Builder 3.0.

ptg

2221Developing Reports
5

3

When publication is complete, return to the main designer and click on the Report Part
Gallery tool window tab, located at the far right (docked with the Properties window).
Click its magnifying glass icon to search for all published report parts (excluding datasets;
they are not displayed in the gallery). Notice how the results grid displays a thumbnail of
the chart you just created (shown in Figure 53.32). You (or any other privileged user) can
now drag your chart from the Report Part Gallery onto the designer surface and reuse it.
Keep in mind that anyone can reuse report parts as-is or modify them at will (provided he
or she has the appropriate permissions).

FIGURE 53.31 Selecting report parts to publish using RB3.

FIGURE 53.32 Using the Report Part Gallery in RB3.

ptg

2222 CHAPTER 53 SQL Server 2008 Reporting Services

After you modify a report part, you can then choose to republish it with your changes,
overwriting the current version of the same. Note that this does not change the instances
of the report part that live on other reports; those reports continue to use the version of
the report part they dragged from the gallery when those reports were designed. In
contrast, any new report that uses that report part for the first time gets your updated
version from the gallery.

When the report’s designer who used your report part (in its original state) opens the
report at some future date in RB3, RB3 checks the SSRS catalog to see whether the report
has been updated since the report was last opened. Because you updated and overwrote
the original version of the chart, the designer is presented with the option to either accept
your latest changes or continue using the version of the chart he or she originally added
to the report. The designer can also check at any time to see whether any updated
versions of the report parts on his or her report are available by clicking the Office button
and selecting Check for Updates. An interactive information bar appears just below the
Ribbon, indicating whether any report parts used in the current report have available
updates. It is then up to the designer to accept or ignore any new versions.

Returning to report building, let’s keep the momentum going by quickly creating a map
report.

Working with Maps
To create a map report, start by clicking the Office button and then selecting New. On the
ensuing New Report or Dataset screen, click the Map Wizard button; then click Create at
the bottom right. Click Next. Then, on the Choose a Source of Spatial Data screen, select
the SQL Server Spatial Query radio button. Then click Next. On the following screen,
select the Add a New Dataset radio button and then click Next. Select the shared data
source you created earlier and then click Next. On the Design a Query screen, click the
Edit as Text button and then paste the following into the text area: EXEC
Person.GetSampleSpatialData. Before proceeding to the next step, launch SSMS, connect
to your data source, open new query window, and execute the T-SQL shown in Listing
53.7. Click the exclamation point button and then click Next.

LISTING 53.7 T-SQL Code for a Report Builder 3.0 Map Report

use AdventureWorks2008R2

go

CREATE PROC Person.GetSampleSpatialData

AS

DECLARE @T TABLE

(

Quantity int,

StateProvinceName nvarchar(50),

StateProvinceCode char(2),

Location geography

)

ptg

2223Developing Reports
5

3

INSERT @T

SELECT

SUM(d.OrderQty) Quantity,

s.Name,

s.StateProvinceCode,

NULL

FROM Sales.SalesOrderHeader h

JOIN Sales.SalesOrderDetail d

ON h.SalesOrderID = d.SalesOrderID

JOIN Sales.SalesTerritory t

ON t.TerritoryID = h.TerritoryID

JOIN Person.Address a

ON a.AddressID = h.ShipToAddressID

JOIN Person.StateProvince s

ON s.StateProvinceID = a.StateProvinceID

WHERE t.CountryRegionCode = ‘US’

GROUP BY s.StateProvinceCode, s.Name

UPDATE @T

SET Location = a.SpatialLocation

FROM @T as t

JOIN Person.StateProvince s

ON s.StateProvinceCode = t.StateProvinceCode

JOIN Person.Address as a

ON a.StateProvinceID = s.StateProvinceID

SELECT * FROM @T

Execute your new stored procedure in your query window. Examining the dataset, you can
see that it has four fields:

. Quantity—Contains the sum of all product orders for each state

. StateProvinceName—Contains the full English name of each state

. StateProvinceCode—Contains the two-letter code for each state

. Location—Contains SQL geography data-typed point data for each state

The Map Wizard is aware of which fields in your underlying query contain spatial data—
data stored in a geography (in this case) or geometry-typed column. In our stored proce-
dure, we pull spatial data from Address.Location, so we can use those locations as
points on our map of the United States. This meets the spatial data requirement for the
map control.

At the top of the Choose Spatial Data and Map View Options screen, notice how the
Location column has already been selected as the spatial field that the map control will
use. It also recognizes that Location holds point rather than line or polygonal values.

ptg

2224 CHAPTER 53 SQL Server 2008 Reporting Services

Check the check box near the bottom that reads Add a Bing Maps Layer; then select Road
in the Tile Type drop-down. Integration with Bing Maps will surely give your reports a
visual edge over the competition. Notice the new reporting term used on this check box,
layer. You can think of maps as collections of z-ordered layers of information. You can add
layers to illustrate regions, points, place names, pictures, icons, roads, terrain, perspective,
or just about anything else you can conceive of.

Click Next; then, on the Choose Map Visualization screen, click the Bubble Map button
and then click Next. On the ensuing Choose the Analytical Dataset screen, select the
Choose an Existing Dataset radio button and then click on your dataset (usually, it is
named DataSet1). Our analytical data illustrates relative numbers of product sales by state;
that is, we are relating relative integer values to points in space. Click Next, and, on the
ensuing Choose Color Theme and Data Visualization screen, pick a color theme you like
(Ocean looks nice). Then make sure the Use Bubble Sizes check box is checked and that
the Data field shown in the drop-down contains the simple expression [Sum(Quantity)].
This field is taken directly from the sample dataset. Check the Use Bubble Colors check
box, ensure that the data field expression is the same as before, ([Sum(Quantity)]), and
then pick a color you like and click Finish.

When you return to the RB3 UI, change the title text for the report to something more
meaningful and then run the report. Afterwards, save the report and then look at it using
Internet Explorer in Report Manager. No doubt, your users will be very impressed with the
result, illustrated in Figure 53.33.

Returning to RB3, switch back to Design mode and then click twice on your report’s map
control. The Map Layers dialog (appearing against the right edge of the map) functions
much like the Layers palette you may have worked with in Adobe Photoshop. It enables
you to perform the following tasks:

. Show or hide layers

. View layer properties

. Add new layers (either using a wizard or manually)

. Delete layers

. Reorder layers (around the z-index)

. Zoom in or out on the map (especially useful when using Bing Map layers)

. Nudge the map in any direction

Using the context menu for each layer in the Map Layers dialog, you can also do the
following:

. Add or delete layers

. Add or remove a map legend or title

. Show or hide the distance or color scale

ptg

2225Developing Reports
5

3

FIGURE 53.33 Viewing a map report designed with RB3 in Report Manager.

. Cut, copy, or refresh a layer

. Set up rules for how point colors or sizes are displayed

We mentioned earlier that maps can also consume nonrelational data sources, such as
ESRI spatial data files. A few great public sources of a plethora of these are available:

. From the U.S. Centers for Disease Control and Prevention, at the following URL:
http://www.cdc.gov/epiinfo/shape.htm

. From the U.S. Census Bureau, at the following URL: http://arcdata.esri.com/data/
tiger2000/tiger_download.cfm

Let’s take a quick look at a sample map report that uses an ESRI shape file for a country.
First, obtain an ESRI shape file of your choice and launch RB3. Then, on the start screen,
click Map Wizard and click the Create button. On the Choose a Source screen, select the
ESRI Shapefile radio button, click Browse to locate your shapefile (it will have a .shp
extension), and then click Next. On the Choose Spatial Data screen, add a Bing Maps
layer, zoom the map to your desired size, and then click Next. Choose Basic Map on the
next screen and then click Next. Choose a color theme and then click Finish. Change the

http://www.cdc.gov/epiinfo/shape.htm
http://arcdata.esri.com/data/tiger2000/tiger_download.cfm
http://arcdata.esri.com/data/tiger2000/tiger_download.cfm

ptg

2226 CHAPTER 53 SQL Server 2008 Reporting Services

title text for your map using the designer surface and then run your report. It’s that
simple! The result is illustrated in Figure 53.34.

Working with Report Models
Although the chart and map control examples used here rely on mid-level T-SQL queries,
you can develop reports using a technology that doesn’t require your end users to know
anything about SELECT statements, foreign keys, or the physical structure of a database. To
make this possible, you build what’s known as a report model (RM)—an abstraction of a
database schema (also known as a semantic model) that allows users to work with tables in
logical terms, navigating the relationship hierarchies, instead of writing queries. Under the
hood, SSRS translates the model elements you add to your reports into native database
queries. Other useful features of RMs include column- and row-level security, as well as
drill-through link generation for related entities. When the RM is deployed, business users
can use it to design their own ad hoc reports with RB3.

You design RMs with BIDS, either through an autogeneration process or by using the
revamped Model Designer. To get started, launch BIDS and create a new Report Model
Project (located under the Business Intelligence Projects list on the Add New Project
dialog). In Solution Explorer, notice your new project’s three main folders: Data Source,
Data Source Views, and Report Models. Let’s create one of each.

Right-click the Data Sources folder; then select Add New Data Source. On the Data Source
Wizard’s first screen, leave the first radio button selected; then click the New button and

FIGURE 53.34 A map report using an ESRI shapefile of Israel, designed with RB3.

ptg

2227Developing Reports
5

3

connect to your local instance of AdventureWorks2008R2. After defining and testing your
connection, click OK and then click Next. Name the data source whatever you like; then
click Finish. Your data source is ready for use.

The next step is to create a Data Source View (DSV). RMs require the use of a DSV to access
the subset of tables and views you define. You can include all tables and views if you like,
but keep in mind that the more you expose, the more complex your model, the longer it
takes to generate, the more confused your business users might be. Keep it simple.

Right-click the Data Source Views folder in Solution Explorer and select Add New Data
Source View. On the ensuing wizard screen, select the data source you just created and
then click Next. The Select Tables and Views screen allows you to define the tables and
views available to your RB3 users. For this example, move the following tables from left to
right using the arrow button and then click Next: Product(Production),
ProductReview(Production), and ProductModel(Production). Name your DSV something
like AW08_ProductBasics (rather than the default database name) and then click Finish.

TIP

To be brought into a model, your underlying tables (defined in your DSV) must have
primary keys. RB3 uses primary keys to figure out what represents a logical unit in
the table. Primary keys are not added to RMs during model generation (using BIDS)
by default.

Now, all that’s left is to create your RM. Right-click the Report Models folder in Solution
Explorer and select Add New Report Model. Accept the default selection of your new DSV
and then click Next. On the following screen (Select Report Model Generation Rules), you
can tweak the entities (that is, tables), attributes (columns), roles (relations), and aggregates
that will be created in your new RM (notice the logical modeling terminology used).
Accept the defaults and click Next. On the following screen, you can accept the default
behavior of updating the model statistics and click Next. On the last screen, name your
model AW08_ProductBasicsModel and then click Next. When the model generation
progress bars are all complete, click Finish. Your new RM opens in the BIDS Model
Designer. Click F4 to reveal the Properties tool window.

Take a moment to explore the design surface. Notice the tree on the left that lists your
model’s entities. Click on the Product entity node. In the detail area on the right, notice
the attributes that BIDS generated for the Product. Each attribute has an icon indicating
its type: check boxes for Boolean-valued attributes, the letter a for strings, a calendar icon
for DateTime values, a bracketed group for aggregate results (three vertical dots next to a
curly brace), and a pound sign for numeric or scalar values.

Notice also how some attributes, such as Weight, are expandable nodes. The child nodes
under these are variation attributes, which are based on their parent field. They rely on
expressions, such as MIN(Weight), where Weight is the parent attribute and the value of
the child Min Weight attribute is the lowest weight. Here’s another example: for our
DateTime fields, we have variation attributes for the parent Sell Start Date attribute,

ptg

2228 CHAPTER 53 SQL Server 2008 Reporting Services

including Start Sell Day, Start Sell Year, Start Sell Month, and Start Sell
Quarter (shown in Figure 53.35).

Click on the Start Sell Day attribute and view its properties in the Properties tool
window. Next, click on the ellipses button for its Expression property. This launches the
Formula Designer, which is very much akin to the Expression Editor you learned about in
previous examples, albeit much simplified.

The Formula Designer has two tabs on the left: one for selecting the model object you
want to work with and another containing all manner of functions to run against your
model object. On the right, you have a simplified formula editor, which allows for some
basic operations in your expression, including math, string concatenation, and grouping.

Returning to the Model Designer, scroll down the detail area for your Product entity, until
you see Product Reviews and Product Model. These roles represent your table relation-
ships. Click either role and view its properties. Notice the Binding, Cardinality, and
RelatedRole properties, which store the relationship’s foreign key information, cardinal-
ity, and the name of the other participating role.

If you right-click any object in the detail area, you can regenerate that model object by
selecting Autogenerate. This capability is useful if you make a mistake in a formula or
simply want to start fresh. You can also change the order of the objects in the model (by
selecting Move Up or Move Down), delete or rename the object.

FIGURE 53.35 Viewing an entity’s attributes with Model Designer.

ptg

2229Developing Reports
5

3

Deploying and Managing Report Model Objects
Now that you’re familiar with how RMs work, it’s time to deploy our example. Right-click
your project name in the Solution Explorer and select Properties. Ensure that the value of
TargetServerURL points to the location of your SSRS web services. Ensure that the
TargetModelFolder and TargetDataSourceFolder are the ones where you want these
objects to be deployed from your project and then click OK. Right-click your project
again; then click Deploy.

Launch Report Manager in your browser and then navigate to the folder where you
deployed your RM (this is usually Models). Click on your new model
(AW08_ProductBasicsModel) and view its properties. If you want to hide certain objects
within the RM from certain users, click the Model Item Security link; then click the check
box labeled Secure Individual Model Items Independently for This Model. Then, using the
now-enabled tree control, click the item you want to secure and set permissions using the
radio buttons below the tree. Users who are denied access to model objects won’t even see
the entities in RB3. Even more, if they run existing model-based reports that reference
these entities, the columns to which they lack access are automatically filtered out by the
query generation layer.

Working with Report Models in RB3
Now that your RM is deployed, it’s time to launch RB3 again to create a simple report that
uses it. Start RB3, and when it opens (on the New Report or Dataset window), click the
Table or Matrix Wizard button and then click Create. On the following screen, select the
Create a Dataset radio button and then click Next. On the Choose a Connection screen,
click the Browse button; then navigate to your new Models folder in the SSRS catalog.
Click to select your model (AW08_ProductBasicsModel), click Open, and then click Next
(see Figure 53.36).

FIGURE 53.36 Selecting your report model as an RB3 data source.

ptg

2230 CHAPTER 53 SQL Server 2008 Reporting Services

As you can see, the Query Designer (QD) also supports building a query from an RM. After
you add a field, if you click the Edit as Text button, you see that the QD generates a
Semantic Model Query Language (SMQL) XML document for RMs rather than a T-SQL
query. The RM itself is described by a Semantic Model Definition Language document, and
this is the same SMDL used by the Entity Framework.

The QD’s explorer pane includes the same Entities and Fields areas found on the BIDS
Model Designer surface. The QD also offers a helpful search feature to locate RM objects,
an advanced viewing mode, as well as the capability to create and add new fields to the
RM on the fly.

Drag and drop the following fields into the Design area (top right): Product.Product
Number, ProductModel.Name, ProductReview.Rating (a variation attribute of
ProductReview.Total Rating), ProductReview.Review Date, and
ProductReview.Reviewer Name. Click the Run button (the exclamation point) to verify
that your results resemble those shown in Figure 53.37 and then click Next. On the
Arrange Fields screen, drag any one of the fields into the Values pane and then click Next.
Accept the defaults on the ensuing screen, click Next, choose a color theme, and then
click Finish.

For clarity, Listing 53.8 provides a T-SQL version of the query you just built using the RM.

FIGURE 53.37 Building a report model SMQL query using Query Designer.

ptg

2231Developing Reports
5

3

LISTING 53.8 T-SQL Representation of the Sample Report Model SMQL Query

SELECT

p.ProductNumber,

m.Name,

r.Rating,

r.ReviewDate,

r.ReviewerName

FROM Production.Product p

JOIN Production.ProductReview r

ON r.ProductID = p.ProductID

JOIN Production.ProductModel m

ON p.ProductModelID = m.ProductModelID

Returning to RB3, notice your new dataset in the Report Data pane. Using the design
surface, click once on the auto-created Tablix control, click its drag handle, and then press
the Delete key to remove it. On the Insert tab of the Ribbon bar, click the List control
button; then draw a list data region on the design surface where the table used to be.

Click in the middle of the list to reveal its Tablix borders, right-click its detail group row
(this row has three horizontal lines in its middle), and then select Tablix Properties. On
the General tab, under Dataset Name, use the drop-down to select DataSet1 (the default
name of the RM-based dataset you just created), then click OK. Returning to the Insert
Ribbon bar menu, click on the Textbox control button and draw a text box across the top
third of your list control. Click once on the empty area of your list, right-click your new
text box, and select Expression. For the value of the expression, enter the following and
then click OK:

=”Product: “ & Fields!Product_Number.Value & “ (“ & Fields!Product_Model.Value &

“)” & vbCrLf & “Reviewer: “ & Fields!Reviewer_Name.Value & vbCrLf & “Review Date: “

& Fields!Review_Date.Value

Returning to the Insert Ribbon bar menu, click the Gauge control button; then draw a
gauge that occupies the bottom two thirds of the list control. Select the 180 Degrees North
radial style gauge and then click OK. Right-click the gauge and select Gauge Panel, Scale
Properties. On the Radial Scale Properties dialog, set the Minimum drop-down value to 0
and the Maximum to 5; then click OK. Right-click the gauge again and select Gauge Panel,
Pointer Properties. In the Value drop-down, enter the simple expression [Rating] and
then click OK.

Right-click the designer surface (outside the boundary of the report); then click Remove
Page Footer. Change the title for your report. Then, using the Line control from the Insert
Ribbon menu, draw a line at the bottom of your list (just below your gauge) to separate
list item repetitions during report execution. Your design surface should now resemble the
one shown in Figure 53.38.

ptg

2232 CHAPTER 53 SQL Server 2008 Reporting Services

Save your report to the SSRS catalog and then click Run. Your rendered report should
resemble the one shown in Figure 53.39.

FIGURE 53.38 RB3 design surface with gauge report.

Product: BK-R64Y-40 (Road-55-W)
 Reviewer: Laura Norman
 Review Date: 12/17/2007

Product: PD-M562 (HL Mountain
Pedal)

Reviewer: Jill
Review Date: 12/17/2007

2.6

0

3.91.
3

2.6

0 5

3.91.
3

FIGURE 53.39 Rendered RB3 gauge report.

ptg

2233Developing Reports
5

3

Report Builder and Report Model Security

Security is not limited to running reports in RB3. When you save a report to the catalog,
users can access it through Report Manager. A user who has permissions to view a report
but doesn’t have permissions to one of its fields simply will not see that column when
running the report. This powerful feature is called column subsetting and is specific to
reports using RMs.

Several resources are independently secured when you run reports in the Report Server:

. You can secure the report itself, by setting permissions on the report or inheriting
permissions from the parent folder or the parent’s parent, and so on, all the way up
to the Report Server root folder.

. You can secure the model in the Report Server; this is similar to the way reports are
secured. If a certain user is not granted permissions to a model, he or she can’t see the
model when RB3 starts and can’t build or run reports based on it.

. You can secure the items in the model—for example, entities, fields, and relation-
ships—in addition to securing the model itself.

Keep in mind the following security override rules for models:

. If a certain user has permissions to manage the model, this overrides the permissions
set for any model items in the report. For instance, if Bob is given content manager
permissions on a model, Bob sees all entities and fields in that model, regardless of
the security set for model items.

. Local administrators on the Report Server machine have special permissions in SSRS:
they can view and change security for any resource stored in the Report Server.

Enabling Report Builder

RB3 relies on having a Report Server available. It uses the Report Server to load data
models, run reports, and save and load them from the server. On the other hand, like all
the other SQL Server 2008 services, SSRS is locked down by default. The following sections
describe the changes you need to make to enable RB3 functionality.

Granting Execute Report Definitions: A Global Permission
To start, launch Report Manager, go to Site Settings, and click the Security link on the left
of the page. The list of permissions that appears contains pairs of Windows users or groups
and Report Server security roles. (A security role is a collection of permissions.) Click New
Role Assignment and add your user or group to the System User role. This permission is
required to run reports in RB3.

Setting Model Permissions
To run reports against a model, users need Browser permissions to that model. To set
permissions, in Report Manager, locate your model, click the Security link on the hover
menu, click Edit Item Security, click OK on the confirmation dialog, and add your server
principal to the Browser role.

ptg

2234 CHAPTER 53 SQL Server 2008 Reporting Services

In addition, if you want your users to see the Report Manager home folder, you need to
add their principals to the Browser role in the home folder. Because permissions are inher-
ited, unless inheritance is specifically broken, the members of that group then have
permission to the entire content of the Report Server.

To remove permissions on a specific folder, navigate to it using Report Manager, select
Security on its hover menu, click Edit Item Security, and then remove the respective role
assignments.

Management and Security
SSRS provides a set of useful tools for managing and securing all reporting objects. The
following sections discuss tools and the overall security model in detail.

Securing Reports

As we’ve seen in previous examples, SSRS has a built-in, role-based security system. All
operations done on the server are subject to permissions. Access to SSRS is controlled
through security roles and role assignments.

A security role is a collection of permissions—for example, the permission to create reports
in a folder, the permission to view a certain report or a folder.

A role assignment is a set of permissions represented by the role given to a principal on a
certain report or folder in the Report Server catalog. For example, the permissions on a
folder called Data Sources contain the local administrators group with all permissions
contained in the Content Manager role.

Permissions on folders are inherited to all items present in that folder, unless security
inheritance is intentionally broken and the item is given its own permissions.

Built-in Roles and Permissions
SSRS comes with a set of built-in roles. Each role is a collection of permissions, normally
used in tandem to enable a functional scenario. Following are some of the built-in roles:

. Browser—This role is a collection of read-only permissions that is useful for
navigating the Reporting Services namespace and viewing reports and resources.

. Content Manager—This role is similar to an administrator on the part of the
Report Server where it is granted. A person who has the Content Manager role can
view and change any reports, folders, data sources, and resources and can read and
set security settings in the folders where he or she has that permission.

. Publisher—This role is useful for report authors who need to create and change
reports, folders, and data sources in a specified folder.

. Report Builder—This role can be used for granting permissions needed for
editing Report Builder reports.

ptg

2235Management and Security
5

3

. My Reports—This security role is normally given to each user in his or her own My
Reports folder. It gives each user of the Report Server his or her own place to publish
documents on the server.

The security roles system is fully customizable. You can change or even delete existing
roles, and you can also create new ones. To view and modify these roles, you use SSMS.
Connect the Object Explorer to your SSRS instance and then navigate to the Security,
Roles node. View the Properties page for any role definition to manage its permissions.

Local administrators on the Report Server machine are granted Content Manager permis-
sions at the root of the SSRS catalog, and no one else has any permissions. To make the
Report Server accessible to users, you need to explicitly grant permissions on the folders
you want to make available to them.

System Roles and System Permissions
So far we have talked about permissions only on items in the Report Server namespace:
reports, folders, and data sources. The Report Server also contains a set of server-wide roles
and permissions. They are called system roles, and you can access them using SSMS as
described previously.

As mentioned earlier, system roles are collections of permissions, such as View Shared
Schedules or Execute Report Definitions. These permissions are not specific to a certain
folder or part of the namespace but are global to the entire Report Server installation. A
site permission is a collection of these roles assigned to users or groups. Out of the box,
local administrators on the Report Server box are, by default, given the permissions
contained in the System Administrator role.

To open your system to users, you add Windows users and groups to the site security. As
with normal roles, you can change or delete the built-in system roles, or you can create
other system roles.

Subscriptions

An important advantage to having reports available on a Report Server is that you can use
its subscription features to push reports to users.

You can create subscriptions using Report Manager. Start by publishing a report to the
catalog. Start Report Manager, click the Details View link, hover over a report of your
choice, and then click Subscribe.

The first step in the Subscription dialog is to choose a delivery mode. There are three
built-in delivery methods: email, file share, and null. The null delivery, as its name
suggests, doesn’t deliver anywhere; however, you can use it as a way to periodically load
reports into the Report Server cache. For details, see the section “Report Execution
Options,” later in this chapter.

NOTE

The email delivery extension requires SMTP configuration via RSCM. Subscriptions and
cache refresh plans rely on SQL Server Agent, so it must be running.

ptg

2236 CHAPTER 53 SQL Server 2008 Reporting Services

For this example, choose Windows File Share as the delivery method and fill in the file
name, path, render format, server credentials, and overwrite options. The next step is to
pick a schedule. You can set a schedule just for this report subscription, or you can use a
shared schedule for several subscriptions. Five recurrence patterns are available for
subscriptions: Hourly, Daily, Weekly, Monthly, and Once.

If your report has parameters, you also need to decide which parameter values to supply
when the report is executed as part of the subscription.

One restriction in creating subscriptions is that report data sources must rely on stored
credentials, whether Windows or database credentials. Integrated security and prompted
credentials are not compatible with subscriptions because the actual user isn’t around at
runtime.

Data-Driven Subscriptions
Another way to customize report delivery is through data-driven subscriptions. A dynamic
or data-driven subscription is very useful for delivering parameterized reports to a number
of recipients whose email addresses are stored in a database, for instance. Unlike with a
regular subscription, the recipient’s settings—such as the To or CC address, the title of the
email, and the parameters of the report being run—can all be based on a SQL Server query.
For example, using the AdventureWorks2008R2 sample database, let’s say you want to send
quarterly human resources information reports to all managers at the company.

Suppose you have created a Human Resources report that takes a parameter, the login ID of
an employee. If that employee is a manager, the report displays a list of all employees
reporting to him or her, together with the person’s title, the base pay rate, vacation hours,
and sick leave hours.

You start the Data-Driven Subscription Creation Wizard using Report Manager by clicking
the New Data-driven Subscription button on the Subscription tab for your Human
Resources report. Type a name (such as Send quarterly HR reports to managers) and
select the email delivery extension for the subscription. Then click Next.

On the data source page, use the shared AdventureWorks2008R2 data source you created
earlier. Enter the query shown in Listing 53.9, which selects email addresses and login IDs
for all managers.

LISTING 53.9 T-SQL for a Data-Driven Report Subscription

SELECT DISTINCT

pe.EmailAddress,

e2.LoginID

FROM HumanResources.Employee e

JOIN HumanResources.Employee e2

ON e2.OrganizationNode = e.OrganizationNode.GetAncestor(1)

JOIN Person.Person p

ON p.BusinessEntityID = e2.BusinessEntityID

JOIN Person.EmailAddress pe

ptg

2237Management and Security
5

3

ON pe.BusinessEntityID = e2.BusinessEntityID

ORDER BY pe.EmailAddress

Next, bind EmailAddress to the To field in the email and LoginID to the LoginID parameter
of the Human Resources report. The last step is to choose a schedule for this subscription.

Subscription and Delivery Architecture
Let’s look at what happens under the covers when a subscription is created. The meta-
data for the subscription is validated and stored in the Report Server catalog database. A
SQL Agent job is created, and the schedule specified in the subscription is saved in the
SQL Agent job.

When the time comes, the SQL Agent job fires, inserting a so-called “event” row in the
Report Server catalog. The Report Server matches the event with the information about
the subscribers and sends notifications to the subscribers. The notifications are processed
in the Report Server Windows service; the report is run and delivered to its target.

This architecture allows SSRS to scale very well with the number of subscribers and events.
Because the events are recorded in the catalog database, it also allows for a scale-out
configuration, so you can have a number of services process notifications in parallel, thus
achieving greater scalability.

Report Execution Options

Another very useful feature of SSRS is the capability to cache report content and dataset
data, to display data as of a certain date, to display historical snapshots of those data, to
refresh those snapshots, and to do so on a scheduled basis. The following sections describe
these capabilities.

Live Reports and Sessions
By default, when a report is deployed on the server, it is configured to be run live, or on
demand. Every time a user clicks a report link in Report Manager, the report queries are
executed. The report is processed, filters are applied, sorting is performed, and expressions
are evaluated. Finally, the report is rendered to the desired format and returned to the
user. The binary result of report execution is stored in a format-independent fashion in
the Report Server’s temporary database (ReportServerTempDB). This result is known as a
session snapshot. When you page through a report or export it to a different format, the
session snapshot is used to perform these operations; this way, report queries do not have
to be rerun.

A session snapshot is tied to a specific user, is typically associated with a browser session,
and is generally short lived (on the order of minutes).

Cached Reports
Let’s assume (safely) that report queries take a relatively long time to run and the data to
be displayed doesn’t change very often. In that case, you can set execution options to
cache the report. To do so, in Report Manager, view any report’s properties (hover over it
and select Manage); then click the Processing Options tab at the left of the page. Select

ptg

2238 CHAPTER 53 SQL Server 2008 Reporting Services

one of the caching option radio buttons (other than the default Do Not Cache Temporary
Copies of This Report). When the first user accesses the report, it is executed (as described
earlier), but the resulting snapshot will, from that point on, be saved and then shared
across user sessions. When a second user clicks the report link, instead of the report
running again, the user gets the snapshot that was generated when the first user ran it.

There are two ways to remove a snapshot from the cache:

. After a certain number of minutes of inactivity—This is a “sliding” expiration,
meaning that as long as users navigate to the report, it is kept in the cache. If no one
has requested the report for more than the specified number of minutes, the cache is
expired, and the next report request causes a live execution, which starts another
cache session, and so on.

. On a schedule—This is useful if the data is not valid after a certain date (for exam-
ple, if sales information changes every two weeks), and you don’t want any cached
report to show data older than this date .

Execution Snapshots
Snapshots are an extremely useful bit of functionality: they enable SSRS to fetch a report’s
data, prerender the report ahead of its actual execution time, and then save that interme-
diate format for fast retrieval. If you configure your report to use snapshots, when the
time comes for a user to run it, it will render very quickly because the data has already
been culled from the report’s data sources and stored in ReportServerTempDB. The only
downside is staleness of data, but you can adjust the snapshot creation interval to your
customer’s liking.

If you don’t want your users to run reports against live data (for example, if the queries
are prohibitively expensive or they make sense only for end-of-month sales and the report
should be run only on the first day of each month for the data to be relevant), you can set
the report settings to Execution Snapshot. The Report Server then runs the report on this
schedule. Your users always get the data from this execution snapshot.

The main difference between execution snapshots and cached reports is that cached
reports can run live if the cached data has expired; execution snapshots, on the other
hand, are guaranteed to run only on the specified schedule .

Historical Snapshots
Historical snapshots are useful if you want to keep historical data for your reports. Say that
you want to track all monthly sales reports from month to month. You can configure this
on the Snapshot Options tab on the Report Properties window. You simply set the option
Use the Following Schedule to Add Snapshots to Report History and then create a new or
use an existing shared schedule.

To see historical snapshots, go to Report Manager, click the report, and then click the
Report History tab. Notice the list of historical snapshots taken from the selected report
(you can also create a new snapshot on demand on this screen). When you click a report
on the list, you see the actual report data.

ptg

2239Performance and Monitoring
5

3

Cache Refresh Plans
Cache refresh plans (CRPs) are a new feature in SSRS 2008 R2. As the name implies, a CRP
is a plan that controls when cached shared dataset or report data is to be automatically
refreshed. To create a CRP, view any report or shared dataset in Report Manager; then
hover it and click Manage. On the left, click Cache Refresh Options and then click the
New Cache Refresh Plan button at the top of the page (if you already have a CRP, you can
create a new CRP using the existing one as a baseline). You may get a confirmation dialog
asking if it’s okay to enable caching for the selected item. Answer in the affirmative. On
the ensuing screen, enter a description for your new plan, create a new item-specific
schedule, or use an existing shared schedule; then click OK (ensure that the SQL Agent
service is running before doing so). If you are working with a shared dataset, your steps
are complete. If you are working with a report that has one or more parameters, there is
one more step to consider.

When caching a parameterized report, SSRS needs values supplied for all report parameters
(at least, for those which do not except an empty value). A discrete set of cached report
data is created for every unique combination of input parameter values you specify. Any
errors in input render your CRP inactive .

User-Specific Data Limitations
Cached reports, execution snapshots, and history snapshots all have something in
common: they each allow sharing of report data among users. This means that a given
SSRS instance does not let you use these features with reports that contain user-specific
data. Per-user references in the report include the usage of User!UserID in the report defi-
nition, the use of integrated security in the report data sources, and the Impersonate After
Connection Is Made option for SQL Server data sources .

Performance and Monitoring
SSRS includes a number of performance and monitoring tools: the trace log, execution log,
event log entries for system errors, and a set of performance counters. Also, to improve the
product’s quality, SSRS can send error reports to Microsoft if you opt-in during Setup or by
using the SQL Server Error and Usage Reporting Tool.

SSRS Trace Log

Similar to the SQL Server Database Engine, SSRS writes detailed trace and error informa-
tion, useful for troubleshooting, to a log file, namely:

%PROGRAMFILES%\Microsoft SQL Server\MSRS10_5.[InstanceName]\Reporting

Services\LogFiles\ReportServerService_[timestamp].log

The log file contain three types of events: errors, warnings, and informational messages.
Each entry begins with a prefix that includes the current time stamp, the process and

ptg

2240 CHAPTER 53 SQL Server 2008 Reporting Services

thread used, the type of event, and the message itself. Note that SSRS automatically deletes
trace files older than a certain number of days.

Execution Log

If the level of detail provided in the ReportServerService log file is insufficient for your
needs, you can take tracing to the next level by downloading (from www.codeplex.com) a
T-SQL user database creation script, SQL Server Integration Services (SSIS) package, and a
set of reports.

The SSIS package extracts execution data captured in
ReportServer.dbo.ExecutionLogStorage to a new user database. To monitor execution,
you can periodically run the package. Then you can use the provided reports to discover
which reports your users most commonly run, which take the most time or are the
biggest, or how many of them have succeeded or failed.

SSRS 2008 R2 also includes three new views (since SSRS 2005) in the ReportServer data-
base: dbo.ExecutionLog, dbo.ExecutionLog2, and dbo.ExecutionLog3. The first is essen-
tially a copy of the table removed (from this SSRS edition) by the same name. The other
two are similar, except that they include a new AdditionalInfo xml column joined from
the ExecutionLogStorage table. ExecutionLog3 has two columns renamed from
ExecutionLog2 (ReportPath is now ItemPath, ReportAction is now ItemAction, reflecting
the fact that not just reports are accessed and/or executed).

As with trace log files, SSRS deletes execution log table entries older than two months. You
can adjust the trace level for execution logging by changing settings in the
ReportingServicesService.exe.config file.

For more complete information, see the MSDN article “Querying and Reporting on Report
Execution Log Data.”

Windows Event Log

SSRS writes configuration or internal server errors to the application event log. It also
writes a number of informational messages (for example, when there are changes to the
configuration files). The event log entries are marked with Report Server* as the source.

Performance Counters

SSRS defines a number of performance counters that you can use to measure the perfor-
mance of your system. There are two performance counter categories: MSRS 2008 R2 Web
Service and MSRS 2008 R2 Windows Service. You see a number of counters for each service
and an instance for each instance of Reporting Services running on that machine. For
more details, see the “Monitoring Report Server Performance” topic in Books Online.

www.codeplex.com

ptg

2241Summary
5

3

Summary
This chapter describes the components included in SSRS as well as the product’s overall
architecture. Specifically, it discusses report development, deployment, administration,
security, and delivery.

If you use SSRS, you will no doubt come to appreciate what it has to offer: its power and
simplicity, its open and extensible architecture, and its rich feature set. Today it is easier
than ever to unlock the data from database systems and make it available to business users.

In the next chapter, “Managing Linked and Remote Servers,” you learn how to administer
linked and remote servers.

ptg

This page intentionally left blank

ptg

CHAPTER 54

Managing Linked and
Remote Servers

IN THIS CHAPTER

. What’s New in Managing Linked
and Remote Servers

. Managing Remote Servers

. Linked Servers

. Adding, Dropping, and
Configuring Linked Servers

. Mapping Local Logins to Logins
on Linked Servers

. Obtaining General Information
About Linked Servers

. Executing a Stored Procedure
via a Linked Server

. Setting Up Linked Servers
Through SQL Server
Management

As your databases grow in size, complexity, or geographic
distribution, you might need to spread your data across
multiple servers and locations. You might also need to bring
together disparate data that is not all on one server or is not
all in the same type of data container (Access, Excel, text
files, and other RDBMSs) to fulfill a business need. SQL
Server has long had the capability to perform server-to-
server communication. This can be done using remote
server or linked server capabilities. In versions of SQL Server
prior to 7.0, the only option was to use Remote Procedure
Calls (RPC) and remote servers. An RPC is the execution of
a stored procedure on a local server that actually resides on
a remote server. This capability allows you to retrieve or
modify data that resides on a different SQL Server. The
main drawback, however, is that you cannot join between
tables residing on more than one server using RPCs, nor can
you selectively choose the columns of information you
want to retrieve from the remote server. You get whatever
the stored procedure on the remote server is defined to
return. Linked servers to the rescue! As linked server capa-
bilities were introduced (with SQL Server 7.0 onward), using
the remote servers approach became fairly obsolete because
of their inherent limitations. In fact, remote servers are
supported in SQL Server 2008 for backward compatibility
only. Microsoft has clearly stated that remote servers are
being deprecated in the next release of SQL Server.

SQL Server 2008 provides the capability to link together
servers (of the same or different data containers), allowing
you to join information together across servers or simply
access data on another server. Access to the remote tables
can be to another SQL Server or to any other data source
with an OLE DB provider. You can also define distributed

ptg

2244 CHAPTER 54 Managing Linked and Remote Servers

partitioned views that can pull data together from multiple servers into a single view. For
end-user queries that use these views, it appears as if the data is coming from a single local
table. For more information on distributed partitioned views, see Chapter 27, “Creating
and Managing Views.”

This chapter provides an overview of linked servers in SQL Server 2008 along with a brief
discussion of remote servers. As mentioned earlier, remote servers and RPCs are legacy
features that are still supported for backward compatibility. In other words, you can still
set up and use remote servers and RPCs, but linked servers are much easier to set up and
provide greater functionality. Keep in mind that Microsoft is also telling folks to convert
any remote server implementations they currently have to linked server implementations.
Deprecating remote servers was also announced in SQL Server 2005; however, due to the
outcry from many customers, it was not dropped in SQL Server 2008. You can likely count
on it not surviving another major release, though.

What’s New in Managing Linked and Remote Servers
With SQL Server 2008, there are no significant changes to the linked servers’ capabilities,
and there are virtually no changes in the remote servers area. Of the few changes for
linked servers, the following are the most significant:

. Remote servers are being deprecated, and this means system stored procedures such
as sp_addserver, sp_remoteoption, sp_helpremotelogin, and sp_addremotelogin
will go away.

. System variable @@REMSERVER and server-wide settings such as SET
REMOTE_PROC_TRANSACTIONS will also go away.

. The system stored procedure was introduced, such as sp_setnetname to associate a
remote or linked server name with the network name of the server that is remote
(not local).

. More DATA providers are now certified with Microsoft. This includes flat files, DB2,
Informix, and Oracle providers used with linked servers.

. A bit more tightening has been done on the login/account delegation model that
linked servers utilize.

. For remote servers, RPCs are disabled, by default, with SQL Server 2005 and SQL Server
2008. This greatly enhances the default security of your SQL Server out of the box.

Managing Remote Servers
Remember that remote servers are supported in SQL Server 2008 for backward compatibil-
ity only. (Remote servers are being deprecated!) By definition, a remote server is a server
you access as part of a client process without opening a separate, distinct, and additional
direct client connection. SQL Server can manage the communication between servers
using Remote Procedure Calls (RPCs). Essentially, the “local” SQL Server to which the

ptg

2245Managing Remote Servers
5

4

Remote Server
[SQL08DE02]

SQL Server
2008

Local Server
[SQL08DE01]

Client SQL Server
2008

Results

Connection

Results

RPCs

FIGURE 54.1 The remote server is accessed through the local server. The client has to main-
tain only a single connection to the local server.

client is connected opens another connection to the “remote” server and submits a
remote stored procedure request to the remote server. Execution results are passed back to
the local server, and they are then passed back to the originating client application (see
Figure 54.1).

You call a remote procedure the same way you call a local procedure; the only difference
is that you need to fully qualify the name of the procedure with the name of the server.
This fully qualified procedure name includes the server name node, database/catalog
name node, database owner node, and remote stored procedure name itself. The local
SQL Server recognizes this as a remote procedure, establishes the connection to the
remote server, and executes the stored procedure (remotely). Following is the syntax for a
fully qualified remote procedure call execution:

EXECUTE remote_server_name.db_name.owner_name.procedure_name

Here’s an example:

EXECUTE [DBARCH-LT2\SQL08DE02].[UnleashedRemoteDB].[dbo].[Top10Customers]

Remote servers are more limited in functionality and a bit more time-consuming to set up
than linked servers. The following are the basic steps involved in setting up remote servers:

1. Define the local and remote servers on both servers.

2. Configure each server for remote access.

3. Create logins to be used with the remote servers.

4. Create the login mappings from the local server to the remote server.

5. Grant execute permissions for the remote login.

If you are connecting between multiple SQL Server 2008, SQL Server 2005, SQL Server
2000, or SQL Server 7.0 servers, it is best to set them up as linked servers and not just

ptg

2246 CHAPTER 54 Managing Linked and Remote Servers

remote servers. However, if you need to execute Remote Procedure Calls only or are on a
pre-SQL Server 7.0 server, you need to set up remote servers as described here.

Before we look at an example of a local server connecting to a remote server, let’s first set
up a database, create a sample table, and create a stored procedure to execute on the
remote server. You can grab the CustomersPlusSQLTable.sql SQL script for this purpose
from the CD for this book. The CustomersPlusSQLTable.sql script contains a create
database statement that creates a database named UnleashedRemoteDB, creates a table
named CustomersPlus in this database, and populates the table with about 89 rows of test
data. You should go ahead and grab the script now and execute it on the target remote
server (SQL08DE02 in this example). You need to edit the create database statement
(FILENAME parameter) for your own environment. While you are executing this script, go
ahead and grab the three other scripts you will also need to complete this remote server
section: LocalServerSQL.sql, RemoteServerSQL.sql, and RPCexecution.sql.

Remote Server Setup

You can assume that the local server is called SQL08DE01 and the remote server is called
SQL08DE02 (as shown in Figure 54.1). First, you need to use sp_addserver to add the
remote server name to the system table in the master database if it’s not defined already.
But first, let’s see what servers are already defined at the local server. To do so, you run
sp_helpserver from the local server (SQL08DE01). This provides you with the complete list
of local and remote servers known to this server:

EXECUTE sp_helpserver

go

name network_name status

id collation_name connect_timeout query_timeout

---------------- -------------- --------------------------------

-------------- --------------- -------------

DBARCH-LT2\SQL08DE01 DBARCH-LT2\SQL08DE01 rpc,rpc out,use

remote collation 0 NULL 0 0

You can also see the same information by doing a simple SELECT against the sys.servers
system view:

SELECT * FROM sys.servers

Generally, you don’t need to execute sp_addserver for the local server. This is usually
taken care of during SQL Server installation. The local server has an ID of 0. If you need to
add the entry for the local server, you can specify the local flag as the second argument:

exec sp_addserver [DBARCH-LT2\SQL08DE01], local

You need to execute sp_addserver for each of the remote servers you will access from the
local server. The SQL script LocalServerSQL.sql that you just got from the CD contains

ptg

2247Managing Remote Servers
5

4

these commands. For example, on the local server (SQL08DE01), you execute the following
command to add SQL08DE02:

EXECUTE sp_addserver [DBARCH-LT2\SQL08DE02]

Then, to see this new entry, you again execute sp_helpserver, as follows:

EXECUTE sp_helpserver

go

name network_name status

id collation_name connect_timeout query_timeout

---------------- -------------- --------------------------------

-------------- --------------- -------------

DBARCH-LT2\SQL08DE01 DBARCH-LT2\SQL08DE01 rpc,rpc out,use

remote collation 0 NULL 0 0

DBARCH-LT2\SQL08DE02 DBARCH-LT2\SQL08DE02 rpc,rpc out,use

remote collation 1 NULL 0 0

You now see the newly added remote server entry (with an ID of 1 in this example).

To drop a remote server entry, you need to execute sp_dropserver. For example, on the
local server (SQL08DE01), you execute the following command to drop the SQL08DE02
remote server entry:

EXECUTE sp_dropserver [DBARCH-LT2\SQL08DE02]

If the local server is a 7.0 or later version of SQL Server, you can add the remote servers by
using sp_addlinkedserver:

EXECUTE sp_addlinkedserver [DBARCH-LT2\SQL08DE02]

This command sets up the server for remote stored procedure execution and for direct
data access. (You learn more on this later in this chapter, in the section “Linked Servers.”)

Now, on the remote server ([DBARCH-LT2\SQL08DE02]), you need to define the local server
([DBARCH-LT2\SQL08DE01]) that will be connecting to it. The SQL script
RemoteServerSQL.sql that you just got from the CD contains these commands:

EXECUTE sp_addserver [DBARCH-LT2\SQL08DE01]

You also need to verify that each server (both the local and remote servers) allows remote
connections. This is the SQL Server 2008 default but can easily be verified by looking at
the properties for each server from SQL Server Management Studio. By default, remote
access is automatically enabled during setup to support replication. Figure 54.2 shows the
current configured values of the remote server connection entry, indicating that remote
connections to this server are allowed (checked) for the DBARCH-LT2\SQL08DE02 remote
SQL Server. You need to double-check both servers (local and remote).

ptg

2248 CHAPTER 54 Managing Linked and Remote Servers

FIGURE 54.2 Allowing SQL Server remote connections (this check box has been circled).

You can also configure this remote connection access by using sp_configure. The proper
syntax is as follows:

EXECUTE sp_configure ‘remote access’, 1

reconfigure

After enabling remote access, you need to shut down and restart each server.

Now you need to follow the basic rule of allowing only a named SQL login the capability
to execute a remote stored procedure. In this way, you can tightly control the permissions
and execution of that stored procedure from wherever the remote execution request origi-
nates from. You start by creating the logins you want to use to connect to the local SQL
Server (SQL08DE01 in this example) and the same login name on the remote SQL Server
(SQL08DE02 in this example). You can do this by using Microsoft SQL Server Management
Studio (new login) or by using a CREATE LOGIN SQL command, as follows (on the local
server, which is SQL08DE01 in this example):

-- FROM THE LOCAL SERVER ONLY--

CREATE LOGIN ForRPC WITH PASSWORD = ‘password’,

CHECK_EXPIRATION = OFF, CHECK_POLICY = OFF,

DEFAULT_DATABASE = master

go

This SQL Server login will connect from the client application. Note that your environ-
ment might want to enforce various password policies, conventions, and expiration dates.

Next, you create the corresponding SQL login on the remote server (and make that login a
user in the database where the remote procedure is located). Again, this can be done by

ptg

2249Managing Remote Servers
5

4

using Microsoft SQL Server Management Studio (new login) on the remote server
(SQL08DE02 in this example) or by using the CREATE LOGIN and CREATE USER SQL
commands as follows:

--- FROM THE REMOTE SERVER ONLY --

CREATE LOGIN ForRPC WITH PASSWORD = ‘password’,

CHECK_EXPIRATION = OFF, CHECK_POLICY = OFF,

DEFAULT_DATABASE = UnleashedRemoteDB

go

USE [UnleashedRemoteDB]

GO

CREATE USER [ForRPC] FOR LOGIN [ForRPC]

GO

Notice that you also identify the default database for this remote login to be the database
created earlier in this example (UnleashedRemoteDB test database). You also make the login
a user within that database.

Now you must set up login mappings on the remote server and possibly on the local
server. Basically, remote server login mappings must be set up on the remote server to map
the incoming login for an RPC connection from a specified server to a local login (on the
remote server). In other words, you need to define how to map the logins from the server
making the remote procedure request (SQL08DE01) to the environment on the server
receiving the request (SQL08DE02). Also, the trusted option of sp_remoteoption is not
supported in SQL Server 2005 or SQL Server 2008. This change was made to close a huge
security hole in prior SQL Server versions.

Although you are technically setting things up on the remote server (SQL08DE02), when
you are doing things on the remote server, it is typically referred to as the local server, and
the local server (SQL08DE01) is treated as the remote server. It’s easiest to think about this
situation from the point of view of where you are standing (at the local server versus the
remote server). Then it will make a lot more sense.

Following is the syntax for the sp_addremotelogin command:

EXECUTE sp_addremotelogin remote_server_name

[, local_login_name [, remote_login_name]]

For example, on the remote server (SQL08DE02), you execute the following command to
map the newly created login on SQL08DE01 to the same login on SQL08DE02:

EXECUTE sp_addremotelogin [DBARCH-LT2\SQL08DE01], ForRPC, ForRPC

This is the simplest mapping method. It presumes that the logins are the same on both
servers, and it maps login to login. To see the complete list of resulting mappings, you
simply execute sp_helpremotelogin:

EXECUTE sp_helpremotelogin

go

ptg

2250 CHAPTER 54 Managing Linked and Remote Servers

server local_user_name remote_user_name options

---------------------- ---------------------- ---------------- -------

DBARCH-LT2\SQL08DE01 ForRPC ForRPC

TIP

If users from the remote server need access on your server, don’t forget to add them
with the CREATE LOGIN statement first.

The login to which you map the remote logins determines the permissions the remote
users will have on the local server. If you want to restrict the procedures that the remote
users can execute, you need to be sure to set the appropriate permissions on the procedure
for the login to which they are mapping. To set execute permissions for the RPC named
Top10Customers to the SQL login of ForRPC, you use the following:

GRANT EXECUTE ON [UnleashedRemoteDB].[dbo].[Top10Customers] TO ForRPC

go

That’s it! You are now ready to execute an RPC via the local server as soon as you connect
to the local server with the just-created ForRPC SQL login credentials. The SQL script name
RPCexecution.sql contains the remote stored procedure execution statement. You simply
log in to the local server (SQL08DE01 in this example) using the ForRPC SQL login and
execute the fully qualified remote stored procedure as follows:

-- FROM LOCAL SERVER – SQL08DE01 in our example --

use [master]

go

EXECUTE [DBARCH-LT2\SQL08DE02].[UnleashedRemoteDB].[dbo].[Top10Customers]

go

CustomerID CompanyName City Country YTDBusiness

---------- --------------------- ----- ------- -----------

BERTU Bertucci Villa Milano Italy 200039.80

QUICK QUICK-Stop Cunewalde Germany 117483.39

SAVEA Save-a-lot Markets Boise USA 115673.39

ERNSH Ernst Handel Graz Austria 113236.68

HUNGO Hungry Owl All-Night Cork Ireland 57317.39

RATTC Rattlesnake Canyon Albuquerque USA 52245.90

HANAR Yves Moison Paris France 34101.15

FOLKO Folk och fä HB Bräcke Sweden 32555.55

MEREP Thierry Gerardin Vannes France 32203.90

KOENE Königlich Essen Brandenburg Germany 31745.75

(10 row(s) affected)

ptg

2251Linked Servers
5

4

As you can see, setting up remote servers can be a bit confusing and a tedious process. You
have to perform setup tasks on both the local and remote servers. In addition, the
mapping of logins severely limits what types of servers can be accessed. Login mappings
are performed at the remote server instead of the local server, which works fine if the
remote server is a SQL Server machine, but how do you perform this task in another data-
base environment that doesn’t have user mappings? How do you tell an Oracle database
to which Oracle user to map a SQL Server user? When you understand how linked servers
are set up and what expanded capabilities they provide, you won’t want to use remote
servers unless you absolutely have to, which should be only when you need to execute
RPCs on pre-7.0 SQL Servers.

Linked Servers
Linked servers enable SQL Server–based applications to include most any other type of
data source to be part of a SQL statement execution, including being able to directly refer-
ence remote SQL servers. They also make it possible to issue distributed queries, updates,
deletes, inserts, commands, and full transactions on heterogeneous data sources across
your entire company (network). SQL Server essentially acts as the master query manager.
Then, via OLE DB providers and OLE DB data sources, any compliant data source is easily
referenced from any valid SQL statement or command. For each data source, either they
are directly referenced, or SQL Server creates provider-specific subqueries issued to a
specialized provider. This is very close to being a federated data management capability
across most heterogeneous data sources.

Unlike remote servers, linked servers have two simple setup steps:

1. Define the remote server on the local server.

2. Define the method for mapping remote logins on the local server.

All linked server configurations are performed on the local server. The mapping for the
local user to the remote user is stored in the local SQL Server database. In fact, you don’t
need to configure anything in the remote database. Using linked servers also allows SQL
Server to use OLE DB to link to many data sources other than just SQL Server.

OLE DB is an API that allows COM/.NET applications to work with databases as well as
other data sources, such as text files and spreadsheets. This capability lets SQL Server have
access to a vast amount of different types of data as if these other data sources were local
SQL Server tables or views. This is extremely powerful.

Unlike Remote Procedure Calls (and remote servers only), linked servers also allow distrib-
uted queries and transactions.

ptg

2252 CHAPTER 54 Managing Linked and Remote Servers

TRULY A LINKED SERVER

Keep in mind that when you define linked servers, SQL Server really keeps these data
resources linked in many ways. Most importantly, it keeps the schema definitions
linked. In other words, if the schema of a remote table on a linked server changes,
any server that has links to it also knows the change (that is, gets the change). Even
when the linked server’s schema comes from something such as Excel, if you change
the Excel spreadsheet in any way, that change is automatically reflected back at the
local SQL Server that has defined that Excel spreadsheet. This is extremely significant
from a metadata and schema integrity point of view. This is what is meant by “com-
pletely linked.”

Distributed Queries

Distributed queries access data stored in OLE DB data sources. SQL Server treats these data
sources as if they contained SQL Server tables. Basically, via a provider such as OLE DB,
the data source is put in terms of recordsets. Recordsets are the way SQL Server needs to
see any data. The Microsoft SQL Native Client OLE DB provider (with PROGID SQLNCLI) is
the official OLE DB provider for SQL Server 2008. You can view or manipulate data
through this provider by using the same basic Data Manipulation Language (DML) syntax
as for T-SQL for SQL Server (SELECT, INSERT, UPDATE, or DELETE statements). The main
difference is the table-naming convention. Distributed queries use a four-part table name
syntax for each data source as follows:

linked_server_name.catalog.schema.object_name

The following distributed query accesses data from a sales table in an Oracle database, a
region table in a Microsoft Access database, and a customer table in a SQL Server data-
base—all with a single SQL statement:

SELECT s.sales_amount

FROM access_server...region AS r,

oracle_server..sales_owner.sale AS s,

sql_server.customer_db.dbo.customer AS c

where r.region_id=s.region_id

and s.customer_id=c.customer_id

and r.region_name=’Southwest’

and c.customer_name=’ABC Steel’

All these data sources are on completely different physical machines. But with linked
servers and distributed queries, you might not ever realize this.

Distributed Transactions

With SQL Server distributed transactions, it is now possible to manipulate data from
several different data sources in a single transaction. Distributed transactions are
supported if the OLE DB provider has built in the XA transactional functionality. For
example, suppose two banks decide to merge. The first bank (let’s call it OraBank) stores

ptg

2253Adding, Dropping, and Configuring Linked Servers
5

4

all checking and savings accounts in an Oracle database. The second bank (let’s call it
SqlBank) stores all checking and savings accounts in a SQL Server 2008 database. A
customer has a checking account with OraBank and a savings account with SqlBank.
What would happen if the customer wanted to transfer $100 from the checking account
to the savings account? You can handle this task by using the following code while main-
taining transactional consistency:

BEGIN DISTRIBUTED TRANSACTION

-- One hundred dollars is subtracted from the savings account.

UPDATE oracle_server..savings_owner.savings_table

SET account_balance = account_balance - 100

WHERE account_number = 12345

-- One hundred dollars is added to the checking account.

UPDATE sql_server.checking_db.dbo.checking_table

SET account_balance = account_balance + 100

WHERE account_number = 98765

COMMIT TRANSACTION;

The transaction is either committed or rolled back on both databases.

Adding, Dropping, and Configuring Linked Servers
The next few sections show how to add, drop, and configure linked servers through
system stored procedures. All these configuration options can also be done very easily
with SQL Server Management Studio. The following sections occasionally describe that
capability but focus on the SQL commands method because you will usually use this
method in real-life production systems.

sp_addlinkedserver

Before you can access an external data source through SQL Server, it must be registered
inside the database as a linked server. Essentially, you must capture (register) the connec-
tion information and specific data source information within SQL Server. After it is regis-
tered, the data source can simply be referenced within the SQL statement by a single logical
name. You use the sp_addlinkedserver stored procedure for this registering purpose. Only
users with the sysadmin or setupadmin fixed server roles can run this procedure.

SQL Server 2008 ships with a number of OLE DB providers, including providers for
Oracle, DB2, Informix, Access, and other SQL Server 6.5/7.0/2000/2005 databases, as well
as databases that can be reached through ODBC and JDBC. SQL Server also comes with
OLE DB providers for Microsoft Excel spreadsheets and Indexing Service and a whole
bunch more. Microsoft puts each of these providers through extensive testing to certify
them. We have found that sometimes a provider isn’t available on the 64-bit version of
SQL Server 2008 yet. So, as a precaution, check the list of 64-bit providers before you
upgrade your SQL Server to the 2008 64-bit version. If you are not using a Microsoft-certi-
fied provider, however, you might still be able to use that provider if it is compliant with
the OLE DB provider specifications.

ptg

2254 CHAPTER 54 Managing Linked and Remote Servers

Excel spreadsheet
FoxPro Database
Dbase file
Access Database

Sybase
Informix
DB2
Others

OLE DB Provider
for ODBC

ODBC

Active Directory Services
Index Server
Others

MS OLE DB
Provider

Client Tier Server Tier Remote Data Source Tier
(all can be “Linked” to SQL Server)

OLE DB Provider
for MS SQL Server

SQL Server
6.5 – 2008

SQL Server
2008

OLE DB Provider
for Jet

OLE DB Provider
for Oracle

OLE DB Provider
for Indexing Service

ORACLE

JET database
file

O
LE

 D
B

 P
ro

vi
de

r
D

LL
’s

FIGURE 54.3 Linked servers provider architecture.

TIP

When a linked server is created using sp_addlinkedserver, a default self-mapping is
added for all local logins. This means that for non–SQL Server providers, SQL Server
authenticated logins may be able to gain access to the provider under the SQL Server
service account. If you want, you can issue the sp_droplinkedsrvlogin command to
remove these mappings.

Figure 54.3 depicts the overall technical architecture of what is being enabled via linked
servers and providers. There is a SQL Server 2008 side set of provider DLLs, along with a
client-side provider that communicates directly with the data sources. Clients usually
connect to SQL Server 2008 via the native SQLNCLI provider (OLE DB) or via the ODBC
provider.

This provider architecture allows data sources to be accessed from within SQL Server 2005
with the highest degree of efficiency and integrity possible.

Some of the arguments for sp_addlinkedserver are needed only for certain OLE DB
providers. Because of the number of different options and settings available, you should

ptg

2255Adding, Dropping, and Configuring Linked Servers
5

4

always double-check the documentation for the OLE DB provider to determine exactly
which arguments must be provided and what strings are to be specified. Following is the
sp_addlinkedserver procedure:

sp_addlinkedserver [@server =] ‘server’

[, [@srvproduct =] ‘product_name’]

[, [@provider =] ‘provider_name’]

[, [@datasrc =] ‘data_source’]

[, [@location =] ‘location’]

[, [@provstr =] ‘provider_string’]

[, [@catalog =] ‘catalog’]

Following are the elements of this syntax:

. server—The name of the linked server that will be added (@server parameter).

. product_name—The product name of the OLE DB provider (@srvproduct parame-
ter). If this argument is set to ’SQL Server’, only the @server argument is required.
For all other OLE DB providers delivered with SQL Server, you can ignore this para-
meter.

. provider_name—The unique programmatic identifier (PROGID). This value must
match the PROGID in the Registry for the particular OLE DB provider (@provider
parameter). The following are the OLE DB providers delivered with SQL Server and
the corresponding values for the provider_name argument:

. data_source—A data source that points to the particular version of the OLE DB
source (@datasrc parameter). For example, for setting up an Access linked server, this
argument holds the path to the file. For setting up a SQL Server linked server, this
argument holds the machine name of the linked SQL Server. Following are the OLE
DB providers delivered with SQL Server and the corresponding values for this argu-
ment:

OLE DB Provider Value (PROGID)

SQL Server SQLNCLI (OLE DB provider)

SQL Server SQLOLEDB

Access DB/Jet Microsoft.Jet.OLEDB.4.0 (32-bit only)

Excel spreadsheets Microsoft.Jet.OLEDB.4.0 (32-bit only)

ODBC MSDASQL

DB2 DB2OLEDB

Oracle MSDAORA (32-bit only)

Oracle, Version 8 or later OraOLEDB.Oracle (32-bit only)

File system MSIDXS (through Indexing Service)

ptg

2256 CHAPTER 54 Managing Linked and Remote Servers

OLE DB Provider Value

SQL Server Network name of the SQL Server

Access DB/Jet Full pathname to the file

Excel spreadsheet Full pathname to spreadsheets

ODBC System DSN or ODBC connection string

Oracle SQL*Net alias

Oracle, Version 8 or later Alias for the database

DB2 Catalog name of the database

File System Indexing Service catalog name (Indexing Service)

. location—The location string, possibly used by the OLE DB provider (@location
parameter).

. provider_string—The connection string, possibly used by the OLE DB provider
(@provstr parameter).

. catalog—The catalog string, possibly used by the OLE DB provider (@catalog para-
meter).

The SQLNCLI native SQL provider uses the same OLE DB provider code, so it is considered
the same provider as SQLOLEDB. There are also many other “certified” providers, such as an
Analysis Services data mining model provider, an Analysis Services OLAP provider, XML
providers, SSIS (DTS) providers, PostgresSQL providers, and even data replication
providers. Figure 54.4 shows the entire list of providers available within the Linked
Servers node of SQL Server Management Studio.

The following example adds an Oracle linked server called ’ORACLE_DATABASE’ that
connects to the database specified by the SQL*Net string ’my_sqlnet_connect_string’:

EXEC sp_addlinkedserver @server=’ORACLE_DATABASE’,

@srvproduct=’Oracle’, @provider=’MSDAORA’,

@datasrc=’my_sqlnet_connect_string’

The next example creates a linked server reference for an Access database called
CustomersPlus.mdb. As you can see in Figure 54.5, this Microsoft Access database is an
Access 2000 file format database.

The following example adds an Access database linked server entry called
’ACCESS_DATABASE_CUSTOMERS’ that establishes a connection to the database
’CustomersPlus.mdb’ stored in the C:\temp directory:

EXECUTE sp_addlinkedserver @server=’ACCESS_DATABASE_CUSTOMERS’,

@srvproduct=’Access’,

@provider=’Microsoft.Jet.OLEDB.4.0’,

ptg

2257Adding, Dropping, and Configuring Linked Servers
5

4

FIGURE 54.4 Linked server providers supplied by Microsoft with SQL Server 2008.

FIGURE 54.5 The CustomersPlus.mdb Microsoft Access database.

The CustomersPlus.mdb is available on the CD included with this book For this example,
copy this Access database file from the CD onto the same server machine on which you
have SQL Server installed. The Microsoft Access client provider also needs to be present on
this machine (which it will be you have installed Microsoft Office on the system). You can
now reference this linked server directly from a SQL statement. sp_addlinkedserver and
all other SQL statements for this linked server set of examples are also on the CD for this
book in the script file LinkedServerSQL.sql. Here is a small sample of SQL code that
selects all values from this Access database linked server entry:

SELECT CustomerID, ContactName, City, Country

FROM ACCESS_DATABASE_CUSTOMERS...SWCustomers

ptg

2258 CHAPTER 54 Managing Linked and Remote Servers

ORDER BY ContactName

Go

CustID ContactName City Country

------ ------------------ ---------- ---------------

PICCO Adam Greifer Los Angele USA

CHOPS Martin Sommer Berkeley USA

MEREP Thierry Gerardin Vannes FRANCE

BLAUS Juliana Bertucci Eugene USA

HANAR Yves Moison Paris FRANCE

(5 row(s) affected)

Note that you can see the fully qualified link server reference as the table name.

Here’s an example that adds a “SQL Server” linked server that resides on the ’DBARCH-
LT2\SQL08DE01’ machine:

EXECUTE sp_addlinkedserver @server=’DBARCH-LT2\SQL08DE01’,

@srvproduct=’SQL Server’

Then you select data from a table on that linked server:

--

-- Selecting data from the Linked Server directly --

--

SELECT TOP 10

[CustomerID]

,[CustomerName]

,sum([YTDSalesTotal]) as ‘YTD Sales’

FROM [DBARCH-LT2\SQL08DE01].[Unleashed].[dbo].[HotCustomerPlus]

GROUP BY [CustomerID]

,[CustomerName]

ORDER BY 3 desc

go

CustomerID CustomerName YTD Sales

----------- -- -------------

85 Roadway Bicycle Supply 188509.608000

599 Westside Plaza 178835.169285

433 Thorough Parts and Repair Services 168182.664000

205 Rally Master Company Inc 146097.433161

546 Field Trip Store 135208.616867

193 Perfect Toys 134068.411416

697 Brakes and Gears 125784.511476

448 Action Bicycle Specialists 122380.103796

506 Great Bikes 122283.656936

230 Global Bike Retailers 115936.910796

(10 row(s) affected)

ptg

2259Adding, Dropping, and Configuring Linked Servers
5

4

This example adds an Excel 8.0 spreadsheet as a linked server:

/* Set up of an Excel linked server */

EXEC sp_addlinkedserver

‘ExcelSW’, /* linked server name you want to use*/

‘Jet Excel’, /* product name – can be anything */

‘Microsoft.Jet.OLEDB.4.0’, /* OLE provider name */

‘d:\SWCustomers.xls’, /* datasource name */

NULL, /* location not needed in this case */

‘Excel 8.0’, /* Provider string if needed */

NULL /* catalog name if needed */

go

This example adds an ODBC data source as a linked server called
’ODBC_with_DATA_SOURCE’. The ODBC connection string must be registered on the local
server to use this linked server:

EXEC sp_addlinkedserver

@server=’ODBC_with_DATA_SOURCE’,

@srvproduct=’ODBC’,

@provider=’MSDASQL’,

@datasrc=’My_ODBC_connection_string’

This example adds an ODBC data source as a linked server called
’ODBC_with_PROVIDER_STRING’. Unlike with the previous example, an ODBC data source
does not need to exist. The information normally stored as an ODBC data source is stored
in the provstr argument:

EXEC sp_addlinkedserver

@server=’ODBC_with_PROVIDER_STRING’,

@srvproduct=’ODBC’,

@provider=’MSDASQL’,

@provstr=’DRIVER={SQL Server}; SERVER=MyServer; UID=sa;PWD=;’

Following is an example of a distributed query that accesses multiple tables via linked
servers:

SELECT substring(CustomerID,1,5) as ‘CustID’,

substring(ContactName,1,18) as ContactName,

substring(City,1,10) as ‘City’,

substring(Country,1,15) as ‘Country’

FROM [Linked ExcelSW]...[SWCustomers$]

UNION

SELECT substring(CustomerID,1,5) as ‘CustID’,

substring(ContactName,1,18) as ContactName,

substring(City,1,10) as ‘City’,

substring(Country,1,15) as ‘Country’

ptg

2260 CHAPTER 54 Managing Linked and Remote Servers

FROM ACCESS_DATABASE_CUSTOMERS...SWCustomers

go

CustID ContactName City Country

------ ------------------ ---------- ---------------

BLAUS John Monroe Concord USA

BLAUS Juliana Bertucci Eugene USA

CHOPS Martin Sommer Berkeley USA

HANAR Yves Moison Paris FRANCE

MEREP Thierry Gerardin Vannes FRANCE

PICCO Adam Greifer Los Angele USA

(6 row(s) affected)

In this example, you unite customers from the Access database with customers from the
Excel spreadsheet, all as a single SQL statement within SQL Server.

sp_linkedservers

To see the linked servers defined within a SQL Server instance, you simply use
sp_linkedservers:

EXEC sp_linkedservers

Go

The sp_linkedservers execution provides the list of all linked servers on this SQL Server:

SRV_NAME SRV_PROVIDERNAME SRV_PRODUCT SRV_DATASOURCE

------------------------- ----------------------- ---------- ---------------------

ACCESS_DATABASE_CUSTOMERS Microsoft.Jet.OLEDB.4.0 Access C:\temp\CustomersPlus.mdb

DBARCHLT\SQL08DE04 SQLNCLI SQL Server DBARCHLT\SQL08DE04

Linked ExcelSW Microsoft.Jet.OLEDB.4.0 Jet Excel

C:\TEMP\SWCustomers.xls

(3 row(s) affected)

Since the introduction of SQL Server 2005, you can also get the same information via
system views set up for this purpose. In this case, you can query the system catalog view
sys.servers directly to get your information on linked servers:

select server_id,

substring(name,1,26) as ‘name’,

substring(product,1,10) as ‘Product’,

substring(provider,1,24) as ‘Provider’,

substring(data_source,1,25) as ‘Source’

from sys.servers

order by server_id

ptg

2261Adding, Dropping, and Configuring Linked Servers
5

4

go

id name Product Provider Source

---- -------------------------- ---------- ------------------------ --------------

0 DBARCHLT\SQL08DE04 SQL Server SQLNCLI DBARCHLT\SQL08DE04

3 ACCESS_DATABASE_CUSTOMERS Access –Microsoft.Jet.OLEDB C:\temp\

CustomersPlus.mdb

4 Linked ExcelSW Jet Excel –Microsoft.Jet.OLEDB C:\TEMP\

SWCustomers.xls

(3 row(s) affected)

sp_dropserver

To unregister linked servers, you can use sp_dropserver. Only members of the sysadmin
and setupadmin fixed server roles can execute this stored procedure:

sp_dropserver [@server =] ‘server’ [, [@droplogins =] {‘droplogins’ | NULL}]

The elements of the syntax are as follows:

. server—The linked server that will be unregistered.

. droplogins—An argument that specifies the logins associated with the server
should be dropped. If this argument is not specified, the server is dropped only if
logins do not exist for this linked server.

The following example unregisters Oracle, Access, and SQL Server databases:

EXECUTE sp_dropserver @server=’ORACLE_DATABASE’, @droplogins=’droplogins’

EXECUTE sp_dropserver @server=’ACCESS_DATABASE_CUSTOMERS’

EXECUTE sp_dropserver @server=’DBARCH-LT2\SQL08DE01’,@droplogins=’droplogins’

sp_serveroption

You can configure linked servers by using sp_serveroption. This affects how distributed
queries behave at the linked server provider level. In other words, the options you set with
the sp_serveroption procedure are for a particular linked server entry only. Only users
with the sysadmin or setupadmin fixed server roles can run this procedure, which has the
following syntax:

sp_serveroption [[@server =] ‘server’]

[,[@optname =] ‘option_name’]

[,[@optvalue =] ‘option_value’]

The elements of the syntax are as follows:

. server—The linked server affected by this option.

. option_name—The name of the option to be configured. The valid option names
follow:

ptg

2262 CHAPTER 54 Managing Linked and Remote Servers

Option Name Description

’collation

compatible’

If optvalue is set to TRUE, SQL Server assumes that the linked server
has the same character set and collation sequence. Set this option to
TRUE only if you are sure the character sets and collation are identical.

’connect timeout’ The length of time, in seconds, to wait before timing out the connection
attempt to the linked server. If set to 0, this option uses the
sp_configure default value.

’data access’ If optvalue is set to TRUE and if the OLE DB provider supports them,
distributed queries are allowed. If optvalue is set to FALSE, distributed
queries are disabled on this linked server.

’lazy schema

validation’

If optvalue is set to TRUE, the check of the schema for remote tables
will be skipped at the beginning of the query.

’query timeout’ Length of time, in seconds, to wait before timing out queries against
linked server. If set to 0, this option uses the sp_configure default
value.

’rpc’ If the optvalue is set to TRUE, this option allows RPCs from the linked
server.

’rpc out’ If the optvalue is set to TRUE, this option allows RPCs to the linked
server.

’use remote

collation’

If the optvalue is set to TRUE, this option uses the collation of remote
columns for SQL Server data sources or the specified collation name
for non–SQL Server sources. If set to FALSE, this option uses the local
server default collation.

’collation name’ If use remote collation is set to TRUE and the linked server is not a
SQL Server, this option specifies the name of the collation to be used on
the linked server. Use this option when the OLE DB data source has a
collation that matches one of the SQL Server collations.

. option_value—The value of this option. Valid values are TRUE (or ON) and FALSE
(or OFF), a non-negative integer for the connect timeout and query timeout

options, or a collation name for the collation name option.

The following example disables distributed queries to the ORACLE_DATABASE linked server:

EXECUTE sp_serveroption @server=’ORACLE_DATABASE’,

@optname=’data access’, @optvalue=’FALSE’

ptg

2263Mapping Local Logins to Logins on Linked Servers
5

4

The following example enables Remote Procedure Calls to the SQL_SERVER_DB linked server:

EXECUTE sp_serveroption @server=’SQL_SERVER_DB’,

@optname=’rpc out’, @optvalue=’TRUE’

To set the query timeout to 60 seconds for the SQL Server data source, you execute the
following command:

EXECUTE sp_serveroption ‘DBARCH-LT2\SQL08DE01’, ‘query timeout’, 60

To display the options currently enabled for a linked server, you use sp_helpserver:

EXECUTE sp_helpserver @server=’DBARCH-LT2\SQL08DE01’

GO

name network_name status id connect..

------------------- ------------------- ------- -- ---------

DBARCH-LT2\SQL08DE01 DBARCHLT\SQL2005SUB rpc.. 0 0 60

Mapping Local Logins to Logins on Linked Servers
For a user to gain access to a linked server, the linked server must validate the user for
security reasons. The requesting server (that is, the local server) provides a login name and
password to the linked server on behalf of the local server user. For this to work, you need
to map the local logins with the linked server logins you are going to use. Remember that
sp_addlinkedserver creates a default self-mapping for all local logins to the linked server.
You use sp_addlinkedsrvlogin to specifically control the logins that you want to use the
linked server.

sp_addlinkedsrvlogin

SQL Server provides the sp_addlinkedsrvlogin system stored procedure to map local
logins to logins on the linked servers. This stored procedure can be executed by members
of the sysadmin and securityadmin fixed server roles. Its syntax is as follows:

sp_addlinkedsrvlogin [@rmtsrvname =] ‘rmtsrvname’

[,[@useself =] ‘useself’]

[,[@locallogin =] ‘locallogin’]

[,[@rmtuser =] ‘rmtuser’]

[,[@rmtpassword =] ‘rmtpassword’]

The elements in this syntax are as follows:

. rmtsrvname—The linked server that will use this login setting (@rmtsrvname para-
meter).

ptg

2264 CHAPTER 54 Managing Linked and Remote Servers

. useself—The setting that determines whether a user or group of users will use
their own usernames and passwords to log in to the linked server (@useself parame-
ter). There are two possible settings:

. ’true’—Local server logins use their own usernames and passwords to log in to
the linked server. Consequently, the rmtuser and rmtpassword arguments are
ignored. For example, the local jdoe user with a password of shrek would
attempt to log in to the linked server with the jdoe username and shrek pass-
word.

. ’false’—Local server logins use the arguments specified in rmtuser and
rmtpassword to log in to the linked server. For a linked server that does not
require usernames and passwords (such as Microsoft Access), these arguments
can be set to NULL.

. locallogin—The local logins affected by this mapping (@locallogin parameter).
You can designate either an individual login or all local logins. To specify that all
logins be affected, you pass a NULL to this argument.

. rmtuser—The username used to connect to the linked server if @useself is set to
FALSE (@rmtuser parameter).

. rmtpassword—The password used to connect to the linked server if @useself is set
to FALSE (@rmtpassword parameter).

As noted earlier, by default, after you run sp_addlinkedserver, all local logins automati-
cally attempt to use their own usernames and passwords to log in to the new linked
server. Essentially, SQL Server runs the following statement after sp_addlinkedserver:

EXECUTE sp_addlinkedsrvlogin @rmtsrvname=’My_Linked_Server’,

@useself=’true’, @locallogin=NULL

You can delete this default mapping by using sp_droplinkedsrvlogin, which is described
in the next section.

In Windows Authentication mode, SQL Server submits the Windows username and pass-
word to the linked server if the provider supports Windows authentication and if security
account delegation is available on both the client and server.

The following example connects all users to the ’ORACLE_DATABASE’ linked server, using
the ’guest’ username and ’confio’ password:

EXECUTE sp_addlinkedsrvlogin @rmtsrvname=’ORACLE_DATABASE’,

@useself=’false’, @rmtuser=’guest’, @rmtpassword=’confio’

The following example connects all users to the ’DBARCH-LT2\SQL08DE01’ linked server,
using their own local usernames and passwords:

EXECUTE sp_addlinkedsrvlogin @rmtsrvname=’DBARCH-LT2\SQL08DE01’,

@useself=’true’

ptg

2265Mapping Local Logins to Logins on Linked Servers
5

4

The following example logs in the local ’RobinOrdes’ user as the remote user ’ROrdes’
with the ’new_orleans’ password to the ’ORACLE_DATABASE’ linked server:

EXECUTE sp_addlinkedsrvlogin @rmtsrvname=’ORACLE_DATABASE’,

@useself=’false’, @locallogin=’RobinOrdes’, @rmtuser=’ROrdes’,

@rmtpassword=’new_orleans’

The following example logs in the Windows user ’Domain1\DonLarson’ as the remote user
’DLarson’ with the ’five_sons’ password:

EXECUTE sp_addlinkedsrvlogin @rmtsrvname=’ORACLE_DATABASE’,

@useself=’false’, @locallogin=’Domain1\DonLarson’,

@rmtuser=’DLarson’, @rmtpassword=’five_sons’

The following example connects all users to the ’ACCESS_DATABASE_CUSTOMERS’ linked
server without providing a username or password:

EXECUTE sp_addlinkedsrvlogin @rmtsrvname=’ACCESS_DATABASE_CUSTOMERS’,

@useself=’false’, @rmtuser=NULL, @rmtpassword=NULL

sp_droplinkedsrvlogin

You can delete mappings for linked servers by using sp_droplinkedsrvlogin. Members of
the sysadmin and securityadmin fixed server roles can execute this stored procedure:

sp_droplinkedsrvlogin [@rmtsrvname =] ‘rmtsrvname’,

[@locallogin =] ‘locallogin’

The elements of this syntax are as follows:

. rmtsrvname—The linked server that will lose this login mapping (@rmtsrvname
parameter).

. locallogin—The local login that will lose the mapping to the linked server
(@locallogin parameter). You can designate either an individual login or all local
logins. To specify that all logins should be affected, you pass a NULL to this argument.

The following example removes the login mapping for the ’RobinOrdes’ user to the
’ORACLE_DATABASE’ linked server:

EXECUTE sp_droplinkedsrvlogin @rmtsrvname=’ORACLE_DATABASE’,

@locallogin=’RobinOrdes’

The following example removes the default login mapping for all users using the
’SQL_SERVER_DB’ linked server:

ptg

2266 CHAPTER 54 Managing Linked and Remote Servers

EXEC sp_droplinkedsrvlogin @rmtsrvname=’SQL_SERVER_DB’,

@locallogin=NULL

sp_helplinkedsrvlogin

To determine the current linked server login settings, you run the sp_helplinkedsrvlogin
procedure, which has the following syntax:

sp_helplinkedsrvlogin [[@rmtsrvname =] ‘rmtsrvname’,]

[[@locallogin =] ‘locallogin’]

The elements of this syntax are as follows:

. rmtsrvname—The linked server that will have its login settings displayed.

. locallogin—The local login mappings that will be displayed.

The following example shows the sp_helplinkedsrvlogin output if no arguments are
provided:

EXECUTE sp_helplinkedsrvlogin

GO

Linked Server Local Login Is Self Mapping Remote Login

--

ACCESS_DATABASE_CUSTOMERS NULL 1 NULL

DBARCHLT\SQL08DE04 NULL 1 NULL

Linked ExcelSW NULL 1 NULL

ORACLE_DATABASE NULL 0 guest

ORACLE_DATABASE RobinOrdes 0 ROrdes

This example displays one line for each linked server login mapping. The first column
(Linked Server) shows which linked server owns this mapping. The second column
(Local Login) shows which user is affected by this mapping. If set to NULL, this mapping
applies to all users who do not have specific mappings. The third column (Is Self
Mapping) displays a 1 if the local username and password will be attempted on the remote
server. If it displays a 0, the value in the last column (Remote Login) will be used to log in
to the remote server. Note that the remote password is not listed for security reasons.

The next example shows the sp_helplinkedsrvlogin output if only the rmtsrvname argu-
ment is provided:

EXECUTE sp_helplinkedsrvlogin @rmtsrvname=’ORACLE_DATABASE’

GO

Linked Server Local Login Is Self Mapping Remote Login

------------- ----------- --------------- ------------

ORACLE_DATABASE NULL 0 guest

ORACLE_DATABASE RobinOrdes 0 ROrdes

ptg

2267Obtaining General Information About Linked Servers
5

4

The output for this example is identical to that of the preceding example except that only
the entries for the specified server are displayed:

The following example shows the sp_helplinkedsrvlogin output if all arguments are
provided:

EXECUTE sp_helplinkedsrvlogin @rmtsrvname=’ORACLE_DATABASE’,

@locallogin=’RobinOrdes’

GO

Linked Server Local Login Is Self Mapping Remote Login

----------------- ----------- --------------- ------------

ORACLE_DATABASE RobinOrdes 0 ROrdes

Again, the output for this example is identical to that of the previous examples except
that it is limited to the server and is user specified.

Obtaining General Information About Linked Servers
You can use both SQL Server Management Studio and the system stored procedures to
gather information about linked servers and the referenced data sources. Following are
some of the most-often-used system stored procedures:

. sp_linkedservers—This returns a list of linked servers defined on the local server.

. sp_catalogs—This displays a list of catalogs and descriptions for a specified
linked server.

. sp_indexes—This shows index information for a specified remote table.

. sp_primarykeys—This returns the primary key columns for the specified table.

. sp_foreignkeys—This lists the foreign keys defined for the remote table.

. sp_tables_ex—This displays table information from the linked server.

. sp_columns_ex—This returns column information for all columns or a specified
column for a remote table.

. sp_helplinkedsrvlogin—This displays the linked server login mappings for
each linked server.

For example, at query prototyping time, it is useful to see all the ways the linked server
objects and columns are being referenced (especially when you’re dealing with other data
sources, such as Excel spreadsheets).

First, the exact linked object name is displayed via the sp_tables_ex system stored proce-
dure. In this case, you would see the following for the ACCESS_DATABASE_CUSTOMERS linked
server just created:

ptg

2268 CHAPTER 54 Managing Linked and Remote Servers

EXECUTE sp_tables_ex ‘ACCESS_DATABASE_CUSTOMERS’

go

TABLE_CAT TABLE_SCHEM TABLE_NAME TABLE_TYPE REMARKS

--------- ----------- ------------ ------------ -------

NULL NULL MSysAccessObjects ACCESS TABLE

NULL NULL MSysACEs SYSTEM TABLE

NULL NULL MSysObjects SYSTEM TABLE

NULL NULL MSysQueries SYSTEM TABLE

NULL NULL MSysRelationships SYSTEM TABLE

NULL NULL SWCustomers TABLE

Then you can see all the table columns of that linked server’s data source by using the
sp_columns_ex system stored procedure. The following command provides the column
definitions for the SWCustomers Access table for the linked server
’ACCESS_DATABASE_CUSTOMERS’:

EXECUTE sp_columns_ex ‘ACCESS_DATABASE_CUSTOMERS’

go

TABLE_CAT TABLE_SCH TABLE_NAME COLUMN_NAME TYPE_NAME SIZE

------------------------------------- ------------ ---------- -------

NULL NULL MSysAccessObjects Data VarBinary 3992

NULL NULL MSysAccessObjects ID Long 10

NULL NULL SWCustomers CustomerID VarChar 255

NULL NULL SWCustomers CompanyName VarChar 255

NULL NULL SWCustomers ContactName VarChar 255

NULL NULL SWCustomers ContactTitle VarChar 255

NULL NULL SWCustomers Address VarChar 255

NULL NULL SWCustomers City VarChar 255

NULL NULL SWCustomers Region VarChar 255

NULL NULL SWCustomers PostalCode Double 15

NULL NULL SWCustomers Country VarChar 255

NULL NULL SWCustomers Phone VarChar 255

NULL NULL SWCustomers Fax VarChar 255

Executing a Stored Procedure via a Linked Server
Executing a stored procedure is possible via a linked server. The server hosting the client
connection accepts the client’s request and sends it to the linked server. The EXECUTE state-
ment must contain the name of the linked server as part of its syntax:

EXECUTE servername.dbname.owner.procedure_name

The following example executes the sp_helpserver system stored procedure on the linked
server ’DBARCH-LT2\SQL08DE01’, which simply shows the server configuration information
on that remote server:

EXEC [DBARCH-LT2\SQL08DE01].[master].[dbo].[sp_helpserver]

ptg

2269Setting Up Linked Servers Using SQL Server Management Studio
5

4

Setting Up Linked Servers Using SQL Server
Management Studio
Although you can set up linked servers and login mappings by directly executing system
stored procedures, you can also set them up easily through SQL Server Management Studio.

To create a “SQL Server” linked server, you follow these steps:

1. Open SQL Server Management Studio with a connection to a local server
(DBARCHLT\SQL08DE05 in this example).

2. Expand the Server Objects node and then the Linked Servers node.

3. Right-click the Linked Servers node and choose New Linked Server.

4. You are presented with a properties page where you must specify all the connection
properties for the linked server. For this example, create a SQL Server database
linked server entry. As shown in Figure 54.6, provide the linked server name
DBARCHLT\SQL08DE04T (or whatever your server and instance name might be) and
click the SQL Server radio button. All the other fields are not needed (and are
grayed out).

5. After you finish the linked server specification, click OK. An entry is added under
the Linked Server node in SQL Server Management Studio. You may receive an

FIGURE 54.6 Creating a “SQL Server” linked server entry through SQL Server Management
Studio.

ptg

2270 CHAPTER 54 Managing Linked and Remote Servers

error message complaining about not having the proper authentication for the
linked server access. Not to worry; we’ll fix that in a minute. The linked server can
be used by a SQL query based on the default local logins being mapped to the linked
server. However, you really want to control the access to this linked server.

6. Right-click the newly created linked server entry and choose Properties. When the
properties page comes up, select the Security entry on this page. Figure 54.7 shows
explicitly a local login on the local server (DBARCHLT\Paul Bertucci) that you can
use to impersonate your login at the linked server (where you are already a valid user
on the linked server). Now, also indicate that for any logins not in this list, connec-
tions will be made using the login’s current security context. This locks it down as
tightly as you need it. Click OK, and you are ready to test the linked server.

Figure 54.8 shows the successful execution of a query by user DBARCHLT\Paul Bertucci,
using the linked server.

Figure 54.9 shows an example of creating an Access database linked server entry. As you
can see, you specify the linked server name ACCESS_DATABASE_CUSTOMERS, click the Other
Data Source radio button, pick Microsoft Jet 4.0 OLE DB Provider for Provider, specify
Access for the Product Name entry, and supply the full path to the Access database for
which you are trying to create the linked server entry (c:\temp\CustomerPlus.mdb). There
is no need to specify a provider string for this type of linked server entry. When you click
the OK button at the bottom, this linked server is ready to use for a SQL query.

FIGURE 54.7 Specifying the security properties of a new linked server entry.

ptg

2271Setting Up Linked Servers Using SQL Server Management Studio
5

4

FIGURE 54.8 Execution of a SQL query by user DBARCHLT\Paul Bertucci, referencing the
new linked server entry.

You are now ready to charge ahead in the realm of using linked servers for everyday
purposes. As you can see in Figure 54.10, linked servers can take their place in your SQL
Server data access layer alongside any traditional SQL table. This capability expands your
data access horizons much further than you could have reached before.

FIGURE 54.9 Creating an Access database linked server through SQL Server Management
Studio.

ptg

2272 CHAPTER 54 Managing Linked and Remote Servers

Summary
In this chapter, you saw the difference between the more common linked servers and the
old type of remote servers. You also learned how distributed queries and transactions work
with linked servers. Specifically, you learned how to set up, configure, and gather informa-
tion on linked servers by using the system stored procedures, including
sp_addlinkedserver, sp_dropserver, sp_serveroption, sp_linkedserver, sp_table_ex,
sp_column_ex, sp_addlinkedsrvlogin, sp_droplinkedsrvlogin, and
sp_helplinkedsrvlogin. Finally, you learned how to configure linked servers through SQL
Server Management Studio and tighten up the security access around the use and execu-
tion of linked servers. These foundational skills are the cornerstone of helping your orga-
nization expand its reach to data, no matter where it resides.

Keep in mind that although linked servers provide a method to access data in other data
sources beyond SQL Server, at times you might need to work with data in a data source
that cannot be linked. In these rare circumstances, you can still use BCP to import data
files that have been exported from other data sources into local SQL Server tables or create
SSIS packages to periodically pull, push, and transform data to other locations.

FIGURE 54.10 Several different linked servers from SQL Server Management Studio.

ptg

CHAPTER 55

Configuring, Tuning,
and Optimizing SQL

Server Options

IN THIS CHAPTER

. What’s New in Configuring,
Tuning, and Optimizing SQL
Server Options

. SQL Server Instance
Architecture

. Configuration Options

. Fixing an Incorrect Option
Setting

. Setting Configuration Options
with SSMS

. Obsolete Configuration Options

. Configuration Options and
Performance

. Database Engine Tuning
Advisor

. Data Collection Sets

This chapter delves into what can be done with the SQL
Server configurable options—particularly what can be
improved that SQL Server isn’t automatically tuning
already. By setting the values of several key SQL Server
configuration parameters, you can fine-tune SQL Server to
provide excellent performance and throughput. Note that
with each release of SQL Server, less needs to be tuned from
a SQL Server configuration point of view. With the advent
of self-tuning or self-configuring options, it is only a matter
of time before most of your server tuning time will be spent
elsewhere, such as with the operating system, disk systems,
and network interfaces—and only because SQL Server can’t
reach there (yet). As you also see in Chapter 39,
“Monitoring SQL Server Performance,” many SQL Server
components can be monitored and tuned to yield high
performance. Some of the options discussed here also
surface in that chapter, from a monitoring point of view.

This chapter also covers one of Microsoft’s hidden capabili-
ties, the Database Engine Tuning Advisor. This tool can
make table, partitioning, and index tuning recommenda-
tions to support certain workloads. Understanding the
Database Engine Tuning Advisor as well as the SQL
Server–configurable options can pay off rather quickly for
you in your never-ending performance quest. This chapter
also covers the newest feature for SQL Server 2008: the
Data Collection services. It provides just a brief view of
how the server options that you are adjusting can be easily
viewed and interpreted by utilizing the right data collection
set reports.

ptg

2274 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

What’s New in Configuring, Tuning, and Optimizing
SQL Server Options
There are a few new configuration options in SQL Server 2008 R2. These new configura-
tion options are user instance oriented (for SQL Server 2008 Express only), for FileStream,
Compression, and are Access Check Cache options. However, you must be warned that
there are options available that are not obsolete yet but have no effect (even if you set
them). We identify them in this chapter as they come up.

SQL Server 2000 had a total of 36 options. With SQL Server 2005, the number of options
nearly doubled, with a total of 64 (basic and advanced) active options. There are now 70
basic and advanced options in SQL Server 2008 R2. Not all are usable, and some apply
only to certain OS platforms (64-bit) or SQL Server editions. Only 68 basic and advanced
options appear on 32-bit–based platforms.

NOTE

You can’t use Allow Updates, Open Objects, or the Set Working Set Size sp_configure
options. They have become obsolete and have no effect in SQL Server 2008, even
though they are still listed. The Web Assistant Procedures option doesn’t exist anymore
either. In addition, Microsoft has announced that all the ft_crawl and ft_notify

options (ft = File Text) will be deprecated.

This chapter discusses the configuration options as well as the Database Engine Tuning
Advisor (DTA) and some of the reports available via the Data Collection service within
SQL Server Management Studio’s (SSMS’s) management options. Microsoft is improving in
these areas, with new tuning analysis, improved recommendation reports, and now data
collection reports that can give you an overall picture of how your SQL Server instance is
performing.

SQL Server Instance Architecture
Figure 55.1 illustrates the address space architecture of an instance of SQL Server 2008 R2.
When you fire up a SQL Server instance, two main areas are allocated: the code area and
memory pool area. The code area is mostly static executable code of the SQL Server kernel;
SQL Server .NET Library DLLs; Open Data Services code; the stack space; and a variable
code area that contains distributed query OLE DB providers, OLE automation objects, and
extended stored procedures as they are needed by user requests.

The memory pool area of SQL Server is the most dynamically changing part of an
instance. Even now, the once-static system data structures and user connection structures
(connection context) are controlled by user requests and dynamically allocate structures as
they are needed. Then, there are the primary SQL Server databases master, tempdb, msdb,
and model. There is another system database called a resource database that is present in
each SQL Server instance. This read-only database contains system objects that are
included with SQL Server. System objects are physically persisted in the resource database,

ptg

2275Configuration Options

SQL Server 2008

S
er

ve
r

N
et

-li
bs

 D
LL

s

S
Q

L
S

er
ve

r
K

er
ne

l (
co

de
)

O
pe

n
D

at
a

S
er

vi
ce

s

S
ta

ck
 S

pa
ce

 (
51

2K
)

V
ar

ia
bl

e
co

de

Memory/BufferPool

User Connection Structures

System Data Structures

Plan Cache

Buffer
Cache

Other
Servers

Web-Based
Clients

Windows
Clients

Windows
Clients

Windows
Clients

Log Cache

Master DBTemp DB

MSDB Model DBResource DB

FIGURE 55.1 The SQL Server 2008 R2 instance architecture.

but they logically appear in the sys schema of every database and provide the results to
system-level information such as server properties (SERVERPROPERTY) and object definitions
(OBJECT_DEFINITION). Of these system-wide databases, tempdb has the most significance
for performance because it is the heart of all internal tables, indexing, sorting, grouping,
and other worktable activity for the entire SQL Server instance.

By default, SQL Server tries to keep the amount of virtual memory allocations on a
computer at 4MB to 10MB less than the physical memory available. The rest of the
memory pool area is divided into procedure cache, data cache (buffer cache), and log
cache. SQL Server actively adjusts these for optimal performance. Previously, the system
administrator had to do all this manually. Many of the configurable options directly relate
to optimizing this address space. There is a caching framework that utilizes internal and
external clocks to determine how the caches are managed; it is explained in Chapter 39.

Configuration Options
With SQL Server 2008, many options may affect the performance of individual SQL state-
ments or the overall performance of a SQL Server instance. There are instance-wide config-
uration options (set using the sp_configure system stored procedure or with the server

5
5

ptg

2276 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

FIGURE 55.2 SQL Server 2008 Configuration Properties dialog from SSMS.

properties dialog within SSMS), database-level options (set with ALTER DATABASE), database
compatibility levels (using the sp_dbcmptlevel system stored procedure), batch-level
options (using the SET command for things such as SET ANSI_NULLS), and statement-level
options (such as table hints, query hints, and join hints). Always remember that a hint
overrides a SET option, a SET option overrides a database option, and a database option
overrides an instance-wide option.

For SQL Server 2008, this chapter discusses the instance-wide configurable options in two
distinct categories: basic options and advanced options. The advanced options are a super-
set of the basic options. As each option is discussed, this chapter notes whether it is self-
configuring. A self-configuring option is an option that adjusts itself dynamically, according
to the needs of the system. In most cases, this eliminates the need for setting the values
manually. Sometimes you don’t want to rely on certain self-configuring values, depending
on how SQL Server is being used. This chapter identifies self-configuring values.

As you can see in Figure 55.2, SQL Server provides configuration parameters that the
system administrator can set to maximize the performance of a system from the proper-
ties option within SSMS. You can set these and other SQL Server configuration parame-
ters by using the sp_configure system stored procedure as well.

Now, the only questions that need to be answered are “What configuration options do I
need to set that aren’t already fine?” and “How do I set them?”

ptg

2277Configuration Options
5

5

To answer the “what” question, you first need to determine for what purpose the applica-
tions are using SQL Server. The answer must include understanding variables such as the
number of potential connections to support, resources available on the box, size of the
database, type of data accesses occurring, and workload being put on SQL Server. When
you know all this, it is easy to determine the configuration option setting to adjust.

The following shows a generalization of the types of applications you might find in the
real world that would be implemented using SQL Server 2008 and the general behavior
they elicit:

. Online transaction processing (OLTP)—Mix of reads, writes, updates, and deletes.
Large number of concurrent users.

. Data warehouse—Incremental loads (deltas), aggregation/transformation process-
ing, then primarily read-only. Medium number of users.

. Online analytical processing (OLAP)—Big loads, then primarily read-only.
Medium to large number of simultaneous users.

. Mixed server—Mix of reads, writes, updates, deletes, big loads, and big extracts.
Large number of users.

This is not a complete list, just a generalized list. Because these configuration options are
set at the SQL Server level, it is important to know the combined behavior of all applica-
tion processing. For each SQL Server configuration option discussed in this chapter, we
recommend an appropriate setting, based on these generalized application processing
behavior types.

Now let’s answer the “How do I set them?” question. The next few sections describe all
the types of configuration options available on SQL Server 2008. These sections show how
to set these configuration options using both SSMS and the sp_configure system stored
procedure. The rule is that you can certainly set a configuration option using SSMS, but
you should keep an sp_configure version of that setting change as a backup in case you
need to rebuild the entire server configuration from scratch. In addition, keeping an
sp_configure version around in a file provides a great audit trail of what you did and
why. If you simply execute sp_configure without parameters, you are given a list of
options that can be addressed. When you have just installed a SQL Server instance, you
can see only the basic configuration options.

SQL Server 2008 has 16 basic configuration options available:

exec sp_configure

go

name minimum maximum config_value run_value

---------------------------------- ----------- ----------- ------------ -----------

allow updates 0 1 0 0

backup compression default 0 1 0 0

clr enabled 0 1 0 0

cross db ownership chaining 0 1 0 0

default language 0 9999 0 0

ptg

2278

filestream access level 0 2 0 0

max text repl size (B) -1 2147483647 65536 65536

nested triggers 0 1 1 1

remote access 0 1 1 1

remote admin connections 0 1 0 0

remote login timeout (s) 0 2147483647 20 20

remote proc trans 0 1 0 0

remote query timeout (s) 0 2147483647 600 600

server trigger recursion 0 1 1 1

show advanced options 0 1 0 0

user options 0 32767 0 0

By default, all SQL Server users have permission to run the sp_configure system stored
procedure, but only users who have sysadmin and serveradmin fixed server roles (such as
sa) can actually set the value of a parameter.

The proper syntax of the sp_configure command is as follows:

exec sp_configure [parameter_name [, parameter_value]]

In this syntax, parameter_name is the name of the configuration parameter you want to
set, and parameter_value is the value for the parameter. Both of these parameters are
optional. Parameters set by sp_configure take effect at the server level.

Following is a brief explanation of the output of the sp_configure command. As you can
see, the output consists of five columns:

. Name—This is the name of the configurable option.

. Minimum—This is the minimum legal value allowed for this parameter. Passing an
illegal value causes SQL Server to return an error.

. Maximum—This is the maximum legal value allowed for this parameter. Passing an
illegal value causes SQL Server to return an error.

. Config_value—This column reflects the values that will take effect the next time
SQL Server is started. If you change static parameters, the new values are listed under
this column.

. Run_value—This column reflects the values that SQL Server is currently using. If
you change any dynamic parameters, the new values are listed in this column. At
the time of SQL Server startup, config_value for all the parameters is copied into
run_value. Immediately after restart, both columns (run_value and config_value)
should display the same values, corresponding to each parameter.

If you specify a parameter name, SQL Server returns the current configuration value for
that particular parameter, as in this example:

exec sp_configure ‘clr enabled’

go

name minimum maximum config_value run_value

CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

ptg

2279Configuration Options
5

5

----------------------------------- ----------- ----------- ------------ ---------

clr enabled 0 1 0 0

There are many more than 16 basic configuration options. In fact, there are 70 configura-
tion options in total. They consist of the original 16 basic options plus 54 advanced
options (including two for 64-bit processing). To see a complete list of all options, you
turn on the show advanced option configuration option with the value 1.

In addition, when using sp_configure to change a setting, you use the RECONFIGURE WITH
OVERRIDE statement to make the change take effect immediately. You can also choose to
use just the RECONFIGURE statement. Depending on the configuration option, it may take
effect immediately, or it may not take effect until the server has been restarted.

The following commands set the show advanced options configuration option and then
retrieve the complete list of all configuration options:

exec sp_configure ‘Show Advanced Options’, 1 /* Advanced config options */

go

RECONFIGURE WITH OVERRIDE /* to have it take effect immediately */

go

sp_configure

go

name minimum maximum config_value run_value

----------------------------------- ----------- ----------- ------------ ---------

access check cache bucket count 0 65536 0 0

access check cache quota 0 2147483647 0 0

Ad Hoc Distributed Queries 0 1 0 0

affinity I/O mask -2147483648 2147483647 0 0

affinity mask -2147483648 2147483647 0 0

affinity64 I/O mask -2147483648 2147483647 0 0

affinity64 mask -2147483648 2147483647 0 0

Agent XPs 0 1 1 1

allow updates 0 1 0 0

awe enabled 0 1 0 0

backup compression default 0 1 0 0

blocked process threshold (s) 0 86400 0 0

c2 audit mode 0 1 0 0

clr enabled 0 1 0 0

common criteria compliance enabled 0 1 0 0

cost threshold for parallelism 0 32767 5 5

cross db ownership chaining 0 1 0 0

cursor threshold -1 2147483647 -1 -1

Database Mail XPs 0 1 0 0

default full-text language 0 2147483647 1033 1033

default language 0 9999 0 0

default trace enabled 0 1 1 1

disallow results from triggers 0 1 0 0

ptg

2280

EKM provider enabled 0 1 0 0

filestream access level 0 2 0 0

fill factor (%) 0 100 0 0

ft crawl bandwidth (max) 0 32767 100 100

ft crawl bandwidth (min) 0 32767 0 0

ft notify bandwidth (max) 0 32767 100 100

ft notify bandwidth (min) 0 32767 0 0

index create memory (KB) 704 2147483647 0 0

in-doubt xact resolution 0 2 0 0

lightweight pooling 0 1 0 0

locks 5000 2147483647 0 0

max degree of parallelism 0 1024 0 0

max full-text crawl range 0 256 4 4

max server memory (MB) 16 2147483647 2147483647 2147483647

max text repl size (B) -1 2147483647 65536 65536

max worker threads 128 32767 0 0

media retention 0 365 0 0

min memory per query (KB) 512 2147483647 1024 1024

min server memory (MB) 0 2147483647 0 0

nested triggers 0 1 1 1

network packet size (B) 512 32767 4096 4096

Ole Automation Procedures 0 1 0 0

open objects 0 2147483647 0 0

optimize for ad hoc workloads 0 1 0 0

PH timeout (s) 1 3600 60 60

precompute rank 0 1 0 0

priority boost 0 1 0 0

query governor cost limit 0 2147483647 0 0

query wait (s) -1 2147483647 -1 -1

recovery interval (min) 0 32767 0 0

remote access 0 1 1 1

remote admin connections 0 1 0 0

remote login timeout (s) 0 2147483647 20 20

remote proc trans 0 1 0 0

remote query timeout (s) 0 2147483647 600 600

Replication XPs 0 1 0 0

scan for startup procs 0 1 0 0

server trigger recursion 0 1 1 1

set working set size 0 1 0 0

show advanced options 0 1 1 1

SMO and DMO XPs 0 1 1 1

SQL Mail XPs 0 1 0 0

transform noise words 0 1 0 0

two digit year cutoff 1753 9999 2049 2049

user connections 0 32767 0 0

user options 0 32767 0 0

xp_cmdshell 0 1 0 0

CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

ptg

2281Configuration Options
5

5

Microsoft suggests that only very experienced SQL Server administrators change these
advanced configuration options. In general, this is good advice because most of these
options are set to where you might want them as you start out. As you learn more about
your application and the other things happening in your SQL Server instance, you will
change them more and more. You have been warned!

Earlier SQL Server 2008 R2 documentation also listed a configuration option,
enable_force_flush, that wasn’t present in the November Community Technology
Preview (CTP) for R2. We’re not sure whether we will see it very soon.

With SQL Server 2008, you can see all the configuration options and their current settings
via system views. The sys.configurations view shows the option, a description, and the
current value in use for each configuration option. The following example shows what
you might expect to see if you query the sys.configurations view:

SELECT convert(varchar(10),value_in_use) AS ‘Value in Use’,

substring (name,1,30) AS ‘Configuration Option’,

substring (description,1,30) AS ‘Description’

FROM sys.configurations

ORDER BY 2

Go

Value in Use Configuration Option Description

------------ ------------------------------ ------------------------------

0 access check cache bucket coun Default hash bucket count for

0 access check cache quota Default quota for the access c

0 Ad Hoc Distributed Queries Enable or disable Ad Hoc Distr

0 affinity I/O mask affinity I/O mask

0 affinity mask affinity mask

0 affinity64 I/O mask affinity64 I/O mask

0 affinity64 mask affinity64 mask

1 Agent XPs Enable or disable Agent XPs

0 allow updates Allow updates to system tables

0 awe enabled AWE enabled in the server

0 backup compression default Enable compression of backups

0 blocked process threshold (s) Blocked process reporting thre

0 c2 audit mode c2 audit mode

0 clr enabled CLR user code execution enable

0 common criteria compliance ena Common Criteria compliance mod

5 cost threshold for parallelism cost threshold for parallelism

0 cross db ownership chaining Allow cross db ownership chain

-1 cursor threshold cursor threshold

0 Database Mail XPs Enable or disable Database Mai

1033 default full-text language default full-text language

0 default language default language

1 default trace enabled Enable or disable the default

ptg

2282

0 disallow results from triggers Disallow returning results fro

0 EKM provider enabled Enable or disable EKM provider

0 filestream access level Sets the FILESTREAM access lev

0 fill factor (%) Default fill factor percentage

100 ft crawl bandwidth (max) Max number of full-text crawl

0 ft crawl bandwidth (min) Number of reserved full-text c

100 ft notify bandwidth (max) Max number of full-text notifi

0 ft notify bandwidth (min) Number of reserved full-text n

0 index create memory (KB) Memory for index create sorts

0 in-doubt xact resolution Recovery policy for DTC transa

0 lightweight pooling User mode scheduler uses light

0 locks Number of locks for all users

0 max degree of parallelism maximum degree of parallelism

4 max full-text crawl range Maximum crawl ranges allowed

2147483647 max server memory (MB) Maximum size of server memory

65536 max text repl size (B) Maximum size of a text field i

0 max worker threads Maximum worker threads

0 media retention Tape retention period in days

1024 min memory per query (KB) minimum memory per query (kByt

0 min server memory (MB) Minimum size of server memory

1 nested triggers Allow triggers to be invoked w

4096 network packet size (B) Network packet size

0 Ole Automation Procedures Enable or disable Ole Automati

0 open objects Number of open database object

0 optimize for ad hoc workloads When this option is set, plan

60 PH timeout (s) DB connection timeout for full

0 precompute rank Use precomputed rank for full-

0 priority boost Priority boost

0 query governor cost limit Maximum estimated cost allowed

-1 query wait (s) maximum time to wait for query

0 recovery interval (min) Maximum recovery interval in m

1 remote access Allow remote access

0 remote admin connections Dedicated Admin Connections ar

20 remote login timeout (s) remote login timeout

0 remote proc trans Create DTC transaction for rem

600 remote query timeout (s) remote query timeout

0 Replication XPs Enable or disable Replication

0 scan for startup procs scan for startup stored proced

1 server trigger recursion Allow recursion for server lev

0 set working set size set working set size

1 show advanced options show advanced options

1 SMO and DMO XPs Enable or disable SMO and DMO

0 SQL Mail XPs Enable or disable SQL Mail XPs

0 transform noise words Transform noise words for full

2049 two digit year cutoff two digit year cutoff

0 user connections Number of user connections all

CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

ptg

2283Obsolete Configuration Options
5

5

0 user options user options

0 xp_cmdshell Enable or disable command shel

Dynamically changing configuration options are also updated so that their values are
visible through the system views.

Fixing an Incorrect Option Setting
Setting a parameter value too high might cause SQL Server to crash during startup. For
example, if you set the value of the memory option to a value that is higher than the
physical memory on the machine, SQL Server does not start. In this case, you start SQL
Server with the -f option, which causes SQL Server to start with the default parameter
values (the same values used by the Setup program when you installed SQL Server). After
SQL Server is running, you can change the incorrect value to the correct one and restart
SQL Server without the -f option.

Setting Configuration Options with SSMS
As mentioned previously, you can set SQL Server configuration options by using SSMS.
You simply invoke SSMS from the Microsoft SQL Server program group and right-click the
Server folder. In Figure 55.2, you can see the SQL Server Properties pane, the different
server categories of options that are available (General, Processors, Memory, and so on),
and the selected option category properties that can be adjusted. Keep in mind that some
of these options are not configuration options that correspond to sp_configure (for
example, the Root Directory or Platform properties of the General Server Instance proper-
ties options). However, as you will see, Microsoft has done a nice job of organizing and
presenting the option information. In addition, you can look at either the configured
option value or the running values. If you are manipulating these, they may not be the
same.

Not all 70 configuration options can be set from SMSS; only about half of them can. It’s
therefore best to get to know the sp_configure system stored procedure. Remember that
you must have sysadmin and serveradmin fixed server roles to make changes.

All the sp_configure settings and options used in this chapter are included in a SQL script
named SQLConfigOptions.sql that you can find on the CD for this book.

Obsolete Configuration Options
Many configuration options available in SQL Server 7.0 or SQL Server 2000 have become
obsolete or do not function any longer. Some options, such as time slice, were intro-
duced in SQL Server 7.0 and then immediately became obsolete.

The following configuration options are obsolete in SQL Server 2008:

. Allow Update (remains listed but cannot be set)

ptg

2284

. set working set size (remains listed but has no effect)

. Open Objects (remains listed but has no effect)

From a historical perspective, one of the all-time favorite options in SQL Server 7.0 was
max async IO. The reason that option became obsolete is that it is completely automated
with SQL Server 2000, SQL Server 2005, and SQL Server 2008. Previously, max async IO
was used to specify the number of simultaneous disk I/O requests that SQL Server 7.0 (and
earlier versions) could submit to the Windows OS during a checkpoint operation. It invari-
ably helped overall throughput on systems that used RAID devices that had extensive disk
cache mechanisms. SQL Server 2008 adjusts these options automatically.

Configuration Options and Performance
The following sections explain essential information about many of the most significant
SQL Server configuration options and their impact on SQL Server performance. Some of
the options don’t have performance implications and therefore may not be addressed in
much detail—or at all. As part of each option’s explanation, an indication of whether the
option is advanced or basic is given, along with the option’s default value and whether
the option is self-configuring. Recommended values are usually indicated for the different
types of generalized application processing that the SQL Server is used for (that is, OLTP,
OLAP, data warehouse, and mixed). For some configuration options, there may not be
recommended values, but perhaps there may be notes that further explain how they can
be used. Remember that there are 70 configuration options; this chapter focuses on the
essential ones in alphabetical order (how they are listed in SQL Server).

access check cache bucket count

Type: Advanced Option

Default Value: 0

When any database object is accessed by SQL Server, the access check is cached in an
internal structure named access check result cache. The access check cache bucket
count option controls the number of entries and number of hash buckets used for access
check result cache.

Possible performance gains can be made by changing these options (in rare circum-
stances). In general, you should leave this one alone.

The following is an example of this option:

exec sp_configure ‘access check cache bucket count’, 0

go

RECONFIGURE

Go

CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

ptg

2285Configuration Options and Performance
5

5

access check cache quota

Type: Advanced Option

Default Value: 0

In conjunction with access check cache bucket count option, when SQL server accesses
any database object, the access check is cached in an internal structure named access
check result cache. The access check cache bucket count option, along with the
access check cache quota option, controls the number of entries and number of hash
buckets used for access check result cache.

Possible performance gains can be made by changing these options (in rare circum-
stances). But, in general, you should leave this one alone also.

The following is an example of this option:

exec sp_configure ‘access check cache quota’, 0

go

RECONFIGURE

Go

ad hoc distributed queries

Type: Advanced Option

Default Value: 0

SQL Server does not allow ad hoc distributed queries using OPENROWSET and
OPENDATASOURCE against providers other than the SQL Native Client OLE DB provider.
When the ad hoc distributed queries option is set to 0, SQL Server allows ad hoc
access against other providers. When it is set to 1, SQL Server does not allow any ad hoc
access.

Ad hoc distributed queries use the OPENROWSET and OPENDATASOURCE functions to connect
to remote data sources using OLE DB. OPENROWSET and OPENDATASOURCE should be used
only to reference OLE DB data sources that are accessed infrequently. For any data sources
that will be accessed more than a few times, you should define a linked server. Enabling
the use of ad hoc queries means that any authenticated login to SQL Server can access the
provider. SQL Server administrators should enable this feature only for highly trusted
providers that are safe to be accessed by any local login.

The following is an example of this option:

exec sp_configure ‘Ad Hoc Distributed Queries’, 1

go

RECONFIGURE

Go

ptg

2286

affinity I/O mask

Type: Advanced option; requires a reboot of SQL Server to take effect

Default value: 0

In Windows Servers, multitasking sometimes requires that process threads move among
different processors. This type of movement of processing threads can reduce Microsoft
SQL Server performance under heavy system loads because each processor cache is repeat-
edly reloaded with data. Assigning processors to specific threads can improve performance
by eliminating processor reloads; such an association between a thread and a processor is
called processor affinity. SQL Server 2008 supports processor affinity by means of two affin-
ity mask options: affinity mask (to deal with the processor affinity needs) and affinity
I/O mask (to address I/O-related affinity). Affinity support for servers with 33 to 64 proces-
sors is available only on 64-bit operating systems.

The affinity I/O mask option binds SQL Server disk I/O to a specified subset of CPUs. In
high-end SQL Server OLTP environments, this extension can enhance the performance of
SQL Server threads issuing I/Os. This enhancement does not support hardware affinity for
individual disks or disk controllers.

The value for affinity I/O mask specifies which CPUs in a multiprocessor computer are
eligible to process SQL Server disk I/O operations. The mask is a bitmap in which the
rightmost bit specifies the lowest-order CPU (0), the bit to its immediate left specifies the
next-lowest-order CPU (1), and so on. To configure more than 32 processors, you set both
affinity I/O mask and affinity64 I/O mask. When all bits are set to 0 (or affinity I/O
mask is not specified), SQL Server disk I/O is scheduled to any of the CPUs eligible to
process SQL Server threads.

The values for affinity I/O mask are as follows:

. A 1-byte affinity I/O mask value covers up to 8 CPUs in a multiprocessor computer.

. A 2-byte affinity I/O mask value covers up to 16 CPUs in a multiprocessor computer.

. A 3-byte affinity I/O mask value covers up to 24 CPUs in a multiprocessor computer.

. A 4-byte affinity I/O mask value covers up to 32 CPUs in a multiprocessor computer.

To cover more than 32 CPUs, you configure a 4-byte affinity I/O mask value for the first
32 CPUs and up to a value-byte affinity64 I/O mask value for the remaining CPUs.

A 1 bit in the affinity I/O pattern specifies that the corresponding CPU is eligible to
perform SQL Server disk I/O operations; a 0 bit specifies that no SQL Server disk I/O opera-
tions should be scheduled for the corresponding CPU.

An example of the bitmask values for the first seven processors of an eight-processor
system follows (with decimal values shown in parentheses):

CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

ptg

2287

Bitmask Processors Used

00000001 (1) 0

00000011 (3) 0, 1

00000111 (7) 0, 1, 2

00001111 (15) 0, 1, 2, 3

00011111 (31) 0, 1, 2, 3, 4

00111111 (63) 0, 1, 2, 3, 4, 5

01111111 (127) 0, 1, 2, 3, 4, 5, 6

Configuration Options and Performance
5

5

Because setting the SQL Server affinity I/O mask option is a specialized operation, it
should be used only when necessary. When specifying the affinity I/O mask option,
you must use it with the affinity mask configuration option. You should not enable the
same CPU in both the affinity I/O mask switch and the affinity mask option. The bits
corresponding to each CPU should be in one of the following three states:

. 0 in both the affinity I/O mask option and the affinity mask option

. 1 in the affinity I/O mask option and 0 in the affinity mask option

. 0 in the affinity I/O mask option and 1 in the affinity mask option

In SQL Server 2008, reconfiguring the affinity I/O mask option requires a restart of the
SQL Server instance.

The following is an example of this option:

exec sp_configure ‘affinity I/O mask’, 1

go

RECONFIGURE

Go

Affinity64 I/O mask is available only in the 64-bit version of SQL Server.

affinity mask

Type: Advanced option

Default value: 0

When a server is experiencing a heavy load because other applications are running on the
same server, it might be desirable to bind thread affinity to a processor.

affinity mask is a bitmapped field that provides SQL Server threads an affinity to proces-
sors. This is typically used in conjunction with the affinity I/O mask option just
described. Starting from the least-significant digit, each bit that is set to 1 represents the
processor on which SQL Server will spawn its threads. Processors are numbered from 0 to
7. An example of the bitmask values for the first seven processors of an eight-processor
system follows (with decimal values shown in parentheses):

ptg

2288 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

Bitmask Processors Used

00000001 (1) 0

00000011 (3) 0, 1

00000111 (7) 0, 1, 2

00001111 (15) 0, 1, 2, 3

00011111 (31) 0, 1, 2, 3, 4

00111111 (63) 0, 1, 2, 3, 4, 5

01111111 (127) 0, 1, 2, 3, 4, 5, 6

You usually leave the eighth processor alone because many system processes—such as
domain controllers—default to that processor.

For example, if you want to create the affinity for one SQL Server instance’s threads to use
four processors of an eight-processor system, you would set this bitmask to be 15
(00001111). As a result, SQL Server would spawn its threads only on those processors, thus
reducing overall reloading of the processor cache. This can be especially evident during
heavy system loads.

The following is an example of this option:

exec sp_configure ‘affinity mask’, 15

go

RECONFIGURE

Go

In general, the default affinity value is able to provide ample load balancing across proces-
sors. You should allocate CPUs based on your particular processing load and application
types. affinity64 mask is available only on the 64-bit version of SQL Server.

Following is a general recommendation of what to specify based on the different applica-
tion types you are running:

. OLTP—Use the default value, 0.

. Data warehouse—Potentially use 75% of available processors to maximize the huge
data loads, large reporting, and number of users.

. OLAP—Use the default value, 0.

. Mixed—Use the default value, 0.

From SSMS, you select SQL Server Properties, open the Processor tab, and select the
targeted processors in the Enable Processors section, as shown in Figure 55.3.

ptg

2289Configuration Options and Performance
5

5

FIGURE 55.3 SQL Server 2008 processors’ configurations from SSMS.

Agent XP

Type: Advanced

Default value: 0

The Agent XP option enables SQL Server 2008 Agent extended stored procedures for this
server. If enabled, the SQL Server Agent is available in SSMS. If not enabled, the SQL Server
Agent is not available in SSMS and cannot be used to start or stop the service. This option
also supports direct execution of CLR assemblies. It is not optimized to do so; it just
supports this.

A 0 value indicates that SQL Server Agent extended stored procedures are not available
(the default). A value of 1 indicates that the SQL Server Agent extended stored procedures
are available.

awe enabled

Type: Advanced; requires a reboot of SQL Server to take effect

Default value: 0

SQL Server can use the Advanced Windowing Extensions (AWE) API to support large
amounts of physical memory. In fact, the specific amount of memory you can use

ptg

2290 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

depends on your hardware configuration and operating system support. The amount of
physical memory supported has increased with the introduction of Microsoft Windows
Server operating systems:

. Windows Server Standard Edition supports physical memory up to 4GB.

. Windows Server Enterprise Edition supports physical memory up to 32GB.

. Windows Server Datacenter Edition supports physical memory up to 64GB.

The default of 0 for the awe enabled option tells SQL Server to use dynamic memory in
standard 32-bit virtual address spaces. When you enable AWE, the SQL Server instance
does not dynamically manage the size of the address space. The instance holds all
memory acquired at startup until it is shut down, and memory pages come from the
Windows nonpageable pool. This means that none of the memory of the instance can be
swapped out. You end up with a great deal of activity occurring in memory only. This is
potentially a fast Database Engine.

NOTE

Releases of SQL Server before SQL Server 2005 supported dynamic memory, which
allowed SQL Server to automatically adjust memory usage when there was spare
memory on the system. However, SQL Server was limited by the amount of memory
available at startup. Starting with SQL Server 2005, this limit on startup memory
availability is removed. SQL Server 2005 and 2008 support Hot Add Memory in
Microsoft Windows Servers, which allows users to add physical memory without
restarting the server.

Hot Add Memory requires SQL Server 2008 Enterprise Edition and is available only for
64-bit SQL Server and for 32-bit SQL Server when AWE is enabled. Hot Add Memory is
not available for 32-bit SQL Server when AWE is not enabled. Hot Add Memory is avail-
able only for Windows Servers Enterprise and Datacenter Editions. It also requires spe-
cial hardware supported by the hardware vendor.

awe enabled is usually used in conjunction with the max server memory option to control
how much memory each SQL Server instance uses.

The following is an example of this option:

sp_configure ‘awe enabled’, 1

go

RECONFIGURE

Go

Following is a general recommendation of what to specify based on the different applica-
tion types you are running:

. OLTP—If memory is available, set it to 1.

. Data warehouse—Not appropriate for this type.

ptg

2291Configuration Options and Performance
5

5

. OLAP—If memory is available and you are not using OLAP file options, set it to 1.

. Mixed—If memory is available, set it to 1.

backup compression default

Type: Basic

Default value: 0

Starting with SQL Server 2008 Enterprise, you can use the BACKUP Transact-SQL statement
to select the backup compression setting to use WITH COMPRESSION or WITH NO_COMPRES-
SION. However, when you install SQL Server 2008, the backup compression default is set
to 0, which makes backup compression off by default. To change the default to
COMPRESSION, you set the backup compression default to 1. To revert the default to
NO_COMPRESSION, set the backup compression default back to 0.

From a performance point of view, compression can significantly increase CPU usage, and
the additional CPU consumed by the compression process might impact concurrent oper-
ations. Therefore, you might want to create low-priority compressed backups in a session
whose CPU usage is limited by the Resource Governor.

blocked process threshold

Type: Advanced

Default value: 0

The blocked process threshold option allows you to specify the threshold, in seconds,
at which blocked process reports are generated. By default, no blocked process reports are
produced. blocked process threshold uses the deadlock monitor background thread to
walk through the list of tasks waiting for a time greater than or multiples of the config-
ured threshold. This option is useful when debugging systems with many deadlock situa-
tions. However, there is a cost of overhead involved, so it should be used for only short
periods of time.

c2 audit mode

Type: Advanced; requires a reboot of SQL Server to take effect

Default value: 0

C2 audit mode can be configured through SSMS or with the c2 audit mode option in
sp_configure. This feature is still available. Selecting this option configures the server to
record both failed and successful attempts to access statements and objects. This informa-
tion can help you profile system activity and track possible security policy violations. The
C2 security standard has been superseded by common criteria compliance features. Much
of the detail-level auditing is now done with SQL Auditing (covered in the SQL Server
Security chapters) and is far more robust than this feature. C2 audit mode data is saved in
a file in the default data directory of the instance. If the audit log file reaches its size limit
of 200MB, SQL Server creates a new file, closes the old file, and writes all new audit

ptg

2292 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

records to the new file. This process continues until the audit data directory fills up or
auditing is turned off. To determine the status of a C2 trace, you query the sys.traces
catalog view. Be aware that C2 audit mode saves a large amount of event information to
the log file, which can grow quickly. If the data directory in which logs are being saved
runs out of space, SQL Server shuts itself down! If auditing is set to start automatically,
you must either restart the instance with the -f flag (which bypasses auditing) or free up
additional disk space for the audit log.

clr enabled

Type: Basic

Default value: 0

SQL Server 2008 supports direct execution of CLR assemblies. It is not optimized to do so;
it just supports this capability.

A 0 value for clr enabled indicates that these CLR assemblies are not allowed to run on
this SQL Server instance. A value of 1 allows this type of execution. The setting takes effect
immediately after sp_configure is run, with no restart of the SQL Server instance
required. When RECONFIGURE is run and the run value of the clr enabled option is
changed from 1 to 0, all application domains containing user CLR assemblies are immedi-
ately unloaded. CLR assembly execution is not supported under lightweight pooling, so
you must disable one of two options: clr enabled or lightweight pooling.

common criteria compliance enabled

Type: Advanced; requires a reboot of SQL Server to take effect

Default value: 0

The common criteria compliance enabled option enables three areas (or elements) of
what is termed common criteria. The first is Residual Information Protection (RIP), which
overwrites memory with a known pattern of bits before memory is reallocated to a new
resource. This meets the RIP standard and contributes to improved security. The downside
of this improvement is a slowing in performance. The second enables login auditing to
occur. Each time a user successfully logs in to SQL Server, information about the last
successful login time, the last unsuccessful login time, and the number of attempts
between the last successful and current login times is made available. These login statistics
can be viewed by querying the sys.dm_exec_sessions dynamic management view. And
lastly, this option enables the behavior that a column-level GRANT should not override a
table-level DENY. In other words, when enabled, a table-level DENY takes precedence over a
column-level GRANT.

ptg

2293Configuration Options and Performance
5

5

cost threshold for parallelism

Type: Advanced

Default value: 5

SQL Server 2008 supports parallel query execution. Before a query is executed, SQL Server’s
cost-based optimizer estimates the cost of execution for a serial plan (that is, a plan that
uses a single thread). The option to set the cost threshold for parallelism allows you to
specify a threshold in seconds; if the cost of the serial execution plan (in seconds) is
greater than the value specified by this parameter, SQL Server considers a parallel query
execution plan. A query does not become a candidate for parallel query execution simply
based on this fact. Because parallel query execution is supported only on multiprocessor
servers, the cost threshold for parallelism value is ignored for single-processor hard-
ware. For an application that uses many complex queries, you should set this value to a
lower number so that you can take advantage of the parallel query execution capabilities
of SQL Server.

The following is an example of this option:

exec sp_configure ‘cost threshold for parallelism’, 2

go

RECONFIGURE

Go

The following is a general recommendation of what to specify based on the different
application types you are running:

. OLTP—Use the default value, 5.

. Data warehouse—Many complex queries are candidates for parallelism. Set to a
low value, such as 2 (seconds).

. OLAP—Use the default value, 5.

. Mixed—Use the default value, 5.

cross db ownership chaining

Type: basic

Default value: 0

You use the cross db ownership chaining option to configure cross-database ownership
chaining for an instance of Microsoft SQL Server. This server option allows you to control
cross-database ownership chaining at the database level or to allow cross-database owner-
ship chaining for all databases. In other words, when this option is off for the instance, it
is disabled for all databases. This server-wide option can be more selectively set at the indi-
vidual database level. Our recommendation is to turn it off at the server instance level and

ptg

2294 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

then explicitly allow cross-database ownership chaining using the SET clause of the ALTER
DATABASE statement.

cursor threshold

Type: Advanced

Default value: -1

The cursor threshold option allows you to specify when SQL Server should generate a
cursor result set asynchronously. If the optimizer estimates that the number of rows
returned by the cursor is greater than the value specified by this parameter, it generates
the result set asynchronously. The optimizer makes this decision based on the distribution
statistics for each table that is participating in the join in the cursor.

To determine the optimal value for this parameter, you need to make sure that statistics
are up-to-date (by running update statistics) for the tables used in the cursors. By default,
SQL Server generates a cursor result set synchronously. If you are using a fair number of
cursors that return a large number of result sets, setting this value to a higher value results
in better performance. Setting this value to 0 forces SQL Server to always generate a cursor
result set asynchronously.

The following is an example of this option:

exec sp_configure ‘cursor threshold’, 100000

go

RECONFIGURE

go

The following is a general recommendation of what to specify based on the different appli-
cation types you are running:

. OLTP—Use the default value, -1.

. Data warehouse—A data warehousing environment is the largest potential user of
this option due to the high volume of result rows returned by applications using
data warehouses. Setting this value to 100,000 is a good starting point.

. OLAP—Use the default value, -1.

. Mixed—Use the default value, -1.

default full-text language

Type: Advanced

Default value: 1033

The default full-text language option is used to specify a default language value for
full-text indexed columns. Linguistic analysis is performed on all data that is full-text
indexed and is strictly dependent on the language of the data. The default value of this
option is the language of the server.

ptg

2295Configuration Options and Performance
5

5

The value of the default full-text language option is used when no language is speci-
fied for a column through the LANGUAGE option in the CREATE FULLTEXT INDEX or ALTER
FULLTEXT INDEX statements. If the default full-text language option is not supported
or the linguistic analysis package is not available, the CREATE or ALTER operation doesn’t
work, and SQL Server returns an invalid language specified error message. To see the
list of linguistic analysis packages that are part of SQL Server 2008, you query the system
view sys.fulltext_languages, as in this example:

SELECT * FROM sys.fulltext_languages

order by 2

Go

lcid name

----------- -----------------------------

1025 Arabic

1093 Bengali (India)

1046 Brazilian

2057 British English

1026 Bulgarian

1027 Catalan

3076 Chinese (Hong Kong SAR, PRC)

5124 Chinese (Macau SAR)

4100 Chinese (Singapore)

1050 Croatian

1043 Dutch

1033 English

1036 French

1031 German

1095 Gujarati

1037 Hebrew

1081 Hindi

1039 Icelandic

1057 Indonesian

1040 Italian

1041 Japanese

1099 Kannada

1042 Korean

1062 Latvian

1063 Lithuanian

1086 Malay - Malaysia

1100 Malayalam

1102 Marathi

0 Neutral

1044 Norwegian (Bokmål)

2070 Portuguese

1094 Punjabi

1048 Romanian

ptg

2296 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

1049 Russian

3098 Serbian (Cyrillic)

2074 Serbian (Latin)

2052 Simplified Chinese

1051 Slovak

1060 Slovenian

3082 Spanish

1053 Swedish

1097 Tamil

1098 Telugu

1054 Thai

1028 Traditional Chinese

1058 Ukrainian

1056 Urdu

1066 Vietnamese

If setting to other than the default, the sp_configure command would look like this
(when set to French):

exec sp_configure ‘default full-text language’, 1036

go

RECONFIGURE

Go

default language

Type: Basic

Default value: 0

The default language option specifies the language ID currently in use by SQL Server.
The default value is 0, which specifies the U.S. English system. As you add languages on
the server, SQL Server assigns a new ID for each language. You can then use these IDs to
specify the default language of your choice. You can add languages by using the SQL
Server Setup program. Adding a language allows SQL Server to display error messages and
date/time values in the format that is appropriate for that language. You set this option in
the Server Settings tab of the SQL Server Properties dialog.

You can override the default language for a login by using sp_addlogin or
sp_defaultlanguage. The default language for a session is the language for that session’s
login, unless overridden on a per-session basis by using the ODBC or OLE DB APIs. To see
the languages supported for your SQL Server instance, you use the system view
sys.syslanguages.

SELECT langid, substring(name,1,20) AS name,

substring(alias,1,20) AS alias,

lcid

FROM sys.syslanguages

ptg

2297Configuration Options and Performance
5

5

order by 3

Go

langid name alias lcid

------ -------------------- -------------------- -------------

31 Arabic Arabic 1025

27 Português (Brasil) Brazilian 1046

23 British British English 2057

20 Bulgarian 1026

16 hrvatski Croatian 1050

12 Czech 1029

4 Dansk Danish 1030

7 Nederlands Dutch 1043

0 us_english English 1033

24 eesti Estonian 1061

10 Suomi Finnish 1035

2 Français French 1036

1 Deutsch German 1031

19 Greek 1032

13 magyar Hungarian 1038

6 Italiano Italian 1040

3 Japanese 1041

29 Korean 1042

25 Latvian 1062

26 Lithuanian 1063

8 Norsk Norwegian 2068

14 polski Polish 1045

9 Português Portuguese 2070

15 românä Romanian 1048

21 Russian 1049

30 Simplified Chinese 2052

17 Slovak 1051

18 slovenski Slovenian 1060

5 Español Spanish 3082

11 Svenska Swedish 1053

32 Thai 1054

28 Traditional Chinese 1028

22 Türkçe Turkish 1055

Setting the default language to something other than the default would look like this
(again, when set to French):

exec sp_configure ‘default language’, 2

go

ptg

2298 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

FIGURE 55.4 SQL Server 2008 language configuration from SSMS.

RECONFIGURE

Go

You can change the language for a session during the session through the SET LANGUAGE
statement. From SSMS, you can easily see the current default language and default full-text
language settings, as shown in Figure 55.4.

EKM provider enabled

Type: basic

Default value: 0

The EKM provider enabled option controls Extensible Key Management (EKM) device
support in SQL Server. By default, this option is off. SQL Server 2008 Extensible Key
Management enables third-party EKM/HSM vendors to register their modules in SQL
Server. When registered, SQL Server 2008 users can use the encryption keys stored on EKM
modules. This enables SQL Server to access the advanced encryption features these
modules support, such as bulk encryption and decryption, and key management functions
such as key aging and key rotation.

ptg

2299Configuration Options and Performance
5

5

The following is an example of this option:

exec sp_configure ‘EKM provider enabled’, 1

go

RECONFIGURE

go

filestream_access_level

Type: basic

Default value: 0

You use the filestream_access_level option to change the FILESTREAM access level.
Before this option has any effect, the Windows administration settings for FILESTREAM
must be enabled. You can also enable these settings when you are installing SQL Server or
by using SQL Server Configuration Manager (SSCM) for a specific SQL Server instance.
Setting the value to 0 disables this option. A value of 1 enables FILESTREAM for T-SQL
access only. A value of 2 enables FILESTREAM for both T-SQL and Win32 streaming access.

FILESTREAM integrates the SQL Server Database Engine with an NTFS file system by
storing varbinary(max) binary large object (BLOB) data as files on the file system. T-SQL
statements can insert, update, query, search, and back up FILESTREAM data.

The following is an example of this option:

exec sp_configure ‘filestream_access_level’, 2

go

RECONFIGURE

fill factor

Type: Basic

Default value: 0

The fill factor option allows you to define the percentage of free space on a data page
or an index page when you create an index or a table. The value can range from 1 to 100.
Setting the value to 80 would mean each page would be 80% full at the time of the create
index. SQL Server also allows you to specify the value of fill factor at the server level by
providing a fill factor parameter.

The following is an example of this option:

exec sp_configure ‘fill factor’, 80

go

RECONFIGURE

Go

ptg

2300 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

The following is a general recommendation of what to specify based on the different
application types you are running:

. OLTP—This is a good candidate for leaving space free in pages due to the update,
delete, and insert characteristics. Try 80% full value first and watch the page split
activity.

. Data warehouse—Use the default value, 0.

. OLAP—Use the default value, 0.

. Mixed—Use the default value, 0, or about a 90% full value.

index create memory

Type: Advanced, self-configuring

Default value: 0

The index create memory option is used to control the amount of memory used by index
creation sorts. It is a self-configuring option and usually doesn’t need to be adjusted.
However, if you are having problems with the creation of large indexes, you might want
to try specifying a KB value here that will contain the sort portion of the index create.

The following is an example of this option:

exec sp_configure ‘index create memory’, 1000

go

RECONFIGURE

go

in-doubt xact resolution

Type: Advanced

Default value: 0

The in-doubt xact resolution option changes the behavior of the default outcome for
transactions that the Microsoft Distributed Transaction Coordinator (MS DTC) is unable to
resolve. This helps prevent MS DTC–related downtime and provides clarity to transaction
outcomes across database servers. A value of 1 is a presume commit directive. In other
words, any MS DTC in-doubt transactions are presumed to have committed. A value of 2
is a presume abort directive, which means any MS DTC in-doubt transactions are presumed
to have aborted.

The following is an example of this option:

exec sp_configure ‘in-doubt xact resolution’, 2

go

RECONFIGURE

go

ptg

2301Configuration Options and Performance
5

5

lightweight pooling

Type: Advanced

Default value: 0

Lightweight pooling is relevant to multiprocessor environments that have excessive
context switching. By flipping the lightweight pooling switch, you might get better
throughput by performing the context switching inline, thus helping to reduce
user/kernel ring transitions. The lightweight pooling option actually causes SQL Server
to switch to fiber mode scheduling. CLR execution is not supported under lightweight
pooling. You can disable one of two options: clr enabled or lightweight pooling.

The following is an example of this option:

exec sp_configure ‘lightweight pooling’, 1

go

RECONFIGURE

go

The following is a general recommendation of what to specify based on the different
application types you are running:

. OLTP—This is a good candidate for use on a multiprocessor machine.

. Data warehouse—This has a good potential for usage on a multiprocessor machine.

. OLAP—Use the default value, 0.

. Mixed—Use the default value, 0.

locks

Type: Advanced, self-configuring

Default value: 0

In versions of SQL Server prior to 2005, the DBA had to specify the number of locks avail-
able to SQL Server. If this parameter was set to a low value, a query requiring a large
number of locks would fail at runtime. Setting it too high would result in wasting memory
that otherwise could be used to cache data. SQL Server 2008 can handle locks dynamically
if this parameter is set to the default value (0). SQL Server initially allocates 2% of memory
available to SQL Server (or usually about an initial pool of 2,500 lock structures). As lock
resource structures are consumed, the lock manager allocates more lock resources to the
pool, to a maximum of 60% of the memory available on SQL Server. When the locks
option is not set to 0, lock escalation occurs when the number of locks reaches 40% of the
value specified for locks. Unless you are certain of the overall lock consumption of your
application, you probably don’t need to change this value.

ptg

2302 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

The following is an example of this option:

sp_configure ‘locks’, 10000

go

RECONFIGURE

go

max degree of parallelism

Type: Advanced

Default value: 0

The max degree of parallelism option specifies the number of threads to be used for
parallel query execution. On a single-processor server, this value is always ignored. For
multiprocessor servers, a default value of 0 signifies that all the CPUs will be used for
parallel query execution. When SQL Server 2008 runs on a machine that has more than
one processor, it detects the best degree of parallelism. If you set this value to 1, all query
plans are serialized. If the affinity mask option is on, parallel query execution takes place
only on the CPUs for which the affinity mask bit is turned on. In that way, these two
options can be used in conjunction. The application types assessment is the same as
described for the affinity mask option.

The following is an example of this option:

sp_configure ‘max degree of parallelism’, 4

go

RECONFIGURE

go

max server memory and min server memory

Type: Advanced, self-configuring

Default values: 2147483647 and 0

The max server memory option specifies the maximum amount of memory (in megabytes)
available to SQL Server. It is used in conjunction with min server memory, and they essen-
tially establish upper and lower bounds for memory allocation. SQL Server uses this
memory for user connections, locks, internal data structures, and caching of the data. This
is the memory pool described earlier. The default value of 2147483647 for the max server
memory option means that SQL Server performs dynamic allocation of memory from the
operating system, based on available physical memory on the machine. The default value
of 0 for the min server memory option means that SQL Server starts allocation memory as
it is needed and then never goes below the minimum value after it is reached.

ptg

2303Configuration Options and Performance
5

5

The SQL Server lazywriter process is responsible for making sure enough memory is avail-
able to SQL Server for the optimal number of buffers and Windows so that no excess
paging occurs at the operating system level. The lazywriter process frequently checks phys-
ical memory available on the machine. If the memory available is greater than 5MB, lazy-
writer assigns excess memory to the SQL Server buffer cache.

You should watch the Working Set performance counter, which shows the amount of
memory used by a process (SQL Server in this case). If this number is consistently below
the amount of memory for which SQL Server is configured, SQL Server is configured for
more memory than it needs. You can also adjust the set working set size configura-
tion option.

If SQL Server is the only application running on a machine, you might want to perform
static memory allocation. You need to be careful when you allocate fixed memory to SQL
Server. If you allocate more memory to SQL Server than the machine has, SQL Server fails
to start. You use the -f option during startup to bring up SQL Server with the default
configuration. You can then change the value to the correct value and restart SQL Server.

The following is an example of this option:

exec sp_configure ‘max server memory’, 200

go

RECONFIGURE

Go

exec sp_configure ‘min server memory’, 8

go

RECONFIGURE

go

Because memory is managed dynamically, these settings basically create the lower and
upper bounds within which SQL Server must operate. When SQL Server is started, it uses
the minimum server memory amount to pre-allocate space to SQL Server. If the load on
the server never requires allocating the amount of memory specified in the minimum
server memory option, SQL Server runs with less memory.

Figure 55.5 shows both the minimum server memory and maximum server memory settings
on the Server Properties page.

The following is a general recommendation of what to specify based on the different
application types you are running:

. OLTP—For those with heavy loads, this is a good candidate for high minimum
memory settings.

. Data warehouse—Use the default values.

. OLAP—Use the default values.

. Mixed—For those with heavy loads, this is a good candidate for high minimum
memory settings.

ptg

2304 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

FIGURE 55.5 The minimum server memory and maximum server memory configuration
settings in SSMS.

max text repl size

Type: Basic

Default value: 65536

The max text repl size parameter specifies the maximum size of the text, ntext,
varchar(max), nvarchar(max), and image data types for columns participating in replica-
tion during single insert, update, writetext, and updatetext statements. You might need
to raise this value if the image sizes your application deals with are consistently large and
the data is part of a replication configuration.

The following is an example of this option:

exec sp_configure ‘max text repl size’, 131072

go

RECONFIGURE

go

ptg

2305Configuration Options and Performance
5

5

max worker threads

Type: Basic

Default value: 0

SQL Server uses native operating system threads. The max worker threads parameter spec-
ifies the maximum number of threads available for SQL Server processes. One or more
threads are used for supporting each network protocol (for example, TCP/IP, named pipes).
SQL Server is configured to listen. The checkpoint and lazywriter processes also consume
threads. A pool of threads is used to handle user connections. When the number of
connections is lower than the max worker threads parameter value, a thread is created for
each connection. When more connections are on the server than the value defined by the
max worker threads parameter, SQL Server provides thread pooling for efficient resource
utilization. The default value of 0 autoconfigures the number of max worker threads to
be (256 + ((number of processors – 4) × 8)) for a 32-bit processor and twice that for a 64-
bit processor. So, for an 8 processor 32-bit machine, the max worker threads value would
be autoconfigured to be (256 + ((8 – 4) × 8)) = 288.

More threads can create overhead on the system processors. Therefore, lowering this value
might sometimes improve the performance of a system. For a system with a few hundred
user connections, a reasonable value for this parameter is 288. You might want to experi-
ment with various values to determine the appropriate setting for this parameter. A multi-
processor environment can easily handle more threads, and you can increase the number
of threads accordingly.

The following is an example of this option:

exec sp_configure ‘max worker threads’, 288

go

RECONFIGURE

go

The following is a general recommendation of what to specify based on the different
application types you are running:

. OLTP—For multiprocessor environments, set the value upward because those envi-
ronments can handle servicing more threads. This yields performance gains.

. Data warehouse—Use the default value, 0.

. OLAP—Use the default value, 0.

. Mixed—For multiprocessor environments, set the value upward because those envi-
ronments can handle servicing more threads. This yields performance gains.

ptg

2306 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

min memory per query

Type: Advanced

Default value: 1024

The min memory per query option specifies the minimum amount of memory that will be
allocated for the execution of a query. Normally, the SQL Server query processor attempts
to determine the optimal amount of memory for a query. This option allows the sysadmin
role to specify this value instead. Increasing this value usually improves queries that
handle hash and sort operations on a large volume of data.

The following is an example of this option:

exec sp_configure ‘min memory per query’, 2048

go

RECONFIGURE

go

Looking back at Figure 55.5 showing the Memory page of the Server Properties dialog, you
can see the min query memory per query option set at 1024 (the default).

The following is a general recommendation of what to specify based on the different
application types you are running:

. OLTP—Use the default value, 1024.

. Data warehouse—This is a good opportunity to better service numerous canned
queries in this environment. Set the value higher than the default.

. OLAP—Use the default value, 1024.

. Mixed—Use the default value, 1024.

nested triggers

Type: Basic

Default value: 1

As the name suggests, nested triggers specifies whether a trigger event on a table will
fire another trigger (that is, cascade). The nesting level of triggers is 32. If you reach this
limit of 32, SQL Server gives an error and rolls back the transaction. The default value of 1
means that a trigger on a table can cause another trigger to fire.

network packet size

Type: Basic

Default value: 4096

The network packet size parameter specifies the default network packet size for SQL
Server. Setting this value to a higher number (which should be divisible by 512) can
improve the performance of applications that involve a large amount of data transfer from

ptg

2307Configuration Options and Performance
5

5

the server. Check your network configuration and set an appropriate value for this para-
meter. You can also improve performance by lowering the size value for applications that
are small in data transfer size. However, the usual scenario is to increase this size to
accommodate large amounts of data transfer, as with bulk loads.

The following is an example of this option:

exec sp_configure ‘network packet size’, 8192

go

RECONFIGURE

go

TIP

You can also specify the network packet size from the client when you connect to SQL
Server (using the -a option for isql, osql, and bcp). Setting the network packet size
from a client can be useful when the default network packet size is adequate for gener-
al application needs. However, a larger packet size might be needed for some specific
operations, such as bulk copy. You can also call OLE DB, ODBC, and DB-Library func-
tions to change the packet size.

The following is a general recommendation of what to specify based on the different
application types you are running:

. OLTP—Possibly decrease this size to 512 if all queries deal with small amounts of
data transfer, which is often the case in OLTP or ATM applications.

. Data warehouse—Perhaps increase this to 8192 or larger to handle the consistently
large data transfers in this environment.

. OLAP—Use the default value, 4096.

. Mixed—Use the default value, 4096.

optimize for ad hoc workloads

Type: Advanced

Default value: 0

The optimize for ad hoc workloads option is used to improve the efficiency of the
plan/procedure cache for workloads that contain many single-use ad hoc batches. When
this option is set to 1, the Database Engine stores a small compiled plan stub in the
plan/procedure cache when a batch is compiled for the first time, instead of the full
compiled plan. This helps to relieve memory pressure by not allowing the plan/procedure
cache to become filled with compiled plans that are not reused. The compiled plan stub
allows SQL Server to recognize that this ad hoc batch has been compiled before but has
stored only a compiled plan stub, so when this batch is invoked (compiled or executed)

ptg

2308 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

again, SQL Server compiles the batch, removes the compiled plan stub from the
plan/procedure cache, and adds the full compiled plan to the plan/procedure cache.
Setting optimize for ad hoc workloads to 1 affects only new plans; plans that are
already in the plan/procedure cache are unaffected. The compiled plan stub is one of the
cache object types displayed by the sys.dm_exec_cached_plans catalog view.

The following is an example of this option:

exec sp_configure ‘optimize for ad hoc workloads’,1

go

RECONFIGURE

go

PH_timeout

Type: Advanced

Default value: 60

You use the full-text protocol handler timeout option (PH timeout) to specify the time, in
seconds, that the handler should wait to connect to a database before timing out. The
default value is 60 seconds. Increase the value when connection attempts are timing out
due to temporary network issues or increased workloads. The full-text protocol handler is
hosted in the filter daemon host and is used to fetch the data to be full-text indexed.

The following is an example of this option:

exec sp_configure ‘PH_timeout’, 120

go

RECONFIGURE

go

priority boost

Type: Advanced

Default value: 0

The priority boost option is used to specify the process priority of SQL Server processes
on the Windows operating system. The default value of 0 means that SQL Server should
run on the same priority level—a priority base of 7—as other applications on the machine.
This option can be turned on if you have plenty of horsepower to deal with all other
services on the box, as in a multiprocessor environment. When you turn on priority
boost, the priority base of SQL Server is elevated to 13.

The following is an example of this option:

exec sp_configure ‘priority boost’, 1

go

ptg

2309Configuration Options and Performance
5

5

RECONFIGURE

go

NOTE

You shouldn’t set the value of the priority boost parameter to 1 except in the case
of a dedicated SQL Server machine with multiprocessors.

Looking back at Figure 55.3, you can see the Boost SQL Server Priority on Windows option
in the Processors page of the Server Properties dialog. Use care when applying this option.

query governor cost limit

Type: Advanced

Default value: 0

Queries are often the cause of major performance problems. SQL Server can handle
queries, but many are poorly written and don’t restrict the search criteria enough. This
can result in runaway queries that return large result sets, and they can adversely affect
the entire server’s performance. One way to control this situation is to cut off the query at
the pass by specifying a maximum cost limit to queries, in seconds. If any query’s cost, in
seconds, is greater than this maximum value, the query is not allowed to execute. The
query governor cost limit value is server-wide and cannot be applied to just one query.
Remember, though, that 0 (the default) for this option turns off the query governor, and
all queries are allowed to run without any time limitation.

The following is an example of this option:

exec sp_configure ‘query governor cost limit’, 300

go

RECONFIGURE

Go

To change the value on a per-connection basis, you use the SET
QUERY_GOVERNOR_COST_LIMIT statement.

The following is a general recommendation of what to specify based on the different
application types you are running:

. OLTP—Use the default value, 0.

. Data warehouse—This is a must-have option for this environment. Try setting this
value to 300 seconds and then get ready for the users to scream at you. On the posi-
tive side, the server won’t get bogged down or freeze again.

. OLAP—For OLAP systems that use SQL Server storage, set this value to 600 seconds
to get started and then reduce it over time.

ptg

2310 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

. Mixed—You have the same protection opportunity here as for OLAP. This won’t
affect the OLTP queries, so it is safe to apply.

query wait

Type: Advanced

Default value: -1

Queries that are memory intensive and involve huge sorts might take a long time to
execute, based on the available memory during execution. SQL Server internally calculates
the timeout interval for such queries. Usually, this is quite a large number. You can over-
ride this value by specifying a value (in seconds) for the query wait parameter in SQL
Server. If you set this value too low, you risk more frequent query timeouts when your
system is under a heavy load and a highly concurrent environment. If -1 is specified (the
default), the timeout is calculated as 25 times of the estimated query cost.

The following is an example of this option:

exec sp_configure ‘query wait’, 20

go

RECONFIGURE

go

recovery interval

Type: Advanced, self-configuring

Default value: 0

The recovery interval parameter is used to specify the maximum time (in minutes) that
SQL Server requires to recover a database during startup. During startup, SQL Server rolls
forward all the changes committed during a SQL Server crash and rolls back the changes
that were not committed. Based on the value specified for this parameter, SQL Server
determines when to issue a checkpoint in every database of SQL Server so that in the
event of a crash, SQL Server can recover the databases in the time specified by recovery
interval. If the value of the recovery interval parameter is low, SQL Server issues check-
points more frequently to allow a recovery to be faster; however, frequent checkpoints can
slow down performance. Setting recovery interval too high creates a longer recovery
time for databases in the event of a crash. The default value of 0 leaves this option open
to SQL Server to determine the best value.

The following is an example of this option:

exec sp_configure ‘recovery interval’, 10

go

RECONFIGURE

go

ptg

2311Configuration Options and Performance
5

5

The following is a general recommendation of what to specify based on the different
application types you are running:

. OLTP—Use the default value, 0.

. Data warehouse—This is an opportunity to save on checkpoints and not degrade
performance in this mostly read-only environment. Set this value high.

. OLAP—In this read-only environment, you have the same performance opportunity
here as in a data warehouse.

. Mixed—Use the default value, 0.

remote admin connections

Type: Basic

Default value: 0

Microsoft SQL Server 2008 provides a dedicated administrator connection (DAC). The
DAC lets an administrator access a running server to be able to execute diagnostic func-
tions or T-SQL statements, or troubleshoot problems on the server, even when the server is
locked or running in an abnormal state and not responding to any other type of user
connection. By default, the DAC is available only from a client on the server. But if you
set the Remote Admin connections option to 1, the DAC is available from a remote
connection as well. By default, the DAC listens only on the loopback IP address
(127.0.0.1), port 1434.

The following is an example of this option:

exec sp_configure ‘remote admin connections’, 1

go

RECONFIGURE

Go

remote login timeout

Type: Basic

Default value: 20

You use the remote login timeout option to specify the number of seconds to wait
before returning from a failed attempt to log in to a remote server. If you are attempting
to log in to a remote server and that server is down, remote login timeout ensures that
you do not have to wait indefinitely before your computer ceases its attempts to log in.

This option affects connections to OLE DB providers made for heterogeneous queries.
The default setting for remote login timeout is 20 (seconds). A value of 0 allows for an
infinite wait.

ptg

2312 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

The following is an example of this option:

exec sp_configure ‘remote login timeout’, 30

go

RECONFIGURE

Go

remote proc trans

Type: Basic

Default value: 0

The remote proc trans parameter allows remote procedures that are taking part in multi-
server transactions to use MS DTC so that transaction integrity is maintained across
servers. The default value of 0 means the remote procedure calls will not use MS DTC.
Data modification at the remote server will not be a part of transactions at the local server.
If you set this parameter to 1, SQL Server uses MS DTC to preserve transaction integrity
across servers. This feature is still scheduled to be removed in the next version of
Microsoft SQL Server. You should therefore avoid using this feature in new development
work and plan to modify applications that currently use this feature.

The following is an example of this option:

exec sp_configure ‘remote proc trans’, 1

go

RECONFIGURE

Go

remote query timeout

Type: Basic

Default value: 600

You use the remote query timeout option to specify how long (in seconds) a remote opera-
tion can take before Microsoft SQL Server times out. The default is 600, which allows a 10-
minute wait. This value applies to an outgoing connection initiated by the Database Engine
as a remote query. This value has no effect on queries received by the Database Engine.

For heterogeneous queries, remote query timeout specifies the number of seconds (initial-
ized in the command object using the DBPROP_COMMANDTIMEOUT rowset property) that a
remote provider should wait for result sets before it times out. This value is also used to set
DBPROP_GENERALTIMEOUT, if supported by the remote provider. This setting causes any
other operations to time out after the specified number of seconds.

For remote stored procedures, remote query timeout specifies the number of seconds
that must elapse after sending a remote EXEC statement before the remote stored proce-
dure times out.

ptg

2313Configuration Options and Performance
5

5

The following is an example of this option:

exec sp_configure ‘remote query timeout’, 300

go

RECONFIGURE

Go

scan for startup procs

Type: Advanced

Default value: 0

When the scan for startup procs option is set to 1, SQL Server scans for and executes
all automatically executed stored procedures on the server on startup. To set a stored
procedure to become automatically executed, you use the sp_procoption system stored
procedure. Typically, a stored procedure is executed at startup time when you want to
have certain processing occur that creates the proper working environment for all subse-
quent database processing on the server. You also can execute at startup when you want to
make sure that certain stored procedures’ execution plans (with proper optimizer deci-
sions) are already in the procedure cache before anyone else requests their execution.

The following is an example of this option:

exec sp_configure ‘scan for startup procs’, 1

go

RECONFIGURE

go

show advanced options

Type: Basic

Default value: 0

By default, you do not see the advanced configuration parameters of SQL Server. If you set
show advanced options to 1, you can see all the SQL Server parameters that can be set by
the sp_configure command.

user connections

Type: Advanced, self-configuring

Default value: 0

The user connections option specifies the number of concurrent users allowed on SQL
Server. When the value is 0 (which is the default), SQL Server can configure the needed
user connections dynamically as they are needed (unlimited). If you specify a value, you

ptg

2314 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

are limited to that maximum number of user connections until you specify a larger value.
If you specify a value other than 0, the memory allocation for user connections is allocated
at SQL Server startup time, and it burns up portions of the memory pool. Each connection
takes up 40KB of memory space. For instance, if you configure SQL Server for 100 connec-
tions, SQL Server pre-allocates 4MB (40KB × 100) for user connections. You can see that
setting this value too high might eventually impact performance because the extra
memory could instead be used to cache data. In general, user connections are best left to be
self-configuring.

The following is an example of this option:

exec sp_configure ‘user connections’, 300

go

RECONFIGURE

go

In Figure 55.6, you can see the current setting of 0 (unlimited) for the user connections
value within SSMS. If you plan to set this option, the value must be between 5 and
32,767.

FIGURE 55.6 The Connections page of the Server Properties dialog in SSMS.

ptg

2315Configuration Options and Performance
5

5

user options

Type: Basic

Default value: 0

The user options parameter allows you to specify certain defaults for all the options
allowed with the SET T-SQL command. Individual users can override these values by using
the SET command. You are essentially able to establish these options for all users unless
the users override them for their own needs. User options is a bitmask field, and each bit
represents a user option. Table 55.1 outlines the values you can set with this parameter.

TABLE 55.1 Specifying User Options Values

Bitmask
Value

Description

1 DISABLE_DEF_CNST_CHK controls interim/deferred constraint checking.

2 IMPLICIT_TRANSACTIONS controls whether a transaction is started implicitly when
a statement is executed.

4 CURSOR_CLOSE_ON_COMMIT controls the behavior of cursors after a commit has
been performed.

8 ANSI_WARNINGS controls truncation and nulls in aggregate warnings.

16 ANSI_PADDING controls padding of fixed-length variables.

32 ANSI_NULLS controls null handling when using equality operators.

64 ARITHABORT terminates a query when an overflow or divide-by-zero error occurs
during query execution.

128 ARITHIGNORE returns NULL when an overflow or divide-by-zero error occurs during a
query.

256 QUOTED_IDENTIFIER differentiates between single and double quotation marks
when evaluating an expression.

512 NOCOUNT turns off the message returned at the end of each statement that states
how many rows were affected by the statement.

1024 ANSI_NULL_DFLT_ON alters the session’s behavior to use ANSI compatibility for
nullability. New columns that are defined without explicit nullability are defined to
allow NULL values.

2048 ANSI_NULL_DFLT_OFF alters the session’s behavior to not use ANSI compatibility
for nullability. New columns defined without explicit nullability are defined not to
allow NULL values.

ptg

2316 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

For a given user connection, you can use the @@options global variable to see the values
that have been set.

The following is an example of this option:

exec sp_configure ‘user options’, 256

go

RECONFIGURE

Go

Again, a user can override these values with the SET command during a session.

XP-Related Configuration Options

Type: Advanced

Default: 0

A handful of advanced options are available with SQL Server 2008 to more granularly
address the execution of extended stored procedures within different SQL server
components:

Agent XPs

Database Mail XPs

Replication XPs Option

SMO and DMO XPs

SQL Mail XPs

xp_cmdshell

Each of these options defaults to 0, which means external stored procedures for these areas
are not available in the instance. If you enable these options, you should fully understand
that doing so opens these extended stored procedures to all on the instance.

As SQL Server 2008 expands in use, some of these options will probably be highlighted in
more detail as more real-world examples support their use and attention.

TABLE 55.1 Specifying User Options Values

Bitmask
Value

Description

4096 CONCAT_NULL_YIELDS_NULL has SQL Server return a NULL when concatenating a
NULL value with a string.

8192 NUMERIC_ROUNDABORT has SQL Server generate an error if loss of precision ever
occurs in an expression.

16344 XACT_ABORT has SQL Server roll back a transaction if a T-SQL statement raises a
runtime error.

ptg

2317Database Engine Tuning Advisor
5

5

Database Engine Tuning Advisor
Database Engine Tuning Advisor is a decent supplement for the SQL Server performance
options. It is not the hottest offering from Microsoft, but it can be valuable in enforcing
some basic design options in regard to partitioning, indexing, and basic table structures.
You can use either the GUI version of the DTA or the batch command-line version to
achieve the same results. With DTA, you can run an analysis against an entire database or
just focus on as little as one table within a database. Say that you have one problem child
table that is at the heart of all your misery. In this case, you would probably just want to
tune that one table for optimal database access.

To tune and analyze anything, DTA must base its analysis on something. That something
is usually a set of SQL queries that represent the “workload” of data accesses you want the
database to support well. These data accesses (that is, the workload) can be attained in
many ways. One way is to create a SQL script that contains any or all of the data accesses
you want considered in the tuning effort; another is to simply capture real SQL transac-
tions by using SQL Profiler traces. You can easily retain these traces in .trc file form or
keep the captured SQL traces in a SQL table. In the example you are about to run, a SQL
trace was done against the AdventureWorks database and stored in table form (in SQL
Server). You will see how to use this captured workload representation in the next section.
Let’s first look at the GUI version.

The Database Engine Tuning Advisor GUI

From the Tools menu in SSMS, you can select the Database Engine Tuning Advisor option
to invoke the GUI for DTA. (You can also invoke this GUI by selecting Start, All Programs,
Microsoft SQL Server 2008, Performance Tools, Database Engine Tuning Adviser Program
from your desktop.) You are asked to initiate a new session for doing database tuning
analysis.

NOTE

It’s best not to run the DTA against a live production database. You should make a
copy of the database in a safe place for this type of detailed analysis. You should use
a copy of the production database, though, because you want all decisions to be based
on reality, and your workload should also reflect true production data accesses.

When you are connected to the target SQL Server platform, a default for a session name
appears; it is the user’s name and the date on which the analysis is being done. Figure 55.7
shows this new session start and the specification of what workload to use for the analysis.

As you can also see in Figure 55.7, you specify a workload location where you have stored
the SQL traces that are to be used for the analysis. This can be to a file or table location;
DTA Example trace ASDB.trc in this example. You then specify AdventureWorks as the
database for workload analysis to start in. Any USE database commands in the trace (or
script) would be executed, but you want this analysis to start in a certain place. Then you
select the database to tune from the bottom list of databases (again, the AdventureWorks

ptg

2318 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

FIGURE 55.7 Database Engine Tuning Advisor new session setup.

database in this example). If you click the Selected Tables drop-down for the
AdventureWorks database, as shown in Figure 55.8, you could further limit what you want
to tune down to an individual table level. In this example, you tune the entire database.

You then click the Tuning Options tab to select exactly what you want to tune for. Figure
55.9 shows the various tuning options.

For this example, you tune all indexes, use no partitioning, and keep all existing physical
data structures as the first tuning analysis you want the DTA to do. Someday, Microsoft

FIGURE 55.8 Database Engine Tuning Advisor selected tables for tuning.

ptg

2319Database Engine Tuning Advisor
5

5

FIGURE 55.9 Database Engine Tuning Advisor tuning options to use for this session.

will triple the tuning types here, but for now, the offerings are limited. The Advanced
Options button allows you to specify the maximum number of columns that could be
contained in a new index recommendation (1,023 columns), whether DTA should gener-
ate only SQL DDL that can be executed online, and the maximum space that DTA can
utilize for physical structure changes. The defaults for these settings are typically suffi-
cient. Now, you simply click the Start Analysis menu item (the one with a little green right
arrow next to it) or choose Actions, Start Analysis option. Figure 55.10 shows the execu-
tion progress of this analysis session.

FIGURE 55.10 Database Engine Tuning Advisor tuning execution progress and tuning log.

ptg

2320 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

The tuning log shows the SQL events, actual statements, and frequency of these state-
ments (that is, the number of times the same SQL was processed). This information sheds
some light on the mix of SQL hitting this database. When the progress is complete, a
Recommendations tab and a Reports tab appear for this session (see Figure 55.11). Here,
the DTA says that an estimated improvement of 24% can be gained if the recommenda-
tions it is advising are followed. Because you wanted only index recommendations, you
don’t see any partitioning recommendations. However, there are a few index recommen-
dations for several tables based on the workload provided by the SQL Profiler trace file.

The Reports tab shows the summary of the tuning session and all the tuning reports
generated. In the Tuning Reports section at the bottom of Figure 55.12, you can see the
index usage report (recommended). There are several reports, ranging from detailed index
recommendations to workload analysis reports.

At any time, you can choose to preview the workload of the file or table you specified for
the analysis. You simply choose View, Preview Workload Table or View, Preview Workload
File, and SQL Profiler is invoked with your SQL trace.

If you are satisfied with the recommendations of any one of your tuning sessions, you can
choose to have them saved to a .sql file and scheduled to be applied at some later time,
or you can apply them immediately by selecting Actions, Apply Recommendations or
Actions, Save Recommendations.

It’s that simple.

TIP

If you regularly run the DTA with a good sampling of your typical transaction workload,
you can proactively identify potential changes that will keep your application humming.

FIGURE 55.11 The Database Engine Tuning Advisor Recommendations tab following analysis.

ptg

2321Database Engine Tuning Advisor
5

5

FIGURE 55.12 Index Usage report (recommended).

The Database Engine Tuning Advisor Command Line

DTA is also available in a batch mode so that you don’t have to be around to run it online
(because doing so can often take hours if you have a large workload to analyze). In addi-
tion, this mode allows you to run the same tests over and over, with varying options. You
can easily view DTA command-line options by using the help option of the command
itself (that is, the -? option). You simply run this option at the command line and have its
output piped into a file for viewing in Notepad (or another editor):

C:> DTA -? > dta.out

Microsoft (R) SQL Server Microsoft SQL Server Database Engine

Tuning Advisor command line utility

Version 10.50.1352.12 ((KJ_PreRelease).091030-1758)

Copyright(c) Microsoft Corporation. All rights reserved.

Usage:

DTA.EXE [-S ServerName[\Instance]]

[-U LoginId]

[-P Password]

[-E]

[-d DatabaseName]

[-D DatabaseName[, DatabaseName]]

[-Tl TableName[, TableName]]

[-Tf TableListFileName]

[-if WorkloadFileName]

[-it WorkloadTableName]

[-s SessionName]

[-of [ScriptFileName]]

[-or [ReportFileName]]

ptg

2322 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

[-rl Report[, Report]]

[-ox [OutputXmlFileName]]

[-F]

[-ID SessionID]

[-ix InputXmlFileName]

[-A TuningTime]

[-n NumberOfEvents]

[-m MinimumImprovement]

[-fa PhysicalDesignStructure]

[-fp PartitionStrategy]

[-fk PhysicalDesignStructure]

[-fx]

[-B StorageSize]

[-c MaxKeyColumnsInIndex]

[-C MaxColumnsInIndex]

[-e TuningLogTable]

[-N OnlineOption]

[-q]

[-u]

[-x]

[-a]

[-?]

This output has the following components:

. -S ServerName[\Instance]—Indicates the name of the SQL Server instance with
which to connect. This is the server against which all tuning analysis and supporting
table updates will be made.

. -U LoginId—Indicates the login ID to use in establishing a connection to SQL
Server (specified via the -S option).

. -P Password—Specifies the password for the specified login ID.

. -E—Uses a trusted connection to connect to the server.

. -d DatabaseName—Identifies the database to connect to when tuning.

. -D DatabaseName—Provides a list of database names for tuning. Names are sepa-
rated by commas.

. -Tl TableName—Provides a list of table names that should be tuned. Names are
separated by commas. If only one database is specified through the -D option, table
names do not need to be qualified with the database name. Otherwise, the fully
qualified name, in the form [Database].[Schema].[Table], is required for each
table.

. -Tf TableListFileName—Indicates the name of a file containing the list of tables
to be tuned. Tables listed within the file must appear on separate lines, and the
names must be qualified by database name and, optionally, by schema name. The

ptg

2323Database Engine Tuning Advisor
5

5

optional table-scaling feature may be invoked by following the name of a table with
a number that indicates the projected number of rows in that table (for example,
’[myDatabase].[dbo].[myTable] 500’).

. -if WorkloadFileName—Specifies the path and filename of the workload file to
use as input for tuning. These are the accepted formats:

. *.trc—SQL Server Profiler trace file.

. *.xml—SQL Server Profiler XML trace file.

. *.sql—SQL Server script.

. -it WorkloadTableName—Indicates the name of the table containing the workload
trace for tuning. The name is specified as [Database].[Schema].[Table].

. -s SessionName—Specifies the name of the new tuning session.

. -of ScriptFileName—Indicates that T-SQL script with recommendations should
be written to a file. If a filename is supplied, the recommendations are written to
that destination; otherwise, the filename is generated based on the session name.

. -or ReportFileName—Indicates that the report should be written to a file. If a file-
name is supplied, the report is written to that destination; otherwise, the filename is
generated based on the session name.

. -rl Report—Specifies the list of analysis reports to generate. You select one or more
of the following:

. ALL—Generate all reports.

. NONE—Do not generate any reports.

. STMT_COST—Statement cost report.

. EVT_FREQ—Event frequency report.

. STMT_DET—Statement detail report.

. CUR_STMT_IDX—Statement-index relations report (current).

. REC_STMT_IDX—Statement-index relations report (recommended).

. STMT_COSTRANGE—Statement cost range report.

. CUR_IDX_USAGE—Index usage report (current).

. REC_IDX_USAGE—Index usage report (recommended).

. CUR_IDX_DET—Index detail report (current).

. REC_IDX_DET—Index detail report (recommended).

. VIW_TAB—View-table relations report.

. WKLD_ANL—Workload analysis report.

. DB_ACCESS—Database access report.

ptg

2324 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

. TAB_ACCESS—Table access report.

. COL_ACCESS—Column access report.

By default, all reports are generated.

. -ox OutputXmlFileName—Indicates the name of the XML file to which the appli-
cation writes output.

. -F—Permits Database Engine Tuning Advisor to overwrite existing output files (spec-
ified using any of the o? options).

. -ID SessionID—Specifies the ID of a session for which Database Engine Tuning
Advisor should generate results.

. -ix InputXmlFileName—Indicates the name of the XML file that specifies a user
configuration (that is, a user-specified configuration). Note that command-line
options take precedence in the event that duplicate parameters are found in the file.

. -A TuningTime—Indicates the maximum amount of time, in minutes, that
Database Engine Tuning Advisor will spend tuning. In general, longer times produce
higher-quality recommendations. When 0 is specified as a value, the tuning time is
unlimited. When a value is not specified, the tuning time is limited to 8 hours.

. -n NumberOfEvents—Specifies the number of events to tune.

. -m MinimumImprovement—Specifies that Database Engine Tuning Advisor should
offer only recommendations for which the estimated improvement meets or exceeds
the supplied value (in percentages). If no value is specified, recommendations are
provided regardless of the degree of improvement.

. -fa PhysicalDesignStructure—Specifies the physical design structures for
which Database Engine Tuning Advisor should consider proposing new recommen-
dations. You select one of the available options:

. IDX_IV—Clustered and nonclustered indexes and indexed views.

. IDX—Clustered and nonclustered indexes.

. IV—Indexed views.

. NCL_IDX—Nonclustered indexes.

When no option is specified, IDX is used.

. -fp PartitionStrategy—Specifies the partitioning support requested that
Database Engine Tuning Advisor should consider adding. You select one of the avail-
able options:

. NONE—No partitioning strategies.

. FULL—Full partitioning (best performance).

. ALIGNED—Aligned partitioning (best manageability).

ptg

2325Database Engine Tuning Advisor
5

5

When no option is specified, NONE is used.

. -fk PhysicalDesignStructure—Specifies the physical design structures that
Database Engine Tuning Advisor cannot remove from the existing database scheme.
You select one of the available options:

. ALL—Keep all existing physical design structures.

. NONE—Do not keep any existing physical design structures.

. CL_IDX—Keep clustered indexes.

. IDX—Keep clustered and nonclustered indexes.

. ALIGNED—Keep aligned partitioning.

When no option is specified, ALL is used.

. -fx—Specifies that Database Engine Tuning Advisor will evaluate the usefulness of
existing physical design structures and will follow up with recommendations to drop
low-use structures. This option cannot be used with the -fa and -fp options.

. -B StorageSize—Specifies the maximum space, in megabytes, that can be
consumed by the total size of all recommendations.

. -c MaxKeyColumnsInIndex—The maximum number of key columns in indexes
proposed by the application.

. -C MaxColumnsInIndex—The maximum number of columns in indexes proposed
by the application.

. -e TuningLogTable—The name of a table or file where Database Engine Tuning
Advisor writes log messages that occurred during tuning. The table name should be
supplied in the form [Database].[Schema].[Table]. That table is created on the
server against which tuning is conducted. The filename must have the .xml exten-
sion. If no table or filename is passed, the default table is used.

. -N OnlineOption—Specifies whether objects should be created online, offline, or
online where possible. If online indices are to be created, the tag ”ONLINE=ON” is
appended to the DDL script for all objects that can or should be created online.
Select one of the available options:

. OFF—Offline only.

. MIXED—Online where possible.

. ON—Online only.

OFF is the default.

. -q—Sets quiet mode. No information is written to the console, including progress
and header information.

ptg

2326 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

. -u—Launches the Database Engine Tuning Advisor GUI and passes all supplied
command-line arguments as the initial configuration settings.

. -x—Starts the session and exits. All results are written to a database only. The output
may be generated later by supplying the -ID parameter.

. -a—Tunes and applies recommendations without prompting.

. -?—Displays usage information.

Typical DTA command-line execution would look like this:

C:> DTA -S DBARCHLT\SQL08DEV01 -E -D AdventureWorks2008R2 -if MyScript.sql

-s MySession2 -of MySession2OutputScript.sql -ox MySession2Output.xml

-fa IDX_IV -fp NONE -fk NONE

Data Collection Sets
Utilizing other tools as you fine-tune your SQL Server instance configuration options is
much easier now. The Data Collection services within SSMS provide a great way to get
that high-level picture of your SQL Server’s execution quickly. This capability is new to
SQL Server. Chapter 39 covers this feature in much more depth. However, if you look at
Figure 55.13, you can see a server-wide view of disk usage for database on a SQL Server
instance. You can also easily drill down into any one of the databases for a more in-depth
picture of how the database is being used.

Figure 55.14 shows the Data Collection set of Query Details for a particular database. In this
case, it shows a query that is at the heart of a very heavy workload and readily shows all
the primary execution statistics around that query’s execution.

FIGURE 55.13 Data Collection: Disk Usage.

ptg

2327Data Collection Sets
5

5

We also really like to see the overall server activity perspective, as shown in Figure 55.15,
as we adjust our server-wide configuration options. The Data Collection report shows
most of the major areas at the instance level: memory usage, CPU utilization, disk I/O
usage, network usage, and so on. Data Collection services provides you with an integrated
tool that also can show you time-based improvements (or degradations).

FIGURE 55.14 Data Collection: Query Details.

FIGURE 55.15 Data Collection: Server Activity History.

ptg

2328 CHAPTER 55 Configuring, Tuning, and Optimizing SQL Server Options

Summary
Dealing with the large number of configurable options in SQL Server is a big undertaking.
You not only need to know about the internal address space of SQL Server, but also need
to understand what types of applications will be running on the server so that the config-
uration decisions you make are not counterproductive.

Many of the configurable options have a direct effect on the most dynamic part of SQL
Server: the memory pool. This is truly where all the action is. Whether you have chosen
to let SQL Server help you manage this space dynamically via self-configuring options or
you have decided to manage this yourself, you must constantly monitor the current
settings and be prepared to modify them at any time. In general, you can start with the
default values given to the server at installation time and then slowly enhance those
options over time. In addition, to proactively identify needed enhancements to the index-
ing, partitioning, or physical table design, you should be running the DTA with a good
representation of the production workload you are trying to optimize. In addition, you
now have tools such as Data Collection services to easily report on the performance of
your SQL Server instance all the way down to a particular SQL query execution.

Chapter 56, “SQL Server Disaster Recovery Planning,” describes a solid approach to plan-
ning for, testing, and ensuring business continuity for SQL Server-based implementations.

ptg

CHAPTER 56

SQL Server Disaster
Recovery Planning

IN THIS CHAPTER

. What’s New in SQL Server
Disaster Recovery Planning

. How to Approach Disaster
Recovery

. Microsoft SQL Server Options
for Disaster Recovery

. The Overall Disaster Recovery
Process

. Have You Detached a Database
Recently?

. Third-Party Disaster Recovery
Alternatives

What? You think disasters never happen? Your SQL
Servers and applications have been running fine for months
on end? What could possibly happen to your data center in
Kansas? If you think it can’t happen to you, you are dream-
ing. Disasters happen in all sorts of sizes, shapes, and forms.
Whether a disaster is human-made (terrorism, hacking,
viruses, fires, human errors, and so on), an act of God
(weather, earthquakes, fires, and so on), or just a plain
failure of some kind (server failure), it can be catastrophic
to your company’s very existence. It is believed that some
companies spend up to 25% of their budget on disaster
recovery (DR) plans; however, this expenditure is to avoid
bigger losses. Of companies that have a major loss of
computerized records, 43% never reopen, 51% close within
two years, and only 6% will survive long term. Which way
would you go on this subject?

Likely, you are really thinking about getting serious about
devising some type of disaster recovery plan that supports
your company’s business continuity requirements. This
plan must be something that protects the primary (typically
revenue generating) applications that your business relies
on. Many applications are secondary when it comes to
disaster recovery and business continuity. After you identify
what systems need to be protected, you can go about plan-
ning and testing a true disaster plan using all the best disas-
ter recovery capabilities you have at your disposal.
Microsoft doesn’t have something it calls “disaster recovery
for SQL Server,” but it does have pieces of the puzzle that
can be leveraged in your specialized plans for your own
disaster recovery effort.

ptg

2330 CHAPTER 56 SQL Server Disaster Recovery Planning

Automated Fail-Over/Recovery
Zero or Near-Zero Data Loss

No off-site data backup–Possibly no recovery

Transactional Integrity
Little or Minor Data Loss

Point-in-time Recovery
and Electronic Vaulting

Off-site data backup
recoverable

to alternate/rebuilt
site

Level
4

Level
3

Level
2

Level
1

Level
0

FIGURE 56.1 Disaster recovery levels pyramid.

What’s New in SQL Server Disaster Recovery Planning
Microsoft still hasn’t really introduced a specific new feature that says “disaster recovery”
on it. But the company continues to release enhancements to existing features that can be
leveraged on various approaches to disaster recovery in a SQL Server environment. In
particular, a peer-to-peer replication model to the data replication offering is of high inter-
est in regards to creating active/active disaster recovery solutions. Database mirroring
(along with database snapshots) is also another feature that can be used to support both
active/active and active/passive disaster recovery needs. These, and other more traditional
offerings, round out the arsenal from Microsoft for giving you the comfortable feeling of
attaining business continuity.

How to Approach Disaster Recovery
Often, disaster recovery specialists refer to a seven-tier disaster recovery paradigm. These
tiers start at the bottom of the disaster recovery food chain—Tier 0 (no offsite data—possi-
bly no recovery) and progress up to the highest level of disaster recovery possible—Tier 7
(zero to near-zero data loss with highly automated recovery). We developed a much more
simplified and more generalized five-level representation that should aid you in under-
standing DR and how you can approach it more readily. Let’s start with where we think
most small to midsize companies find themselves: they have little to no disaster recovery
plan and are operating at a fairly high risk exposure level. When we look at Figure 56.1,
this places those folks in the very bottom of the upside-down pyramid at Level 1 and
perhaps not even in the DR pyramid at all (below the line—no data backup offsite at all—
Level 0).

ptg

2331How to Approach Disaster Recovery

Very likely, many of these companies are running a huge risk that they may not really
want to have. The good news is that getting to a more protected level with your SQL
Server–based applications isn’t really that hard to do. But nothing is free. After you estab-
lish some type of DR plan and create the technical process and mechanisms for your DR,
you still have to implement and test it. Now, let’s examine more closely the disaster recov-
ery levels and what level your company is currently or needs to go to.

Level 0 is very understandable because it relates to undergoing a disaster and being able to
recover from it. You basically have to pick up the pieces (after a fire or something) and see
what is salvageable from your site. Even the best onsite backup plans are rendered mean-
ingless in regard to disaster recovery if the backups were not stored somewhere safe
(offsite).

You must get to Level 1 as soon as possible if you are even remotely serious about disaster
recovery. We are talking about some very basic capability of creating a recoverable image
(database backups, system configuration backups, user ID, permissions, role backups, and
so on) that can effectively allow you to rebuild your critical applications and databases
that are running on SQL Server at an alternate location. Data loss is probably involved,
but it may not be enough to cause your company to completely go out of business. If you
are not doing this right now, do it today!

Level 2 adds a much more real-time recovery time frame into the mix and gets to more of
a point-in-time recovery capability. Using capabilities such as electronic vaulting aids
greatly in your being able to restore systems (databases) rapidly and get back online to the
world within a short amount of time. There is still a certain level of data loss here. That
cannot be avoided.

Level 3 moves you to the complexities of recovering transactional integrity in your appli-
cations and minimizing your data losses. This level requires much more effort, resources,
and sophistication, but is very doable.

Finally, many larger companies have Level 4 in place to completely protect themselves
from single-site failures or disasters without missing a single order transaction. This
chapter identifies the different SQL Server–based options that allow you to achieve from
Level 1 through Level 4 DR. In some cases, achieving this recovery involves using a
Microsoft product combined with a third-party product.

The mandate we put on you is to devise a highly efficient disaster recovery plan in
support of your business continuity needs and then test it completely! You need to make
sure it considers all aspects of completely being able to come up onto an alternate location
as smoothly, quickly, and with as little data loss as possible. Defining a disaster recovery
plan can be a tedious job owing to the potential complexities of your configuration. But,
keep in mind, a disaster recovery plan is essential to your company’s sheer existence and
should be treated as such. Your objective is to move up the pyramid (to Level 4 or near it)
to match your company’s needs for business continuity. We don’t want to read in the
trades how your company took weeks to recover from a failed data center disaster and
eventually went out of business; industry statistics are against you if you haven’t prepared.

5
6

ptg

2332 CHAPTER 56 SQL Server Disaster Recovery Planning

Primary Site

Active/Passive DR

ACTIVE

A B

Web and
Application Tier

SQL Server
Database Tier

Physical
Storage

Tier

DR Site

PASSIVE
“Standby Mode”

A B

Web and
Application Tier

SQL Server
Database Tier

Physical
Storage

Tier

snapshots

DB Recovery

Volume Replication

A B

FIGURE 56.2 Active/passive DR sites pattern.

Disaster Recovery Patterns

In general, you should consider three main DR patterns when trying to achieve Level 1
through Level 4 DR.

Active/Passive DR Sites Pattern
Figure 56.2 illustrates the active/passive DR sites pattern. This typical disaster recovery
configuration is probably the most common in the world (for those who are doing DR). It
involves a primary site (the normal environments in which you do business day in and
day out) and a passive DR site. This passive DR (alternative) site can be anything and
anywhere. It could be a “hot” alternate site that is ready for you to apply a current data-
base backup to (and application image, too), or it could be a “cold” alternate site that you
have to either go out and lease, co-locate with, or build completely from scratch. The
available resources, money, and business need determines which method you choose.
Obviously, the colder your DR site, the longer it will take for you to recover using it. A
typical estimate of the time needed for a small to midsized company to completely rebuild
the essential systems on an alternate site (DR site) is between 23 and 31 days.

The Microsoft products to help you achieve this DR pattern are database backups taken
offsite and readily recallable to recover (restore) your database tier and, if you have a “hot”

ptg

2333How to Approach Disaster Recovery

Primary Site 1

Active/Passive DR

ACTIVE

A B

Web and
Application Tier

SQL Server
Database Tier

Physical
Storage

Tier

Primary Site 2

ACTIVE

“In Sync” “In Sync”

A

Web and
Application Tier

SQL Server
Database Tier

Physical
Storage

Tier

snapshots

Bi-directional
Synchronization

B

FIGURE 56.3 Active/active DR sites pattern.

5
6

DR site available, you can utilize data replication to the DR site or log shipping or even
asynchronous database mirroring. Some third-party products, such as Symantec’s Veritas
Volume Replicator, push physical byte-level changes to the passive (hot) DR site physical
tier level. In most of these options, the DR site is passive, literally sitting there idle until it
is needed. The only exception to that rule is when you are using Microsoft data replica-
tion or database snapshots with database mirroring. Even in those cases, the DR site does
not support transactional change (updates, deletes, inserts); it supports read access only.
Also, you need to remember that log shipping is on the way out in future Microsoft
releases, so don’t plan too much new usage of that feature.

Active/Active DR Sites Pattern
An active/active DR configuration essentially provides two primary sites that can process
transactions equally. Any particular external or internal usage of the applications doesn’t
really know which site is processing the requests (and, in fact, doesn’t need to know). This
configuration has the entire application stack completely deployed on both sites. The data
is kept in sync in real-time, and either site could be lost and not affect the operation of
the company. Some data loss is possible, but this is usually kept at a minimum, depending
on which Microsoft options you are using. Figure 56.3 shows an active/active DR configu-
ration that bidirectionally keeps the databases in sync.

ptg

2334 CHAPTER 56 SQL Server Disaster Recovery Planning

A few things may cause issues for this pattern, such as the need to make sure that no
application keeps “state” from one transaction to the other. Additionally, the application
and/or the web tier needs to be able to route user connections (the load) to either site in
some type of balanced or round-robin method. This is often done with big IP routers that
use round-robin routing algorithms, for example, to determine which site to direct
connections to. Active/active configurations can be created using peer-to-peer continuous
data replication as well as other multi-updating subscriber replication topologies. A slight
twist to having two primary sites is to have one primary site and a secondary site that
doesn’t process transactions but is actively used for reporting, testing, and other tasks (just
no processing that changes anything). In the event of a primary failure, the secondary site
can take over full primary site responsibilities quickly. This is sort of active/passive, with
active “secondary usage” on the passive site (following the first active/passive DR pattern
described previously). This type of configuration can take advantage of database mirroring
and database snapshots (for the reporting). There are plenty of advantages to this varia-
tion, which greatly distributes the workload and moves up the DR pyramid.

Active Multisite DR Pattern
An active multisite DR configuration contains three or more active sites, with the inten-
tion of using any one of them as the DR site for the other (as shown in Figure 56.4). This
pattern allows you to distribute your applications redundantly between any pair of sites,
but not to all three (or more). For instance, you could have half of Primary Site 1’s appli-
cations on Primary Site 2 and the other half on Primary Site 3. This way, you spread out
the risk further and increase your odds of uninterrupted processing.

Again, having “stateless” applications is critical here, as is some smart routing of all
connections to the right sites. Using continuous data replication and the database mirror-
ing options allows you to easily create such a DR topology. And, again, you also have the
secondary usage variation available to you if one or more alternative sites were passive
(with secondary usage supporting reporting, for example).

Choosing a Disaster Recovery Pattern
We reduce these to patterns because, at the foundational level, they represent what you
need to do to support the level of business continuity your company demands. Some
companies can tolerate different levels of loss because of the nature of their business;
others cannot. At the highest levels, it is fairly easy to match these patterns to what your
business requires. In this chapter, we look at what SQL Server capabilities are available to
help you implement these patterns.

Often, global companies devise a DR configuration that reserves each major data center
site in their regions as the active or passive DR site for another region. Figure 56.5 shows
one large high-tech company’s global data center locations. Its Alexandria, Virginia, site is
also the passive DR site for its Phoenix, Arizona, site. Its Paris, France, regional site is also
the DR site for its Alexandria, Virginia, site, and so on.

For companies that have multiple data center sites but only need to support the
active/passive DR pattern, a very popular variation can be used. This variation is called
reciprocal DR. As you can see in Figure 56.6, there are two sites (Site 1 and Site 2). Each is
active for some applications (Applications 1, 3, and 5 on Site 1 and Applications 2, 4, and

ptg

2335How to Approach Disaster Recovery
5

6

Active
Multi-Site DR

Primary Site 1

ACTIVE

A B

Web and
Application Tier

SQL Server
Database Tier

Physical
Storage

Tier

“In Sync”

Primary Site 2

ACTIVE

A C

Web and
Application Tier

SQL Server
Database Tier

Physical
Storage

Tier

“In Sync”

Primary Site n

ACTIVE

“In Sync”

Web and
Application Tier

SQL Server
Database Tier

Physical
Storage

Tier

snapshotssnapshots

snapshots

Bi-directional

Synchronization

Bi-directional

Synchronization
Bi-d

ire
cti

onal

Syn
ch

ro
niza

tio
n C B

FIGURE 56.4 Active multisite DR pattern.

6 on Site 2). Site 1’s applications are passively supported on Site 2, and Site 2’s applications
are passively supported on Site 1. Rolling out the configuration this way eliminates the
“stateless” application issue completely and is fairly easy to implement. It is also possible
to provide the passive applications data available via database snapshots at the other reci-
procal site (for free!), further leveraging distributing workload geographically.

This configuration also spreads out the risk of losing all applications if one site ever
happens to be lost (as in a disaster). Again, the Microsoft products to help you achieve this
DR pattern variation are data replication to the DR site, or log shipping, and even asyn-
chronous database mirroring with database snapshots available to help with some distrib-
uted reporting. As we noted previously, third-party products such as Symantec’s Veritas
Volume Replicator can be used to push physical byte-level changes to the passive (hot) DR
site physical tier level.

ptg

2336 CHAPTER 56 SQL Server Disaster Recovery Planning

Reciprocal DR

Primary App1

Primary App3

Primary App5

…

App 2
App 4
App 6

Primary Site 1

A
ct

iv
e

P
as

si
ve

snapshots

Primary App2

Primary App4

Primary App6

…

App 1
App 3
App 5

Primary Site 2
A

ct
iv

e
P

as
si

ve

snapshots

FIGURE 56.6 Reciprocal DR.

Phoenix,
AZ

Paris,
FRANCE

Mumbai,
INDIA

Alexandria
VA

FIGURE 56.5 Using active regional sites for passive DR.

Recovery Objectives

You need to understand two main recovery objectives: the point in time to which data
must be restored to be able to successfully resume processing (called the recovery point
objective) and the acceptable amount of downtime that is tolerable (called the recovery time
objective). The recovery point objective (RPO) is often thought of as the time between the

ptg

2337How to Approach Disaster Recovery
5

6

last backup and the point when the outage occurred. It indicates the amount of data that
will be lost. The recovery time objective (RTO) is determined based on the acceptable
downtime in case of a disruption of operations. It indicates the latest point in time at
which the business operations must resume after disaster (that is, how much time can
elapse).

The RPO and RTO form the basis on which a data protection strategy is developed. This
helps to provide a picture of the total time that a business may lose due to a disaster. The
two of them together are very important requirements when designing a solution. Let’s
put these terms in the form of algorithms:

RTO = Difference between the time of the disaster to the time the system is operational –
Time operational (up) – Time disaster occurred (down)

RPO = Time since the last backup of complete transactions representing data that must
be re-acquired or entered – Time disaster occurred – Time of last usable data backup

Therefore:

Total lost business time = Time operational (up) – Time disaster occurred (down) – Time of
the last usable data backup

Knowing your RPO and RTO requirements is essential in determining what DR pattern to
use and what Microsoft options to utilize.

A Data-Centric Approach to Disaster Recovery

Disaster recovery is a complex undertaking unto itself. However, it isn’t really necessary to
recover every system or application in the event of a disaster. Priorities must be set on
determining exactly which systems or applications must be recovered. These are typically
the revenue-generating applications (such as order entry, order fulfillment, and invoicing)
that your business relies on to do basic business with its customers. Therefore, you set the
highest priorities for DR with those revenue-generating systems. Then the next level of
recovery is for the second-priority applications (such as HR systems).

After you prioritize which applications should be part of your DR plans, you need to fully
understand what must be included in recovery to ensure that these priority applications
are fully functional. The best way is to take a data-centric approach, which focuses on
what data is needed to bring up the application. Data comes in many flavors, as Figure
56.7 shows:

. Metadata—The data that describes structures, files, XSDs, and so on that the appli-
cations, middleware, or back end needs.

. Configuration data—The data that the application needs to define what it must
do, or the middleware needs to execute with, and so on.

. Application data values—The data itself within your database files that represents
the transactional data in your systems.

As just mentioned, you first identify which applications you must include in your DR
plans, and then you must make sure you back up and are able to recover that application’s

ptg

2338 CHAPTER 56 SQL Server Disaster Recovery Planning

Applications (ERP, HR, SFA,…)

Middleware (EAI, ETL, WS,…)

tightly coupled

loosely coupled

A B

Back End (SQL Server, Files, Other…)

Systems (HW, OS, Network)

BA

lo
os

el
y

co
up

le
d

tig
ht

ly
 c

ou
pl

ed

lo
os

el
y

co
up

le
d

tig
ht

ly
 c

ou
pl

ed

tightly coupled

loosely coupled

Meta data

Types of Data

Location of the Data (Tiers)

Configuration data

Application data (values)

FIGURE 56.7 Types of data and where the data resides.

data (metadata, configuration data, and application data). As part of this exercise, you
must determine how tightly or loosely coupled the data is to other applications. In other
words (as you can also see in Figure 56.7), if on the back-end tier, Database A has the
orders transactions and Database B has the invoicing data, both must be included in the
DR plans (because they are tightly coupled). In addition, you must also know how tightly
or loosely coupled the application stack components are with each layer. In other words
(again looking at Figure 56.7), if the ERP application (in the application tier) requires some
type of middleware to be present to handle all its messaging, that middleware tier compo-
nent is tightly coupled with the ERP application and so on.

Microsoft SQL Server Options for Disaster Recovery
You have seen the fundamental DR patterns you will be targeting and also recognize how
to identify the highest priority applications and their tightly coupled components for DR.
Now let’s look again at the specific Microsoft options available to implement various DR
solutions. These options include data replication, log shipping, database mirroring, and
database snapshots.

Data Replication

One of the strongest and more stable Microsoft options that can be leveraged for disaster
recovery is data replication. Not all variations of data replication fit this bill, though. In
particular, the central publisher using either continuous or very frequently scheduled
distribution is very good for creating a hot spare of a SQL Server database across almost
any geographical distance, as shown in Figure 56.8. The primary site is the only one
actively processing transactions (updates, inserts, deletes) in this configuration, with all
transactions being replicated to the subscriber, usually in a continuous replication mode.

ptg

2339Microsoft SQL Server Options for Disaster Recovery
5

6

Central Publisher
Replication

Publication
Server

SQL Server
2008

Active Primary Site

Remote Distribution
Server

Publisher

Distributor

Adventure
Works DB

translog

Subscription
Server

SQL Server
2008

Passive DR Site
with Active read only

“Hot Spare”

Con
tin

uo
us

(tr
an

sa
ct

io
na

l)
Adventure
Works DB

translog

Subscriber

SQL Server
2008

distribution

FIGURE 56.8 Central publisher data replication configuration for active/passive DR.

The subscriber at the DR site is as up-to-date as the last distributed (replicated) transaction
from the publisher—usually near real-time. The subscriber can be used for a read-only type
of processing if controlled properly and that read-only access does not hinder the replica-
tion processing and put your DR pattern at risk.

The newer peer-to-peer replication option provides a viable active/active capability that
keeps both primaries in sync as transactions flow into each server’s database, as shown in
Figure 56.9. Both sites contain a full copy of the database, with transactions being
consumed and then replicated simultaneously between them.

The complete setup of these data replication configurations is covered in Chapter 19,
“Replication.”

Log Shipping

As you can see in Figure 56.10, log shipping is readily usable for the active/passive DR
pattern. You must understand that log shipping is only as good as the last successful trans-
action log shipment. Frequency of these log ships is critical in the RTO and RPO aspects of
DR. This is really not a real-time solution. Even if you are using continuous log shipping
mode, there is a lag of some duration due to the file movement and log application on the
destination.

ptg

2340 CHAPTER 56 SQL Server Disaster Recovery Planning

Peer-to-Peer
Relication

SQL Server 2008

Publication
Server

Distribution
Server

SQL Server
2008

Active Primary Site

North American
Active Site

distribution

Adventure
Works DB

translog

SQL Server 2008

Publication
Server

Distribution
Server

SQL Server
2008

Active Primary Site

Asia
Active Site

distribution

Adventure
Works DB

translog

FIGURE 56.9 Peer-to-peer data replication configuration for active/active DR.

SQL Server 2008

Primary
Server

CallOne DB

translog

SQL Server 2008

Monitor
Server

Log Shipping

“Monitor”

MSDB DB

SQL Server 2008

Active Primary Site

TxnLog
backups

\Backup\CallOne_tlog_200905141120.TRN

\LogShare\CallOne_tlog_200905141120.TRN

Passive DR Site

“Source” “Destination”

TxnLog
Copies

TxnLog
Restores

Secondary
 Server

CallOne DB

La
st

 lo
g

sh
ip

pe
d

D
el

ay
 A

ns
w

er

Delay between
logs loaded

Delay Answer

FIGURE 56.10 Log shipping configuration for active/passive DR.

ptg

2341Microsoft SQL Server Options for Disaster Recovery
5

6

SQL Server 2008

Principal
Server

Adventure
Works DB

translog

SQL Server 2008

Witness
Server

Database Mirroring

MSDB DB

SQL Server 2008

Active Primary Site
Passive DR Site

with Active DB Snapshot

Mirror Server

Adventure
Works DB

translog

Rep
orti

ng Use
rs

Rep
ort

ing
 U

se
rs

Database Snapshot

FIGURE 56.11 Database mirroring and database snapshots for active/passive DR.

Remember, log shipping is destined to be deprecated by Microsoft (unofficially
announced). So it is perhaps not a good idea to start planning a future DR implementa-
tion that will go away.

Database Mirroring and Snapshots

Database mirroring is rapidly becoming the new, viable DR option from Microsoft. In
either a high-availability mode (synchronous) or performance mode (asynchronous), this
capability can help minimize data loss and time to recover (RPO and RTO). As you can see
in Figure 56.11, database mirroring can be used across any reasonable network connection
that may exist from one site to another. It effectively creates a mirror image that is
completely intact for failover purposes if a site is lost. It is viable in both an active/passive
pattern and in an active/active pattern (where a database snapshot is created from the
unavailable mirror database and is used for active reporting).

NOTE

It is likely Microsoft will rapidly enhance database mirroring to support all DR pat-
terns over time.

Setup and configuration of database mirroring are covered in Chapter 20, “Database
Mirroring,” along with full details of database snapshots in Chapter 32, “Database
Snapshots.”

ptg

2342 CHAPTER 56 SQL Server Disaster Recovery Planning

Now, to complete the DR planning for your SQL Server platform, you must do much more
homework and preparation. The next section explains a great overall disaster approach
that includes pulling all the right information available and executing on a DR plan (and
testing it thoroughly).

The Overall Disaster Recovery Process
In general, a handful of things need to be put together (that is, defined and executed
upon) as the basis for an overall disaster recovery process or plan. The following list
clearly identifies where you need to start:

1. Create a disaster recovery execution tasks/run book. This should include all steps to
take to recover from a disaster and cover all system components that need to be
recovered.

2. Arrange for or procure a server/site to recover to. This should be a configuration that
can house what is needed to get you back online.

3. Guarantee that a complete database backup/recovery mechanism is in place (includ-
ing offsite/alternate site archive and retrieval of databases).

4. Guarantee that an application backup/recovery mechanism is in place (for example,
COM+ applications, .NET applications, web services, other application components,
and so on).

5. Make sure you can completely re-create and resynchronize your security (Microsoft
Active Directory, domain accounts, SQL Server logins/passwords, and so on). We call
this “security resynchronization readiness.”

6. Make sure you can completely configure and open up network/communication
lines. This also includes ensuring that routers are configured properly, IP addresses
are made available, and so on.

7. Train your support personnel on all elements of recovery. You can never know
enough ways to recover a system. And it seems that a system never recovers the
same way twice.

8. Plan and execute an annual or bi-annual disaster recovery simulation. The one or
two days that you do this will pay you back a hundred times over if a disaster actual-
ly occurs. And, remember, disasters come in many flavors.

Many organizations have gone to the concept of having hot alternate sites available via
stretch clustering or log shipping techniques. Costs can be high for some of these
advanced and highly redundant solutions.

The Focus of Disaster Recovery

If you create some very solid, time-tested mechanisms for re-creating your SQL Server envi-
ronment, they will serve you well when you need them most. Following are the things to
focus on for disaster recovery:

ptg

2343The Overall Disaster Recovery Process
5

6

. Always generate scripts for as much of your work as possible (anything created using
a wizard, SMSS, and so on). These scripts will save your hide. They should include
the following:

. Complete replication buildup/breakdown scripts

. Complete database creation scripts (DB, tables, indexes, views, and so on).

. Complete SQL login, database user IDs and password scripts (including roles
and other grants)

. Linked/remote server setup (linked servers, remote logins)

. Log shipping setup (source, target, and monitor servers)

. Any custom SQL Agent tasks

. Backup/restore scripts

. Potentially other scripts, depending on what you have built on SQL Server

. Make sure you document all aspects of SQL database maintenance plans being used.
This includes frequencies, alerts, email addresses being notified when errors occur,
backup file/device locations, and so on.

. Document all hardware/software configurations used:

. Leverage sqldiag.exe for this (as described in the next section).

. Record what accounts were used to start up the SQL Agent service for an
instance and MS Distributed Transaction Coordinator (MS DTC) service. This
step is especially important if you’re using distributed transactions and data
replication.

. The favorite SQL Server implementation characteristics that we script and
record for a SQL Server instance are

. select @@SERVERNAME—Provides the full network name of the SQL
Server and instance.

. select @@SERVICENAME—Provides the Registry key under which
Microsoft SQL Server is running.

. select @@VERSION—Provides the date, version, and processor type for
the current installation of Microsoft SQL Server.

. exec sp_helpserver—Provides the server name; the server’s network
name; the server’s replication status; and the server’s identification
number, collation name, and time-out values for connecting to, or
queries against, linked servers.

. exec sp_helplogins—Provides information about logins and the
associated users in each database.

ptg

2344 CHAPTER 56 SQL Server Disaster Recovery Planning

. exec sp_linkedservers—Returns the list of linked servers defined in
the local server.

. exec sp_helplinkedsrvlogin—Provides information about login
mappings defined against a specific linked server used for distributed
queries and remote stored procedures.

. exec sp_server_info—Returns a list of attribute names and match-
ing values for Microsoft SQL Server.

. exec sp_helpdb dbnamexyz—Provides information about a specified
database or all databases. This includes the database allocation names,
sizes, and locations.

use dbnamexyz

go

exec sp_spaceused

. exec sp_spaceused—Set of SQL statements that provide the actual
database usage information of both data and indexes for the specified
database name (dbnamexyz).

use dbnamexyz

go

exec sp_spaceused

go

. exec sp_configure - Get the current SQL Server configuration values by
running sp_configure (with the “show advanced option”):

USE master

EXEC sp_configure ‘show advanced option’, ‘1’

RECONFIGURE

go

EXEC sp_configure

Go

name minimum maximum config_value

run_value

—---------------------------------- -------- ------- -------------

access check cache bucket count 0 65536 0 0

access check cache quota 0 2147483647 0 0

Ad Hoc Distributed Queries 0 1 0 0

affinity I/O mask -2147483648 2147483647 0 0

affinity mask -2147483648 2147483647 0 0

affinity64 I/O mask -2147483648 2147483647 0 0

affinity64 mask -2147483648 2147483647 0 0

Agent XPs 0 1 1 1

ptg

2345The Overall Disaster Recovery Process
5

6

allow updates 0 1 0 0

awe enabled 0 1 0 0

backup compression default 0 1 0 0

blocked process threshold (s) 0 86400 0 0

c2 audit mode 0 1 0 0

clr enabled 0 1 0 0

common criteria compliance enabled 0 1 0 0

cost threshold for parallelism 0 32767 5 5

cross db ownership chaining 0 1 0 0

cursor threshold -1 2147483647 -1 -1

Database Mail XPs 0 1 0 0

default full-text language 0 2147483647 1033

1033

default language 0 9999 0 0

default trace enabled 0 1 1 1

disallow results from triggers 0 1 0 0

EKM provider enabled 0 1 0 0

filestream access level 0 2 2 2

fill factor (%) 0 100 0 0

ft crawl bandwidth (max) 0 32767 100

100

ft crawl bandwidth (min) 0 32767 0 0

ft notify bandwidth (max) 0 32767 100

100

ft notify bandwidth (min) 0 32767 0 0

index create memory (KB) 704 2147483647 0 0

in-doubt xact resolution 0 2 0 0

lightweight pooling 0 1 0 0

locks 5000 2147483647 0 0

max degree of parallelism 0 64 0 0

max full-text crawl range 0 256 4 4

max server memory (MB) 16 2147483647 2147483647

2147483647

max text repl size (B) -1 2147483647 65536

65536

max worker threads 128 32767 0 0

media retention 0 365 0 0

min memory per query (KB) 512 2147483647 1024

1024

min server memory (MB) 0 2147483647 0 0

nested triggers 0 1 1 1

network packet size (B) 512 32767 4096

4096

Ole Automation Procedures 0 1 0 0

open objects 0 2147483647 0 0

ptg

2346 CHAPTER 56 SQL Server Disaster Recovery Planning

optimize for ad hoc workloads 0 1 0 0

PH timeout (s) 1 3600 60

60

precompute rank 0 1 0 0

priority boost 0 1 0 0

query governor cost limit 0 2147483647 0 0

query wait (s) -1 2147483647 -1 -1

recovery interval (min) 0 32767 0 0

remote access 0 1 1 1

remote admin connections 0 1 0 0

remote login timeout (s) 0 2147483647 20 20

remote proc trans 0 1 0 0

remote query timeout (s) 0 2147483647 600

600

Replication XPs 0 1 0 0

scan for startup procs 0 1 0 0

server trigger recursion 0 1 1 1

set working set size 0 1 0 0

show advanced options 0 1 1 1

SMO and DMO XPs 0 1 1 1

SQL Mail XPs 0 1 0 0

transform noise words 0 1 0 0

two digit year cutoff 1753 9999 2049

2049

user connections 0 32767 0 0

user options 0 32767 0 0

xp_cmdshell 0 1 0 0

. Disk configurations, sizes, and current size availability (use standard OS direc-
tory listing commands on all disk volumes being used).

. Capture the sa login password and OS administrator password so that
anything can be accessed and anything can be installed (or re-installed).

. Document all contact information for your vendors:

. Microsoft support services contacts (do you use “Premier Product Support
Services”?)

. Storage vendor contact info

. Hardware vendor contact info

. Offsite storage contact info (to get your archived copy fast)

. Network/telecom contact info

. Your CTO, CIO, and other senior management contact info

ptg

2347The Overall Disaster Recovery Process
5

6

FIGURE 56.12 sqldiag.exe execution.

. CD-ROMs available for everything (SQL Server, service packs, operating system,
utilities, and so on)

sqldiag.exe

One good way to get a complete environmental picture is to run the sqldiag.exe program
provided with SQL Server 2008 on your production box (which you would have to re-
create on an alternate site if a disaster occurred). It is located in the Binn directory where
all SQL Server executables reside (C:\Program Files\Microsoft SQL
Server\100\Tools\Binn). It shows how the server is configured, all hardware and software
components (and their versions), memory sizes, CPU types, operating system version and
build information, paging file information, environment variables, and so on. If you run
this program on your production server periodically, it serves as good environment docu-
mentation to supplement your disaster recovery plan. This utility is also used to capture
and diagnose SQL Server-wide issues and has a prompt that you must respond to when re-
creating issues on which you want to collect diagnosis information. For the purposes of
this chapter, when prompted for the SQLDIAG Collection, you can just terminate that
portion by pressing Ctrl+C. Figure 56.12 shows the expected execution DOS windows and
system information dialog window.

To run this utility, you open a DOS command prompt and change directory to the SQL
Server Binn directory. Then, at the command prompt, you run sqldiag.exe:

C:\Program Files\Microsoft SQL Server\100\Tools\Binn> sqldiag.exe

The results are written into several text files within the SQLDIAG subdirectory. Each file
contains different types of data about the physical machine (server) that SQL Server is

ptg

2348 CHAPTER 56 SQL Server Disaster Recovery Planning

running on and information about each SQL Server instance. The machine (server) infor-
mation is stored in a file named XYX_MSINFO32.TXT, where XYX is the machine name. It
really contains a verbose snapshot of everything that relates to SQL Server (in one way or
another) and all the hardware configuration, drivers, and so on. It is the tightly coupled
metadata and configuration information directly related to the SQL Server instance. The
following is an example of what it contains:

System Information report written at: 09/11/09 22:13:16

System Name: DBARCH-LT2

[System Summary]

Item Value

OS Name Microsoft® Windows Vista™ Home Premium

Version 6.0.6001 Service Pack 1 Build 6001

Other OS Description Not Available

OS Manufacturer Microsoft Corporation

System Name DBARCH-LT2

System Manufacturer Hewlett-Packard

System Model HP G60 Notebook PC

System Type x64-based PC

Processor Pentium(R) Dual-Core CPU T4300 @ 2.10GHz, 2100 Mhz, 2 Core(s),

2 Logical Processor(s)

BIOS Version/Date Hewlett-Packard F.3C, 6/23/2009

SMBIOS Version 2.4

Windows Directory C:\Windows

System Directory C:\Windows\system32

Boot Device \Device\HarddiskVolume1

Locale United States

Hardware Abstraction Layer Version = “6.0.6001.18000”

User Name DBARCH-LT2\DBARCH

Time Zone Pacific Daylight Time

Installed Physical Memory (RAM) Not Available

Total Physical Memory 3.90 GB

Available Physical Memory 1.87 GB

Total Virtual Memory 8.04 GB

Available Virtual Memory 5.63 GB

Page File Space 4.20 GB

Page File C:\pagefile.sys

and so on.

A separate file is generated for each SQL Server instance you have installed on a server.
These files are named XYZ_ABC_sp_sqldiag_Shutdown.OUT, where XYZ is the machine name
and ABC is the SQL Server instance name. This file contains most of the internal SQL
Server information regarding how it is configured, including a snapshot of the SQL Server
log as this server is operating on this machine. The following example shows this critical
information from the DBARCH-LT2_SQL08DE01_sp_sqldiag_Shutdown.OUT file:

ptg

2349The Overall Disaster Recovery Process
5

6

2009-09-07 23:50:21.540 Server Microsoft SQL Server 2008 (SP1) - 10.0.2531.0

(X64)

Mar 29 2009 10:11:52

Copyright (c) 1988-2008 Microsoft Corporation

Developer Edition (64-bit) on Windows NT 6.0 <X64> (Build 6001: Service Pack 1)

2009-09-07 23:50:21.560 Server (c) 2005 Microsoft Corporation.

2009-09-07 23:50:21.560 Server All rights reserved.

2009-09-07 23:50:21.560 Server Server process ID is 1884.

2009-09-07 23:50:21.560 Server Logging SQL Server messages in file

‘C:\Program Files\Microsoft SQL Server\MSSQL10.SQL08DE01\MSSQL\Log\ERRORLOG’.

2009-09-07 23:50:21.570 Server Registry startup parameters:

-d C:\Program Files\Microsoft SQL

Server\MSSQL10.SQL08DE01\MSSQL\DATA\master.mdf

-e C:\Program Files\Microsoft SQL Server\MSSQL10.SQL08DE01\MSSQL\Log\ERRORLOG

-l C:\Program Files\Microsoft SQL Server\MSSQL10.SQL08DE01\MSSQL\DATA\mast-

log.ldf

2009-09-07 23:50:21.610 Server Detected 2 CPUs.

This is an informational message; no user action is required.

2009-09-07 23:50:21.910 Server Using dynamic lock allocation.

Initial allocation of 2500 Lock blocks and 5000 Lock Owner blocks per node.

This is an informational message only. No user action is required.

2009-09-07 23:50:23.050 spid7s FILESTREAM: effective level = 3,

configured level = 3, file system access share name = ‘SQL08DE01’.

2009-09-07 23:50:23.820 spid7s Server name is ‘DBARCH-LT2\SQL08DE01’.

This is an informational message only. No user action is required.

From this output, you are able to ascertain the complete SQL Server instance information
as it was running on the primary site. It is excellent documentation for your SQL Server
implementation. We suggest that you run this utility regularly and compare the outcome
with prior executions to guarantee that you know exactly what you have to have in place
in case of disaster.

Planning and Executing a Disaster Recovery

The process of planning and executing a complete disaster recovery is serious business,
and many companies around the globe set aside a few days a year to perform this exact
task. Here’s what it involves:

. Simulate a disaster.

. Record all actions taken.

. Time all events from start to finish. Sometimes this means someone is standing
around with a stopwatch.

. Hold a postmortem following the DR simulation.

ptg

2350 CHAPTER 56 SQL Server Disaster Recovery Planning

Many companies tie the results of a DR simulation to the IT group’s salaries (their raise
percentage). This is more than enough motivation for IT to get this drill right and to
perform well.

Correcting any failures or issues that occur is critical. The next time might not be a
simulation.

Have You Detached a Database Recently?
We suggest that you consider all methods of backup and recovery when dealing with DR.
Another crude but extremely powerful method for creating a snapshot of a database (for
any purpose, even for backup and recovery) is to simply detach the database and attach it
in another location—pretty much anywhere. There will be some downtime during the
detach time, the compressing of the database files (.mdf and .ldf), some time during the
data transfer of these files (or single zipped file) from one location to another, some
uncompress time, and the final attach time (seconds). All in all, it is a very reliable way to
move an entire database from one place to another. This approach is crude, but fairly fast
and extremely safe. To give you an example of what it takes, a database that is about 30GB
can be detached, compressed, moved to another server across a network (with a 1GB back-
bone), uncompressed, and attached in about 10 minutes. You should make sure your
administrators know they can do this in a pinch.

Third-Party Disaster Recovery Alternatives
Third-party alternatives to replication, mirroring, and synchronization approaches of
support disaster recovery are fairly prevalent. Symantec and a handful of other companies
lead the way with very viable, but often expensive, solutions. However, many are bundled
with their disk subsystems (which makes them easy to use and manage out-of-the-box).
Following are some very strong solutions:

. Symantec—The Symantec replication solutions, including Veritas Storage Replicator
and Veritas Volume Replicator, can create duplicate copies of data across any
distance for data protection. These are certified with SQL Server. See www.symantec.
com.

. SteelEye Technologies—The SteelEye LifeKeeper family of data replication, high-
availability clustering, and disaster recovery products are for Linux and Windows
environments. They are all certified solutions (on a variety of other vendor products)
across a wide range of applications and databases running on Windows and Linux,
including mySAP, Exchange, Oracle, DB2, and SQL Server. See www.steeleye.com.

www.symantec.com
www.symantec.com
www.steeleye.com

ptg

2351Summary
5

6

. EMC—EMC Corporation provides cost-effective, continuous remote replication and
continuous data protection via tools such as AutoStart, MirrowView, Open
Migrator/LM, Replication Manager, and RepliStor. The Legato AA family of products
includes capabilities required to manage systems performance and to automate
recovery from failures. Legato AA also automates data mirroring and replication, to
enable data consolidation, migration, distribution, and preservation through failures
and disasters. See www.emc.com.

Our recommendation is that if you are already a customer of one of these vendors, you
should look closely at these solutions because they may be available with a product you
already are using.

Summary
Perhaps thousands of considerations must be dealt with when you are building a viable
production implementation, let alone one that needs to have disaster recovery built in.
You would be well advised to make the extra effort of first properly determining which
disaster recovery solution matches your company’s needs and then to switch focus to
what is the most effective way to implement that chosen solution. If, for example, you
choose data replication to support your DR needs, you must determine the right type of
replication model to use (like a central publisher or peer-to-peer), what the limitations
might be, the failover process that needs to be devised, and so on. Understanding other
characteristics of your DR needs, such as what applications or databases are tightly
coupled to your most important revenue-generation applications, is paramount. Not only
is disaster recovery planning important, but testing the DR solution to make sure it works
is even more important. You don’t want to test your DR solution for the first time when
your primary site has actually failed. You need to set some short-term attainable goals of
getting to DR Level 1. This gets you in a basic level of protection (mitigating some of the
risk from a disaster). Then you can start pushing upward to Level 2 and beyond to create
the highest DR capability possible within your budget and capabilities.

www.emc.com

ptg

This page intentionally left blank

ptg

Index

Symbols
` (backtick), 492

[] (brackets), 495

+= compound operator, CD:1569

-= compound operator, CD:1569

*= compound operator, CD:1569

/= compound operator, CD:1569

%= compound operator, CD:1569

^= compound operator, CD:1569

|= compound operator, CD:1569

&= compound operator, CD:1569

$() designators, 108

$ (dollar sign), 492

| (pipe character), 483

+ (plus sign), 493

(pound sign), 491, 879

$_ special variable, 493

1204 trace flags (error logs), 1386-1388

1222 trace flags (error logs), 1388-1390

A
access

clients. See client data access technologies

Database Engine data access, 11-12

identity access management, 364, 366

of performance counters via T-SQL, 1477

ptg

access check cache bucket count configuration
option, CD:2284

access check cache quota configuration option,
CD:2285

access path costs, estimating, 1221-1222

clustered indexes, 1222-1223

nonclustered indexes, 1223-1227

table scans, 1227-1228

Account Provisioning page (SQL Server
Installation Center), 205-206

accounts

for Database Mail, creating, 429-432

SQL Server Agent proxy accounts, 455-456

startup accounts for SQL Server Agent,
452-453

ACID properties, 996

@action parameter, CD:2013

actions (SSEE), 1459

active multisite DR pattern, CD:2334

active/active configuration

DR sites pattern, CD:2333-CD:2334

SQL Server Clustering, 657

active/passive configuration

DR sites pattern, CD:2332-CD:2333

SQL Server Clustering, 657

ActiveX Data Object Multidimensional (ADO
MD), CD:2032, CD:2077

Activity Monitor, 75-77, 1483

ad hoc distributed queries configuration option,
CD:2285

adapters (SSIS), Attunity CDC Suite, CD:2147

Add-Content cmdlet, 491

ADD COLUMN clause, 767

ADD parameter (ALTER FULLTEXT INDEX),
CD:2011-CD:2012

AddHours method, 502

adding

CLR functions to databases, 944-945

CLR stored procedures to databases,

CD:1780-CD:1781

columns (T-SQL), 767-768

counters, 1469

data sources to OLAP databases,
CD:2044-CD:2046

extended stored procedures to SQL Server,
CD:1782-CD:1783

linked servers, CD:2253-CD:2260

AddMilliseconds method, 502

AddMinutes method, 502

AddMonths method, 503

AddSeconds method, 503

AddYears method, 503

administration tools (SSMS), 71

Activity Monitor, 75-77

Log File Viewer, 77, 79

Object Explorer. See Object Explorer

registered servers, 71-72

SQL Server Utility, 79-83, 85

ADO MD (ActiveX Data Object
Multidimensional), CD:2032, CD:2077

ADO.NET, CD:1788-CD1793, CD:1804, CD:1810

ADO.NET Data Services (ADODS), CD:1787,
CD:1803-CD:1805

building data services, CD:1806-CD:1811

CRUD operations, CD:1811-CD:1816

Advanced Encryption Standard (AES), 338

Advanced menu (SQL Server Installation
Center), 211

Advanced page (SQL Server Agent), 451

Advanced Windowing Extensions (AWE),
CD:2289-CD:2291

adXactReadcommitted function, 1345

AES (Advanced Encryption Standard), 338

affinity I/O mask configuration option,
CD:2286-CD:2287

affinity mask configuration option,
CD:2287-CD:2288

access check cache bucket count configuration option2354

ptg

AFTER triggers

combining with INSTEAD OF triggers,
971-972

example, 954-955

executing, 955

explained, 953-954

special considerations, 956-957

trigger firing order, 956

versus INSTEAD OF triggers, 970

agent history clean up: distribution, 571

Agent XP configuration option, CD:2289

agents. See replication agents

aggregates. See UDAs (user-defined aggregates)

aggregating data within cubes in OLAP data-
base creation, CD:2066-CD:2071

Aggregation Design Wizard, CD:2070

aging query plans, 1256-1257

alert mail notifications (SQL Server Agent Mail),
443-444

alert responses, 472, 474

Alert System page (SQL Server Agent), 451

alerts

creating with SQL Server Agent Mail, 443-
444

defined, 449

scripting, 474-475

SQL Server Agent, 469

alert properties, 469-472

alert responses, 472, 474

algorithms, 338

alias data types, 753

aliases, 277, 484

allocating space

extents, 1113-1114

GAM pages, 1114

AllocUnit locking level (SQL Server), 1364

ALLOW_PAGE_LOCK, 1373

ALLOW_PAGE_LOCKS, 799, 1372-1373

How can we make this index more useful? Email us at indexes@samspublishing.com

ALLOW_ROW_LOCKS, 799, 1372

ALLOW_SNAPSHOT_ISOLATION, 1348

ALTER, 312

ALTER ASSEMBLY, CD:1828

ALTER COLUMN, 766-767

ALTER DATABASE, 632, 644, 714, 722, 726,
736, 1099

ALTER FULLTEXT INDEX, CD:2010

ADD parameter, CD:2011-CD:2012

DISABLE parameter, CD:2010-CD:2011

DROP parameter, CD:2012

ENABLE parameter, CD:2010-CD:2011

SET CHANGE_TRACKING parameter,
CD:2011

START parameter, CD:2012-CD:2013

STOP parameter, CD:2012-CD:2013

ALTER FUNCTION, 939

ALTER INDEX, 803, 1175-1176, 1178, 1372

ALTER INDEX REBUILD, 805

ALTER INDEX REORGANIZE, 1077

ALTER PARTITION SCHEME, 783

ALTER PROCEDURE, 891-892

ALTER RESOURCE GOVERNOR, 1499

ALTER RESOURCE GOVERNOR RECONFIGURE,
1515

ALTER RESOURCE POOL, 1513

ALTER ROLE, 322

ALTER SERVER AUDIT, 372, 374

ALTER TABLE

ADD COLUMN clause, 767

ALTER COLUMN clause, 766-767

creating constraints, 764, 823

DROP COLUMN clause, 768

ALTER USER, 320

ALTER VIEW, 852

ALTER WORKLOAD GROUP, 1513

altering views with T-SQL, 852

American National Standards Institute (ANSI),
301

American National Standards Institute (ANSI) 2355

ptg

analysis phase (transaction recovery process),
1029

Analysis Services. See SSAS (SQL Server
Analysis Services)

Analysis Services Migration Wizard, 253

Analysis Wizard, 230-235

analyzing

slow stored procedures or queries with SQL
Server Profiler, 157-158

STATISTICS IO, 1332-1333

stored procedures with Query Analyzer,
1315-1316

traces (SQL Server Profiler) with Database
Engine Tuning Advisor, 138

anonymous subscriptions, 563

ANSI (American National Standards Institute),
301

ANY, 1248

application data values, CD:2337

Application locking level (SQL Server), 1365

application locks, granularity, 1369-1372

application progress, monitoring (SQL Server
Profiler), 162-164

application roles, 309

ApplicationName data column (SQL Profiler),
1356

applications

DAC (data-tier application), 82-83

OLTP (online transaction processing)
applications, 53

OLTP ERP, 53-56

OLTP shopping cart, 56-57

troubleshooting with ssbiagnose.exe,
CD:1993-CD:1994

tuning guidelines, 1545

APPLY operator, CD:1722

CROSS APPLY, CD:1722-CD1723

OUTER APPLY, CD:1723-CD:1724

APP_NAME() function, 1507

architectural layers in tuning, 1520-1521

architecture

delivery architecture, subscriptions,
CD:2237

SQL Server instance architecture, CD:2274-
CD:2275

SQL Server Profiler, 122-123

SSIS (SQL Server Integration Services),
CD:2105-CD:2110

SSRS (SQL Server Reporting Services),
CD:2179-CD:2181

archiving, tuning guidelines, 1539

arguments, passing, 494

arithmetic operators, 496

arrays

explained, 495-496

short data cluster array, 1119

articles, filtering, 550-554

AS DEFAULT (CREATE FULLTEXT CATALOG),
CD:2004

AS HTTP, CD:1934-CD:1937

ASC (CREATE INDEX), 796

assemblies, creating (managed stored
procedures), CD:1833-CD:1834

Assert icon (Query Analyzer), 1308-1309

assessment stage (tuning methodology), 1524,
1529-1530

association rules (data mining algorithms),
CD:2084

asymmetric key encryption, 338

asynchronous operations, 622

asynchronous statistics updating (indexes),
1163

Atom Publishing Protocol (AtomPub), CD:1803

Attach Databases dialog, 738

attaching databases, 737-739

attachments (email), sending

CSV files, 440-441

XML attachments, 439-440

ATTACH_REBUILD_LOG, 739

analysis phase (transaction recovery process)2356

ptg

attributes, managed stored procedures,
CD:1830-CD:1832

Attunity CDC Suite, CD:2147

audit methods, 40

auditing

with SQL Server Audit, 368-372

with T-SQL, 372-374

authentication, 294

authentication modes, setting, 295

mixed authentication mode, 294

Windows Authentication mode, 294

AUTHORIZATION, CD:1933, CD:1966, CD:1987,
CD:2005

authorization for web services, CD:1933

Auto Close, 723

AUTO_CREATE_STATISTICS, 1216

AUTO mode (XML), CD:1873-CD:1877

auto-parameterization, 1285

Auto Shrink, 723

AUTO_UPDATE_STATISTICS, 162, 723-725, 1216

AUTO_UPDATE_STATISTICS_ASYNC, 1275

AutoCommit transactions, 997-998

automated installs, 217

automatic checkpoints (logs), 1027-1028

automatic failover, 623

automatic query plan recompilation
(stored procedures), performance, CD:1767

automatically updating index statistics,
1161-1163

AUTOSHRINK, 731

availability, enterprise computing, 655

Average Wait Time counter (SQLServer Locks
object), 1358

AveragePricebyType() function, 924

AveragePricebyType2() function, 924

AvgBookPrice() function, 922

avoiding transaction nesting, CD:1736

awe enabled configuration option,
CD:2289-CD:2291

How can we make this index more useful? Email us at indexes@samspublishing.com

B
B-tree indexes, 1132-1133

backtick (`), 492

Backup and Restore Events report, 413

BACKUP CERTIFICATE, 278, CD:1986

backup compression, 40

backup compression default configuration
option, CD:2291

BACKUP DATABASE, 390, 392-393

backup devices, 385. See also backups

creating, 387-388

disk devices, 386

media sets and families, 387

network shares, 386-387

tape devices, 386

BACKUP LOG, 391, 394-395

backupfile, 412

backupfilegroup, 412

backupmediafamily, 412

backupmediaset, 412

backups. See also backup devices

Backup and Restore Events report, 413

compressed backups, 402-403

considerations for very large databases,
425

copy backups, 402

copy-only backups, 382

creating

with SSMS, 388-390

with T-SQL, 390-391, 393

databases, 516-518

developing backup plans, 378-379

differential backups, 380, 397-398

differential partial backups, 381

file/filegroup backups, 381, 400-401

frequency of, 423-424

full database backups, 380, 396-397

backups 2357

ptg

HA (high availability), 527

Maintenance Plan Wizard,
1072, 1074-1075

maintenance plans, 426

mirrored backups, 401-402

new features, 377-378

partial backups, 381, 398-400

recovery models. See recovery, recovery
models

replication monitoring, 612-613

restoring to new locations, 736

snapshot backups, 425

standby servers, 424-425

system database backups, 403

system tables, 412-413

tail of transaction logs, 418

TDE certificates and keys, 353-355

transaction log backups, 382

transaction logs, 393

creating with SSMS, 394

creating with T-SQL, 394-395

tuning guidelines, 1537

backupset, 412

balancers, tuning guidelines, 1535

base tables, 854-858

baselines, providing with database snapshots,
1054

BASIC authentication, CD:1934

.BAT files, 104

batches

bulk-copy operations (SSIS), CD:2164

transactions, 1007-1009

BATCHES option (WEBMETHOD) 1940

BCM (bulk changed map) pages, 1116

bcp (Bulk Copy Program) utility, CD:2099

hints, supplying to, CD:2165-CD:2166

SSIS (SQL Server Integration Services),
CD:2147-CD:2153

file, CD:2153

format, CD:2153-CD:2163

views, CD:2163

syntax, 115-116

BEGIN CONVERSATION DIALOG, CD:1974-
CD:1976

BEGIN DISTRIBUTED TRANSACTION, CD:1764

BEGIN TRANSACTION, 998, 1001, 1006, 1016,
1019, CD:1764

best practices

checking best practices compliance, 706

MERGE statement, CD:1558-CD:1559

Policy-Based Management, 706-707

T-SQL. See T-SQL, coding recommendations

bidirectional traffic, 288

BIDS

developing reports with, CD:2196-CD:2199

overview, CD:2190

bigint data type, 748

binary columns, RAW XML mode, CD:1871

binary data type, 748

bipubs2005 database, installing, 7

bit data type, 748

BLOBs, full-text indexing of, CD:2006-CD:2007.
See also unstructured data in FILESTREAM
storage

blocked process threshold configuration option,
CD:2291

BLOCKSIZE (BACKUP DATABASE), 392

bottlenecks, identifying with SQL Server Profiler,
160-162

bound connections (transactions), 1039-1040

bound defaults, 833

brackets ([]), 495

breadth-first indexing, CD:1581

Browser role, CD:2234

browsing data within cubes in OLAP database
creation, CD:2071-CD:2075

built-in methods, CD:1899-CD:1918

backups2358

ptg

built-in roles, securing reports,
CD:2234-CD:2235

BUILTIN\Administrators, 297

bulk changed map (BCM) pages, 1116

Bulk Copy Program. See bcp (Bulk Copy
Program) utility

BULK INSERT statement, 115

bulk update locks, 1363

bulk-copy operations (SSIS), CD:2163-CD2166

bulkadmin, 303

C
C# client application examples

calling web methods–bound stored proce-
dures that return XML, CD:1951-CD:1953

running a web method bound to a stored
procedure, CD:1942-CD:1947

running ad hoc T-SQL batches from SQL
Server web services, CD:1947-CD1951

C2 audit mode, CD:2291-CD:2292

cache refresh plans (CRPs), CD:2239

cached reports

CRPs (cache refresh plans), CD:2239

report execution options, CD:2237-CD:2238

caching

procedure caches, stored procedures,
CD:1766

query plan caching. See query plan, caching

SANs (storage area networks), 1424

calculated members (calculations), OLAP
database creation, CD:2078-CD:2079

calculating dates. See date calculations

CALLED ON NULL INPUT (CREATE FUNCTION),
928-929

CALLER (EXECUTE AS), 883

calling stored procedures from transactions,
CD:1735-CD:1738

How can we make this index more useful? Email us at indexes@samspublishing.com

capture instances, CD:1620

CAS (Code Access Security) permission sets,
CD:1827

CASCADE, 819

cascading deletes, 963-965, 1404

cascading FOREIGN KEY constraints, 967

cascading referential integrity, 818-820

cascading updates, 965-966

catalog views, 175-177

system stored procedures and,
CD:1954-CD:1955

viewing DDL triggers, 987

catalogs, full-text, CD:2002

CATCH block, CD:1738-CD:1739

categories (policies)

creating, 701

explained, 693

CDC (Change Data Capture), CD:1614-CD:1626

Change Tracking versus, CD:1627

DDL changes to source tables, CD:1626

enabling for databases, CD:1617

enabling for tables, CD:1617-CD:1619

explained, 41

tables for, CD:1615-CD:1617

querying, CD:1619-CD:1626

cdc.captured_columns metadata table,
CD:1616

cdc.change_tables metadata table, CD:1616

cdc.ddl_history metadata table, CD:1616

cdc.index_columns metadata table, CD:1616

cdc.lsn_time_mapping metadata table,
CD:1616

Central Management Servers

creating, 695-696

explained, 695

importing and evaluating policies to,
696-697

registering SQL Server instances in, 696

Central Management Servers 2359

ptg

central publisher replication model, 555-556

central publisher with remote distributor repli-
cation model, 557

central subscriber replication model, 559

certificates, 338

backing up TDE certificates, 353-355

conversation encryption, CD:1985-CD:1992

encrypting columns with, 346-349

root-level certificates, 278

Change Data Capture (CDC), CD:1614-CD:1626

Change Tracking versus, CD:1627

DDL changes to source tables, CD:1626

enabling for databases, CD:1617

enabling for tables, CD:1617-CD:1619

explained, 41

tables for, CD:1615-CD:1617

querying, CD:1619-CD:1626

Change Tracking, CD:1627-CD:1635

explained, 41

identifying changed columns,
CD:1633-CD:1634

identifying tracked changes,
CD:1630-CD:1633

implementing, CD:1628-CD:1630

performance overhead of,
CD:1634-CD:1635

changed columns, identifying,
CD:1633-CD:1634

char data type, 748

CHARACTER SET, CD:1941

CHARACTER_SET (WEBMETHOD) 1941

Chart control, CD:2175, CD:2203

CHECK constraint, 764, 820-821

tuning guidelines, 1538

checkpoints, 717

logs, 1024-1028

CHECKSUM (BACKUP DATABASE), 392

CHECKSUM (RESTORE DATABASE), 405

CHECK_CONSTRAINTS hint, CD:2166

Children’s Online Privacy Protection Act, 367

Choose a Chart Type window (Report Builder)
2219

CI record, 1122

classification functions

creating, 1506-1509

defined, 1495-1496

modifying, 1516

CLEAR PORT, CD:1935

client access provisioning, 268-270

client applications, redistributing SNAC, 274

client data access technologies, 279

drivers, 281

JDBC, 287

MDAC, 285-286

.NET Framework, 283-284

providers, 280

SNAC, 281

SNAC (ADO), 283

SNAC (ODBC), 282-283

SNAC (OLE DB), 282

SQLCLR context connections, 284-285

client tools (client installation), 271-272

clients

configuring, 274

connection encryption, 278-279

for database mirroring, 647-648

new features, 263-264

SSCM, 275-277

defined, 265

installing

client tools, 271-272

installation requirements, 271

new features, 263-264

SNAC, 272-274

CLOSE SYMMETRIC KEY, 348

central publisher replication model2360

ptg

CLR (common language runtime), 754,
CD:1825

functions, 944-947

stored procedures, CD:1779

adding to databases, CD:1780-CD:1781

versus CLR stored procedures, CD:1781

triggers, 988-991

user-defined data types, 754

clr enabled configuration option, CD:2292

Cluster Administrator, viewing properties, 679

CLUSTERED (CREATE INDEX), 796

Clustered Index Delete icon (Query Analyzer),
1309

clustered index fill factors, tuning guidelines,
1540

Clustered Index Scan icon (Query Analyzer),
1309

clustered indexes, 792-793, 1112, 1133-1134

costs, 1222-1223

designing, 1185-1186

indexed views, 1192-1193

nonunique, 1135-1136

row structure, 1134-1135

tuning guidelines, 1540

clustered tables, 1130-1131

clusters, 658

building solutions with HA (high availability)
options, 531-534

data mining algorithms, CD:2084

server clusters, 658

cmdlets

Add-Content, 491

Convert-UrnToPath, 509

Decode-SqlName, 509

defined, 483

Encode-SqlName, 509

Export-Csv, 501

filtering cmdlets, 499-500

How can we make this index more useful? Email us at indexes@samspublishing.com

ForEach-Object, 499

Format-List, 500

Format-Table, 500

formatting cmdlets, 500-501

Get-Alias, 490

Get-ChildItem, 490

Get-Command, 488

Get-Content, 490, 514

Get-Help, 488-489

Get-Item, 520

Get-Member, 489-490

Get-Process, 513

Get-Service, 513

Group-Object, 490

Import-Csv, 501

Invoke-PolicyEvaluation, 508, 521

Invoke-SqlCmd, 508, 520-521

Measure-Command, 490

New-Object, 490

Read-Host, 490

Select-Object, 490

Select-String, 515

Set-Content, 491

Set-ExecutionPolicy, 487

Sort-Object, 490

Start-Service, 513

Start-Transcript, 491

Where-Object, 499

Write-Host, 490

Codd, E. F., 1537

Code Access Security (CAS) permission sets,
CD:1827

Codezone Community, 68

coding and testing stage (tuning methodology),
1526-1527, 1532

coding recommendations for T-SQL. See T-SQL,
coding recommendations

coding transactions, 1022-1023

coding transactions 2361

ptg

Collapse icon (Query Analyzer), 1310

collation, 720

Collation property, 726

column lists (T-SQL), CD:1638-CD:1640

COLUMN NAME (CREATE FULLTEXT INDEX),
CD:2005-CD:2006

column operator values (sp trace setfilter), 151

column sets, 36, CD:1600-CD:1601

column-level encryption

with certificates, 346-349

explained, 343

with passphrases, 344-346

TDE (transparent data encryption)

backing up TDE certificates and keys,
353-355

compared to column-level encryption,
356-357

explained, 350-351

implementing, 351-352

limitations, 355-356

managing in SSMS, 352-353

ColumnCount parameter (SqlTriggerContext),
CD:1856

COLUMNPROPERTY function, CD:2015

columns

adding in T-SQL, 767-768

checking for updates, 959-961

column sets, 36, 759-761

computed columns

denormalization, 1410-1411

indexes, 1193-1195

data types. See data types

FILESTREAM storage, 759

indexes

included columns, 1190-1191

joins, 1184

joining, 521-522

naming, 747

new xml data type, CD:1892-CD:1894

overview, 747

properties, 755

changing with T-SQL, 766-767

computed columns, 758

IDENTITY, 755-757

NULL and NOT NULL, 755

ROWGUIDCOL, 757

renumbering, CD:2162-CD:2163

sparse columns, 36, 759-761, 1107-1108,
CD:1600-CD:1605

statistics, generating, 1161-1167, 1169

xml columns

full-text indexing, CD:1924-CD:1925

indexing, CD:1918-CD:1924

command lines, DTA (Database Engine Tuning
Advisor), CD:2321-CD:2326

command sourcing phase (dtexec) 2136

command-line utilities

bcp. See bcp (Bulk Copy Program) utility

dta, 109-112

installation locations, 104

isql, 105

new features, 104-105

osql, 105

sac, 105

sqlcmd

executing, 106-108

scripting variables with, 108-109

syntax, 105-106

sqldiag, 116-117

sqlps, 105

sqlservr, 118

ssbdiagnose, 47

SSIS (SQL Server Integration Services),
CD:2112

tablediff, 112-115

Collapse icon2362

ptg

comments

adding to scripts, 491

in T-SQL code, CD:1652-CD:1653

COMMIT, 999

COMMIT TRAN, 999

common criteria compliance enabled
configuration option, CD:2292

Common Language Runtime (CLR), 754,
CD:1825

common table expressions. See CTE (common
table expressions)

Compact 3.5 Edition (SQL Server)

features, 29

licensing, 32

comparing

contents of two tables, 112-115

dates, CD:1666-CD:1669

comparison operators, 496

ComparisonStyle property, 726

compatibility levels, 242

compatibility locks, 1376-1377

compatibility views, 172-175

compiling

DML statements, 1212-1213

queries. See queries

query plans, 1257-1258

Complete page (SQL Server Installation Center),
210-211

complex expressions, CD:2200-CD:2202

complex queries, tuning guidelines, 1543

compliance

checking best practices compliance, 706

SQL Server and, 366-367

composite indexes

designing, 1184

tuning guidelines, 1540

compound operators, 37, CD:1568-CD:1569

compressed backups, 402-403

How can we make this index more useful? Email us at indexes@samspublishing.com

compression

CI record, 1122

explained, 1117

managing with SSMS, 1126-1127

page-level compression, 1119-1121

evaluating, 1123-1126

implementing, 1122-1123

row-level compression, 1117-1119

COMPRESSION, 392, CD:1937

CompSales database, installing, 7

CompSales International (OLAP requirements
example), CD:2040-CD:2041,
CD:2081-CD:2082, CD:2095-CD:2096

cube, CD:2042, CD:2082

data, CD:2084-CD:2091

KPIs, CD:2082

OLAP, CD:2044

SQL, CD:2042-CD:2043

Compute Scalar icon (Query Analyzer), 1311

computed columns, 758

denormalization, 1410-1411

indexes, 1193-1195

SARG on, 1220-1221

CONCAT UNION, 1283

Concatenation icon (Query Analyzer), 1311

condition expressions, 830

conditional statements, 496-497

conditions

creating based on facets, 697-698

defined, 693

configuration data, CD:2337

configuration files, upgrading with, 250-251

configuration options (SQL Server 2008),
CD:2275

access check cache bucket count, CD:2284

access check cache quota, CD:2285

ad hoc distributed queries, CD:2285

affinity I/O mask, CD:2286-CD:2287

configuration options 2363

ptg

affinity mask, CD:2287-CD:2288

Agent XP, CD:2289

awe enabled, CD:2289-CD:2291

backup compression default, CD:2291

blocked process threshold, CD:2291

c2 audit mode, CD:2291-CD:2292

clr enabled, CD:2292

common criteria compliance enabled,
CD:2292

cost threshold for parallelism, CD:2293

cross db ownership chaining, CD:2293

cursor threshold, CD:2294

default full-text language, CD:2294-
CD:2296

default language, CD:2296-CD:2298

EKM provider enabled, CD:2298

filestream_access_level, CD:2299

fill factor, CD:2299-CD:2300

fixing incorrect option settings, CD:2283

in-doubt xact resolution, CD:2300

index create memory, CD:2300

lightweight pooling, CD:2301

locks, CD:2301-CD:2302

max degree of parallelism, CD:2302

max server memory, CD:2302-CD:2303

max text repl size, CD:2304

max worker threads, CD:2305

min memory per query, CD:2306

min server memory, CD:2302-CD:2303

miscellaneous options, CD:2316

nested triggers, CD:2306

network packet size, CD:2306-CD:2307

new features, CD:2274

obsolete configuration options,
CD:2283-CD:2284

optimize for ad hoc workloads,
CD:2307-CD:2308

overview, CD:2275-CD:2283

parallelism, CD:2293

PH_timeout, CD:2308

priority boost, CD:2308-CD:2309

query governor cost limit, CD:2309-
CD:2310

query wait, CD:2310

recovery interval, CD:2310-CD:2311

remote admin connections, CD:2311

remote login timeout, CD:2311

remote proc trans, CD:2312

remote query timeout, CD:2312-CD:2313

scan for startup procs, CD:2313

self-configuring options, CD:2276

setting with SSMS, CD:2283

show advanced options, CD:2313

user connections, CD:2313-CD:2314

user options, CD:2315-CD:2316

XP-related configuration options, CD:2316

configuration phase (dtexec) 2137

ConfigurationFile.ini file, 212-216

configuring. See also configuration options
(SQL Server 2008)

clients, 274

connection encryption, 278-279

new features, 263-264

SSCM, 275-277

Data Collector, 1433-1437

Database Mail

mail profiles and accounts, 429-432

overview, 428-429

systemwide mail settings, 433

testing setup, 433-434

database mirroring

client setup and configuration, 647-648

with Database Mirroring Wizard, 633-639

event forwarding, 477-478

linked servers, CD:2261-CD:2263

configuration options2364

ptg

parallel queries, 1271-1272

query governors, 1299

remote servers, CD:2246-CD:2251

Resource Governor

creating resource pools, 1500-1502

enabling Resource Governor, 1499-1500

modifying configuration, 1513-1516

SQL Server Agent, 450

email notification, 454

properties, 450-452

proxy accounts, 455-456

startup account, 452-453

SQL Server database disks, 666-667

SSIS (SQL Server Integration Services),
CD:2108

SSRS (SQL Server Reporting Services)

databases, CD:2187-CD:2188

email and, CD:2189

encryption, CD:2189-CD:2190

overview, CD:2186

Report, CD:2189

scale-out, CD:2190

Web, CD:2186-CD:2187

Windows, CD:2186

-confirm parameters, 503

connection encryption, configuring clients,
278-279

Connection page (SQL Server Agent), 451

Connection Test Program for SQL Server
Cluster, 681-684

CONNECTIONPROPERTY() function, 1506

connections, bound, 1039-1040

connectivity

firewalls, 288

testing, 288-289

troubleshooting, 287

consistency (transactions), 572

Constant Scan icon (Query Analyzer), 1311

How can we make this index more useful? Email us at indexes@samspublishing.com

constraints, 813

CHECK, 820-821

creating, 821

with ALTER TABLE, 764

with CREATE TABLE, 764

with SSMS, 823-826

with T-SQL, 822-823

defining table constraints, 763-765

disabling, 829-830

dropping, 829

FOREIGN KEY, 816-818

cascading referential integrity, 818-820

gathering constraint information, 827-829

PRIMARY KEY, 813-814

UNIQUE, 815-816

construction phase (OLAP design methodolo-
gies), CD:2039

constructors, row, CD:1569-CD:1572

constructs (SQL Server Service Broker),
CD:1965

creating queues for, CD:1970-CD:1972

defining messages and, CD:1965-CD:1969

defining services to, CD:1973

planning conversations, CD:1974-CD:1976

prioritizing, CD:1984

setting up contracts, CD:1970

containers (SSIS), CD:2106

CONTAINS, CD:2020

generation, CD:2021-CD:2022

LANGUAGE, CD:2022

proximity, CD:2022

search phrase, CD:2020-CD:2021

weighted, CD:2022

CONTAINSTABLE, CD:2020, CD:2023

generation, CD:2021-CD:2022

LANGUAGE, CD:2022

proximity, CD:2022

search phrase, CD:2020-CD:2021

weighted, CD:2022

CONTAINSTABLE 2365

ptg

Content Manager role, CD:2234

contention, locking, 1377-1380

identifying, 1378, 1380

minimizing, 1381-1382

context connection string (managed stored
procedures), CD:1832

context connections, 284-285

CONTEXT INFO, CD:1671-CD:1673

context switching, 331-333

CONTINUE AFTER ERROR option

BACKUP DATABASE, 392

RESTORE DATABASE, 405

contracts, setting up for communication
(SQL Server Service), CD:1970

CONTROL, 312, CD:1956

control of flow, 464, CD:2106

conversation encryption (SQL Server Service),
CD:1985-CD:1992

conversation initiators, creating,
CD:1976-CD:1979

conversation targets, creating,
CD:1980-CD:1984

conversations, CD:1974

building routes to map conversations
between, CD:1992

conversation initiator, creating,
CD:1976-CD:1979

conversation targets, creating,
CD:1980-CD:1984

remote service bindings, creating, CD:1992

planning between services (SQL Server
Service), CD:1974-CD:1976

prioritizing (SQL Server Service Broker),
CD:1984

conversion deadlocks, 1383

Convert-UrnToPath cmdlet, 509

converting dates,
CD:1575-CD:1576, CD:1666-CD:1669

Copy Database Wizard, 238-241

COPY ONLY (BACKUP DATABASE), 393

copy-on-write technology, 620-621, 1048, 1050

copy-only backups, 382, 402

copying packages (dtutil utility),
CD:2141-CD:2144

correlated subqueries, 1250-1251

cost (parallelism), CD:2293

cost threshold for parallelism configuration
option, CD:2293

costs of SQL Server 2008, 31

counters

adding, 1469

performance counters, accessing via T-SQL,
1477

removing, 1468

user-defined counters, 1476-1477

covering indexes, 795, 1188-1190

CPU Utilization page, 1483

CPUs, tuning guidelines for, 1534

CREATE, creating stored procedures, 871-872

CREATE ASSEMBLY,
944-945, CD:1780, CD:1828

CREATE CERTIFICATE, 278, 346, CD:1985

CREATE DATABASE, 14, 713, 721-722, 1099

CREATE DEFAULT, 833

CREATE ENDPOINT, 627-629, CD:1931-CD:1933

CREATE FULLTEXT CATALOG, CD:2003-CD:2005

CREATE FULLTEXT INDEX, CD:2005

BLOBs and XML, CD:2006-CD:2007

COLUMN NAME, CD:2005-CD:2006

KEY INDEX, CD:2008

LANGUAGE, CD:2007-CD:2008

ON FULLTEXT CATALOG, CD:2008

POPULATION TYPE, CD:2008-CD:2010

TYPE COLUMN, CD:2006

CREATE FUNCTION, 925-926, 935, 945

CREATE INDEX, 796

arguments, 796-797

relational index options, 798-799

Content Manager role2366

ptg

CREATE INDEX WITH DROP EXISTING, 805

CREATE LOGIN, CD:2250

CREATE MASTER KEY ENCRYPTION, 355

Create New Data Collector Set Wizard, 1470

CREATE PARTITION FUNCTION, 776-777, 782

CREATE PARTITION SCHEME, 782

CREATE PROCEDURE, 877-879, CD:1780

CREATE RESOURCE POOL, 1502

CREATE STATISTICS, 1167, 1169, 1216

CREATE TABLE, 745-747, 764, 822

CREATE TYPE, 753, 901

CREATE USER, 320

Create Utility Control Point Wizard, 82

CREATE WORKLOAD GROUP, 1505

credentials, 455

CROSS APPLY operator, CD:1722-CD:1723

cross db ownership chaining configuration
option, CD:2293

crosstabs, CD:1718

CRPs (cache refresh plans), CD:2239

CRUD operations (ADO.NET Data Services),
CD:1811-CD:1816

Cryptography in the Database (Kenan), 367

CSV files

handling in PowerShell, 501-502

sending as attachments with Database
Mail, 440-441

CTE (common table expressions),
CD:1698-CD:1700

recursive, CD:1707-CD:1708

recursive queries, CD:1700

expanding, CD:1701-CD:1707

CUBE operator, CD:1561-CD:1562

cube perspectives, CD:2082

cubes

OLAP cube creation, CD:2042

OLAP database creation

aggregating with data,
CD:2066-CD:2071

How can we make this index more useful? Email us at indexes@samspublishing.com

browsing data, CD:2071-CD:2075

building and deploying, CD:2064-
CD:2065

creating, CD:2060-CD:2064

populating with data, CD:2065-CD:2066

SSAS, CD:2032-CD:2036

cumulative updates, installing, 218, 220, 222

CURSOR variables, CD:1748-CD:1753

cursor operations, tuning guidelines, 1542

CURSOR STATUS, CD:1750

cursor threshold configuration option, CD:2294

cursors

in multitier environments, CD:1659

performance, CD:1656-CD:1659

stored procedures, CD:1743-CD:1753

custom function templates, creating, 933-936

custom managed database objects

developing, CD:1825-CD:1864

managed triggers, CD:1856-CD:1861

permissions, CD:1827-CD:1829

related system catalogs, CD:1863-CD:1864

stored procedures, CD:1829-CD:1835

assembly creation, CD:1833-CD:1834

attributes, CD:1830-CD:1832

debugging, CD:1834-CD:1835

implementation contract, CD:1830-
CD:1832

Microsoft.SqlServer.Server objects,
CD:1832-CD:1833

transactions, CD:1861-CD:1863

UDAs (user-defined aggregates),
CD:1853-CD:1856

UDFs (user-defined functions)

scalar UDFs, CD:1835-CD:1839

TVFs (table-valued UDFs),
CD:1839-CD:1844

UDTs (user-defined types),
CD:1844-CD:1852

Visual Studio, CD:2008 1829

custom managed database objects 2367

ptg

custom stored procedure templates, creating,
875-879

customized data collection sets, 1446-1450

customizing format files (bcp utility),
CD:2153-CD:2154

cycle deadlocks, 1382

D
DAC (data-tier application), 82-83

data

application data values, CD:2337

configuration data, CD:2337

controlling access with views, 842-844

delivering to users in OLAP database
creation, CD:2076

metadata, CD:2337

data abstraction (views), 841-842

data access

client technologies, 279

drivers, 281

JDBC, 287

MDAC, 285-286

.NET Framework data provider for SQL
Server, 283-284

providers, 280

SNAC, 281

SNAC (ADO), 283

SNAC (ODBC), 282-283

SNAC (OLE DB), 282

SQLCLR context connections, 284-285

Database Engine, 11-12

data bars, CD:2174, CD:2203

data characteristics (data replication), 578-579

Data Collection services, CD:2326-CD:2327

Data Collector, 1429-1430

customized data collection sets,

1446-1450

data collection sets, 1431

installing and configuring, 1433-1437

limitations and recommendations,
1450-1451

managing, 1443-1446

MDW, 1432-1433

reports, 1439-1442

runtime component, 1431

SSIS packages, 1432

system data collectors, 1437-1439

Data Collector Set (Windows Performance
Monitor), 1469-1473

data columns

FILESTREAM storage for, CD:1597-CD:1599

SQL Profiler, 1356

traces (SQL Server Profiler), 127-128, 130

data compression

CI record, 1122

defined, 37

explained, 1117

managing with SSMS, 1126-1127

page-level compression, 1119-1121

evaluating, 1123-1126

implementing, 1122-1123

row-level compression, 1117-1119

Data Compression Wizard, 1127

Data Definition Language (DDL), CD:1892

Data Directories page (SQL Server Installation
Center), 206-207

data distribution, 573-574

data encryption. See encryption

data files, 710

data flow (SSIS), CD:2107

data flow task (SSIS), CD:2107

data insertion with row constructors,
CD:1569-CD:1572

custom stored procedure templates, creating2368

ptg

data integrity

checking with Maintenance Plan Wizard,
1075-1076

constraints, 813

CHECK, 820-821

creating, 821

creating with SSMS, 823-826

creating with T-SQL, 822-823

disabling, 829-830

dropping, 829

FOREIGN KEY, 816-820

gathering constraint information,
827-829

PRIMARY KEY, 813-814

UNIQUE, 815-816

Database Engine, 12

declarative data integrity, 812

domain integrity, 812

enforcing, 812-813

entity integrity, 812

new features, 811

procedural data integrity, 813

referential integrity, 812

rules, 830-831

Data Junction, CD:2099

data manipulation

deleting rows, 1144

simplifying with views, 839-840

updating rows, 1145-1146

Data Manipulation Language. See DML

data mining, CD:2084-CD:2091

OLAP performance, CD:2093-CD:2094

SSIS, CD:2093

Data Mining Wizard, CD:2085-CD:2087

data modification

inserting data, 1141-1143

views and, 853-854

How can we make this index more useful? Email us at indexes@samspublishing.com

data pages

data rows

overview, 1104-1105

sparse columns, 1107-1108

sql_variant data type, 1107

structure of, 1105-1107

defined, 1103

page header, 1103-1104

row offset table, 1108-1109

data partitioning

HA (high availability), 539

horizontal data partitioning, 1412-1413

vertical data partitioning, 1413-1414

data region templates, CD:2173, CD:2199

data replication, 547-549, CD:2338-CD:2340

articles, filtering, 550-551, 553-554

building solutions with HA (high availability)
options, 534-535

central publisher replication model,
555-556

central publisher with remote distributor
replication model, 557

central subscriber replication model, 559

database mirroring and, 614

distribution server, 550

log shipping, 614

merge replication, 575-576

methods of data distribution, 573-574

monitoring, 603

backup and recovery, 612-613

in heterogeneous environments,
611-612

peer-to-peer replication, 609-610

Performance Monitor, 610-611

within SQL Server Management Studio,
606-607

SQL statements, 603-606

troubleshooting replication failures, 608

data replication 2369

ptg

multiple publishers or multiple subscribers
replication model, 559-560

new features, 546-547

peer-to-peer replication model, 561-562,
609-610

performance, 613-614

planning for, 572-573

publication server, 549-550

publications, 550

publisher subscriber replication model, 558

replication agents. See replication agents

scripting replication, 600, 602

setting up, 579-580

creating distributors and enabling
publishing, 581-584

creating publications, 584-592

creating subscriptions, 594-600

horizontal and vertical filtering, 592, 594

snapshot replication, 574

subscription server, 550

subscriptions. See subscriptions

transactional replication, 574-575

updating subscribers replication model,
560-561

user requirements, 577-579

data rows (database pages)

overview, 1104-1105

sparse columns, 1107-1108

sql_variant data type, 1107

structure of, 1105-1107

Data Source View Wizard, CD:2048

data source views, creating, CD:2046-CD:2050

data sources

adding to OLAP databases,
CD:2044-CD:2046

report data source, CD:2175

shared data sources, CD:2193

data storage, 710-711

FILESTREAM storage, CD:1592-CD:1593

for data columns, CD:1597-CD:1599

database setup, CD:1596

enabling, CD:1593-CD:1596

data structures, 1092-1093. See also specific
data structures (i.e. indexes, tables)

data transformation requirement (SSIS),
CD:2113-CD:2116

Data Transformation Services. See DTS
(Data Transformation Services)

data types

CLR user-defined data types, 754

date and time, 751, CD:1572-CD:1575

file data types, CD:2153

hierarchyid, 751, CD:1580-CD:1590,
CD:1592

creating hierarchies, CD:1580-CD:1581

modifying hierarchies,
CD:1587-CD:1590, CD:1592

populating hierarchies,
CD:1581-CD:1583

querying hierarchies, CD:1583-CD:1587

large row support, 753

large-value data types, 752

new features, 37

new xml data type, CD:1890-CD:1891

built-in methods, CD:1899-CD:1918

columns, CD:1892-CD:1894

schema collections, CD:1894-CD:1899

overview, 750

search argument problems, 1277

spatial data types,
751-752, CD:1605-CD:1614

table of, 748-750

tuning guidelines, 1538

user-defined data types, 753-754

xml, 751

data replication2370

ptg

data-centric approach to disaster recovery,
CD:2337-CD:2338

data-driven subscriptions, CD:2236-CD:2237

data-tier application (DAC), 82-83

DataAccess parameter

scalar UDFs, CD:1836

SqlMethod, CD:1849

database administration, new features, 40-41

database allocations, tuning guidelines, 1537

Database Audit Specification, 369

database backups. See backups

database compatibility levels, 242

database design

denormalization

computed columns, 1410-1411

defined, 1408

guidelines, 1408-1409

horizontal data partitioning, 1412-1413

redundant data, 1409-1410

summary data, 1411

vertical data partitioning, 1413-1414

zero-to-one relationships, 1415

designing for performance, 1404-1405

filegroups and performance, 1415-1417

new features, 1403-1404

normalization

benefits of, 1407

first normal form, 1406

limitations of, 1407-1408

normalization conditions, 1405

second normal form, 1406-1407

third normal form, 1407

RAID (redundant array of inexpensive disks),
1417

RAID Level 0, 1418-1419

RAID Level 1, 1419-1420

RAID Level 5, 1421-1422

RAID Level 10, 1420

How can we make this index more useful? Email us at indexes@samspublishing.com

SANs (storage area networks)

cache, 1424

disk drive contention, 1424

explained, 1422-1423

performance, 1424-1425

Database Diagram Editor

creating constraints, 825

creating tables, 743-744

database diagrams, modifying tables, 772-773

database encryption key (DEK), 350

Database Engine

access to data, 11-12

data integrity, 12

explained, 10

storage, 10

upgrading, 243, 245-246

Database Engine Configuration page (SQL
Server Installation Center), 205, 207-208

Database Engine Tuning Advisor. See DTA

database files, 711

file management, 1096-1097

filegroups, 713-715

log files, 1096

master database files, 719

primary data files, 712, 1095

properties, 1093

secondary data files, 712, 1095

transaction log files, 716-717

Database locking level (SQL Server), 1364

Database Mail, 427, 454

configuration

mail profiles and accounts, 429-432

overview, 428-429

systemwide mail settings, 433

testing, 433-434

deleting mail objects with T-SQL, 432-433

email attachments, 439-441

Database Mail 2371

ptg

mail configuration objects, viewing, 445-446

mail message data, viewing, 446-447

new features, 427

receiving email, 441

security profiles, 431

sending email, 435-441

Service Broker (SSB), 434-435

updating with T-SQL, 432-433

Database Mail Configuration Wizard, 428-432

database maintenance

executing maintenance plans, 1088

Maintenance Plan Wizard

backing up databases,
1072, 1074-1075

checking database integrity, 1075-1076

maintaining indexes and statistics,
1077-1080

overview, 1070-1072

scheduling maintenance plans,
1080-1083

shrinking databases, 1076-1077

manual maintenance, 1084-1088

new features, 1070

policies, 1090

without a plan, 1089

database management system (DBMS).
See DBMS

database master keys, 340-341

database mirroring, 46, CD:2341-CD:2342

asynchronous operations, 622

automatic failover, 623

building solutions with HA (high availability)
options, 537-538

client setup and configuration, 647-648

combining with replication, 651-652

configuring with Database Mirroring Wizard,
633-639

copy-on-write technology, 620-621

creating databases on mirror server,
630-631

data replication and, 614

endpoints

creating, 627-628

dropping, 632

identifying, 632-633

explained, 17, 618-620

forced service, 623

manual failover, 623

mirror database server, 619, 622

monitoring, 639-642

new features, 617-618

operating modes, 622-623

permissions, 629-630

preparing for, 624-627

principal database server, 619, 622

removing mirroring, 643-645

reporting via database snapshots from
mirror, 652-653

requirements, 624

role switching, 623

roles, 622

SQL Server 2005 versus SQL Server 2008,
649-650

synchronous operations, 622

testing failover from principal to mirror,
645-646

when to use, 621

witness database server, 620, 622

Database Mirroring Monitor, 639-642

Database Mirroring Wizard, 633-639

database mirrors

providing reporting databases from,
1055-1056

reciprocal principal/mirror reporting
configuration, 1065-1066

setting up database snapshots against,
1064-1065

DATABASE option (WEBMETHOD) 1941

Database Properties dialog, 723

Database Mail2372

ptg

Database Read-Only, 724

database roles, managing, 321-322

database snapshots, 1043

copy-on-write technology, 1048, 1050

creating, 1057-1061

database snapsphot sparse files, 1048

dropping, 1062

explained, 1044-1048

limitations and restrictions, 1048, 1050

new features, 1044

number of database snapshots per source
database, 1067

reciprocal principal/mirror reporting
configuration, 1065-1066

reverting to, 1048, 1052-1053, 1062

source databases, 1063-1064

security, 1067

setting up against database mirrors,
1064-1065

snapshot databases, 1048

source databases, 1048

sparse file size management, 1067

testing with QA, 1064

when to use, 1051

providing baseline, 1054

providing point-in-time reporting
databases, 1054-1055

providing reporting databases from
a database mirror, 1055-1056

reverting to snapshots for recovery
purposes, 1052-1053

safeguarding databases prior to making
mass changes, 1053

database snapsphot sparse files, 1048

DATABASEPROPERTYEX, 726-729

databases

ALTER DATABASE, 736

attaching, 737-739

backing up. See backups

How can we make this index more useful? Email us at indexes@samspublishing.com

baselines, providing with database
snapshots, 1054

bigpubs2005. See bigpubs2005 database

checking database usage, 519

checking integrity, 1075-1076

CLR functions, adding to, 944-945

CLR stored procedures, adding to,
CD:1780-CD:1781

columns, joining, 521-522

CompSales database, installing, 7

configuring for SSRS (SQL Server Reporting
Services), CD:2187-CD:2188

creating, 717-718

with SSMS, 718-721

with T-SQL, 721-722

data structure, 710-711

database mirroring. See database mirroring

database options

Auto Close, 723

Auto Create Statistics, 723

Auto Shrink, 723

Database Read-Only, 724

explained, 722-725

Page Verify, 724

Restrict Access, 724

retrieving option information, 726-729

setting with T-SQL, 725

defined, 709

detaching, 737-739, CD:2350

enabling CDC for, CD:1617

expanding, 730-731

filegroups. See filegroups

maintenance. See database maintenance

managing file growth, 729-730

migrating

compatibility levels, 242

Copy Database Wizard, 238-241

explained, 238

databases 2373

ptg

moving, 736

new features, 710

OLAP database creation, CD:2044

adding data sources, CD:2044-CD:2046

ADO MD, CD:2077

aggregating data within,
CD:2066-CD:2071

browsing data in the cube,
CD:2071-CD:2075

building and deploying the cube,
CD:2064-CD:2065

calculated members, CD:2078-CD:2079

creating data source views,
CD:2046-CD:2050

creating the cube, CD:2060-CD:2064

defining dimensions and hierarchies,
CD:2050-CD:2060

delivering data to users, CD:2076

multidimensional expressions,
CD:2076-CD:2077

populating cubes with data,
CD:2065-CD:2066

query analysis and, CD:2079-CD:2081

pages. See pages (databases)

relational databases

generating, CD:2081

limitations of, CD:2082

ReportServer, CD:2180

ReportServerTempDB, CD:2180

restoring. See restores

rows. See rows

safeguarding prior to making mass
changes, 1053

setting up for FILESTREAM storage,
CD:1596

shrinking, 731

DBCC SHRINKDATABASE, 731-732

DBCC SHRINKFILE, 732-733

log files, 734

in Maintenance Plan Wizard, 1076-1077

with SSMS, 734-735

snapshots. See database snapshots

system databases, 709

associated database files, 167

distribution database, 168

explained, 166-167

maintaining, 169-170

master database, 167

model database, 168

msdb database, 168

resource database, 168

tempdb database, 169

tables. See tables

tuning guidelines, 1537

user databases, 709

Datacenter Edition (SQL Server 2008), 42-43

DATAllegro v3, CD:2094

datasets, CD:2193-CD:2194

shared datasets,
CD:2175, CD:2194-CD:2195

DATA_COMPRESSION argument
(CREATE INDEX), 799

date calculations

PowerShell, 502-503

T-SQL, CD:1663-CD:1666

converting dates for comparison,
CD:1666-CD:1669

first day of month, CD:1664

first day of quarter, CD:1665

first day of year, CD:1664

midnight for the current day, CD:1665

Monday of the current week, CD:1665

DATE data type, 37, 748, 751, CD:1572

date data types, 751, CD:1572-CD:1576

DATEADD function, CD:1663

DATEDIFF function, CD:1663

datediff() function, 1336-1337

databases2374

ptg

datetime data type, 748, 751, CD:1572

DATETIME2 data type, 37, 748, 751, CD:1573

DATETIMEOFFSET data type, 37, 748, 751,
CD:1573

db backupoperator, 305

db datareader, 305, 307

db datawriter, 305, 307

db ddladmin, 305

db denydatareader, 305

db denydatawriter, 305

db owner, 305

db securityadmin, 305

DBCC, 1548

DBCC DROPCLEANBUFFERS, 1335

DBCC FREEPROCCACHE, 1266

DBCC OPENTRAN, 1038

DBCC SHOW_STATISTICS, 1153-1157, 1219

DBCC SHRINKDATABASE, 731-732

DBCC SHRINKFILE, 732-733

dbcreator, 303

DBMS (database management system), 1342

dbo users, 299

DB_accessadmin, 305

DCM (differential changed map) pages, 1116

DDL (Data Definition Language), CD:1892

changes to CDC source tables, CD:1626

statements, 983

triggers, 976

creating, 983-986

managing, 986-987

table of, 983

de-duping data with ranking functions,
CD:1684-CD:1687

Deadlock Graph event (SQL Profiler), 1355

deadlocks, 1382-1384

1204 trace flags, setting, 1386-1388

1222 trace flags, setting, 1388-1390

How can we make this index more useful? Email us at indexes@samspublishing.com

avoiding, 1384-1385

conversion deadlocks, 1383

cycle deadlocks, 1382

examining, 1385-1386

handling, 1385-1387

monitoring, 1390-1392

SQL Server Profiler, 158-159

tuning guidelines, 1545

DEADLOCK_PRIORITY, 1384

debugger (T-SQL), 41

debugging

managed code, CD:1834-CD:1835

stored procedures, 905-908

T-SQL, 100-101

decimal data type, 748

Decision Support Systems (DSS), 666

decision trees (data mining algorithms),
CD:2085

declarative data integrity, implementing, 812

declarative defaults, 831-833

declarative referential integrity (DRI), 951

DECLARE (variable assignment), CD:1568

Decode-SqlName cmdlet, 509

DecryptByAsymKey() function, 343

DecryptByCert() function, 343

DecryptByKey() function, 343, 348

DecryptByPassphrase() function, 343

dedicated administrator connections, HA (high
availability), 540

DEFAULT, 764, 832-835

default full-text language configuration option,
CD:2294-CD:2296

default language configuration option,
CD:2296-CD:2298

default values, setting for stored procedure
input parameters, 895-898

defaults, 831

application of, 833-835

defaults 2375

ptg

bound defaults, 833

declarative defaults, 831-833

restrictions on, 835

tuning guidelines, 1538

deferred name resolution (stored procedures),
885-888

defining user-defined table types, CD:1577

DEK (database encryption key), 350

Deleted Scan icon (Query Analyzer), 1311

deleted tables (DML triggers), 957-959

deleting

database snapshots, 1062

logins (SSMS), 317

mail objects from Database Mail with T-SQL,
432-433

packages (dtutil utility), CD:2141-CD:2144

resource pools, 1515-1516

rows, 1144

LINQ to SQL, CD:1801

delivery architecture (subscriptions), CD:2237

denormalization

computed columns, 1410-1411

defined, 1408

guidelines, 1408-1409

horizontal data partitioning, 1412-1413

redundant data, 1409-1410

summary data, 1411

tuning guidelines, 1537-1538

vertical data partitioning, 1413-1414

zero-to-one relationships, 1415

DENSE RANK function, CD:1711-CD:1712

densities of indexes, 1158-1159

DENY, 311, 330

deploying

cubes in OLAP database creation,
CD:2064-CD:2065

reports, CD:2207-CD:2209

deprecated features, 49

DESC (CREATE INDEX), 796

DESCRIPTION (BACKUP DATABASE), 392

design. See also guidelines

databases. See database design

example systems (SQL Server Service
Broker), CD:1964-CD:1965

indexes, 1184, 1403

clustered indexes, 1185-1186

composite indexes, 1184

covering, 1188-1190

included columns, 1190-1191

multiple indexes, 1191-1192

nonclustered indexes, 1186-1188

wide indexes, 1191-1192

for performance, 1523-1528

assessment stage, 1524

coding and testing stage, 1526-1527

identification and design stage, 1525

implementation stage, 1527-1528

prototyping stage, 1525-1526

system testing and acceptance stage,
1527

report design, CD:2202

enhancements in, CD:2172-CD:2175

tables, tuning guidelines, 1537-1538

Design a Query window (Report Builder),
CD:2218-CD:2219

design methodologies for OLAP, CD:2038

construction phase, CD:2039

design phase, CD:2039

implementation phase, CD:2040

maintenance phase, CD:2040

requirements phase, CD:2039

design phase (OLAP design methodologies),
CD:2039

Designer IDE (SSIS), CD:2110-CD:2112,
CD:2126-CD:2135

detaching databases, 737-739, CD:2350

defaults2376

ptg

deterministic function, 1194

Developer Edition (SQL Server 2008)

features, 27

licensing, 32

developing

custom managed database objects,
CD:1825-CD:1864

managed triggers, CD:1856-CD:1861

permissions, CD:1827-CD:1829

related system catalogs,
CD:1863-CD:1864

stored procedures, CD:1829-CD:1835

transactions, CD:1861-CD:1863

UDAs (user-defined aggregates),
CD:1853-CD:1856

UDFs (user-defined functions),
CD:1835-CD:1844

UDTs (user-defined types),
CD:1844-CD:1852

Visual Studio 2008, CD:1829

reports

with BIDS, CD:2196-CD:2199

Chart control, CD:2203

controls summary, CD:2202-CD:2204

data bars, CD:2203

data planning and preparation, CD:2193

datasets, CD:2193-CD:2194

deployment, CD:2207-CD:2209

design, CD:2202

expressions, CD:2200-CD:2202

gauges, CD:2203

Image control, CD:2203

indicators, CD:2203-CD:2207

interactivity, CD:2211-CD:2213

Line control, CD:2203

List control, CD:2203

Map control, CD:2203

Matrix control, CD:2202

How can we make this index more useful? Email us at indexes@samspublishing.com

overview of development process,
CD:2192

Rectangle control, CD:2203

Report Builder. See Report Builder

Report Manager, CD:2209-CD:2210

shared data sources, CD:2193

shared datasets, CD:2194-CD:2195

Sparklines, CD:2203-CD:2207

Subreport control, CD:2204

Table control, CD:2202

tables and hierarchies in,
CD:2210-CD:2211

Tablix, CD:2199-CD:2202

Text Box control, CD:2204

development life cycle (security), 361-362

development tools (SSMS), Query Editor

disconnected editing, 88

editing sqlmd scripts, 88-89

IntelliSense, 87

overview, 85-87

performance, 91-92

Query Designer, 92-93

query types, 87-88

regular expressions and wildcards, 89-91

device allocations, tuning guidelines, 1536

device CALs, 31

diagnostics

full-text indexes, CD:2014

COLUMNPROPERTY function, CD:2015

example, CD:2016-CD:2017

FULLTEXTCATALOGPROPERTY,
CD:2015-CD:2016

OBJECTPROPERTY function,
CD:2014-CD:2015

sqldiag, 116-117

ssbdiagnose, 47

dialog handles, CD:1974

DialogTimer, CD:1969

DialogTimer 2377

ptg

differential backups, 380, 397-398

differential changed map (DCM) pages, 1116

DIFFERENTIAL option (BACKUP DATABASE), 392

differential partial backups, 381

DIGEST authentication, CD:1934

digital certificates, 338

compared to TDE (transparent data
encryption), 356-357

encrypting columns with, 346-349

Dimension Wizard, CD:2051-CD:2052

dimensions, defining in OLAP database
creation, CD:2050, CD:2054-CD:2060

direct recursion, 993

dirty pages, 717

dirty reads (transaction isolation levels), 1343

Dirty Writer process (logs), 1024-1028

DISABLE (ALTER FULLTEXT INDEX),
CD:2010-CD:2011

DISABLE BROKER, CD:1961

disabling

constraints, 829-830

indexes, 1182

disaster recovery

data-centric approach, CD:2337-CD:2338

focus of, CD:2342-CD:2347

Level 0, CD:2331

Level 1, CD:2331

Level 2, CD:2331

Level 3, CD:2331

Level 4, CD:2331

new features, CD:2330

options for, CD:2338

data replication, CD:2338-CD:2340

database mirroring and snapshots,
CD:2341-CD:2342

log shipping, CD:2339-CD:2341

overview, CD:2329-CD:2331

patterns, CD:2332

active multisite DR pattern, CD:2334

active/active DR sites pattern,
CD:2333-CD:2334

active/passive DR sites pattern,
CD:2332-CD:2333

choosing, CD:2334-CD:2335

planning and executing, CD:2349-CD:2350

process, CD:2342

sqldiag.exe, CD:2347-CD:2349

recovery objectives, CD:2336-CD:2337

reverting to database snapshots, 1052-
1053, 1062-1064

third-party alternatives, CD:2350-CD:2351

tuning guidelines, 1546

disconnected editing, 88

discovery, CD:1929

disk activity, monitoring, 1490

disk devices, 386

disk drive contention, 1424

disk performance, monitoring in SSMS, 1490

Disk Queue Length counter, 713

disk space requirements for SQL Server 2008,
187

Disk Space Requirements page (SQL Server
Installation Center), 203

disk subsystem, tuning guidelines for, 1534

disk systems, monitoring, 1488-1490

diskadmin, 303

displaying execution plan XML, 1317

DISTINCT, CD:1654

query processing, 1268

tuning guidelines, 1542

distribute streams, 1272

Query Analyzer, 1314

distributed data, tuning guidelines, 1546

distributed messaging, CD:1960

distributed partitioned views, 859-860, 975

distributed queries (linked servers), CD:2252

differential backups2378

ptg

Distributed Transaction Coordinator (DTC),
572, 657

distributed transactions, 573

linked servers, CD:2252-CD:2253

managing, 1040

distribution agent, 569-570

distribution clean up: distribution, 571

distribution database, 168, 564-565

distribution server (data replication), 550

distributors, creating for data replication,
581-584

dm exe sql text, CD:1766

dm exec cached plans, CD:1766

dm exec plan attributes, CD:1766

DML (Data Manipulation Language)

Insert over DML, CD:1559-CD:1561

statements, compiling, 1212-1213

triggers

AFTER triggers. See AFTER triggers

cascading deletes, 963-965

cascading updates, 965-966

creating, 951-953

explained, 950-951

inserted and deleted tables, 957-961

INSTEAD OF triggers. See INSTEAD OF
triggers

referential integrity, 961-963

DMVs (dynamic management views), 45-46,
179-181, CD:1994

disk system items, monitoring, 1491

memory items, monitoring, 1487

processor items, monitoring, 1483

SEE (SQL Server Extended Events),
1460-1462

sys.dm exec query plan, 1328-1329

sys.dm_exec_cached_plans, 1511

sys.dm_exec_query_memory_grants, 1511

sys.dm_exec_query_resource_semaphores,
1511

How can we make this index more useful? Email us at indexes@samspublishing.com

sys.dm_exec_requests, 1511

sys.dm_exec_session, 1511

sys.dm_os_memory_brokers, 1511

sys.dm_resource_governor_configuration,
1510

sys.dm_resource_governor_resource_pools,
1510

sys.dm_resource_governor_workload_groups,
1509

dm_db_index_physical_stats, 1171-1174

Document Type Definition (DTD), CD:1866

documents, XML, CD:1866

dollar sign ($), 492

domain integrity, 812. See also data integrity

DPVs (distributed partitioned views),
859-860, 975

DR. See disaster recovery

DRI (declarative referential integrity), 951

drivers, 281

DROP (ALTER FULLTEXT INDEX) 2012

DROP COLUMN, 768

DROP DATABASE, 1062

DROP ENDPOINT, 632, 644

DROP INDEX, 807

DROP RESOURCE POOL, 1516

DROP ROLE, 322

DROP TABLE, 773

DROP USER, 320

DROP VIEW, 853

DROP WORKLOAD GROUP, 1515

dropping

constraints, 829

database snapshots, 1062

endpoints, 632

indexes, 807

tables, 773-774

views with T-SQL, 853

dropping 2379

ptg

DROP_EXISTING argument (CREATE INDEX),
798

DSS (Decision Support Systems), 57, 666

hybrid SQL Server reporting configuration,
59, 61

multidimensional OLAP cube, 58-59

star schema data warehouse for global
computer sales, 57-58

DTA (Database Engine Tuning Advisor),
109-112, 138, 1149, 1201-1204, CD:2274

command line, CD:2321-CD:2326

GUI, CD:2317-CD:2320

overview, CD:2317

DTC (Distributed Transaction Coordinator),
572, 657

DTD (Document Type Definition), CD:1866

dtexec utility, CD:2135-CD:2137

packages, running, CD:2137, CD:2141

phases, CD:2136

DTS (Data Transformation Services),
228, 259-261

DTS Package Migration Wizard, 259-261

DTS Parameters, 233-234

dtsrun utility, CD:2135

dtutil utility, CD:2141-CD:2145

duplicate data, de-duping with ranking func-
tions, CD:1684-CD:1687

dynamic management objects, Missing Index
Hints, 1320-1321

dynamic management views. See DMVs

dynamic SQL

SQL injection attacks, avoiding,
CD:1643-CD:1652

stored procedures, CD:1774-CD:1779

E
Eager Spool (Query Analyzer), 1312

editing sqlmd scripts, 88-89

editions of SQL Server

Compact 3.5 Edition, 29, 32

comparison of, 25

Developer Edition, 27, 32

Enterprise Edition, 24-26

Express Edition, 28-29, 32

R2 Datacenter Edition, 29, 42-43

R2 Parallel Data Warehouse Edition, 30, 43

Standard Edition, 23-26

Web Edition, 27-28, 32

Workgroup Edition, 27

EKM (Extensible Key Management),
40, 341-342

EKM provider enabled configuration option,
CD:2298

element-centric XML shape, CD:1868

email

configuring in SSRS (SQL Server Reporting
Services) 2189

notification, configuring in SQL Server
Agent, 454

receiving with Database Mail, 441

sending with Database Mail, 435-441

SQL Server Agent Mail. See SQL Server
Agent Mail

EMC Corporation, CD:2351

ENABLE (ALTER FULLTEXT INDEX),
CD:2010-CD:2011

ENABLE BROKER, 405, CD:1961

enabling

CDC

for databases, CD:1617

for tables, CD:1617-CD:1619

Change Tracking, CD:1628-CD:1630

FILESTREAM storage, CD:1593-CD:1596

Report Builder, CD:2233-CD:2234

Resource Governor, 1499-1500

SQL Server Agent Mail, 442

Encode-SqlName cmdlet, 509

DROP_EXISTING argument2380

ptg

EncryptByAsymKey() function, 343

EncryptByCert() function, 343

EncryptByKey() function, 343, 347

EncryptByPassphrase() function, 343

ENCRYPTION, 847-848

encryption

algorithms, 338

asymmetric key encryption, 338

column-level encryption

with certificates, 346-349

compared to TDE (transparent data
encryption), 356-357

explained, 343

with passphrases, 344-346

configuring in SSRS, CD:2189-CD:2190

connection encryption, configuring clients,
278-279

key management, 339, 341

database master keys, 340-341

EKM (Extensible Key Management),
341-342

service master keys, 340

new features, 336

overview, 335, 338-339

private keys, 338

public keys, 338

symmetric key encryption, 338

TDE (transparent data encryption)

backing up TDE certificates and keys,
353-355

compared to column-level encryption,
356-357

explained, 350-351

implementing, 351-352

limitations, 355-356

managing in SSMS, 352-353

when to use, 339

END CONVERSATION, CD:1979

How can we make this index more useful? Email us at indexes@samspublishing.com

EndDialog, CD:1969

__$end_lsn column (CDC table), CD:1615

endpoints, CD:1931

catalog views and system stored
procedures, CD:1954-CD:1955

controlling access permissions,
CD:1955-CD:1956

creating, 627-628

creating for web services,
CD:1931-CD:1933

defined, 267

dropping, 632

FOR SOAP, CD:1955

identifying, 632-633

server endpoint layers, 267-268

TDS endpoints, 267

enforcement layers (security), 362-364

enforcing

data integrity, 812-813

referential integrity with DML triggers,
961-963

enhancements in SQL Server 2008, 45

enterprise computing, 655

Enterprise Edition (SQL Server 2008), 24-26

entitization, CD:1941

entity integrity, 812

envelopes (SOAP) 1930

EOIO (exactly-once-in-order) messaging,
CD:1974

@@ERROR, CD:1683-CD:1684, CD:1738

ERROR BROKER CONVERSATIONS, CD:1961

Error, CD:1969

error handling

with @@ERROR and @@ROWCOUNT,
CD:1683-CD:1684

TRY…CATCH construct, CD:1724-CD:1727

ERROR LINE, CD:1725, CD:1739

error list window (SSMS), 42

error logs, SQL Server Agent, 456-457

error logs, SQL Server Agent 2381

ptg

ERROR MESSAGE, CD:1725, CD:1739

ERROR NUMBER, CD:1725, CD:1739

ERROR PROCEDURE, CD:1725, CD:1739

ERROR SEVERITY, CD:1725, CD:1739

ERROR STATE, CD:1725, CD:1739

errors, stored procedures from, CD:1738-
CD:1741

ERROR_BROKER_CONVERSATIONS (RESTORE
DATABASE), 406

escalation locks, 1374-1376

escape characters, 492

Estimated Subtree Cost, 1305

ETL (extraction, transformation, and loading),
CD:2099

ETW (Event Tracing for Windows), 1429

evaluating

indexes, 1150-1153

page compression, 1123-1126

policies, 702-703

recovery models, 705

event forwarding, 477-478

event handlers (SSIS), CD:2107

Event parameter (SqlTrigger), CD:1856

Event Tracing for Windows (ETW), 1429

EventClass data column (SQL Profiler), 1356

EVENTDATA, 985

EventData parameter (SqlTriggerContext),
CD:1857

events

SSEE (SQL Server Extended Events), 1458

trace events and categories, 141-147

traces (SQL Server Profiler), 125-127

exactly-once-in-order (EOIO) messaging,
CD:1974

EXCEPT IP, CD:1936

exclusive locks, 1361

EXEC, 880-881, 923

exec sp spaceused, CD:2344

exec sp_configure, CD:2344

exec sp_helpdb dbnamexyz, CD:2344

exec sp_helplinkedsrvlogin, CD:2344

exec sp_helplogins, CD:2343

exec sp_helpserver, CD:2343

exec sp_linkedservers, CD:2344

exec sp_server_info, CD:2344

EXECUTE AS, 332-333, 883-885, 929

Execute Report Definitions, CD:2233

executing

AFTER triggers, 955

disaster recovery, CD:2349-CD:2350

INSTEAD OF triggers, 968-970

maintenance plans, 1088

sqlcmd, 106-108

stored procedures

execution context and EXECUTE AS,
883-885

via linked servers, CD:2268

in SSMS, 881-882

syntax, 880-881

traces (SQL Server Profiler), 132

execution accounts, configuring in SSRS (SQL
Server, CD:2189

execution context, 331-333, CD:1766

execution log (SSRS), CD:2240

execution modes, 694-695

execution options (reports), CD:2237

cached reports, CD:2237-CD:2238

CRPs (cache refresh plans) 2239

execution snapshots, CD:2238

history snapshots, CD:2238

live reports and sessions, CD:2237

user-specific data limitations, CD:2239

execution plan selection (Query Optimizer),
1251-1253

execution plans

graphical execution plans, saving and
viewing, 1317

XML, displaying, 1317

ERROR MESSAGE2382

ptg

execution policy (PowerShell), 487

execution snapshots, CD:2238

existing implementations, tuning methodology
for, 1528-1533

assessment stage, 1529-1530

coding and testing stage, 1532

implementation stage, 1533

isolation and monitoring stage, 1530-1531

prototyping stage, 1531-1532

system test and acceptance stage, 1533

EXISTS, 1248

exists() new xml data type method, CD:1900,
CD:1908-CD:1909

EXPAND VIEWS, 1284

expanding

databases, 730-731

hierarchies with recursive CTEs,
CD:1701-CD:1707

expansion, CD:2021

indexed views, 866-867

expired subscription clean up, 571

EXPIREDATE (BACKUP DATABASE), 392

explicit context switching, 332

EXPLICIT mode (XML), CD:1877-CD:1881

explicit transactions, 997

explicit user-defined transactions

compared to implicit transactions, 1006

processing, 998-1000

nested transactions, 1001-1003

savepoints, 1000-1001

Export-Csv cmdlet, 501

exporting

with bcp utility, CD:2151-CD:2153

current state as policy, 700-701

policies, 703-704

traces (SQL Server Profiler), 132

How can we make this index more useful? Email us at indexes@samspublishing.com

exposure endpoints, 360

Express Edition (SQL Server 2008)

features, 28-29

licensing, 32

Expression Builder (SSIS), CD:2112, CD:2115

expressions

complex expressions, CD:2200-CD:2202

enhancements to, CD:2179

multidimensional expressions in OLAP
database, CD:2076-CD:2077

simple expressions, CD:2178

Extended Events, 40

extended events catalog views (SSEE), 1460-
1462

extended events sessions (SSEE), 1462-1465

Extended MAPI (Extended Messaging
Application Programming Interface), 427

extended stored procedures, CD:1782

adding to SQL Server, CD:1782-CD:1783

obtaining information on, CD:1783

provided with SQL Server,
CD:1783-CD:1784

xp cmdshell, CD:1784-CD:1786

Extensible Key Management (EKM),
40, 341-342

extensions, 712

Extent locking level (SQL Server), 1364

extents, 710

allocating space, 1113-1114

defined, 10

EXTERNAL ACCESS permission, 945, CD:1780

external activation, CD:1964

external fragmentation (indexes), 1169

ExternalMailQueue, 434

extraction, transformation, and loading (ETL),
CD:2099

extraction, transformation, and loading (ETL) 2383

ptg

F
facets

creating conditions based on, 697-698

explained, 689, 692

table of, 690-692

failover, 623

combining with scale-out options, 538

testing from principal to mirror, 645-646

FAST n hints, 1284

Feature Selection page (SQL Server Installation
Center), 200-201

fields, format files

lengths, CD:2157-CD:2158

terminators, CD:2158-CD:2162

file backups, 381, 400-401

file data types (bcp utility), CD:2153

file growth, managing for databases, 729-730

File locking level (SQL Server), 1364

FILE option (RESTORE DATABASE), 406

filegroup backups, 381, 400-401

filegroups, 713-715

controlling table placement with, 1098

FILESTREAM filegroups, 1100-1101

overview, 1097-1100

performance and, 1415-1417

FILEGROWTH, 722

files, 1095

.BAT files, 104

configuration files, upgrading with, 250-251

ConfigurationFile.ini, 212-216

CSV files

handling in PowerShell, 501-502

sending as attachments with Database
Mail, 440-441

data files, 710

database files, 711-712

file management, 1096-1097

format files, bcp utility, CD:2153-CD:2163

log files, 1096

mssqlsystemresource.mdf, 169

primary data files, 712, 1095

properties, 1093

saving trace output to, 133

secondary data files, 712, 1095

transaction log files, 710, 716-717

FILESTREAM filegroups, 1100-1101

FILESTREAM storage,
207-208, 759, CD:1592-CD:1593

for data columns, CD:1597-CD:1599

database setup, CD:1596

defined, 36

enabling, CD:1593-CD:1596

filestream_access_level configuration option,
CD:2299

fill factor configuration option,
CD:2299-CD:2300

fill factors

indexes, setting, 1179-1181

tuning guidelines, 1540

FILLFACTOR argument (CREATE INDEX), 798

FillRowMethodName parameter (TVFs),
CD:1839

Filter icon, 1311

filtered indexes, 38

advantages, 1195-1196

creating, 1196-1198

optimizing with, 1239-1241

statistics, 1198-1199

filtered statistics, 38

filtering

articles, 550-551, 553-554

horizontal filtering, 592, 594

MDS-based filtering, CD:2095-CD:2096

vertical filtering, 592, 594

filtering cmdlets, 499-500

facets2384

ptg

filters, traces (SQL Server Profiler), 130-132

finding foreign key references, 774

FIRE TRIGGERS, 956

firewalls, connectivity, 288

FIRE_TRIGGER hint, CD:2166

firing order (AFTER triggers), 956

first day of month, calculating, CD:1664

first day of quarter, calculating, CD:1665

first day of year, calculating, CD:1664

first normal form, 1406

fixed-database roles, 304-306

fixed-server roles, 303-304

flat-earth data, CD:1605

float data type, 748

flow control, 465

fn trace geteventinfo, 153

fn trace getfilterinfo, 153

fn trace getinfo, 153

focus of disaster recovery, CD:2342-CD:2347

focusing on specific data with views, 840-841

FOR ATTACH option (CREATE DATABASE),
737-738

for clause (query() new xml data type method),
CD:1902-CD:1903

FOR SOAP, CD:1938-CD:1942, CD:1955

FOR XML modes, CD:1866, CD:1687

AUTO mode, CD:1873-CD:1877

EXPLICIT mode, CD:1877-CD:1881

new xml data type, CD:1884-CD:1887

PATH mode, CD:1881-CD:1884

RAW mode, CD:1867-CD:1871

FORCE ORDER hints, 1283

forced parameterization, managing Query
Optimizer, 1285-1287

forced service, 623

FORCESEEK, 38, 1281-1282

forcing query plan recompiles,
1258, CD:1770-CD:1773

How can we make this index more useful? Email us at indexes@samspublishing.com

ForEach-Object cmdlet, 499

FOREIGN KEY constraint, 764, 816-818, 963

cascading referential integrity, 818-820,
967

foreign key references, finding, 774

foreign keys, tuning guidelines, 1539

format files

bcp utility, CD:2153-CD:2163

creating, CD:2154-CD:2155

customizing, CD:2153-CD:2154

fields

lengths, CD:2157-CD:2158

terminators, CD:2158-CD:2162

prefixes, lengths, CD:2157

storage types, CD:2155-CD:2156

FORMAT option

BACKUP DATABASE, 392

WEBMETHOD, 1939

Format parameter

SqlUserDefinedAggregate, CD:1853

SqlUserDefinedType, CD:1845

Format-List cmdlet, 500

Format-Table cmdlet, 500

formatting cmdlets, 500-501

forward pointers, 1146

fragmentation of indexes, 1169-1170

fragments (XML), CD:1866

FREETEXT, CD:2020-CD:2024

FREETEXTTABLE, CD:2020-CD:2024

frequency of backups, 423-424

FT Daemon Host, CD:1999

FTS (Full-Text Search) 1997

CONTAINS, CD:2020

generation, CD:2021-CD:2022

LANGUAGE, CD:2022

proximity, CD:2022

search phrase, CD:2020-CD:2021

weighted, CD:2022

FTS (Full-Text Search) 2385

ptg

CONTAINSTABLE, CD:2020, CD:2023

generation, CD:2021-CD:2022

LANGUAGE, CD:2022

proximity, CD:2022

search phrase, CD:2020-CD:2021

weighted, CD:2022

explained, 17-18

FREETEXT, CD:2020-CD:2024

FREETEXTTABLE, CD:2020-CD:2024

full-text catalogs, CD:2002

full-text indexes. See full-text indexes

indexing, CD:1999-CDL2001

maintenance, CD:2024-CD:2025

new features, CD:1998

overview, CD:1997

performance, CD:2025-CD:2026

searching, CD:2001-CD:2002

stop lists, CD:2024

troubleshooting, CD:2026-CD:2028

full database backups, 380, 396-397

full outer joins, CD:1680-CD:1682

full recovery model, 383

full-text catalogs, CD:2002

full-text indexes, CD:2003

creating with T-SQL, CD:2003

ALTER FULLTEXT INDEX,
CD:2010-CD:2013

CREATE FULLTEXT, CD:2003-CD:2005

CREATE FULLTEXT INDEX, CD:2005-
CD:2010

managing MSFTESQL, CD:2013-CD:2014

diagnostics, CD:2014

COLUMNPROPERTY, CD:2015

example, CD:2016-CDL2017

FULLTEXTCATALOGPROPERTY,
CD:2015-CD:2016

OBJECTPROPERTY, CD:2014-CD:2015

Full-Text Indexing Wizard, CD:2017-CD:2019

xml columns, CD:1924-CD:1925

Full-Text Indexing Wizard, CD:2017-CD:2019

Full-Text Search. See FTS

FULLTEXTCATALOGPROPERTY,
CD:2015-CD:2016

Function Properties dialog (SSMS), 941

functions, 497-498. See also UDFs
(user-defined functions); names of
specific functions

avoiding unnecessary executions, CD:1656

classification functions

creating, 1506-1509

defined, 1495-1496

modifying, 1516

CLR functions, 944-945

deciding between T-SQL and CLR functions,
946-947

object definition, 891

partition functions, creating, 776-778

rewriting stored procedures as, 942-943

tuning guidelines, 1542

G
GAM (global allocation map), 711, 1114-1115

gather streams, 1272

Query Analyzer, 1314

gauge panels, CD:2173

gauges, CD:2173, CD:2203

generating

column statistics, 1161-1167, 1169

index statistics, 1161-1167, 1169

page numbers with NTILE, CD:1717

relational databases, CD:2081-CD:2082

T-SQL statements, CD:1682-CD:1683

generation, CD:2021-CD:2022

generics, CD:1796

geography data type, 37, 748, 751, CD:1605,
CD:1609-CD:1611

FTS (Full-Text Search)2386

ptg

Geography Markup Language (GML), CD:1606

geometry data type, 37, 748, CD:1605,
CD:1607-CD:1609. See also spatial data types

GEOMETRYCOLLECTION, CD:1606

GET CONVERSATION DIALOG, CD:1980,
CD:1983

Get-Alias cmdlet, 490

Get-ChildItem cmdlet, 490

Get-Command cmdlet, 488

Get-Content cmdlet, 490, 514

Get-Help cmdlet, 488-489

Get-Item cmdlet, 520

Get-Member cmdlet, 489-490

Get-Process cmdlet, 513

Get-Service cmdlet, 513

getdate() function, 918

getonlydate() function, 919, 930

ghost records, 1144

GLBA (Gramm-Leach-Bliley Act), 367

global allocation map (GAM), 711, 1114-1115

global variables, simulating with CONTEXT INFO
setting, CD:1671-CD:1673

GML (Geography Markup Language), CD:1606

Gramm-Leach-Bliley Act (GLBA), 367

GRANT, 311, 330, 629

granting permissions, 629-630

granularity locks, 1364-1376

application locks, 1369-1372

index locks, 1372-1373

key-range locking, 1365-1369

serialization locking, 1365-1369

graphic charts, 1467

graphical execution plans, saving and viewing,
1317

GROUP BY, 1283, CD:1561

CUBE operator, CD:1561-CD:1562

GROUPING SETS operator, CD:1562-
CD:1565

How can we make this index more useful? Email us at indexes@samspublishing.com

grouping_id() function, CD:1565-CD:1568

query processing, 1267

ROLLUP operator, CD:1561-CD:1562

Group-Object cmdlet, 490

GROUPING, sorting results, CD:1669-CD:1671

GROUPING SETS, 38, CD:1562-CD:1565

grouping_id() function, CD:1565-CD:1568

groups, workload

creating, 1503-1505

deleting, 1514-1515

explained, 1496

viewing, 1505-1506

guest users, 299-300

GUI for DTA (Database Engine Tuning Advisor),
CD:2317-CD:2320

guidelines

MERGE statement, CD:1558-CD:1559

for tuning, 1534

applications, 1545

database-level guidelines, 1537

distributed data, 1546

hardware and operating system,
1534-1535

high availability, 1546-1547

indexing, 1539-1540

SQL Server instance, 1536-1537

table-level guidelines, 1537-1539

Transact-SQL, 1541-1545

views, 1541

H
HA (high-availability), 523

backups, 527

building solutions, 530

combining failover with scale-out
options, 538

HA (high-availability) 2387

ptg

data replication, 534-535

database mirroring, 537-538

log shipping, 535-537

MSCS, 530-531

SQL Clustering, 531-534

data partitioning, 539

data replication and database mirroring,
614

database snapshots, 539

dedicated administrator connections, 540

defined, 525-526

fast recovery, 538

hardware, 527

Microsoft Virtual Server 2005, 541-542

new features, 524-525

online indexing, 538

online restore, 538

operating systems, 527

overview, 523

quality assurance, 528

server instance isolation, 528, 530

snapshot isolation levels, 540

standards/procedures, 528

training, 528

tuning guidelines, 1546-1547

vendor agreements, 528

handles for tuning, 1521-1522

hardware

HA (high availability), 527

requirements for SQL Server 2008,
186-187

tuning guidelines, 1534-1535

HASH GROUP, 1283

hash joins, 1244-1246

Hash Match icon (Query Analyzer), 1311

HASH UNION, 1283

headers, page, 1103-1104

Health Insurance Portability and Accountability
Act (HIPAA), 366

heap, deleting rows, 1144

Heap or B-Tree (HOBT) locking level
(SQL Server), 1365

heap tables, 1129-1130

heartbeat, 659

help features

PowerShell, 487-490

SSMS, 68-70

heterogeneous environments, replication
monitoring, 611-612

hierarchies

creating, CD:1580-CD:1581

defining in OLAP database creation,
CD:2050, CD:2054-CD:2060

expanding with recursive CTEs, CD:1701-
CD:1707

modifying, CD:1587-CD:1590, CD:1592

populating, CD:1581-CD:1583

querying, CD:1583-CD:1587

in reports, CD:2210-CD:2211

Hierarchyid data type,
37, 748, 751, CD:1580-CD:1590, CD:1592

creating hierarchies, CD:1580-CD:1581

modifying hierarchies,
CD:1587-CD:1590, CD:1592

populating hierarchies, CD:1581-CD:1583

querying hierarchies, CD:1583-CD:1587

high-availability. See HA (high availability)

hints

bulk-copy operations, CD:2165-CD:2166

Query Optimizer, 1280

EXPAND VIEWS, 1284

FAST n, 1284

FORCE ORDER, 1283

GROUP BY, 1283

join, 1282-1283

KEEP PLAN, 1284

HA (high-availability)2388

ptg

KEEPFIXED PLAN, 1284

MAXDOP number, 1284

MAXRECURSION number, 1284

OPTIMIZE FOR UNKNOWN, 1285

OPTIMIZER FOR, 1285

processing hints, 1282, 1285

RECOMPILE, 1285

ROBUST PLAN, 1284

TABLE HINT, 1285

table hints, 1280-1282

UNION, 1283

USE PLAN, 1287-1290

USE PLAN N, 1285

table hints for locking

lock granularity hints, 1395

lock type hints, 1395-1396

transaction isolation–level hints,
1393-1395

HIPAA (Health Insurance Portability
and Accountability Act), 366

histogram charts, 1155-1158, 1467

History page (SQL Server Agent), 452

history snapshots, CD:2238

HOLAP (hybrid OLAP), CD:2037

HOLDLOCK, 1021, 1393, CD:1661

HOME\Administrator, 297

horizontal data partitioning, 1412-1413

horizontal filtering, data replication, 592, 594

Hosting API, CD:1825

HOST_NAME() function, 1507

hot-add CPU, 39

hybrid joins, 1246

hybrid OLAP (HOLAP), CD:2037

hybrid SQL Server reporting configuration,
59, 61

How can we make this index more useful? Email us at indexes@samspublishing.com

I
IAM (index allocation map), 710, 1115-1116

IDDL statements, 976-982

IDDL triggers, table of, 976-982

identification and design stage
(tuning methodology), 1525

identifying

ad hoc queries (SQL Server Profiler),
159-160

endpoints, 632-633

JOIN clauses, 1215-1216

missing indexes, 1201

with Database Engine Tuning Advisor,
1201-1204

missing index dynamic management
objects, 1202-1204

objects referenced in stored procedures,
887-888

OR clauses, 1214-1215

parallel queries, 1272-1273

performance bottlenecks, 160-162

search arguments, 1214

unused indexes, 1205-1207

IDENTITY, 755-757

identity access management, 364, 366

identity columns, 755-757

Idera SQL Diagnostic Monitor SQL, 1549

IDEs (integrated development environments),
CD:1928

IF EXISTS, 1541, CD:1654

IFilters, CD:1999

IGNORE_DUP_KEY (CREATE INDEX), 798

Image control, CD:2203

image data type, 748

immediate transactional consistency, 572

immediate updating, 17

IMPERSONATE, 312, 332

IMPERSONATE 2389

ptg

implementation contract (managed stored
procedures), CD:1830-CD:1832

implementation phase

OLAP design methodologies, CD:2040

tuning methodology, 1527-1528, 1533

implementations of SQL Server, 51-53

DSS (decision support systems) application
examples, 57

hybrid SQL Server reporting
configuration, 59, 61

multidimensional OLAP cube, 58-59

OLTP (online transaction processing) appli-
cation examples, 53

OLTP ERP, 53-56

OLTP shopping cart, 56-57

implementing

declarative data integrity, 812

procedural data integrity, 813

implicit context switching, 333

implicit transactions, 997

compared to explicit transactions, 1006

processing, 1003-1006

Import and Export Wizard (SSIS),
CD:2110-CD:2111

Import-Csv cmdlet, 501

importing

with bcp utility, CD:2151-CD:2153

policies, 696-697, 703-704

traces (SQL Server Profiler), 135-136

IN, 1248

in-doubt xact resolution configuration option,
CD:2300

in-place updates, 1145

INCLUDE (CREATE INDEX), 796

included columns (indexes), 1190-1191

index allocation map (IAM), 710, 1115-1116

index create memory configuration option,
CD:2300

INDEX CREATE, 986

index locks, granularity, 1372-1373

index pages, 1112-1113

extents, 1113-1114

nonleaf indexes, 1112

space allocation structures, 1113

index selection, evaluating SARG and join
selectivity, 1218

indexed views, 844, 860, 1192-1193

creating, 861-863

expansion, 866-867

optimizing with, 1236-1237, 1239

performance and, 863-866

indexes

B-tree indexes, 1132-1133

choosing, 1199-1201

clustered indexes, 792-793, 1133-1134

costs, 1222-1223

designing, 1185-1186

indexed views, 1192-1193

nonunique, 1135-1136

row structure, 1134-1135

columns

computed columns, 1193-1195

included columns, 1190-1191

joins, 1184

composite indexes, design, 1184

covering, 795, 1188-1190

creating

with SSMS, 800-801, 803

with T-SQL, 795-800

deleting rows, 1144

densities, 1158-1159

design, 1184, 1275, 1403

disabling, 1182

dropping, 807

evaluating, 1150-1153

fill factor

implementation contract (managed stored procedures)2390

ptg

reapplying, 1181

setting, 1179-1181

filtered indexes, 38

advantages, 1195-1196

creating, 1196-1198

optimizing with, 1239-1241

statistics, 1198-1199

fragmentation, 1169-1170

in FTS (Full-Text Search), CD:1999-CD:2001

full-text indexes. See full-text indexes

index intersection, 1229-1231

index union strategy, 1232-1234

intermediate nodes, 792

joins, 1234, 1236

maintenance, 1169-1179

ALTER INDEX, 1175-1176, 1178

disabling indexes, 1182

dm_db_index_physical_stats, 1171-1175

fill factor, 1179-1181

with Maintenance Plan Wizard,
1077-1080

SSMS, 1183

managing, 803

with SSMS, 806-807

with T-SQL, 803-806

missing indexes, identifying, 1201

with Database Engine Tuning Advisor,
1201-1204

missing index dynamic management
objects, 1202-1204

multiple indexes, 1191-1192, 1228

index intersection, 1229-1231

index joins, 1234, 1236

index union strategy, 1232-1234

new features, 791-792, 1092

nonclustered, 793-795, 1136-1138

costs, 1223-1227

designing, 1186-1188

How can we make this index more useful? Email us at indexes@samspublishing.com

leaf rows, 1138-1139

nonleaf rows, 1139-1140

rebuilding, 1179

online indexing operations, 538, 807-808

overview, 1132

poor selectivity, 1159, 1184

query indexes, 1199-1201

querying, 1146-1149

selecting, 1149-1150, 1216

estimating access path costs,
1221-1228

evaluating SARG and join selectivity,
1216-1221

multiple indexes, 1228-1234, 1236

statistics, 1153, 1155

generating, 1161-1167, 1169

histograms, 1155-1158

rows, estimating, 1159-1160

string summary statistics, 1169

tables, over-definition, 1148

tuning guidelines, 1539-1540

unused indexes, identifying, 1205-1207

update performance indexes, 1199-1201

on views, 809-810

wide indexes, 1191-1192

xml columns, CD:1918-CD:1925

indicators, CD:2173, CD:2203-CD:2207

indirect recursion, 993

inequality operators, SARG and, 1218

Informatica, CD:2099

Information Practices Act of 2005, 367

INFORMATION SCHEMA, 936-937

information schema views, 177-178

INFORMATION_SCHEMA users, 300

Infoset (XML), CD:1920-CD:1921

INIT (BACKUP DATABASE), 392

INITIATOR, CD:1970

INITIATOR 2391

ptg

inline table-valued functions, 923-926

input parameters for stored procedures

explained, 893-894

passing object names as, 898-899

setting default values for, 895-898

table-valued parameters, 901-902

wildcards in, 899-900

INSERT, 311

Insert over DML, CD:1559-CD:1561

Insert Scan icon (Query Analyzer), 1311

inserted tables (DML triggers), 957-959

inserting

data, 1141-1142

trace data, 136-137

Installation Configuration page (SQL Server
Installation Center), 201, 203

Installation Configuration Rules page (SQL
Server Installation Center), 209

installation paths, 202

Installation Rules page (SQL Server
Installation Center), 201-202

installing

bigpubs2005 database, 7

clients

client tools, 271-272

installation requirements, 271

new features, 263-264

SNAC, 272-274

CompSales database, 7

Data Collector, 1433-1437

installation enhancements, 49

PowerShell, 485

Report Builder, CD:2213-CD:2214

SQL Server 2008, 236. See also side-by-
side migration; SQL Server Installation
Center

automated installs, 217

with ConfigurationFile.ini file, 212-216

cumulative updates, 218, 220, 222

disk space requirements, 187

hardware requirements, 186-187

installation paths, 202

manual installs, 217

network protocols, 191

new features, 185-186

running multiple simultaneous editions,
191

Service Packs, 218, 220, 222

Slipstream installations, 222-224

software requirements, 188-191

SQL Server Clustering, 665-666

configuring SQL Server database disks,
666-667

Connection Test Program, 681-684

failure of nodes, 679, 681

MSCS, installing, 668

network interfaces, installing, 668

SQL Server, installing, 668-679

SSRS (SQL Server Reporting Services),
CD:2182-CD:2185

UA (SQL Server Upgrade Advisor), 229

instances

SQL Browser, 270-271

XML, CD:1866

INSTEAD OF triggers

combining with AFTER triggers, 971-972

example, 968

executing, 968-970

explained, 967

restrictions, 975

versus AFTER triggers, 970

views, 972-975

int data type, 748

INTEGRATED, CD:1934

integrated development environments (IDEs)
1928

inline table-valued functions2392

ptg

Integration Services (IS_. See SSIS
(SQL Server Integration Services)

IntelliSense, 87

intent locks, 1362-1363

interactivity

of PowerShell, 486

in reports, CD:2211-CD:2213

interdependencies in tuning, 1521-1522

intergrating SSMS with source control, 95-97

intermediate nodes, 792

intermediate processing products, CD:2180

internal activation, CD:1964

internal fragmentation, 1169-1170

InternalMailQueue, 434

interoperability in enterprise computing, 655

Invoke-PolicyEvaluation cmdlet, 508, 521

Invoke-SqlCmd cmdlet, 508, 520-521

InvokeIfReceiverIsNull parameter (SqlMethod),
CD:1850

IS (Integration Services). See SSIS (SQL Server
Integration Services)

IsAnsiNullDefault property, 727

IsAnsiNullsEnabled property, 727

IsAnsiPaddingEnabled property, 727

IsAnsiWarningsEnabled property, 727

IsArithmeticAbortEnabled property, 727

IsAutoClose property, 727

IsAutoCreateStatistics property, 727

IsAutoShrink property, 727

IsAutoUpdateStatistics property, 727

IsByteOrdered parameter (SqlUserDefinedType),
CD:1845

IsCloseCursorsOnCommitEnabled property, 727

IsDeterministic parameter, 938

IsDeterministic parameter (scalar UDFs),
CD:1836

IsDeterministic parameter (SqlMethod),
CD:1849

How can we make this index more useful? Email us at indexes@samspublishing.com

IsFixedLength parameter (SqlUserDefinedType),
CD:1845

IsFulltextEnabled property, 727

IsInlineFunction parameter, 938

IsInStandBy property, 727

IsInvariantToDuplicates parameter
(SqlUserDefinedAggregate), CD:1853

IsInvariantToNulls parameter
(SqlUserDefinedAggregate), CD:1853

IsInvariantToOrder parameter
(SqlUserDefinedAggregate), CD:1853

IsLocalCursorsDefault property, 727

IsMergePublished property, 727

IsMutator parameter (SqlMethod), CD:1849

IsNullConcat property, 727

IsNullIfEmpty parameter
(SqlUserDefinedAggregate), CD:1854

IsNumericRoundAbortEnabled property, 727

isolation and monitoring stage
(tuning methodology), 1530-1531

isolation levels (transactions), 1342-1344

dirty reads, 1343

lost updates, 1343

nonrepeatable reads, 1343

phantom reads, 1343

read committed isolation, 1344-1345

read committed snapshot isolation, 1345-
1346

read uncommitted isolation, 1344

repeatable read isolation, 1346

serializable read isolation, 1346-1347

snapshot isolation, 1347-1349

IsParameterizationForced property, 727

IsPrecise parameter (scalar UDFs), CD:1837

IsPublished property, 728

isql, 105

IsQuotedIdentifiersEnabled property, 728

IsRecursiveTriggersEnabled property, 728

IsScalarFunction parameter, 938

IsScalarFunction parameter 2393

ptg

IsSchemaBound parameter, 938

IsSubscribed property, 728

IsSyncWithBackup property, 728

IsTableFunction parameter, 938

IsTornPageDetectionEnabled property, 728

IsUpdatedColumn parameter
(SqlTriggerContext), CD:1856

ITransactionLocal::StartTransaction function,
1345

J
JavaScript Object Notation (JSON), CD:1803,

CD:1811

JDBC (Java Database Connectivity), 281, 287

job history, viewing, 468-469

job mail notifications (SQL Server Agent Mail),
442-443

job notifications, 467-468

job schedules, 465-467

job steps, 462-465

Job System page (SQL Server Agent), 451

jobs

creating with SQL Server Agent Mail, 443

defined, 449

managing in SQL Server Agent, 461

job history, 468-469

job notifications, 467-468

job properties, 461-462

job schedules, 465-467

job steps, 462-465

multiserver job management, 476-477

scripting, 474-475

JOIN clauses, identifying for query analysis,
1215-1216

join hints, 1282-1283

join selectivity, evaluating, 1216-1221

joining

columns, 521-522, 1184

strings, 493

variables, 493

joins, 1241

determining optimal join order, 1246-1247

hash joins, 1244-1246

hybrid joins, 1246

index joins, 1234, 1236

merge joins, 1243-1244

nested loops joins, 1242-1243

outer joins, CD:1673-CD:1674

full outer joins, CD:1680-CD:1682

nested outer joins, CD:1679-CD:1680

WHERE clause versus,
CD:1675-CD:1679

processing strategies, 1241-1242

hash joins, 1244-1246

merge joins, 1243-1244

nested loops joins, 1242-1243

semi joins, 1250

subquery processing, 1248

correlated subqueries, 1250-1251

IN, ANY, and EXISTS subqueries, 1248

materialized subqueries, 1248-1250

tuning guidelines, 1540

for WHEN clauses (MERGE statement),
CD:1554

JSON (JavaScript Object Notation), CD:1803,
CD:1811

K
KEEP PLAN, 1284

KEEP REPLICATION, 406, 410

KEEPFIXED PLAN, 1284

KERBEROS, CD:1934

IsSchemaBound parameter2394

ptg

KEY INDEX (CREATE FULLTEXT INDEX) 2008

Key locking level (SQL Server), 1365

key management, 339, 341

database master keys, 340-341

EKM (Extensible Key Management),
341-342

service master keys, 340

key performance indicators (KPIs), CD:2082,
CD:2173

key-range locking

granularity, 1365-1369

nonexistent row searches, 1368-1369

range searches, 1366-1367

keywords. See names of specific keywords

KEY_GUID() function, 347

KILOBYTES_PER_BATCH, CD:2166

KPIs (key performance indicators),
CD:2082, CD:2173

L
LANGUAGE (CREATE FULLTEXT INDEX),

CD:2007-CD:2008

large object (LOB), 713

data pages, 1110-1112

reads, 1332

large row support data types, 753

large-value data types, 752

latent transactional consistency, 572

Lazy Spool (Query Analyzer), 1312

LCID property, 728

leaf rows, nonclustered indexes, 1138-1139

left semi joins, 1250

legislation, 366-367

Level 0 disaster recovery, CD:2331

Level 1 disaster recovery, CD:2331

Level 2 disaster recovery, CD:2331

How can we make this index more useful? Email us at indexes@samspublishing.com

Level 3 disaster recovery, CD:2331

Level 4 disaster recovery, CD:2331

License Terms page (SQL Server Installation
Center), 197, 199

licensing models

choosing, 32

Compact Edition 3.5 Edition, 32

Developer Edition, 32

estimated retail pricing, 31

explained, 30-31

Express Edition, 32

mixing, 33

multi-instancing, 34

passive server/failover licensing, 33

virtual server licensing, 33-34

Web Edition, 32

life cycle, security, 361-362

lightweight pooling configuration option,
CD:2301

LIKE, SARG and, 1219-1220

limitations

of relational databases, CD:2082

of web services, CD:1956-CD:1957

Line control, CD:2203

linear regression, data mining algorithms,
CD:2085

LINESTRING instance type, CD:1606

linked servers

adding, CD:2253-CD:2260

configuring with sp serveroption,
CD:2261-CD:2263

distributed queries, CD:2252

distributed transactions, CD:2252-CD:2253

executing stored procedures, CD:2268

mapping local logins to logins,
CD:2263-CD:2267

obtaining general information about,
CD:2267-CD:2268

overview, CD:2251-CD:2252

linked servers 2395

ptg

setting up through SQL Server
Management, CD:2269-CD:2271

tuning guidelines, 1545

unregistering, CD:2261

viewing, CD:2260-CD:2261

LINQ to SQL, CD:1793-CD:1798

deleting rows, CD:1801

generics, CD:1796

Linqpad, CD:1798-CD:1801

updating rows, CD:1802

Linqpad, CD:1798-CD:1801

List control (SSMS) 2203

LISTENER IP, CD:1934

LISTENER PORT, CD:1934

live reports, report execution options, CD:2237

load testing in tuning methodology, 1526, 1532

LOB (large object), 713

data pages, 1110-1112

reads, 1332

local mode (Report Viewer) 2181

Local Security Policy editor, 453

Lock:Acquired event (SQL Profiler), 1355

Lock:Cancel event (SQL Profiler), 1355

Lock:Deadlock Chain event (SQL Profiler), 1355

Lock:Deadlock event (SQL Profiler), 1355

Lock:Escalation event (SQL Profiler), 1355

Lock:Released event (SQL Profiler), 1355

Lock:Timeout event (SQL Profiler), 1355

lock activity, monitoring, 1350

lock request modes, 1352-1353

Performance Monitor, 1357-1359

SQL Server Profiler, 1355-1357

sys.dm_tran_locks view, 1350, 1352-1354

LOCK ESCALATION, 39

lock events (SQL Profiler), 1355

lock granularity hints, 1395

Lock Manager, 1349-1350, 1359

bulk update locks, 1363

exclusive locks, 1361

granularity of locks, 1364-1376

intent locks, 1362-1363

schema locks, 1363

shared locks, 1360

update locks, 1360-1361

Lock Requests/sec counter
(SQLServer:Locks object), 1358

Lock Timeouts/sec counter
(SQLServer:Locks object), 1358-1359

lock type hints, 1395-1396

Lock Wait Time counter
(SQLServer:Locks object), 1359

Lock Waits/sec counter
(SQLServer:Locks object), 1359

locks, 1359

bulk update locks, 1363

compatibility, 1376-1377

contention, 1377-1380

identifying, 1378, 1380

minimizing, 1381-1382

tuning guidelines, 1544-1545

deadlocks, 1382-1384

1204 trace flags, 1386-1388

1222 trace flags, 1388-1390

avoiding, 1384-1385

conversion deadlocks, 1383

cycle deadlocks, 1382

examining, 1385-1386

handling, 1385-1387

monitoring, 1390-1392

escalation, 1374-1376

exclusive locks, 1361

granularity, 1364-1376

application locks, 1369-1372

index locks, 1372-1373

key-range locking, 1365-1369

serialization locking, 1365-1369

linked servers2396

ptg

importance of, 1342

intent locks, 1362-1363

Lock Manager, 1349-1350

monitoring lock activity, 1350, 1358

lock request modes, 1352-1353

with Performance Monitor, 1357-1359

with SQL Server Profiler, 1355-1357

sys.dm_tran_locks view, 1350, 1352-
1354

new features, 1341

optimistic locking, 1396

with rowversion data type, 1396-1399

with snapshot isolation, 1399-1401

page-level locking, 1373-1374

row-level locking, 1373-1374

schema locks, 1363

shared locks, 1360

SQL Server levels, 1364

SQL Server performance counters, 1492

table hints, 1393-1395

lock granularity hints, 1395

lock type hints, 1395-1396

transaction isolation–level hints, 1393-
1395

timeout intervals, setting, 1380-1381

transaction isolation levels, 1342-1344

dirty reads, 1343

lost updates, 1343

nonrepeatable reads, 1343

phantom reads, 1343

read committed isolation, 1344-1345

read committed snapshot isolation,
1345-1346

read uncommitted isolation, 1344

repeatable read isolation, 1346

serializable read isolation, 1346-1347

snapshot isolation, 1347-1349

How can we make this index more useful? Email us at indexes@samspublishing.com

on transactions, 1021-1022

tuning guidelines, 1545

update locks, 1360-1361

locks configuration option, CD:2301-CD:2302

lock_owner_address column, 1352

Log File Viewer, 77, 79, 372-373, 468

log files, 1096

shrinking, 734, 1035-1037

viewing, 77, 79, 372-373, 468

log reader agent, 569

Log Row Scan (Query Analyzer), 1312

log sequence numbers (LSNs), 996

log shipping, CD:2339-CD:2341

building solutions with HA (high availability)
options, 535-537

data replication, 614

logged bulk-copy operations, CD:2163-CD:2166

logging

SSIS, CD:2109

transaction logging, 1023-1037

logical and physical operator icons (Query
Analyzer), 1308

Assert, 1308-1309

Clustered Index Delete, 1309

Clustered Index Scan, 1309

Collapse, 1310

Compuate Scalar, 1311

Concatenation, 1311

Constant Scan, 1311

Deleted Scan, 1311

Distribute Streams, 1314

Eager Spool, 1312

Gather Streams, 1314

Hash Match, 1311

Insert Scan, 1311

Lazy Spool, 1312

Log Row Scan, 1312

logical and physical operator icons (Query Analyzer) 2397

ptg

Merge Join, 1312

Nested Loops, 1313

Nonclustered Index Delete, 1309

Nonclustered Index Scan, 1310

Nonclustered Index Spool, 1312

Parallelism, 1314

Parameter Table Scan, 1313

Remote Delete, 1313

Remote Insert, 1313

Remote Query, 1313

Remote Scan, 1313

Remote Update, 1313

RID Lookup, 1313

Row Count Spool, 1312

Sequence, 1313

Sort, 1313

Stream Aggregate, 1314

Table Delete, 1314

Table Insert, 1314

Table Scan, 1314

Table Spool, 1312

Table Update, 1314

Table-valued Function, 1314

Top, 1314

logical database design. See database design

logical reads, 1331

LoginName data column (SQL Profiler), 1356

LOGINPROPERTY() function, 1506

logins, 296-297

managing, 313

with SSMS, 313-317

with T-SQL, 317-318

users, 298

LOGIN_TYPE (WEBMETHOD) 1940

logistic regression, data mining algorithms,
CD:2085

logmarkhistory, 412

logs

checkpoints, 1024-1028

SQL Server Agent error log, 456-457

SSMS logs

execution log, CD:2240

server trace log, CD:2239-CD:2240

windows event log, CD:2240

transaction log files. See transaction logs

write-ahead logs, 717

long-running transactions, managing,
1037-1039

Lookup function, CD:2179

LookupSet function, CD:2179

looping statements, 498-499

nested loops joins, 1242-1243

loosely coupled, CD:1960

lost updates, transaction isolation levels, 1343

LSNs (log sequence numbers), 996

M
mail configuration objects, viewing, 445-446

mail message data, viewing, 446-447

mail profiles

creating in Database Mail, 429-432

defined, 429

maintenance

database. See database maintenance

FTS (Full-Text Search), CD:2024-CD:2025

indexes, 1169-1179

ALTER INDEX, 1175-1178

disabling, 1182

dm_db_index_physical_stats, 1171-1175

fill factor, 1179-1181

Maintenance Plan Wizard, 1077-1080

SSMS, 1183

system databases, 169-170

logical and physical operator icons (Query Analyzer)2398

ptg

Maintenance menu (SQL Server Installation
Center), 211

maintenance phase (OLAP design methodolo-
gies), CD:2040

Maintenance Plan Wizard

backing up databases, 1072, 1074-1075

checking database integrity, 1075-1076

maintaining indexes and statistics,
1077-1080

overview, 1070-1072

scheduling maintenance plans, 1080-1083

shrinking databases, 1076-1077

maintenance plans, 426

executing, 1088

managing manually, 1084-1088

scheduling with Maintenance Plan Wizard,
1080-1083

majority node sets, 660

managed database objects. See custom
managed database objects

managed stored procedures, CD:1829-CD:1835

managed triggers, developing,
CD:1856-CD:1861

management data warehouse. See MDW

Management Studio, 504

managing

alerts (SQL Server Agent), 469

properties, 469-472

responses, 472, 474

constraints

disabling, 829-830

dropping, 829

gathering constraint information,
827-829

Data Collector, 1443-1446

database roles, 321-322

databases

ALTER DATABASE, 736

expanding, 730-731

How can we make this index more useful? Email us at indexes@samspublishing.com

file growth, 729-730

shrinking, 731-735

DDL triggers, 986-987

indexes, 803

with SSMS, 806-807

with T-SQL, 803-806

jobs (SQL Server Agent), 461

job history, 468-469

job notifications, 467-468

job properties, 461-462

job schedules, 465-467

job steps, 462-465

logins, 313

with SSMS, 313-317

with T-SQL, 317-318

maintenance plans manually, 1084-1088

MSFTESQL, CD:2013-CD:2014

operators (SQL Server Agent), 458-460

permissions, 322

with SSMS, 323-329

with T-SQL, 330-331

for user-defined functions, 941-942

plan guides, 1293-1294

projects in SSMS, 93-95

Query Optimizer, 1278-1280

forced parameterization, 1285-1287

join hints, 1282

plan guides, 1290-1298

processing hints, 1282, 1285

query governor, 1298-1299

table hints, 1280-1282

USE PLAN, 1287-1290

remote servers, CD:2244-CD:2246

users, 318

with SSMS, 318, 320

with T-SQL, 320-321

views, 852-853

managing 2399

ptg

manual checkpoints (logs), 1028

manual failover, 623

manual installs, 217

manual synchronization, 567

manually updating index statistics, 1164

Map control, CD:2174, CD:2203

map reports, CD:2222-CD:2226

mapping local logins to logins on linked
servers, CD:2263-CD:2267

maps, 1460

markups (XML documents), CD:1866

Martin, John, 650

masks

affinity I/O masks, CD:2286-CD:2287

affinity masks, CD:2287-CD:2288

Master Data Services, CD:2095

master database, 167, 421, 1536

master database files, 719

master merges, CD:2001

Master Server Wizard, 476

master servers, 476-477

materialized subqueries, 1248-1250

Matrix control (SSMS) 2202

MAX data, storing, 1112

max degree of parallelism configuration option,
CD:2302

max server memory configuration option,
CD:2302-CD:2303

max specifier, CD:1688-CD:1689

max text repl size configuration option,
CD:2304

MAX values (resource pools), 1496-1498

max worker threads configuration option,
CD:2305

MaxByteSize parameter

SqlUserDefinedAggregate, CD:1854

SqlUserDefinedType, CD:1845

MAXDOP, 799, 1284

MAXRECURSION, 1284, CD:1707-CD:1708

MAX_SOAP_HEADERS_SIZE (WEBMETHOD)
1942

MDAC (Microsoft Data Access Components),
285-286, CD:1929

.mdf extension, 712

MDW (management data warehouse), 1428

custom data collection values, querying,
1450

Data Collector, 1432-1433

MDX-based filtering, CD:2095-CD:2096

Measure-Command cmdlet, 490

measuring runtime, 1336-1337

media families, 387

media sets, 387

MEDIADESCRIPTION (BACKUP DATABASE), 392

MEDIANAME option

BACKUP DATABASE, 393

RESTORE DATABASE, 406

MEDIAPASSWORD option

BACKUP DATABASE, 393

RESTORE DATABASE, 406

member tables, 854-858

memory

monitoring, 1485-1487

tuning guidelines, 1534-1536

MERGE, 38, CD:1552-CD:1559, CD:1656

tuning guidelines, 1543

VALUES clause, CD:1571

merge agent, 570-571

Merge Join (Query Analyzer), 1312

merge joins, 1243-1244

merge replication, 16-17, 574-576

MERGE UNION, 1283

message storage (SQL Server Service Broker),
CD:1970-CD:1972

message types, choosing for SQL Server Service
Broker, CD:1965-CD:1969

manual checkpoints (logs)2400

ptg

messages, defining in SQL Server Service
Broker, CD:1965-CD:1969

metadata, CD:2337

Metadata locking level (SQL Server), 1365

metadata tables (CDC), CD:1616

methodology for tuning, 1522-1523

for existing implementations, 1528-1533

for new implementations, 1523-1528

Microsoft Cluster Services. See MSCS

Microsoft Data Access Components (MDAC)
1929

Microsoft Full-Text Engine for SQL Server
(MSFTESQL), 17

managing, CD:2013-CD:2014

Microsoft Message Queuing (MSMQ), CD:1960

Microsoft ODBC driver for SQL Server, 281

Microsoft OLE DB provider for ODBC, 280

Microsoft OLE DB provider for SQL Server, 280

Microsoft SQL Server High Availability, 526

Microsoft Sync Framework (MSF),
CD:1816-CD:1817

building OCA, CD:1818-CD:1823

sync services for ADO.NET,
CD:1817-CD:1818

Microsoft Tape Format (MTF), 386

Microsoft Virtual Server 2005, 541-542

Microsoft.SqlServer.Server objects, CD:1832-
CD:1833

midnight for the current day, calculating,
CD:1665

migration

Analysis Services, 253-254

Reporting Services, 255

in-place upgrades, 255-257

migrating to Reporting Services 2008,
257-258

side-by-side migration. See side-by-side
migration

web services, CD:1928

min memory per query configuration option,
CD:2306

How can we make this index more useful? Email us at indexes@samspublishing.com

min server memory configuration option,
CD:2302-CD:2303

MIN values (resource pools), 1496-1498

mirror database server, 619, 622

mirrored backups, 401-402

mirroring. See database mirroring

missing index dynamic management objects,
1202-1204

Missing Index Hints, 1317-1318, 1320

dynamic management objects, 1320-1321

limitations of, 1321-1322

missing indexes, identifying, 1201

with Database Engine Tuning Advisor,
1201-1204

missing index dynamic management
objects, 1202-1204

mixed authentication mode, 294

mixed extent, 710

Mode data column (SQL Profiler), 1356

model database, 168, 1536

models, setting permissions, CD:2233

modify() new xml data type method, CD:1900,
CD:1913-CD:1918

modifying

classification functions, 1516

data through partitioned views, 858-859

hierarchies, CD:1587-CD:1590, CD:1592

logins (SSMS), 316

Resource Governor configuration,
1513-1516

stored procedures

with ALTER PROCEDURE, 891-892

with SSMS, 892-893

tables, 765-766

with database diagrams, 772-773

with Object Explorer and Table Designer,
769-772

with T-SQL, 766-768

user-defined functions, 939-940

modifying 2401

ptg

MOLAP (Multidimensional OLAP),
58-59, CD:2037

Monday of the current week, calculating,
CD:1665

money data type, 749

monitoring

application progress with SQL Server
Profiler, 162-164

auto-update statistics with SQL Server
Profiler, 162

data replication, 603

backup and recovery, 612-613

in heterogeneous environments,
611-612

peer-to-peer replication, 609-610

Performance Monitor, 610-611

SQL statements, 603-606

troubleshooting replication failures, 608

within SQL Server Management Studio,
606-607

database mirroring, 639-642

deadlocks, 1390-1392

disk performance (SSMS), 1490

disk systems, 1488-1490

lock activity, 1350

lock request modes, 1352-1353

Performance Monitor, 1357-1359

SQL Server Profiler, 1355-1357

sys.dm_tran_locks view,
1350, 1352-1354

memory, 1485-1487

network interfaces, 1478-1480

plan cache, 1258

sys.dm exec sql text, 1260

sys.dm_exec_cached_plans, 1258-1260

sys.dm_exec_plan_attributes,
1265-1266

sys.dm_exec_query_stats, 1261-1265

sys.dm_exec_sql_text, 1260

processors, 1480-1485

resource usage, 1509-1512

running traces, 153-154

SQL Server disk activity, 1490

SQL Server performance, 1427

store procedure recompilation,
CD:1767-CD:1773

monitoring and isolation stage
(tuning methodology), 1530-1531

MOVE (RESTORE DATABASE), 406

moving

databases, 736

hierarchy nodes, CD:1589

packages (dtutil utility), CD:2141-CD:2144

MSCS (Microsoft Cluster Services)

building solutions with HA (high availability)
options, 530-531

extending with NLB, 662

installing, 668

SQL Server Clustering, 657-665

MSDASQL, 280

msdb database, 168

MSDN Online, 68

MSF (Microsoft Sync Framework),
CD:1816-CD:1817

building OCA, CD:1818-CD:1823

sync services for ADO.NET,
CD:1817-CD:1818

MSFTESQL (Microsoft Full-Text Engine
for SQL Server), 17

managing, CD:2013-CD:2014

MSMQ (Microsoft Message Queuing) 1960

mssqlsystemresource.mdf file, 169

MTF (Microsoft Tape Format), 386

multi-instancing, 34

multidimensional expressions in OLAP database
creation, CD:2076-CD:2077

Multidimensional OLAP (MOLAP), 58-59,
CD:2037

MOLAP (Multidimensional OLAP)2402

ptg

MULTILINESTRING, CD:1606

MultiLookup function, CD:2179

multiple indexes, 1228

index intersection, 1229-1231

index joins, 1234, 1236

index union strategy, 1232-1234

wide indexes, compared, 1191-1192

multiple job steps, defining, 464

multiple publishers or multiple subscribers
replication model, 559-560

multiple simultaneous editions, running, 191

MULTIPOINT, CD:1606

MULTIPOLYGON, CD:1606

multiserver job management, 476-477

multiserver jobs, creating, 477

multiserver queries, 42, 101-102

multistatement table-valued functions, 924-926

multistatement transactions, triggers, 1017-
1019

multitier environments, cursors in, CD:1659

My Reports role, CD:2235

N
NAME option

BACKUP DATABASE, 393

WEBMETHOD, 1939

Name parameter

scalar UDFs, CD:1837

SqlMethod, CD:1849

SqlTrigger, CD:1856

SqlUserDefinedAggregate, CD:1854

SqlUserDefinedType, CD:1845

name resolution, 885-888

names

columns, 747

naming conventions, ensuring, 706

How can we make this index more useful? Email us at indexes@samspublishing.com

object names

passing as parameters, 898-899

qualifying with schema names,
CD:1640-CD:1643

qualifying names, CD:1941

NAMESPACE, CD:1937

namespaces, CD:1788

navigational property, CD:1810

nchar data type, 749

.ndf extension, 712

nested loops

joins, 1242-1243

Query Analyzer, 1313

nested outer joins, CD:1679-CD:1680

nested stored procedures, CD:1753-CD:1755

recursion, CD:1755-CD:1758

tuning guidelines, 1544

nested transactions, 1001-1003, 1015-1017

nested triggers, 991-992, CD:2306

.NET classes, CD:1812

.NET Framework

ADO.NET, CD:1788-CD:1793,
CD:1804, CD:1810

custom managed database objects

developing, CD:1825-CD:1864

managed triggers, CD:1856-CD:1861

permissions, CD:1827-CD:1829

related system catalogs, CD:1863-
CD:1864

stored procedures, CD:1829-CD:1835

transactions, CD:1861-CD:1863

UDAs (user-defined aggregates),
CD:1853-CD:1856

UDFs (user-defined functions), CD:1835-
CD:1844

UDTs (user-defined types), CD:1844-
CD:1852

Visual Studio 2008, CD: 1829

.NET Framework 2403

ptg

Code Access Security (CAS) permission
sets, CD:1827

data provider for SQL Server,
280, 283-284

namespaces, CD:1788

NET SEND, 459

NET START, 118

NET STOP, 118

net-libraries, 280

network interfaces

installing, 668

monitoring, 1478-1480

Network Load Balancing (NLB), extending MSCS
with, 662

network packet size configuration option,
CD:2306-CD:2307

network protocols. See protocols

network shares, 386-387

network tuning, 1535

neural networks, CD:2085

New Alert dialog, 470

NEW BROKER, 406, CD:1961

new implementations, tuning methodology for,
1523-1528

assessment stage, 1524

coding and testing stage, 1526-1527

identification and design stage, 1525

implementation stage, 1527-1528

prototyping stage, 1525-1526

system testing and acceptance stage, 1527

New Job Step dialog, 462

new xml data type, CD:1890-CD:1891

built-in methods, CD:1899-CD:1918

exists() method,
CD:1900, CD:1908-CD:1909

modify() method,
CD:1900, CD:1913-CD:1918

nodes() method,
CD:1900, CD:1911-CD:1912

query() method, CD:1900-CD:1908

value() method, CD:1900, CD:1910

columns, CD:1892-CD:1894

FOR XML modes, CD:1884-CD:1887

schema collections, CD:1894-CD:1899

New-Object cmdlet, 490

NEXT USED, 783

NLB (Network Load Balancing), extending MSCS
with, 662

NO ACTION, 818

NO CHECKSUM option

BACKUP DATABASE, 392

RESTORE DATABASE, 405

NO COMPRESSION option (BACKUP DATABASE),
392

NO RECOVERY option (RESTORE), 630

NO TRUNCATE option (BACKUP LOG), 395

nodes, 1303

failure of, 679-681

in hierarchies, CD:1589

XML documents, CD:1866

nodes(), CD:1900, CD:1911-CD:1912

NOEXPAND, 1236

NOLOCK, 1394

NON-CLUSTERED argument (CREATE INDEX),
796

non-logged bulk-copy operations (SSIS),
CD:2163-CD:2166

non-Transact-SQL (non-T-SQL), 455

Nonclustered Index Delete icon (Query
Analyzer), 1309

Nonclustered Index Scan icon (Query Analyzer),
1310

Nonclustered Index Spool (Query Analyzer),
1312

nonclustered indexes,
793-795, 1112, 1136-1138

costs, 1223-1227

designing, 1186-1188

.NET Framework2404

ptg

leaf rows, 1138-1139

nonleaf rows, 1139-1140

rebuilding, 1179

tuning guidelines, 1540

nonexistent rows, searching, 1368-1369

nonleaf pages, 1112

nonleaf rows, 1139-1140

nonrepeatable reads, 1343

nonunique clustered indexes, 1135-1136

NORECOVERY option, 393-395, 406-408

normalization. See also denormalization

benefits of, 1407

conditions, 1405

first normal form, 1406

limitations of, 1407-1408

second normal form, 1406-1407

third normal form, 1407

tuning guidelines, 1537-1538

NOSKIP option (BACKUP DATABASE), 392

not-in-place updates, 1145-1146

NOT NULL, 755

notifications

job notifications, 467-468

managing operators, 460

NOTRUNCATE option (DBCC SHRINKDATABASE),
732

NOUNLOAD option

BACKUP DATABASE, 393

RESTORE DATABASE, 407

ntext data type, 749

NTILE function, CD:1717-CD:1714

NULL, 755, CD:1600-CD:1605

Number of Deadlocks/sec counter, 1359

numeric data type, 749

nvarchar data type, 749, 752

How can we make this index more useful? Email us at indexes@samspublishing.com

O
object definition function, 891

Object Explorer, 68, 73-75

creating databases, 718-721

creating tables, 742-743

data types, 750

dropping tables, 773-774

modifying tables, 769-772

object-based functionality (PowerShell), 484

ObjectID data column (SQL Profiler), 1356

objectives of disaster recovery,
CD:2336-CD:2337

OBJECTPROPERTY function,
938, CD:2014-CD:2015

object_definition() function, 891

object_id() function, 891

obsolete configuration options,
CD:2283-CD:2284

OCA (Occasionally Connected Application),
CD:1816-CD:1823

ODBC (Open Database Connectivity),
281, CD:1929

OGC (Open Geospatial Consortium, Inc.),
CD:1606

OLAP (online analytical processing),
228, CD:2029

design methodologies

construction phase, CD:2039

design phase, CD:2039

implementation phase, CD:2040

maintenance phase, CD:2040

requirements phase, CD:2039

design methodologies, CD:2038

HOLAP, CD:2037

MOLAP, CD:2037

performance, CD:2093-CD:2094

preparing for database creation, CD:2038

requirements example (CompSales),

OLAP (online analytical processing) 2405

ptg

CD:2040-CD:2041, CD:2081-CD:2082

cube, CD:2042, CD:2082

data, CD:2084-CD:2091

KPIs, CD:2082

OLAP, CD:2044

security, CD:2095-CD:2096

SQL, CD:2042-CD:2043

ROLAP, CD:2037

SSAS and, CD:2030-CD:2032

versus OLTP, CD:2036-CD:2037

OLE DB, CD:2251

OLTP (online transaction processing),
53, 666, CD:2030

OLTP ERP, 53-56

OLTP shopping cart, 56-57

versus OLAP, CD:2036-CD:2037

On Change Log Only execution mode, 695

On Change Prevent execution mode, 694

ON clause (MERGE statement), CD:1552

ON DELETE CASCADE, 963, 1404

On Demand execution mode, 694

on failure workflows, CD:2106

ON FULLTEXT CATALOG parameter
(CREATE FULLTEXT INDEX) 2008

On Schedule execution mode, 694

on success workflows, CD:2106

ON UPDATE CASCADE, 963

online analytical processing. See OLAP
(online analytical processing)

ONLINE argument (CREATE INDEX), 798

online indexing

HA (high availability), 538

operations, 807-808

online restores, 421, 538

online transaction processing. See OLTP
(online transaction processing)

OnNullCall parameter (SqlMethod), CD:1849

Open Database Connectivity (ODBC),
281, CD:1929

Open Geospatial Consortium, Inc. (OGC),
CD:1606

OPENXML, CD:1887-CD:1890

operating modes for database mirroring,
622-623

operating systems

HA (high availability), 527

tuning guidelines, 1534-1535

__$operation column (CDC table), CD:1616

operations (SSIS), CD:2163-CD:2164

batches, CD:2164

hints, CD:2165-CD:2166

parallel, CD:2164-CD:2165

operators, 496

compound operators, 37, CD:1568-
CD:1569

creating with SQL Server Agent Mail, 442

defined, 449

inequality operators, SARG and, 1218

managing in SQL Server Agent, 458-460

optimal join order, determining, 1246-1247

optimistic locking

with rowversion data type, 1396-1399

with snapshot isolation, 1399-1401

optimizing performance. See performance

optimize for ad hoc workloads configuration
option, CD:2307-CD:2308

OPTIMIZE FOR UNKNOWN hints, 1285

OPTIMIZER FOR hints, 1285

@@options function, 1006

OR clauses, identifying for query analysis,
1214-1215

ORDER BY, CD:1654

query() method, CD:1905-CD:1906

tuning guidelines, 1542

ORDER GROUP, 1283

ORDER hint, CD:2166

order of joins, determining, 1246-1247

OLAP (online analytical processing)2406

ptg

OS-related tasks (PowerShell), 512-514

osql, 105

OUTER APPLY operator, CD:1723-CD:1724

outer joins, CD:1673-CD:1674

full outer joins, CD:1680-CD:1682

nested outer joins, CD:1679-CD:1680

WHERE clause versus, CD:1675-CD:1679

OUTPUT clause, 902-903, CD:1693-CD:1697

Insert over DML, CD:1559-CD:1561

MERGE statement, CD:1553

tuning guidelines, 1543

output parameters for stored procedures,
902-903, CD:1777-CD:1779

OverallPageNumber variable, CD:2179

OverallTotalPages variable, CD:2179

OWNER option (EXECUTE AS), 884

P
Package Execution Utility, CD:2135-CD:2136

dtexec utility, CD:2135-CD:2137

dtsrun utility, CD:2135

dtutil utility, CD:2141-CD:2145

packages, running, CD:2137-CD:2141

package loading phase (dtexec), CD:2137

Package Migration Wizard, 260

packages

running, CD:2137-CD:2141

SSEE (SQL Server Extended Events), 1457

SSIS, CD:2106, CD:2109

packet sizes, tuning guidelines for, 1535

PAD_INDEX option, 798, 1181

page compression

evaluating, 1123-1126

implementing, 1122-1123

page files, tuning guidelines, 1535

How can we make this index more useful? Email us at indexes@samspublishing.com

page free space (PFS), 711, 1115

page headers, 1103-1104

page-level compression, 1119-1121

page-level locking, 1373-1374

Page locking level (SQL Server), 1365

page splits, 1141-1143

Page Verify, 724

PageName variable, CD:2179

pages (database)

BCM (bulk changed map) pages, 1116

data pages

data rows, 1104-1108

defined, 1103

page header, 1103-1104

row offset table, 1108-1109

DCM (differential changed map) pages,
1116

defined, 10

dirty pages, 717

GAM (global allocation map) pages,
1114-1115

IAM (index allocation map), 1115-1116

index pages, 1112-1113

extents, 1113-1114

space allocation structures, 1113

LOB data pages, 1110-1112

overview, 1101

PFS (page free space), 1115

row-overflow pages, 1109-1110

SGAM (shared global allocation map)
pages, 1114

space allocation, 1113-1114

table of page types, 1102

paging results, CD:1714-CD:1717

PAGLOCK optimizer hint, 1395

Parallel Data Warehouse (SQL Server 2008), 43

parallel loading, CD:2164-CD:2165

parallel loading 2407

ptg

parallel query processing, 1268-1271

configuration options, 1271-1272

identifying, 1272-1273

parallel queries on partitioned objects,
1273

parallelism, 1314, CD:2293

param construct, 494

Parameter Table Scan, 1313

PARAMETERIZATION FORCED, 1286-1287

parameterization of queries, 1256

PARAMETERIZATION SIMPLE, 1287

partial backups, 381, 398-400

PARTIAL option (RESTORE DATABASE), 406

partitions, 774

horizontal data partitioning, 1412-1413

partition functions, 776-778

partitioned objects, parallel queries on,
1273

partitioned tables, 774-775

adding partitions, 782-783

creating, 779-781

creating partition functions, 776-778

creating partition schemes, 778-779

dropping partitions, 784-785

switching partitions, 785-789

viewing information, 781

partitioned views, 844

base tables, 854-858

distributed partitioned views, 859-860

modifying data through, 858-859

by ROW NUMBER function,
CD:1710-CD:1711

schemes, 778-779

tuning guidelines, 1539, 1546

vertical data partitioning, 1413-1414

passing

arguments, 494

object names as parameters, 898-899

passive server/failover licensing, 33

passphrases, encrypting columns with, 344-346

PASSWORD option

BACKUP DATABASE, 392

RESTORE DATABASE, 406

PATH, CD:1881-CD:1884, CD:1922, CD:1935

patterns of disaster recovery

active multisite DR patterns, CD:2334

active/active DR site patterns,
CD:2333-CD:2334

active/passive DR site patterns,
CD:2332-CD:2333

choosing, CD:2334-CD:2335

PCI (Payment Card Industry) data security
standard, 367

peer-to-peer replication, 561-562, 609-610

Perfmon, 1548

performance. See also performance-monitoring
tools

Change Tracking, CD:1634-CD:1635

configuration options

access check cache bucket count,
CD:2284

access check cache quota, CD:2285

ad hoc distributed queries, CD:2285

affinity I/O mask, CD:2286-CD:2287

affinity mask, CD:2287-CD:2288

Agent XP, CD:2289

awe enabled, CD:2289-CD:2291

backup compression default, CD:2291

blocked process threshold, CD:2291

c2 audit mode, CD:2291-CD:2292

clr enabled, CD:2292

common criteria compliance enabled,
CD:2292

cost threshold for parallelism, CD:2293

cross db ownership chaining, CD:2293

cursor threshold, CD:2294

default full-text language,
CD:2294-CD:2296

parallel query processing2408

ptg

default language, CD:2296-CD:2298

EKM provider enabled, CD:2298

filestream_access_level, CD:2299

fill factor, CD:2299-CD:2300

in-doubt xact resolution, CD:2300

index create memory, CD:2300

lightweight pooling, CD:2301

locks, CD:2301-CD:2302

max degree of parallelism, CD:2302

max server memory, CD:2302-CD:2303

max text repl size, CD:2304

max worker threads, CD:2305

min memory per query, CD:2306

min server memory, CD:2302-CD:2303

miscellaneous options, CD:2316

nested triggers, CD:2306

network packet size, CD:2306-CD:2307

optimize for ad hoc workloads,
CD:2307-CD:2308

parallelism, CD:2293

PH_timeout, CD:2308

priority boost, CD:2308-CD:2309

query governor cost limit,
CD:2309-CD:2310

query wait, CD:2310

recovery interval, CD:2310-CD:2311

remote admin connections, CD:2311

remote login timeout, CD:2311

remote proc trans, CD:2312

remote query timeout,
CD:2312-CD:2313

scan for startup procs, CD:2313

show advanced options, CD:2313

user connections, CD:2313-CD:2314

user options, CD:2315-CD:2316

XP-related configuration options,
CD:2316

How can we make this index more useful? Email us at indexes@samspublishing.com

counters

SSRS (SQL Server Reporting Services)
2240

Windows Performance Monitor,
1474-1476

data replication, 613-614

designing for database performance,
1404-1405

filegroups and, 1415-1417

FTS (Full-Text Search), CD:2025-CD:2026

indexed views and, 863-866

monitoring SQL Server performance, 1427

new features, 38-39

OLAP database creation, CD:2079-CD:2081

performance monitoring approach, 1477

processors, monitoring in SSMS, 1483

Query Editor, 91-92

SANs (storage area networks), 1424-1425

SQL Server performance, 1428-1429,
1490-1492

stored procedures, CD:1764-CD:1765

automatic query plan recompilation,
CD:1767

query plan caching, CD:1765

shared query plans, CD:1766

SQL Server procedure cache, CD:1766

T-SQL

avoiding unnecessary function
executions, CD:1656

cursors, CD:1656-CD:1659

DISTINCT, CD:1654

IF EXISTS, CD:1654

ORDER BY, CD:1654

temporary tables versus table variables,
CD:1654-CD:1656

UNION versus UNION ALL, CD:1654

UPDATE, CD:1659-CD:1663

tuning

architectural layers, 1520-1521

performance 2409

ptg

guidelines, 1534-1545

methodology, 1522-1533

primary handles for, 1521-1522

system interdependencies in,
1521-1522

tools for, 1547-1549

third-party tools, 1548-1549

Windows performance, 1478-1487,
1489-1490

performance-monitoring tools

Data Collector, 1429-1432

customized data, 1446-1450

installing and, 1433-1437

limitations and, 1450-1451

managing, 1443

managing in T, 1443-1446

MDW, 1432-1433

MDW reports, 1433

reports, 1439-1442

system data, 1437-1439

SQL Server Extended Events, 1455-1465

SQL Server Utility, 1451-1455

Windows Performance, 1466-1477

Windows Performance Monitor, 1465-1466

Data Collector Sets, 1467

lock activity monitoring, 1357-1359

memory monitoring, 1485-1486

replication monitoring, 610-611

permissions, 292, 311-312

access permissions, CD:1955-CD:1956

Execute Report Definitions, CD:2233

granting, 629-630

managed database objects,
CD:1827-CD:1829

managing with SSMS, 322-323

at database level, 326-328

at object level, 328-329

at server level, 323-325

managing with T-SQL, 330-331

roles, 302

securing reports, CD:2234-CD:2235

setting on models, CD:2233

system permissions, CD:2235

for user-defined functions, 941-942

Personal Identifiable Information (PII), 366-367

perspectives. See cube perspectives

PFS (page free space), 711, 1115

PH_timeout configuration option, CD:2308

phantom reads, 1343

physical reads, 1332

PhysicalDisk object, 713

PII (Personal Identifiable Information), 366-367

pipe character (|), 483

pipelines, 483

pipes, 270-271

PIVOT clause, CD:1718-CD:1721

plan cache, 1254, 1260

plan guides, 39

best practices, 1295-1296

creating, 1292-1293, 1297-1298

managing, 1293-1294

overview, 1290-1292

sys.plan_guides catalog view, 1294-1295

validating, 1294

verifying application of, 1296-1297

planning

disaster recovery, CD:2349-CD:2350

for backups and restoration, 378-379

for data replication, 572-573

maintenance plans, 426

plus sign (+), 493

point in time, restoring to, 419-420

POINT instance type, CD:1605

point-in-time reporting databases, providing
with database snapshots, 1054-1055

point of failure, restoring to, 417-419

performance2410

ptg

pointers, 1146

policies

categories, 693, 701

creating, 699-700

database maintenance policies, 1090

defined, 693

evaluating, 702-703

exporting, 703-704

exporting current state as, 700-701

importing, 696-697, 703-704

Policy-Based Management, 450

advantages of, 687-688

best practices, 706-707

categories, 693, 701

Central Management Servers

creating, 695-696

explained, 695

importing and evaluating policies to,
696-697

registering SQL Server instances in, 696

conditions

creating based on facets, 697-698

defined, 693

execution modes

On Change Log Only, 695

On Change Prevent, 694

On Demand, 694

On Schedule, 694

explained, 40

facets

creating conditions based on, 697-698

explained, 689, 692

table of, 690-692

goals of, 688-689

online resources, 689

policies

categories, 693, 701

creating, 699-700

How can we make this index more useful? Email us at indexes@samspublishing.com

database maintenance policies, 1090

defined, 693

evaluating, 702-703

exporting, 703-704

exporting current state as, 700-701

importing, 696-697, 703-704

real-world examples

checking best practices compliance, 706

ensuring object naming conventions,
706

evaluating recovery models, 705

implementing Surface Area Configuration
checks, 705

performing server health checks, 705

sample templates, 704-705

targets, 693

POLYGON instance type, CD:1606

pools

creating

in SSMS, 1500-1502

in T-SQL, 1502

deleting, 1515-1516

explained, 1496

MIN/MAX values, 1496-1498

populating

cubes with data in OLAP database creation,
CD:2065-CD:2066

hierarchies, CD:1581-CD:1583

population, CD:2008

POPULATION TYPE parameter (CREATE
FULLTEXT INDEX), CD:2008-CD:2010

ports, 270-271, CD:1935

pound sign (#), 491, 879

PowerPivot, 43-44

PowerShell

adding PowerShell support, 504

aliases, 484

arguments, passing, 494

PowerShell 2411

ptg

arrays, 495-496

cmdlets

Add-Content, 491

Convert-UrnToPath, 509

Decode-SqlName, 509

defined, 483

Encode-SqlName, 509

Export-Csv, 501

filtering cmdlets, 499-500

ForEach-Object, 499

Format-List, 500

Format-Table, 500

formatting cmdlets, 500-501

Get-Alias, 490

Get-ChildItem, 490

Get-Command, 488

Get-Content, 490, 514

Get-Help, 488-489

Get-Item, 520

Get-Member, 489-490

Get-Process, 513

Get-Service, 513

Group-Object, 490

Import-Csv, 501

Invoke-PolicyEvaluation, 508, 521

Invoke-SqlCmd, 508, 520-521

Measure-Command, 490

New-Object, 490

Read-Host, 490

Select-Object, 490

Select-String, 515

Set-Content, 491

Set-ExecutionPolicy, 487

Sort-Object, 490

Start-Service, 513

Start-Transcript, 491

Where-Object, 499

Write-Host, 490

conditional statements, 496-497

console, 485-486

CSV files, handling, 501-502

databases

backing up, 516-518

checking database usage, 519

creating database tables, 515-516

getting table properties, 520

joining columns, 521-522

date/time calculations, 502-503

escape characters, 492

execution policy, 487

functions, 497-498

general tasks, 509-510

help features

Get-Command cmdlet, 488

Get-Help cmdlet, 488-489

Get-Member cmdlet, 489-490

overview, 487

installing, 485

integrated support for, 42

interactivity, 486

looping statements, 498-499

new features, 481-482

object-based functionality, 484

online resources, 483

operators, 496

overview, 482-483

param construct, 494

pipeline, 483

profiles, 487

providers, 484

retrieving entries, 522

scripts

comments, 491

creating, 491

defined, 483

OS-related tasks, 512-514

PowerShell2412

ptg

scheduling, 510-512

SQL Server–specific tasks, 514-515

security, 486

server settings, checking, 518

SMO (SQL Server Management Objects),
484

snap-ins, 484

SQL Server PowerShell

accessing, 505

cmdlets, 508-509

defined, 505

overview, 506-507

SQL providers, 507, 515

SQL Server Agent support, 509

strings, joining, 493

support for, 450

variables

$_ special variable, 493

explained, 491-492

joining, 493

versions, 483

-whatif/-confirm parameters, 503

WMI (Windows Management
Instrumentation), 484-485

Precise 8.5, 1548

predicates, 1306

SSEE (SQL Server Extended Events), 1459

transitivity, 1266-1267

primary data files, 712, 1095

primary filegroups, 713

primary handles for tuning, 1521-1522

PRIMARY KEY constraint, 764, 813-814

primary keys, 1539

principals, 292, 295, 619, 622

logins, 296-297

roles, 302

application roles, 309

fixed-database roles, 304-306

How can we make this index more useful? Email us at indexes@samspublishing.com

fixed-server roles, 303-304

public roles, 306-307

user-defined roles, 307-309

user/schema separation, 301-302

users

dbo users, 299

explained, 298-299

guest users, 299-300

INFORMATION_SCHEMA users, 300

sys users, 300

PRINT, CD:1983

priorities

prioritizing conversations, CD:1984

tuning guidelines, 1535

priority boost configuration option,
CD:2308-CD:2309

private keys, 338

Proactive DBA SQL Capture, 1549

procedural data integrity, 813

procedure caches, CD:1766

procedures. See specific procedures

Proceedings of the, 31st International
Conference on Very Large Data Bases,
CD:1920

processadmin, 303

processes

deadlocks, 1382-1384

1204 trace flags, 1386-1388

1222 trace flags, 1388-1390

avoiding, 1384-1385

conversion deadlocks, 1383

cycle deadlocks, 1382

examining, 1385-1386

handling, 1385-1387

monitoring, 1390-1392

locking contention, 1377-1380

identifying, 1378-1380

minimizing, 1381-1382

priority, 1535

processes 2413

ptg

processing

processing hints, 1282, 1285

processing instructions (XML), CD:1866

reports, CD:2176

snapshot agents, 567-568

transactions, 997

processor affinity, 1481, CD:2286

processors, monitoring, 1480-1485

Product Key entry page
(SQL Server Installation Center), 197-198

Profiler, 132-135, 1338-1340, 1547

analyzing slow stored procedures or
queries, 157-158

application progress, monitoring, 162-164

architecture, 122-123

auto-update statistics, monitoring, 162

deadlocks, 158-159, 1390-1392

explained, 15

indexes, selecting, 1149

lock activity, monitoring, 1355-1357

new features, 121

performance bottlenecks, identifying, 160-
162

queries, identifying ad hoc queries, 159-160

replaying trace data, 138-140

traces

analyzing trace output with Database
Engine Tuning Advisor, 138

creating, 123-125

data columns, 127-128, 130

defining server-side traces, 140-141,
148-152

events, 125-127

executing, 132

exporting, 132

filters, 130-132

importing, 135

importing into tables, 135-136

saving, 132

saving Profiler GUI output, 134-135

saving to files, 133

saving to tables, 134

stopping server-side traces, 155-156

trace events and categories, 141-147

traces, monitoring, 153-154

user configurable events, 163

profiles

creating in Database Mail, 429-432

PowerShell, 487

projects, managing in SSMS, 93-95

properties. See specific properties

PROPERTY secondary index (XML) 1923

protocols

ensuring appropriate network protocols are
configured on server, 264-267

support for, 191

prototyping stage (tuning methodology),
1525-1526, 1531-1532

providers, 280

defined, 484

SQL providers, 507, 515

provisioning, 268-270

proximity, CD:2022

proxy accounts, 455-456

public keys, 338

public roles, 306-307

publication server, 549-550

publications, 550

creating, 584-592

data replication, 550

Publisher role, CD:2234

publisher subscriber replication model, 558

publishing, 581-584

pull subscriptions, 563

processing2414

ptg

Q
QA (quality assurance)

HA (high availability), 528

testing database snapshots, 1064

QNames, CD:1941

qualifying names, CD:1941

quality assurance (QA)

HA (high availability), 528

testing database snapshots, 1064

queries

ad hoc queries, 159-160, CD:2285

analyzing, 157-158, 1213

identifying JOIN clauses, 1215-1216

identifying OR clauses, 1214-1215

identifying search arguments, 1214

OLAP database creation, CD:2079-
CD:2081

Query Analyzer. See Query Analyzer

SQL Server Profiler, 1338-1340

compiling. See query compilation

DISTINCT, 1268

distributed queries, CD:2252

execution plan, 1211

GROUP BY, 1267

multiserver queries, 42, 101-102

optimizing. See Query Optimizer

parallel query processing, 1268-1271

configuration options, 1271-1272

identifying, 1272-1273

parallel queries on partitioned objects,
1273

parameterization, 1256

partitioned tables, 775

predicate transitivity, 1266-1267

query governor, 1298-1299

query plan caching. See query plan caching

recursive queries, CD:1700-CD:1708

How can we make this index more useful? Email us at indexes@samspublishing.com

statistics, 1330

datediff(), 1336-1337

STATISTICS IO, 1330-1333

STATISTICS PROFILE, 1337

STATISTICS TIME, 1333-1336

STATISTICS XML, 1337-1338

subquery processing, 1248

correlated subqueries, 1250-1251

IN, ANY, and EXISTS subqueries, 1248

materialized subqueries, 1248-1250

troubleshooting

index design, 1275

large complex queries, 1277-1278

search arguments, 1276-1277

statistics, 1274-1275

triggers, 1278

tuning guidelines, 1543

types, 87-88

UNION, 1268

Query Analyzer, 1302-1303

execution plan ToolTips, 1304-1307

graphical execution plans, saving and
viewing, 1317

logical and physical operator icons

Assert, 1308-1309

Clustered Index Delete, 1309

Clustered Index Scan, 1309

Collapse, 1310

Compute Scalar, 1311

Concatenation, 1311

Constant Scan, 1311

Deleted Scan, 1311

Distribute Streams, 1314

Eager Spool, 1312

Gather Streams, 1314

Hash Match, 1311

Insert Scan, 1311

Query Analyzer 2415

ptg

Lazy Spool, 1312

Log Row Scan, 1312

Merge Join, 1312

Nested Loops, 1313

Nonclustered Index Delete, 1309

Nonclustered Index Scan, 1310

Nonclustered Index Spool, 1312

Parallelism, 1314

Parameter Table Scan, 1313

Remote Delete, 1313

Remote Insert, 1313

Remote Query, 1313

Remote Scan, 1313

Remote Update, 1313

RID Lookup, 1313

Row Count Spool, 1312

Sequence, 1313

Sort, 1313

Stream Aggregate, 1314

Table Delete, 1314

Table Insert, 1314

Table Scan, 1314

Table Spool, 1312

Table Update, 1314

Table-valued Function, 1314

Top, 1314

SSMS, 1302

stored procedures, analyzing, 1315-1316

Query Builder, CD:2112-CD:2114

query compilation

DML statements, 1212-1213

execution plan selection, 1251-1253

join selection

determining optimal join order,
1246-1247

join processing strategies, 1241-1246

subquery processing, 1248-1251

optimization steps, 1218

overview, 1213

query analysis, 1213

identifying JOIN clauses, 1215-1216

identifying OR clauses, 1214-1215

identifying search arguments, 1214

row estimation and index selection

estimating access path costs,
1221-1228

evaluating SARG and join selectivity,
1216-1221

multiple indexes, 1228-1236

optimizing with filtered indexes,
1239-1241

optimizing with indexed views,
1236-1239

Query Designer, 92-93

Query Editor

disconnected editing, 88

editing sqlmd scripts, 88-89

IntelliSense, 87

overview, 85-87

performance, 91-92

Query Designer, 92-93

query types, 87-88

regular expressions and wildcards, 89-91

QUERY_GOVERNOR_COST_LIMIT, 1298-1299,
CD:2309-CD:2310

Query Optimizer, 1301

execution plan selection, 1251-1253

indexes, evaluating, 1150-1153

join selection

determining optimal join order,
1246-1247

join processing strategies, 1241-1246

subquery processing, 1248-1251

managing, 1278-1280

forced parameterization, 1285-1287

join hints, 1282

Query Analyzer2416

ptg

processing hints, 1282, 1285

query governor, 1298-1299

table hints, 1280-1282

USE PLAN, 1287-1290

multiple indexes, 1228

index intersection, 1229-1231

index joins, 1234-1236

index union strategy, 1232-1234

new features, 1210-1211

optimization steps, 1218

overview, 1209-1213

plan guides

best practices, 1295-1296

creating, 1292-1293, 1297-1298

managing, 1293-1294

overview, 1290-1292

sys.plan_guides catalog view,
1294-1295

validating, 1294

verifying application of, 1296-1297

query analysis, 1213

identifying JOIN clauses, 1215-1216

identifying OR clauses, 1214-1215

identifying search arguments, 1214

row estimation and index selection

estimating access path costs,
1221-1228

evaluating SARG and join selectivity,
1216-1221

multiple indexes, 1228-1236

optimizing with filtered indexes,
1239-1241

optimizing with indexed views,
1236-1239

table scans, 1132

query plan caching

monitoring plan cache

sys.dm_exec_cached_plans, 1258-1260

How can we make this index more useful? Email us at indexes@samspublishing.com

sys.dm_exec_plan_attributes,
1265-1266

sys.dm_exec_query_stats, 1261-1265

sys.dm_exec_sql_text, 1260

query plan aging, 1256-1257

query plan reuse, 1254-1256

recompiling query plans, 1257-1258

stored procedures, CD:1765

query plans

automatic query plan recompilation,
CD:1767

caching

monitoring plan cache, 1258-1266

query plan aging, 1256-1257

query plan reuse, 1254-1256

recompiling query plans, 1257-1258

stored procedures, CD:1765

forcing recompilation, CD:1770-CD:1773

hash values, 39

query trees, 1212

query wait configuration option, CD:2310

query() method, CD:1900-CD:1908

for clause, CD:1902-CD:1903

order by clause, CD:1905-CD:1906

return clause, CD:1907-CD:1908

where clause, CD:1905

Questions option (SSMS), 68

queues

creating for message storage,
CD:1970-CD:1972

queue monitor, CD:1995

transmission queues, CD:1974

quorum drives, 660

quorums, 660

quorums 2417

ptg

R
R2 Datacenter Edition (SQL Server 2008), 29

R2 Parallel Data Warehouse Edition (SQL
Server 2008), 30

RAID (redundant array of inexpensive disks),
1417-1418

RAID Level 0, 1418-1419

RAID Level 1, 1419-1420

RAID Level 5, 1421-1422

RAID Level 10, 1420

tuning guidelines for, 1535

RANGE LEFT partitions, 778

RANGE RIGHT partitions, 777-778

range searching, 1366-1367

RANK function, CD:1711-CD:1712

ranking functions

de-duping data with, CD:1684-CD:1687

DENSE RANK, CD:1711-CD:1712

NTILE, CD:1712-CD:1714, CD:1717

RANK, CD:1711-CD:1712

ROW NUMBER

paging results, CD:1714-CD:1717

partitioning by, CD:1710-CD:1711

ROW NUMBER, CD:1708-CD:1710

RAW mode, CD:1867-CD:1871

RCE (Report Customization Extension) 2179

RDL (Report Definition Language), 257,
CD:2175

read-ahead reads, 1332

read committed isolation, 1344-1345

READ COMMITTED option (SET TRANSACTION
ISOLATION LEVEL statement), 1021

READ_COMMITTED_SNAPSHOT,
1022, 1345-1346

Read-Host cmdlet, 490

read uncommitted isolation, 1344

READ UNCOMMITTED option (SET TRANSAC-
TION ISOLATION LEVEL statement), 1021

READCOMMITTED transaction isolation level,
1394

READCOMMITTEDLOCK transaction isolation
level, 1395

READPAST transaction isolation level, 1395

READUNCOMMITTED transaction isolation level,
1394

Ready to Install page
(SQL Server Installation Center), 210

real data type, 749

REBUILD, 804

Rebuild Index task, 1078

rebuilding nonclustered indexes, 1179

RECEIVE, CD:1980, CD:1984

receiving email with Database Mail, 441

reciprocal database device location, 1537

reciprocal database pairing, 1537

reciprocal principal/mirror reporting
configuration, 1065-1066

reclaiming space, 1144

RECOMPILE hints, 1285

recompiling query plans, 1257-1258

RECONFIGURE option
(ALTER RESOURCE GOVERNOR), 1499

records, CI, 1122

recovery. See also disaster recovery

full database recovery, 418

HA (high availability), 538

recovery models, 382-383

bulk-logged recovery, 384-385

evaluating, 705

full recovery, 383

simple recovery, 385

recovery point objective (RPO) 2336

recovery time objective (RTO) 2337

replication monitoring, 612-613

transactions, 1023-1024, 1028-1030

analysis phase, 1029

checkpoint process, 1024-1028

R2 Datacenter Edition (SQL Server 2008)2418

ptg

redo (roll-forward) phase, 1029

undo (rollback) phase, 1029

recovery interval configuration option,
CD:2310-CD:2311

Recovery Model setting, 720

RECOVERY option (RESTORE DATABASE), 406

recovery point objective (RPO) 2336

Recovery property, 728

recovery time objective (RTO) 2337

Rectangle control, CD:2203

recursion, 993

stored procedures, CD:1755-CD:1758

queries, CD:1700

expanding hierarchies,
CD:1701-CD:1707

MAXRECURSION option,
CD:1707-CD:1708

triggers, 992-993

redo (roll-forward) phase (transaction recovery
process), 1029

redundant array of inexpensive disks. See RAID

redundant data, denormalization, 1409-1410

referential integrity, 812

cascading, 818-820

DML triggers, 961-963

registered servers (SSMS), 71-72

registering SQL Server instances in Central
Management Servers, 696

regression testing, 1527, 1532

regular expressions, 89-91

reinitialize subscriptions having data validation
failures, 571

RELATED CONVERSATION keyword, CD:1976

related system catalogs, CD:1863-CD:1864

relational data (XML)

FOR XML modes, CD:1866-CD:1887

OPENXML, CD:1887-CD:1890

relational databases, generating,
CD:2081-CD:2082

How can we make this index more useful? Email us at indexes@samspublishing.com

relational index options, 798-799

Relational OLAP (ROLAP), CD:2037

relationships, zero-to-one, 1415

reliability of enterprise computing, 655

remote admin connections configuration option,
CD:2311

Remote Delete (Query Analyzer), 1313

Remote Insert (Query Analyzer), 1313

remote login timeout configuration option,
CD:2311

remote mode (Report Viewer) 2181

remote proc trans configuration option,
CD:2312

remote procedure calls (RPC), 1545, CD:2243

Remote Query (Query Analyzer), 1313

remote query timeout, CD:2312-CD:2313

Remote Scan (Query Analyzer), 1313

remote servers, CD:2243

configuring, CD:2246-CD:2251

managing, CD:2244-CD:2246

new features, CD:2244

remote service bindings, CD:1992

remote stored procedures, CD:1764

Remote Update (Query Analyzer), 1313

removing

counters, 1468

database mirroring, 643-645

mappings for linked servers, CD:2265

snapshots from cache reports, CD:2238

RenderFormat.Name variable, CD:2179

rendering reports, CD:2176

renumbering columns, CD:2162-CD:2163

REORGANIZE, 804

Reorganize Index task, 1078

repartition streams, 1272, 1314

repeatable read isolation, 1346

REPEATABLE READ option (SET TRANSACTION
ISOLATION LEVEL statement), 1021

REPEATABLE READ option (SET TRANSACTION ISOLATION LEVEL statement) 2419

ptg

REPEATABLEREAD transaction isolation level,
1395

REPLACE option (RESTORE DATABASE), 407

replaying trace data, 138-140

replication, 547-549, CD:2338-CD:2340

articles, 550-554

building solutions with HA (high availability)
options, 534-535

central publisher replication model,
555-556

central publisher with remote distributor
replication model, 557

central subscriber replication model, 559

combining with database mirroring, 614,
651-652

distribution server, 550

enhancements, 46-47

explained, 15

immediate updating, 17

log shipping, 614

merge replication, 16-17, 575-576

methods of data distribution, 573-574

monitoring

backup and recovery, 612-613

in heterogeneous environments,
611-612

peer-to-peer replication, 609-610

Performance Monitor, 610-611

SQL statements, 603-606

troubleshooting replication failures, 608

within SQL Server Management Studio,
606-607

multiple publishers or multiple subscribers
replication model, 559-560

new features, 546-547

peer-to-peer replication, 561-562, 609-610

performance, 613-614

planning for, 572-573

publication server, 549-550

publications, 550

publisher subscriber replication model, 558

replication agents. See replication agents

scripting replication, 600-602

setting up, 579-580

creating distributors and enabling
publishing, 581-584

creating publications, 584-592

creating subscriptions, 594-600

horizontal and vertical filtering, 592-594

snapshot replication, 16, 574

subscription server, 550

subscriptions. See subscriptions

transactional replication, 16, 574-575

updating subscribers replication model,
560-561

user requirements, 577-579

replication agents, 565-566

agent history cleanup: distribution, 571

checkup, 572

distribution agent, 569-570

distribution cleanup: distribution, 571

expired subscription cleanup, 571

log reader agent, 569

merge agent, 570-571

reinitialize subscriptions having data
validation failures, 571

replication agents checkup, 572

snapshot agent

processing, 567-568

synchronization, 566-567

Replication Monitor, 46

Report Builder

Choose a Chart Type window, CD:2219

Design a Query window, CD:2218-CD:2219

enabling, CD:2233-CD:2234

installing, CD:2213-CD:2214

map reports, CD:2222-CD:2226

REPEATABLEREAD transaction isolation level2420

ptg

overview, CD:2176, CD:2190-CD:2191

RB3 ribbon bar features, CD:2215-CD:2217

RB3 versions, CD:2213

report models, CD:2226

report models, CD:2227-CD:2231

report parts, CD:2220-CD:2222

security, CD:2233

Report Customization Extension (RCE), CD:2179

Report Definition Language (RDL), 257,
CD:2175

Report Designer

Chart control, CD:2175

data bar, CD:2174

enhancements, CD:2172-CD:2175

gauge panels, CD:2173

gauges, CD:2173

indicator, CD:2173

Map control, CD:2174

Sparklines, CD:2174

Tablix, CD:2173

Report Manager,
CD:2177, CD:2189, CD:2209-CD:2210

Report Server Service, CD:2178

Report Viewer, 234-235, CD:2181

ReportExecution2005.asmx, CD:2180

Reporting Services. See SSRS
(SQL Server Reporting Services)

reports

Backup and Restore Events report, 413

cached reports, CD:2237-CD:2238

Chart control, CD:2203

controls summary, CD:2202-CD:2204

data bars, CD:2203

Data Collector, 1439-1442

data planning and preparation, CD:2193

via database snapshots from mirror,
652-653

datasets, CD:2193-CD:2194

How can we make this index more useful? Email us at indexes@samspublishing.com

deploying, CD:2207-CD:2209

designing, CD:2172-CD:2175, CD:2202

Choose a Chart Type window, CD:2219

Design a Query window,
CD:2218-CD:2219

enabling Report Builder,
CD:2233-CD:2234

installing RB3, CD:2213-CD:2214

map reports, CD:2222-CD:2226

RB3 ribbon bar features,
CD:2215-CD:2217

RB3 versions, CD:2213

report models, CD:2226-CD:2231

report parts, CD:2220-CD:2222

security, CD:2233

developing, CD:2192, CD:2196-CD:2199

Execute Report Definitions, CD:2233

execution options, CD:2237

cached reports, CD:2237-CD:2238

CRPs (cache refresh plans) 2239

execution snapshots, CD:2238

history snapshots, CD:2238

live reports and sessions, CD:2237

user-specific data limitations, CD:2239

expressions, CD:2200-CD:2202

gauges, CD:2203

Image control, CD:2203

indicators, CD:2203-CD:2207

interactivity, CD:2211-CD:2213

Line control, CD:2203-CD:2203

Map control, CD:2203

map reports, CD:2222-CD:2226

Matrix control, CD:2202

overview, CD:2191-CD:2192

processing and rendering, CD:2176

RCE (Report Customization Extension) 2179

Rectangle control, CD:2203

report data source, CD:2175

reports 2421

ptg

report displays, 1467

report models, CD:2226-CD:2231

report parts, CD:2175

securing

built-in roles and permissions,
CD:2234-CD:2235

system roles and system permissions,
CD:2235

securing, CD:2234

Server Activity History report, 1441

shared data sources, CD:2193

shared datasets, CD:2194-CD:2195

Sparklines, CD:2203-CD:2207

Subreport control, CD:2204

subscriptions, CD:2235-CD:2236

data-driven subscriptions,
CD:2236-CD:2237

delivery architecture, CD:2237

Table control, CD:2202

tables and hierarchies in,
CD:2210-CD:2211

Tablix, CD:2199-CD:2202

Text Box control, CD:2204

ReportServer database, CD:2180

ReportServerTempDB database, CD:2180

ReportService2005.asmx, CD:2180

ReportService2006.asmx, CD:2180

ReportService2010.asmx, CD:2180

request_exec_context_id column, 1351

request_lifetime column, 1351

request_mode column, 1351

request_owner_guid column, 1352

request_owner_id column, 1352

request_owner_lockspace_id column, 1352

request_owner_type column, 1352

request_reference_count column, 1351

request_request_id column, 1352

request_session_id column, 1351

request_status column, 1351

request_type column, 1351

requirements phase
(OLAP design methodologies), CD:2039

resource_associated_entity_id column, 1351

resource_database_id column, 1351

resource_description column, 1351

resource database, 168

Resource Governor

classification functions

creating, 1506-1509

defined, 1495-1496

modifying, 1516

enabling, 1499-1500

explained, 41

modifying configuration of, 1513-1516

monitoring resource usage, 1509-1512

overview, 1493-1495

resource pools

creating, 1500-1502

deleting, 1515-1516

explained, 1496

MIN/MAX values, 1496-1498

workload groups

creating, 1503-1505

deleting, 1514-1515

explained, 1496

viewing, 1505-1506

resource_lock_partition column, 1351

resource pools

creating, 1500-1502

deleting, 1515-1516

explained, 1496

MIN/MAX values, 1496-1498

resource_subtype column, 1351

resource_type column, 1351

resource usage, monitoring, 1509-1512

reports2422

ptg

RESTART option

BACKUP DATABASE, 393

RESTORE DATABASE, 407

restoorefilegroup, 412

RESTORE, 404, 630

RESTORE DATABASE, 404-407

Restore dialog, 66

RESTORE FILELISTONLY, 411

RESTORE HEADERONLY, 411

RESTORE VERIFYONLY, 411-412

restorefile, 412

restorehistory, 412

restores

Backup and Restore Events report, 413

developing restore plans, 378-379

overview, 403

restore information, retrieving

RESTORE FILELISTONLY, 411

RESTORE HEADERONLY, 411

RESTORE VERIFYONLY, 411-412

restoring database backups to new
locations, 736

scenarios, 414

online restorations, 421

restoring snapshots, 416

restoring system databases, 421-423

restoring to a different database,
414-415

restoring to point in time, 419-420

restoring to point of failure, 417-419

restoring transaction logs, 416, 419

with SSMS, 409-410

system tables, 412-413

with T-SQL

database restores, 404-407

transaction log restores, 407-408

Restrict Access, 724

How can we make this index more useful? Email us at indexes@samspublishing.com

RESTRICT IP, CD:1936

RESTRICTED_USER option
(RESTORE DATABASE), 407

restrictions

INSTEAD OF triggers, 975

on defaults, 835

RETAINDAYS option (BACKUP DATABASE), 392

retrieving

database option information, 726-729

entries, 522

Retry Attempts, 464

Retry Interval, 464

Retry options, 464

return clause (query() method), CD:1907-
CD:1908

returning procedure status, 904-905

RETURNS NULL ON NULL INPUT option
(CREATE FUNCTION), 928

reusing query plans, 1254-1256

reverting to database snapshots,
1048, 1052-1053, 1062-1064

REVOKE, 311, 330

REWIND option

BACKUP DATABASE, 393

RESTORE DATABASE, 407

rewriting stored procedures as functions,
942-943

RIAs (Rich Internet Applications), CD:1787

RID Lookup, 1313

Riedberger, Jason, 650

right semi joins, 1250

risk management, 360-361

ROBUST PLAN hints, 1284

ROLAP (Relational OLAP), CD:2037

roles, 302

application roles, 309

assignments, CD:2234

for database mirroring, 622

roles 2423

ptg

database roles

managing with SSMS, 321-322

managing with T-SQL, 322

fixed-database roles, 304-306

fixed-server roles, 303-304

OLAP, CD:2095-CD:2096

public roles, 306-307

switching, 623

user-defined roles, 307-309

ROLLBACK, 999, CD:1984

ROLLBACK TRAN, 999, 1016-1017

rollback transaction statement, CD:1736

ROLLUP operator, CD:1561-CD:1562

root-level certificate, 278

round-earth data, CD:1605

routers, 1535

row constructors, 38, CD:1569-CD:1572

Row Count Spool, 1312

Row ID (RID) locking level, 1365

row-level compression, 1117-1119

row-level locking, 1373-1374

ROW NUMBER function, CD:1708-CD:1710

paging results, CD:1714-CD:1717

partitioning by, CD:1710-CD:1711

row offset table, 1108-1109

ROW OVERFLOW DATA, 753

row-overflow pages, 1109-1110

@@ROWCOUNT, CD:1683-CD:1684

ROWGUIDCOL, 757

ROWLOCK optimizer hint, 1395

rows

in database pages

overview, 1104-1105

sparse columns, 1107-1108

sql_variant data type, 1107

structure of, 1105-1107

deleting

from heap, 1144

from index, 1144

reclaiming space, 1144

with LINQ to SQL, CD:1801

indexes, 1134-1135

leaf rows, 1138-1139

nonleaf rows, 1139-1140

row constructors, 38, CD:1569-CD:1572

row estimation

estimating access path costs,
1221-1228

evaluating SARG and join selectivity,
1216-1221

multiple indexes, 1228-1236

updating

forward pointers, 1146

index statistics, 1159-1160

in-place updates, 1145

not-in-place updates, 1145-1146

with LINQ to SQL, CD:1802

ROWS_PER_BATCH hint, CD:2165-CD:2166

rowversion data type, 749, 1396-1399

ROW_OVERFLOW_DATA, 1109

RPC (remote procedure calls), 1545, CD:2243

RPO (recovery point objective) 2336

RS.exe, CD:2180

RSCM, SSRS configuration

databases, CD:2187-CD:2188

email and execution accounts, CD:2189

encryption, CD:2189-CD:2190

overview, CD:2186

Report Manager, CD:2189

scale-out architecture configuration,
CD:2190

Web Service, CD:2186-CD:2187

Windows Service, CD:2186

RSConfig.exe, CD:2180

roles2424

ptg

RSKeyMgmt.exe, CD:2180, CD:2190

RTO (recovery time objective) 2337

running traces, monitoring, 153-154

runtime, measuring with datediff(), 1336-1337

runtime component (Data Collector), 1431

S
SAC (Surface Area Configuration) tool, 105, 705

safeguarding databases prior to making mass
changes, 1053

SAFETY option, 622

SANs (storage area networks), 661, 711

cache, 1424

disk drive contention, 1424

explained, 1422-1423

performance, 1424-1425

tuning guidelines for, 1535

Sarbanes-Oxley Act (SOX), 367

SARG

computed columns, 1220-1221

evaluating, 1216-1221

inequality operators, 1218

LIKE clauses, 1219-1220

search argument problems, 1276

SAVE TRAN, 1000

savepoints, 1000-1001, 1019-1020

saving

graphical execution plans, 1317

traces (SQL Server Profiler), 132

to files, 133

Profiler GUI output, 134-135

to tables, 134

scalability, 655

scalar functions, 921-925, CD:1835-CD:1839

scalar types, 1460

How can we make this index more useful? Email us at indexes@samspublishing.com

scale-out architecture configuration (SSRS)
2190

scaling out, 662

scan for startup procs configuration option,
CD:2313

scans

scan count, 1331

table scans, 1227-1228

SCC (System Configuration Checker), 186

scheduling

maintenance plans, 1080-1083

scripts, 510-512

schema collections, CD:1894-CD:1899

schema locks, 1363

schema names, qualifying object names with,
CD:1640-CD:1643

SCHEMA option (WEBMETHOD),
CD:1939-CD:1941

SCHEMABINDING, 809-810, 848, 927-928

scripts

alerts, 474-475

comments, 491

creating, 491

defined, 483

jobs, 474-475

replication, 600-602

scheduling, 510-512

sqlmd scripts, 88-89

variables, 108-109

searches

arguments

identifying for query analysis, 1214

troubleshooting, 1276-1277

tuning guidelines, 1543

full-text. See Full-Text Search

second normal form, 1406-1407

secondary data files, 712, 1095

secondary GAM (SGAM), 711

secondary GAM (SGAM) 2425

ptg

securables, 292, 310

Secure Sockets Layer. See SSL (Secure Sockets
Layer)

security

across the life cycle, 361-362

auditing

with SQL Server Audit, 368-372

with T-SQL, 372-374

authentication, 294-295

compliance, 366-367

data security, 336-337

database snapshots, 1067

EKM (Extensible Key Management), 40

encryption. See encryption

enforcement layers and components,
362-364

execution context, 331

explicit context switching, 332

implicit context switching, 333

exposure endpoints, 360

identity access management, 364, 366

logins. See logins

new features, 39-40, 291-292

OLAP, CD:2095-CD:2096

overview, 292-294, 359-360

permissions. See permissions

PII (Personal Identifiable Information),
366-367

PowerShell, 486

Report Builder, CD:2233

reports

built-in roles and permissions,
CD:2234-CD:2235

system roles and system permissions,
CD:2235

risk management, 360-361

roles, 302, CD:2234

application roles, 309

database roles, 321-322

fixed-database roles, 304-306

fixed-server roles, 303-304

public roles, 306-307

user-defined roles, 307-309

securables, 310

SQL injection, 374-376

SQL Server Agent, 458

SQL Server Service Broker,
CD:1985-CD:1992

TDE (transparent data encryption), 39

users

dbo users, 299

explained, 298-299

guest users, 299-300

INFORMATION_SCHEMA users, 300

logins, 298

sys users, 300

user/schema separation, 301-302

securityadmin, 303

SELECT statement, 300

select @@SERVERNAME, CD:2343

select @@SERVICENAME, CD:2343

select @@VERSION, CD:2343

SELECT COUNT(*), CD:1654

Select-Object cmdlet, 490

Select-String cmdlet, 515

self-configuring options, CD:2276

SELF option (EXECUTE AS), 884

self-signed certificates, CD:1985

semi joins, 1250

SEND, CD:1979

SEND ON CONVERSATION, CD:1980

sending email with Database Mail, 435-441

__$seqval column (CDC table), CD:1615

Sequence (Query Analyzer), 1313

sequence clustering, CD:2085

sequence trees, 1212

securables2426

ptg

SERIALIZABLE option (SET TRANSACTION
ISOLATION LEVEL statement), 1022

serializable read isolation, 1346-1347

SERIALIZABLE transaction isolation level, 1395

serialization locking, 1365-1369

Server Activity History report, 1441

Server Audit object, 369

Server Audit Specification object, 369

Server Configuration page (SQL Server
Installation Center), 203-205

server endpoint layer, 267-270

SERVER ROLE, 297

server trace log (SSRS), CD:2239-CD:2240

server-side traces

creating and starting, 151

defining, 140-141, 148-152

stopping, 155-156

serveradmin, 303

servers

aliases, 277

clusters, 658

health checks, 705

linked. See linked servers

master servers, 476-477

multiserver jobs, 477

registered servers (SSMS), 71-72

remote. See remote servers

server instance isolation, 528-530

settings, checking, 518

sizing, 1534

standby servers, 424-425

target servers, 476-477

Service Broker, 434-435

basics of, CD:1960-CD:1963

constructs

creating queues for, CD:1970-CD:1972

defining messages and, CD:1965-
CD:1969

How can we make this index more useful? Email us at indexes@samspublishing.com

defining services to, CD:1973

planning conversations,
CD:1974-CD:1976

prioritizing, CD:1984

setting up contracts, CD:1970

constructs, CD:1965

designing example systems,
CD:1964-CD:1965

distributed messaging, CD:1960

enhancements, 47-48

explained, 22-23

routing and security, CD:1985-CD:1992

system catalogs, CD:1994-CD:1995

service master keys, 340

Service Packs, installing, 218-222

service program, CD:1964

services. See specific services

session snapshots, CD:2237-CD:2238

SESSION_TIMEOUT option (WEBMETHOD),
CD:1941

SESSIONS option (WEBMETHOD), CD:1941

set-based processing language, SQL as,
CD:1656

SET CHANGE_TRACKING parameter
(ALTER FULLTEXT INDEX), CD:2011

Set-Content cmdlet, 491

SET DEFAULT, 819

Set-ExecutionPolicy cmdlet, 487

SET LOCK_TIMEOUT, 1380

set nocount on, CD:1765

SET NULL, 819

SET PARTNER, 632

SET REMOTE PROC TRANSACTIONS, CD:1764

SET ROWCOUNT, CD:1692

SET SHOWPLAN

SHOWPLAN_ALL, 1326-1327

SHOWPLAN_TEXT, 1324-1326

SHOWPLAN_XML, 1327-1328

SHOWPLAN XML ON, 92

SET SHOWPLAN 2427

ptg

SET TRANSACTION ISOLATION LEVEL,
1021-1022, 1393

SET TRANSACTION ISOLATION LEVEL READ
COMMITTED, 1344

SET TRANSACTION ISOLATION SERIALIZABLE,
1365

SET USER, 332

SET WITNESS, 632

set-oriented operations, 1542

setting. See configuring

Setup Role page (SQL Server Installation
Center), 200

Setup Support Files installation screen (SQL
Server Installation Center), 197

Setup Support Rules for Setup Support Files
detail (SQL Server Installation Center), 196

Setup Support Rules for SQL Server installation
detail (SQL Server Installation Center),
197-198

setupadmin, 303

SGAM (secondary GAM), 711

SGAM (shared global allocation map) pages,
1114

SGML (Standard Generalized Markup
Language), CD:1866

shapefiles, CD:2174

shared data sources, CD:2193

shared datasets, CD:2175, CD:2194-CD:2195

shared disk arrays, 660

shared global allocation map (SGAM) pages,
1114

shared locks, 1360

shared nothing disk arrays, 660

shared query plans, CD:1766

SharePoint, integration with SSRS (SQL Server
Reporting Services), CD:2177

shopping cart example (OLTP), 56-57

short data cluster array, 1119

show advanced options configuration option,
CD:2313

SHOWPLAN_ALL, 1326-1327

SHOWPLAN_TEXT, 1324-1326

SHOWPLAN_XML, 1327-1328

Shrink Database dialog, 734

shrinking

databases, 731

DBCC SHRINKDATABASE, 731-732

DBCC SHRINKFILE, 732-733

Maintenance Plan Wizard, 1076-1077

shrinking log files, 734

with SSMS, 734-735

log files, 734

side-by-side migration (installing SQL Server
2008), 236-237

avoiding an unintentional in-place upgrade
during setup, 237

migrating Analysis Services, 253-254

migrating databases

Copy Database Wizard, 238-241

database compatibility levels, 242

explained, 238

migrating Reporting Services

in-place upgrades, 255-257

migrating to Reporting Services 2008,
257-258

simple expressions, CD:2178

Simple Mail Transfer Protocol. See SMTP
(Simple Mail Transfer Protocol)

Simple Object Access Protocol. See SOAP
(Simple Object Access Protocol)

simple recovery model, 385

site autonomy, 573

SITE, CD:1937

slipstream installations, 49, 222-224

slipstreaming upgrades, 251-252

smalldatetime data type, 749, CD:1572

smallint data type, 749

smallmoney data type, 749

SMO (SQL Server Management Objects), 484

SET TRANSACTION ISOLATION LEVEL2428

ptg

SMTP (Simple Mail Transfer Protocol), 427

creating accounts in Database Mail, 430

failover priority, 431

SNAC

client data access technologies, 281

ADO, 283

ODBC, 282-283

OLE DB, 282

installing for clients, 272-274

redistributing with custom client
applications, 274

snap-ins, 484

SNAPSHOT option (SET TRANSACTION ISOLA-
TION LEVEL statement), 1022

snapshots, CD:2341-CD:2342

backups, 425

databases, 1048

execution snapshots, CD:2238

history snapshots, CD:2238

isolation, 1347-1349

HA (high availability), 539-540

optimistic locking with, 1399-1401

replication, 16, 574

reporting via database snapshots from
mirror, 652-653

restoring, 416

snapshot agent

processing, 567-568

synchronization, 566-567

SOAP (Simple Object Access Protocol),
CD:1928-CD:1931

software requirements for SQL Server, 188-191

software scaling, 662

Solution Explorer, 95

Sort (Query Analyzer), 1313

SORT_IN_TEMPDB argument (CREATE INDEX),
798

Sort-Object cmdlet, 490

How can we make this index more useful? Email us at indexes@samspublishing.com

sorting results with GROUPING function,
CD:1669-CD:1671

source code control

integrating with SSMS, 95-97

stored procedures, CD:1741-CD:1742

source databases, 1048

number of database snapshots per, 1067

reverting from database snapshots,
1063-1064

source tables for CDC, CD:1626

SOX (Sarbanes-Oxley Act), 367

sp addextendedproc, CD:1782

sp addlinkedserver, CD:2253-CD:2260

sp addlinkedsrvlogin, CD:2263-CD:2265

sp catalogs, CD:2267

sp cdc enable Table stored procedure,
CD:1617-CD:1618

sp columns ex, CD:2267

sp configure, 182, 910, CD:2277-CD:2278

SP Counts, 124

sp createstats, 182

sp dboption, 725-726

sp delete jobsteplog, 464

sp dropserver, CD:2261

sp executesql, 880, CD:1776-CD:1779

sp foreignkeys, CD:2267

sp help, 182, 910

sp helpdb, 910

sp helpfile, 176

sp helptext, 936

sp help constraint, 827

sp helparticle, 603

sp helpconstraint, 774

sp helpdb, 182, 729

SP HELPDINDEX, 807

sp helpdistributor, 603

sp helpextendedproc, CD:1783

sp helpfile, 183

sp helpfile 2429

ptg

sp helplinkedsrvlogin, CD:2266-CD:2267

sp helppublication, 603

sp helpsubscriberinfo, 603

sp helpsubscription, 603

sp helptext, 889

sp indexes, CD:2267

sp linkedservers, CD:2260-CD:2261, CD:2267

sp lock, 183

sp monitor, 1479

sp primarykeys, CD:2267

sp processmail, 441

sp procoption, 153

sp recompile, CD:1773

sp refreshview, 845

sp send dbmail, 435-438

sp serveroption, CD:2261-CD:2263

sp setapprole, 309

sp settriggerorder, 956

sp spaceused, 183, 759

sp tables ex, CD:2267

sp trace create, 141

sp trace setevent, 141

sp trace setfilter, 141, 151

sp trace setstatus, 141, 155

sp who, 183, 910

sp who2, 910

space allocation, database pages

extents, 1113-1114

GAM pages, 1114

Sparklines, CD:2174, CD:2203-CD:2207

sparse columns, 36, 759-761, 1107-1108,
CD:1600-CD:1605

sparse file size management, 1067

spatial data types,
37, 751-752, CD:1605-CD:1614

spid data column (SQL Profiler), 1356

SPLIT RANGE, 782

SQL Browser

instances, 270-271

overview, 270

pipes, 270-271

ports, 270-271

SQL Capture, 1549

SQL Clustering, 531-534

SQL injection, 374-376, CD:1643-CD:1652

SQL_LOGIN, 296

SQL Mail, 427, 454

SQL Native Client ODBC driver, 281

SQL Native Client OLE DB provider, 280

SQL Profiler

data columns, 1356

lock events, 1355

templates, 124

SQL Server 6.5, upgrading from, 252

SQL Server 7, upgrading from, 252

SQL Server 2008 Developer Edition, 27, 32

SQL Server 2008 Enterprise Edition, 24-26

SQL Server 2008 Express Edition, 28-29, 32

SQL Server 2008 R2 Datacenter Edition,
29, 42-43

SQL Server 2008 R2 Parallel Data Warehouse,
43

SQL Server 2008 R2 Parallel Data Warehouse
Edition, 30

SQL Server 2008 Standard Edition, 23-26

SQL Server 2008 Web Edition, 27-28, 32

SQL Server 2008 Workgroup Edition, 27

SQL Server Agent, 509

alerts

defined, 449

properties, 469-472

responses, 472-474

capabilities, 449

sp helplinkedsrvlogin2430

ptg

configuring

email notification, 454

properties, 450-452

proxy accounts, 455-456

startup account, 452-453

error logs, 456-457

explained, 14-15

jobs. See jobs

operators, 449, 458-460

proxy accounts, 455-456

security, 458

SQL Server Agent Mail, 441

alert mail notifications, 443

creating alerts, 443-444

testing, 444

job mail notifications

creating jobs, 443

creating operators, 442

enabling, 442

testing, 443

SQL Server Analysis Services. See SSAS (SQL
Server Analysis Services)

SQL Server Audit, 40, 368-372

SQL Server BIDS, CD:2042-CD:2043

SQL Server Clustering

active/active configuration, 657

active/passive configuration, 657

installing, 665-666

configuring SQL Server database disks,
666-667

Connection Test Program, 681-684

failure of nodes, 679-681

MSCS, 668

network interfaces, 668

SQL Server, 668-679

MSCS, 657-665

new features, 656

problems with, 684-685

How can we make this index more useful? Email us at indexes@samspublishing.com

SQL Server Compact 3.5 Edition, 29, 32

SQL Server Configuration Manager, 14, 452

SQL Server Extended Events. See SSEE
(SQL Server Extended Events)

SQL Server Installation Center

Account Provisioning page, 205-206

Advanced menu, 211

Complete page, 210-211

Data Directories page, 206-207

Database Engine Configuration page,
205-208

Disk Space Requirements page, 203

Feature Selection page, 200-201

Installation Configuration page, 201-203

Installation Configuration Rules page, 209

Installation Rules page, 201-202

launching, 192-193

License Terms page, 197-199

Maintenance menu, 211

Product Key entry page, 197-198

Ready to Install page, 210

Server Configuration page, 203-205

Setup Role page, 200

Setup Support Files installation screen, 197

Setup Support Rules for Setup Support
Files detail, 196

Setup Support Rules for SQL Server
installation detail, 197-198

SQL Server Installation menu, 194-195

System Configuration Checker HTML report,
194-195

System Configuration Checker window, 194

Tools menu, 211

SQL Server Installation menu (SQL Server
Installation Center), 194-195

SQL Server instance architecture,
CD:2274-CD:2275

SQL Server Integration Services. See SSIS
(SQL Server Integration Services)

SQL Server Integration Services 2431

ptg

SQL Server Lock Manager, 1349-1350

SQL Server Management Studio

linked server configuration,
CD:2269-CD:2271

replication monitoring, 606-607

SQL Server Management Studio. See SSMS
(SQL Server Management Studio)

SQL Server Performance objects, 1474-1476

SQL Server PowerShell. See also PowerShell

accessing, 505

cmdlets, 508-509

defined, 505

overview, 506-507

SQL providers, 507, 515

SQL Server Agent support, 509

SQL Server Profiler. See Profiler

SQL Server Reporting Services. See SSRS
(SQL Server Reporting Services)

SQL Server sample implementations, 51-53

DSS (decision support systems) application
examples, 57

hybrid SQL Server reporting
configuration, 59-61

multidimensional OLAP cube, 58-59

OLTP (online transaction process)
application examples

OLTP ERP, 53-56

OLTP shopping cart, 56-57

SQL Server Service Broker. See Service Broker

SQL Server Utility, 43, 79-85, 1451-1455

SQL Shot, 1548

SQL statements. See specific statements

sql_variant data type, 749, 1107

SQLAgentOperatorRole, 458

SQLAgentReaderRole, 458

SQLAgentUserRole, 458

SQLCLR

context connections, 284-285

enhancements, 46

SQLCMD, 504

executing, 106-108

scripting variables with, 108-109

syntax, 105-106

SqlConnection.BeginTransaction, 1345

SqlContext object, CD:1832

SqlContext.Pipe object, CD:1832

SqlDataRecord object, CD:1833

sqldiag, 116-117, CD:2347-CD:2349

sqlmd scripts, editing, 88-89

SqlMetaData object, CD:1833

SqlMethod, CD:1849-CD:1850

SQLOLEDB, 280

sqlps, 105, 481

sqlservr, 118

SQLSetConnectAttr(), 1345

SQLSortOrder property, 728

SqlTrigger attribute, CD:1856

SqlTriggerContext attribute, CD:1856

SqlUserDefinedAggregate attribute, CD:1853

SqlUserDefinedType, CD:1845

SSADO (Sync Services for ADO.NET), CD:1817

SSAS (SQL Server Analysis Services)

cube perspectives. See cube perspectives

enhancements, 48

migrating, 253-254

new features, CD:2029

OLAP. See OLAP (online analytical
processing)

wizards, CD:2032

explained, 19-20

SSB. See Service Broker

ssbdiagnose.exe, 47, CD:1993-CD:1994

SSCM

configuring clients, 275-277

testing connectivity, 288

SSEE (SQL Server Extended Events), 1455-1457

SQL Server Lock Manager2432

ptg

actions, 1459

events, 1458

extended events and, 1460-1462

extended events sessions, 1462-1465

packages, 1457

predicates, 1459

targets, 1459

types and maps, 1460

SSIS (SQL Server Integration Services), 572,
CD:2100-CD:2105, CD:2113

architecture, CD:2105-CD:2110

Attunity CDC Suite, CD:2147

bcp utility, CD:2147-CD:2150

exporting/importing data, CD:2151-
CD:2153

file data types, CD:2153

format files, CD:2153-CD:2163

views, CD:2163

bulk-copy operations, CD:2163-CD:2164

batches, CD:2164

hints, CD:2165-CD:2166

parallel loading, CD:2164-CD:2165

configurations, CD:2108

containers, CD:2106

control flow, CD:2106

data flow, CD:2107

data flow task, CD:2107

data mining, CD:2093

data transformation requirement,
CD:2113-CD:2116

Designer,
CD:2110-CD:2112, CD:2126-CD:2135

enhancements, 47

event handlers, CD:2107

explained, 18-19

logging, CD:2109

new features, CD:2100

How can we make this index more useful? Email us at indexes@samspublishing.com

Package Execution utility

dtexec utility, CD:2135-CD:2137

dtsrun utility, CD:2135

dtutil utility, CD:2141-CD:2145

running packages, CD:2137-CD:2141

Package Execution utility, CD:2135-CD:2136

Package Upgrade Wizard, 258

packages, 1432, CD:2106-CD:2109

SSIS Wizard, CD:2115-CD:2126

tasks, CD:2106

tools, CD:2110-CD:2111

command-prompt utilities, CD:2112

Expression Builder, CD:2112-CD:2115

Import and Export Wizard,
CD:2110-CD:2111

integration services, CD:2113

Query Builder, CD:2112-CD:2114

SSIS Designer, CD:2110-CD:2112,
CD:2126-CD:2135

transformations, CD:2107

upgrading SSIS packages, 258-259

variables, CD:2109

Visual Studio Integration Services
Connection Project, CD:2145

workflows, CD:2106

XML configuration file, CD:2108

SSL (Secure Sockets Layer) 1934

SSL PORT, CD:1935

SSMS (SQL Server Management Studio),
12, 800, 1301

Activity Monitor, 75-77, 1483

backups, creating, 388-390

BIDS

developing reports with, CD:2196-
CD:2199

overview, CD:2190

client statistics, 1322-1323

configuration options, CD:2283

SSMS (SQL Server Management Studio) 2433

ptg

constraints, creating, 823-826

controls summary, CD:2202-CD:2204

creating user-defined functions, 930-933

data bars, CD:2203

data compression, managing, 1126-1127

Database Diagram Editor, 743-744

databases

creating, 718-721

database roles, 321-322

restores, 409-410

shrinking, 734-735

disk performance, monitoring, 1490

enhanced features, 45

explained, 12-14

expressions, CD:2200-CD:2202

gauges, CD:2203

Image control, CD:2203

indexes

creating, 800-803

managing, 806-807, 1183

indicators, CD:2203-CD:2207

integrated help, 68-70

integrating with source control, 95-97

Line control, CD:2203

Log File Viewer, 77-79

logins

deleting, 317

managing, 313-317

modifying, 316

Map control, CD:2203

memory, monitoring, 1486

Missing Index Hints, 1320

multiserver queries, 101-102

new features, 41-42, 63-64

Object Explorer, 73-75

creating tables, 742-743

data types, 750

dropping tables, 773-774

modifying tables with Table Designer,
769-772

permissions, managing

at database level, 326-328

at object level, 328-329

at server level, 323-325

plan guides, creating and managing,
1297-1298

project management, 93-95

Query Analyzer, 1302-1307

Query Editor

disconnected editing, 88

editing sqlmd scripts, 88-89

IntelliSense, 87

overview, 85-87

performance, 91-92

Query Designer, 92-93

query types, 87-88

regular expressions and wildcards,
89-91

Rectangle control, CD:2203

registered servers, 71-72

reports. See reports

resource pools

creating, 1500-1502

deleting, 1515

security

built-in roles and permissions,
CD:2234-CD:2235

role assignments, CD:2234

security roles, CD:2234

system roles and permissions, CD:2235

Shrink File dialog, 1036

Sparklines, CD:2203-CD:2207

spatial data support in, CD:1611-CD:1614

SQL Server Utility, 79-85

SSMS (SQL Server Management Studio)2434

ptg

stored procedures. See stored procedures

Subreport control, CD:2204

subscriptions, CD:2235-CD:2236

data-driven subscriptions, CD:2236-
CD:2237

delivery architecture, CD:2237

T-SQL debugging, 100-101

Tablix, CD:2199-CD:2202

TDE (transparent data encryption) in,
352-353

Template Explorer, 97-99, 874

templates, 97-100

Text Box control, CD:2204

transaction logs, 394

user-defined functions

modifying, 939-940

viewing, 939-940

users, managing, 318-320

views, 853

window management, 65-67

workload groups

creating, 1503-1505

deleting, 1514-1515

SSRS (SQL Server Reporting Services)

architecture, CD:2179-CD:2181

configuring

databases, CD:2187-CD:2188

email and execution accounts, CD:2189

encryption, CD:2189CD:2190

overview, CD:2186

Report Manager, CD:2189

scale-out architecture configuration,
CD:2190

Web Service, CD:2186-CD:2187

Windows Service, CD:2186

discontinued features, CD:2170-CD:2172

encryption, CD:2189-CD:2190

explained, 20-22

How can we make this index more useful? Email us at indexes@samspublishing.com

expressions

enhancements to, CD:2179

simple expressions, CD:2178

installing

file locations, CD:2184-CD:2185

installation sequence,
CD:2182-CD:2184

new features, 44-45

overview, CD:2169

performance and monitoring tools

execution log, CD:2240

performance counters, CD:2240

server trace log, CD:2239-CD:2240

windows event log, CD:2240

performance and monitoring tools, CD:2239

RCE (Report Customization Extension),
CD:2179

RDL (Report Definition Language), CD:2175

Report Builder, CD:2176, CD:2226

report data source, CD:2175

report design enhancements,
CD:2172-CD:2175

Report Designer

Chart control, CD:2175

data bar, CD:2174

gauge panels, CD:2173

gauges, CD:2173

indicator, CD:2173

Map control, CD:2174

Sparklines, CD:2174

Tablix, CD:2173

Report Manager, CD:2177, CD:2189

report parts, CD:2175

report processing and rendering, CD:2176

Report Server Service, CD:2178

shared datasets, CD:2175

SharePoint integration, CD:2177

upgrading

SSRS (SQL Server Reporting Services) 2435

ptg

in-place upgrades, 255-257

migrating to Reporting Services 2008,
257-258

Standard Edition (SQL Server 2008), 23-26

Standard Generalized Markup Language
(SGML), CD:1866

standard views, 844

STANDBY, 395, 406-408

standby servers, 424-425

star schema data warehouse for global
computer sales, 57-58

START parameter (ALTER FULLTEXT INDEX),
CD:2012-CD:2013

Start-Service cmdlet, 513

Start-Transcript cmdlet, 491

__$start_lsn column (CDC table), CD:1615

startup accounts for SQL Server Agent,
452-453

startup procedures, 911-915

stateless application design, 1545

statements. See specific statements

statistics

columns, generating, 1161-1169

filtered statistics, 1198-1199

indexes, 1153-1155

generating, 1161-1169

histograms, 1155-1158

maintaining with Maintenance Plan Wizard,
1077-1080

problems with query optimization, 1274-
1275

query statistics

datediff(), 1336-1337

STATISTIC IO, 1332-1333

STATISTICS IO, 1330-1332

STATISTICS PROFILE, 1337

STATISTICS TIME, 1333-1336

STATISTICS XML, 1337-1338

tuning guidelines, 1540

STATISTICS IO, 1330-1331

analyzing output, 1332-1333

LOB reads, 1332

logical reads, 1331

physical reads, 1332

read-ahead reads, 1332

scan count, 1331

STATISTICS_NO_RECOMPUTE argument
(CREATE INDEX), 798

STATISTICS PROFILE, 1299, 1337

STATISTICS TIME, 1299, 1333-1336

STATISTICS XML, 1337-1338

STATS option

BACKUP DATABASE, 393

RESTORE DATABASE, 407

status of procedures, returning, 904-905

Status property, 728

SteelEye LifeKeeper, CD:2350

stop lists, CD:2024

STOP ON ERROR option

BACKUP DATABASE, 392

RESTORE DATABASE, 405

STOP parameter (ALTER FULLTEXT INDEX),
CD:2012-CD:2013

STOPAT option (RESTORE DATABASE), 407

STOPATMARK option (RESTORE DATABASE),
407

STOPBEFOREMARK option
(RESTORE DATABASE), 407

stopping server-side traces, 155-156

storage, 710-711

for data columns, CD:1597-CD:1599

Database Engine, 10

FILESTREAM storage, 207-208, 759,
CD:1592-CD:1593

database setup, CD:1596

enabling, CD:1593-CD:1596

format files, CD:2155-CD:2156

new features, 36-37

SSRS (SQL Server Reporting Services)2436

ptg

stored procedures. See also specific procedures

advantages of, 870-871

analyzing

with Query Analyzer, 1315-1316

with SQL Server Profiler, 157-158

calling from transactions,
CD:1735-CD:1738

CLR stored procedures, CD:1779

adding to databases, CD:1780-CD:1781

versus T-SQL stored procedures,
CD:1781

creating

custom stored procedure templates,
875-879

example, 872

in SSMS, 872-874

syntax, 871

for web services, CD:1931

cursors, CD:1743-CD:1753

debugging, 905-908

deferred name resolution, 885-888

defined, 869

dynamic SQL, CD:1774-CD:1779

errors, CD:1738-CD:1741

executing

execution context and EXECUTE AS,
883-885

via linked servers, CD:2268

in SSMS, 881-882

syntax, 880-881

extended stored procedures

adding to SQL Server, CD:1782-CD:1783

obtaining information on, CD:1783

provided with SQL Server, CD:1783-
CD:1784

xp cmdshell, CD:1784-CD:1786

for managing logins, 317

identifying objects references in, 887-888

How can we make this index more useful? Email us at indexes@samspublishing.com

input parameters

explained, 893-894

passing object names as, 898-899

setting default values for, 895-898

table-valued parameters, 901-902

wildcards in, 899-900

managed database objects,
CD:1829-CD:1835

modifying

with ALTER PROCEDURE, 891-892

with SSMS, 892-893

monitoring recompilation,
CD:1767-CD:1773

nested stored procedures,
CD:1753-CD:1758

new features, 869-870

output parameters, 902-903

performance, CD:1764-CD:1765

automatic query plan recompilation,
CD:1767

query plan caching, CD:1765

shared query plans, CD:1766

SQL Server procedure cache, CD:1766

remote stored procedures, CD:1764

returning procedure status, 904-905

rewriting as functions, 942-943

running web methods bound to stored,
CD:1942-CD:1947

system stored procedures, 181-183

categories of, 909-910

explained, 908-909

table of, 910

T-SQL

calling from transactions,
CD:1735-CD:1738

coding guidelines, CD:1733-CD:1735

errors, CD:1738-CD:1741

source code control, CD:1741-CD:1742

table-valued parameters, CD:1576-CD:1580

stored procedures 2437

ptg

temporary stored procedures, 879-880

temporary tables, CD:1759-CD:1760

performance tips, CD:1760-CD:1762

table data type, CD:1762-CD:1763

transactions, 1009-1014

tuning guidelines, 1543-1544

viewing, 889-891

Stream Aggregate (Query Analyzer), 1314

streams, 1272

strings

joining, 493

summary statistics, 1169

structures. See data structures

stub, CD:1929

subquery processing

correlated subqueries, 1250-1251

IN, ANY, and EXISTS subqueries, 1248

materialized subqueries, 1248-1250

Subreport control, CD:2204

subscriptions, 562-563

anonymous subscriptions, 563

creating for data replication, 594-600

distribution database, 564-565

reports

data-driven subscriptions,
CD:2236-CD:2237

delivery architecture, CD:2237

reports, CD:2235-CD:2236

subscription servers, 550

subtrees in hierarchies, reparenting, CD:1590

summary data, denormalization, 1411

Surface Area Configuration (SAC) tool, 105, 705

Surface Area Configuration checks, 705

SUSER_NAME() function, 1507

suspect pages, 412

SWITCH, 789

switches, 1535

switching table partitions, 785-789

SWITCHOFFSET(), 38, CD:1573

Symantec, CD:2350

symmetric key encryption, 338

Sync Services for ADO.NET (SSADO), CD:1817

synchronization, CD:1630. See also Change
Tracking

manual synchronization, 567

snapshot agents, 566-567

synchronous operations, 622

sys users, 300

sys.conversation groups, CD:1994

sys.databases catalog view, 729

sys.dm broker activated tasks, CD:1995

sys.dm broker connections, CD:1995

sys.dm broker forwarded messages, CD:1995

sys.dm broker queue monitors, CD:1995

sys.dm broker transmission status, CD:1995

sys.dm_db_index_physical_stats, 1174

sys.dm_exec_cached_plans, 1258-1260, 1511

sys.dm_exec_cached_plan_dependent _objects,
1258

sys.dm_exec_plan_attributes, 1258, 1265-1266

sys.dm_exec_query_memory_grants, 1511

sys.dm_exec_query_plan, 1328-1329

sys.dm_exec_query_resource_semaphores,
1511

sys.dm_exec_query_stats, 1258, 1261-1265

sys.dm_exec_requests, 1511

sys.dm_exec_session, 1511

sys.dm_exec_sql_text, 1258-1260

sys.dm_os_memory_brokers, 45, 1511

sys.dm_os_memory_nodes, 45

sys.dm_os_nodes, 46

sys.dm_os_process_memory, 46

sys.dm_os_sys_memory, 46

sys.dm_resource_governor_configuration, 1510

sys.dm_resource_governor_resource_pools,
1510

stored procedures2438

ptg

sys.dm_resource_governor_workload_groups,
1509

sys.dm_tran_locks, 1350-1354

sys.endpoint webmethods, CD:1954

sys.endpoints, CD:1954

sys.filegroups system catalog view, 1099

sys.indexes, 1280-1282

sys.master files, 712

sys.plan_guides catalog view, 1294-1295

sys.service contract message usages, CD:1995

sys.service contracts, CD:1995

sys.service message types, CD:1995

sys.service queues, CD:1994

sys.services, CD:1994

sysadmin, 303

SYSDATETIME(), 38, CD:1573

SYSDATETIMEOFFSET(), 38, CD:1573

sysfiles table, 1093-1094

sysjobstepslogs table, 464

sysmail configuration, 445-446

sysmail configure sp, 433

sysmail delete account sp, 432

sysmail delete log sp, 433, 447

sysmail delete principalprofile sp, 432

sysmail delete profile sp, 432

sysmail delete profileaccount sp, 432

sysmail faileditems, 447

sysmail help queue sp, 447

sysmail help status sp, 435, 447

sysmail principalprofile, 445

sysmail profile, 445

sysmail profileaccount, 446

sysmail server, 445

sysmail servertype, 445

sysmail start sp, 435

sysmail stop sp, 435

How can we make this index more useful? Email us at indexes@samspublishing.com

sysmail unsentitems, 447

sysmail update account sp, 432

sysmail update principalprofile sp, 432

sysmail update profile sp, 432

sysmail update profileaccount sp, 432

sysmessages, 470-471

sysopentapes, 412

system administrators

new system administration features, 165

responsibilities of, 166

system catalogs, CD:1994-CD:1995

System Configuration Checker HTML report,
194-195

System Configuration Checker window, 194

System Configuration Checker. See SCC
(System Configuration Checker)

system databases, 709

associated database files, 167

backups, 403

distribution database, 168

explained, 166-167

maintaining, 169-170

master database, 167

model database, 168

msdb database, 168

resource database, 168

restoring, 421-423

tempdb database, 169

system interdependencies, 1521-1522

system stored procedures, 181-183, 910

catalog views and, CD:1954-CD:1955

categories of, 909-910

explained, 908-909

table of, 910

system tables, 170-171, 412-413

system test and acceptance stage (tuning
methodology), 1527, 1533

system test and acceptance stage (tuning methodology) 2439

ptg

system views

catalog views, 175-177

compatibility views, 172-175

DMVs (dynamic management views),
179-181

explained, 171-172

information schema views, 177-178

monitoring disk system items, 1491

monitoring memory items, 1487

monitoring processor items, 1483

System.Data namespace (.NET Framework),
CD:1788

System.Data.SqlClient namespace (.NET
Framework), CD:1788

System.Xml namespace (.NET Framework),
CD:1788

SystemDataAccess parameter, CD:1836,
CD:1849

SYSUTCDATETIME() function, 38, CD:1573

T
T-SQL

auditing with, 372-374

backups, 390-393

CDC (Change Data Capture),
CD:1614-CD:1626

Change Tracking versus, CD:1627

DDL changes to source, CD:1626

enabling for databases, CD:1617

enabling for tables, CD:1617-CD:1619

querying CDC tables, CD:1619-CD:1626

tables for, CD:1615-CD:1617

Change Tracking, CD:1627-CD:1635

identifying changed columns,
CD:1633-CD:1634

identifying tracked changes,
CD:1630-CD:1633

implementing, CD:1628-CD:1630

performance overhead of,
CD:1634-CD:1635

coding recommendations

avoiding SQL injection attacks,
CD:1643-CD:1652

commenting, CD:1652-CD:1653

explicit column lists, CD:1638-CD:1640

qualifying object names with,
CD:1640-CD:1643

compound operators, CD:1568-CD:1569

constraints, 822-823

CONTEXT INFO setting, CD:1671-CD:1673

Data Collector, managing, 1443-1446

databases

creating, 721-722

managing database roles, 322

options, 725

restores, 404-407

date and time data types,
CD:1572-CD:1576

date calculations, CD:1663-CD:1666

de-duping data with ranking functions,
CD:1684-CD:1687

debugging, 41, 100-101, 905-908

error handling, CD:1724-CD:1727

execution engine, 242

FILESTREAM storage, CD:1592-CD:1593

for data columns, CD:1597-CD:1599

database setup, CD:1596

enabling, CD:1593-CD:1596

full-text indexes, creating

ALTER FULLTEXT INDEX,
CD:2010-CD:2013

CREATE FULLTEXT CATALOG,
CD:2003-CD:2005

CREATE FULLTEXT INDEX,
CD:2005-CD:2010

managing MSFTESQL, CD:2013-CD:2014

system views2440

ptg

generating statements, CD:1682-CD:1683

GROUPING function, CD:1669-CD:1671

Hierarchyid data type, CD:1580-CD:1592

creating hierarchies, CD:1580-CD:1581

modifying hierarchies, CD:1587-CD:1592

populating hierarchies, CD:1581-
CD:1583

querying hierarchies, CD:1583-CD:1587

indexes

creating, 795-800

managing, 803-806

Insert over DML, CD:1559-CD:1561

logins, managing, 317-318

mail objects, deleting, 432-433

modifying tables

adding and dropping columns, 767-768

changing column properties, 766-767

new features, 37-38

outer joins, CD:1673-CD:1674

full outer joins, CD:1680-CD:1682

nested outer joins, CD:1679-CD:1680

WHERE clause versus, CD:1675-
CD:1679

performance

avoiding unnecessary function
executions, CD:1656

counters, 1477

cursors, CD:1656-CD:1659

DISTINCT, CD:1654

IF EXISTS, CD:1654

ORDER BY, CD:1654

temporary tables versus table variables,
CD:1654-CD:1656

UNION versus UNION ALL, CD:1654

UPDATE, CD:1659-CD:1663

permissions, managing, 330-331

resource pools

creating, 1502

deleting, 1516

How can we make this index more useful? Email us at indexes@samspublishing.com

row constructors, CD:1569-CD:1572

running ad hoc T-SQL batches from web
services, CD:1947-CD:1951

sparse columns, CD:1600-CD:1605

spatial data types, CD:1605-CD:1614

statements. See specific statements

stored procedures. See stored procedures

T-SQL functions versus CLR functions,
946-947

table-valued parameters, CD:1576-CD:1580

tables, creating, 744-747

transaction logs

creating, 394-395

restores, 407-408

tuning guidelines, 1541-1545

updating Database Mail, 432-433

user-defined functions

creating, 925-930

modifying, 939

viewing, 936-939

users, managing, 320-321

views

altering, 852

creating, 845-849

dropping views, 853

workload groups

creating, 1505

deleting, 1514-1515

viewing, 1505-1506

xml data type, CD:1687-CD:1688

Table control (SSMS) 2202

Table Delete (Query Analyzer), 1314

Table Designer, 769-772

table expressions. See CTE
(common table expressions)

table hints, 1285

locking, 1393-1395

lock granularity hints, 1395

table hints 2441

ptg

lock type hints, 1395-1396

transaction isolation–level hints,
1393-1395

Query Optimizer, 1280-1282

Table Insert (Query Analyzer), 1314

Table locking level (SQL Server), 1365

Table Scan (Query Analyzer), 1314

table scans, 1132, 1227-1228

Table Spool (Query Analyzer), 1312

Table Update (Query Analyzer), 1314

table-valued functions, 1314

inline table-valued functions, 923-924

multistatement table-valued functions,
924-925

table-valued parameters, 38, 901-902,
CD:1576-CD:1580

TableDefinition parameter (TVFs), CD:1839

tablediff, 112-115

tables

base tables, 854-858

CDC tables, CD:1615-CD:1626

clustered tables, 1130-1131

columns. See columns

comparing with tablediff, 112-115

constraints, 763-765

creating, 515-516

with Database Diagram Editor, 743-744

with Object Explorer, 742-743

with sparse columns, CD:1601

with T-SQL, 744-747

CTE (common table expressions),
CD:1698-CD:1708

dropping, 773-774

enabling CDC for, CD:1617-CD:1619

explained, 1127-1129

fragmentation, 1169

getting table properties, 520

heap tables, 1129-1130

importing trace files into, 135-136

indexes. See indexes

inserting trace data into trace tables,
136-137

location, defining, 761-763

modifying, 765-766

with database diagrams, 772-773

with Object Explorer and Table Designer,
769-772

with T-SQL, 766-768

new features, 741-742

partitions. See partitions

in reports, CD:2210-CD:2211

row offset table, 1108-1109

saving trace output to, 134

synchronizing, CD:1552-CD:1559

sysfiles, 1093-1094

sysjobstepslogs, 464

system tables, 170-171, 412-413

temporary tables. See temporary tables

tuning guidelines, 1537-1539

user-defined table types, CD:1577

variables

temporary tables and common table,
CD:1654-CD:1656

tuning guidelines, 1542

TABLESAMPLE clause, CD:1727-CD:1730

Tablix, CD:2173, CD:2199-CD:2202

TABLOCK optimizer hint, 1395, CD:2166

TABLOCKX optimizer hint, 1395

Tabular Data Stream (TDS), 267, CD:1929

tape devices, 386

TARGET, CD:1970

Target parameter (SqlTrigger), CD:1856

Target Server Wizard, 477

target servers, 476-477

TARGET SIZE, 733

targets, 693, 1459

table hints2442

ptg

tasks (SSIS), CD:2106

TDE (transparent data encryption), 39

backing up TDE certificates and keys,
353-355

compared to column-level encryption,
356-357

explained, 350-351

implementing, 351-352

limitations, 355-356

managing in SSMS, 352-353

TDS (Tabular Data Stream), 267, CD:1929

tempdb database,
169, 1536, CD:1760-CD:1762

Template Explorer, 97-99, 874, 953

templates

custom function templates, 933-936

custom stored procedure templates,
875-879

data region templates, CD:2173, CD:2199

Policy-Based Management sample
templates, 704-705

SQL Profiler templates, 124

SSMS templates, 97-100

temporary stored procedures, 879-880

temporary tables

creating, 789-790

stored procedures

performance tips, CD:1760-CD:1762

table data types, CD:1762-CD:1763

stored procedures, CD:1759-CD:1760

table-valued parameters versus, CD:1580

table variables and common table,
CD:1654-CD:1656

tuning guidelines, 1542

terminators, CD:2158-CD:2162

testing

alerts, 444

connectivity, 288-289

Database Mail setup, 433-434

How can we make this index more useful? Email us at indexes@samspublishing.com

failover from principal to mirror, 645-646

job-completion notification, 443

testing and coding stage (tuning),
1526-1527, 1532

Text Box control, CD:2204

text data type, 749

TextData data column (SQL Profiler), 1356

third normal form, 1407

third-party disaster recovery alternatives,
CD:2350-CD:2351

three-permission sets, CD:1827-CD:1829

time

PowerShell date/time calculations, 502-503

time data types, 37, 749, 751,
CD:1572-CD:1575-CD:1576

time series, CD:2085

time slices, 659

timeout intervals, 1380-1381

timestamp data type, 749

tinyint data type, 750

TODATETIMEOFFSET(), 38, CD:1573

tokens, 606

tools. See specific tools

Tools menu (SQL Server Installation Center),
211

ToolTips, 1304-1307

Top (Query Analyzer), 1314

TOP clause, CD:1689-CD:1693

topological sorting, CD:1581

Trace Name, 125

traces

1204 trace flags, 1386-1388

1222 trace flags, 1388-1390

analyzing output with Database Engine
Tuning Advisor, 138

creating with SQL Server Profiler, 123-125

data columns, 127-130

events, 125-127

traces 2443

ptg

executing, 132

exporting, 132

filters, 130-132

importing, 135-136

inserting trace data into trace tables,
136-137

monitoring running traces, 153-154

replaying trace data, 138-140

saving, 132

Profiler GUI output, 134-135

to files, 133

to tables, 134

server-side traces

defining, 140-141, 148-152

stopping, 155-156

trace events and categories, 141-147

tracked changes, identifying, CD:1630-CD:1633

traffic, tuning guidelines, 1535

@@trancount function, 1001, 1003, CD:1735

Transact-SQL. See T-SQL

transaction isolation–level hints, 1393-1395

transaction logs, 393, 710, 716-717

backups, 382, 418

creating with SSMS, 394

creating with T-SQL, 394-395

data rows, 1104

full database backups, 396-397

restoring, 416, 419

restoring with T-SQL, 407-408

Transaction.Current object, CD:1861

transactional replication, 16, 573-575

transactions

ACID properties, 996

batches, 1007-1009

bound connections, 1039-1040

calling stored procedures from,
CD:1735-CD:1738

coding, 1022-1023

defined, 52, 995

distributed transactions

linked servers, CD:2252-CD:2253

managing, 1040

explicit transactions, 997

implicit transactions, 997

isolation levels, 1342-1344

dirty reads, 1343

lost updates, 1343

nonrepeatable reads, 1343

phantom reads, 1343

read committed isolation, 1344-1345

read committed snapshot isolation,
1345-1346

read uncommitted isolation, 1344

repeatable read isolation, 1346

serializable read isolation, 1346-1347

snapshot isolation, 1347-1349

locks, 1021-1022

long-running transactions, 1037-1039

managed database objects, developing,
CD:1861-CD:1863

nested transactions, CD:1736

processing, 997, 1253

AutoCommit, 997-998

explicit user-defined transactions,
998-1003, 1006

implicit transactions, 1003-1006

stored procedures, 1009-1014

transaction logging, 1023-1037

transaction management

AutoCommit, 997-998

batches, 1007-1009

bound connections, 1039-1040

coding, 1022-1023

distributed transactions, 1040

explicit user-defined transactions,
998-1006

traces2444

ptg

implicit transactions, 1003-1006

locks, 1021-1022

long-running transactions, 1037-1039

new features, 995

overview, 996-997

recovery process, 1023-1030

stored procedures, 1009-1014

transaction logging, 1023-1037

transaction processing, 997

triggers, 1014-1015

multistatement transactions, 1017-1019

savepoints, 1019-1020

transaction nesting, 1015-1017

tuning guidelines, 1544-1545

TransactionScope object, CD:1862

transformations (SSIS), CD:2107

transmission queues, CD:1974

transparent data encryption. See TDE
(transparent data encryption)

tree relationships, expanding with recursive
procedures, CD:1756

TriggerAction parameter (SqlTriggerContext),
CD:1856

triggers

AFTER triggers

combining with INSTEAD OF triggers,
971-972

example, 954-955

executing, 955

explained, 953-954

special considerations, 956-957

trigger firing order, 956

versus INSTEAD OF triggers, 970

CLR triggers, 988-991

DDL triggers. See DDL, triggers

DML triggers

AFTER triggers, 953-957

cascading deletes, 963-965

How can we make this index more useful? Email us at indexes@samspublishing.com

cascading updates, 965-966

creating, 951-953

explained, 950-951

inserted and deleted tables, 957-961

referential integrity, 961-963

INSTEAD OF

combining with AFTER triggers, 971-972

example, 968

executing, 968-970

explained, 967

restrictions, 975

versus AFTER triggers, 970

views, 972-975

managed triggers, CD:1856-CD:1861

nested triggers, 991-992, CD:2306

new features, 950

recursive triggers, 992-993

troubleshooting, 1278

tuning guidelines, 1538

trivial plan optimization, 1252

troubleshooting

applications with ssbdiagnose.exe,
CD:1993-CD:1994

connectivity issues, 287

FTS (Full-Text Search), CD:2026-CD:2028

incorrect configuration options, CD:2283

query optimization

index design, 1275

large complex queries, 1277-1278

search arguments, 1276-1277

statistics, 1274-1275

triggers, 1278

replication failures, 608

TRUNCATE, 333

TRUNCATE TABLE, 956

TRUNCATEONLY option
(DBCC SHRINKDATABASE), 732

TRUNCATEONLY option (DBCC SHRINKDATABASE) 2445

ptg

TRY, CD:1738

TRY...CATCH, CD:1724-CD:1727, CD:1738

TSQL, 124

TSQL Default TCP, 269

TSQL Duration, 124

TSQL Grouped, 124

TSQL Locks, 124

TSQL Replay, 124

TSQL SPs, 124

tuning. See also performance

architectural layers, 1520-1521

guidelines, 1534

for applications, 1545

database-level guidelines, 1537

for distributed data, 1546

for hardware and operating system,
1534-1535

for high availability, 1546-1547

for indexing, 1539-1540

for SQL Server instance, 1536-1537

for Transact-SQL, 1541-1545

for views, 1541

table-level guidelines, 1537-1539

methodology, 1522-1523

for existing implementations, 1528-1533

for new implementations, 1523-1528

primary handles for, 1521-1522

system interdependencies in, 1521-1522

tools for, 1547-1549

Microsoft tools, 1547-1548

third-party tools, 1548-1549

TVFs (table-valued UDFs), CD:1839-CD:1844

two-phase commit, 572

two-way synchronization applications, CD:1627

TYPE COLUMN parameter (CREATE FULLTEXT
INDEX) 2006

types. See specific types

U
UA (SQL Server Upgrade Advisor), 228-229

Analysis Wizard, 230-235

installing, 229

Report Viewer, 235

system requirements, 229-230

UDAs (user-defined aggregates),
CD:1853-CD:1856

UDFs (user-defined functions)

managed database, CD:1835-CD:1844

scalar UDFs, CD:1835-CD:1839

TVFs (table-valued UDFs), CD:1839-
CD:1844

UDTs (user-defined types), 754, CD:1844-
CD:1852

UMDW database, 1455

UNC (Universal Naming Convention), 386

unconditional workflows, CD:2106

undo phase (transaction recovery process),
1029

uniform extent, 711

UNION

query processing, 1268

tuning guidelines, 1542

versus UNION ALL, CD:1654

UNION ALL, 854

tuning guidelines, 1542

versus UNION, CD:1654

UNION hints, 1283

UNIQUE keyword, 764, 796, 815-816

uniqueidentifier data type, 750

unit testing, 1526, 1532

Universal Naming Convention.
See UNC (Universal Naming Convention)

UNLOAD option

BACKUP DATABASE, 393

RESTORE DATABASE) 407

TRY2446

ptg

UNPIVOT clause, CD:1718-CD:1721

unregistering linked servers, CD:2261

UNSAFE, 945, CD:1780

unstructured data in FILESTREAM storage,
CD:1592-CD:1593

database setup, CD:1596

enabling, CD:1593-CD:1596

for data columns, CD:1597-CD:1599

unused indexes, identifying, 1205-1207

update locks, 1360-1361

update performance indexes, 1199-1201

UPDATE, 959-961, CD:1659-CD:1663

__$update_mask column (CDC table), CD:1616

UPDATE STATISTICS, 1161-1164, 1216

Updateability property, 728

updating

checking for column updates, 959-961

column statistics, 1161-1169

Database Mail with T-SQL, 432-433

index statistics, 1161-1169

rows

forward pointers, 1146

in-place updates, 1145

with LINQ to SQL, CD:1802

not-in-place updates, 1145-1146

subscribers replication model, 560-561

UPDLOCK optimizer hint, 1395

Upgrade Advisor. See UA (SQL Server Upgrade
Advisor)

upgrading

Analysis Services, 253-254

with configuration files, 250-251

DTS, 259-261

from SQL Server 7 or SQL Server 6.5, 252

new features, 227-228

Reporting Services

in-place upgrades, 255-257

migrating to Reporting Services 2008,
257-258

How can we make this index more useful? Email us at indexes@samspublishing.com

side-by-side migration. See side-by-side
migration

slipstreaming upgrades, 251-252

SSIS packages, 258-259

Upgrade Advisor. See UA (SQL Server
Upgrade Advisor), 228

upgrading in-place

SQL Server 2008 upgrade matrix,
246-250

upgrading database engine, 243-246

upgrade options, CD:1998-CD:1999

Usage-Based Optimization Wizard, CD:2080

USE PLAN, 1287-1290

USE PLAN N hints, 1285

user CALs, 31

user configurable events, 163

user connections configuration option,
CD:2313-CD:2314

user databases, 709

user-defined counters, 1476-1477

user-defined data types, 753-754

user-defined functions. See UDFs
(user-defined functions)

user-defined roles, 307-309

user-defined types (UDTs), 754, CD:1577

user options configuration option,
CD:2315-CD:2316

UserAccess property, 728

users

dbo users, 299

delivering data to, CD:2076

explained, 298-299

guest users, 299-300

INFORMATION_SCHEMA users, 300

logins, 298

managing

with SSMS, 318-320

with T-SQL, 320-321

users 2447

ptg

SQL Server performance counters, 1492

sys users, 300

user/schema separation, 301-302

user-specific data limitations, CD:2239

USING clause (MERGE statement), CD:1552

utilities. See specific utilities

V
valid documents (XML), CD:1866

validating plan guides, 1294

validation and execution phase (dtexec) 2137

ValidationMethodName parameter
(SqlUserDefinedType), CD:1845

VALUE secondary index (XML) 1922

value() method, CD:1900, CD:1910, CD:1923

VALUES clause

in MERGE statement, CD:1571

in views, CD:1570

varbinary data type,
750-752, CD:1688-CD:1689

varchar data type, 750-752, CD:1688-CD:1689

variables

$_ special variable, 493

assignment

in DECLARE statement, CD:1568

in UPDATE statement, CD:1659-CD:1663

CURSOR, CD:1748-CD:1753

explained, 491-492

joining, 493

scripting with sqlcmd, 108-109

SSIS, CD:2109

verifying

application of plan guides, 1296-1297

packages, CD:2141-CD:2144

VeriSign, 278

Veritas Storage Replicator, CD:2350

Veritas Volume Replicator, CD:2350

version numbers in Change Tracking, CD:1633

Version property, 728

vertical data partitioning, 1413-1414

vertical filtering, 592-594

VHD (Virtual Hard Disk), 542

VIEW DEFINITION, 312

View Designer, 849-851

VIEW METADATA, 849

viewing

Data Collector Sets in Performance Monitor,
1472-1473

DDL triggers with catalog views, 987

graphical execution plans, 1317

job history, 468-469

last generated report, 234

linked servers, CD:2260-CD:2261

lock activity

Performance Monitor, 1357-1359

SQL Server Profiler, 1355-1357

mail configuration objects, 445-446

mail message data, 446-447

partitioned table information, 781

SQL Server Agent error log, 456-457

stored procedures, 889-891

user-defined functions

with SSMS, 939-940

with T-SQL, 936-939

workload groups, 1505-1506

views. See also specific views

altering with T-SQL, 852

bcp utility, CD:2163

catalog views, CD:1954-CD:1955

controlling access to data, 842-844

creating with T-SQL, 845-847

ENCRYPTION, 847-848

SCHEMABINDING, 848

users2448

ptg

VIEW METADATA, 849

WITH CHECK OPTION, 849

creating with View Designer, 849-851

data abstraction, 841-842

data modifications and, 853-854

defined, 837-838

distributed partitioned view, 975

dropping, 853

dynamic management views, 45-46

focusing on specific data, 840-841

indexed views,
809-810, 844, 860, 1192-1193

creating, 861-863

expansion, 866-867

performance and, 863-866

INSTEAD OF triggers, 972-975

managing, 852-853

new features, 837

partitioned views, 844

base tables, 854-858

distributed partitioned views, 859-860

modifying data through, 858-859

restrictions, 844-845

simplifying data manipulation, 839-840

standard views, 844

system views. See system views

tuning guidelines, 1541

VALUES clause in, CD:1570

Windows Performance Monitor, 1466-1469

Virtual Hard Disk (VHD), 542

Virtual Machine Monitor (VMM), 542

Virtual Server, 541-542

virtual server licensing, 33-34

virtualization, 33

Visual Studio, CD:1829, CD:2008

Visual Studio Integration Services Connection
Project, CD:2145

How can we make this index more useful? Email us at indexes@samspublishing.com

Visual Studio Tools for Applications (VSTA), 47

VMM (Virtual Machine Monitor), 542

VSTA (Visual Studio Tools for Applications), 47

W
W3C (World Wide Web) 1928

Web Edition (SQL Server 2008), 27-28, 32

web services

catalog views and system stored proce-
dures, CD:1954-CD:1955

configuring, CD:2186-CD:2187

controlling access permissions,
CD:1955-CD:1956

creating, CD:1930-CD:1934

AS HTTP keyword group,
CD:1934-CD:1937

authorization, CD:1933

endpoints, CD:1931-CD:1933

FOR SOAP keyword group,
CD:1938-CD:1942

stored procedures, CD:1931

examples

calling web methods–bound stored,
CD:1951-CD:1953

running ad hoc T-SQL batches from web,
CD:1947-CD:1951

running web methods bound to stored,
CD:1942-CD:1947

history and overview, CD:1928-CD:1929

limitations, CD:1956-CD:1957

migration path, CD:1928

new features, CD:1927-CD:1928

patterns, CD:1929-CD:1930

Web Services Description Language (WSDL)
1928

Web Sites Properties dialog, CD:1938

WEBMETHOD, CD:1938-CD:1940

WEBMETHOD 2449

ptg

weightedsearches, CD:2022

well formed documents (XML), CD:1866

Well-Known Binary (WKB), CD:1606

Well-Known Text (WKT), CD:1606

-whatif parameters, 503

WHEN MATCHED clause (MERGE statement),
CD:1552

WHEN NOT MATCHED BY SOURCE clause
(MERGE statement),, CD:1553

WHEN NOT MATCHED BY TARGET clause
(MERGE statement),, CD:1552

WHERE argument, 797

outer joins versus, CD:1675-CD:1679

query() method, CD:1905

search argument problems, 1276-1277

Where-Object cmdlet, 499

wide indexes, 1191-1192

wildcards

in Query Editor, 89-91

in stored procedure input parameters,
899-900

window management (SSMS), 65-67

Windows Authentication mode, 294, 313

windows event log, CD:2240

Windows Firewall, 288

WINDOWS GROUP, 296

Windows Installer 3.1, 271

WINDOWS LOGIN, 297

Windows Management Instrumentation (WMI),
484-485, CD:2181

Windows Performance Monitor, 1465-1466

accessing performance counters, 1477

Data Collector Sets, 1469-1472

running, 1472

viewing, 1472-1473

performance counters, 1474-1476

monitoring disk systems, 1489-1490

monitoring memory, 1486-1487

monitoring network interfaces,
1478-1480

monitoring processors, 1480-1485

reasons for using, 1473-1474

replication monitoring, 610-611

user-defined counters, 1476-1477

views, 1466-1469

Windows PowerShell. See PowerShell

Windows Service, CD:2186

Windows Service Control Manager, 452

WITH, CD:1698, CD:1975

WITH ACCENT_SENSITIVITY, CD:2004

WITH CHECK OPTION, 849

WITH CLEANUP, CD:1979

WITH MARK, 999

WITH RECOMPILE, CD:1771

witness database server, 620, 622

wizards. See specific wizards

WKB (Well-Known Binary), CD:1606

WKT (Well-Known Text), CD:1606

WMI (Windows Management Instrumentation),
484-485, CD:2181

word breakers, CD:2000-CD:2001

workflows (SSIS), CD:2106

Workgroup Edition (SQL Server 2008), 27

WorkgroupClassifier() function, 1508

workload groups

creating

in SSMS, 1503-1505

in T-SQL, 1505

deleting, 1514-1515

explained, 1496

viewing, 1505-1506

World Wide Web Consortium (W3C) 1928

write-ahead logs, 717

Write-Host cmdlet, 490

WRITETEXT, 956

weightedsearches2450

ptg

WSDL (Web Services Description Language),
CD:1928, CD:1941

WSDL option (WEBMETHOD) 1940

X
XLOCK hint, 1396, CD:1661

XML, CD:1866

attribute-centric XML shape, CD:1867

calling web methods–bound stored
procedure that returns, CD:1951-CD:1953

displaying execution plans, 1317

documents

fragments, CD:1866

instances, CD:1866

markups, CD:1866

processing instructions, CD:1866

valid documents, CD:1866

well formed documents, CD:1866

documents, CD:1866

element-centric XML shape, CD:1868

FOR XML modes, CD:1866

AUTO mode, CD:1873-CD:1877

EXPLICIT mode, CD:1877-CD:1881

newxml data type, CD:1884-CD:1887

PATH mode, CD:1881-CD:1884

RAW mode, CD:1867-CD:1871

Infoset, CD:1920-CD:1921

new features, CD:1865

new xml data type, CD:1890-CD:1891

built-in methods, CD:1899-CD:1918

columns, CD:1892-CD:1894

schema collections, CD:1894-CD:1899

nodes, CD:1866

OPENXML, CD:1887-CD:1890

sending as attachments with Database
Mail, 439-440

How can we make this index more useful? Email us at indexes@samspublishing.com

xml columns, CD:1918-CD:1925

XMLDML (XML Data Modification Language),
CD:1913

XSD (XML Schema Definition), CD:1866

XML configuration file, CD:2108

xml data type, 750-751, CD:1687-CD:1688

XML Schema Definition (XSD), CD:1866

XMLDATA keyword, CD:1871

XMLDML (XML Data Modification Language),
CD:1913

xp cmdshell, CD:1784-CD:1786

XP-related configuration options, CD:2316

XSD (XML Schema Definition), CD:1866

Y-Z
Yuhanna, Noel, 1

zero-to-one relationships, 1415

zoning, 1424

zoning 2451

	Table of Contents
	Introduction
	Part I: Welcome to Microsoft SQL Server
	1 SQL Server 2008 Overview
	SQL Server Components and Features
	SQL Server 2008 R2 Editions
	SQL Server Licensing Models
	Summary

	2 What’s New in SQL Server 2008
	New SQL Server 2008 Features
	SQL Server 2008 Enhancements
	Summary

	3 Examples of SQL Server Implementations
	Application Terms
	OLTP Application Examples
	DSS Application Examples
	Summary

	Part II: SQL Server Tools and Utilities
	4 SQL Server Management Studio
	What’s New in SSMS
	The Integrated Environment
	Administration Tools
	Development Tools
	Summary

	5 SQL Server Command-Line Utilities
	What’s New in SQL Server Command-Line Utilities
	The sqlcmd Command-Line Utility
	The dta Command-Line Utility
	The tablediff Command-Line Utility
	The bcp Command-Line Utility
	The sqldiag Command-Line Utility
	The sqlservr Command-Line Utility
	Summary

	6 SQL Server Profiler
	What’s New with SQL Server Profiler
	SQL Server Profiler Architecture
	Creating Traces
	Executing Traces and Working with Trace Output
	Saving and Exporting Traces
	Replaying Trace Data
	Defining Server-Side Traces
	Profiler Usage Scenarios
	Summary

	Part III: SQL Server Administration
	7 SQL Server System and Database Administration
	What’s New in SQL Server System and Database Administration
	System Administrator Responsibilities
	System Databases
	System Tables
	System Views
	System Stored Procedures
	Summary

	8 Installing SQL Server 2008
	What’s New in Installing SQL Server 2008
	Installation Requirements
	Installation Walkthrough
	Installing SQL Server Using a Configuration File
	Installing Service Packs and Cumulative Updates
	Slipstream Installations
	Summary

	9 Upgrading to SQL Server 2008
	What’s New in Upgrading SQL Server
	Using the SQL Server Upgrade Advisor (UA)
	Destination: SQL Server 2008 or SQL Server 2008 R2
	Upgrading Using a Configuration File
	Slipstreaming Upgrades
	Upgrading Other SQL Server Components
	Summary

	10 Client Installation and Configuration
	What’s New in Client Installation and Configuration
	Client/Server Networking Considerations
	Client Installation
	Client Configuration
	Client Data Access Technologies
	Summary

	11 Security and User Administration
	What’s New in Security and User Administration
	An Overview of SQL Server Security
	Authentication Methods
	Managing Principals
	Managing Securables
	Managing Permissions
	Managing SQL Server Logins
	Managing SQL Server Users
	Managing Database Roles
	Managing SQL Server Permissions
	The Execution Context
	Summary

	12 Data Encryption
	What’s New in Data Encryption
	An Overview of Data Security
	An Overview of Data Encryption
	SQL Server Key Management
	Column-Level Encryption
	Transparent Data Encryption
	Column-Level Encryption Versus Transparent Data Encryption
	Summary

	13 Security and Compliance
	Exposure and Risk
	Across the Life Cycle
	The Security Big Picture
	Identity Access Management Components
	Compliance and SQL Server
	SQL Server Auditing
	Setting Up Auditing via T-SQL
	SQL Injection Is Easy to Do
	Summary

	14 Database Backup and Restore
	What’s New in Database Backup and Restore
	Developing a Backup and Restore Plan
	Types of Backups
	Recovery Models
	Backup Devices
	Backing Up a Database
	Backing Up the Transaction Log
	Backup Scenarios
	Restoring Databases and Transaction Logs
	Restore Scenarios
	Additional Backup Considerations
	Summary

	15 Database Mail
	What’s New in Database Mail
	Setting Up Database Mail
	Sending and Receiving with Database Mail
	Using SQL Server Agent Mail
	Related Views and Procedures
	Summary

	16 SQL Server Scheduling and Notification
	What’s New in Scheduling and Notification
	Configuring the SQL Server Agent
	Viewing the SQL Server Agent Error Log
	SQL Server Agent Security
	Managing Operators
	Managing Jobs
	Managing Alerts
	Scripting Jobs and Alerts
	Multiserver Job Management
	Event Forwarding
	Summary

	17 Administering SQL Server 2008 with PowerShell
	What’s New with PowerShell
	Overview of PowerShell
	PowerShell Scripting Basics
	PowerShell in SQL Server 2008
	Step-By-Step Examples
	Summary

	18 SQL Server High Availability
	What’s New in High Availability
	What Is High Availability?
	The Fundamentals of HA
	Building Solutions with One or More HA Options
	Other HA Techniques That Yield Great Results
	High Availability from the Windows Server Family Side
	Summary

	19 Replication
	What’s New in Data Replication
	What Is Replication?
	The Publisher, Distributor, and Subscriber Magazine Metaphor
	Replication Scenarios
	Subscriptions
	Replication Agents
	Planning for SQL Server Data Replication
	SQL Server Replication Types
	Basing the Replication Design on User Requirements
	Setting Up Replication
	Scripting Replication
	Monitoring Replication
	Summary

	20 Database Mirroring
	What’s New in Database Mirroring
	What Is Database Mirroring?
	Roles of the Database Mirroring Configuration
	Setting Up and Configuring Database Mirroring
	Testing Failover from the Principal to the Mirror
	Client Setup and Configuration for Database Mirroring
	Migrate to Database Mirroring 2008 as Fast as You Can
	Using Replication and Database Mirroring Together
	Using Database Snapshots from a Mirror for Reporting
	Summary

	21 SQL Server Clustering
	What’s New in SQL Server Clustering
	How Microsoft SQL Server Clustering Works
	Installing SQL Server Clustering
	Summary

	22 Administering Policy-Based Management
	Introduction to Policy-Based Management
	Policy-Based Management Concepts
	Implementing Policy-Based Management
	Sample Templates and Real-World Examples
	Policy-Based Management Best Practices
	Summary

	Part IV: Database Administration
	23 Creating and Managing Databases
	What’s New in Creating and Managing Databases
	Data Storage in SQL Server
	Database Files
	Creating Databases
	Setting Database Options
	Managing Databases
	Summary

	24 Creating and Managing Tables
	What’s New in SQL Server 2008
	Creating Tables
	Defining Columns
	Defining Table Location
	Defining Table Constraints
	Modifying Tables
	Dropping Tables
	Using Partitioned Tables
	Creating Temporary Tables
	Summary

	25 Creating and Managing Indexes
	What’s New in Creating and Managing Indexes
	Types of Indexes
	Creating Indexes
	Managing Indexes
	Dropping Indexes
	Online Indexing Operations
	Indexes on Views
	Summary

	26 Implementing Data Integrity
	What’s New in Data Integrity
	Types of Data Integrity
	Enforcing Data Integrity
	Using Constraints
	Rules
	Defaults
	Summary

	27 Creating and Managing Views in SQL Server
	What’s New in Creating and Managing Views
	Definition of Views
	Using Views
	Creating Views
	Managing Views
	Data Modifications and Views
	Partitioned Views
	Indexed Views
	Summary

	28 Creating and Managing Stored Procedures
	What’s New in Creating and Managing Stored Procedures
	Advantages of Stored Procedures
	Creating Stored Procedures
	Executing Stored Procedures
	Deferred Name Resolution
	Viewing Stored Procedures
	Modifying Stored Procedures
	Using Input Parameters
	Using Output Parameters
	Returning Procedure Status
	Debugging Stored Procedures Using SQL Server Management Studio
	Using System Stored Procedures
	Startup Procedures
	Summary

	29 Creating and Managing User-Defined Functions
	What’s New in SQL Server 2008
	Why Use User-Defined Functions?
	Types of User-Defined Functions
	Creating and Managing User-Defined Functions
	Rewriting Stored Procedures as Functions
	Creating and Using CLR Functions
	Summary

	30 Creating and Managing Triggers
	What’s New in Creating and Managing Triggers
	Using DML Triggers
	Using DDL Triggers
	Using CLR Triggers
	Using Nested Triggers
	Using Recursive Triggers
	Summary

	31 Transaction Management and the Transaction Log
	What’s New in Transaction Management
	What Is a Transaction?
	How SQL Server Manages Transactions
	Defining Transactions
	Transactions and Batches
	Transactions and Stored Procedures
	Transactions and Triggers
	Transactions and Locking
	Coding Effective Transactions
	Transaction Logging and the Recovery Process
	Long-Running Transactions
	Bound Connections
	Distributed Transactions
	Summary

	32 Database Snapshots
	What’s New with Database Snapshots
	What Are Database Snapshots?
	Limitations and Restrictions of Database Snapshots
	Copy-on-Write Technology
	When to Use Database Snapshots
	Setup and Breakdown of a Database Snapshot
	Reverting to a Database Snapshot for Recovery
	Setting Up Snapshots Against a Database Mirror
	Database Snapshots Maintenance and Security Considerations
	Summary

	33 Database Maintenance
	What’s New in Database Maintenance
	The Maintenance Plan Wizard
	Managing Maintenance Plans Without the Wizard
	Executing a Maintenance Plan
	Maintenance Without a Maintenance Plan
	Database Maintenance Policies
	Summary

	Part V: SQL Server Performance and Optimization
	34 Data Structures, Indexes, and Performance
	What’s New for Data Structures, Indexes, and Performance
	Understanding Data Structures
	Database Files and Filegroups
	Database Pages
	Space Allocation Structures
	Data Compression
	Understanding Table Structures
	Understanding Index Structures
	Data Modification and Performance
	Index Utilization
	Index Selection
	Evaluating Index Usefulness
	Index Statistics
	SQL Server Index Maintenance
	Index Design Guidelines
	Indexed Views
	Indexes on Computed Columns
	Filtered Indexes and Statistics
	Choosing Indexes: Query Versus Update Performance
	Identifying Missing Indexes
	Identifying Unused Indexes
	Summary

	35 Understanding Query Optimization
	What’s New in Query Optimization
	What Is the Query Optimizer?
	Query Compilation and Optimization
	Query Analysis
	Row Estimation and Index Selection
	Join Selection
	Execution Plan Selection
	Query Plan Caching
	Other Query Processing Strategies
	Parallel Query Processing
	Common Query Optimization Problems
	Managing the Optimizer
	Summary

	36 Query Analysis
	What’s New in Query Analysis
	Query Analysis in SSMS
	SSMS Client Statistics
	Using the SET SHOWPLAN Options
	Using sys.dm_exec_query_plan
	Query Statistics
	Query Analysis with SQL Server Profiler
	Summary

	37 Locking and Performance
	What’s New in Locking and Performance
	The Need for Locking
	Transaction Isolation Levels in SQL Server
	The Lock Manager
	Monitoring Lock Activity in SQL Server
	SQL Server Lock Types
	SQL Server Lock Granularity
	Lock Compatibility
	Locking Contention and Deadlocks
	Table Hints for Locking
	Optimistic Locking
	Summary

	38 Database Design and Performance
	What’s New in Database Design and Performance
	Basic Tenets of Designing for Performance
	Logical Database Design Issues
	Denormalizing a Database
	Database Filegroups and Performance
	RAID Technology
	SQL Server and SAN Technology
	Summary

	39 Monitoring SQL Server Performance
	What’s New in Monitoring SQL Server Performance
	Performance Monitoring Tools
	A Performance Monitoring Approach
	Summary

	40 Managing Workloads with the Resource Governor
	Overview of Resource Governor
	Resource Governor Components
	Configuring Resource Governor
	Monitoring Resource Usage
	Modifying Your Resource Governor Configuration
	Summary

	41 A Performance and Tuning Methodology
	The Full Architectural Landscape
	Primary Performance and Tuning Handles
	A Performance and Tuning Methodology
	Performance and Tuning Design Guidelines
	Tools of the Performance and Tuning Trade
	Summary

	Part VI: SQL Server Application Development
	42 What’s New for Transact-SQL in SQL Server 2008
	MERGE Statement
	Insert over DML
	GROUP BY Clause Enhancements
	Variable Assignment in DECLARE Statement
	Compound Assignment Operators
	Row Constructors
	New date and time Data Types and Functions
	Table-Valued Parameters
	Hierarchyid Data Type
	Using FILESTREAM Storage
	Sparse Columns
	Spatial Data Types
	Change Data Capture
	Change Tracking
	Summary

	43 Transact-SQL Programming Guidelines, Tips, and Tricks
	General T-SQL Coding Recommendations
	General T-SQL Performance Recommendations
	T-SQL Tips and Tricks
	In Case You Missed It: New Transact-SQL Features in SQL Server 2005
	The xml Data Type
	The max Specifier
	TOP Enhancements
	The OUTPUT Clause
	Common Table Expressions
	Ranking Functions
	PIVOT and UNPIVOT
	The APPLY Operator
	TRY...CATCH Logic for Error Handling
	The TABLESAMPLE Clause
	Summary

	44 Advanced Stored Procedure Programming and Optimization
	T-SQL Stored Procedure Coding Guidelines
	Using Cursors in Stored Procedures
	Nested Stored Procedures
	Using Temporary Tables in Stored Procedures
	Using Remote Stored Procedures
	Stored Procedure Performance
	Using Dynamic SQL in Stored Procedures
	Installing and Using .NET CLR Stored Procedures
	Using Extended Stored Procedures
	Summary

	45 SQL Server and the .NET Framework
	What’s New in SQL Server 2008 and the .NET Framework
	Getting Comfortable with ADO.NET 3.5 and SQL Server 2008
	Developing with LINQ to SQL
	Using ADO.NET Data Services
	Leveraging the Microsoft Sync Framework
	Summary

	46 SQLCLR: Developing SQL Server Objects in .NET
	What’s New for SQLCLR in SQL Server 2008
	Developing Custom Managed Database Objects
	Summary

	47 Using XML in SQL Server 2008
	What’s New in Using XML in SQL Server 2008
	Understanding XML
	Relational Data As XML: The FOR XML Modes
	XML As Relational Data: Using OPENXML
	Using the xml Data Type
	Indexing and Full-Text Indexing of xml Columns
	Summary

	48 SQL Server Web Services
	What’s New in SQL Server Web Services
	Web Services Migration Path
	Web Services History and Overview
	Building Web Services
	Examples: A C# Client Application
	Using Catalog Views and System Stored Procedures
	Controlling Access Permissions
	Summary

	49 SQL Server Service Broker
	What’s New in Service Broker
	Understanding Distributed Messaging
	Designing a Sample System
	Understanding Service Broker Constructs
	Service Broker Routing and Security
	Troubleshooting SSB Applications with ssbdiagnose.exe
	Related System Catalogs
	Summary

	50 SQL Server Full-Text Search
	What’s New in SQL Server 2008 Full-Text Search
	Upgrade Options in SQL Server 2008
	How SQL Server FTS Works
	Implementing SQL Server 2008 Full-Text Catalogs
	Setting Up a Full-Text Index
	Full-Text Searches
	Full-Text Search Maintenance
	Full-Text Search Performance
	Full-Text Search Troubleshooting
	Summary

	Part VII: SQL Server Business Intelligence Features
	51 SQL Server 2008 Analysis Services
	What’s New in SSAS
	Understanding SSAS and OLAP
	Understanding the SSAS Environment Wizards
	An Analytics Design Methodology
	An OLAP Requirements Example: CompSales International
	Summary

	52 SQL Server Integration Services
	What’s New with SSIS
	SSIS Basics
	SSIS Architecture and Concepts
	SSIS Tools and Utilities
	A Data Transformation Requirement
	Running the SSIS Wizard
	The SSIS Designer
	The Package Execution Utility
	Connection Projects in Visual Studio
	Change Data Capture Addition with R2
	Using bcp
	Logged and Nonlogged Operations
	Summary

	53 SQL Server 2008 Reporting Services
	What’s New in SSRS 2008
	Reporting Services Architecture
	Installing and Configuring SSRS
	Developing Reports
	Management and Security
	Performance and Monitoring
	Summary

	Part VIII: Bonus Chapters
	54 Managing Linked and Remote Servers
	What’s New in Managing Linked and Remote Servers
	Managing Remote Servers
	Linked Servers
	Adding, Dropping, and Configuring Linked Servers
	Mapping Local Logins to Logins on Linked Servers
	Obtaining General Information About Linked Servers
	Executing a Stored Procedure via a Linked Server
	Setting Up Linked Servers Using SQL Server Management Studio
	Summary

	55 Configuring, Tuning, and Optimizing SQL Server Options
	What’s New in Configuring, Tuning, and Optimizing SQL Server Options
	SQL Server Instance Architecture
	Configuration Options
	Fixing an Incorrect Option Setting
	Setting Configuration Options with SSMS
	Obsolete Configuration Options
	Configuration Options and Performance
	Database Engine Tuning Advisor
	Data Collection Sets
	Summary

	56 SQL Server Disaster Recovery Planning
	What’s New in SQL Server Disaster Recovery Planning
	How to Approach Disaster Recovery
	Microsoft SQL Server Options for Disaster Recovery
	The Overall Disaster Recovery Process
	Have You Detached a Database Recently?
	Third-Party Disaster Recovery Alternatives
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

